
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

A Library for Visualizing SHACL over
Knowledge Graphs

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science in Internet Technologies and Information Systems (ITIS)

BY

Hany Alom
Matriculation number: 10009810
E-mail: hany.alom@gmail.com

First evaluator: Prof. Dr. Maria-Esther Vidal
Second evaluator: Prof. Dr. Sören Auer
Supervisor: M.Sc. Philipp D. Rohde

March 24, 2022

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Hany Alom, declare that this thesis titled, ’A Library for Visualizing SHACL over
Knowledge Graphs’ and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Hany Alom

Signature:

Date:

I

Acknowledgements

First, I would like to thank Prof. Dr. Sören Auer and Prof. Dr. Maria-Esther
Vidal for giving me the opportunity to develop my thesis at TIB. I would like to
express my sincere gratitude to Prof. Dr. Maria-Esther Vidal, for her continuous
moral and scientific support throughout the project. I also truly appreciate my
supervisor, M.Sc. Philipp D. Rohde, for all the effort and time spent supervising
the progress and guiding me. Special thanks to my parents and all family members,
without whom I could not have the constant motivation. Thanks to my friends for
being patient with me and keeping me company during my studies and staying with
me up nights.

Hany Alom

II

Abstract

In a data-driven world, the amount of data currently collected and processed
is perhaps the most spectacular result of the digital revolution. And the range
of possibilities available has grown and will continue to grow. The Web is full of
documents for humans to read, and with Semantic Web, data can also be understood
by machines. W3C standardized RDF to represent the Web of data as modeled
entities and their relations. Then SHACL came along to present constraints in RDF
knowledge graphs, as a network of shapes. SHACL networks are usually presented in
textual formats. This thesis focuses on visualizing SHACL networks in a 3D space,
while providing many features for the user to manipulate the graph and get the
desired information. Thus, SHACLViewer is presented as a framework for SHACL
visualization. In addition, an evaluation for the impact of various parameters like
network size, topology, and density are studied. During the study, execution times for
different functions are computed; they include loading time, expanding the graph,
and highlighting a shape. The observed results reveal the characteristics of the
SHACL networks that affect the performance and scalability of SHACLViewer.

Keywords: Knowledge Graph, SHACL, Ontology Visualization

III

Contents

1 Introduction 1
1.1 Motivating Example . 1
1.2 Contributions . 4
1.3 Overview of the Document . 4
1.4 Summary of the Chapter . 4

2 Background 5
2.1 Semantic Web Technologies . 5
2.2 Resource Description Framework . 5
2.3 Web Ontology Language . 6
2.4 Shapes Constraint Language . 7
2.5 Knowledge Graph . 7
2.6 JavaScript Object Notation . 7
2.7 Summary of the Chapter . 8

3 Related Work 9
3.1 GizMO . 9
3.2 Modelling OWL Ontologies with Graffoo 10
3.3 Ontology visualization methods and tools: a survey of the state of the

art . 11
3.4 Visualizing ontologies with VOWL 12
3.5 SHAPEness: a SHACL-driven RDF Graph Editor 13
3.6 Summary of the Chapter . 14

4 SHACLViewer 15
4.1 Proposed Architecture . 15
4.2 Features . 15

4.2.1 Expand and Collapse . 16
4.2.2 Search . 16

IV

4.2.3 Expand and Collapse All . 17
4.2.4 Hide Intra-Constraints . 17
4.2.5 Highlight Selected . 17
4.2.6 Show Selected Shape Only . 17
4.2.7 Center Graph and Focus Selected Shape 17
4.2.8 Link Length . 17
4.2.9 Light and Dark Mode . 18
4.2.10 Info Panel . 18
4.2.11 Shapes Checklist Panel . 18

4.3 Summary of the Chapter . 19

5 Implementation 20
5.1 Processing SHACL Shape Schemas 20

5.1.1 Server Side . 20
5.1.2 Client Side . 21

5.2 Visualizing SHACL Shape Schemas 24
5.3 Exploring SHACL Shape Schemas . 24

5.3.1 Expand and Collapse . 25
5.3.2 Search . 25
5.3.3 Expand and Collapse All . 26
5.3.4 Hide Intra-Constraints . 26
5.3.5 Highlight Selected . 26
5.3.6 Show Selected Shape Only . 27
5.3.7 Light and Dark Mode . 27
5.3.8 Info Panel . 28
5.3.9 Shape Checklist Panel . 28
5.3.10 force-graph Supported Functions 29

5.4 Summary of the Chapter . 30

6 Experimental Evaluation 32
6.1 Experimental Setup . 32

6.1.1 Benchmarks . 32
6.1.2 Metrics . 36
6.1.3 Setup . 36

6.2 Impact of Shape Schema Size . 37
6.3 Impact of Shape Schema Topology 38
6.4 Impact of Shape Schema Density . 39
6.5 Real-World Shape Schemas . 39

V

6.6 Summary of the Chapter . 41

7 Conclusions and Future Work 43
7.1 Conclusions . 43
7.2 Limitations . 44
7.3 Future Work . 44
7.4 Summary of the Chapter . 44

Bibliography 45

VI

List of Figures

1.1 Motivation Example . 3

3.1 the visual characteristics of the two different methods and tools, visual ap-
pearance and spatial arrangement for GizMO [26] 9

3.2 Graffoo palette in yEd. [26] . 10

3.3 Table of interaction techniques provided by the reviewed tools. [11] 11

3.4 A small ontology visualized with VOWL [21] 12

3.5 SHAPEness user interface, consisting of: Graph View (a), Palette View (b),
Outline View (c), Properties View (d), RDF/Turtle View (e) [22] 14

4.1 SHACLViewer Architecture . 16

5.1 SHACLViewer. a screen-shoot of SHACLViewer full web-page 21

5.2 Trav-SHACLJavaScript file . 22

5.3 The visual representation in SHACLViewer, there are to types of constraints:
inter-constraint with two states and intra-constraint. And four colors for
nodes depending on the node’s type and state. Also, nodes are grouped by
shape and each group has a random color assigned to it. 24

5.4 Expand and Collapse . 25

5.5 Search box . 26

5.6 Expand All and Collapse All . 27

5.7 Hide Intra-Constraints . 28

5.8 Show Selected Shape Only . 29

5.9 Light and Dark Mode . 30

5.10 Info Panel This panel shows information about the selected shape and a
tree view for its constraints. 31

5.11 Shape Checklist Panel This panel shows all shapes listed in a check list
where the user could show or hide any shape. 31

5.12 Options Menu This menu contains most of the features supported by
SHACLViewer. 31

6.1 Visualization of synthetic graphs with SHACLViewer 35

VII

6.2 Size Impact on Execution Time . 37
6.3 Impact of Number of Nodes on Execution Time 38
6.4 Impact of Number of Links on Execution Time 39
6.5 Topology Impact on Execution Time . 40
6.6 Density Impact on Execution Time . 40
6.7 Density Impact on Execution Time with number of Nodes and Links 41
6.8 Real-World Shape Schemas Size . 41
6.9 Execution Time on Real-World Shape Schemas 42

VIII

List of Tables

6.1 Synthetic SHACL Shape Schemas . 34
6.2 Statistics of Real-World SHACL Shape Schemas 36

IX

Acronyms

JSON JavaScript Object Notation

KG Knowledge Graph

OWL Web Ontology Language

RDF Resource Description Framework

SHACL Shapes Constraint Language

X

Chapter 1

Introduction

Knowledge graphs have gained momentum as data structures that enable the rep-
resentation of data and metadata as factual statements[16]. The Semantic Web
community has made several formalisms and tools available to facilitate the imple-
mentation and publication of knowledge graphs. Specifically, the World Wide Web
Consortium (W3C) has proposed standards and recommendation languages to allow
for the interoperability of knowledge graphs. These languages include: the Resource
Description Framework (RDF) [19], the Web Ontology Language (OWL) [23], and
the Shapes Constraint Language (SHACL) [17]. RDF is a data model for represent-
ing knowledge graphs based on their entities and their relations. OWL is built on
top of RDF and Description Logics to represent complex relations between entities.
Lastly, SHACL allows expressing integrity constraints over RDF knowledge graphs.
In SHACL, restrictions are described as a network of shapes (a.k.a. SHACL shape
schema). SHACL networks can be expressed in RDF or textual format, impacting
the readability of the represented constraints. This thesis presents SHACLViewer,
a tool to visualize SHACL networks with many valuable features. This work is
motivated by the following example.

1.1 Motivating Example

To motivate this thesis work, consider a SHACL network consisting of shapes, those
shapes are in the form of JSON files. Each JSON file contains the name of the shape
and an array of constraints of two types, the first one is called intra-constraint which
declares a local restriction that does not target another shape like name or phone
number. The second is called inter-constraint which is a constraint that targets
another shape like a teacher teaches-in school. That means the shapes are connected

1

Chapter 1. Introduction

by inter-constraints and forming a network that can be visualized. For this example
let us check these five shapes written as JSON files:

{”name” : ” Un ive r s i ty ” ,
” targetDe f ” : {
”query” : ”SELECT ?x WHERE {?x a ub : Un ive r s i ty }” ,
” c l a s s ” : ”ub : Un ive r s i ty ”

} ,
” p r e f i x ” : {
”ub” : ”<http : // swat . c se . l eh i gh . edu/onto/univ−bench . owl#>”

} ,
” cons t ra in tDe f ” : {
” con junct i ons ” : [
[
{ ”path” : ”ub : name” , ”min” : 1 , ”max” : 1}

]
]

}
}

{”name” : ”Department” ,
” targetDe f ” : {
”query” : ”SELECT ?x WHERE {?x a ub : Department}” ,
” c l a s s ” : ”ub : Department”

} ,
” p r e f i x ” : {
”ub” : ”<http : // swat . c se . l eh i gh . edu/onto/univ−bench . owl#>”,
” blah ” : ”<http : //some . p r e f i x . com/blah/>”

} ,
” cons t ra in tDe f ” : {
” con junct i ons ” : [
[
{ ”path” : ”ub : name” , ”min” : 1 , ”max” : 1} ,
{ ”path” : ”ub : subOrganizationOf ” , ”min” : 1 , ”max” : 1 , ” shape” : ” Un ive r s i ty ” }

]
]

}
}

{”name” : ”GraduateCourse” ,
” targetDe f ” : {
”query” : ”SELECT ?x WHERE {?x a ub : GraduateCourse}” ,
” c l a s s ” : ”ub : GraduateCourse”

} ,
” p r e f i x ” : {
”ub” : ”<http : // swat . c se . l eh i gh . edu/onto/univ−bench . owl#>”

} ,
” cons t ra in tDe f ” : {
” con junct i ons ” : [
[
{ ”path” : ”ub : name” , ”min” : 1 , ”max” : 1}

]
]

}
}

{”name” : ” Fu l lP r o f e s s o r ” ,
” targetDe f ” : {
”query” : ”SELECT ?x WHERE {?x a ub : Fu l lP r o f e s s o r }” ,
” c l a s s ” : ”ub : Fu l lP r o f e s s o r ”

} ,
” p r e f i x ” : {
”ub” : ”<http : // swat . c se . l eh i gh . edu/onto/univ−bench . owl#>”

} ,
” cons t ra in tDe f ” : {
” con junct i ons ” : [
[
{ ”path” : ”ub : doctoralDegreeFrom” , ”min” : 1 , ” shape” : ” Un ive r s i ty ” } ,
{ ”path” : ”ub : emailAddress ” , ”min” : 1 } ,
{ ”path” : ”ub : headOf” , ”max” : 1 , ” shape” : ”Department” } ,
{ ”path” : ”ub : mastersDegreeFrom” , ”min” : 1 , ” shape” : ” Un ive r s i ty ” } ,
{ ”path” : ”ub : name” , ”min” : 1 , ”max” : 1} ,
{ ”path” : ”ub : r e s e a r c h I n t e r e s t ” , ”min” : 1} ,

2

1.1. Motivating Example

{ ”path” : ”ub : teacherOf ” , ”min” : 1 , ” shape” : ”GraduateCourse” } ,
{ ”path” : ”ub : teacherOf ” , ”max” : 2 , ” shape” : ”GraduateCourse” } ,
{ ”path” : ”ub : te l ephone ” , ”min” : 1 } ,
{ ”path” : ”ub : undergraduateDegreeFrom” , ”min” : 1 , ” shape” : ” Un ive r s i ty ” } ,
{ ”path” : ”ub : worksFor” , ”min” : 1 , ” shape” : ”Department” }

]
]

}
}

{”name” : ”GraduateStudent” ,
” targetDe f ” : {
”query” : ”SELECT ?x WHERE {?x a ub : GraduateStudent}” ,
” c l a s s ” : ”ub : GraduateStudent”

} ,
” p r e f i x ” : {
”ub” : ”<http : // swat . c se . l eh i gh . edu/onto/univ−bench . owl#>”

} ,
” cons t ra in tDe f ” : {
” con junct i ons ” : [
[
{ ”path” : ”ub : adv i so r ” , ”min” : 1 , ”max” : 1 } ,
{ ”path” : ”ub : emailAddress ” , ”min” : 1 } ,
{ ”path” : ”ub :memberOf” , ”min” : 1 , ” shape” : ”Department” } ,
{ ”path” : ”ub : name” , ”min” : 1 , ”max” : 1} ,
{ ”path” : ”ub : takesCourse ” , ”min” : 1 , ” shape” : ”GraduateCourse” } ,
{ ”path” : ”ub : takesCourse ” , ”max” : 3 , ” shape” : ”GraduateCourse” } ,
{ ”path” : ”ub : te l ephone ” , ”min” : 1 } ,
{ ”path” : ”ub : undergraduateDegreeFrom” , ”min” : 1 , ” shape” : ” Un ive r s i ty ” }

]
]

}
}

By using SHACLViewer, this network could be visualized in 3D Figure 1.1a and 2D
views Figure 1.1c, that supports a list of useful features like expanding and collapsing
shapes, selecting a shape and checking its information, hiding other shapes and more.

(a) 3D View (b) 3D View after rotation (c) 2D view

Figure 1.1: Motivation Example: a) 3D view of the network, b) the same view
after dragging the background rotating the graph, c) 2D view of the same network.

3

Chapter 1. Introduction

1.2 Contributions

This thesis contributes to the repertoire of tools for knowledge graph management
and presents SHACLViewer, a visualization tool for SHACL schemas. SHACLViewer
supports 3D/2D visualizations and enables the visualization of essential features
without sacrificing the usability of the tool. The performance of SHACLViewer is
empirically evaluated in a benchmark of synthetic and real-world SHACL networks.
The results of the experimental study reveal the conditions of the SHACL schemas
that impact the performance and scalability of SHACLViewer. These conditions
include the topology, size, and density of the graph.

1.3 Overview of the Document

The remainder of this document is structured as follows: Chapter 2 provides the
theoretical background needed to understand the approach and methods proposed
in this thesis. Related work is presented in Chapter 3. Chapter 4 introduces the
architecture and formalization of the proposed approach. Chapter 5 describes in more
detail the implementation of the approach. A scalability study of the implemented
approach is presented, discussed, and analyzed in Chapter 6. Finally, Chapter 7
concludes this thesis and presents ideas to be addressed as future work on the topic
of visualizing SHACL shape schemas.

1.4 Summary of the Chapter

To summarize, this chapter introduces the working area of this thesis. It also provides
a motivating example to understand the existing problem better that this work aims
to tackle. In addition, this chapter describes the contribution of this thesis.

4

Chapter 2

Background

This chapter presents the terminology and concepts required to understand the prob-
lem tackled in this thesis.

2.1 Semantic Web Technologies

The Semantic Web enhances the Web of documents with the possibility of repre-
senting data and their meaning (a.k.a. metadata). Tim Berners-Lee is the inventor
of the Web, and in a seminal paper published in 2001, Berners-Lee et al. devise
the extension of the Web with meaning [7]. The Semantic Web comprises a set
of formalisms and technologies that make possible the definition of the semantic
layer. The Resource Description Framework (RDF) [19], the Web Ontology Lan-
guage (OWL) [23], and Shapes Constraint Language (SHACL) [17] correspond to
formalisms for modeling data and their integrity constraints.

2.2 Resource Description Framework

The Resource Description Framework (RDF) [19] is the W3C (World Wide Web
Consortium) standard for the representation of Web data as factual statements.
RDF allows for modeling entities and their relationships using subject-property-
object statements, named RDF triples [19]. An RDF t triple is defined as t=(subject,
property,object):

• subject : corresponds to a resource modeling entities of any type. For example,
the professors Soren Auer and Maria-Esther Vidal are resources.

5

Chapter 2. Background

• property : represents the predicate that relates a subject with an object. For
example, the property lectures that relates a professor with the lecture that
he/she teaches.

• object : models an entity or value that is related to the subject. For example, the
course Knowledge Engineering and Semantic Web is an object of the property
lectures when the subjects are Soren Auer or Maria-Esther Vidal.

2.3 Web Ontology Language

The World Wide Web Consortium (W3C) has defined a more descriptive Web Ontol-
ogy Language (OWL) [23] to extend the restricted expressiveness of RDF. OWL is a
new formal language for describing ontologies in the Semantic Web. OWL incorpo-
rates elements from multiple representation language families, especially Description
Logics and Frames. OWL provides the following features [2]:

• Local scope of properties, e.g., the range of a property.

• Disjointedness of classes: declaring two classes are disjoint.

• Boolean combinations of classes: combining two classes using union.

• Cardinality restrictions: this constraint restricts on how many values a property
could have.

• Special characteristics of properties: like a property could be unique, inverse
or transitive.

OWL is a very advanced language. As for the example in Section 2.2, the following
statements can be defined:

• Disjointedness: University and Student are disjoint classes.

• Different Individuals: Database and Networking are distinct individuals.

• Inverse properties: hasLecture and TeachedIn are inverse properties.

• Membership: SuspendedStudent is defined as the members of Student that have
no property of Study.

6

2.4. Shapes Constraint Language

2.4 Shapes Constraint Language

The SHapes Constraint Language (SHACL) [17] is the W3C recommendation lan-
guage to represent constraints in RDF. In SHACL, constraints are expressed as a
network of shapes (a.k.a. SHACL shape schema). A shape represents integrity con-
straints over the properties of an RDF term (e.g., class or entities). On the other
hand, an edge between two shapes expresses constraints against the properties be-
tween the RDF terms associated with the related shapes. A focus node represents an
RDF triple subject; it can be provided as input or extracted from target declarations.
A target corrresponds to a triple where the subject is the shape name and the prop-
erty correspond to any of the following predicates: i) a target node sh:targetNode;
ii) a class sh:targetClass; iii) subjects of a predicate sh:targetSubjectsOf; and
iv) objects of a predicate sh:targetObjectsOf. The sh:path parameter states a
predicate that connects a focus node with its property value. Cardinality constraints
are represented with the parameters sh:minCount and sh:maxCount.

2.5 Knowledge Graph

Knowledge graphs (KGs) are data structures that represent factual knowledge as
entities and their relationships using a graph data model [25]. Metadata is part of
the KG as well as taxonomies of entities, relationships, and classes. Ontologies and
controlled vocabularies are utilized to describe the meaning of the relations, as well
as for annotating entities in a uniform way in the knowledge graph. Thus, KGs
contribute to the development of a common understanding of the meaning of entities
in a domain, and provide a formal specification of the meaning of these entities.

2.6 JavaScript Object Notation

JSON is a lightweight, text-based, language-independent data interchange format;
meaning it is a text format used to exchange data between platforms, and being
independent of any programming language is helping with that. JSON is a text
format for a serialized object of structured data where strings, integers, booleans,
and null are the four primitive types that JSON could represent, as well as two
structured types (objects and arrays) [6] [10].

7

Chapter 2. Background

2.7 Summary of the Chapter

This chapter presented all the concepts required to understand the problem addressed
in this thesis, the proposed approach, and the empirical evaluation conducted to
analyze the scalability of the implementation of the approach.

8

Chapter 3

Related Work

Visualization-related topics have previously been covered in the literature. This chap-
ter discusses state-of-the-art approaches for visualizing ontologies, SHACL schemas,
and knowledge graphs. The main features of each system are discussed, and SHA-
CLViewer is positioned as a tool that can overcome these approaches’ limitations.

3.1 GizMO

Figure 3.1: the visual characteristics of the two different methods and tools, visual
appearance and spatial arrangement for GizMO [26]

9

Chapter 3. Related Work

GizMO, a representation model for graph-based ontology visualizations in 2D
space Figure 3.1, demonstrates the methodology’s applicability. Annotation prop-
erties for visual attributes are defined in the GizMO core ontology (e.g., shapes,
colors, positions, etc.). Annotation objects provide grouped instantiations of values
connected to OWL constructs and domain ontology elements.

Annotation objects come in a variety of shapes and sizes, each focusing on a
different component of the visualization. For the visual representation, these offer a
conceptual boundary between the global and local layers [26]. GizMO allows multiple
links between two nodes to collapse and expand. These mechanisms for datatypes,
datatype properties, and object properties are used to describe nested node visual-
izations. Where the semantic zooming approach removes collapsed elements from
the visualization, the frameworks render the collapsed elements with their visual
descriptions inside the corresponding node [26].

3.2 Modelling OWL Ontologies with Graffoo

Graffo is a graphical notation to model OWL ontologies. All the graphical elements
blocks ”nodes” and arcs ”links” Figure 3.2 of Graffoo have been developed using
the standard library of yEd [http://www.yworks.com/en/products yed about.html]
a free diagram editor [12].

Figure 3.2: Graffoo palette in yEd. [26]

It is possible to add annotations to ontological entities by using the preference
panel, Graffo supports zooming in and out, panning, entry focus, search and high-
light, and drag and drop [11].

10

3.3. Ontology visualization methods and tools: a survey of the state of the art

3.3 Ontology visualization methods and tools: a

survey of the state of the art

This survey evaluates how visualization methods are used and how they are imple-
mented in each tool, as well as the support for interaction techniques and which
OWL constructs are shown (what is referred to as OWL coverage) [11]. Figure 3.3
provides an overview of the supported interaction techniques. Definitions for the

Figure 3.3: Table of interaction techniques provided by the reviewed tools. [11]

mentioned interaction techniques in Figure 3.3:

• Radar view: a visually summarized ontology.

• Graphical zoom: the ability to zoom in and out.

• Entry focus: showing an entity and its surroundings and hiding everything else.

• History: the ability to undo or redo the last step

• Pop-up window: show the details of a selected entity

• Incremental exploration: the ability to add parts of the ontology to the graph
after hiding them.

• Search and highlight: the ability to search for an entity.

11

Chapter 3. Related Work

• Filter parts: hiding parts of the graph based on its type to reduce clutter.

• Filter entity type: hiding all entities of the same type

• Fisheye distortion: focusing on a part of the graph while spreading back the
rest.

• Edge bundling: reduce clutter by grouping edges with the same path.

• Panning: moving the graph by dragging.

• Drag and drop: moving an individual entity in the graph.

• Textual editing: the ability to edit the selected entity

• Visual editing: the ability to create new entities.

3.4 Visualizing ontologies with VOWL

Figure 3.4: A small ontology visualized with VOWL [21]

12

3.5. SHAPEness: a SHACL-driven RDF Graph Editor

VOWL is a well-defined visual language for representing ontologies in a user-
oriented format. It provides graphical representations Figure 3.4 for most Web On-
tology Language (OWL) elements that are combined into a force-directed graph
layout to visualize the ontology [21]. It supports the following features:

• Layout and navigation: allows the user to zoom in and out and panning.

• The pick-and-pin feature: it allows the user to decouple selected nodes from
the force-directed layout and place them on an empty canvas at freely chosen
position.

• Node multiplication

• Equivalent classes: merging equivalent classes into one node.

• Properties

• Set operators: special representation for operators like union and intersection.

• Filtering: hide the respective property edges, collapsing and expanding subtrees
or sub-graphs

• Colors

3.5 SHAPEness: a SHACL-driven RDF Graph

Editor

The fundamental purpose of SHAPEness development was to produce a compre-
hensive desktop program that could be used in any context, domain, or use case
that required browsing, editing, or validating RDF graphs based on a set of input
SHACL constraints (schema) [22]. There are three types of visualization in SHAPE-
ness Figure 3.5: graph-based, form-based and tree-based. The application assists
users in properties compilation by hiding the schema’s complexity, preventing typos,
and validating property types and required properties.

SHAPEness supports 1) graph navigation like zoom in, zoom out, change graph
layout, add and remove nodes or relationships 2) hiding a specific node types 3)
context menu for frequently used commands.

13

Chapter 3. Related Work

Figure 3.5: SHAPEness user interface, consisting of: Graph View (a), Palette View
(b), Outline View (c), Properties View (d), RDF/Turtle View (e) [22]

3.6 Summary of the Chapter

This chapter reviewed some work related to this thesis. Additionally, they were
compared to the work of this project.

14

Chapter 4

SHACLViewer

This chapter defines SHACLViewer in terms of an abstract architecture, and the
operations that can be performed over a SHACL schema.

4.1 Proposed Architecture

The proposed architecture is depicted in Figure 4.1. First the shapes are already
in the format of JSON files set in one directory, each file contains one shape which
defines the shape name and constraints. The files will be imported and converted to
a graph; the graph is a list of shapes, each one has a list of its constraints. Now, the
shapes should be converted into nodes and links, each shape has one node carrying
its name and other nodes one for each constraint it has. Then, links are connected
between each shapes’ node and its constraint, and for inter-constraints links will
connect them with their targets. Another type of links is added, which connects
shapes’ nodes with each other if they have an inter-constraint between them. All
that was on the server. Next, on the user’s side, the nodes and links will be initialized
and mapped with each other, then visualized. We propose to draw the graph in a 3D
instead of 2D like most other solutions. By adding a new dimension, there is more
space to visualize the data. Also, multiple useful functions are included.

4.2 Features

This section presents the features implemented in SHACLViewer.

15

Chapter 4. SHACLViewer

Figure 4.1: The SHACLViewer Architecture The diagram reports the architec-
ture of the approach to visualize a shapes network.

4.2.1 Expand and Collapse

Each shape is represented in two states, expanded and collapsed. In the expanded
state, a shape is represented with a node carrying the shape name; this node is linked
to other nodes representing the constraints. If the constraint is an inter-constraint,
the node will be connected to the targeted shape. Contrary, if it is intra-constraint
no link is shown. The second state is collapsed, in this state, the shape will be
represented with a node carrying the shape name. For each inter-constraint’s target,
it has there will be a link directly from the shape node to the targeted shape To
change between those two states, the user could click on the shape node, and some
other features will change the state will be mentioned later.

4.2.2 Search

Using this search box, a user could find any shape. While typing, the user will see
suggestions for what he typed and when hovering over one of them the shape will
be highlighted in the graph. By clicking on a suggestion, the shape will be selected,
and the info panel will be updated. There are some special cases where the selected
shape is hidden.

• If the searched shape is hidden by unchecking it from Shape checklist, in this
case the shape will be added to the graph and selected.

• When the shape is hidden because of using “Show selected shape only”, in this
case the searched shape will be selected, and every other shape will be hidden
unless it has a connection to the searched shape like if the “Show selected shape
only” toggle was turned off and on again.

16

4.2. Features

• Clicking on the search bar will clear it, and suggest all the shapes sorted al-
phabetically for an easier way to find a shape without typing.

4.2.3 Expand and Collapse All

Two buttons to expand and collapse all shapes, by default all shapes are collapsed,
this way when the user opens the graph the load time won’t take too much time and
the user won’t be overwhelmed.

4.2.4 Hide Intra-Constraints

This button will hide all intra-constraints from all expanded shapes. This function
is also meant for reducing the clutter in the graph. Default state is off.

4.2.5 Highlight Selected

This toggle hides the highlight colors for the selected shape. Highlighting the selected
node may be an intense process if the graph was too big. Default state is on.

4.2.6 Show Selected Shape Only

Turning this switch on will hide all shapes’ nodes and links, and will show only the
selected shape nodes and links, and it will show any other shape that is related to
the selected shape but without its links and constraints. Clicking on a shape’s node
with a hidden constraint will show them. And any shown node will act as normal.

4.2.7 Center Graph and Focus Selected Shape

Both buttons will change the camera angle of the 3D space to show the graph in
different positions. Center graph will put the average nodes’ position on the zero
axis of the 3D space, while the focus selected shape will set the zero axes on the
selected shape main node and rotate the graph to give the node a front view.

4.2.8 Link Length

Those four sliders will increase or decrease the length of the links between the nodes,
and the links are separated in four types:

17

Chapter 4. SHACLViewer

• Shape to Shape link: those links connect shape’s node to another shape’s node;
those links are used to link two shapes if the source shape is collapsed and its
constraint linking to the target shape is hidden.

• Shape to Intra-Constraint link: those are links between a shape’s main node
and an intra-constraint’s node, of course the Hide intra-constraints switch
should be off to see the change.

• Shape to Inter-Constraint link: those links connect the source shape’s node
with the inter-constraint’s node.

• Inter-Constraint to Shape link: links between inter-constraint’s node of a shape
and the target shape’s node.

4.2.9 Light and Dark Mode

A switch to change the website theme between Light and Dark colors.

4.2.10 Info Panel

This panel is divided into two-part, metadata that contains a number of intra-
constraints, inter-constraints and the number of constraints targeting this shape.
The second part is the constraints themselves, here the constraints are listed in
a tree list starting with the selected shape, in it; first, there are intra-constraints
denoted by a symbol, clicking on one of them will show the min/max for that con-
straint. Second, there are the inter-constraints denoted by another symbol, clicking
on one of them will show min/max for that constraint plus the targeted shape by
this constraint which can be opened and will show the same thing recursively. By
clicking on a shape in a constraint that shape will expand in the graph and show
its constraints’ nodes, also if the shapes connecting to the clicked shape are hidden,
they will be shown again.

4.2.11 Shapes Checklist Panel

In this checklist all shapes in the graph are listed, using this checklist the user
could show or hide any shape, also this checklist is updated when the user use
“Show selected shape only” or show a shape by clicking on a visible shape with
hidden constraints to hidden shapes, or by clicking on a hidden shape name from the
constraint tree view in info panel.

18

4.3. Summary of the Chapter

4.3 Summary of the Chapter

This chapter presented the visualization problem addressed in this thesis; it defines
SHACLViewer as an abstract architecture that enables the visualization of SHACL
schemas. The implementation of the proposed architecture is presented in Chap-
ter 5, while the results of the empirical study of the performance of the implemented
framework are reported in Chapter 6.

19

Chapter 5

Implementation

For the implementation Python with Flask and Jinja are used. The implementation
mostly done in JavaScript but a web application had to be made with Python to use it
with other projects. The implemented application is called SHACLViewer Figure 5.1.

5.1 Processing SHACL Shape Schemas

5.1.1 Server Side

The SHACL shape schemas used in this project are using the JSON serialization
proposed by Corman et al. [9]. Following their proposed serialization, a SHACL
shape schema is a folder on the hard drive containing JSON files. Each JSON file
represents one shape of the shape schema. The shape files contain the shape name,
target definition, and a list of the shape’s constraints; each constraint has:

• path: the constraint name

• min/max: for the constraint

• shape: if it is included the constraint is an inter-constraint and it targets a
shape, and if it is not, the constraint is intra-constraint

Figuera et al. [14] suggested improvements for the SHACL validation algorithm pro-
posed by Corman et al. [9]. The SHACL validator using the improved algorithm
is called Trav-SHACL. In this project, the SHACL-JSON parser of Trav-SHACL1

is used to convert the JSON files!Figure 5.2 into the internal representation of the

1https://github.com/SDM-TIB/Trav-SHACL

20

5.1. Processing SHACL Shape Schemas

Figure 5.1: SHACLViewer. a screen-shoot of SHACLViewer full web-page

SHACL shape schema. The list of shapes is injected into the JavaScript code using
Jinja; meaning that the data is processed on the server side and the client only needs
to read it.

5.1.2 Client Side

The shapes and constraints are already converted to nodes and links while using
Jinja from the server side, and on the client side they should be initialized to be
represented in a graph.

First, Nodes: there are 3 types of nodes Figure 5.3:

1. shape node: this node represents the shape and carries its name.

2. inter-constraint node: this node has one link connecting it from the shape node
to it.

3. intra-constraint node: this node is connected with two links one from the shape
node to it and another from it to the targeted shape.

Each node has:

• ID: each node has an ID to be used as a source or target when connecting it
with links.

21

Chapter 5. Implementation

Figure 5.2: Trav-SHACLJavaScript file

• Group: a string used to color code all nodes in the same group with the same
color, and each constraint node has the same group as its shape Figure 5.3 Fig-
ure 5.4c.

• Text: the visible text written on the node in the graph.

• min/max: the values for min and max and is added if the node represents a
constraint.

• is shape: a Boolean flag to differentiate between a shape node and a constraint
node.

• is expanded: a Boolean flag to know if the shape this node is in is expanded
or collapsed.

• is hidden: a Boolean flag to know if the node must be shown or hidden in the
graph.

• is highlighted: a Boolean flag to know if the node color should change or not.
Used in highlighting nodes and links feature.

• child links list: a list of all links that has this node as a source.

• parent links list: a list of all links that has this node as a target.

• is intra-constraint: a Boolean flag to differentiate between an intra-constraint
node and an inter-constraint node.

22

5.1. Processing SHACL Shape Schemas

• statistics: an object filled in later state when all nodes and links are created
containing number of intra-constraints, inter-constraints, and number of con-
straints targeting this shape; to be displayed in the Meta Data in the Info
Panel.

Then we have the links and we have 4 types of links Figure 5.3:

1. Shape to Shape: this link connects two shapes; this link will be visible when
the source shape node is collapsed and the intra-constraints are hidden.

2. Shape to Intra-Constraint: this link connects a shape’s node as source with an
intra-constraint’s node as a target.

3. Shape to Inter-Constraint: this link connects a shape’s node as source with an
inter-constraint’s node as a target.

4. Inter-Constraint to Shape: this link connects an inter-constraint as a source to
its targeted shape node as a target.

Each link has:

• ID: each link should have an ID but it has not been used.

• source: the ID for the source node of the link.

• target: the ID for the target node of the link.

• text: a text carrying the constraint name but it has not been used.

• is collapsed: a Boolean flag to know if the shape this node is in is collapsed or
expanded.

• is hidden: a Boolean flag to know if the link must be shown or hidden in the
graph.

• is highlighted: a Boolean flag to know if the link color should change or not.
Used in highlighting nodes and links feature.

• Link Type: a number to differentiate between the four types of links.

Note that there are two flags to show and hide nodes and links, is expanded/

collapsed and is hidden. This way hiding then showing a shape will preserve its
state (expanded or collapsed).

23

Chapter 5. Implementation

Figure 5.3: The visual representation in SHACLViewer, there are to types of con-
straints: inter-constraint with two states and intra-constraint. And four colors for
nodes depending on the node’s type and state. Also, nodes are grouped by shape
and each group has a random color assigned to it.

All nodes are saved in a list called Nodes and all links are saved in a list called
Links, but searching for a node will take time so a map was introduced called
nodesById that maps each node to a key which is the node ID, also there is an-
other map for links called linksById.

5.2 Visualizing SHACL Shape Schemas

To present the shapes in a 3D graph, the JavaScript library 3d-force-graph [3] (version
1.70.5) was used. For the 2D visualization, its sister library force-graph [4] (version
1.42.4) was used. Both share almost the same functionality; mainly differing in how
the nodes of the graph are drawn. Both of them require a list of nodes with IDs,
and a list of links with source and target IDs of the nodes to connect between them.
Other attributes are for visualization purposes. By providing the main two lists of
all nodes and links the graph will show everything including all links that have the
same purpose, Shape to Shape links with shape to constraint link → constraint’s
node → constraint to shape link. So, to hide a link or a node, two new lists where
created each time an update on the graph occurs, Visible Nodes and Visible Links.
Filling those two new lists with the visible nodes and links then providing them to
the graph library will be the solution.

5.3 Exploring SHACL Shape Schemas

Some features have their unique implementation and others share the same concepts.

24

5.3. Exploring SHACL Shape Schemas

(a) Simple Network (b) Shape Selected (c) Shape Expanded

Figure 5.4: Expand and Collapse Clicking on a selected node will expand it
showing its constraints, and clicking it again will collapse it.

5.3.1 Expand and Collapse

First of all, by clicking on any shape’s node it will be selected and highlighted without
changing its state Figure 5.4b. Then, if the clicked node was previously selected,
its state will change from Collapsed (the default state) to Expanded Figure 5.4c
and vice versa. On changing a selected shape status, its connected links should be
updated. Depending on the link type its status will change, in case the shape status
changed from collapsed to expanded, all links will be set to expanded but not Shape
to Shape links, those will be collapsed. Next, the constraints nodes of this shape
will be set to expanded, and if they are inter-constraints the constraint to shape link
coming out of the constraint’s node will be expanded too. Last step is updating the
graph, in this function the Visible Nodes and Visible Links lists will be updated after
iterating the Nodes and Links lists adding only expanded/not-collapsed nodes and
links (also not hidden, used by Show Selected Shape Only feature).

5.3.2 Search

The search box is part of the options menu Figure 5.5. The search function finds only
shape nodes, so instead of searching the full Nodes list a new list called suggestions
is introduced that contains shapes names only. When the user clicks on the search
bar or types something in it, the suggestion list will appear containing a list of shape
names according to the user input, or all shape names if the user did not input
yet. Hovering on a name will highlight the shape’s node, links and constraints nodes

25

Chapter 5. Implementation

connected to it. Clicking on a name will select the shape in the graph and open the
info panel. If the selected shape was hidden by unchecking it from shapes checklist,
the shape will be shown and the graph will be updated. Or if show selected shape
only is on, its function will be called on the new selected shape.

Figure 5.5: Search box This search box is located in the option menu, the suggestion
panel will show only if the search box is in focus.

5.3.3 Expand and Collapse All

Both functions do the same thing, they iterate Nodes list changing the expanded
value for nodes that represents shapes, and iterate the Links list changing the col-
lapsed value depending if the link from type Shape to Shape or not Figure 5.6.

5.3.4 Hide Intra-Constraints

For this feature the HTML toggle will change a Boolean flag which is checked each
time the Visible Nodes and Visible Links lists are updated. If the flag is enabled all
nodes that are intra-constraints will not be added to the Visible Nodes list, neither
intra-constraints links to the Visible Links list Figure 5.7.

5.3.5 Highlight Selected

To highlight a node or a link is highlighted value is set to true and an update event
is triggered for the graph library to update the colors for nodes and links. Now, when

26

5.3. Exploring SHACL Shape Schemas

(a) Collapse All (b) Expand All

Figure 5.6: Expand All and Collapse All Using Collapse All will replace all
constraints with links, while Expand All will show all constraints nodes for all shapes
in the network.

changing a highlighted shape, first all nodes and links is highlighted value is set
to false. Then, the selected shape node, links and constraints is highlighted value
is set to true. After words, the update event is triggered for the graph Figure 5.4a
Figure 5.4b.

5.3.6 Show Selected Shape Only

When the toggle is turned on, all nodes and links will be hidden and only the selected
shape will be shown Figure 5.8 and the Shapes chick list panel will open. A Boolean
flag will be set to true that will be used by other functions, for example if the flag is
set to true: Search: searching for a shape and selecting it will call the Show selected
shape only function Expand and collapsing a shape: unhide the links and nodes used
by the affected shape’s constraints On selecting a shape and this toggle is on: some
shapes are partially hidden and should re-show their constraints.

5.3.7 Light and Dark Mode

Changing from dark theme to light theme was done by presenting two lists of CSS
variables for colors, those variables are used instead of writing colors directly in the
CSS code. Now, when the user changes the mode, a new attribute is set for the
whole page called data-theme and its values are light or dark. This will change the
color variable list for the page and the graph, but an update for the graph is required
to get the effect Figure 5.9.

27

Chapter 5. Implementation

(a) Intra-Constraints not hidden (b) Intra-Constraints hidden

Figure 5.7: Hide Intra-Constraints By enabling this feature all intra-constraints
will be hidden.

5.3.8 Info Panel

In this panel there is two parts, meta data and the constraints. The meta data
numbers are the saved in the statistics variable in each shape and they are: intra-
constraints, inter-constraints and number of constraints targeting this node. In the
second part, the constraints tree for the selected shape, the JavaScript tree view is
simple-treeview [8] (version 0.0.9). The head of the tree is the selected shape, followed
by the intra-constraints then the inter-constraints. Clicking on one of the constraints
will go deeper in the tree and show what are the conditions of that constraint, and if
the constraint is an inter-constraint the targeted shape will be presented. Clicking on
the shape from the tree view will expand the shape in the graph without making that
shape the selected shape, and the tree view will go deeper showing all its constraints
as it did for the first selected shape Figure 5.10.

5.3.9 Shape Checklist Panel

This check list Figure 5.11 is filled while loading the page with shape nodes. It is
done by adding an event on each one of them where, if clicked the node with the same
ID, will have its is hidden property flipped with their constraint nodes. Then, an
update for hidden links function is called to check links with hidden source node or
target node to be hidden too. Then, the graph clicked list are updated. The selected
node is only used, and the shape checked list panel is open.

28

5.3. Exploring SHACL Shape Schemas

(a) Show Selected Shape Only Disabled (b) Show Selected Shape Only
Enabled

Figure 5.8: Show Selected Shape Only By enabling this feature all shapes that
are not connected by the selected shape constraints are hidden.

5.3.10 force-graph Supported Functions

The remaining features are supported by the force-graph libraries [3, 4] and they can
be used from the options menu Figure 5.12 and they are:

• Focus selected shape: uses a function to focus a node, in this case it is the
selected shape node

• Center graph: a function to put the average nodes’ position on the zero axes
of the 3D space.

• Group coloring: this feature will give a random color for each node group; it is
used to give each shape nodes a different color.

• Link curve: used for shape-to-shape links only to distinguish them from other
link types.

• Link length: used to update the value of each slider in the option menu, it will
change the link length for each link type.

• Navigation: panning, rotation and zooming are used to see the graph from
different angles in the 3D or 2D space.

• Drag and drop: the ability to move the nodes around while maintaining a good
distance from each other by defining d3Force value.

29

Chapter 5. Implementation

(a) Light Mode (b) Dark Mode

Figure 5.9: Light and Dark Mode By enabling this feature all colors will change.

5.4 Summary of the Chapter

This chapter presented the SHACLViewer implementation. The data transformation
from JSON files to a list of shapes, then how it was converted to nodes and links.
Also, how each feature is done and seen what the user expects when using them.

30

5.4. Summary of the Chapter

Figure 5.10: Info Panel
This panel shows infor-
mation about the se-
lected shape and a tree
view for its constraints.

Figure 5.11: Shape
Checklist Panel This
panel shows all shapes
listed in a check list
where the user could
show or hide any shape.

Figure 5.12: Options
Menu This menu con-
tains most of the fea-
tures supported by SHA-
CLViewer.

31

Chapter 6

Experimental Evaluation

We performed an experimental evaluation of the scalability of SHACLViewer. The
evaluation was designed to address the following research questions: RQ1) What is
the impact of the size of the SHACL shape schema? RQ2) What is the impact of
the topology of the SHACL shape schema? RQ3) What is the impact of the density
of the SHACL shape schema? The source code of SHACLViewer is available at
GitHub2. Next, the experimental setup as well as the observed results are presented.

6.1 Experimental Setup

This section describes the setup of the experimental evaluation conducted in order to
answer the above-mentioned research questions. In the following, the benchmarks,
metrics, and the general setup are explained in detail.

6.1.1 Benchmarks

The performance of SHACLViewer is evaluated over synthetic and real-world SHACL
shape schemas. The real-world shape schemas represent sets of constraints one ex-
pects in real-world scenarios. The goal is to show that SHACLViewer is able to han-
dle SHACL shape schemas of expected complexities. The synthetic shape schemas
are a stress test for the scalability of SHACLViewer. In the following, both sets of
SHACL shape schemas are described in more detail.

2https://github.com/SDM-TIB/SHACLViewer

32

6.1. Experimental Setup

Synthetic Benchmarks

The synthetic benchmarks serve as a stress test for the scalability of SHACLViewer.
In order to generate synthetic benchmarks, we use networkx3 to generate different
networks. Each node in the network is considered to be a SHACL shape while the
edges represent inter-constraints. For simplicity, we do not add intra-constraints to
the synthetic shapes. Following this procedure, we create SHACL shapes schemas for
nine different topologies. For each topology, SHACL shape schemas with around 25,
50, 75, 100, 150, and 200 shapes are generated. This leads to a total of 54 synthetic
benchmarks. In the following, the topologies are described. Different graph measures
as well as an example graph for each topology can be found in Table 6.1.

• Binary Tree: A tree graph where each node in the graph has at most two
successors, i.e., the tree is not balanced.

• Circulant Graph: A circulant graph Cin(x1, x2, . . . , xm) consists of n nodes
such that each node i is connected to nodes (i+x) mod n and (i−x) mod n
for all xinx1, . . . , xm. Hence, Cin(1) is a cycle graph. We choose x1 = 5,
x2 = 10.

• Complete Graph: In a complete graph, all nodes are connected to each other.

• Cycle Graph: A cycle graph Cn is a graph of cyclically connected nodes. Cn is
a path with its two end-nodes connected.

• Ladder Graph: Two paths of length n with each pair connected by a single
edge.

• Path Graph: A path graph consists of linearly connected nodes.

• Star Graph: A star graph consists of one center node connected to n outer
nodes.

• Turan Graph: A complete multipartite graph of n nodes with r disjoint subsets,
i.e., edges connect each node to every node not in its subset. We choose r = 3.

• Wheel Graph: A graph with one hub node connected to a cycle of n−1 nodes.

Complete graphs and Turan graphs have a high connectivity, resulting in a high
density. Due to the high density, the complexity of the resulting SHACL shape
schema is higher for those topologies compared to the others.

3https://networkx.org/

33

Table 6.1: Synthetic SHACL Shape Schemas. Nine different topologies of six
different sizes. #shapes - number of shapes; #con - number of constraints; density
- density; #nodes - number of nodes needed; #links - number of links

Topology 1: Binary Tree
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 24 49 74 99 149 199

density 0.080 0.040 0.027 0.020 0.013 0.010
#nodes 73 148 223 298 448 598
#links 144 294 444 594 894 1,194

Topology 2: Circulant Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 50 100 150 200 300 400

density 0.167 0.082 0.054 0.040 0.027 0.020
#nodes 125 250 375 500 7500 1,000
#links 300 600 900 1,200 1,800 2,400

Topology 3: Complete Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 600 2,450 5,550 9,900 22,350 39,800

density 1.000 1.000 1.000 1.000 1.000 1.000
#nodes 625 2,500 5,625 10,000 22,500 40,000
#links 1,800 7,350 16,650 29,700 67,050 119,400

Topology 4: Cycle Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 25 50 75 100 150 200

density 0.083 0.041 0.027 0.020 0.013 0.010
#nodes 75 150 225 300 450 600
#links 150 300 450 600 900 1,200

Topology 5: Ladder Graph
1 2 3 4 5 6

#shapes 24 50 74 100 150 200
#con 34 73 109 148 223 298

density 0.123 0.060 0.040 0.030 0.020 0.015
#nodes 92 196 292 396 596 796
#links 204 438 654 888 1,338 1,788

Topology 6: Path Graph
1 2 3 4 5 6

#nodes 25 50 75 100 150 200
#edges 24 49 74 99 149 199
density 0.080 0.040 0.027 0.020 0.013 0.010
#nodes 73 148 223 298 448 598
#links 144 294 444 594 894 1,194

Topology 7: Star Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 24 49 74 99 149 199

density 0.080 0.040 0.027 0.020 0.013 0.010
#nodes 73 148 223 298 448 598
#links 144 294 444 594 894 1,194

Topology 8: Turan Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 208 833 1,875 3,333 7,500 13,333

density 0.693 0.680 0.676 0.673 0.671 0.670
#nodes 144 1,716 3,825 6,766 15,150 26,866
#links 1,248 4,998 11,250 19,998 45,000 79,998

Topology 9: Wheel Graph
1 2 3 4 5 6

#shapes 25 50 75 100 150 200
#con 48 98 148 198 298 398

density 0.160 0.080 0.053 0.040 0.027 0.020
#nodes 121 246 371 496 746 996
#links 288 588 888 1,188 1,788 2,388

6.1. Experimental Setup

Figure 6.1 depicts a 3D view rendering generated powered by SHACLViewer.

(a) Circulant Graph (b) Ladder Graph (c) Path Graph

(d) Star Graph (e) Binary Tree (f) Cycle Graph

Figure 6.1: SHACLViewer Visualization of Synthetic Graphs with 25 shapes.

Real-World Benchmarks

To show that SHACLViewer can also handle real-world SHACL shape schemas, we
use five shape schemas over well-known benchmarks (LUBM [15], WatDiv [1]) and
DBPedia [5, 20]. The shape schema over DBPedia consists of nine shapes over classes
like dbo:Person, dbo:Film, dbo:Disease. The integrity constraints represented in
the shape schema are inspired by the quality assessment study presented by Kon-
tokostas et al. [18]. The shape schema LUBM 14 is the same as used by Figuera
et al. in the Trav-SHACL [14] experiments [13]. LUBM 5 is a subset of LUBM 14
only considering the shapes for departments, full professors, graduate courses, grad-
uate students, and universities. LUBM 23 was created from automatically extracted
SHACL shapes published by Rabbani et al. [24]. We download the extracted shape
schema and keep the minimal cardinality for each predicate. The approach used by
Rabbani et al. does not generate references to other shapes, hence, the shapes of
LUBM 23 are not connected. For WatDiv we create shapes for the super-classes
Genre, ProductCategory, Role. The minimal and maximal cardinalities were set in
a manner that ensures valid as well as invalid instances. However, the validation of
SHACL constraints is out of the scope of this thesis. Common graph measures for
the real-world shape schemas are presented in Table 6.2.

35

Chapter 6. Experimental Evaluation

Table 6.2: Statistics of Real-World SHACL Shape Schemas. The real-world
shape schemas are expressed over three different data sets, namely DBPedia, LUBM,
and WatDiv. #shapes - number of shapes in the shape schema, #con - number of
constraints in the shape schema, density - density of the shape schema

Shape Schema #shapes #con density
DBPedia 9 31 0.194
LUBM 5 5 23 0.600

LUBM 14 14 110 0.308
LUBM 23 23 136 0.000
WatDiv 3 58 0.667

6.1.2 Metrics

We report the following metrics:

• Load Time: Time elapsed between choosing a SHACL shape schema to visu-
alize until it was fully loaded.

• Expand Time: Time elapsed between requesting the entire SHACL shape
schema to expand and the completion of the expanding action.

• Collapse Time: Time elapsed between requesting the SHACL shape schema to
collapse and the completion of the collapsing action.

• Highlight Expanded Time: Time elapsed between requesting a node to be high-
lighted and the node reaching the highlighted state while the SHACL shape
schema is expanded.

• Highlight Collapsed Time: Time elapsed between requesting a node to be high-
lighted and the node reaching the highlighted state while the SHACL shape
schema is collapsed.

All times measured correspond to absolute wall-clock system time in milliseconds.

6.1.3 Setup

The above-mentioned metrics are collected for each of the 59 benchmarks, i.e., the
54 synthetic and the five real-world SHACL shape schemas. The Flask Develop-
ment Server was used while conducting the experiments. Furthermore, the Flask
application was configured to not cache results. The experiments are executed on a
Windows 10 Pro 64 bit machine with an Intel® CoreTM i7-8750H CPU, and 16 GiB

36

6.2. Impact of Shape Schema Size

RAM. The graphics card is an NVIDIA GeForce GTX 1070 with 8 GiB VRAM. The
Google Chrome version used is 99.0.4844.74; hardware acceleration is enabled.

6.2 Impact of Shape Schema Size

(a) Loading (b) Expanding (c) Collapsing

(d) Highlighting Expanded (e) Highlighting Collapsed

Figure 6.2: Size Impact on Execution Time (ms). All functions are impacted
by the size, i.e., number of shapes, of the shape schema. Expanding seems to be
the least impacted, this is due to the fact that the large complete graph and Turan
graph caused SHACLViewer to crash, hence, no times are reported.

For the first test the size of the networks is combined in three separate categories;
small, medium and large, where small are networks with shape count of less than 75,
medium networks are from 75 to 100 shapes, and large are networks with more than
100 shapes. Figure 6.2 reveals that all functions are impacted by increasing the num-
ber of shapes in a network. Some networks resulted in SHACLViewer crashing mainly
Complete and Turan schemas large graphs of 150 and 200 shapes, when performing
the function Expand all shapes and that prevented the test of Highlighting expanded
shapes and Collapse all shapes. And it is visible in the results for large graphs in
Expanding Figure 6.2b, Collapsing Figure 6.2c and Highlight Expanded Figure 6.2d.
Beside the number of shapes, in SHACLViewer each shape consists of a different

number of nodes and links depending on how many constraints a shape contains.
which can be calculated using these equations: Nodes = Shapes+Constraints and

37

Chapter 6. Experimental Evaluation

Figure 6.3: Impact of Number of Nodes on Execution Time (ms). All func-
tions are impacted by the number of nodes in the graph visualization. Expanding
and highlighting (expanded) are impacted the most. Loading and highlighting (col-
lapsed) are the least affected. At about 2,000 nodes, the cost increases dramatically.

Links = intra-constraints+3∗ inter-constraint. In Table 6.2 the statistics for each
network and how may nodes and links are required to represent it. That is mostly
the reason why Complete and Turan schemas with 150 and 200 shapes crashed, while
other schemas did not. On that note, the impact of number of nodes and links is
visualized in Figure 6.3 and Figure 6.4 respectively; as expected, the execution time
dramatically increases at about 2000 nodes or 2500 links.

6.3 Impact of Shape Schema Topology

The topology of the network will change the time spent executing the functions for
each network as shown in Figure 6.5, this change is due to the number of constraints
each topology presents, and it can be seen from Complete and Turan topologies
statistics (see Table 6.1) that they are the most expensive ones.

38

6.4. Impact of Shape Schema Density

Figure 6.4: Impact of Number of Links on Execution Time (ms). All func-
tions are impacted by the number of links in the graph visualization. Expanding
and highlighting (expanded) are impacted the most. Loading and highlighting (col-
lapsed) are the least affected. At about 2,500 links, the cost increases dramatically.

6.4 Impact of Shape Schema Density

In Figure 6.6 it is visible the execution time did not change dramatically until it
reaches the density of 0.670, and that alone will not be enough to get a conclusion.
In Figure 6.7 the number of nodes and links is added to Figure 6.6, now we can see
that the number of nodes and links is matching the spikes and irregularities in the
execution times, meaning it has more effect on the execution time than density.

6.5 Real-World Shape Schemas

For real-world SHACL shape network schemas, number of nodes and links are also
calculated as shown in Figure 6.8. Then the values for each metric function are
presented in Figure 6.9. LUBM 23 has the most nodes while LUBM 14 has the most
links, but the execution times for LUBM 23 are higher in general than LUBM 14,
meaning the number of nodes is impacts most on the execution times.

39

Chapter 6. Experimental Evaluation

(a) Loading (b) Expanding (c) Collapsing

(d) Highlighting Expanded (e) Highlighting Collapsed

Figure 6.5: Topology Impact on Execution Time (ms). It is clear that all
functions are impacted by the topology of the SHACL shape schema. As expected,
complete graphs and Turan graphs are the most expensive topologies.

Figure 6.6: Density Impact on Execution Time (ms). The diagram reports
the execution time (ms) of the different metrics as a function of the SHACL shape
schema density. Expanding and highlighting in the expanded graph are impacted
the most by high density. Collapsing the graph is the least affected by density.

40

6.6. Summary of the Chapter

Figure 6.7: Density Impact on Execution Time (ms) with number of Nodes
and Links The diagram reports the execution time (ms) of the different metrics as
a function of the SHACL shape schema density, with number of nodes and links for
each value. It is visible that the numbers for nodes and links have a higher impact
on the execution time than density.

Figure 6.8: Size of Real-World Shape Schemas. The diagram reports the num-
ber of shapes, nodes and links for each real-world network. LUBM 23 has the most
number of nodes, while LUBM 14 has the most number of links; this will help de-
ciding which metric has the highest impact on the execution time.

6.6 Summary of the Chapter

For the experimental evaluation, multiple synthetic SHACL shape schemas of dif-
ferent sizes and topologies were created. Five metrics were evaluated to analyze the

41

Chapter 6. Experimental Evaluation

Figure 6.9: Execution Time (ms) on Real-World Shape Schemas. Execution
time (ms) of the different metrics for each of the real-world shape schemas. LUBM 14
and LUBM 23 are the most expensive SHACL shape schemas. The most expensive
functions are expanding and highlighting in the expanded graph.

scalability of SHACLViewer. Next, five real-world shape schemas were tested. To
conclude, the most expensive functions are Expand All and Highlight while expanded,
and the toughest topologies to work with are Complete and Turan; and that is be-
cause the number of nodes needed to present a network has a higher impact than
the number of links.

42

Chapter 7

Conclusions and Future Work

This thesis presented a new way to view SHACL networks by drawing it in 3D rather
in 2D, then collapsing all shapes into one node connected with one simple link for
each constraint it has, making it easier for the user to check all the network without
too many details. Then by clicking on a shape’s node it will expand showing all the
details for its constraints. Also, there is the ability to hide all shapes but one, then
the user could add other shapes as necessary.

7.1 Conclusions

There are many ways to visualize SHACL networks and 3D is one of them, the most
important part when visualizing a complex graph is the features available to the user,
those features that will simplify navigating the graph, showing what the user is trying
to find and hiding any unrelated data while giving the user full control. All that while
maintaining a simple, easy to use user interface that is quickly understandable. The
experimental evaluation of the proposed approach was aimed at addressing what has
the most impact on the performance. ForRQ1, the size of the network was discussed,
and there were two types of size to discuss, first shapes count in the network, which
had a significant impact on the performance. the second was the number of nodes
and links required to render the network, which had the most impact. Next in RQ2,
the focus was on the topology of the SCHACL shape schema, where Complete and
Turan had a bigger impact than other topologies. and last for RQ3 the density of
the schema was tackled, the density alone did not give an accurate representation
for the time taken to perform the tasks. So, the conclusion was the most impactful
metric is the number of nodes and links required to render it.

43

Chapter 7. Conclusions and Future Work

7.2 Limitations

As reported in Chapter 6, SHACLViewer’s scalability is impacted by the SHACL
network complexity. Specifically, the parameters that negatively impact the perfor-
mance of SHACLViewer include; a) size (i.e., more than 2,500 nodes); b) density
(i.e., highly dense graphs); and c) graph topology (i.e., complete and Turan graphs).
Moreover, SHACLViewer crashes in networks with 5,000 nodes.

7.3 Future Work

Addressing the limitations of the current version of SHACLViewer demand redesign
of the tool’s functions, i.e., loading, expand, collapse, and highlight. Extensions to
be considered as future work include:
Compact representation of shapes. A new way to reduce the number of nodes
in a single graph by merging multiple shapes into a single node. It will look like each
node is a cluster of SHACL shapes.
Compact representation of shape connections. In the current form of ”show
selected shape only”, the selected shape will be shown with its neighboring shapes
connected with constraints. A new feature could be added to show an N-degree
neighborhood for the selected node and hide the rest.
Fine-Grained Highlight. Also, another toggle could be added to show any other
shapes with inter-constraints targeting the selected shape highlighted with different
color and shown when ”selected shape only” is used.
Dimension quick swap. Currently, changing from 3D to 2D will reload the page
losing the selected shape and any customization like hidden or expanded shapes. A
better way is to change the graph container directly saving any changes to Nodes
and Links parameters.
Online SHACL Network Validation. Another feature is adding an API to high-
light specific shapes or constraints from other applications or services like a SHACL
validator, using SHACLViewer as an advanced tool to view a validated network.
Searching shapes. Add a search box to the shape checklist to easily find shapes.

7.4 Summary of the Chapter

This chapter discussed SHACLViewer ’s experimental results as well as the cases in
which the limitations were presented. Future works that can be added for a feature-
rich application were also suggested.

44

Bibliography

[1] Güneş Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. “Diversified Stress Testing
of RDF Data Management Systems”. In: The Semantic Web – ISWC 2014. Cham: Springer,
2014, pp. 197–212. doi: 10.1007/978-3-319-11964-9_13.

[2] Grigoris Antoniou and Frank van Harmelen. “Web ontology language: Owl”. In: Handbook
on ontologies. Springer, 2004, pp. 67–92.

[3] Vasco Asturiano. 3d-force-graph. JavaScript Library hosted on GitHub. 2017. url: https:
//github.com/vasturiano/3d-force-graph.

[4] Vasco Asturiano. force-graph. JavaScript Library hosted on GitHub. 2018. url: https://
github.com/vasturiano/force-graph.

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. “DBpedia: A Nucleus for a Web of Open Data”. In: The Semantic Web. Ed. by Karl
Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer
Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 722–735. isbn:
978-3-540-76298-0.

[6] L. Bassett. Introduction to JavaScript Object Notation: A To-the-Point Guide to JSON.
O’Reilly Media, 2015. isbn: 9781491929438. url: https://books.google.de/books?
id=Z%5C_9PCgAAQBAJ.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American.
May 2001. url: http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21.

[8] Petr Broz. simple-treeview. JavaScript Library hosted on GitHub. 2021. url: https : / /
github.com/petrbroz/simple-treeview.

[9] Julien Corman, Fernando Florenzano, Juan L. Reutter, and Ognjen Savković. “Validating
SHACL Constraints over a SPARQL Endpoint”. In: The Semantic Web – ISWC 2019. Cham:
Springer, 2019, pp. 145–163. doi: 10.1007/978-3-030-30793-6_9.

[10] D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON). Re-
quest for Comments: 4627. July 2006. url: https://www.ietf.org/rfc/rfc4627.txt.

[11] Marek Dudáš, Steffen Lohmann, Vojtěch Svátek, and Dmitry Pavlov. “Ontology visualization
methods and tools: a survey of the state of the art”. In: The Knowledge Engineering Review
33 (2018). doi: 10.1017/S0269888918000073.

45

https://doi.org/10.1007/978-3-319-11964-9_13
https://github.com/vasturiano/3d-force-graph
https://github.com/vasturiano/3d-force-graph
https://github.com/vasturiano/force-graph
https://github.com/vasturiano/force-graph
https://books.google.de/books?id=Z%5C_9PCgAAQBAJ
https://books.google.de/books?id=Z%5C_9PCgAAQBAJ
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
https://github.com/petrbroz/simple-treeview
https://github.com/petrbroz/simple-treeview
https://doi.org/10.1007/978-3-030-30793-6_9
https://www.ietf.org/rfc/rfc4627.txt
https://doi.org/10.1017/S0269888918000073

Bibliography

[12] Riccardo Falco, Aldo Gangemi, Silvio Peroni, David Shotton, and Fabio Vitali. “Modelling
OWL Ontologies with Graffoo”. In: The Semantic Web: ESWC 2014 Satellite Events. Ed. by
Valentina Presutti, Eva Blomqvist, Raphael Troncy, Harald Sack, Ioannis Papadakis, and
Anna Tordai. Cham: Springer International Publishing, 2014, pp. 320–325. isbn: 978-3-319-
11955-7. url: https://2014.eswc-conferences.org/sites/default/files/eswc2014pd_
submission_114.pdf.

[13] Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Dataset: Trav-SHACL: Bench-
marks, Experimental Settings, and Evaluation. Leibniz University of Hannover Data Reposi-
tory. Feb. 2021. doi: 10.25835/0035739.

[14] Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. “Trav-SHACL: Efficiently Val-
idating Networks of SHACL Constraints”. In: The Web Conference. New York, NY, USA:
ACM, 2021, pp. 3337–3348. doi: 10.1145/3442381.3449877.

[15] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A Benchmark for OWL Knowledge
Base Systems”. In: Web Semantics 3.2–3 (2005), pp. 158–182. doi: 10.1016/j.websem.
2005.06.005.

[16] Claudio Gutiérrez and Juan F Sequeda. “Knowledge graphs”. In: Communications of the
ACM 64.3 (2021), pp. 96–104.

[17] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language (SHACL). W3C
Recommendation. July 2017. url: https://www.w3.org/TR/2017/REC-shacl-20170720/.

[18] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens Lehmann,
Roland Cornelissen, and Amrapali Zaveri. “Test-Driven Evaluation of Linked Data Quality”.
In: Proceedings of the 23rd International Conference on World Wide Web. WWW ’14. New
York, NY, USA: ACM, 2014, pp. 747–758. doi: 10.1145/2566486.2568002.

[19] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation. Feb. 1999. url: https://www.w3.org/TR/1999/REC-
rdf-syntax-19990222/.

[20] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian
Bizer. “DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia”.
In: Semantic Web 6.2 (2015), pp. 167–195. doi: 10.3233/SW-140134. url: http://svn.
aksw.org/papers/2013/SWJ_DBpedia/public.pdf.

[21] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. “Visualizing ontologies
with VOWL”. In: Semantic Web 7.4 (2016), pp. 399–419. doi: 10.3233/SW-150200. url:
http://www.semantic-web-journal.net/system/files/swj1114.pdf.

[22] Rossana Pacielloa, Daniele Bailoa, Luca Tranib, Valerio Vinciarellia, Manuela Sbarrac, and
Sara Capotostic. SHAPEness: a SHACL-driven RDF Graph Editor. Rejected submission to
the Semantic Web Journal. 2021. url: http://www.semantic-web-journal.net/content/
shapeness-shacl-driven-rdf-graph-editor.

[23] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C Recommendation. Feb. 2004. url: https://www.w3.
org/TR/2004/REC-owl-semantics-20040210/.

46

https://2014.eswc-conferences.org/sites/default/files/eswc2014pd_submission_114.pdf
https://2014.eswc-conferences.org/sites/default/files/eswc2014pd_submission_114.pdf
https://doi.org/10.25835/0035739
https://doi.org/10.1145/3442381.3449877
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://doi.org/10.1145/2566486.2568002
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://doi.org/10.3233/SW-140134
http://svn.aksw.org/papers/2013/SWJ_DBpedia/public.pdf
http://svn.aksw.org/papers/2013/SWJ_DBpedia/public.pdf
https://doi.org/10.3233/SW-150200
http://www.semantic-web-journal.net/system/files/swj1114.pdf
http://www.semantic-web-journal.net/content/shapeness-shacl-driven-rdf-graph-editor
http://www.semantic-web-journal.net/content/shapeness-shacl-driven-rdf-graph-editor
https://www.w3.org/TR/2004/REC-owl-semantics-20040210/
https://www.w3.org/TR/2004/REC-owl-semantics-20040210/

Bibliography

[24] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. Automatically Extracted SHACL Shapes
for DBpedia, YAGO-4, and LUBM & Associated Coverage Statistics. zenodo. Feb. 2022. doi:
10.5281/zenodo.5958986.

[25] Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor, and Ariam Rivas.
“Transforming Heterogeneous Data into Knowledge for Personalized Treatments - A Use
Case”. In: Datenbank-Spektrum 19.2 (2019), pp. 95–106.

[26] Vitalis Wiens, Steffen Lohmann, and Sören Auer. “GizMO – A Customizable Representation
Model for Graph-Based Visualizations of Ontologies”. In: Proceedings of the 10th Interna-
tional Conference on Knowledge Capture. K-CAP ’19. Marina Del Rey, CA, USA: Association
for Computing Machinery, 2019, pp. 163–170. isbn: 9781450370080. doi: 10.1145/3360901.
3364431. url: https://doi.org/10.1145/3360901.3364431.

47

https://doi.org/10.5281/zenodo.5958986
https://doi.org/10.1145/3360901.3364431
https://doi.org/10.1145/3360901.3364431
https://doi.org/10.1145/3360901.3364431

	Introduction
	Motivating Example
	Contributions
	Overview of the Document
	Summary of the Chapter

	Background
	Semantic Web Technologies
	Resource Description Framework
	Web Ontology Language
	Shapes Constraint Language
	Knowledge Graph
	JavaScript Object Notation
	Summary of the Chapter

	Related Work
	GizMO
	Modelling OWL Ontologies with Graffoo
	Ontology visualization methods and tools: a survey of the state of the art
	Visualizing ontologies with VOWL
	SHAPEness: a SHACL-driven RDF Graph Editor
	Summary of the Chapter

	SHACLViewer
	Proposed Architecture
	Features
	Expand and Collapse
	Search
	Expand and Collapse All
	Hide Intra-Constraints
	Highlight Selected
	Show Selected Shape Only
	Center Graph and Focus Selected Shape
	Link Length
	Light and Dark Mode
	Info Panel
	Shapes Checklist Panel

	Summary of the Chapter

	Implementation
	Processing SHACL Shape Schemas
	Server Side
	Client Side

	Visualizing SHACL Shape Schemas
	Exploring SHACL Shape Schemas
	Expand and Collapse
	Search
	Expand and Collapse All
	Hide Intra-Constraints
	Highlight Selected
	Show Selected Shape Only
	Light and Dark Mode
	Info Panel
	Shape Checklist Panel
	force-graph Supported Functions

	Summary of the Chapter

	Experimental Evaluation
	Experimental Setup
	Benchmarks
	Metrics
	Setup

	Impact of Shape Schema Size
	Impact of Shape Schema Topology
	Impact of Shape Schema Density
	Real-World Shape Schemas
	Summary of the Chapter

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work
	Summary of the Chapter

	Bibliography

