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ABSTRACT:

Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an
effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly
defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework,
called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph
over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes
the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming.
After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape
priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning.
We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves

improved performance on state-of-the-art benchmark databases.

1. INTRODUCTION

Despite a variety of segmentation techniques have been proposed,
figure-ground image segmentation remains challenging for any
single method to do segmentation successfully due to the diver-
sity and ambiguity in an image. The task is to produce a binary
segmentation of the image, separating foreground objects from
their background (Rother et al., 2004). In image segmentation,
one has to consider a prohibitive number of possible pixel group-
ings that separate the figure from the background. Apart from
the difficulties in establishing an effective framework to divide
the image pixels into meaningful groups, the notions of figure
and ground often need to be properly defined by providing ei-
ther user inputs (Rother et al., 2004, Vicente et al., 2008) or ob-
ject models. Prior knowledge about object appearance, or other
scene content could significantly simplify the problem. For in-
stance, many segmentation techniques are formulated as Markov
random field based energy minimization problems that could be
solved using Min-Cut in an efficient manner. However, the cor-
responding energy functions typically include terms that require
prior object knowledge in terms of user interaction (Rother et al.,
2004, Vicente et al., 2008) or knowledge about object appearance.
A good figure-ground segmentation is a valuable input for many
higher-level tasks. For example, object recognition (Belongie et
al., 2002) benefits from segmentation as shape descriptors can be
derived from segmentation results. One can consider segmenta-
tion as a necessary bottom-up preprocessing step for recognition
or indexing, providing substantial reduction in the computational
complexity of these tasks. It is therefore unclear how segmenta-
tion methods that use strong prior knowledge are applicable for
object recognition from large databases.

In recent years an increasingly popular way to solve various im-
age labeling problems like object segmentation, stereo and sin-
gle view reconstruction is to formulate them using superpixels
obtained from unsupervised segmentation algorithms (Li et al.,
2004, Levinshtein et al., 2010, Brendel and Todorovic, 2010).
For instance, they may belong to the same object or may have the
same surface orientation. These methods are inspired from the

observation that pixels constituting a particular superpixel often
have the same label. This approach has the benefit that higher or-
der features based on all the pixels constituting the superpixel can
be computed (Yang et al., 2010). Further, it is also much faster
for segmentation as inference now only needs to be performed
over a small number of superpixels rather than all the pixels in
the image (Yang and Forstner, 2011).

In this paper we address the figure-ground segmentation as a su-
perpixel selection problem. Segmenting foreground is formu-
lated as finding a subset of superpixels that partitions a graph
over superpixels, with graph edges encoding superpixel similar-
ity. Our approach has the following two important characters,
which distinguish our work from most of the others: First, it is
fully automatic, efficient, and requires no user input; Second, it
is fully bottom-up, which requires no high-level knowledge such
as shape priors and scene content.

1.1 Contributions

The main contributions of this paper are:

e We propose a novel graph-based segmentation framework,
called superpixel cut, which formulates foreground segmen-
tation as finding a subset of superpixels that partitions a
graph over superpixels. Mathematically, we formulate it
as Min-Cut, with a novel cost function that simultaneously
minimizes the inter-class similarity while maximizing the
intra-class similarity.

e We give proof for the proposed cost function with estimation
of alower bound and a upper bound. Then, this cost function
is optimized by parametric programming.

e Finally, we achieve highly competitive results on the Weiz-
mann Horse Database and the Berkeley Segmentation Data
Set.
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The illustration in Fig. 1 shows an overview of our approach for
figure-ground segmentation. Given an image (Fig. 1(a)), we first
extract image contours (Fig. 1(b)). Meanwhile, we compute the
superpixel segmentation of the image (Fig. 1(c)), in which the su-
perpixel resolution is chosen to ensure that object boundaries are
reasonably well approximated by superpixel boundaries. Based
on the contour image and superpixel image, figure-ground seg-

mentation is performed as a superpixel selection problem (Fig. 1(d)).

( &
zlJl!‘ }’Ré!

Figure 1: Overview of our approach for figure-ground segmen-
tation: (a) original image; (b) contour image (Pb-detector); (c)
superpixel segmentation (SLIC), in which superpixel resolution
is chosen to ensure that target boundaries are reasonably well ap-
proximated by superpixel boundaries; (d) figure-ground segmen-
tation as a superpixel selection problem (the red boundary over-
lays with the superpixel segmentation image for visualization).

The following sections are organized as follows. The related
works are discussed in Section 2.. In Section 3., the model for
the segmentation problem is formulated. In Section 4., experi-
mental results are presented. Finally, this work is concluded and
future work is discussed in Section 5..

2. RELATED WORK

A number of figure-ground segmentation methods have been re-
cently pursued. Interactive segmentation (Rother et al., 2004, Vi-
cente et al., 2008) has been thoroughly researched since the very
popular GrabCut work (Rother et al., 2004). Most of these ap-
proaches minimize a binary pairwise energy function (Boykov
and Jolly, 2001) whose unary potentials are determined by ap-
pearance models estimated based on user input on the test im-
age. Bagon et al. (Bagon et al., 2008) proposed an algorithm
that generates figure-ground segmentations by maximizing a self-
similarity criterion around a user selected image point. While
the method of (Kiittel and Ferrari, 2012) is also based on mini-
mizing an energy function of the same form as interactive seg-
mentation, it is fully automatic. The unary potentials of the en-
ergy function of the test image is derived from the transferred
segmentation masks. Similarly, Carreira and Sminchisescu (Car-
reira and Sminchisescu, 2012) extracted multiple figure-ground
hypotheses based on energy minimization using parametric Min-
Cut and learned to score them using region and Gestalt-based fea-
tures. Bertelli et al. (Bertelli et al., 2011) presented a supervised
learning approach for segmentation using kernelized structural
SVM. By designing non-linear kernel functions, high-level ob-
ject similarity information is integrated with multiple low-level
segmentation cues. In contrast, we only exploit the bottom-up
approach without any high-level knowledge in this paper. Joulin
et al. (Joulin et al., 2010) presented a discriminative clustering

framework for image cosegmentation. Foreground (background)
labels are assigned jointly to all images, so that a supervised clas-
sifier trained with these labels leads to maximal separation of the
two classes. Our method only uses features derived from a sin-
gle image. The second category of approaches uses superpix-
els, which have been exploited to aid segmentation recently. In
most cases, they are used to initialize segmentation. Malisiewicz
and Efros (Malisiewicz and Efros, 2007) showed that superpixels
with good object overlap could be obtained by merging pairs and
triplets of superpixels from multiregion segmentations, but at the
expense of generating also a large quantity of implausible ones.
Endres and Hoiem (Endres and Hoiem, 2010) generated multiple
proposals by varying the parameters of a conditional random field
built over a superpixel graph.

Segmenting figure in an image has been addressed by many re-
searchers in different ways. Contour grouping methods naturally
lead to figure-ground segmentation (Kennedy et al., 2011). Com-
puting closure can be achieved by using only weak shape priors,
such as compactness, continuity and proximity. The most ba-
sic closure based cost function uses a notion of boundary gap,
which is a measure of missing image edges along the closed
contour. Wang et al. (Wang et al., 2005) optimized a measure
of average gap using the ratio cut approach (Wang and Siskind,
2003). However, a measure based purely on the total bound-
ary gap is insufficient for perceptual closure. Ren et al. (Ren et
al., 2005) presented a model of curvilinear grouping using piece-
wise linear representations of contours and a conditional random
field to capture continuity and the frequency of different junction
types. Stahl and Wang (Stahl and Wang, 2007) gave a grouping
cost function in a ratio form, where the numerator measures the
boundary proximity of the resulting structure and the denomina-
tor measures the area.

The previous work most related to ours is Levinshtein et al. (Levin-
shtein et al., 2010), which transformed the problem of finding
contour closure to finding subsets of superpixels. They defined
the cost function as a ratio of a boundary gap measure to area,
which promotes spatially coherent sets of superpixels. Image
contour closure is extended to include spatiotemporal closure in
(Levinshtein et al., 2012). Inspired by their approach, we define
our similarity measure as boundary gap. However, as we will ar-
gue in Section 3., our proposed cost function, which minimizes
the inter-class similarity and maximizing the intra-class similar-
ity, is a more reasonable cost function than the closure cost pro-
posed in (Levinshtein et al., 2010, Levinshtein et al., 2012).

3. PROBLEM FORMULATION

In this section, we propose a novel graph-based segmentation
framework. We formulate figure-ground segmentation as a su-
perpixel selection problem. Segmenting foreground is formu-
lated as finding a subset of superpixels that partitions a graph
over superpixels, with graph edges encoding superpixel similar-
ity. Mathematically, we formulate it as Min-Cut, then we propose
a more reasonable cost function that simultaneously minimizes
the inter-class similarity while maximizing the intra-class simi-
larity. Our framework reduces grouping complexity from an ex-
ponential number of superpixel subsets by restricting foreground
boundary to lie along superpixel boundaries. We derive a lower
bound and a upper bound for the proposed cost function. To
solve the optimization problem, this cost function is converted
to a parametric programming and solved approximately by para-
metric Max-Flow algorithm.
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3.1 Cost function and graph construction

We construct a graph over superpixels of an image I, as shown
in Figure 2. Superpixels are generated by some unsupervised
segmentation algorithms, such as NCut (Shi and Malik, 2000),
gPb-OWT-UCM (Arbelaez et al., 2011), SLIC (Achanta et al.,
2012), etc. Formally, let G = (V, E) be a graph with node set V'

Figure 2: The graph model with superpixel segmentation of an
image. Every superpixel is represented by a node, with the green
curves as superpixel boundaries, the yellow lines as the edges
connecting adjacency nodes. The blue curve represents a cut of
the graph.

corresponding to the superpixels and E corresponding to graph
edges, where V' = {v;}!_,. We further define an edge weight
w;; to encode the similarity between two superpixels v; and v;
in the image that are connected by an edge. w;; = 0 if super-
pixels v; and v; have no edge between them. The weight matrix
W = (wij)nxn is an affinity matrix between superpixels, which
is symmetric.

Given the above graph G = (V, E), the task is to partition it into
2 groups, namely figure and ground '. Various techniques can be
employed for such a task, such as graph cut and spectral cluster-
ing (Shi and Malik, 2000). We are interested in determining a
partition of the graph such that the sum of the edge weights from
FE that have one endpoint in each set is minimal, also called the
Min-Cut. If we let 2; € {0, 1} be a binary indicator variable for
the superpixel v;, the vector x yields a full labeling of superpixels
of I as foreground (1) or background (0). Min-Cut can be natu-
rally posed as the minimization of the integer quadratic program

min Z(i,j)eEwijmi(l —.’IZj)7

s.t. z; €{0,1},i=1,---,n. €))

However, minimizing the above cut alone unfairly penalizes larger
superpixel selections. Previously, (Shi and Malik, 2000, Stahl
and Wang, 2007) show that normalization of the cut by a measure
that is proportional to the size of the selection yields better results.
(Levinshtein et al., 2010, Levinshtein et al., 2012) also adopt this
measure and try to minimize a cost that is a ratio of a cut to a se-
lection size. However, foreground may not be chosen optimally
in complex scenes due to the background clutter or similarity of
foreground and background. It turns out that even using these
cuts, one cannot simultaneously minimize the inter-class similar-
ity while maximizing the similarity within the groups. Therefore,
a better cost function would seek to minimize the inter-class sim-
ilarity and at the same time it seeks to maximize the intra-class
similarity. Optimizing this cost over superpixels enables us to

Un this paper, the notions of figure (ground) and foreground (back-
ground) are identically.

efficiently recover coherent foreground segments out of an ex-
ponential number of superpixel subsets. Our cost is defined as
follows, which we call the superpixel cut 2,

C(x) = 559 )
Z wi;xi(1 — ;)
_ (14)E€E
> wymiw+ Y wi(1—w)(1 - )
()EE ()eE

where P(x) is the sum of the affinities of all the graph edges
between selected (z; = 1) and unselected (z; = 0) superpixels,
and Q(x) is the sum of the affinities of all the edges except the
cut edges. The first term of Q(x) is the sum of the affinities of all
the edges within selected (x; = 1) superpixels, and the second
term of Q(x) is the sum of the affinities of all the edges within
unselected (z; = 0) superpixels.

Minimizing the ratio C'(x) is equivalent to minimizing the numer-
ator P(x) (Min-Cut) while maximizing the denominator Q(x).
Note that the numerator P(x) and the denominator Q(x) does
not sum up to a constant. So minimizing the ratio C'(x) is not
equivalent to the minimization of P(x) (Min-Cut). Replacing
Q(x) by P'(x) in Eq. (2) results C’(x), which is the ratio-cut
(Wang and Siskind, 2003). Here P’(x) is the Min-Cut with dif-
ferent weight matrix. Our cost function in Eq. (2) tries to obtain a
partition where the weight of the partition is directly proportional
to the sum of the weights on the edges between the two partite
sets and the sum of the reciprocals of the weights on the edges
inside the partite sets. Naturally, the cut between foreground and
background superpixels is small when foreground superpixels are
strongly dissimilar from the background.

Let D; = Z w5, due to the symmetry of W, Eq. (2) is refor-

j=1
mulated as
n
Z Di;ri -2 Z Wi TiTj
C(X) _ i=1 _ i<j,(i,j)EE (3)
A — QZDixi +4 Z Wi TiT;
i=1 i<j,(i,j)€E

where A = Z w;; is a constant as W is given. Section 3.3
(i.j)eE

will provide details on the settings for W that we used for figure-
ground segmentation. Note that in the current form Eq. (2) has a
trivial solution by setting x to be vector 1 (all foreground). This
issue can be resolved by penalizing some superpixels, as pro-
posed in (Levinshtein et al., 2010). Specific details on this penalty
will be given in Section 3.3.

Theoretical analysis This paragraph presents the proof that our
proposed cost function has a upper bound as half of Normalized
Cut (Shi and Malik, 2000). We have the following proposition.

Proposition 1 The cost function in Eq. (2) has a lower bound as
0 and a upper bound as half of Normalized Cut (Shi and Malik,
2000).

0<Cx) < %Ncut )

2Intuitively, this cost function could also be used for (hierarchical)
clustering, which is out of the scope of this paper.
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Lower bound For z; € {0, 1}, it is trivial that both the numera-
tor P(x) and the denominator Q(x) in Eq. (2) are greater than 0.
When x = 1 or x = 0, the lower bound is tight, C(x) = 0.

Upper bound Let a € RT and b € RT, we have 2ab < a2 + b,

So, a%rb < ‘la—tb = %Jr % Let a = Z w;; T2, and
(i,J)EE
b= Z wij (1 — z;)(1 — x;), it then follows that C(x) =
(i,j)EE

}:iLXb) < %(@ + %). Recall that Normalized Cut in (Shi
P(X)

and Malik, 2000) has the following cost function —== + @.

a

Therefore, C'(x) < %Ncut holds. When a = b, the upper bound
is tight, C(x) = +Ncut.

-2

As consequence of this proof, our proposed cost is at least as
good as Normalized Cut.

3.2 Optimization using parametric Max-Flow

To solve the optimization problem of Eq. (2), a common approach
in fractional optimization is to minimize a parametrized differ-
ence E(x,A\) = P(x) — AQ(x), instead of minimizing the ratio

Cx) = % directly. It is shown in Appendix the optimal A
P(X)

corresponds to the optimal ratio X The optimal A\ can be
efficiently recovered using a binary search or Newton’s method
for fractional optimization (Kolmogorov et al., 2007). The con-
straints on the ratio guarantee that the resulting difference is con-

cave and thus can be minimized globally.

In the case of binary variables, ratio minimization can be reduced
to solving a parametric Max-Flow problem. Kolmogorov et al.
(Kolmogorov et al., 2007) showed that under certain constraints
on the ratio C'(x), the energy F'(x, \) is submodular and can thus
be minimized globally in polynomial time using Min-Cut. Con-
verting our cost C'(x) in Eq. (2) to a parametric programming
results in

E(x,A) = P(x) — AQ(x)

= AN (120> Dimi— (244N Y wimiw(S)

i=1 i<j,(i,j)€EE
~ —A\+ (1+2/\)ZD¢$¢ -2 Z WijTiTj
i=1 i<j,(i,j)EE

Because of A involving in the quadratic term in Eq. (5), the method
of parametric Max-Flow in (Kolmogorov et al., 2007) is not di-
rectly applicable for minimizing F/(x, \). In this paper, we omit
the quadratic term involving A in Eq. (5), and apply a paramet-
ric Max-Flow algorithm (Kolmogorov et al., 2007) to solve the
optimization in Eq. (6). The parametric Max-Flow algorithm in
(Kolmogorov et al., 2007) does not only optimize the ratio, but
also finds all intervals of A (also the corresponding x) for which
x remains constant. The parametric Max-Flow can optimize the
above parametric programming in Eq. (6), and efficiently find all
the different breakpoints (interval boundaries) of with stationary
optimal solution X, resulting in a monotonically increasing se-
quence of breakpoints, also yielding a set of K solutions. We
refer the reader to (Kolmogorov et al., 2007) for more details on
parametric Max-Flow algorithm.

3.3 Choice of weight matrix

The weight w;; encodes the similarity between two superpixels
that are connected by an edge. Following the work of (Levin-

shtein et al., 2010, Levinshtein et al., 2012), we define the bound-
ary gap between two superpixels as the similarity measure in this
paper. In principle, any similarity measures could be applied,
which are often derived from the superpixel features.

The boundary gap is a measure of the disagreement between the
boundary of an image and is defined as w;; = gi; — hij;, where
gi; is the boundary length and h;; is the edginess of the boundary.
Specifically, if s;; is the set of pixels on the boundary between su-

perpixel node v; and v;, then g;; = |s;;|, and h;j = Zpes” Ry,
ij
where h7; = [Pr(f’) > T.] is an edge indicator for pixel p.

Pr(-) is a logistic regressor and f? is a feature vector for pixel
p. T¢ is the parameter of the edginess measure, which controls
the contribution of weak edges from the contour image (Levin-
shtein et al., 2010). Note that if two superpixels do not have
a shared boundary, then both g;; and h;; will be 0. Then w;;
will also be 0, indicating that superpixel nodes v; and v; have no
edge in the graph. In addition, superpixels that touch the image
boundary incur a natural penalty because all image boundary pix-
els have 0 edginess (Levinshtein et al., 2010). As a result, cuts are
discouraged from touching the image boundary thereby avoiding
the trivial solution discussed in Section 3.1.

Given a pixel p on the superpixel boundary, the feature vector f*
is a function of both the local geometry of the superpixel bound-
ary and the detected image edge response in its neighborhood.
The feature vector consists of three components: (a) distance to
the nearest image edge; (b) strength of the nearest image edge; (c)
alignment between the tangent to the superpixel boundary point
and the tangent to the nearest image edge. Given a dataset of
images with manually labeled figure-ground masks, we map the
ground-truth onto superpixels. Our training data consists of all
pixels falling on superpixel boundaries where positive training
data consists of pixels that fall on figure-ground boundaries and
negative training data consists of all the other pixels on super-
pixel boundaries. It is used to train a logistic classifier over the
feature vector f? to predict the likelihood of p being on an object
boundary. This training process is identical to (Levinshtein et al.,
2010).

4. EXPERIMENTAL RESULTS

In this section, we compare our proposed superpixel cut, to three

(6) other methods: superpixel closure (SC) (Levinshtein et al., 2010,

Levinshtein et al., 2012), cosegmentation (Joulin et al., 2010),
and a multiscale version of normalized cut from (Cour et al.,
2005). We follow the evaluation protocol of (Levinshtein et al.,
2010, Levinshtein et al., 2012) and use the last 50 images from
Weizmann Horse Database (WHD) (Borenstein et al., 2004) for
learning the weight matrix. For testing, we use the rest of images
from WHD and some images from Berkeley Segmentation Data
Set (BSDS500) (Arbelaez et al., 2011).

4.1 Datasets and implementation details

We present experiments on two datasets: WHD and BSDS500.

WHD This popular dataset contains 328 horse images, with dif-
ferent poses and backgrounds. The dataset is annotated with
ground-truth segmentation masks for all images. We use images
from this dataset for quantitative evaluation.

BSDS500 This new dataset is an extension of the BSDS300, where
the original 300 images are used for training/validation and 200
fresh images, together with human annotations, are added for
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testing. Each image is manually segmented by a number of differ-
ent human subjects, and on average, five ground truths are avail-
able per image. This is one of the most challenging datasets for
benchmarking segmentation algorithms. Many images have mul-
tiple foreground objects appearing at a variety of scales and lo-
cations. We use some images from this dataset for qualitative
evaluation.

Implementation details Our framework builds a graph on super-
pixel nodes, which are generated by SLIC (Achanta et al., 2012),
though other choices are also possible. The main reason of choos-
ing SLIC is that it is currently state-of-the-art superpixel segmen-
tation algorithm and practically efficient. The SLIC parameters
are the region size and the regularizer. For our experiments, we
set region size proportional to the image size to make around 200
superpixels for every image. The regularizer is set as 0.15 for all
the images. The contour image is used to extract features for
learning the gap measure. We use Pb detector (Martin et al.,
2004) in the cost of relatively worse detected contours, instead
of globalPb (Arbelaez et al., 2011) in (Levinshtein et al., 2012)
which takes long time to compute. We follow the parameter set-
ting in (Levinshtein et al., 2012) to set edge threshold T, = 0.05
and maximal number of solutions K = 10.

4.2 Results

4.2.1 Qualitative results We provide a qualitative evaluation
of our approach by testing it on images from the two datasets.

Fig. 3 shows the top 3 segmentation results for an example image,
corresponding to different A in Eq. (5) of optimization. The red
figure boundary overlays with the superpixel segmentation image
for visualization. By comparing with ground-truth, the second
result fully recovered the horse boundary. Notice that the rest
2 results are also reasonable in the sense that they represent the
object and surrounding context.

Figure 3: Segmentation example of a horse image. Top row:
original image, ground-truth, and superpixel boundary edginess;
Bottom row: top 3 segmentation results (the red figure boundary
overlays with the superpixel segmentation image for visualiza-
tion). The thickness of the boundary between superpixels corre-
sponds to the average edge probability of its superpixel boundary
pixels, which shows the thick edges are more likely to be the
object boundaries. By comparing with ground-truth, the second
result fully recovered the horse boundary.

Fig. 4 illustrates the performance of our method compared to the
competing superpixel closure approach (SC) (Levinshtein et al.,
2012). Top 3 rows are from WHD, and bottom 2 rows are from
BSDS5000 Train&Val. We manually select the best result for
each method. Notice that both SC and our method produce rea-
sonable results for all 5 images, our results are more compact. We
observe that the superpixels between the horse’s legs are selected

Table 1: Average pixelwise accuracy of five methods on WHD.

Algorithm Accuracy (%) Propetry
MNcut 50.1% | low-level
Cosegmentation 80.1% | low-level
SC 82.0% | low-level
Bertelli et al. 94.6% | high-level
Our method 82.6% | low-level

as foreground for SC approach in the first row (Fig. 4). This is
because if there is a more compact contour that results in lower
energy, it will be preferred. For our method, the superpixels be-
tween the horse’s legs are not selected, because our cost function
reflects the maximization of the intra-class similarity. The opti-
mization process finds that setting these nodes as O resulting in
lowest energy. Also note that the area between the ears of the
horse is selected as foreground for SC approach since the cost
function of SC tries to maximize the area. In addition, a signifi-
cant number of images in the horse dataset have a picture frame
boundary around the image, eg. the second row of Fig. 4. These
boundaries provide the largest and most compact solutions for SC
cost function, and are therefore found by SC instead of finding
the horse. Our method still performs well on these images due
to the novel cost function. Although we use an approximation
of the original cost function for optimization, our method usually
results in better quality compared to SC w.r.t. coverage (Fig. 4
Flower image) and compactness (Fig. 4 Birds image).

Some more segmentation examples of BSDS500 Test images are
visualized in Fig. 5. The top 5 rows are perceptually satisfac-
tory results, and the bottom 2 rows show the failure cases of our
method. Our method often segments single foreground object
successfully, despite of relatively large illumination changes and
complex layouts of distinct textures, e.g. Fig. 5 (top 3 rows). For
the Swan image, although there is reflection on the water sur-
face, our method is able to recover almost all of the boundary in
the image. It is usually very difficult for many segmentation al-
gorithms, even the ones incorporating high-level shape priors, to
segment a highly textured object from textured background. Our
method provides perceptually satisfactory results in the tortoise
and fish images. Our method can also cope with multiple fore-
ground objects to a certain degree, e.g. Fig. 5 the Rhino image.
For many images of BSDS500, it is difficult for human to decide
which is foreground. We notice that although some test images
containing multiple foreground objects are well segmented, our
method prefers single foreground. The main reason is that single
figure gives better implication of possible foreground object.

4.2.2 Quantitative results We quantify performance as pix-
elwise accuracy, as suggested in (Joulin et al., 2010, Bertelli et
al., 2011). It measures the percentage of pixels classified cor-
rectly into foreground or background. We compare to the other
work in Table 1.

We first compare our method to MNcut (Cour et al., 2005), which
is a multiscale version of Normalized Cut (Shi and Malik, 2000).
Our method has around 30% accuracy gain. Both SC and our
method outperform the Cosegmentation framework, which ac-
cesses all image information. Our method also outperforms SC
by a margin. As a reference we also include the performance of
(Bertelli et al., 2011). While their score is much higher, their
method utilizes high-level object similarity information and em-
ploys a sliding-window horse detector. In contrast, we only ex-
ploit the bottom-up information, making our method simpler and
more generic. Therefore, we outperform the competing approaches
on WHD dataset, which we attribute to the more reasonable cost
function in our framework.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-3-387-2016 391



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 111-3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Original image Our method SC

Figure 4: Qualitative results. We compare our results (middle) to superpixel closure algorithm (SC) (right). Left column is the original
images. Top 3 rows are from WHD, and bottom 2 rows are from BSDS5000 Train& Val.
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Original image Best figure result  Original image Best figure result

Figure 5: Segmentation examples of BSDS500 Test images. Top 5 rows: original image and first 3 figure segmentation results (the red
figure boundary overlays with the superpixel segmentation image for visualization). Bottom 2 rows: typical failure cases.
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5. CONCLUSION

We have presented a novel graph-based framework for figure-
ground segmentation based on the observation that object bound-
aries are often reasonably well approximated by superpixel bound-
aries. We propose a new cost function that simultaneously min-
imizes the inter-class similarity while maximizing the intra-class
similarity. No parameter needs to be tuned within this cost func-
tion. The scheme is fully automatic, efficient, and fully bottom-
up. It recovers coherent components of images, corresponding to
objects, object parts, and objects with surrounding context, pro-
viding a set of multiscale hypotheses for high-level reasoning.
The experiments demonstrate the high performance of our ap-
proach on challenging datasets. For future work, we plan to use
multiscale superpixel information to build a cost function that re-
spects scene hierarchy. We will also evaluate our proposed cost
function for hierarchical clustering.
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