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Kurzfassung

In der modernen Wissenschaft und Technik ist die Berücksichtigung von Unsicherheiten
unverzichtbar geworden. Die Forschung im Bereich der Unsicherheitsquantifizierung
hat in den letzten Dekaden stark an Bedeutung gewonnen. Dabei stehen im Wesentlich
die Identifizierung von unsicheren Quellen, die Bestimmung und Hierachisierung
von Unsicherheiten, sowie die Untersuchung ihrer Einflüsse auf Systemantworten im
Fokus der Wissenschaftler. Für diesen Zweck eignet sich unter anderem die Polynomial-
Chaos-Expansion, die sich als vielseitiges und mächtiges Werkzeug in verschiedenen
Forschungsbereichen behauptet hat. In den letzten Jahren wurde die Kombination
mit jeglichen Arten von Dimensionsreduktionsmethoden intensiv untersucht und un-
terstützt so die Verarbeitung von hoch-dimensionalen Eingabegrößen bis heute. Dies
wird auch als Fluch der Dimensionen bezeichnet und dessen Aufhebung würde als
Meilenstein in der Unsicherheitsquantifizierung gelten.
An diesem Punkt setzt die vorliegende Doktorarbeit an und untersucht Spline-Räume
im Bereich der Unsicherheitsquantifizierung, die als natürliche Erweiterung von Poly-
nomen gelten. Die neu entwickelte Methode ’Spline-Chaos’, möchte die komplexere,
aber dadurch auch flexiblere, Struktur von Splines ausnutzen, um härteren realen Prob-
lemen zu begegnen, an denen das Polynomial-Chaos scheitert.
Normalerweise sind die Basen der Poynomial-Chaos-Expansion orthogonale Polynome,
die hier durch B-Spline-Basisfunktionen ersetzt werden. Ferner wird die Konvergenz der
neuen Methode bewiesen und durch numerische Beispiele unterstrichen, die auf eine
Genauigkeitsanalyse mit mehr-dimensionaler Eingabe ausgeweitet werden. Außerdem
wird durch das Lösen mehrerer stochastischer Proleme gezeigt, dass das Spline-Chaos
eine Verallgemeinerung des Multi-Element-Legendre-Chaos ist und ihr überlegen ist.
Schließlich trägt das Spline-Chaos zur Lösung partieller Differentialgleichungen bei und
führt zu einer auf dem Galerkin-Ansatz basierenden stochastischen isogeometrischen
Analyse, die zur effizienten Unsicherheitsquantifizierung von elliptischen partiellen
Differentialgleichungen beiträgt. Es wird ein allgemeiner Ansatz in Kombination mit
einer a-priori-Fehlerabschätzung der erwarteten Lösung vorgestellt.

Schlagworte: Unsicherheitsquantifizierung, Spline Chaos, Stochastik Galerkin isoge-
ometrische Analysis, stochastische Galerkin Methode, Representation von Zufalls-
feldern
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Abstract

The consideration of uncertainties has become inevitable in state-of-the-art science
and technology. Research in the field of uncertainty quantification has gained much
importance in the last decades. The main focus of scientists is the identification of
uncertain sources, the determination and hierarchization of uncertainties, and the
investigation of their influences on system responses. Polynomial chaos expansion,
among others, is suitable for this purpose, and has asserted itself as a versatile and
powerful tool in various applications. In the last years, its combination with any kind of
dimension reduction methods has been intensively pursued, providing support for the
processing of high-dimensional input variables up to now. Indeed, this is also referred
to as the curse of dimensionality and its abolishment would be considered as a milestone
in uncertainty quantification.
At this point, the present thesis starts and investigates spline spaces, as a natural
extension of polynomials, in the field of uncertainty quantification. The newly developed
method ’spline chaos’, aims to employ the more complex, but thereby more flexible,
structure of splines to counter harder real-world applications where polynomial chaos
fails.
Ordinarily, the bases of polynomial chaos expansions are orthogonal polynomials,
which are replaced by B-spline basis functions in this work. Convergence of the new
method is proved and emphasized by numerical examples, which are extended to an
accuracy analysis with multi-dimensional input. Moreover, by solving several stochastic
differential equations, it is shown that the spline chaos is a generalization of multi-
element Legendre chaos and superior to it. Finally, the spline chaos accounts for solving
partial differential equations and results in a stochastic Galerkin isogeometric analysis
that contributes to the efficient uncertainty quantification of elliptic partial differential
equations. A general framework in combination with an a priori error estimation of the
expected solution is provided.

Keywords: Uncertainty Quantification, Spline Chaos, Stochastic Galerkin Isogeometric
Analysis, stochastic Galerkin Method, Representation of Random Fields
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1 Introduction

1.1 Stochastic Modeling

Mathematical models form basis for our scientific understanding of the world. In the
course of the 20th century, these models were enhanced by computer simulations, which
enabled the behaviour of increasingly complex physical systems to be reproduced and
predicted. In recent decades, computing and storage capacity has increased exponen-
tially, in accordance with Moore’s Law, which was in effect at least until recently Mack,
2011; Moore, 1965. This, in turn, led to computer simulations becoming an indispensable
tool for engineering systems, without being limited to it, with ever-growing precision.

Despite their increasing accuracy and irreplaceable value, computational models in-
evitably remain approximations of real-world phenomena. Depending on the applica-
tion, various reasons contribute to this:

1. So far, no closed-form solution could be determined for the model. This leads to ap-
proximated solutions which are inherently subject to numerical and discretization
errors.

2. The considered model is not sufficiently sharp for the underlying problem and
the associated inquiry. More sophisticated methodologies have to be deployed.

3. Model parameters cannot be specified perfectly, creating uncertainty that is trans-
mitted through the system to the response, with potentially devastating conse-
quences.

In other words, it is unavoidable to minimize model errors and quantify uncertainties.

In the last two decades, the latter has gained strongly in importance and uncertainty
quantification (UQ) is a necessity in all branches of science and engineering. As an
interdisciplinary subject between mathematics, physics, engineering and computer
science, UQ objectives are to include uncertainties in model parameters of a physical
system and to investigate the influence on the system response. A general framework
forUQ is sketched in Fig. 1.1 Bruno Sudret, 2007:

Quantifying input uncertainty: Taking uncertainties into account involves identifying
all sources of inaccuracies in terms of input parameters and describing them in
an appropriate setting. A variety of modeling tools are available, e.g. random
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1 Introduction

Quantifying input
uncertainty

Computational model Uncertainty 
propagation

Moments

µ σ-σ

PDF

Probability 
of failure 

Random variable
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Intervall

t

Stochastic process

x

y

Random field

Figure 1.1: Framework for uncertainty quantification in engineering.

variables and fields, stochastic processes, intervals, fuzzy sets, and imprecise
probabilities.

Computational model: An extremely diversified field, this includes everything from
simple analytical equations to complex calculations that take months to complete.
In general, this is not much involved in the context of an uncertainty analysis,
since the computational model can be regarded as a black box and is provided by
external sources. The model maps the set of input parameters to a set of outputs,
often referred to as model responses or quantities of interest.

Uncertainty propagation: The uncertainty characterization of the system response prop-
agated from the input through the system depends on the research question. A
number of various techniques are available for the different levels of detail, which
can be categorized as follows:

• In order to determine moments, in particular, mean and variance of the
response, second moment methods are used, which include Monte-Carlo
simulation (MCS), perturbation, quadrature and weighted integral meth-
ods.Bruno Sudret, 2007

• Structural reliability methods Ditlevsen and Madsen, 1996a; Lemaire, 2013

aim to measure the probability of failure, where the tail of the probability
density function (PDF) needs to be investigated in more detail. Suitable
methods are MCS, importance sampling, subset simulation, first- and second
order reliability methods.

2



11.2 Spline-based Methods in Uncertainty Quantification

• Most information gain is obtained by spectral approaches describing the
response as a random quantity - usually in terms of the PDF. The spectral
stochastic finite element method (SSFEM) is the most famous example and
was developed by R.G. Ghanem and P. Spanos (2003).

To obtain reliable results including uncertainty, it is often necessary to invest thousands,
millions, or even more evaluations of the numerical model Ripley, 2009a. The computa-
tional effort required increases exponentially with the number of uncertain parameters,
and random inputs in the two- or three-digit range are highly desirable Davis and Rabi-
nowitz, 2007. Especially for advanced high-reality models, the continuous increasing
computational power mentioned above is not able to tackle these problems. It is not
uncommon for efficient deterministic analysis to take several hours to run for a single
input set - and there are some that take months. For example, if a five-hour simulation
had to be repeated one thousand times to account for uncertainties, it would take 208

days. The analysis of an offshore wind turbine could be such an example and is subject
to various random phenomena. It is immensely important that such systems have a
negligible probability of failure. Therefore, probabilistic approaches provide essential
concepts for general engineering practice. Among other aspects, advances in the analysis
or representation of random quantities are therefore particularly beneficial.

A widespread approach for representing random quantities, such as random variables
and fields, is the polynomial chaos expansion (PCE). Its origins date back to the 1938s
Wiener, 1938 and it is still the subject of intensive research Beck, Raul Tempone, et al.,
2012; Haji-Ali et al., 2020; Lüthen et al., 2021; P. D. Spanos and Roger Ghanem, 1989; Xiu
and Karniadakis, 2002. Increasingly efficient polynomial based methods try to break
the curse of dimensionality Bellman, 1966 in stochastic modeling, making increasingly
higher stochastic dimensions become tractable. Spline spaces, as a natural extension of
polynomials, have only recently found their way into stochastic modeling.

1.2 Spline-based Methods in Uncertainty Quantification

The use of spline-based techniques within uncertainty quantification and their inter-
action with algorithms is a fairly unexplored area of research, although splines are
widely used in various areas of science and engineering, e.g. computer-aided design
(CAD), interpolation, and data fitting. Splines provide an alternative to Lagrangian and
orthonormal polynomials for high-dimensional functional approximations and could
consequently be applied in UQ methods. They also have features that could be exploited
to more efficiently solve UQ problems with random domains or shape optimization
Beck, Tamellini, et al., 2019. Besides, the use of splines of arbitrary order and continuity
is the primary ingredient for the success of isogeometric analysis (IGA), which bridges
the gap between CAD and computer-aided engineering (CAE) Hughes et al., 2005. IGA
successfully has enhanced many deterministic engineering applications - see e.g. the

3



1 Introduction

work done by Auricchio et al. (2012), Y. Bazilevs et al. (2008), Cottrell, J. Evans, et al.
(2010), Cottrell, Reali, et al. (2006), Gómez et al. (2008), G. Sangalli et al. (2010), and
Schillinger et al. (2012). In this regard, it is noteworthy that the basic idea of IGA, in
particular splines, has only recently been incorporated into the stochastic framework:

• First approaches were done by T D Hien and Lam (2016) and H. Nguyen et
al. (2017), who investigated a plate problem under random load, and buckling
under an uncertain material field, respectively. Load and material fields were
both modeled by the spectral representation method. Subsequently, the stochastic
analysis was done by MCS.

• In 2018, Li and co-workers proposed a method called spectral stochastic isogeo-
metric analysis (SSIGA) and applied it to several problems in stochastic mechanics,
e.g. linear elasticity, free vibration, functionally graded plates Li, Gao, et al., 2018;
Li, Wu, and Gao, 2018, 2019; Li, Wu, Gao, and Song, 2019. For representing un-
certainties, they numerically solved the Karhunen-Lòeve expansion (KLE), and
used an isogeometric solver for the arising spatial integrals in the underlying
eigenvalue problem (Fredholm integral equation). Mika et al. (2021) increased the
efficiency when solving the Fredholm integral equation by a matrix-free scheme.
A multi-patch treatment with collocation is captured by Jahanbin and S. Rahman
(2021).

• W. Wang et al. (2019), Ta Duy Hien and Noh (2017), and Ta Duy Hien and P. C.
Nguyen (2020) combined low-order perturbation techniques within an isogeomet-
ric environment to study different plate problems, with uncertain material field
modeled by KLE and integration point method, respectively.

• C. Ding, Cui, et al. (2018) solved a steady heat transfer problem by representing
the geometry and deterministic solution via isogeometric basis functions. The
randomness of thermal conductivity coefficients are modeled by a high-order
perturbation method. The high-order perturbation method is subsequently used
to solve a shell structure under geometric uncertainties by C. Ding, Tamma, Cui,
et al. (2020).

• In the field of structural analysis, C. Ding, Deokar, Cui, et al. (2019) and C. Ding,
Deokar, Y. Ding, et al. (2019) treated high-dimensional material, geometric and
force randomness with MCS and an isogeometric solver. In order to handle the
computational burden, they used proper orthogonal decomposition (POD) as
model order reduction technique.

• Beck, Tamellini, et al. (2019) extended the multi-index stochastic collocation (MISC)
method for forward UQ problems by an isogeometric solver for elliptic partial
differential equation (PDE)s with random coefficients. MISC is a multi-grid method
in spatial and stochastic space, which tries to find an optimal balance for the grids
being used. It is derived from the multi-level/multi-index Monte Carlo method
and obtained its superiority because highly-efficient quadrature rules can be made
applicable.

• Uncertainties in shape are considered by H. Zhang and Shibutani (2019). The
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11.3 Objective and Outline

randomness is handled with PCE and intrusively combined with IGA using
standard Galerkin. In constrast, Dsouza et al. (2020) applied PCE non-intrusively
for functionally graded plates and concludes with a sensitivity analysis using
Sobol’indices.

• To process high-dimensional inputs for an UQ analysis of functionally graded
plates, meta-models were employed by Z. Liu, Yang, Cheng, Wu, et al. (2020, 2021).
Within the SSIGA framework, a Nyström based KLE is implemented. The meta-
modeling is done by Kriging enhanced neural networks and arbitrary polynomial
chaos-Kriging method, respectively.

• Z. Liu, Yang, Cheng, and Tan (2021) proposed a stochastic isogeometric analysis
method based on reduced basis vectors (SRBIGA) for complex structural analysis
with random material and force. Derived from SSIGA, it exhibits increased effi-
ciency, accuracy and robustness by representing the response over reduced basis
vectors, which are inspired by stochastic Krylov subspace theory.

• A reduced-order Monte Carlo stochastic isogeometric method is presented in
order to treat plate and solid problems subjected to spatially uncorrelated and
high-dimensional load uncertainties by C. Ding, Tamma, Lian, et al. (2021).

In summary, the trend is towards taming high-dimensional inputs, where an isogeomet-
ric description is at the basis of the deterministic model. It has been shown that a wide
variety of approaches are currently being pursued, but extensive benchmarks have not
yet been established.
Although all listed publications merge spline-based methods and UQ, they do not
actually use splines to directly represent uncertainties. This idea was first presented on
a conference by the author in 2018 and is the essential part of this dissertation. Later, the
idea was taken up by Sharif Rahman (2020), where the lost orthogonality was recovered
using a whitening transformation. The sequel work deals with dimension reduction to
handle high dimensional inputs in linear elasticity Jahanbin and Sharif Rahman, 2020.

The listed literature as well as the increasing number of publications clearly show the
scientific need for this research area, which can help to break the curse of dimensionality,
and in this way enable the processing of high-dimensional random inputs for complex
practical applications. As a natural extension of polynomials, splines are definitely
worth investigating. However, they also have a more complex structure. The complexity
and the use cases for extending the polynomials to spline spaces remain to be seen.

1.3 Objective and Outline

The objective of this thesis is to give a comprehensive and mathematically rigorous
introduction to the theory of spline chaos, as well as to investigate associated properties,

5



1 Introduction

in order to characterize uncertainties within an efficient stochastic analysis.
The manuscript aims at:

• Investigating a novel method describing uncertainties that can help to improve the
accuracy and effectiveness of spectral methods in the field of stochastic analysis.

• Examining assets and challenges of the new approach on one- and multi-dimensional
stochastic systems.

• Presenting a rigorous mathematical treatment including proofs of convergence.
• Providing a new Galerkin based method for solving stochastic partial differential

equations including an a priori error estimation.

To this end, the work conducted during the PhD is divided into the following eight
chapters including this introduction:

In chapter 2, the basic concepts of probability theory are briefly reviewed and prepared
in a thorough but compact manner, which are tailored to the requirements of this thesis.
At the end, proper definitions of stochastic processes and fields, which are indispensable,
are derived, as well as the modes of convergence, which are necessary for proofs of
convergence in the methodical chapter 5.

Chapter 3 introduces polynomial and spline spaces, as well as related useful proposi-
tions, especially about approximation quality. Thereby, diverse notations from different
references are adapted and harmonized with each other. The chapter aims to give an ex-
plicit error estimation for spline spaces, which needs rigorous and adjusted definitions.
In particular, the recently published estimation by Sande et al. (2019) is reprocessed in
order to be applied in chapter 7.

Stochastic systems need to be prepared to make them numerically feasible, which is
formulated in chapter 4. In particular, common methods characterizing uncertain inputs
are discussed, which is a key feature for this purpose. In chapter 6 and 7, this adjusted
and generalized system formulation is utilized.

A new method named spline chaos, which can be seen as an extension of polynomial
chaos, is defined in chapter 5. Strong and weak convergence, substantiated by several
numerical examples, are proposed. This is accompanied by an accuracy analysis for
random variables, vectors, and stochastic processes. The method is compared with the
homogeneous chaos and similarities to the Legendre chaos are revealed.

In chapter 6, the new introduced concept of spline chaos is applied to different stochastic
systems. Uncertain in- and output are modeled with the new expansion and compared
to exact solutions, multi-element chaos approaches and Monte-Carlo simulations.

Finally, chapter 7 deals with the holistic view of a stochastic elliptic partial differential
equation. A general framework for the stochastic Galerkin isogeometric analysis (SGIGA)
is presented where the concept of isogeometric approximations, using the spline chaos,

6



11.3 Objective and Outline

is assigned to the stochastic part of the problem. This is flanked by the proof of an a
priori error estimation of the mean solution and discussed for the elliptic context.

The summary in chapter 8 concludes this thesis, where several important open issues in
the development of spline chaos are addressed, too.

7





2

2 Probability Theory

In this chapter, the basic concepts of probability theory that are needed for stochastic
computational modeling are briefly summarized and adapted for the purpose of this
monograph. The objective is to provide a mathematically rigorous introduction describ-
ing stochastic processes and random fields and all related objects whose definitions will
be used frequently throughout this work. The chapter ends with the definition of the
four types of stochastic convergence which are relevant for the proofs of convergence
in chapter 5. Definitions and statements in this chapter are adapted from the book by
Mircea Grigoriu (2003). Details of statements and proofs can be found there, and in
the pertinent literature of e.g. Feller (1968), Kiyosi Itô et al. (1984), Karatzas and Shreve
(2014), and Rao and Swift (2006a).

2.1 Probability Space

The introduction of uncertainties in engineering problems, which is referred to as UQ,
requires advanced mathematical tools. The engineering problem is considered as a
random experiment and one is interested in the probability of a certain outcome of
this experiment. All possible outcomes ω are gathered in a sample set (or space) Ω.
Events are described by subsets of Ω containing outcomes ω ∈ Ω. The set of events in a
random experiment forms a set system F over Ω, thus a subset of the power set 2Ω. If
F satisfies the topological requirements that F contains the sample space and is stable
in concerns of the operations complement and countable union, F is called a σ-field.
The aim of probability theory is to give each event of the collection F a numerical value
between 0 and 1. This is done by a probability measure P over F which suffice specific
axioms (requirements) motivated by the colloquial concept of probability.

Definition 1: Kolmogorov axioms

A probability space is a triple (Ω,F , P) consisting of a non-empty set Ω (the sample
space), a σ-field F over Ω, and a set function P : F → [0, 1] with the properties:

1. P(Ω) = 1
2. P(E) ≥ 0 for all events E ∈ F
3. P(∑∞

i=1 Ei) = ∑∞
i=1 P(Ei) for all pairwise disjoint events E1, E2, . . . ∈ F

9



2 Probability Theory

A set function with these properties is a probability measure.

The mathematical construct of a probability space offers us a secure framework for an
intuitive concept of probability. For example, if we consider the failure of a bridge or
truss, the topology of the σ-field and the properties of the probability measure ensure
that the counter probability of the failure probability p is actually 1− p and that failure
or non-failure occurs with probability 1. The third property guarantees the additivity
of two independent events, e.g. if the failure probability of two components p1 and p2
are independent of each other, then the components will fail simultaneously with the
probability p1 + p2.
For further considerations we still need the concept of a measurable space, which is
obtained by omitting the probability measure from a probability space. Or the other
way round: The definition of a probability measure on a measurable space makes it
a probability space. The measurable space (R,B) is of particular interest. The σ-field
B generated by the half-open intervals (a, b], −∞ < a ≤ b < ∞ is called the σ-field of
Borel sets of R. Furthermore, the d-dimensional extension is denoted by Bn.

2.2 Random Variables

In general, there is less interest in a concrete result ω, but rather in the random variable
X(ω). Of special concern is the case when X is real, because a variety of random
experiments can be unified by applying the description of random events to intervals of
the real line.

Definition 2: Random variable

A (real-valued) random variable X on the probability space (Ω,F , P) is a mapping
X : Ω → R which is (F ,B)-measurable, i.e. X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F
for all B ∈ B.

To get a better idea, it is useful to look at the set B as half open intervals (−∞, a]. A
mapping X : Ω→ R is a random variable if and only if X−1((−∞, a]) ∈ F is satisfied
for all a ∈ R. Thus, each interval from the measurable space (R,B) is assigned to an
event on the probability space (Ω,F , P). Therefore, a random variable transfers the
probability structure from Ω to R and makes the measurable space (R,B) a probability
space (R,B, PX). Here, PX : B → [0, 1] is the probability measure over (R,B) induced
by the random variable X with

B 7→ PX(B) := P(X ∈ B) ≡ P(X−1(B))

10
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and is named the distribution of X. As already mentioned above, it is not necessary to
describe the underlying probability space (Ω,F , P) of a random variable exactly. It is
sufficient to know about the distribution of X and it is common practice to assume a
suitable distribution for random variables, such as material parameters or wind loads.
Nevertheless, it is not practical to calculate probabilities haphazardly using Borel sets.
Therefore, the distribution of X is described by using cumulative distribution functions
(CDFs) defined over the real line:

FX : R→ [0, 1], x 7→ FX(x) := PX((−∞, x]) ≡ P(X ≤ x).

The distribution function FX(x) determines the probability that the random variable
takes on a value less than or equal to x by searching the underlying probability space
for all events projected into the interval (−∞, x] by the mapping X. In the following,
the image space of a random variable is always R, unless otherwise specified.

Random variables can be divided by their distribution into continuous and discrete. If
the associated distribution function of a random variable X has jumps, i.e.

FX(x) = ∑
xk<x

p(xk)

with
0 ≤ p(xk) ≤ 1 and ∑

xk

p(xk) = 1,

then X is a discrete random variable.
In contrast, if X assums any single value x ∈ R with probability 0, i.e.

P(X = x) = 0 ∀x ∈ R,

then X is a continuous random variable. If, for a CDF of a continuous random variable,
there exists a PDF fX(x) with

FX(x) =
∫ x

−∞
fX(x̃) dx̃

and
fX(x) ≥ 0 ∀xR, and

∫ ∞

−∞
fX(x) dx = 1,

then X is absolutely continuous.

11
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Examples of important distributions

Discrete distributions

Important discrete distributions are the binomial distribution Bin(n, p) with n ∈ N0
and p ∈ (0, 1):

P(X = k) =
(

n
k

)
pk(1− p)n−k k = 0, . . . , n,

and the Poisson distribution Poi(λ) with λ ∈ R+:

P(X = k) = exp (−λ)
λk

x!
k = 0, 1, . . . .

Continuous distributions

Among others, the normal, beta, and gamma distribution are common representatives
of continuous distributions and are used in many applications:
X is normal or Gaussian distributed with expectation µ ∈ R and variance σ2 ∈ R+,
i.e. X ∼ N (µ, σ2). Then, the PDF is given by

fX(x) =
1√

2πσ2
exp− (x− µ)2

2σ2 x ∈ R.

N (0, 1) denotes the standard normal distribution.
X is a beta distributed random variable on [a, b] ⊂ R, i.e. Beta(a, b, α, β) with density
function

fX(x) =
1

B(a, b, α, β)
(x− a)α−1(b− x)β−1 with α, β > 0 ,

where B(a, b, α, β) =
∫ b

a (u − a)α−1(b − u)β−1 du is the beta function. For α = β = 1
the beta distribution degenerates to the important uniform distribution. Then, X is
uniformly distributed on [a, b], i.e. X ∼ unif([a, b]), with density

fX(x) =

{
1

b−a , for a ≤ x ≥ b,
0, otherwise.

Finally, assume X is a gamma distributed random variable on [0, ∞], i.e. Gam(a, b) with
PDF

fX(x) =
ba

Γ(a)
xa−1e−bx a, b > 0

where Γ(a) is the gamma function. In the case of a = 1 the gamma distribution
reproduces the exponential distribution Exp(b).

12
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2.2.1 Moments

Random variables can be described not only by their distribution, but also by other
characteristics. In particular, the expected value, the variance and higher moments are
important quantities that are used in many applications to describe a random variable.
Often it is not possible or not necessary to know the complete distribution of a random
variable in a system to be analyzed. Note, the following detailed and in part different
notations are mentioned here because they are partly applied in the later progression
and thus should avoid confusion.
If the random variable X over the probability space (Ω,F , P) is P-integrable, i.e.

∫
|X|dP <

∞, then the expectation - the most likely value of X - exists and is defined by

µX ≡ E[X] :=
∫

X dP ≡
∫

Ω
X(ω) dP(ω).

In the scope of this work mainly absolute continuous random variables are considered,
so that the expectation can be determined by

E[X] =
∫

Ω
X(ω) dP(ω) =

∫
R

x dFX(x) =
∞∫
−∞

x fX(x) dx.

Analogously, if X is k-times P-integrable the kth moment of X exists and is defined by

E[Xk] :=
∫

Xk dP =

∞∫
−∞

xk fX(x) dx.

Furthermore, there are centralized versions of the moments of which the variance is
most frequently used:

σ2
X ≡ Var[X] := E[(X− µ)2] =

∞∫
−∞

(x− µ)2 fX(x) dx.

The variance or more precise the standard deviation σ provides information about the
degree of dispersion around the expected value.
In order to show how important the first moments of a random variable can be and that
for the complete characterization of a random variable the distribution is not necessarily
mandatory, we consider a normally distributed random variable X ∼ N (µ, σ2). The

13
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moments of X are given by

E[X] = µ

Var[X] = σ2

E[(X− µ)2n−1 = 0, n = 1, 2, . . .

E[(X− µ)2n = 1 · 3 · 5 . . . · (2n− 1) · σ2n, n = 1, 2, . . . ,

thus all moments are described by µ and σ2 and consequently the random variable itself.
For example, the distribution of wind speed can be realized very well by measuring
average wind speeds and choosing a shape parameter. These examples provide an
indication that there are methods for the analysis of stochastic problems which are
voluntarily limited to the determination of the first moments, e.g. the moment equation
approach.

2.2.2 Hilbert Spaces

Denote by Lp(Ω,F , P) the collection of random variables X on (Ω,F , P) with E[|X|p] <
∞ for p ≥ 1. The case p = 2 is of special interest for many applications, because it
connects the second moment calculation and the error estimation at the later part of
this work. This is partly due to the fact that L2(Ω,F , P) is a Hilbert space. In addition,
useful inequalities, such as the Chebyshev’s, Chauchy-Schwarz’s, Minkowski’s, etc.,
become accessible for both applications and theoretical considerations. Denote by
L2(Ω,F , P) the space (of equivalence classes) of all square P-integrable (real-valued)
random variables, i.e.

L2
P ≡ L2(Ω,F , P) :=

{
X : Ω→ R | E[|X|2] < ∞

}
(/ ∼P) .

L2(Ω,F , P) is a Hilbert space with the inner product and norm:

〈X, Y〉L2
P

:= E[X Y] and ‖X‖L2
P
=
√
〈X, X〉 =

(
E[X2]

)1/2

for X, Y ∈ L2(Ω,F , P).

2.2.3 Random Number Generation

One of the essential tasks in the field of stochastic simulation is the generation of ran-
dom numbers. The most common procedure is the generation of uniformly distributed
random numbers in the interval [0,1], which are based on a deterministic algorithm.

14
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Therefore such a sequence is also called pseudo-random numbers. The methods imple-
mented in common software are very mature and therefore so fast and stable that they
rarely need or can be improved substantially. More detailed information of random
number generation can be found, in the pertinent literature of Gentle, 2006; Knuth, 1998;
L’Ecuyer, 1994; Ripley, 2009b, for example.
A simple method to create realizations of a non-uniform continuous random variable is
the inversion method. It is based on the essential fact that every distribution maps to the
interval (0, 1). Now consider the inverse of a distribution and a uniformly distributed
random variable Z to (0, 1). Then the inverse as a function of a random variable is again
a random variable, which is enough for the desired distribution. More precisely:

Proposition 2.2.1. Let FX be the CDF of a random variable X. If U ∼ unif([0, 1]), then
F−1

X (U) is a random variable with CDF FX.

In the scope of this work, we will see that this property is not only useful for the
generation of random numbers, but also plays an essential role in the development of
B-spline chaos.
It is obvious and well known from stochastic theory, that the inverse cumulative
distribution function (iCDF) of a random variable X, given by

F−1
X (u) := inf{x : FX(x) ≥ u}

always exists and is unique. Besides, if the distribution function is strictly monotonic
increasing and continuous, then x = F−1(u) is unique and well-defined for all u ∈ [0, 1].
This case is the most user-friendly. Let X be an exponential distributed random with rate
b > 0, then fX(x) = b exp(−bx) and the inverse of FX is F−1

X = −b−1 log(1− u). Thus,
we can generate realizations of X by the inversion method with X = −b−1 log(1−U)
and U ∼ unif([0, 1]).
In case the inverse is not easy to determine analytically, numerical schemes can help,
but induce additional inaccuracies. Let X be a standard Gaussian random variable, then
fX(x) = 1√

2π
exp− (x)2

2 and neither the distribution nor its inverse can be given in closed

form. There are quite simple and accurate approximations of F−1
X . For example:

F−1
X (u) ≈ sign(1− 1

2
)
(
t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
with t =

√
− ln(min{u, 1− u}2) and

i ci di
0 2.515517 -
1 0.802853 1.432788

2 0.189269

3 - 0.001308

.
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The absolute error is less than 4.5 · 10−4 Hastings Jr et al., 2015. Although the absolute
error of many methods is small, this is often not the case with relative errors. But just a
small relative error is indispensable for many engineering applications such as structural
failure probabilities or menace curves of natural hazards, because tail probabilities are
needed. Recently, Luis (2015) presented a simple and accurate method that addresses
this problem. It shows relative errors lower than 2.5 · 10−3 over a wide range of the
support of the random variable and absolute errors lower than 9.5 · 10−4 for x < 3 and
6.4 · 10−7 for x ≥ 3. This improved accuracy is achieved by dividing the approximation
into three ranges of [0, 3), [3, 8), and [8, 20). The same analytical approximation rule is
used for all intervals, whereby the coefficients are adjusted accordingly.

Besides the inversion method for generating non-uniform random numbers, the most
important one is the acceptance-rejection method. Further details can be found in
Devroye, 1986; Gentle, 2006; Hörmann et al., 2013.

2.3 Random Vectors

Broadly speaking, a finite collection of one-dimensional real-valued random variables is
a random vector. Therefore, the basic concepts of random variables can be transferred to
random vectors with certain extensions and adaptations. In the following, the definition
of random vectors analogous to the definition of random variables is introduced, as
well as terms and notations necessary for this work.

Definition 3: Random vector

A d-dimensional random vector X = (X1, . . . , Xd) on the probability space (Ω,F , P)
is a mapping X : Ω → Rd which is (F ,Bd)-measurable, i.e. X−1(B) ∈ F for all
B ∈ Bd, on the measurable space (Rd,Bd).

As with random variables, a random vector or d-dimensional random variable transmits
the probability structure of Ω to Rd.
If we look at the rectangle B = (−∞, xi] in Rd with xi ∈ R, i = 1, . . . , d, then B ∈ Bd

and X−1(B) ∈ F , such that the joint distribution function FX : Rd → [0, 1] of X =
(X1, . . . , Xd) makes sense:

FX(x) = P

(
d⋂

i=1

{Xi ≤ xi}
)
≡ P (X1 ≤ x1, . . . , Xd ≤ xd) ,
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for any x = (x1, . . . , xd) ∈ Rd. If the derivative

fX(x) =
∂dFX(x)

∂x1 · · · ∂xd

exists, then fX is the joint density function of X and it holds

FX(x) =
x1∫
−∞

· · ·
xd∫
−∞

fX(x̃1, . . . , x̃d) dx̃1 · · · dx̃d .

The joint density function satisfies the following properties

fX(x) ≥ 0 ∀x ∈ Rd

and
+∞∫
−∞

· · ·
+∞∫
−∞

fX(x̃1, . . . , x̃d) dx̃1 · · · dx̃d = 1 .

Furthermore, marginal distribution and density functions can be defined, e.g. for Xi
by

FXi(xi) = lim
xk→+∞

1≤k≤d;k 6=i

FX(x1, . . . , xd)

and

fXi(xi) =

+∞∫
−∞

· · ·
+∞∫
−∞

fX(x̃1, . . . , x̃d) dx̃1 · · · dx̃i−1dx̃i+1 · · · dx̃d =
∂FX(x)

∂xi
.

Again, the most interesting characteristics of a random vector are the first moments,
i.e. the expectation vector

µX ≡ E[X] := (E[X1], . . . , E[Xd]) ≡ {µi}i=1,...,d,

the correlation matrix
Cor[X] := E[XXT]

the covariance matrix
Cov[X] := {Cov(Xi, Xj)}i,j=1,...,d

with
Cov(Xi, Xj) := E[(Xi − µXi)(Xj − µXj)] = E[XiXj]− µXi µXj

is the covariance of Xi and Xj. Note, Cov(Xi, Xi) = σ2
i is the variance of Xi and

Var[X] := {σ2
i }i=1,...,d

17
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is the variance vector.
It is also common to normalize the covariances by their standard deviations in order to
get the correlation coefficients

ρ(X) :=

{
E[(Xi − µi)(Xj − µj)]

σiiσjj

}
i,j=1,...,d

≡ {ρij}i,j=1,...,d

with
|ρij| ≤ −1 .

In the case ρij = 0 the random variables Xi and Xj are uncorrelated and for |ρij| ≈ 1 for
strongly correlated Xi and Xj. If Xi and Xj are independent, then they are uncorrelated.
In general, the inverse is not true.

2.3.1 Independence and Conditional Expectation

Consider the random vector X = (X1, . . . , Xd) with joint distribution FX and FXi is the
distribution of Xi. The random variables X1, . . . , Xd are independent if and only if

FX(x) =
d

∏
i=1

FXi(xi) ∀x ∈ Rd .

The same holds for the density, if it exists, i.e. the random variables X1, . . . , Xd are
independent if and only if

fX(x) =
d

∏
i=1

fXi(xi) ∀x ∈ Rd .

Therefore, the property of independence has a direct influence when calculating mo-
ments.
Next, consider the two random vectors X = (X1, . . . , Xd1) and Y = (Y1, . . . , Yd2) over the
probability space (Ω,F , P). Often, there is interest in determining the probability of X
under the condition that a realization y of Y has already occurred. This can be calculated
by limiting the probability space to Y. Therefore, we introduce the conditional density

fX|Y=y(x) :=
fXY(x, y)

fY(y)

of X given Y = y, where fXY is the joint density of X and Y, fY the density of Y, and
y ∈ Rd2 . With this definition it is easy to introduce the conditional expectation

E[X|Y = y] :=
∫

Rd1
x fX|Y=y(x) dx
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of X given the information Y = y. This notion of conditional expectations can be
extended by considering more general information then Y = y. Denote by G a sub-σ-
field of F . Then, the conditional expectation E[X|G] of X with respect to G is the class
of G-measurable functions satisfying∫

G
XdP =

∫
G

E[X|G] dP ∀G ∈ G,

and has the following properties

• If G = {∅, Ω}, then E[X|G] = E[X]
• If G = F , then E[X|G] = X a.s.
• E[E[X|G]] = E[X]

which results directly from the definition. The conditional expectation E[X|G] is the
projection of X on G and can be viewed as an approximation of X. For a better under-
standing, consider the random variable X ∈ L2(Ω,F , P) and X̂ ∈ L2(Ω,G, P) with〈

X− X̂, Y
〉
= 0 ∀Y ∈ L2(Ω,G, P),

i.e. the error X− X̂ is orthogonal to L2(Ω,G, P), then∥∥X− X̂
∥∥ = min

Y∈L2(Ω,G,P)

{
‖X−Y‖

}
.

Therefore, X̂ has the smallest mean square error and is called the best mean square
estimator of X. Because

E[(X− E[X|G])G] = 0 ∀G ∈ G,

X− E[X|G] is orthogonal to G and E[X|G] is the best m.s. estimator of X with respect to
the information given by G. Therefore, conditional expectations attach much importance
to many applications, where a lack of information can usually be assumed.

2.4 Stochastic Processes and Random Fields

A significant role in many applications plays the characterization of randomness which
varies discretely or continuously over time or physical space. Therefore, random vari-
ables or vectors are equipped with time or space functions.

Definition 4: Stochastic process

19



2 Probability Theory

Let X : I×Ω→ Rd be a function of two arguments ω ∈ Ω and t ∈ I with (Ω,F , P)
is a probability space and I ⊂ R an index set. If X(t) is a d-dimensional random
variable for each t ∈ I, i.e. X(t) ∈ F , then X(t) is a stochastic process. If d = 1 the
process is denoted by X(t).

The index set I ⊂ R can either be an interval, e.g. I = [0, ∞), or a finite or countably
infinite set, then the corresponding stochastic process is continuous or discrete, respec-
tively. Often, the index set is referred to as time. For example, consider a mechanical
system subjected to wind loads or other dynamic forces over a time period. Then, the
randomness of these forces can be handled by a continuous time stochastic process.
On the other hand, randomness appears also over physical space and is then called
a random field. A most typically example in stochastic mechanics are the varying
properties of materials, e.g. the Young’s modulus. Random fields are defined in the
same way.

Definition 5: Random field

Let X : I×Ω→ Rd be a function of two arguments ω ∈ Ω and x ∈ I with (Ω,F , P)
is a probability space and I ⊂ Rq, q ∈N+, an index set. If X(x) is a d-dimensional
random variable for each x ∈ I, i.e. X(x) ∈ F , then X(x) is a random field.

Stochastic processes and random fields share many properties and in the one-dimensional
case they can often be used interchangeably. However, there are remarkable differences
between them, e.g. the notion of past and future is not directly applicable for random
fields. Besides, the randomness can depend on both time and space and is then referred
to as a space-time stochastic process, e.g. the evolution in time of the temperature in a
bounded domain. Therefore, in the scope of this book, definitions and characterisations
of stochastic processes holds also for random fields and vice versa unless otherwise
stated, and a random function generally encompasses both terms.

Example 2.4.1. The function X : I × Ω → R defined by X(t, ω) := Y(ω)(t − t3

6 ) with
I = [−4, 4] and Y(ω) := ω a uniform random variable on ([0, 1],B([0, 1]), P) is a stochastic
process.

The function X(·, ω) for a fixed ω ∈ Ω is called a realization, a trajectory, or a sample
path of the process X. The other way around, X(t, ·) for a fixed time t ∈ I is a d-
dimensional random variable by definition.

The general goal in the subsequent analysis will be the determination of statistics of
stochastic processes. The task is much more involved than the one for random vectors or
variables, because a stochastic process with an infinite index set belongs to an infinite-
dimensional space which must be approximated by finite-dimensional subspaces in
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order to make them numerically accessible. The discussion is limited to one-dimensional
processes for simplicity. The extension to d > 1 is straightforward. One way to overcome
this challenge is to think of a process as a collection of random vectors. As a result,
the finite-dimensional distributions of order n ∈ N of the stochastic process X(t) are
specified by the distributions of the finite-dimensional vectors

(X(t1), . . . , X(tn)), t1, . . . , tn ∈ I,

for all possible choices of the index t1, . . . , tn ∈ I and every n, i.e. for d = 1:

Fn(x1, . . . , xn; t1, . . . , tn) = P (X(t1) ≤ x1, . . . , X(tn) ≤ xn) , ∀n ∈N.

The finite dimensional densities of X(t) are the derivatives of the distributions:

fn(x1, . . . , xn; t1, . . . , tn) =
δn

δx1 · · · δxn
Fn(x1, . . . , xn; t1, . . . , tn), ∀n ∈N.

Furthermore, the marginal distribution and density of X(t) are F1(·; t) and f1(·; t), or
simply F(·; t) and f (·; t), respectively. In most applications, the available information
suffice to estimate at least the first and second order finite dimensional distributions of
X, which are essential for the meaningful second order calculus Mircea Grigoriu, 2003.
Therefore, many of the definitions and properties of moment theory for random vectors
in section 2.3 are relatable for random functions as well: The expectation, correlation,
covariance and variance function of X(t) is given by

µX(t) := E[X(t)],
rX(t, s) := E[X(t)X(s)],
cX(t, s) := E[(X(t)− µX(t))(X(s)− µX(s))],

σ2
X(t) := cX(t, t),

t, s ∈ I, respectively. Obviously, these quantities are considered as deterministic func-
tions of time, and the pair (µX, rX) or (µX, cX) define the second moment properties of
X. The expectation function µX(t) is a deterministic path representing the average of all
possible sample paths of X(t), the variance function σ2

X(t) measures the deviation of
the sample paths around the expectation function, and the correlation function rX(t, s)
and covariance function cX(t, s) return a measure of dependence at two timestamps t
and s.

2.4.1 Classes of Stochastic Processes

The finite-dimensional distributions of a stochastic process are a appropriate auxiliary
to define different classes of processes frequently used in applications. Examples are
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Gaussian, Markov, Poisson, stationary, parametric, and independent increment processes
among many others. The interested reader is referred to the diverse and excellent books
such as Gardiner et al., 1985; Mircea Grigoriu, 1995, 2003; Karatzas and Shreve, 2014;
Ross, 1996.

Stationary Processes

The stochastic process X(t) is called stationary in the strict sense or stationary if the
finite-dimensional distributions of the process are invariant under time shifts, i.e.

(X(t1), . . . , X(tn))
d
= (X(t1 + τ), . . . , X(tn + τ))

for any n ∈N, distinct times t1, . . . , tn ∈ I, and time shift τ such that t1 + τ, . . . , tn + τ ∈
I. Hence, a stationary process depends on only the lag between timestamps rather then

their values itself. Here, d
= means equal in distribution - see the following section 2.5. In

concern of second order properties, for a stationary stochastic process X(t) it yields

µX(t) = constant, (2.1)
rX(t, s) and cX(t, s) depend only on τ = t− s . (2.2)

In practice, it is useful to define a process by the properties (2.1) and (2.2), i.e. if a
stochastic process X(t) has a constant expectation function µX(t) and the correlation
function rX(t, s) or covariance function cX(t, s) depends only on the lag τ = t− s, then
X(t) is stationary in the wide sense, second-order stationary, or weakly stationary. A
stationary random function is weakly stationary but the converse is not generally true.
In order to ensure that the functions in (2.1) and (2.2) exist, X(t) need to be an element
of L2(Ω,F , P), i.e. , X(t) has finite second moments at all times. Many applications
require at least weakly stationary processes in L2(Ω,F , P), because modelling and
calculation are tremendous simplified.
An alternative way for specifying a weakly stationary process X(t) ∈ L2(Ω,F , P) is the
power spectral density. If the correlation function is continuous, it has the representation
(Bochner’s theorem Mircea Grigoriu, 2003, section 3.7.2.1):

rX(τ) =

∞∫
∞

e
√
−1ντdS(ν)

where S is a real-valued, increasing, and bounded function, called the spectral distri-
bution function of X(t). If S is absolutely continuous, there exists the power spectral
density function s(ν) = dS(ν)/dν, ν ∈ R. The power spectral density and correlation
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function are Fourier pairs:

rX(τ) =

∞∫
∞

e
√
−1ντs(ν)dν sX(τ) =

1
2π

∞∫
∞

e−
√
−1ντr(τ)dτ .

Example 2.4.2. Consider the uncorrelated random variables Ai, Bi with zero mean and unit
variance, and the constants ci, νi > 0. Then,

X(t) :=
n

∑
i=1

ci
(

Ai cos(νit) + Bi sin(νit)
)

is a weakly stationary stochastic process with mean zero and covariance function

cX(t, s) =
n

∑
i=1

c2
i cos(νi(t− s)).

The random function in example 2.4.2 is of particular interest for many applications,
because it can be shown that any weakly stationary stochastic process can be represented
by a superposition of harmonics with random amplitude and phase Mircea Grigoriu,
2003. Note, the property of stationary and second moment calculus can be transmitted
directly to random fields Mircea Grigoriu, 2003. The term homogeneous random field
instead of stationary is sometime used. A very useful access to random fields can be
found in Adler, 2010.

Gaussian Processes

A stochastic process X(t) with all its finite-dimensional distributions are Gaussian, is
called a Gaussian process. For a Gaussian process, its mean and covariance function
can completely characterize the distribution of the process. Consequently, a Gaussian
process is stationary if and only if it is weakly stationary.

Example 2.4.3. Consider the Gaussian vector Y = (Y1, . . . , Ym) ∈ Rm and the continuous
function f : [0, ∞)→ Rm of time. Then,

X(t) :=
m

∑
i=1

fi(t)Yi

is a Gaussian process.

Let g : [0, ∞)×Rm → R be a measurable function and Z be an m-dimensional random
vector with m ∈ N. Then, X(t) := g(t, Z) is a parametric stochastic process. They are
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often used for approximating general stochastic processes in Monte Carlo simulation.
The Gaussian process in example 2.4.3 is parametric.

Example 2.4.4. If in example 2.4.2 Ai, Bi are Gaussian variables, then X(t) is a stationary
parametric Gaussian process. This kind of processes is approximated later in chapter 5.

2.5 Modes of Convergence

For the following analysis, it is useful to briefly introduce the four main concepts of
convergence in stochastic. For this purpose the random variable X and a sequence of
random variables Xn on the probability space (Ω,F , P) are considered with associated
distribution functions F and Fn, respectively. The convergence notions are based on the
different ways of measuring the distance of X and Xn.

mean square: Xn
m.s.−→ X, if lim

n→∞
E[|Xn − X|2] = 0

almost sure: Xn
a.s.−→ X, if lim

n→∞
Xn(ω) = X(ω), ∀ω ∈ Ω \ N with P(N) = 0

probability: Xn
P−→ X, if lim

n→∞
P(|Xn − X| > ε) = 0, ∀ε > 0

distribution: Xn
d−→ X, if lim

n→∞
Fn(x) = F(x), ∀x ∈ R

The different types of convergence are related to each other, so that one implies the other,
but not vice versa. The convergence in mean square and the almost sure convergence
imply convergence in probability. Convergence in probability implies convergence in
distribution. Therefore, mean square and almost sure convergence are often referred
to as strong convergence and convergence in probability and distribution as weak
convergence. Under certain conditions, convergence in probability can be attributed to
mean square and almost sure convergence.
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3 Polynomial and Spline Spaces

In this chapter, the basic aspects of orthogonal polynomials and splines, especially
B-spline basis functions, are discussed in terms of their approximation quality. The
focus is on the univariate case for polynomials, while for splines both, univariate and
multivariate, cases are considered. Essentially, reliable mathematical literature Bazilevs
et al., 2006; Sande et al., 2020; Szegö, 1939; Xiu, 2010 is prepared in such a way that
it is directly accessible as appropriate tools for the ensuing analyses and examples in
chapters 5, 6, and 7.

3.1 Orthogonal Polynomials

First, the basics of orthogonal polynomials are reviewed with an adjusted notation. The
scope of the content is narrowed down to include the essentials for this dissertation.
More detailed considerations about the properties of orthogonal polynomials can be
found in the comprehensive references - e.g. Beckmann (1973), Chihara (2014), Jackson
(2012), and Szegö (1939).

A system of polynomials {Pn(x) | n ∈ N}, where N is a finite or countably infinite
index set of natural numbers, is called orthogonal with respect to the density w if the
orthogonality condition

〈Pn, Pm〉L2
w

:=
∫

S
Pn(x)Pm(x)w(x)dx = γnδnm

is satisfied for all n, m ∈ N; where δnm is the Kronecker delta function, S the support of
w, and obviously

γn = ‖Pn‖2
L2

w

normalization factors. If γn = 1 for all n ∈ N the system is orthonormal. Every
orthogonal system can be normalized very easily.
There are several ways to describe orthogonal polynomials. The most general form,
which is valid for all of them, is the three-term recurrence relation:

− Pn+1(x) = (anx + bn)Pn(x)− cnPn−1(x), n ≥ 1, (3.1)
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3 Polynomial and Spline Spaces

where An 6= 0, Cn 6= 0, Cn An An−1 > 0, P−1(x) = 0, and P0(x) = 1. The inverse is also
true and is called Favard’s Theorem - see Chihara (2014).
Another possibility is the derivation of orthogonal polynomials from the Askey scheme
Askey and Wilson, 1985, which is based on the generalized hypergeometric series

rFs(a1, . . . , ar; b1, . . . , bs; z) :=
∞

∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

where bi 6= 0,−1,−2, . . ., and the Pochhammer symbol

(a)n =

{
a, n = 0
a(a + 1) · · · (a + n + 1), n = 1, 2, . . . .

The infinite series can be terminated in a natural way if one of the numerator parameters
ai is a negative integer. For example, if a1 = −n, then the series is zero for n ≥ 0, because
(a1)k = 0 for k = n + 1, n + 2, . . ., i.e.

rFs(a1, . . . , ar; b1, . . . , bs; z) :=
n

∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

and results in a polynomial of degree n.
The orthogonal polynomials from the Askey scheme can be well illustrated by a tree
structure, which also shows their limit relations - see for example Koekoek, Lesky,
et al. (2010, p.184). A selection of the orthogonal polynomials from the hypergeometric
series can be found in Tab. 3.1, which are sufficient for the treatment in this work. For a
detailed consideration, the reader is referred to the literature of Koekoek, Lesky, et al.
(2010), Koekoek and Swarttouw (1996), and Schoutens (2012) and to Xiu (2010) and Xiu
and Karniadakis (2002) within a stochastic setting. A few of the corresponding density
functions of orthogonal polynomials coincide with the most important distributions
for the stochastic modeling of parameters in practical applications. Therefore, they are
presented below, namely Hermite, Legendre, Jacobi and Laguerre polynomials.

2F0(0) Hermite
1F1(1) Laguerre Charlier
2F1(2) Jacobi Legendre (α = β = 0) Chebyshev (α = β = −0.5)

Table 3.1: Selection from the Askey scheme - cf. Xiu and Karniadakis (2002).

3.1.1 Examples

In the following, the polynomial bases used in this work including their construction
and essential properties are briefly outlined. For further details, refer to the work of Xiu
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(2010).

Hermite Polynomial and Gaussian Distribution

Hermite polynomials are defined by

Hn(x) :=
(√

2x
)2

2F0

(
− n

n
,−n− 1

2
; ;− 2

x2

)
with orthogonality ∫ ∞

−∞
Hn(x)Hm(x)w(x)dx = n!δnm

with
w(x) =

1√
2π

e−
x2
2 ,

which is the standard Gaussian density.
Recurrence relation:

Hn+1(x) = xHn(x)− nHn−1(x).

Rodriguez formula:

Hn(x) = e
x2
2 (−1)n dn

dxn

(
e−

x2
2

)
.

The Rodriguez formula is the third way to construct orthogonal polynomials, and
worked via derivatives. The Hermite polynomials are of outstanding importance in
stochastic analysis, because the most common discretization methods for random
functions lead to normally distributed vectors. We will discuss this aspect in more detail
later. The first Hermite polynomials are depicted in Tab. 3.2 and in Fig. 3.1.

Legendre Polynomial and Uniform Distribution

Legendre polynomials are defined by

Ln(x) := 2F1

(
− n, n + 1; 1;−1− x

2

)
with orthogonality ∫ 1

−1
Ln(x)Lm(x)w(x)dx =

1
2n + 1

δnm

with
w(x) =

1
2

,
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H0
H1
H2
H3

H4
H5
H6

-1 0 10.5-0.5
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0

-5

-10

-15

Figure 3.1: Hermite polynomials

n Hn(x) Ln(x)
0 1 1

1 x x
2 x2 − 1 3

2 x2 − 1
2

3 x3 − 3x 5
2 x3 − 3

2 x
4 x4 − 6x2 + 3 35

8 x4 − 15
4 x2 + 3

8
5 x5 − 10x3 + 15x 63

8 x5 − 35
4 x3 + 15

8 x

Table 3.2: First six orthogonal polynomials.

which is the uniform density on the interval [−1, 1].
Recurrence relation:

Ln+1(x) =
2n + 1
n + 1

xLn(x)− n
n + 1

Ln−1(x).

Rodriguez formula:

Ln(x) =
(−1)n

2nn!
dn

dxn

(
(x2 − 1)n

)
.

The first Legendre polynomials are depicted in Tab. 3.2 and in Fig. 3.2.
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L0
L1
L2
L3

L4
L5
L6

1

0.5

0

-0.5

-1
-1 0 10.5-0.5

Figure 3.2: Legendre polynomials.

Laguerre Polynomial and Gamma Distribution

Laguerre polynomials are defined by

PLG
n;α (x) :=

(α + 1)n

n! 1F1

(
− n, α + 1; 1; x

)
, α > −1,

with orthogonality ∫ ∞

0
PLG

n;α (x)PLG
m;α(x)w(x)dx =

(α + 1)n

n!
δnm

with

w(x) =
e−xxα

Γ(α + 1)
.

which is the gamma density with scale parameter equal one. Recurrence relation:

(n + 1)PLG
n+1;α(x) = (−x + 2n + α + 1)PLG

n;α (x)− (n + α)PLG
n−1;α(x) = 0.
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3 Polynomial and Spline Spaces

Rodriguez formula:

e−xxαPLG
n;α (x) =

1
n!

dn

dxn

(
(e−xxn+α)

)
.

Jacobi Polynomial and Beta Distribution

Jacobi polynomials are defined by

PJ
n;αβ(x) :=

(α + 1)n

n! 2F1

(
− n, n + α + β + 1; α + 1;

1− x
2

)
, α, β > −1,

with orthogonality∫ 1

−1
PJ

n;αβ(x)PJ
m;αβ(x)w(x)dx =

(α + 1n)(β + 1n)

n!(2n + α + β + 1)(α + β + 2)n−1
δnm

with

w(x) =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)
(1− x)α(1 + x)β.

Recurrence relation:

(2n + 1)(n + α + β + 1)
(2n + α + β + 1)(2n + α + β + 2)

PJ
n+1;αβ(x) =

(x− α2 + β2

(2n + α + β)(2n + α + β + 2)
)PJ

n;αβ(x)

− 2(n + α)(n + β)

(2n + α + β)(2n + α + β + 1)
PJ

n−1;αβ(x).

Rodriguez formula:

(1− x)α(1 + x)βPJ
n;αβ(x) =

(−1)n

2nn!
dn

dxn

(
(1− x)α+n(1 + x)β+n

)
.

Bernstein Polynomial and Uniform Distribution

The main goal of this thesis is the study of Bernstein polynomials and especially their
spline generalization in a stochastic framework. Therefore, standard and orthogonal
Bernstein polynomials and their relationship with Legendre polynomials are introduced
in the following. The relationship of both polynomials will be solidified later in the
analysis.
The univariate Legendre polynomials are traditionally defined on the interval [−1, 1].
In order to related them to Bernstein polynomials, which are defined on [0, 1], they are
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considered on the interval [0, 1] which can be done with a simple linear mapping. Then,
the univariate Legendre polynomials of order p on the interval [0, 1] can be expressed
by Farouki, 2000:

Lp(x) =
p

∑
n=0

(−1)p+n
(

p
n

)
Bp

n(x), (3.2)

where

PB
n;p(x) =

(
p
n

)
xn(1− x)p−n for n = 0, . . . , p

are the standard Bernstein polynomials of order p on the interval [0, 1] - see Fig. 3.3.
The relation (3.2) suggests that the orthogonal Bernstein polynomials also correspond
to the uniform distribution. This conjecture is also strengthened by the fact that or-
thogonal Bernstein polynomials can be constructed over simple Bernstein polynomials.
Orthogonal Bernstein polynomials are defined by Bellucci, 2014:

POB
n;p (x) :=

√
2(p− n) + 1

n

∑
i=0

(−1)i (
2p+1−i

n−i )(n
i )

(p−n
i−n )

PB
n−i;p−i(x) for n = 0, . . . , p

and it holds ∫ 1

−1
POB

n;p (x)POB
m;p(x)

1
2

dx = 0 for n 6= m,

with n, m = 0, . . . , p. Fig. 3.4 visualizes orthogonal Bernstein polynomials for p = 6.
As is readily seen, the orthogonal splines lose important properties that make their
relatives valuable for deterministic analysis, i.e. variation diminishing and convex hull

B0
B1
B2
B3

B4
B5
B6

-1 0 10.5-0.5
0

0.2

0.4

0.6

0.8

1

Figure 3.3: Bernstein polynomials.
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-1 0 10.5-0.5

⊥B0
⊥B1
⊥B2
⊥B3

⊥B4
⊥B5
⊥B6

-2

0

2

4

6

Figure 3.4: Orthogonal Bernstein polynomials.

(non-negative values). Note, in contrast to the Hermite and Legendre polynomials the
orthogonal Bernstein polynomials POB

n;p have to be regenerated for each order p, which is
suggested by the additional index p. For instance, that means for p = 6, the orthogonal
Bernstein basis consists of seven polynomials of order six, where as the Hermite and
Legendre polynomials consists of seven polynomials with order 0, 1, . . . , 6, respectively.
This fact can easily be seen by comparing in Fig. 3.1, Fig. 3.2, and Fig. 3.4.

3.1.2 Polynomial Approximation

This section is devoted to the approximation theory of polynomials and briefly sum-
marizes the necessary statements for the definition of orthogonal projections. The
orthogonal projections are an essential step to determine the coefficients for the meth-
ods presented in chapter 5. Furthermore, the terms spectral convergence and quadrature
formulas are clarified. This is an adapted selection from the book of Xiu (2010, chapter
3), where is referred to for further details and to the literature therein.

Denote by

Pp :=

{
P(x) | P(x) =

p

∑
i=0

aixi with ai, x ∈ R

}
(3.3)
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the space of polynomials with maximal degree p Schumaker, 2007. First, the very
important and fundamental Weierstrass theorem from the approximation theory of
polynomials is presented. It states that for every continuous function in a closed interval
there exists a polynomial which can approximate this function arbitrarily exactly.

Theorem 3.1.1 (Weierstrass). Let I be a bounded interval and f ∈ C0(I). For ε > 0 there
exists p ∈N and a polynomial P ∈ Pp, such that

‖ f (x)− P(x)‖∞ < ε, ∀x ∈ I.

Proof. The proof can be found in various books on approximation theory, for example
Atkinson and Han (2009, p.114) or Cheney (1966), Timan (1963), and Todd (1963)

Many important results have arisen from this strong theorem, and it seems natural
to ask the question: What is the best approximation for a given degree p, or in other
words:

Find the polynomial Pf ∈ Pp such that∥∥ f (x)− Pf (x)
∥∥

∞ = inf
g∈Pp
‖ f (x)− g(x)‖∞ .

Of course, the solution and quality depends largely on the norm or, in other words, on
the space in which the function is sought and measured. In the following, this is studied
for orthogonal polynomials in the weighted space of square integrable functions L2

w.

Orthogonal Projection

Consider a fixed degree p ∈N0 and {Pn(x)}p
n=0 ⊂ Pp a system of orthogonal polyno-

mials of degree at most p with respect to the density or weight w(x). The projection
operator ΠPp : L2

w(I)→ Pp is defined by Xiu, 2010:

f 7→ ΠPp f :=
p

∑
n=0

f̂nPn(x) with f̂n :=
1

‖Pn‖2
L2

w

〈 f , Pn〉L2
w

.

ΠPp is called the orthogonal projection of f onto Pp with respect to the inner product
〈·, ·〉L2

w
and it holds

ΠPp f = f ∀ f ∈ Pp ,

ant the error is orthogonal to the polynomial space, i.e.,〈
f −ΠPp f , P

〉
= 0 ∀P ∈ Pp .
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Furthermore, ΠPp f is the best approximation in the weighted L2-space:

Theorem 3.1.2. Let f ∈ L2
w(I) and p ∈N0, then∥∥∥ f −ΠPp f

∥∥∥
L2

w
= inf

g∈Pp
‖ f (x)− g(x)‖L2

w
.

Proof. For the proof and details see, for example, Atkinson and Han (2009, p.153).

After it is clear that ΠPp provides the best approximation, the question arises whether
the approximation gains in quality with increasing degree and, if this is the case, what
is the performance or rate of convergence.

Theorem 3.1.3. Let f ∈ L2
w(I), then

lim
p→∞

∥∥∥ f −ΠPp f
∥∥∥

L2
w
= 0 .

Proof. See Funaro (2008) for a bounded interval and Courant and Hilbert (2008) for the
unbounded case.

With increasing degree of the orthogonal polynomials the approximation becomes
sufficiently exact. The rate of convergence depends on the regularity and also on
the type of the orthogonal polynomials. A wide literature has accumulated over the
years dealing with convergence rates for different approximations Xiu, 2010. As an
example, the case for Legendre polynomials is demonstrated here. The measurability
of the regularity can be refined by the introduction of Sobolev spaces, where also the
derivatives must be square integrable. As in the case of L2-spaces, the weighted variant
is used here, i.e.,

Hk
w(I) :=

{
v ∈ L2

w |
div
dxi ∈ L2

w for 0 ≤ i ≤ k
}

equipped with the inner product

〈u, v〉Hk
w

:=
k

∑
i=0

〈
diu
dxi ,

div
dxi

〉
L2

w

,

and standard norm. Consider the set of orthogonal Legendre polynomials {Ln} on the
interval [−1, 1].

Theorem 3.1.4 (Spectral convergence). Let k ∈ N0. For f ∈ Hk
w([−1, 1]) there exists a

polynomial ΠPp f ∈ Ln, such that∥∥∥ f −ΠPp f
∥∥∥

L2
w([−1,1])

≤ Cp−k ‖ f ‖Hk
w([−1,1])
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with C constant and independent of p.

Proof. See Xiu (2010, p.33)

The convergence rate depends on the smoothness of the function f and relies not on
the degree of the polynomial. If the regularity k increases, the approximation error
becomes smaller. Compared to finite element approximation this kind of convergence is
not common. It is also called spectral convergence. As a limit result, for an infinitely
smooth function, the convergence rate is faster than any algebraic order, and spectral
convergence becomes exponential convergence, i.e.,∥∥∥ f −ΠPp f

∥∥∥
L2

w
∼ Ce−αp ‖ f ‖L2

w
,

where C and α are generic positive constants. Xiu, 2010

As a last important property of orthogonal polynomials in this work, attention should
be drawn to the zeros and their application in quadrature formulas. Consider a set of
orthogonal polynomials {Pn} ⊂ Pp and their real zeros {z(p)

k }
p
k=1, as well as l(p)

k the

p-th-degree Lagrange polynomial through the nodes z(p)
k . Then

∫
I

f (x)w(x)dx ≈
p

∑
k=1

f (z(p)
k )w(p)

k

with
w(p)

k :=
∫

I
l(p)
k w(x)dx, 1 ≤ k ≤ p .

These integration formulas are highly accurate, because it is exact if f ∈ P2p−1. In the
stochastic part of this work it will be shown that not only the polynomials used but
also the quadrature formulas employed for the emerging integrals are crucial for the
accuracy. Moreover, it is very easy to construct this kind of integration formulas. Xiu,
2010

3.2 Spline Spaces

In this section the B-spline functions in focus will be defined and the recently refined
a priori error estimates will be presented. At the end of this chapter there will be
statements about the convergence rate as already shown in the previous section about
polynomials. As presented before, in the stochastic applications mainly spectral conver-
gences are considered, that means that the refinement for approximation improvement
is done by the degree. Orthogonal polynomials do not have any further degrees of
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freedom to increase the approximation quality. This is different for spline spaces. Be-
sides increasing the degree p, the element size h can be refined and the regularity k can
be varied over element boundaries. Obviously, this h-p-k refinement complicates the
convergence analysis considerably and continues to be the subject of current research,
especially with respect to explicit constants Da Veiga, Buffa, Rivas, et al., 2011; Sande
et al., 2019, 2020; S. Takacs and T. Takacs, 2016. In addition, the element knots need not
be distributed equidistantly, but also arbitrarily, which is also exceedingly challenging,
but increasing the flexibility of these spaces as well. Despite all this, Sande et al. (2020)
have found explicit bounds of the form (simplified)

‖ f −Π f ‖ ≤
(

eh
4(p− k)

)r

‖δr f ‖

for any f ∈ Hk, all p > r− 1, and with e the Euler’s number. Overall, the authors provide
a priori error estimates with explicit constants for the approximation by spline spaces
of arbitrary smoothness defined on arbitrary sequences of knots. They improve the
estimates of Da Veiga, Buffa, Rivas, et al. (2011), Sande et al. (2019), and S. Takacs and T.
Takacs (2016) and in addition they solve the problem of dealing with smoothness in the
estimates. These significant results are achieved by representing the considered Sobolev
spaces and the approximating spline spaces in terms of integral operators described
by appropriate kernels Pinkus, 2012. Using these kernels, an abstract framework is
provided that converts explicit constants in the polynomial approximation to explicit
constants in the spline approximation. Both univariate and multivariate spline spaces
are considered, and mapped geometries as well. Following the literature of Da Veiga,
Buffa, Giancarlo Sangalli, et al. (2014) and Da Veiga, Cho, et al. (2012), for mapped
geometries suitable curved Sobolev spaces must be introduced to account for a less
smooth setting for the geometry.

3.2.1 Definitions

Let
P := {ζi}k

i=1 with 0 = ζ0 < ζ1 < . . . < ζk < ζk+1 = 1 (3.4)

be a partition of the interval [0, 1] into k + 1 subintervals

Ii := [ζi, ζi+1) for i = 0, 1, . . . , k− 1
Ik := [ζk, ζk+1], (3.5)

p ∈ N be a positive integer, and let M := (m1, . . . , mk) ∈ Nk be a vector of positive
integers with mi ≤ p + 1, i = 1, . . . , k.
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Definition 6: Polynomial splines

The space
Sp (P;M) :=

{
S(ζ) | ∃ P0, . . . , Pk ∈ Pp such that

S(ζ) = Pi(ζ) for ζ ∈ Ii, and

∇jPi−1(ζi) = ∇jPi(ζi)

for i = 1, . . . , k, j = 0, 1, . . . , p−mi
}

(3.6)

is called the space of polynomial splines of degree p with knots ζi ∈ P and
multiplicity vector M. Schumaker, 2007

The multiplicity vector M controls the smoothness of the splines at the knots. For
M = (1, . . . , 1) maximal smoothness is achieved and the space of splines is a subset
of C p−1[0, 1]. If M = (p, . . . , p), all splines are C0-continuous across knots, and if
mi = p + 1, the spline can be discontinuous at the knot ζi. Furthermore, Sp (P;M) is a
linear space of dimension

n = p + 1 +
k

∑
i=1

mi. (3.7)

In IGA and CAD, commonly an open knot vector Ξ is defined which characterizes
B-spline bases. Ξ is an extended partition which can be uniquely determined by degree
p, partition P, and multiplicity vector M as follows:

Ξ := [ξ1, . . . , ξn+p+1] = [0, . . . , 0︸ ︷︷ ︸
p+1

, ζ1, . . . , ζ1︸ ︷︷ ︸
m1

, . . . , ζk, . . . , ζk︸ ︷︷ ︸
mk

, 1, . . . , 1︸ ︷︷ ︸
p+1

]. (3.8)

The B-spline basis functions with open knot vector Ξ can then be constructed by the
CoxCOX, 1972-de BoorBoor, 1972 recursion formula:

B0
i (ξ) :=

{
1 for ξi ≤ ξ < ξi+1

0 otherwise
for i = 1, . . . , n + p, (3.9)

and
Bk

i (ξ) :=
ξ − ξi

ξi+k − ξi
Bk−1

i (ξ) +
ξi+k+1 − ξ

ξi+k+1 − ξi+1
Bk−1

i+1 (ξ) (3.10)

for k = 1, . . . , p, i = 1, . . . , n + p− k. Furthermore, the spline space can be spanned by
the B-spline basis functions Schumaker, 2007:

Sp ≡ Sp(P;M) ≡ Sp(Ξ) := span{Bp
i }

n
i=1. (3.11)
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Example of C p−1 B-spline basis

Consider the space S4 (P;M) with partition P = {0.25, 0.5, 0.75}, and multiplicity
vector M = (1, 1, 1). This leads to an extended partition or open knot vector

Ξ = [0, 0, 0, 0, 0, 1
4 , 1

2 , 3
4 , 1, 1, 1, 1, 1]. (3.12)

Single inner knots reveal the maximal C p−1-continuity. The B-spline basis spanning the
space S4 (P;M) with dimension

n = p + 1 +
k

∑
i=1

mi = 4 + 1 +
3

∑
i=1

1 = 8 (3.13)

can be seen in Fig. 3.5.

0 0.25 0.5 0.75 1
00

1

Figure 3.5: B-spline basis of order p = 4, P = {0.25, 0.5, 0.75} and dimension n = 8.

Example of C0 B-spline basis

Consider the space S4 (P;M) with partition P = {0.25, 0.5, 0.75}, and multiplicity
vector M = (4, 4, 4). This leads to the open knot vector

Ξ = [0, 0, 0, 0, 0, 1
4 , 1

4 , 1
4 , 1

4 , 1
2 , 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 , 3

4 , 1, 1, 1, 1, 1]. (3.14)

Repeating the inner knots p− 1-times results in the lowest C0-continuity. The B-spline
basis spanning the space S4 (P;M) with dimension

n = p + 1 +
k

∑
i=1

mi = 4 + 1 +
3

∑
i=1

4 = 17. (3.15)

can be seen in Fig. 3.6. A prescribed continuity affects profoundly the number of basis
functions. Important to note is, that the spaces in both examples have the same order

38



3

3.2 Spline Spaces

and partition, but the dimension significantly differs, which is indeed is the main reason
for the effectiveness of the subsequently presented methodology.

0 0.25 0.5 0.75 1
00

1

Figure 3.6: B-spline basis of order p = 4, P = {0.25, 0.5, 0.75} and dimension n = 17.

The tensor product B-spline basis functions are defined by Bazilevs et al., 2006:

Bi1...id := Bi1,1 ⊗ . . .⊗ Bid,d, (3.16)

over the mesh

Q ≡ Q(P) ≡ Q(Ξ) := {Q = ⊗d
α=1(ζiα,α, ζiα+1,α) | iα = 0, 1, . . . , kα}

= {Q = ⊗d
α=1(ξiα,α, ξiα+1,α) | iα = 1, . . . , nα + pα ∧Q 6= ∅}, (3.17)

which is a partition of the d-dimensional hyper cube into d-dimensional open knot
spans, or elements. For each Q ∈ Q associate the support extension Q̃ ⊂ (0, 1)d defined
by Bazilevs et al., 2006:

Q̃(Q) := ⊗d
α=1(ξiα−pα,α, ξiα+pα+1,α) (3.18)

which is the union of supports of basis functions whose support intersects Q.

Definition 7: Tensor product spline space

The space

Sp ≡ Sp(P;M) :=
d⊗

α=1

Spα(Pα;Mα) = span{Bi1...id}
n1,...,nd
i1=1,...,id=1. (3.19)

is called the tensor product space of splines of degree p = (p1, . . . , pd) with partition
P = (P1, . . . ,Pd) and multiplicity vector M = (M1, . . . ,Md). Schumaker, 2007

Next, non-uniform rational B-splines (NURBS) space on [0, 1]d and on an arbitrary
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physical domain D are defined. Therefore, a strictly positive weighting function

W :=
n1

∑
i1=1

. . .
nd

∑
id=1

wi1...id Bi1...id (3.20)

with wi1...id ∈ R is introduced. The NURBS basis functions on the patch [0, 1]d are
defined by the projectionFarin, 1995:

Ni1...id :=
wi1...id Bi1...id

W
, (3.21)

and, accordingly, the one-dimensional space of NURBS is given by

Np ≡ Np(P;M; W) ≡ Np(Ξ; W) := span{Ni}n
i=1. (3.22)

Definition 8: Tensor product NURBS space

The space
Np ≡ Np(P;M; W)

:=
d⊗

α=1

Npα(Pα;Mα; Wα) = span{Ni1...id}
n1,...,nd
i1=1,...,id=1 (3.23)

is called the tensor product NURBS space of degree p = (p1, . . . , pd) with partition
P = (P1, . . . ,Pd), multiplicity vector M = (M1, . . . ,Md), and weighting function
W = (W1, . . . , Wd).

Further, for parameterizing a physical domain D ⊂ Rd the NURBS geometrical
mapHughes et al., 2005:

F : [0, 1]d → D, ξ 7→ F(ξ) =
n1

∑
i1=1

. . .
nd

∑
id=1

Ci1...id Ri1...id(ξ) (3.24)

is introduced and it is assumed that F is invertible, with smooth inverse, on each
element Q ∈ Q. Besides, Q induces a mesh in the physical domain:

K := {K = F(Q) | Q ∈ Q}. (3.25)

Analogously, the support extension Q̃ of Q ∈ Q is mapped in the same fashion, i.e.

K̃ := F(Q̃). (3.26)
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Finally, the space of tensor product NURBS on the physical domain D can be defined,
which is the push-forward of Np on [0, 1]d.

Definition 9: Tensor product NURBS space on the physical domain

The space

Vp ≡ Vp(P;M; W)

≡
d⊗

α=1

Vpα(Pα;Mα; Wα) := span{Ni1...id ◦ F−1}n1,...,nd
i1=1,...,id=1 (3.27)

is called the tensor product NURBS space on the physical domain of degree
p = (p1, . . . , pd) with partition P = (P1, . . . ,Pd), multiplicity vector M =
(M1, . . . ,Md), and weighting function W = (W1, . . . , Wd).

3.2.2 Bent Sobolev Spaces

In the following, proper function spaces are defined in order to derive error estimations
for splines in terms of norms on bent Sobolev spaces Bazilevs et al., 2006. Denote by
Lp(D) and Hk(D), 1 ≤ p ≤ ∞, 1 ≤ k < ∞, the standard Lebesgue and Sobolev spaces
defined on a domain D ⊂ Rd, respectively, endowed with the usual norms ‖ · ‖ and
seminorms | · |. For Q1, Q2 ∈ Q adjacent elements, denote by kQ1,Q2 the number of
continuous derivatives across their common edge ∂Q1 ∩ ∂Q2.

Definition 10: Bent Sobolev space

The space

Hk :=
{

v ∈ L2((0, 1)d) | v|Q ∈ Hk(Q) ∀Q ∈ Q, and

∇jv|Q1
= ∇jv|Q2

on ∂Q1 ∩ ∂Q2

for 0 ≤ j ≤ min{kQ1,Q2 , k− 1}, ∀ disjoint Q1, Q2 ∈ Q
}

(3.28)

is called the bent Sobolev space of order k ∈N.

A bent Sobolev space is a well-defined Hilbert space Bazilevs et al., 2006 with norm

‖v‖2
Hk :=

k

∑
i=0
|v|2Hi (3.29)
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and seminorms
|v|2Hi := ∑

Q∈Q
|v|2Hi(Q) , 0 ≤ i ≤ k. (3.30)

Analogously, define the Hilbert space Hk(Q̃) := {v|Q̃ | v ∈ Hk} on the restriction Q̃
endowed with norm

‖v‖2
Hk(Q̃) :=

k

∑
i=0
|v|2Hi(Q̃) (3.31)

and seminorms
|v|2Hi(Q̃) := ∑

Q′⊂Q̃

|v|2Hi(Q′) , 0 ≤ i ≤ k. (3.32)

As it can be seen in Eq. (3.30) and Eq. (3.32) the norms and seminorms over bent
Sobolev spaces are defined by sums over d-dimensional hyper-cubes (elements) of
their respective standard Sobolev spaces. This connection is also evident in definition
10. Functions in a bent Sobolev space, are element by element in a standard Sobolev
space. The elements are connected to each other up to k− 1-continuity, but can also
be discontinuous if desired. Therefore, bent Sobolev spaces are between standard and
brokenI. Babuška et al., 1999 Sobolev spaces in concern of continuity. Bazilevs et al.,
2006

3.2.3 Local Approximation

The goal of this section is to provide estimations of quasi-interpolants including the ge-
ometric mapping of NURBS structures, which is necessary to estimate the deterministic
error later in the chapter. The results of Bazilevs et al. (2006, chapter 3) necessary for
this purpose are reproduced in a simplified adapted manner.

The following analysis is based on families of meshes and spaces starting from {Qh}h
on (0, 1)d with

h = max{hQ | Q ∈ Qh} (3.33)

and hQ is the diameter of Q. Assume that the family {Qh}h is shape regular. Upon
these meshes meshes on the physical domain {Kh}h are induced and further the
families of spaces {Sh}h, {Nh}h, {Vh}h, and {Hh}h endowed with their respective
norms. Furthermore, it is assumed that there is a coarsest mesh Qh0 of which all other
meshes are refined by simultaneously preserving the geometry, i.e. F and W are fixed
for all h. The next lemma gives a local approximation property for spline spaces in bent
Sobolev spaces.

Lemma 3.2.1 (local approximation). Let p := min
1≤α≤d

{pα} and 0 ≤ k ≤ p + 1. For Q ∈ Qh

42



3

3.2 Spline Spaces

and v ∈ Hk
h(Q̃), there exists an s ∈ Sh such that

‖v− s‖L2
h(Q̃) ≤ Chk

Q |v|Hk
h(Q̃) . (3.34)

Proof. See Bazilevs et al. (2006).

Next, define the quasi-interpolant ΠSh on the spline space Sh by - see Schumaker (2007,
Theorem 12.6):

ΠSh v :=
n1

∑
i1=1

. . .
nd

∑
id=1

λi1...id(v)Bi1...id , ∀v ∈ L1((0, 1)d), (3.35)

which is a bounded linear operator mapping L1((0, 1)d) onto Sh with

ΠSh s = s, ∀s ∈ Sh. (3.36)

In Eq. (3.35), the λi1...id are dual basis functionals using local integrals Schumaker (2007,
Theorem 4.41). Further, define quasi-interpolants on the parametric and physical NURBS
spaces, respectively, by:

ΠNh : L2((0, 1)d)→ Nh, v 7→ ΠNh v :=
ΠSh(vW)

W
;

ΠVh : L2(D)→ Vh, v 7→ ΠVh v := (ΠNh(v ◦ F)) ◦ F−1. (3.37)

Using, among others, Lemma 3.2.1 the following estimations for quasi-interpolants are
at hand.

Lemma 3.2.2. Let p := min
1≤α≤d

{pα} and 0 ≤ k ≤ p + 1. For all Q ∈ Qh it holds:

∥∥v−ΠSh v
∥∥

L2(Q)
≤ C1 hk

Q |v|Hk
h(Q̃) ∀v ∈ Hk

h(Q̃) ∩ L2((0, 1)d) (3.38)∥∥v−ΠNh v
∥∥

L2(Q)
≤ C2(W) hk

Q ‖v‖Hk
h(Q̃) ∀v ∈ Hk

h(Q̃) ∩ L2((0, 1)d) (3.39)∥∥v−ΠVh v
∥∥

L2(K) ≤ C3(F, W) hk
K ‖v‖Hk(K̃) ∀v ∈ Hk(K̃) ∩ L2(D) (3.40)

with hK = ‖∇F‖L∞(Q) hQ; and C1, C2(W), and C3(F, W) positive, dimensionless constants
independent of h and v.

Proof. See Bazilevs et al. (2006).

Lemma 3.2.1 and 3.2.2 provide optimal rate of convergence for the spline spaces ΠSh ,
ΠNh , and ΠVh of degree p. Furthermore, ΠSh is characterized by the k-th order seminorm

43



3 Polynomial and Spline Spaces

only, whereas ΠNh and ΠVh need the full k-th order norm of v due to the additional
weighting function W and geometrical map F.

3.2.4 Explicit Error Estimation

In the sequel, main results for univariate and multivariate spline spaces from Sande et al.
(2019, 2020) are summarized and prepared for multi-dimensional deployment. The first
result is the actuelly best known explicit error estimation for sufficient smooth functions.
The numerical evidence found in the literature on the superior approximation per
degree of freedom of smoother spline spaces is not proven with Theorem 3.2.3, but it is
a step towards a complete theoretical understanding Sande et al., 2020. For fixed spline
degree, smoother spline spaces exhibit better approximation properties per degree of
freedom - see, e.g. J. A. Evans et al., 2009. This is true even when the smoothness of the
functions to be approximated is low. Bressan and Sande (2019) show a more detailed
theoretical consideration of the approximation performance of spline spaces per degree
of freedom in the extreme cases k = 0,−1, p− 1. For uniform sequences of knots, it has
been formally shown that C p−1 spline spaces perform better than C−1 and C0 spline
spaces in nearly all situations of practical concern; at least for deterministic problems.
In this section, set

I := [0, 1], h := max
i=0,...,k

{Ii} and k := max{p−M},

the spline smoothness.

Theorem 3.2.3. Let f ∈ Hr(I). Then,∥∥∥ f −ΠSp f
∥∥∥

L2(I)
≤ Ch,p,k,r ‖ f ‖Hr(I)

for all p ≥ r− 1 with

Ch,p,k,r := min

{
cp,k,rhr;

(
1
2

)r
√

(p + 1− r)!
(p + 1 + r)!

}
(3.41)

and

cp,k,r :=
(

1
2

)r


(

1√
(p−k)(p−k+1)

)r

, k ≥ r− 2(
1√

(p−k)(p−k+1)

)k+1√
(p+1−r)!

(p−1+r−2k)! , k < r− 2
(3.42)

≤
(

e
4(p− k)

)r

(3.43)
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Proof. See Sande et al. (2020, Corollary 1 & 3).

Note, the second argument in Eq .(3.41) is an error estimate for global polynomial
approximation deduced from Christoph Schwab, Ch Schwab, et al. (1998, Theorem
3.11), which coincides with cp,k,r for k = −1, the discontinuous case. Therefore, the
first argument in Eq. (3.41) is better for any p, r, and h < 1. On the other hand, for the
exciting case of maximally smooth splines, i.e., k=p-1, and large values for p compared
to 1/h, the second argument can become smaller, making the error estimate for the
splines consistent with the global polynomial approximation Sande et al., 2020. For this
case, the sharper estimate

Ch,p,p−1,r = min

{(
h
π

)r

;
(

1
2

)r
√

(p + 1− r)!
(p + 1 + r)!

}
(3.44)

≤
(

2eh
eπ + 4h(p + 1)

)r

(3.45)

can be found Sande et al., 2020. Even if Eq. (3.42) and (3.44) seem to be much more
unwieldy, they are much more informative than the simplified formulas (3.43) and
(3.45). However, for some problems they are useful and sufficient as will be shown
later in chapter 7. Moreover, all variants show the most useful h− p− k-refinement,
i.e. convergence for h→ 0 and/or p→ ∞ against infinity under the condition k = p− 1
or k arbitrary Sande et al., 2020.

The last step is to extend the error estimates to the case of tensor product spline spaces.
From the univariate error estimates, the following result can be derived using a standard
argument of the triangle inequality.

Theorem 3.2.4. Let f ∈ Hr(Id). Then,

∥∥∥ f −ΠSp f
∥∥∥

L2(Id)
≤

d

∑
i=1

Chi,pi,ki,r ‖∂
r
i f ‖L2(Id)

for all pi > r− 1.

Proof. See, e.g., Bazilevs et al., 2006; Da Veiga, Buffa, Giancarlo Sangalli, et al., 2014;
Da Veiga, Cho, et al., 2012; Sande et al., 2019.
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In this chapter, the general aspects for formulating stochastic systems necessary for
numerical approaches within this thesis are presented, and a general framework for
the needs of subsequent uncertainty quantification is prepared. In general, it has to
be investigated how, for an elaborated deterministic model of an engineering system,
a suitable stochastic concept that characterizes the uncertainty effects of the system
input can be established. Therefore, before numerical simulation is possible, the mostly
infinite-dimensional probability spaces must be reduced or discretized so that the
random inputs are described by elements from finite-dimensional probability spaces -
e.g. Ivo Babuška and Chatzipantelidis, 2002; R.G. Ghanem and P. Spanos, 2003; Mircea
Grigoriu, 2003. This is accomplished by parameterization, which leads to representation
by a finite number of random variables or simply a finite-dimensional random vector.
When introducing uncertainty into a system by means of random vectors, it is above all
important that the respective random variables have a certain independence structure
or at least uncorrelatedness Xiu, 2010. The independence condition is a prerequisite
for most practical numerical methods and less a strict theoretical condition Mircea
Grigoriu, 2003; Xiu, 2010. This widely adopted requirement is also adopted in this work.
However, there are also efforts to study dependent variables, e.g. Jakeman et al. (2019)
and Sharif Rahman (2018). In summary, this means that in order to set up a suitable
stochastic problem, a probability space must be specified, which is defined by a set of
finite random variables, mutually independent in the best case. In general, this first step
already induces an approximation error except for very trivial cases Xiu, 2010.

4.1 Input Parameterization

For the simple case that the random inputs are the system parameters themselves,
the parameterization process is straightforward. Merely the independence has to be
ensured. This can be stated as follows Ivo Babuška and Chatzipantelidis, 2002:

For the system parameters A = (A1, . . . , Am) in an appropriate probabil-
ity space (Ω,F , P), find a set of mutually independent random variables
Y = (Y1, . . . , Yds) with 1 ≤ ds ≤ m, such that A = T(Y) for a suitable
transformation function T.
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Depending on the type of information available for the description of the input parame-
ters, it is not always easy to find such a mapping, especially in the high-dimensional
case. Usually, distribution functions can be given in different ways, also empirically. The
task is then to transform the parameters into independent random parameters with the
help of their distributions Xiu, 2010.
For Gaussian distributed parameters, T is just a linear transformation, since it is invari-
ant and the distribution is fully characterized by the first two moments. For a more
general theorem of this fact see, e.g. Anderson, 1958. As can be seen, it is particularly
easy to obtain a suitable parameterization for Gaussian distribution parameters in order
to apply numerical methods and therefore this type is also very common R.G. Ghanem
and P. Spanos, 2003; Sudret and Der Kiureghian, 2000.
For non-Gaussian distributed parameters, the problem is more difficult, although there
is theoretically a remarkably simple way to transform an arbitrarily distributed ran-
dom vector to an independently and equally distributed vector through the Rosenblatt
transformation Rosenblatt, 1952.

If, instead, the random inputs are stochastic processes or random fields the task is more
challenging. The need for this representation is very obvious and desirable. For example,
in elasticity theory, time-dependent external forces on a body are naturally represented
via stochastic processes, e.g. wind loads, likewise material properties such as elastic
modulus inherently vary in reality in the object under consideration over space. The
parameterization task for random functions can be stated as follows Xiu, 2010:

For the stochastic process Y(t) with t ∈ I an index set in an appropriate
probability space (Ω,F , P), find a set of mutually independent random
variables Y = (Y1, . . . , Yds) with ds ≥ 1, such that Y(t) ≈ T(Y) for a suitable
transformation function T.

As described in the previous chapter, the index set can describe time or space and is
usually infinite-dimensional. For numerical tangibility, ds must be finite and therefore
the transformation here will always induce an approximation error; the accuracy is
problem-dependent Xiu, 2010. A direct approach is to consider the stochastic process
over its finite-dimensional distributions Mircea Grigoriu, 2003. For this, the index set is
discretized and the process becomes a ds-dimensional vector

(Y(t1), . . . , Y(tds)), t1, . . . , tds ∈ I.

The random vector can now be treated with the techniques of parameterization for
random parameters, for example using the Rosenblatt transformation.
The discretization of the stochastic process Y(t) into a vector Y is obviously an approxi-
mation that improves with finer discretization. However, this also entails an increase
in the stochastic dimension ds, which in turn can lead to an enormous computational
burden. It remains an open and active research topic to improve the approximation
accuracy while simultaneously keep the dimension as low as possible Lüthen et al.,
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2021; Stefanou, 2009; Tao et al., 2021.

4.1.1 Karhunen-Loève Expansion

One of the most widely spread techniques for dimension reduction in representing
random functions is the KLE - see e.g. Karhunen, 1947; Loève, 1948, 1977. A stochastic
process with finite second moments, and this applies to most physical processes Mircea
Grigoriu, 2003, can be represented by a linear combination of a countable number of
deterministic functions with random coefficients by the KLE and it is a generalization
of example 2.4.2 which also holds for random fields Adler, 2010, section 3.3. Given the
expectation µ(t) and covariance function C(t, s) of the input process Y(t), then the KLE
of Y(t) ∈ L2(Ω,F , P) is Mircea Grigoriu, 2003:

Y(t) = µ(t) +
∞

∑
i=1

√
λi ϕ(t)Yi(ω) , (4.1)

where ϕi(t) the orthogonal eigenfunctions and λi the corresponding eigenvalues of the
eigenvalue problem ∫

I
C(t, s)ϕi(s)ds = λi ϕi(t), t ∈ I. (4.2)

The set of random variables {Yi(ω)} is mutually uncorrelated and satisfies:

E(Yi) = 0, E(YiYj) = δij,

and is defined by

Yi(ω) :=
1√
λi

∫
I
(Y(t)− µ(t))ϕi(t)dt, ∀i.

The expansion in Eq. (4.1) in its infinite form is not suitable for a numerical treatment.
Therefore, the series is truncated, i.e.

Y(t) = µ(t) +
ds

∑
i=1

√
λi ϕ(t)Yi(ω) . (4.3)

One of the most important properties of the KL is that its approximation (4.3) is optimal
in the sense of the mean-square error. The approximation determines the stochastic
dimension ds for the considered problem. The accuracy depends significantly on the
decreasing eigenvalues. The faster they decrease, the lower is the stochastic dimension.
The general procedure for using the KLE is to choose an appropriate covariance function.
One frequently used is the exponential covariance function R.G. Ghanem and P. Spanos,
2003:

C(t, s) = exp
(
− |t− s|

c

)
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with c the correlation length. The eigenvalue problem (4.2) can be solved analytically,
see Van Trees, 2004. The eigenvalue decay rate is larger when the correlation length is
longer. The decay rate helps to determine the number of terms used in the finite KL
series. Depending on the problem, the term is determined above which the influence
of the eigenvalue is negligible. A strongly correlated process has a long correlation
length, so that fewer terms are needed. The KL is therefore less suitable for weakly
correlated processes. For further properties, the reader is referred to the reference of,
e.g. Christoph Schwab and Todor (2006).
There are other covariance functions in use whose analytical solutions can be given.
For more general cases, the eigenvalue problem (4.2) must be solved numerically, for
example using a finite element method, see e.g. R.G. Ghanem and P. Spanos, 2003.
In the context of isogeometric analysis, a new research area for the solution of this
Fredholm equation has recently emerged. The focus is on random fields on curved
domains, which can preferably be solved using B-splines or their extension NURBS Li,
Gao, et al., 2018; Li, Wu, and Gao, 2018, 2019; Li, Wu, Gao, and Song, 2019; Mika et al.,
2021.

4.1.2 Wiener-Hermite Expansion

Impractical is the KL, if the covariance function is not known. This is the case for
the response representation of the answer, but it is also possible for the input. An
alternative is the Wiener-Hermite expansion, which was originally set up in integral
form by Wiener (1938) and also became known as homogeneous chaos. In the expansion,
multidimensional Hermite polynomials are used with Gaussian random variables as
arguments. Cameron and Martin (1947) proved that this expansion converges for
random variables in the L2-sense. For a stochastic process Y(t) in L2(Ω,F , P) and fixed
t, the expansion is given by:

Y(t) = a0(t)H0

+
∞

∑
i1=0

ai1(t)H1(Yi1(ω))

+
∞

∑
i1=0

i1

∑
i2=0

ai1i2(t)H2(Yi1(ω), Yi2(ω))

+
∞

∑
i1=0

i1

∑
i2=0

i2

∑
i3=0

ai1i2i3(t)H3(Yi1(ω), Yi2(ω), Yi3(ω))

+ . . . ,

The Wiener-Hermite expansion is the original polynomial chaos. Hereafter, it will be
termed Hermite chaos, to refer to the polynomial type being used. For more details
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on the mathematical foundation see Engel, 1982; K. Itô, 1951; Wiener, 1938 and for
applications to practical problems see R.G. Ghanem and P. Spanos, 2003; Roger Ghanem,
1999.

4.1.3 Non-Gaussian Processes

The KLE and the Wiener-Hermite expansion are well suited for the Gaussian case and
therefore a popular choice. This is partly due to the fact that for normally distributed
random variables uncorrelatedness implies independence, and that they are invariant
under linear combination. Thus, especially for KLE, the parameterization of a Gaussian
process can be constructed in a natural way by Gaussian random variables, which are
subsequently optimal for numerical methods. For a non-Gaussian input, the reduction
and parameterization turns out to be much more difficult. The main problem in general
is that the uncorrelatedness of the random variables in Eq. (4.1) does not lead to
independence, which would be desirable. Although not mathematically clean, practical
procedures apply the KLE and then assume that the random variables described are
independent Xiu, 2010. It is still a challenging task to specify an efficient and reduced
parameterization for general processes and therefore this topic remains an open and
active research area Xiu, 2010.

4.2 System Formulation

In this section, the formulation of setting up a stochastic system in the context of
incorporating random inputs into a well-established deterministic system is presented.

Let (Ω,F , P) be a complete probability space, where Ω is a sample space, F is appro-
priate σ-field on Ω, and P a probability measure. Further, consider a dd-dimensional
bounded domain D ⊂ Rdd (dd ∈ {1, 2, 3}) with boundary ∂D sufficiently smooth, such
that the following problem is well-posed: find a random function u : D̄ ×Ω → Rdu

such that P-almost everywhere in Ω the following equation holds:

L(x, ω; u(x, ω)) = f (x, ω) in D×Ω
u(x, ω) = 0 on ∂D×Ω . (4.4)

The random inputs of Eq. (4.4) can be random variables, vectors, processes or fields
which has to be discretized properly. Therefore, the following assumption is necessary:

Assumption 1 (finite-dimensional noise). The random input of Eq. (4.4) can be repre-
sented by a finite-dimensional probability space, i.e. by a set of independent random
variables

Y(ω) = (Y1(ω), . . . , Yds(ω)) ∈ Rds (4.5)
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with ds ∈ N and joint density function fY. In general, this discretization can be done
for all technical applications e.g. by the Karhunen-Loève expansion.

Eq. (4.4) can then be reformulated to

L(x, Y(ω); u(x, Y(ω))) = f (x, Y(ω)) on D×Rds

u(x, Y(ω)) = 0 on ∂D×Rds (4.6)

with u : D̄ ×Rds → Rdu by the use of the Doob-Dynkin lemma, e.g. Rao and Swift,
2006b, p.7, and Y1, . . . , Yds are independent and identically distributed.

Assumption 2. Eq. (4.4) is well-posed P-a.s. in Ω, i.e. for each realization of Y(ω) Eq. (4.6)
is well-posed in its deterministic sense.

4.3 Response Representation

The stochastic input parameters induce randomness to the system response. The classical
techniques of probabilistic engineering mechanics can be roughly divided into three
categories, depending on the response type of information desired or needed:
First, the moments of the stochastic response can be determined. Response variability
methods such as the perturbation method Wing Kam Liu et al., 1986; W. Liu et al.,
1986 and the weighted integral method Deodatis, 1991; Deodatis and Shinozuka, 1991;
Takada, 1990 allow the calculation of the mean and variance of the mechanical response
of the system. This gives a sense of the central part of the response probability density
function.
For structural reliability methods, usually only the tail of the distribution is calculated by
computing the probability of exceeding a given threshold Ditlevsen and Madsen, 1996b.
In both academia and industry, established methods include first and second order
reliability method (FORM/SORM), directional simulation, and importance sampling
among others.
Finally, there is the complete description of the response density function. The main
representatives are stochastic finite element methods, named after the pioneer work of
R. Ghanem and P. Spanos (1993). Here, the solution is expanded by an appropriate basis
of the probability space, which is called the polynomial chaos. PC-based methods are
now a widely used approach in dealing with uncertainties and their optimization with
respect to higher dimensions, and propagation into different application environments
continue to be the state of current research - see e.g. Kaintura et al., 2018; Pavlack
et al., 2021; Sun et al., 2021; Z. Wang and Roger Ghanem, 2021; J. Zhang et al., 2021. A
major advantage of this approach is that the distribution of the response can be fully
characterized by the expansion coefficients, although mean and standard deviation of
the response are easily obtained, too. Naturally, problems belonging to the first two
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classes can be considered in a post-processing setting. However, other more recent
methods such as the Wiener path integral approach Petromichelakis et al., 2018 should
also be mentioned here.

Lastly, it should be noted that for central part, tail or full distributions, Monte Carlo
simulation is a versatile tool that usually requires a much higher computational effort
than the above methods. Therefore, it is mainly a vehicle to produce a reference solution
in certain cases.
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This chapter is mainly devoted to the basics of spline chaos (SC) and thus provides a
comprehensible generalization of polynomial chaos expansions. In order to recognize
this generalization, the spline chaos is derived upon the general polynomial chaos in
both the multi-dimensional as well as in the one-dimensional case for the sake of better
clarity. Essential, besides the derivation of the theory, are the proofs of strong and weak
convergence as reported by Cameron and Martin Cameron and Martin, 1947 and Xiu
(2010) for the case of homogeneous and generalized polynomial chaos, respectively. The
theoretical consideration is followed by simple numerical examples, which stimulate the
notion of how spline chaos works and can be applied in comparison to polynomial chaos.
Subsequently, B-spline based chaos is contrasted with classical homogeneous chaos,
which, on the one hand, shows how to increase the accuracy throughout the flexibility
of the spline spaces, and, on the other hand, consolidates the direct relationship to
Legendre chaos. The chapter concludes with the examination of a stationary stochastic
process.

5.1 Wiener-Askey chaos

As seen in section 4.1.2 the homogeneous chaos expansion used for input parameteriza-
tion is an effective tool for the representation of stochastic processes, which, according
to the theorem of Cameron and Martin Cameron and Martin, 1947, converges in the
L2-sense. It has been demonstrated by many authors that the homogeneous or Hermite
chaos is effective in solving stochastic differential equations with Gaussian inputs as
well as certain types of non-Gaussian inputs R.G. Ghanem and P. Spanos, 2003; Roger
Ghanem and P D Spanos, 1990; Stefanou, 2009; Xiu, 2010. Nevertheless, the optimal
exponential convergence rate is not achieved for general non-Gaussian random inputs
or the convergence severely deteriorates Field and M. Grigoriu, 2004; Xiu and Karni-
adakis, 2002. A more general concept was proposed by Xiu and Karniadakis (2002) -
the Wiener-Askey or generalized polynomial chaos. Thus, a general stochastic process
X(ω) ∈ L2(Ω,F , P), viewed as a function of ω as the random event, can be represented
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by:
X(ω) = a0Ψ0

+
∞

∑
i1=0

ai1Ψ1(Yi1(ω))

+
∞

∑
i1=0

i1

∑
i2=0

ai1i2Ψ2(Yi1(ω), Yi2(ω))

+
∞

∑
i1=0

i1

∑
i2=0

i2

∑
i3=0

ai1i2i3Ψ3(Yi1(ω), Yi2(ω), Yi3(ω))

+ . . . ,

(5.1)

where Ψp(Yi1(ω), . . . , Yip(ω)) is the Wiener-Askey or generalized polynomial chaos
of order p in the variables Y = (Yi1(ω), . . . , Yip(ω)). The polynomials {Ψp} are not
restricted to be Hermite polynomials, but can by any orthogonal polynomial from the
Askey scheme - see, e.g., Xiu and Karniadakis (2002, 2003) for a detailed description, or
for a selection of Askey-polynomials section 3.1 or Tab. 5.1. These orthogonal d-variate
polynomials of degree less than or equal p, span the linear space of all polynomials of
degree at most p in d variables, i.e.

Pd
p(Y) =

{
P(Y) | P(Y) = ∑

|i|≤p
aiPi(Y)

}
, (5.2)

where i = (i1, . . . , id) ∈Nd
0 is a multi-index with |i| = i1 + . . . + id, and

Pi(Y) = Pi1(Yi1) · · · Pid(Yid), 0 ≤ |i| ≤ p (5.3)

are the products of the univariate orthogonal polynomials from section 3.1, whose
dimension is

dim(Pd
p) =

(
p + d

p

)
To simplify notation, Eq. (5.1) can be rewritten as

X(ω) =
∞

∑
|i|≤p

aiΨi(Y(ω)) , (5.4)

with Ψi(Y) ∈ P
p
p (Y). Xiu and Karniadakis (2002) deduced, since each type of poly-

nomial from the Askey scheme forms a complete basis in the Hilbert space, it can
be expected that each generalized polynomial chaos expansion converges to any L2-
functional in the L2-sense in the corresponding Hilbert function space as a generalized
result of the Cameron-Martin theorem Cameron and Martin, 1947; Ogura, 1972.
In the following, a typical usecase of gPC in one-dimension is examined in order to
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recognize later differences in comparison to the spline chaos more easily, and to prepare
a framework for numerical results.

5.1.1 One-dimensional case

Consider the random variable X as a function of an arbitrary random variable Z, i.e.

X = g(Z), (5.5)

where g is a deterministic, measurable mapping. In general, Eq. (5.5) describes the
random output X of a stochastic system in the presents of random inputs parameterized
by Z. Note, if g is the identity and Z has a specific distribution, e.g. normal or uniform,
then, the gPC approximates this specific distribution. This simple case is investigated for
first numerical results in order to get an intuitive notion of the correspondence between
distribution and polynomial type, the capability of polynomials to represent random
variables, and the quality of non-corresponding distribution and polynomial type. Next,
the standard introductory description and simple calculation of a gPC approximation
in one-dimension is explained.

Xiu and Karniadakis (2002) proposed the Wiener-Askey or gPC expansion which allows
to represent Eq. (5.5) in terms of the series

X =
∞

∑
p=0

apΨp(Z), (5.6)

where Z is a random variable, Ψp(Z) are orthogonal polynomials in Z of order p and
ap are deterministic coefficients to be determined. Truncating the series in Eq. (5.6) after
the P + 1 term leads to the polynomial chaos approximation of order P:

X̃P =
P

∑
p=0

apΨp(Z), (5.7)

which converges in L2(Ω,F ,P) Mircea Grigoriu, 2003, i.e.

X̃P
L2
−→ X for P→ ∞. (5.8)

Due to the orthogonality of the functions Ψp, the coefficients in (5.7) can simply deter-
mined by the orthogonal L2-projection Mircea Grigoriu, 2003:

E[g(Z)Ψp(Z)] = ap E[Ψp(Z)2] (5.9)
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for every p, which make these polynomials very efficient for computational issues. The
orthogonality of the space depends on the measure P of the underlying Hilbert space
L2(Ω,F ,P) and is in correspondence with the orthogonal polynomials from section
3.1, where the most relevant examples from the Askey scheme were introduced. The
gPC identifies this correspondence between the distribution of the random input Z ∈
L2(Ω,F ,P) and the type of orthogonal polynomials, leading to optimal convergence
rates, i.e. exponential Xiu and Karniadakis, 2002. Some elected correspondences are
shown in Tab. 5.1.

Distribution of Z Polynomial Basis Ψ Support
Continuous Gaussian Hermite (−∞, ∞)

Gamma Laguerre [0, ∞)
Beta Jacobi [a, b] ⊂ R

Uniform Legendre [a, b] ⊂ R

Discrete Binomial Krawtchouk {0, 1, 2, . . . , N} ⊂N

Poisson Charlier {0, 1, 2, . . .} ⊂N

Negative binomial Meixner {0, 1, 2, . . .} ⊂N

Hypergeometric Hahn {0, 1, 2, . . . , N} ⊂N

Table 5.1: Correspondence between distribution and polynomial basis - cf. Xiu and Karniadakis, 2002.

5.2 Spline chaos

As an extension of section 5.1, a spline version of the polynomial chaos expansion is
used now to represent effectively stochastic processes. The space of polynomials Pd

p is
extended to the space of splines Sp, which were rigorously introduced in section 3.2.
The multi-dimensional representation of a stochastic process X(ω) by the spline chaos
approach leads, through its richness of facets, to the expression:

X(ω) = lim
d→∞

∞

∑
i1=1
· · ·

∞

∑
id=1

ai1···id Bi1···id(Ui1(ω), . . . , Uid(ω)) (5.10)

where Bi1···id(Ui1(ω), . . . , Uid(ω)) ∈ Sp(P,M) is the d-variate B-spline chaos of order p
in the independent and identically distributed uniform random variables Ui1(ω), . . . , Uid(ω)
with partition P = (P1, . . . ,Pd) and multiplicity vector M = (M1, . . . ,Md).
Although the classical expansion is manufactured by orthogonal polynomials, it should
be noted that, from a mathematical point of view, convergence only requires a complete
basis in the underlying Hilbert space, and orthogonality is only an efficiency enhancing
property. Therefore, the following theorem states the strong convergence of spline chaos
by simply replacing the polynomial space.
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Theorem 5.2.1. Let X(ω) ∈ L2(Ω,F , P) a stochastic process. Then, the spline chaos in
Eq. (5.10) converges in mean square.

Proof. If X(ω) ∈ L2(Ω,F , P), then construct a spline chaos as in Eq. (5.10) with i.i.d. ran-
dom variables Ui1(ω), . . . , Uid(ω) and support IU. First case, the partition P = IU
has no subintervals. Then, the spline space degenerates to a polynomial space and
Bi1···ip(Ui1(ω), . . . , Uip(ω)) are d-variate Bernstein polynomials. Second case, the parti-
tion P = IU has subintervals. Then, with loss of generality, construct by knot insertion
a C0 spline basis, which leads to d-variate basis functions Bi1···ip(Ui1(ω), . . . , Uip(ω)),
which are a complete set of Bernstein basis functions on each subinterval. For both
cases, Eq. (3.2) delivers an analytical one-to-one relationship between the Legendre and
Bernstein polynomials in one-dimension which comes applicable with Eq. (5.3) and
(3.16). Because the Legendre chaos is convergent, it follows, that the spline chaos also
converges in mean square.

Theorem 5.2.1 provides the theoretical framework for using spline chaos. This general
multi-dimensional representation shows that, just like the PC, it is in principle possible
to approximate an arbitrary stochastic process with finite second moment, which is
usually given for all applications, over a spline space. An easy to handle basis for these
spline spaces are B-splines. Although this is not the only way Schumaker, 2007, it is
certainly the most intuitive and simplest one if a spline space with given properties
is to be constructed. The terms spline chaos and B-spline chaos are therefore used
synonymously and it should be clear that in the context of this thesis statements about
B-splines can be transferred to spline spaces unless this is explicitly restricted.

Following the structure of Section 5.1.1, the one-dimensional case is considered in
detail next. From this point, it will also be intuitively clear how higher dimensional
representations must be addressed.

5.2.1 One-dimensional case

In this section, the generalized PC approximation in Eq. (5.7) is adapted in order to make
the method accessible for B-spline basis functions instead of orthogonal polynomials.
Consider the basis {Bi,p} of the spline space Sp of order p and dimension N. The spline
chaos approximation of Eq. (5.10) in one-dimension is given by

X̃N =
N

∑
i=1

xiBi,p(u(Z)), (5.11)

where X̃N is the approximation of the random variable X in Eq. (5.5). B-splines can
not be used for the approximation of random variables in the same manner then
orthogonal polynomials, like Hermite polynomials, because of the lack of orthogonality.
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Nevertheless, it suffices that the functions in use form a basis of the underlying Hilbert
space L2(Ω,F ,P) R.G. Ghanem and P. Spanos, 2003; Xiu, 2010. Thus, the coefficients
in (5.11) can be determined by solving a linear algebraic system resulting from the
L2-projection:

Ax = b (5.12)

with

Ai,j := E
[
Bi,p(u(Z))Bj,p(u(Z))

]
(5.13)

bj := E
[
g(Z)Bj,p(u(Z))

]
(5.14)

i, j = 1, . . . , N. Next, the integrals in Eq. (5.12) must be calculated. Specifically, this
necessitates the introduction of a new space for the parameter u of the B-spline basis
functions Bi,p(u(Z)), which explicitly depend on the random variable Z. The question
next arises as to how an arbitrary random variable Z can be uniquely mapped on the
parameter space [0, 1] in a proper way. A convenient choice is the inverse cumulative
distribution function or quantile function of a random variable Z, given by

F−1
Z (u) := inf{z : FZ(z) ≥ u} ∈ [0, 1], (5.15)

where FZ is the CDF of Z. Clearly, the inverse always exists and is unique. This allows
one to connect the parameter u and the random variable Z such that u become a
uniformly distributed random variable U = FZ(Z) on the interval [0, 1], i.e.

FU(u) = P(U ≤ u) = P(FZ(Z) ≤ u)

= P(Z ≤ F−1
Z (u)) = FZ(F−1

Z (u)) = u
=⇒ U∼unif([0, 1]). (5.16)

If the distribution of Z is explicitly known, Eq. (5.12) can be expressed in terms of U
by

u = FZ(z) =⇒ du
dz

=
dFZ(z)

dz
= fZ(z), (5.17)

where fZ is the probability density function of Z. Hence, a proper mapping between Ω
and [0, 1] by FZ is established. So, the expressions in (5.13) and (5.14) can be expressed
as

EZ
[
Bi,p(FZ(Z))Bj,p(FZ(Z))

]
=
∫

Ω
Bi,p(FZ(z))Bj,p(FZ(z)) fZ(z) dz

=
∫
[0,1]

Bi,p(u)Bj,p(u) du

= EU
[
Bi,p(U)Bj,p(U)

]
, (5.18)
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and
EZ
[
g(Z)Bj,p(FZ(Z))

]
=
∫

Ω
g(z)Bj,p(FZ(z)) fZ(z) dz

=
∫
[0,1]

g(F−1
Z (u))Bj,p(u) du

= EU
[
g(F−1

Z (U))Bj,p(U)
]
. (5.19)

Thus, the matrix A depends only on the configuration of the B-spline basis functions,
and can be stored before the analysis. Further, A is a band matrix, if the knot vector Ξ
has inner knots, i.e.

Ai,j = 0 for |i− j| > p + 1. (5.20)

Examining the integrals in (5.18) and (5.19) it turns out that only the inverse cumulative
distribution function of the describing random variable Z and the mapping g must
be known. Thus, this procedure is not strongly limited and simultaneously paves the
way for using this method with discrete random variables Xiu and Karniadakis, 2002.
Besides, under the assumption that Z is a uniformly distributed random variable FZ is
the identity, and optimal convergence is expected in correspondence with the uniform
distribution, which is shown in the ensuing sections.

5.2.2 Weak Convergence

The proposed method is closely related to the gPC Xiu and Karniadakis, 2002 where
the same mapping property between a uniform and arbitrary distribution is utilized.
It can be shown, see e.g. Xiu, 2010, that the gPC approximation converges weakly, if
the random variable to be approximated is square integrable and the moments in the
chaos expansion exists. This can be adopted here and X̃N converges in probability and
in distribution, i.e.

X̃N
P−→ X and X̃N

D−→ X for N → ∞. (5.21)

To be precise, this can be stated as follows:

Definition 11: Weak chaos approximation

Let X be a random variable with CDF FX(x) = P(X ≤ x) and let Z be an arbitrary
random variable in a set of basis functions Ψi(Z), i = 1, . . . , N. If

X̃N =
N

∑
i=1

aiΨi(Z) with ai ∈ R (5.22)
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converges to X in a weak sense, i.e.

X̃N
P−→ X or X̃N

D−→ X for N → ∞, (5.23)

then X̃N is a weak chaos approximation of X.

Theorem 5.2.2. Let X be a random variable with CDF FX(x) = P(X ≤ x) and finite
second moment. Let U be a uniformly distributed random variable in [0, 1] such that the
moments EU(Bi,p(U)Bj,p(U)) exists for all B-spline basis functions of order p ∈ N with
i, j ∈ {1, . . . , N}. Let

X̃N =
N

∑
i=1

xiBi,p(U) (5.24)

the weak B-spline chaos approximation of X, where x = (x1, . . . , xN) results from the L2-
projection Ax = b with

Ai,j := EU
(

Bi,p(U)Bj,p(U)
)

and (5.25)

bj := EU(F−1
X (U)Bj,p(U)). (5.26)

Then X̃N converges to X in probability, i.e.

X̃N
P−→ X for N → ∞. (5.27)

Proof. Let
X̄ := F−1

X (U) = F−1
X (FU(U)), (5.28)

which implies that X̄ has the same probability distribution as X, i.e. FX̄ = FX. Thus, it

holds X̄ P
= X and E(X̄2) < ∞, which leads to

∞ > E
[
X̄2] = ∫

ΩX

x2 dFX(x)

=
∫
[0,1]

(
F−1

X (u)
)2

du

=
∫
[0,1]

(
F−1

X (FU(u))
)2

dFU(u). (5.29)

=⇒ X̄ ∈ L2([0, 1], σ([0, 1]), dFU)

:=
{

f : [0, 1]→ R | EU
[

f 2] < ∞
}

. (5.30)

Since (5.24) is the L2-projection of X̄ by X̃N, X̃N converges in mean square to X̄, which
implies

X̃N
P−→ X̄ for N → ∞. (5.31)
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This completes the proof, because X̄ P
= X.

Note, convergence in probability implies convergence in distribution. So, it also holds

X̃N
D−→ X for N → ∞. Further, if g(Z) in Eq. (5.5) is explicitly known in terms

of Z, L2-convergence can be achieved as shown in theorem 5.2.1. However, in most
practical numerical analyses only the probability density function of g(Z) or even less
information is available. But in this case, strong convergence can not established because
of the lack of information concerning g and Z. Nevertheless, the above theorem ensures
weak convergence.
The next sections show the versatility of the aforementioned methodology, and the
theoretical convergence results are further substantiated by numerical examples.

5.3 Approximation of random variables

In the following, several random variables are approximated by different expansions
and are juxtaposed with each other. To be more precise, uniform, beta, normal, and
exponential distributed random variables are approximated by Hermite, Legendre and
B-spline chaos, respectively, or starting from Eq. (5.5), function g is replaced by the
approximating CDF. The resulting density functions are estimated by a normal kernel
smoothing function available in all common statistical toolboxes1. The advantage of the
proposed technique lies in the flexibility of adapting the order, number of elements and
continuity over element boundaries, which can be quite powerful, if the underlying
distribution is unknown.

5.3.1 Uniform distribution

Fig. 5.1 shows approximations of a uniform density function by Hermite, Legendre,
and B-spline chaos for different orders p. Legendre and B-spline expansions remain
stable and unchanged from the first order on. Neither order elevation nor knot insertion
changes the accuracy. The changing values of the expansion coefficients are the main
difference. While only the first two basis functions influence the representation for the
Legendre chaos, because all coefficients are zero for i > 2, the coefficients are changing
for every configuration for the B-splines - see Fig. 5.2. However, in this case only a
straight line has to be approximated. Therefore, linear B-splines are sufficient. This leads
to the conclusion that a correspondence between the uniform distribution and B-splines
can be identified. However, for the Hermite chaos more terms are necessary to reach

1For the presented examples the ksdensity MATLAB-function with bandwidth 0.06 and 1.000.000

samples were used.
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Figure 5.1: Approximations of a uniform distribution by Hermite polynomials (Hp), Legendre polynomi-
als (Lp), and B-splines (Bp).

the same accuracy, and oscillations are observed at the corners. This is also known as
the stochastic Gibbs phenomenon Xiu, 2010.
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Figure 5.2: Coefficient values of Hermite, Legendre, and B-spline chaos for approximating a uniformly
distributed random variable.

64



5

5.3 Approximation of random variables

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3
L1
L3
L10
0B1
0B3
0B10

Figure 5.3: Approximations of a beta distribution with α = 3 and β = 1 by Legendre polynomials (Lp)
and C0 B-splines (0Bp).

5.3.2 Beta distribution

Let X be a beta distributed random variable on [0, 1] with density function

fX(x) =
1

B(α, β)
xα−1(1− x)β−1 with α, β > 0 , (5.32)

where B(α, β) is the beta function. Results of for a beta distributed random variable
X with α = 3 and β = 1 are shown in Fig. 5.3. Legendre and Bernstein (C0 B-spline)
approximations are compared, for which an explicit one-to-one transformation exists
Farouki, 2000. A further indication for the connection of Legendre and Bernstein polyno-
mials is the indistinguishability of the illustrated results. However, the approximations
could be substantially improved by adding inner knots. Then, the Bernstein polynomials
become B-splines basis functions.

5.3.3 Normal distribution

Let X∼N (µ, σ2) be a normal distributed random variable with density function

fX(x) =
1√

2π σ2
exp

(
− (x− µ)2

σ2

)
(5.33)

with expectation µ ∈ R and variance σ2 > 0. Hermite polynomials correspond to
the Gaussian measure. Thus, the Hermite chaos is exact from the first order on - see
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Figure 5.4: Approximations of a normal distribution with µ = 3 and σ = 2 by Hermite polynomials (Hp)
and B-splines with ten stochastic elements (B10

p ).

Fig. 5.4. Further, a Gaussian kernel is used here. Thus, the approximation fits perfectly.
In contrast, a Gaussian input is not optimal for the B-spline or Legendre chaos, which
can clearly be recognized. Nevertheless, inserting nine inner knots, which leads to ten
stochastic elements, improves the performance distinctly, although moderate oscillations
remain at the tails. The fluctuations can be attributed to the different supports. The
L2-projection must determine a proper mapping from [0, 1] to (−∞, ∞).

5.3.4 Exponential distribution

Assume that X is a exponential distributed random variable on [0, ∞] with density
function

fX(x) = λ exp(−λ) with λ > 0 (5.34)

and consider the specific case of λ = 1. The Hermite chaos behaves quite well for higher
orders and is smooth, although the peak decreases for P = 10 - see Fig. 5.5. As seen
before, nine inner knots are utilized in order to diminish the oscillations for the B-splines,
but the deviation remains fairly large on the right end. Now, another useful property
of B-spline basis functions can be exploited to solve this issue. Inserting the same knot
again reduces the continuity over element boundaries by one. This can be repeated until
the B-splines become decomposed, i.e. C0-continuity over element boundaries. In Fig. 5.5,
0B10

10 specifies the case for ten C0-elements of order ten, which leads to a much smoother
approximation and can compete against the Hermite chaos. Solely, the tail is slightly
fluctuating which may be caused by the support mismatch. Further, the employed
normal kernel smoothing function is non-optimal for the B-splines representation.
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Figure 5.5: Approximations of a exponential distribution with λ = 1 by Hermite polynomials (Hp),

B-splines with ten elements (B10
p ), and C0 B-splines with ten elements (0B10

p )

5.4 Accuracy of Hermite and B-Spline Chaos

In this part, the accuracy of spline chaos is intensively studied and benchmarked
with Hermite chaos. A detailed investigation for Hermite chaos was already done by
Field and M. Grigoriu (2004) trying to identify peculiarities and limitations. Based on
this study the previous described spline chaos are compared with results of Hermite
polynomials. Furthermore, it should be noted that the input distribution used is Gaus-
sian based and thus optimized for Hermite polynomials. Nevertheless, target-oriented
configuration of splines spaces are able to compete.

Consider Eq. (5.5) in one dimension for

X1 = g1(Z) := α1 + exp(β1Z),

X2 = g2(Z) := F−1
X2 ◦Φ(Z) and

X3 = g3(Z) := |Z|

with

F−1
X2 (x) =


0 for x < α2

x−α2

β2−α2 for α2 ≤ x < β2

1 for x ≥ β2

,

respectively. In the sequel analysis, the parameters are chosen as follows: α1 = 0, β1 = 1,
α2 = −1 and β2 = 1. The mappings Xi = gi(Z), i = 1, 2, 3, are explicitly known and
Eq. (5.9) and (5.12) can be solved in closed-form. In general, the mapping g of the
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approximating random variable is not known in applications, which leads to additional
errors, which is neglected in this academic example. Therefore, only the truncating error
has influence on the accuracy of the considered approximation. Note, X1 is simply the
approximation of a log-normal random variable, because Z is normal.

Error Types

In order to get a deeper insight, Field and M. Grigoriu (2004) analyzed the approxima-
tions using seven different error types:

1. X−X̃
X

2. MSErel =
E((X−X̃)2)

EX2

3. P({ω ∈ Ω : |X(ω)− X̃(ω)| > ε}) for a given ε > 0
4. P({X̃ ≤ infω∈Ω X} ∪ {X̃ ≥ supω∈Ω X})
5. P(X̃ > F−1

X (0.99))

6. Var(X̃(Z))
Var(X(Z))

7. Kurt(X̃(Z))
Kurt(X(Z))

A detailed description can be found in Field and M. Grigoriu, 2004. All error types were
computed for 1 ≤ p ≤ 20, which is much more then usually calculated. This detailed
consideration led to redundant trends, so a characteristic selection is considered below.
The relative means square error (MSErel), the normalized first four central moments,
and convergence in probability is considered.

5.4.1 Hermite Chaos

Field and M. Grigoriu (2004) studied intensively the behavior of Hermite Polynomial
Chaos approximation in one dimension of X1, X2 and X3. From a geometrical perspec-
tive, the random variable X2 is lying between X1 and X3, which can be confirmed by the
error trends. Selected results from Field and M. Grigoriu, 2004 are shown in Fig. 5.6 for
X̃1 and X̃3. Fig. 5.6a depicts the approximations of the random variables X1 = exp(Z)
and X3 = |Z| for orders p = 0, . . . , 15, respectively, whereas Fig. 5.6b indicates the
corresponding error trends.
In general, the convergence result Eq. (5.8) is confirmed, so that increasing the order p

leads to an improvement of accuracy. For X1 good results are achieved at Z = 0 even
for p = 3, but for a more satisfactory approximation for Z ∈ [−4, 4] an order p > 5
is necessary. For p > 0, it is hard to distinguish between X1 and the approximation
X̃1. For X3 a higher order is needed to be satisfactory in Z ∈ [−4, 4]. In addition, there
are notable oscillation in the area of Z = ±4 and approaches zero slowly at Z = 0.
Note, X2 lying between X1 and X3. There are oscillations for Z = ±4 and for Z = 0 the
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Figure 5.6: Homogeneous polynomial chaos approximation of X1 and X3.

performance is quite well.
As one of the main results of Field and M. Grigoriu (2004), which confirms the selection
presented here, it turns out that despite an initially optimal input, the convergence
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for certain errors, depending on g, are strongly slowed down or even deteriorated for
shown orders: The relative mean square error is a function of p and decays rapidly for
X1 and slowly for X3. The normalized variance is nearly one for p = 5 and p = 15 for
X1 and X3, respectively. The normalized skewness and kurtosis are closed to one for
p = 5 and converge for X1. But, for X3 both the normalized skewness and kurtosis
deteriorates. Summarizing the results of Field and M. Grigoriu (2004), the accuracy of
the Hermite polynomial chaos (PC) improves for some error types as additional terms
in (5.7) were appended, but this behavior can not be exhibit for all errors. Stefanou
(2009) concluded from the work of Field and M. Grigoriu (2004) and Mircea Grigoriu
(2006) that the divergence usually occurs for problems involving sharp non-linearities
and abrupt slope changes or bifurcations.

5.4.2 B-Spline Chaos

Next, the performance of B-Spline chaos is surveyed for X1, X2,X3 and, for a better
understanding and interpretation, the random input Z itself. The results are shown in
Fig. 5.7, 5.8 and 5.9. In addition to the errors in 5.4.1, convergence in probability and
the normalized mean ( E(X̃)

E(X)
) is considered. Note, if no inner knots are used within the

knot vector the term Bézier is applied to emphasize that no element refinement in the
stochastic space is applied.
Here again, in general, the higher the order p, or number of basis functions N, the better
the accuracy of the approximation.
For X2 (red line in Fig. 5.7) the approximation is exact even for p = 1. The expectation,

variance, skewness and kurtosis are exact - see red line in 5.7. The reason for that
is the structure of the mapping g2(Z) = F−1

Y2 ◦Φ(Z). F−1
Y2 (y) is a linear function and

Φ(Z) neutralizes the transformation from the parameter u to random variable Z, i.e.
F−1

Z (u) = Z, which occurs in the integral of Eq. (5.19):

g2(F−1
Z (u)) = F−1

Y2 ◦Φ(F−1
Z (u)) = F−1

Y2 (FZ(F−1
Z (u))) = F−1

Y2 (u).

This implies every mapping g, which can be expressed as a composition of the CDF
of the describing random variable, is as good as the approximation when the com-
position is neglected and the describing random variable is uniformly distributed.
This phenomenon is very well illustrated by Fig. 5.9b. On the left side the curve
is drawn in the space ΩU × g2(ΩZ) = [0, 1] × [α2, β2] and on the right in the space
ΩZ × g2(ΩZ) = (−∞, ∞)× [α2, β2]. Moreover, this emphasizes the correspondence be-
tween B-spline chaos and uniform distribution, which was already evident in section
5.3

The results for the other approximations are close to each other. They can be ordered
from Z̃ over X̃3 to X̃1. Fig. 5.8 depicts the exact mapping, i.e. Z(u) = F−1

Z (u) =
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erf−1(2u− 1)
√

2, and the approximation Z̃(u), which fits quite good in the interior of
[0, 1]. Due to the fact, that the spline chaos is naturally defined on a closed interval, the
L2-projection must cope with transforming the open interval (−∞, ∞) to a closed one,
i.e.

lim
u ↘ 1

F−1
Z (u) = −∞ and lim

u ↗ 1
F−1

Z (u) = ∞,

respectively. Tab. 5.2 listed the results of the L2-projection of the interval [0, 1] for
increasing order. It is evident that the values are strongly varying and over all increasing
if p increases. For p < 7 the values are quite small, which means that e.g. for p = 5
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Figure 5.7: Errors of Bézier approximation of Z (purple), X1 (blue), X2 (red) and X3 (yellow) with
Z ∼ N(0, 1) for p = 1, . . . , 15.

71



5 Spline Chaos
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Figure 5.8: Bézier approximation of Z̃ for p = 6 and exact mapping.

p Ω̃ p Ω̃

1 [-1.6926 , 1.6926 9 [ -16.6799 , 16.6799 ]
2 [-1.6926 , 1.6926] 10 [ -6.0771 , 6.0771]
3 [ -2.1768 , 2.1768] 11 [ -48.7380, 48.7380]
4 [ -2.1768 , 2.1768] 12 [ -18.0581 , 18.0581]
5 [-2.6608 , 2.6608] 13 [ -151.3264 , 151.3264]
6 [-2.4477 , 2.4477] 14 [-49.9681 , 49.9681]
7 [ -5.8550 , 5.8550] 15 [-484.8692 , 484.8692]
8 [ -3.2556 , 3.2556]

Table 5.2: Results of the L2-projection of the interval [0, 1] onto Ω̃ for Z ∼ N(0, 1).

1− 2 ·Φ(−2.6608) = 99.22% of the realization area is covered. Of course, it is problem
dependent if this coverage is sufficient. For a tail analysis, for example, the marginal
area is the most important; acceptable results can be obtained for 7 ≤ p ≤ 10, capping
at least 99.89% to (100− 1.8353e−60)% of the area. If p goes higher then 10, the curve
endpoints extremely detached from the center of the curve, i.e. u = 0.5 or Z = 0.
However, the approximation in (0, 1) remains stable and the error curves in Fig. 5.7
converges (purple lines). The expectation and skewness is exact form the beginning, and
the variance and kurtosis admits 1 sufficiently good for p = 5 and p = 10, respectively.
This fluctuation limitation despite drifting endpoints, is explained by the property of
variation diminishing of B-spline objects. It is not clear yet, how the intervals Ω̃ are
determined, but it is comprehensible that they increase when p increases.
Drawing the attention to X1 (blue line in Fig. 5.7)and X3 (yellow line in Fig. 5.7),
apparently, better approximation results are obtained for X3. The left-hand side figures
in 5.9 represent the random variable to be approximated over the parameter space u, i.e.,
after transforming the input to a uniformly distributed variable. Instead, the right-hand

72



5

5.4 Accuracy of Hermite and B-Spline Chaos

0 0.2 0.4 0.6 0.8 1
u

-2 -1 0 1 2

5

0

20

10

15

X
1 (u

)

2

0

8

10

4

6

X
1 ( 

)
(a) Approximations of X̃1 for p = 6 and exact mappings.

0 0.2 0.4 0.6 0.8 1
u

-2 -1 0 1 2
-1

0

0.5

1

-0.5

X
2 (u

)

-0.8

0.4

0.8

-0.4

0

X
2 ( 

)

(b) Approximations of X̃2 for p = 6 and exact mappings.

0 0.2 0.4 0.6 0.8 1
u

-2 -1 0 1 2
0

2

3

1

X
3 (u

)

0

1.5

2

0.5

1X
2 ( 

)

(c) Approximations of X̃3 for p = 6 and exact mappings.

Figure 5.9: Bézier approximation of X̃i with Z ∼ N(0, 1) in parameter space (left) and random space
(right).
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Figure 5.10: B-Spline chaos of X̃1 and X̃3 with Z ∼ N(0, 1) in parameter space (left) and random space
(right) with varying inner knots and continuity.

side figures show the variables over the original Gaussian variable Z. The plots over u
are smoother, small oscillations can be located over the entire domain, which are more
distinctive for X1. If the mapping g is contractive, the oscillations diminish, whereas the
oscillations magnify, if g is not contractive. Concerning the error plot, this awareness is
confirmed. The approximations converges in the order described above. Furthermore,
very good results for the moments are achieved for Z̃ and X̃3. The outcome of X̃1 is
worse, but can significantly be improved for β1 < 1.
The main advantage of using splines instead of ordinary polynomials is that, besides
the order p, the number of elements in the stochastic space can be taken into account
and, especially for B-spline basis functions, the desired continuity over these stochastic
element boundaries can be adjusted, too. Therefore, the previous results are improved
by varying the degree, the number of stochastic elements (or inner knots) and the
continuity over element boundaries (or knots spans). This means, on the one hand, for
X̃3 that a C0-B-spline basis - see e.g. Fig. 3.6 - is utilized for describing the mapping g3.
Consequently, the analysis is considerable improved at the kink at u = 0.5 or Z = 0 -
see Fig. 5.10a.
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5.4.3 Comparing Results

Summarizing the numerical results of the last two sections, the accuracy of the B-spline
chaos improves for all error types as the order p, or the number of basis functions

0 5 10 15
P

0

0.5

1

C
on

v 
in

 P

(a)

0 5 10 15
P

-60

-80

-40

-20

0

M
SE

re
la

tiv
e 

va
ria

nc
e 

er
ro

r(b)

0 5 10 15
P

0

1

2

re
la

tiv
e 

m
ea

n 
er

ro
r

re
la

tiv
e 

ku
rt

os
is 

er
ro

r(c)

0 5 10 15
P

0

0.5

1

re
la

tiv
e 

va
ria

nc
e 

er
ro

r

(d)

0 5 10 15
P

0

2

4

6

re
la

tiv
e 

sk
ew

ne
ss

 e
rr

or

(e)

0 5 10 15
P

0

2

4

6

re
la

tiv
e 

ku
rt

os
is 

er
ro

r

(f)

Figure 5.11: Errors of Hermite (solid line) and Bézier chaos (dotted line) of g1 (blue), g2 (red) and g3

(yellow) with Z ∼ N(0, 1) for p = 1, . . . , 15.
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N, is increased. This was not the case with the Hermite chaos - see for instance the
kurtosis in Fig. 5.12 and 5.11. But, especially for X̃1 , the B-Spline chaos is liable to the
Hermite chaos. And for X̃2, it is the opposite. In simplified terms, the B-spline chaos
performs well, were the Hermite chaos performs bad and vise versa. Nevertheless, due
to the flexibility of the B-Spline concerning stochastic elements and continuity between
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Figure 5.12: Errors of Hermite (solid line) and B-spline chaos (dotted line) of g1 (blue), g2 (red) and g3

(yellow) with Z ∼ N(0, 1) for p = 1, . . . , 15. Improved configuration for g1 and g3 with inner
knots and continuity changed.
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these elements, the results can be individually improved. Fig. 5.12 and 5.11 compares
both chaos techniques using the presented error types. In the upper one, results for
the orders p = 1, . . . , 15 for the Hermite (solid line) and B-spline chaos (dotted line)
- or more precisely Bézier approximation, because no inner knots were used - are
illustrated. The approximations of g2 (red lines) and g3 (yellow lines) of the Bézier
approximations outperforms the Hermite approximation especially for the normalized
moments. Certainly, the approximation of g1 (blue lines) is worse. As stated above, the
approximations can be individually improved. Fig. 5.12 depicts the improved results,
when adding more inner knots or varying the continuity over knot spans. Hermite
chaos is still the best choice for approximating the log-normal random variable (g1),
although the results for the spline chaos can be improved, i.e. the elements were
increased from 1 to 15 with an order of p = 9 while retaining a C1-continuity over
element boundaries. The error values for g3 are enhanced while using one inner knot
with C0-continuity (yellow dotted line). A better convergence rate for all error types
is achieved this way. Especially for g2, but also for the other functions, an increased
stability for the calculation of the higher moments can be observed. This can be clearly
seen when comparing the yellow lines for the error of the normalized skewness and
kurtosis in Fig. 5.12 and 5.11. An improved configuration of the B-spline chaos for
the approximation of g2 are not necessary. This again emphasizes the link between
uniformly distributed random variables and the B-spline chaos already demonstrated
in section 5.3.
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5.4.4 Random Vectors

In this example, the accuracy of spline chaos is demonstrated by an example of a
multi-dimensional input of Eq. (5.5)

X = g(Z1, Z2) = |Z1|+ |Z2| with Z1, Z2 ∼ N(0, 1)

If the Zi’s are independent, the B-Spline based PC of higher dimensions can be extended
by multivariate B-Splines in a straight forward manner. Thus, the two-dimensional

(a) Reference: g(Z1, Z2) = |Z1|+ |Z2|.

(b) Approximation: X̃(Z1, Z2)

Figure 5.13: Two-dimensional B-Spline chaos of third order with equal knot vectors [0 0 0 0 0.5 0.5 0.5 1 1

1] (C0-continuity along the axes) with Z1, Z2 ∼ N(0, 1) iid.
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B-spline chaos of order p = (p1, p2) is given by

X̃ =
N1

∑
i1=1

N2

∑
i2=1

ai1i2 Bi1i2(Ui1(ω), Ui1(ω)), (5.35)

with Bi1i2 ∈ Sp(P,M) and partition P = (P1,P2) and multiplicity vector M =
(M1,M2). The main difference between polynomial and spline chaos is the tensor
product structure, which leads to

N1 · . . . · Nd

basis functions, where ni is the number of one-dimensional basis functions in the i-th
dimension. If the number of basis functions in each direction remains unchanged, the
number of basis functions is determined by

nd . (5.36)

Ivo Babuška, Raúl Tempone, et al. (2004) used basis functions of the same dimension
especially for convergence analysis, which will be explored in more detail at the end
of the next chapter. In contrast, the number of basis functions of the d-dimensional
Hermite chaos of order p is (

P + d
P

)
.

However, the focus of section 5.4 lies on the accuracy of polynomial and spline chaos.
Fig. 5.13 shows the B-spline approximation of g(Z1, Z2) = |Z1|+ |Z2| for third order, two
elements in each direction, and C0-continuity over element boundaries. This example
can be seen as the two dimensional counterpart of g3(Z) = |Z|. As it was in the one-
dimensional case, due to the flexibility of elements and continuity, all error metrics
converges for the B-Spline chaos, while the Hermite chaos did not exhibit this behavior
in all metrics considered here. The error plots are shown in Fig. 5.14. The approximation
was done by the two-dimensional Hermite chaos for order p = 0, . . . , 20 (green line),
which results in 231 basis functions for p = 20. This is compared with first to fourth
order B-Splines each with two to eight elements in each direction and C0-continuity
along the axes. For example the fourth order B-Spline has 81 basis functions with two
elements and 225 basis functions with eight elements (purple line). The observations
from the one-dimensional examples can be confirmed for the multi-dimensional case. It
is remarkable that overall a better error behavior can be observed for the spline chaos
compared to the Hermite chaos, although the latter is optimized for normal random
variables.
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Figure 5.14: Error plots for Hermite and B-Spline chaos of g(Z1, Z2) = |Z1|+ |Z2|: First Order B-Spline
(blue), Second Order B-Spline (red), Third Order B-Spline (yellow), Fourth Order B-Spline
(purple) and Hermite chaos (green) with p = 0, . . . , 20.

5.4.5 Random Processes

Moreover, the proposed method can be applied to stationary processes. Then, the
coefficients in Eq. (5.12) become time dependent, but for a fixed time the problem
remains the same. Thus, the time-dependent coefficients are defined by collecting like
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powers of Zi Sakamoto and Roger Ghanem, 2002. This means for instance, any process
which can be cast in the framework of the KLE is accessible for the presented spline
chaos, too.
The efficiency for numerical models of representing stochastic processes like the KLE is
of very importance Field and M. Grigoriu, 2004; P. D. Spanos and Roger Ghanem, 1989.
Pol D. Spanos et al. (2007) improved the aforementioned problem for the exponential
covariance kernel which is dominating in mechanical applications. They dispense the
lack of non-differentiability which resulted in a significant reduction of the number
of basis functions while preserving its beneficial properties. With regard to Eq. (5.36),
the B-Spline based PC could become even more pertinent combined with the relatively
small number of random variables corresponding to differentiable autocorrelation
functions.

To investigate the accuracy of B-spline chaos for random processes, consider the station-
ary log-normal random process

Y(t) = exp
(
X(t)

)
(5.37)

where X(t) is a parameterized, zero mean, stationary Gaussian random process with
unit variance defined as

X(t) =
√

2
2
[

cos(πt)Z1 + sin(πt)Z2 + cos(2πt)Z3 + sin(2πt)Z4
]

(5.38)

Since the process in Eq. (5.38) is already parameterized, i.e. the relationship of X(t)
and the random variables Z = Z1, . . . , Z4 is explicitly known, the spline chaos in four
dimension is directly applicable. According to Mircea Grigoriu (1995) the stationary
random function Y(t) has mean

µY(t) = e0.5 (5.39)

and covariance
cY(τ) = e(1+

cos(πτ)
2 + cos(2πτ)

2 ) − e (5.40)

Since Y(t) is a stationary random process, the covariance function Eq. (5.40) can be
written in terms of τ as the statistical properties are time independent.
Higher stochastic dimensions lead to multi-dimensional integrals in the calculation of
the expansion coefficients - see for example Eq. (5.24). The dimension of parameterized
field X(t) according to Eq. (5.36) is d = 4. As a consequence, first a multivariate basis
must be generated from the univariate B-spline basis functions via a tensor product
and second each entry of the matrix A and the vector b must be computed via a
four-dimensional integration. To determine the multivariate basis, the tensor product
is applied to the univariate basis functions of each stochastic dimension generated
by the knot vector U - cf. section 3.2.1. Thus, the dimension of the d-variate B-spline
chaos depending on the structure of the knot vector, e.g. U = [0 0 0 0 1 1 1 1], for the
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5 Spline Chaos

approximation of the random field in Eq. (5.38) is then given by:

N = (m− p− 1)d = (8− 3− 1)4 = 256

Due to the exponential dependence of the multivariate basis on the stochastic dimension
of the underlying random field, the number of basis functions required increases
rapidly. Thus, similar to the PCE the B-spline chaos is also governed by the curse
of stochastic dimensionality. Another challenge is the multi-dimensional integration,
because primitive functions rarely exist considering multi-dimensional integration or can
only be obtained with very high computational effort. For this reason the introduction of
quadrature rules is appropriate, e.g. Gauss quadrature - see section 3.1.2. Advantageous
in the study of the random field X(t) given in Eq. (5.38) is the sum structure, which
allows successive integration according to each dimension. The number of Gaussian
points needed for integration depends on both the order p of the multivariate B-spline
basis function, and the function in Eq. (5.37). For the determination of the number
of Gauss points the error rate of the approximating integrals was evaluated. Thereby,
the asymptotic behavior at five Gauss points shows a sufficiently exact error rate
of 6, 649 · 10−8. Based on these theoretical observations, the stochastic process Y(t)
introduced by Field and M. Grigoriu (2004) is investigated using both the spline and
Hermite chaos, and the results are compared.

First, the comparison of is done without any additional stochastic elements and B-
Spline basis functions represent Bernstein polynomials. According to Field and M.
Grigoriu, 2004, the Hermite chaos achieves an sufficient accurate approximation of the
covariance function given in (5.40) for a total number of basis function q = 210 expansion
terms. Fig. 5.15a shows the approximated covariance function of degree p = 2, 4, 6,
resulting in q = 15, 70, 210 expansion terms, respectively. It can be observed that the
approximation error diminishes as the number of terms is increased. In contrast, for a
similar accuracy of the approximation using B-spline chaos, significantly more basis
functions are needed. Fig. 5.15b shows the approximations of the covariance function
for q = 81, 625, 2401 terms. Increasing the expansion terms leads to more accurate
approximations. Nevertheless, the convergence rate of the B-spline chaos expansion is
significantly slower. Fig. 5.16 shows the relative variance of Y(t) given by

Var[Ỹ(t)]
Var[Y(t)]

(5.41)

By increasing the expansion terms, the relative variance error for both approximations
approaches the expected value of one. It can be seen from Fig. 5.16a that the Hermite
chaos retains the stationary property of the original random process Y(t). B-spline
chaos approximations are initially non-stationary and keep a small deviation even when
using q = 2401 terms - see Fig. 5.16b. Since the oscillations of the normalized variance
error become smaller by increasing the expansion terms, it is expected that the B-spline
chaos will be stationary in the limit case, too. In the following, the influence of multiple
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Figure 5.15: Approximations of the covariance function of Y(t).
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(a) Hermite chaos : relative Variance of Y(t) depend-
ing on number of expansion terms
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(b) B-Spline chaos : relative Variance of Y(t) de-
pending on number of expansion terms

Figure 5.16: Relative variance of Y(t).

stochastic elements is investigated, which can be generated by adding inner knots in the
B-spline characterizing knot vectors. In order to study the properties of B-spline basis
functions to approximate a random field using several stochastic elements, investigations
are carried out for the choice of q = 625 expansion terms and various knot vectors. The
results for maximum covariance error , and minimum and maximum relative variance
error according to Eq. (5.41) of the approximations are given in Tab. 5.3. Best results
for the maximum covariance error with q = 625 terms are obtained by increasing the
degree p of the B-splines basis functions. The introduction of one additional stochastic
element on the domain with Cp−1 continuity and p = 3 yields almost similar results
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# p knot vector U εCov min.σrel max.σrel

1 2 [0 0 0 0.1 0.9 1 1 1] 0.2239 0.9521 0.9811

2 2 [0 0 0 0.2 0.8 1 1 1] 0.1587 0.9660 0.9871

3 2 [0 0 0 0.3 0.7 1 1 1] 0.1046 0.9776 0.9925

4 2 [0 0 0 0.4 0.6 1 1 1] 0.0181 0.9961 1.0023

5 2 [0 0 0 0.5 0.5 1 1 1] 0.0366 0.9922 1.0007

6 3 [0 0 0 0 0.5 1 1 1 1] 0.0173 0.9963 1.0024

7 4 [0 0 0 0 0 1 1 1 1 1] 0.0173 0.9963 1.0024

Table 5.3: Comparison of statistical values of Y(t) for the choice of different knot vectors with 625
expansion terms of B-spline chaos.

as the spline chaos with p = 4 and one element. Less effective are splines with p = 2.
Neither lower continuities at the element boundaries (#5) with C0 continuity nor the
introduction of further stochastic elements as in (#1) to (#4) could reach the results
for third and fourth order B-splines. It is interesting to note that the location of inner
knots has a direct impact on the accuracy in this example. Hence, the errors decreases
for more centrally located inner knots, as can be seen from knot vectors (#1) to (#4).
These results can be related to the underlying Gaussian measure, where the mass of
the distribution is concentrated in the center. This gives rise to the conclusion that a
finer discretization in the center leads to increased approximation quality. Moreover, it
suggests, on the one hand, using adaptive methods for stochastic mesh refinement is
desirable and, on the other side, equidistant partitioning will have an inhibiting effect
for more complex stochastic structures.

5.5 Conclusions

The first two sections have introduced polynomial and spline chaos, respectively, in
a multi-dimensional abstract framework, with the proof of strong convergence of
spline chaos providing the main result. This consideration was accompanied by a
one-dimensional description for both cases to make similarities and differences in con-
struction appear obvious, and further strengthens an intuitive notion of the correlation
between distribution and polynomial type, the capability of polynomials to represent
random variables, and the quality of non-corresponding distribution and polynomial
type. Mathematically, this was based on the essential statements from sections 3.1 and
3.2 about polynomial and spline spaces. At the end of this section, the algorithmic
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procedure of the newly developed methodology of B-spline chaos was demonstrated, as
well as the proof of weak convergence for arbitrary random variables, whose conditions
are compatible with most applications.
In the third section, these results were substantiated by first numerical examples. In
order to show the versatility and flexibility of spline chaos uniform, beta, normal, and
exponential distributed random variables have been approximated. The approximation
quality could thus be improved considerably, despite the fact that the distribution was
not optimally designed for these bases. The connection between uniform distribution
and B-splines, already apparent in the proofs and the construction of section 5.2, were
directly consolidated in the first example. So that B-spline chaos can be regarded as
a generalization of Legendre chaos. Thus, they are exact from first order on while
representing uniform random functions.
In section 5.4, accuracy was examined in more detail. Based on the work of Field and
M. Grigoriu (2004), who studied the limits of Hermite chaos, it was found that the
methods are complementary for the selected examples. Again, the rich spline space can
increase the approximation accuracy by additional elements and flexible continuity. It is
important to emphasize the different error type consideration, which has shown the
suitability for different application areas, e.g. structural analysis, response variability
methods, or methods where the full PDF is used. It is found that the convergence of
the spline chaos is very stable, especially for higher moments, which should improve
tail probabilities. Besides, picking up the conclusion of Stefanou (2009), the presented
results may improve problems involving sharp non-linearities, where Hermite chaos is
not a neat choice.
Moreover, multi-dimensional examples were shown in sections 5.4.4 and 5.4.5. The
focus was on random vectors and parameterized stationary random processes. The
kinked function for the approximation of a random vector confirmed the positive prop-
erties of the C0-continuous elements from the one-dimensional case. The Hermite chaos
exhibited a poor convergence behavior. In contrast, the results of the B-spline chaos
could be improved by element and continuity fitting, but only with considerably more
basis functions than for Hermite chaos, which are optimal for the Gaussian process.
Nevertheless, the results are not surprising. Overall, section 5.4 curved out borders to
PC expansions, limitations, features, and potentials of possible applications of the new
proposed spline chaos.
In the next part, spline chaos is applied to the solution of stochastic differential equa-
tions.
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6 Applications of B-Spline Chaos

In this chapter the spline chaos is applied in order to solve stochastic differential
equations using a Galerkin type approach. At first, the general procedure of the stochas-
tic Galerkin method (SG)Xiu and Karniadakis, 2002 is presented. Then, a stochastic
ordinary differential equations ordinary differential equation (ODE) with uniform ran-
dom input is treated. Convergence rates of Legendre, Hermite, and B-spline chaos are
demonstrated by comparing mean and variance with the exact solution. Subsequently,
an Euler-Bernoulli beam with random stiffness is processed. Different types of random
inputs are analyzed and compared with the exact numerical solution by various error
types. Furthermore, the complete density function is validated against the outcome of a
MCS. As a multidimensional extension of the beam, namely an infinite plate problem
is further examined. The Young’s modulus is described as a random field. Beyond all
examples, h-p-convergence is demonstrated.

6.1 General Procedure

Let us consider a system of stochastic PDE in a spatial domain D ⊂ Rnx with nx = 1, 2, 3
and a time domain [0, T] ⊂ R≥0

L(x, t, ω; u(x, t, ω)) = f (x, t, ω) in D× [0, T]×Ω (6.1)

with boundary and initial condition

u(x, 0, ω) = h(x, ω) on D× {t = 0} ×Ω (6.2)

u(x, t, ω)
∣∣
∂Ω = g(t, ω) on ∂D× [0, T]×Ω. (6.3)

L is a differential operator, which can be non-linear. Equation (6.1) is a deterministic
problem with uncertain input conveyed by ω which is defined in an appropriate
probability space (Ω,F ,P). Thus, the solution is given by

u : D× [0, T]×Ω→ Rnu (6.4)

where nu ∈ N is the dimension of u. In general, it is not necessary, nor is it relevant,
to precisely specify the underlying probability space, because the focus is mostly
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on the image space of the random variables of interest. In engineering applications,
the uncertainty of the system can be based on material properties, loads, boundary
and initial conditions, etc. They can take the form of random parameters or random
processes and can decently be parameterized by a set of mutually independent random
variables

Z : (Ω,F ,P)→ (Rd,B(Rd), FZ)

ω 7→ Z(ω) = (Z1(ω), . . . , Zd(ω))

with d ∈ N. The parametrization for processes can be done by the KLE or PCE, for
example. Eq. (6.5) can then be reformulated:

L(x, t, ω; u(x, t, Z)) = f (x, t, Z) in D× [0, T]×Rd. (6.5)

Consequently, the solution u can also be represented by the random variable Z through
a chaos expansion, i.e.

u : D× [0, T]×Rd → Rnu

(x, t, Z) 7→
N

∑
i=1

ui(x, t)Ψi(Z)

where {Ψi} is a set of basis functions spanning a d-dimensional space and ui(x, t) ∈ Rd

are chaos coefficients, which are spatial and time dependent. N is the total number of
basis functions.

Applying the Galerkin projection to Eq. (6.5), which forces that the error ε, arising from
the truncated PC expansion, is orthogonal in terms of the inner product of L2(Ω,F ,P)
to the approximating space Pd

p or Sp, which is finite dimensional, i.e.〈
ε, Ψj

〉
= E

(
ε Ψj

)
= 0 for j = 1, . . . , N (6.6)

with

ε := L
(

x, t, ω;
N

∑
i=1

ui(x, t)Ψi(Z)

)
− f (x, t, Z). (6.7)

Inserting (6.7) in (6.6) and exploiting the linearity of the expectation leads to

E

(
L
(

x, t, ω;
N

∑
i=1

ui(x, t)Ψi(Z)

)
Ψj(Z)

)
= E( f (x, t, Z)Ψj(Z)) (6.8)

for j = 1, . . . , N.

For the Wiener-Askey PC, i.e. the polynomials are orthogonal, we have N = (p+d
p ),
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6.2 First order stochastic ordinary differential equation

where p is the highest order in the set {Ψi}. As remarked before, when the more flexible
B-Splines are used, N depends on the tensor product structure of the basis and is given
by N = n1 · . . . · nd, where ni is the number of basis functions of the i-th dimension.
However, the randomness is transformed in the space spanned by {Ψi}. Therefore,
for a given realization of Z, the PDE (6.5) for a fixed x and t leads to N deterministic
problems. Furthermore, the well-posedness of this stochastic system can be reduced to
the deterministic case as well Xiu, 2010.

6.2 First order stochastic ordinary differential equation

In the following consider the stochastic ODE presented e.g. from Wan and Karniadakis
(2005):

L(t, ω; y(t, ω)) = f (t, ω) in [0, T]×Ω (6.9)

:⇔ d y(t)
d t

= −a(ω) y(t) with y(0) = 1, (6.10)

where t ∈ R+ and the decay rate a : Ω → R is a random variable with mean µa and
density function fa. The exact solution of (6.10) is

y(t) = exp(−a(ω) t). (6.11)

Then, the stochastic mean solution can be determined by

E
[
y(t)

]
=
∫

S
exp(−at) fa(a) da (6.12)

with support S of a.
Applying the B-spline chaos to the random variables a and y yields

ãN =
N

∑
i=1

aiBi,p(U) (6.13)

and

ỹN(t) =
N

∑
i=1

yi(t)Bi,p(U), (6.14)

where U∼unif([0, 1]) corresponds to the B-spline basis. Substituting Eq. (6.13) in (6.10)
leads to

N

∑
i=1

d yi(t)
d t

Bi,p(U)

= −
N

∑
i=1

N

∑
j=1

aiyj(t)Bi,p(U)Bj,p(U). (6.15)
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Figure 6.1: Relative mean and variance error of Hermite, Legendre, and B-spline chaos for t = 5.

Applying the Galerkin projection to Eq. (6.15) yields

N

∑
i=1

d yi(t)
d t

E
[
Bi,p(U) Bk,p(U)

]
= −

N

∑
i=1

N

∑
j=1

aiyj(t) E
[
Bi,p(U) Bj,p(U) Bk,p(U)

]
(6.16)

k = 1, . . . , N. The system of equations (6.16) can be solved by any ODE solver. Here,
the standard fourth order Runge-Kutta scheme is used. For the mean and variance the
errors are defined by

εmean(t) =

∣∣∣∣∣E
[
ỹN(t)

]
− E

[
y(t)

]
E
[
y(t)

] ∣∣∣∣∣ (6.17)

and

εvar(t) =

∣∣∣∣∣Var
[
ỹN(t)

]
−Var

[
y(t)

]
Var

[
y(t)

] ∣∣∣∣∣ , (6.18)

where Var
[
y(t)

]
= E

[
y(t)− E

[
y(t)

]2].
In the sequel, the random decay rate is expected to be uniformly distributed, i.e. a(ω)∼
unif([−1, 1]). Thus, the exact stochastic mean solution is

E
[
y(t)

]
=

sinh(t)
t

. (6.19)

Numerical results of Eq. (6.16) are shown in Fig. 6.1. Hermite, Legendre and B-spline
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Figure 6.2: Relative mean and variance error of C0 and C p−1 B-spline chaos for t = 5.

representations are opposed against each other. Specifically, the relative mean and
variance error of the multi-element generalized polynomial chaos from Wan and Karni-
adakis, 2005 are reproduced by using Bernstein polynomials, which are equivalent to
C0 B-spline basis functions - see Fig. 3.6 for instance. Exponential p-type convergence
for different stochastic meshes, i.e. number of elements in the spectral expansion, are
achieved. The Legendre chaos is optimal for the uniform input. Therefore, it generally
outperforms the Hermite chaos here, which error is fluctuating and decreases slowly.
Furthermore, the Legendre multi-element approach coincides with the C0 B-spline chaos.
Increasing the number of elements validates the results of Wan and Karniadakis (2005,
Fig. 2). This means, through the natural structure of B-splines, that the performance of
Legendre multi-element chaos is inherited by simply using C0 B-splines basis functions
in the polynomial chaos expansion. Note in addition, it is much easier to implement the
B-spline basis in an ordinary PC framework then it is the case with me-gPC.
Further, the capability of C0 with C p−1 B-spline chaos are compared. The convergence
for the error of mean and variance of the solution with respect to the number of basis
functions is illustrated in Fig. 6.2. The solid lines represent the same results as in Fig. 6.1,
whereas the dashed lines show the errors of the C3 B-spline chaos. Exponential h-type
convergence for both B-spline variants are on hand. Moreover, it can clearly be seen
that for C3-continuity much less basis functions are needed to reach nearly the same
accuracy. This crucial point is emphasized distinctly by the marked data sets. The
marked data point of B4 belongs to the basis functions shown in Fig. 3.5 with N = 8
and is competitive against the marked data point of 0B3 with N = 13 for both error
types. The number of basis functions N is directly related to the degrees of freedom of
the numerical model. Thus, using smooth B-splines over element boundaries instead of
Legendre polynomials in each element leads to a drastic reduction of the degrees of
freedom and gain of efficiency. As mentioned above, this improvement is predicated on
the smoothness over element boundaries. Note that, the exhibit advantages becomes
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even more pronounced if more elements or higher degrees are treated.

6.3 Euler-Bernoulli beam with random stiffness

Next, consider the Euler-Bernoulli beam of length L = 1, clamped at x = 0, and sub-
jected to a deterministic uniformly distributed load f shown in Fig. 6.3. The governing
Eq. is given by

L(x, ω; u(x, ω)) = f (x, ω) in D×Ω (6.20)

:⇔ EI(ω)
d4

dx4 u(x) = f with u(0) = u′(0) = 0, (6.21)

where the beam rigidity W ≡ EI is assumed to be a random variable W : Ω → R

with density function fW , and is specified by the modulus of elasticity E and the area
moment of inertia I. The exact solution of (6.21) reads

u(x, ω) = f
x2(6L2 − 4Lx + x2)

24 EI(ω)
. (6.22)

In order to make Eq. (6.21) numerically feasible the spatial and stochastic space of the
solution and the random input must be discretized. Using isogeometric subspace leads
to

ũ(x, ω) =
nd

∑
l=1

ul(ω)Nd
l,pd

(u(x))

=
nd

∑
l=1

ns

∑
i=1

uil Ns
i,ps

(U(ω))Nd
l,pd

(u(x)), (6.23)

and

W̃(ω) =
nw

∑
k=1

wkNw
k,pw

(U(ω)), (6.24)

where u(x) is a linear mapping from the spatial space [0, L] and the parameter space
[0, 1], and U : Ω→ [0, 1] a uniformly distributed random variable, i.e. U∼unif([0, 1]).
Note, for the deterministic part classical Hermite basis functions can be used in the

EI(ω)

f
x

L

Figure 6.3: Cantilever Euler-Bernoulli beam with deterministic uniformly distributed load f and random
beam rigidity EI(ω).
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6.3 Euler-Bernoulli beam with random stiffness

same way.
Applying the deterministic Galerkin procedure to Eq. (6.21) yields

nd

∑
l=1

ul(ω)
∫

L

d2

dx2 Nd
l,pd

(x) W(ω)
d2

dx2 Nd
m,pd

(x) dx

=
∫

L
f Nd

m,pd
(x) dx m = 1, . . . , nd

⇔: Kd(ω)ud(ω) = f d. (6.25)

Next, using equations (6.23) and (6.24), and applying the stochastic Galerkin procedure
gives

nd

∑
l=1

ns

∑
i=1

nw

∑
k=1

uilwk EU

[
Ns

i,ps
(U)Ns

j,ps
(U)Nw

k,pw
(U)

]
∫

L

d2

dx2 Nd
l,pd

(x)
d2

dx2 Nd
m,pd

(x) dx

= EU

[
Ns

j,ps
(U)

] ∫
L

f Nd
m,pd

(x) dx (6.26)

for j = 1, . . . , ns and m = 1, . . . , nd which can be reformulated in a matrix scheme of
dimension ndns × ndns:

Ku = f (6.27)

with

Kijlm :=
nw

∑
k=1

wk EU

[
Ns

i,ps
(U)Ns

j,ps
(U)Nw

k,pw
(U)

]
︸ ︷︷ ︸

=:Ks
ijk∫

L

d2

dx2 Nd
l,pd

(x)
d2

dx2 Nd
m,pd

(x) dx︸ ︷︷ ︸
=:Kd

lm

= Ks
ijkKd

lm
i, j = 1, . . . , ns

l, m = 1, . . . , nd
(6.28)

and
f jm := EU

[
Ns

j,ps
(U)

]
︸ ︷︷ ︸

f s
j

∫
L

f Nd
m,pd

(x) dx︸ ︷︷ ︸
f d
m

= f s
j f d

m
j = 1, . . . , ns

m = 1, . . . , nd
. (6.29)

Due to the boundary conditions of Eq. (6.21), the first two coefficients of the vector
ul(ω), i.e. u1(ω) and u2(ω), are equal to zero, because u1(ω) represents the deflection
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Figure 6.4: Relative mean and variance error at the beam tip solved by Legendre and B-spline chaos with
uniformly distributed beam rigidity.

and u2(ω)− u1(ω) the slope at the clamped end. Thus, for Eq. (6.27) it holds

ui1 = ui2 = 0 (6.30)

for i = 1, . . . , ns ,which leads to a reduced system of Eq. (6.27) with dimension nd(ns −
2) × nd(ns − 2). Solving the reduced system, nd(ns − 2) coefficients of ũ(x, ω) are
determined, where as the control variables uind represents the stochastic beam tip
deflection

ũL(ω) =
ns

∑
i=1

uind Ns
i,ps

(U(ω)). (6.31)

Further, the relative mean error at the free end can then be computed by

εmean =

∣∣∣∣∣E
[
ũL
]
− E

[
u(L, ω)

]
E
[
u(L, ω)

] ∣∣∣∣∣ (6.32)

with

E
[
ũL
]
=

ns

∑
i=1

uind E
[
Ns

i,ps
(U(ω))

]
=

ns

∑
i=1

uind

∫
[0,1]

Ns
i,ps

(u) dFU(u) (6.33)

and, considering (6.22) with x = L,

E
[
u(L, ω)

]
= E

[
f L4

8 W(ω)

]
=

f L4

8

∫
SW

1
w

dFW(w). (6.34)
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6.3 Euler-Bernoulli beam with random stiffness
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Figure 6.5: Relative mean and kurtosis error at the beam tip solved by Legendre and B-spline chaos with
normally distributed beam rigidity.

Analogously, the relative variance and kurtosis error are evaluated in common fashion.
For the numerical implementation of the preceding analysis fourth order B-splines with
four elements defined by the knot vector

Ξd = [ 0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1 ]

were used, i.e. pd = 4, neld = 4 and kd = pd− 1, resulting in eight (nd = md− pd− 1 = 8)
degrees of freedom; md denotes the number of knots in Ξd - compare Fig. 3.5.

Uniformly distributed beam rigidity

Let W ∼ unif([0.5, 1.5]) and f ≡ 1. Since the B-spline chaos is optimal for a uniform
distribution, the approximation (6.24) is exact for nw > 1, e.g.

W(ω) ≡ W̃(ω) =
2

∑
k=1

wkNw
k,1(U(ω)) (6.35)

with w1 = 0.5, w2 = 1.5 and knot vector Ξw = [ 0 0 1 1 ]. Further, the exact mean
solution is given by

E
[
u(L, ω)

]
=

1
8

∫ 1

0.5
.5

1
w

dw

=
1
8
(

log(1.5)− log(0.5)
)

≈ 0.137326536083514.

(6.36)
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6 Applications of B-Spline Chaos

Exponential h-p convergence for the first two central moments of the beam tip deflection
are shown in Fig. 6.4. The results are found in good agreement with the previous
example from section 6.2. The relative mean and variance error are plotted for a
different number of stochastic elements as well as the classical Legendre chaos, which
performs the worst. The mean error of the four element B-spline chaos (B4) reach
the deterministic approximation error of about 10−13 for ps ≤ 7. When ten stochastic
elements are considered even only fourth order B-splines are required. In general, the
relative mean errors converge faster than the errors of higher moments.

Normal distributed beam rigidity

In this section the distribution of the random input W is assumed to be normal, i.e.
W ∼ N (1, 0.1), and f ≡ 1. As can be seen in section 5.3.3, the B-spline chaos is not
optimal for a normal distribution. Thus, the solution quality of ũ(x, ω) also depends
on the approximation W̃(ω). Therefore, pw = 10, nelw = 10 and kw = 0 are chosen in
order to reach high accuracy. Further, the exact mean solution of (6.21) is

E
[
u(L, ω)

]
=

1
8

∫ ∞

−∞

1√
2π 0.12 w

exp(− (w−1)2

0.12 ) dw

≈ 0.126289521160065, (6.37)

which was solved numerically.
Fig. 6.5 shows the h-p convergence in the stochastic space of the first and fourth central
moment at the beam tip. The beam rigidity W(ω) is represented by the non-optimal
B-spline chaos which is an indication for the lower convergence rate in comparison with
the optimal representation in section 6.3. However, the B-spline chaos still dominates the
Legendre chaos. Further, it is remarkable that even for higher orders the high moments
do not deteriorates which is a general problem for the Hermite chaos Field and M.
Grigoriu, 2004.

Monte Carlo simulation

In order to assess the significance of the numerical results obtained from the B-spline
chaos the beam problem is treated by a Monte Carlo simulation. Realizations of the
beam rigidity W(ω) are computed and for each realization the associated deterministic
problem (6.25) is solved. The resulting density function of the beam tip deflection
for W ∼ N (1, 0.1) and W ∼ unif([0.5, 1.5]) are plotted in Fig. 6.6. Comparisons with
different B-spline types show a satisfactory level of accuracy for ps > 1 in both cases.
Nevertheless, for the uniform input better results are achieved which coincides with
the error plots from section 5.3 and 6.2. The probability density functions in Fig. 6.6
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6.4 Infinite Plate with circular hole
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Figure 6.6: Probability density function approximations of the cantilever beam tip deflection with uni-
formly (left) and normally (right) distributed beam rigidity.

are estimated by a normal kernel smoothing function with bandwidth 0.005 and 10000

samples.

6.4 Infinite Plate with circular hole

The last numerical example is a two-dimensional linear elastostatic problem, namely
an infinite plate with circular hole under constant in-plane tension. The governing

Figure 6.7: Control net and mesh of the finite quarter plate with one h-refinement in each direction.
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6 Applications of B-Spline Chaos

equations of a linear elastic boundary value problem are given by:

L(x, ω; u(x, ω)) = f (x, ω) in D×Ω (6.38)
:⇔ div(σ(u)) + f = 0 in D×Ω (6.39)

and boundary conditions

u = g on ΓD (6.40)
σ · n = h on ΓN (6.41)

with infinitesimal strain tensor

ε =
1
2

[
∇u + (∇u)T

]
, (6.42)

and constitutive law (generalized Hooke’s law)

σ = C : ε . (6.43)

Further, it is assumed that the material is isotropic, i.e. the elastic coefficients have the
form

Cijkl = λδijδkl + µ(δikδjl + δilδjk) . (6.44)

The Lamé parameters λ and µ can be expressed in terms of the Young’s modulus E and
Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
(6.45)

ν =
E

2(1 + ν)
. (6.46)

The solution of the stated elastostatic problem is a random field u : D̄×Ω→ Rdu .

In this two-dimensional example, a NURBS-based isogeometric analysis with uncertain
Young’s modulus E(ω) of an infinite plate with a circular hole under constant in-
plane tension at infinity is investigated. For a detailed deterministic description see for
example Hughes et al. (2005, p.119). The analytical deterministic solution is given by
(Gould (1999, p.120)):

σrr(r, θ) =
Tx

2

(
1− R2

r2

)
+

Tx

2

(
1− 4

R2

r2 + 3
R4

r4

)
cos(2θ) (6.47)

σθθ(r, θ) =
Tx

2

(
1 +

R2

r2

)
− Tx

2

(
1 + 3

R4

r4

)
cos(2θ) (6.48)

σrθ(r, θ) = −Tx

2

(
1 + 2

R2

r2 − 3
R4

r4

)
sin(2θ) , (6.49)

where Tx is the applied stress as a Neumann boundary condition, and R is the radius
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6.4 Infinite Plate with circular hole

Figure 6.8: Contour plot of σxx with maximal stress at r = R, θ = 3
2 π

of the hole. The geometry of the finite quarter plate, which is solved for investigating
the problem, is shown in Fig. 6.7. The geometry is build by B-splines and consequently
the approximated spacial space is spanned by the same basis functions. Following the
isogeometric approach, the stochastic subspace is also constructed via splines. The
infinite plate problem is solved in the same way as the beam example, i.e. the input
is expanded in a b-spline chaos, as well as the solution. Applying a Galerkin type
procedure for both, the spacial and stochastic space, results in an matrix scheme of the
form:

Ku = f (6.50)

with dimension nd · ns, where nd and ns is the dimension of the deterministic and
stochastic space, respectively. For the numerical implementation of the preceding
stochastic analysis third order B-spline basis functions with varying elements and
continuity are used. The stress concentration of σxx = 3 Tx is located at the edge of the
hole and obtained when the mesh is properly refined - see Fig. 6.8. The displacement
at this point is zero, whereas the maximal displacement in x-direction is at the lower
corner on the opposite edge - see Fig. 6.9.

One-dimensional Random Input

First, the uncertainty is modeled as a one-dimensional uniform random input over
the material parameter, i.e. the Young’s modulus E is uniformly distributed around
the mean value µE = 105. The results in Fig. 6.10 confirm h-p convergence for the first
two central moments of the maximal displacement in x-direction and are found in
good agreement with the previous examples. The relative mean and variance error are
plotted for multi-element Legendre chaos and B-spline chaos with different continuities
and increasing number of stochastic elements. Here again, spline-chaos outperforms
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6 Applications of B-Spline Chaos

Figure 6.9: Analytical and numerical solution of u in x-direction.

multi-element Legendre chaos. In general, the relative mean errors converge faster
than the errors of higher moments. Fig. 6.11 illustrates the probability function of
the maximal displacement in x-direction. The reference solution was generated using
MCS. Due to the optimal correspondence between uniform density and Legendre and
Bernstein polynomials, satisfactory coincidence is obtained for both chaos expansions.
The probability density functions in Fig. 6.11 is estimated by a normal kernel smoothing
function with bandwidth 0.005 and 10000 samples.

Figure 6.10: Relative mean and variance order for the infinite plate problem.
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6.4 Infinite Plate with circular hole

Figure 6.11: PDF approximation with 1D random input and MCS.

Random Field Input

In the last step, the Young’s modulus is represented by a harmonic uniform random
field, i.e.:

E(x, y) = µE + σE(sin(a1x) sin(a2y)U1 + cos(b1x) cos(b2y)U2) (6.51)

with µE = 105, σE = 3 · 103, U1, U2 ∼ unif, and algebraic constants a1 = a2 = b1 = b2 =
1. The analysis is performed in the same way as before, except that multi-dimensional
chaos expansions are utilized.
To assess the validity of the numerical results obtained with the B-spline chaos, the

Figure 6.12: PDF approximation with random field input and MCS.
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6 Applications of B-Spline Chaos

beam problem is treated by a MCS. Realizations of the Young’s modulus E(ω) are
computed and for each realization the associated deterministic elastostatic problem is
solved. The resulting density function of the maximum displacement in x-direction are
plotted in Fig. 6.12. B-spline chaos show a satisfactory level of accuracy. The probability
density functions in Fig. 6.12 is estimated by a normal kernel smoothing function with
bandwidth 0.005 and 10000 samples.
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7 Stochastic Galerkin Isogeometric
Analysis

This chapter defines and analyzes the SGIGA for linear elliptic PDEs with stochastic
coefficients and homogeneous Dirichlet boundary condition. The aim is the represen-
tation of the complete solution by splines and the application of isogeometric solvers.
This can be realized by finite dimensional approximations of the stochastic coefficients
leading to a deterministic parametric elliptic problem Ivo Babuška, Raúl Tempone, et al.,
2004. Subsequently, a Galerkin type isogeometric technique describes the corresponding
deterministic solution. The chapter closes with an a priori error estimation for the
computation of the expected value of the solution.
The method of SGIGA is derived from the stochastic Galerkin finite element method
(SGFEM) first proposed by Babuŝka et al. (2005). They show an alternative approach
to the SSFEM of R.G. Ghanem and P. Spanos (2003). Instead of using orthogonal poly-
nomials to represent the stochastic components, Lagrangian functions are used, which
also describe the deterministic components and the geometry. In the same paper also
an a priori error estimation is stated, which includes estimates for Lagrangian functions
and thus polynomials. This notion is adopted here to the isogeometric approach, where
splines are considered. The recently published estimations for splines, which also take
into account their flexibility in terms of continuity and number of elements, derived
by Sande et al. (2019), contribute significantly to the fact that such a sharp a priori
error estimations can be stated here. This, in turn, can be very beneficial for practical
applications. For example, it is previously evident, what influence does the h-refinement
have on the reduction of the error in comparison to the p-refinement.

7.1 Mathematical model

The starting point is the end of section 4.2, i.e., consider the problem:

L(x, Y(ω); u(x, Y(ω))) = f (x, Y(ω)) on D×Rds

u(x, Y(ω)) = 0 on ∂D×Rds . (7.1)

with u : D̄ ×Rds → Rdu by the use of the Doob-Dynkin lemma, e.g. Rao and Swift,
2006b, p.7, and Y1, . . . , Yds are independent and identically distributed. Remember,
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7 Stochastic Galerkin Isogeometric Analysis

assumption 1 and 2 hold. Thus, for each realization of Y(ω) Eq. (7.1) is well-posed
in its deterministic sense. Next, the random vector Y is transformed into a uniformly
distributed random vector by the isoprobabilistic Rosenblatt transformation Rosenblatt,
1952. Denote by FYi the marginal distribution function of Yi, i = 1, . . . , ds, and by CY the
copula of Y. Then,

Z := TR(Y) (7.2)

with
TR : Rds → [0, 1]ds

Y 7→ Z =


FY1(Y1)
FY2|Y1

(Y2|Y1)
...
FYds |Y1,...,Yds−1

(Yds |Y1, . . . , Yds−1)

 (7.3)

is a uniformly distributed random vector over [0, 1]ds with independent copula, where
Yi|Y1, . . . , Yi−1 is the cumulative distribution function of the conditional random variable
Yi|Y1, . . . , Yi−1. Because of assumption 1 Eq. (7.2) simplifies to

Y(ω) = (F−1
Y1

(Z(ω)), . . . , F−1
Yds

(Z(ω))) := F−1
Y (Z(ω)). (7.4)

Thus, Eq. (7.1) can further be rewritten as

L(x, F−1
Y (Z(ω); u(x, F−1

Y (Z(ω))) = f (x, F−1
Y (Z(ω)) on D× [0, 1]ds

u(x, F−1
Y (Z(ω)) = 0 on ∂D× [0, 1]ds . (7.5)

with u : D̄ ×Rds → Rdu by the use of the Doob-Dynkin lemma, e.g. Rao and Swift,
2006b, p.7, and Z(ω) = (Z1, . . . , Zds) are independent and identically distributed with
Zi ∼ unif([0, 1]).
For the next part, remember from section 2.4, a function φ : D̄ ×Ω → Rdφ is called
a random function (process or field), if it is jointly measurable on B(D)⊗ F and it
holds

E
[∫

D
φ(x, ω)dx

]
< ∞. (7.6)

7.2 Elliptic model problem

In the following, the stochastic diffusion equation

∇x · (k(x, ω)∇x(u(x, ω))) = f (x, ω) in D×Ω
u(x, ω) = 0 on ∂D×Ω (7.7)
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7.2 Elliptic model problem

is considered, where the diffusivity field k and source term f are assumed to be random
functions, which can be parameterized by a truncated Karhunen-Loève expansion (or
any chaos expansion) (assumption 1), i.e.

k(x, ω) ≈ k(x, Y) = µk(x) +
ds

∑
i=1

ki(x)Yi(ω), (7.8)

f (x, ω) ≈ f (x, Y) = µ f (x) +
ds

∑
i=1

fi(x)Yi(ω), (7.9)

where ki(x) and fi(x) are determined by the eigenvalues and eigenfunctions of their
covariance function, respectively, c.f. Ivo Babuška, Raúl Tempone, et al., 2004, sectionn
2.4. Furthermore, define

Y = (Y1, . . . , Yds) ≡ F−1
Y (Z). (7.10)

According to Eq. (7.5), Eq. (7.7) can be expressed by Eq. (7.2) and Eq. (7.10) as

∇x · (k(x, F−1
Y (Z))∇x(u(x, F−1

Y (Z)))) = f (x, F−1
Y (Z)) in D× IZ

u(x, F−1
Y (Z)) = 0 on ∂D× IZ (7.11)

with IZ = [0, 1]ds the support of Z. Define the tensor product Hilbert Space H :=
H1

0(D)⊗ L2
P(Ω) Ivo Babuška, Raúl Tempone, et al., 2004. Then, Eq. (7.7) is equivalent

to: Find u ∈ H such that:

E
[∫

D
k(x, ω)∇u(x, ω) · ∇v(x, ω)dx

]
= E

[∫
D

f vdx
]
∀v ∈ H . (7.12)

Eq. (7.12) is referred to as the stochastic variational formulation of Eq. (7.7) and gives the
basis for the stochastic Galerkin isogeometric analysis. Define the spaces Ivo Babuška
and Chatzipantelidis, 2002:

V(D; IZ) := {v(x, F−1
Y (Z)) | ‖v‖V < ∞ ∧ v(x, F−1

Y (Z)) = 0 on ∂D} (7.13)

and
‖v‖V :=

∫
IZ

∫
D

k(x, F−1
Y (z))|∇v(x, F−1

Y (z))|2dx fZ(z)dz. (7.14)

Then, with the previously required assumptions, Eq. (7.12) is equivalent to - c.f. Ivo
Babuška and Chatzipantelidis, 2002; Ivo Babuška, Raúl Tempone, et al., 2004; Deb et al.,
2001: Find u ∈ V such that∫

IZ

∫
D

k(x, F−1
Y (z))∇u(x, F−1

Y (z)) · ∇v(x, F−1
Y (z))dx fZ(z)dz

=
∫

IZ

∫
D

f (x, F−1
Y (z))v(x, F−1

Y (z))dx fZ(z)dz ∀v ∈ V (7.15)

105
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Now, Eq. (7.15) is a deterministic variational formulation with ds-dimensional parameter
and is the deterministic equivalent of the stochastic variational formulation (7.12) -
c.f. Ivo Babuška and Chatzipantelidis, 2002; Ivo Babuška, Raúl Tempone, et al., 2004;
Deb et al., 2001 and is the. The finite noise assumption 1, is responsible for turning
the stochastic equation in a deterministic one Ivo Babuška, Raúl Tempone, et al., 2004.
For the more interested reader, existence and uniqueness is proven in e.g. Ivo Babuška,
Raúl Tempone, et al. (2004, sectionn 2.2). However, here, the focus lies on the rigorous
formulation of SGIGA and the a priori error estimation. In order to make the difference
to SGFEM clear, the transformation F−1

Y (z) was written down so far continuously. For
the sake of clarity, the variable z is written instead from now on, if nothing else is
mentioned.

7.3 Isogeometric Approximation

Eq. (7.15) is suitable for a Galerkin based isogeometric analysis, i.e. define isogeometric
approximation spaces over D× [0, 1]ds Ivo Babuška, Raúl Tempone, et al., 2004. Intensive
use of the already introduced spline spaces and estimations from section 3.2, for both
the deterministic and stochastic cases, are required in the sequel.

7.3.1 Spatial Space

Consider a family of NURBS spaces on the spatial domain {Vhd,0}hd
with Vhd,0 ⊂ H1

0(D)
with conforming and shape regular mesh Khd

= F(Qhd
) such that

⋃
K∈Khd

K = D
with deterministic mesh parameter hd = max{hK}. sectionn 3.2, in particular Lemma
3.2.2, delivers the following approximation estimation for NURBS spaces Vhd,0 with
homogeneous Dirichlet boundary conditions, i.e. for all v ∈ H2(D) ∩ H1

0(D) it holds

min
χ∈Vhd ,0

|v− χ|H1
hd ,0(D) ≤ Cd(W, F) hd ∑

K∈Khd

‖v‖H2(K̃) . (7.16)

7.3.2 Spectral Space

Consider the spline spaces S ps
hs

with S ps
hs
⊂ L2(IZ), stochastic degree ps = {p1, . . . , pds},

and stochastic mesh parameter hs = max
i
{hsi} with i = 1, . . . , ds and hsi is the maximal

distance between inner knots in the i-th direction. Again, section 3.2, in particular
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7.3 Isogeometric Approximation

Eq. (3.45) and theorem 3.2.4, delivers the following approximation estimation for spline
spaces in ds dimensions, i.e. for all v ∈ Hps+1(IZ) it holds

min
ψ∈S ps

hs

‖v− ψ‖L2(IZ)
≤

ds

∑
i=1

(
2eh

eπ + 4h(psi + 1)

)psi+1

‖∂psi+1
zi v‖L2(IZ)

. (7.17)

If Eq. (7.17) is compared with Eq. (3.2) in Ivo Babuška, Raúl Tempone, et al., 2004, where
the space IZ is approximated by polynomials, the factor 1

psi+1 is missing. This is corrected

in the next section, when the tensor product space is defined. Note, ‖∂psi+1
zi v‖L2(IZ)

denotes the psi + 1 partial derivative in the i-th stochastic dimension zi of the function
v, e.g. Ivo Babuška, Raúl Tempone, et al., 2004; Sande et al., 2020.

7.3.3 Tensor Product Space

Now, consider approximations of the tensor product space D× IZ. Hence, define the
space composed of tensor product splines, for both the deterministic and stochastic
part:

Vhd,0 ⊗ S
ps
hs

:=
{

φ(x, z) ∈ L2(D× IZ)

| φ ∈ span{χ(x)ψ(z) | χ ∈ Vhd,0, ψ ∈ S ps
hs
}
}

(7.18)

The following proposition provides a first approximation quantification for the tensor
product isogeometric space in Eq. (7.18).

Proposition 7.3.1 (cf. Prop. 3.1 in Ivo Babuška, Raúl Tempone, et al., 2004). For all
v ∈ Cps+1(H2(D) ∩ H1

0(D); IZ), there exists a constant C > 0 independent of hd, hs, ds and
v, such that

min
φ∈Vhd ,0⊗S

ps
hs

‖v− φ‖L2(H1
0(D);IZ)

≤ C(F, W)

(
hd ∑

K∈Khd

‖v‖L2(H2(K̃);IZ)
+

ds

∑
i=1

(
2eh

eπ
psi+1 + 4h

)psi+1‖∂psi+1
zi v‖L2(H1

0(D);IZ)

(psi + 1)!

)
, (7.19)

where F and , W are defined in Lemma 3.2.2 and coming from the deterministic part.

Proof. Cf. Prop. 3.1 in Ivo Babuška, Raúl Tempone, et al., 2004. For the projectors
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7 Stochastic Galerkin Isogeometric Analysis

ΠVhd,0 : H1
0(D)→ Vhd,0 and ΠS ps

hs
: L2(IZ)→ S

ps
hs

with

(∇(ΠVhd,0v− v),∇χ)L2(D)= 0 ∀ψ ∈ Vhd,0 ∀v ∈ H1
0(D) (7.20)

(ΠS ps
hs

v− v, ψ)L2(IZ)
= 0 ∀ψ ∈ S ps

hs
∀v ∈ L2(IZ). (7.21)

Eq. (7.16) and (7.17) imply∥∥∥ΠVhd ,0v− v
∥∥∥

H1
0(D)
≤ Cd(W, F) hd ∑

K∈Khd

‖v‖H2(K̃) (7.22)

for all v ∈ H2(D) ∩ H1
0(D) and

∥∥∥ΠS ps
hs

v− v
∥∥∥

L2(IZ)
≤

ds

∑
i=1

(
2eh

eπ
psi+1 + 4h

)psi+1‖∂psi+1
zi v‖L2(IZ)

(psi + 1)!
(7.23)

for all v ∈ Hps+1(IZ). In Eq. 7.23 it was exploited that

(psi + 1)! ≤ (psi + 1)psi+1 ∀psi ≥ 0 . (7.24)

Then, with ΠVhd ,0

(
ΠS ps

hs
v
)
∈ Vhd,0 ⊗ S

ps
hs

, using Eq. (7.22) and Eq. (7.23), and the bound-

edness of ΠVhd ,0 in H1
0(D) Bazilevs et al., 2006, it holds

min
φ∈Vhd ,0⊗S

ps
hs

‖v− φ‖L2(H1
0(D);IZ)

≤
∥∥∥v−ΠVhd ,0

(
ΠS ps

hs
v
)∥∥∥

L2(H1
0(D);IZ)

≤
∥∥∥v−ΠVhd ,0v

∥∥∥
L2(H1

0(D);IZ)

+
∥∥∥ΠVhd ,0v−ΠVhd ,0

(
ΠS ps

hs
v
)∥∥∥

L2(H1
0(D);IZ)

≤ Cd(W, F) hd ∑
K∈Khd

‖v‖L2(H2(K̃);IZ)

+
∥∥∥v−ΠS ps

hs
v
∥∥∥

L2(H1
0(D);IZ)

≤ Cd(W, F) hd ∑
K∈Khd

‖v‖L2(H2(K̃);IZ)

+
ds

∑
i=1

(
2eh

eπ
psi+1 + 4h

)psi+1‖∂psi+1
zi v‖L2(H1

0(D);IZ)

(psi + 1)!
(7.25)
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7.4 Formulation

Eq. (7.19) is structurally identical to Eq. (3.7) in Ivo Babuška, Raúl Tempone, et al., 2004,
but is specified for splines. In fact, this astonishing similarity is the reason why the
following a priori error estimation can be directly adopted for splines.

7.4 Formulation

In the following, the general procedure of the SGIGA is introduced, which delivers a
Galerkin variational formulation based approximation, uds ∈ Vhd,0⊗S

ps
hs

, of the solution
u of the corresponding strong formulation (7.11), which is an elliptic partial differential
equation with ds-dimensional parameter - cf. chapter 5 in Ivo Babuška, Raúl Tempone,
et al., 2004 for the case of SGFEM.

Formulation of the h − p − k-SGIGA: The h − p − k-SGIGA is the tensor product
solution uds ∈ Vhd,0 ⊗ S

ps
hs

, i.e. isogeometric approximations for both the deterministic
and stochastic part, such that

(uds, φ)E = ( f , φ)L2(D;IZ)
∀φ ∈ Vhd,0 ⊗ S

ps
hs

(7.26)

with
(uds, φ)E :=

∫
IZ

∫
D

k(x, z)∇uds(x, z) · ∇φ(x, z)dx fZ(z)dz (7.27)

and
( f , φ)L2(D;IZ)

:=
∫

IZ

∫
D

f (x, z)φ(x, z)dx fZ(z)dz . (7.28)

For practical reasons, the diffusion coefficient k(x, z) and the load coefficient f (x, z) are
assumed to be truncated KLE, although the analysis can be generalized Ivo Babuška
and Chatzipantelidis, 2002, e.g. PCE could be used instead Ivo Babuška, Raúl Tempone,
et al., 2004. Thus, by assumption 1 the diffusion coefficient is bounded, i.e. Ivo Babuška
and Chatzipantelidis, 2002; Ivo Babuška, Raúl Tempone, et al., 2004; Deb et al., 2001:

k(x, z) ∈ [kmin, kmax] ∀(x, y) ∈ ¯D× IZ . (7.29)

7.5 A Priori Error Estimation

Now, the h-p a priori error estimation adopted from Ivo Babuška, Raúl Tempone, et al.
(2004) for isogeometric basis function is proposed - the case for maximal-smooth splines
is treated. The thoroughly introduced spaces and estimations from chapter 3 for both
the deterministic and the stochastic case are now proving to be an advantage. Built on
the foundations of section 3.2, proposition 7.3.1 is structurally identical to theorem 3.1
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7 Stochastic Galerkin Isogeometric Analysis

in Ivo Babuška, Raúl Tempone, et al., 2004. Thus, the corresponding error estimates
for polynomials and splines, can be easily substituted. In the following, proposition
5.1 and theorem 5.1 from Ivo Babuška, Raúl Tempone, et al. (2004) are rewritten for
the isogeometric case. Since the random quantity Z in SGIGA is always an uniformly
distributed random vector, the conditions on the density function are satisfied.

Theorem 7.5.1. Let u be the solution of problem (7.11) and uds ∈ Vhd,0⊗S
ps
hs

be the h− p− k-
SGIGA approximation of u defined in (7.26). If fZ ∈ L∞, then for l = 0, 1 it holds

‖E[u(·, Z)]− E[uds(·, Z)]‖
‖k fZ‖L∞(IZ×D)

≤ C

(
h2−l

d +
ds

∑
i=1

(
ci
)2−l(ciri

)(2−l)psi

)
(7.30)

with
ci(hsi , psi) :=

2ehsi
eπ

psi+1 + 4hsi

(7.31)

and

ri :=
√

λi‖
k̂i(x)

k
‖L∞(D; IZ) , (7.32)

where λi and k̂i(x) are the eigenvalues and -functions of the KLE of the diffusivity field k.
The constant C depends on the domain D, load coefficient f , and diffusion coefficient k, and
is independent of deterministic (spatial) grid size hd, stochastic (spectral) grid size hs, and
stochastic (spectral) order ps.

Proof. Following the proof in Ivo Babuška, Raúl Tempone, et al. (2004, theorem 5.1)
together with proposition 7.3.1, the adjusted spline estimation, results in Eq. 7.30 -
attention was paid to ensure compatibility.

The a priori error estimation assists in choosing the initial parameters for constructing
the splines chaos that approximate the stochastic solution. Especially, this is extremely
useful for more complex computational models. In general, the question ’which adjust-
ment is most appropriate for the problem posed’ is unsettled for spline approximations due to
their versatility. In the context of this contribution, it has been demonstrated pertinently
that splines can efficiently approximate random functions in a wide variety of settings.
For the one problem, increasing the degree is the appropriate choice, while the other
problem is solved more efficiently by knot insertion. It was also shown that continuity
over element boundaries is valuable, as well as irregular grids by moving the inner
knots. However, determining a sharp approximation constant with respect to all the
flexibilities that splines have to offer is a challenging and open problem, which remains
the subject of current research Sande et al., 2019, 2020. Also the estimation used here
was found only recently Sande et al., 2020. In theorem 7.5.1, a simplified version from
the mentioned publication was actually used, which considers maximal-smooth splines
and provides an estimate for the simultaneous convergence of p and h. Consequently,
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a sharper estimation, say for h only, could be easily derived using the tools already
presented. Another point of interest would be the consideration of continuity in the
constant in Eq. (7.31).

Coming back to stochastic elliptic PDEs, theorem 7.5.1 can help to decide either an h- or
p-refinement is valuable and that for each stochastic dimension, respectively. Everything
that must be available for this is the KLE of the diffusion coefficient k(x, y) in order to
calculate ri, given in Eq. (7.32), for each stochastic dimension i = 1, . . . , ds. Assuming

ri is equal to one, Fig. (7.1) shows the computation of c
(psi+1)
i in terms of number of

refinements for psi and hsi . As can be seen by the slightly slanted ascent, there is a
preferred choice in each refinement step. Assuming the same effort, psi-refinement
is globally preferable to hsi-refinement here. Locally, this is different in each step. So
the strategy here seems to be after 4 psi-refinements, to perform hsi-refinement. In the
absence of decision tools like a priori error estimations, guessing would be mandatory
unless expert knowledge is available.
To reinforce the need for problem dependent a priori error estimation, consider Fig. 7.2.
Number of psi- and hsi-refinements are plotted against the coefficient of the simple
error estimation - see Eq. (3.43). The strategy analyst would rather follow the hsi-

Figure 7.1: A priori error estimation for stochastic elliptic PDEs. Number of psi -and hsi -refinements are

plotted against the error constant c
(psi+1)
i .
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7 Stochastic Galerkin Isogeometric Analysis

Figure 7.2: Number of psi -and hsi -refinements are plotted against the coefficient of the simple error
estimation Eq. (3.43).

refinement in this particular case. This manifests, as well as the many examples in this
thesis, refinement strategies cannot be solved in general, but depend on the problem
structure and must be decided on a case-by-case basis to achieve highest efficiency. For
elliptic problems with random coefficients, the proven error estimation contributes to
a more efficient solution procedure in the framework of the new stochastic Galerkin
isogeometric analysis.
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8 Summary and Conclusions

The present work intends the rigorous development of spline chaos for the purpose
of a more efficient stochastic analysis. In this context, the method augments the well-
established framework of Wiener-Askey polynomial chaos expansions with the primary
goal of uncertainty analysis in practical applications, i.e. the mathematical properties of
spline chaos are investigated. In addition, the methodology is applied to the representa-
tion of random quantities and solution of various differential equations subjected to
different random sources. The main results can be summarized as follows:

• The multidimensional spline chaos for representing stochastic processes has been
rigorously introduced, as well as strong convergence proved according to the
theorem of Cameron and Martin (1947). For this purpose the space of polynomials
Pd

p of the Wiener-Askey chaos is extended to the space of splines Sp.
• A detailed construction procedure of the one-dimensional spline chaos for the

determination of the coefficients was presented. Furthermore, weak convergence
was shown, which justifies the general use for practical applications.

• Several random variables are approximated by different chaos expansions and are
juxtaposed with each other. It could be shown by numerical examples that spline
chaos is a generalization of the Legendre chaos, and thus corresponds to uniform
distribution, leading to optimal convergence rates, i.e. exponential.

• The advantage of spline chaos lies in the flexibility of adapting the order, number
of stochastic elements, and continuity over element boundaries, which can be
quite powerful, especially if the underlying distribution is not specified.

• Afterwards, the accuracy of spline chaos was intensively studied. On the one
hand, the connectivity to the uniform distribution could be confirmed. On the
other hand, the versatile examples show that the B-spline chaos is competitive by
goal-oriented configuration despite Gaussian input. In particular, it could be noted
that the B-spline chaos performs well where the Hermite suffers and vice versa.
This has also been shown for multi-dimensional random vectors, and applies in
particular to the stability of the computation of higher moments. The realization
of a stationary Gaussian process by B-spline chaos was also presented.

• It has been found that the smoothness property of B-spline basis functions im-
proves significantly the efficiency when decomposing the random space, which
comes to a greater extent if the dimensionality is increased.

• The spline chaos was applied in order to solve stochastic differential equations
using a Galerkin type approach. A general procedure of the stochastic Galerkin
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method (SG) was presented. In- and Output randomness was modeled by B-spline
chaos.

• Then, a stochastic ordinary differential equation with uniform random input
was treated. Convergence rates of Legendre, Hermite, and B-spline chaos were
evaluated by comparing mean and variance with the exact solution. It was found
that, similar to multi-element chaos expansions, the B-spline chaos is suitable
for long-term integration problems. Furthermore, it was confirmed that it is a
generalization of the multi-element Legendre chaos and is more efficient due to
the continuity property over stochastic elements.

• Two examples from the field of stochastic mechanics with one- and multi-dimensional
random input type were considered and h-p-convergence were demonstrated.
Moreover, the superiority of spline chaos over multi-element Legendre chaos was
confirmed due to a higher accuracy with a lower number of basis functions.

• A new method to solve stochastic elliptic boundary value problems (BVP) was
rigorously introduced, namely stochastic Galerkin isogeometric analysis (SGIGA).
A general procedure was presented were the same function describing the geome-
try are used to approximate the spatial and stochastic space. The aforementioned
spline chaos is involved. The problem was transformed in a multi-parametric
deterministic BVP. Note, the method was derived for, but is far from limited to,
elliptic BVPs.

• A first sharp a priori error estimation of the mean solution for stochastic elliptic
problems for SGIGA was derived. This assists in the efficient use of splines when
representing stochastic quantities.

• The method allows h− p− k refinement and can thus surpass the classical polyno-
mial approach. It takes advantage of the fact that smoother splines lead to higher
accuracy per degree of freedom.

All shown applications were extensively validated by comparing spline chaos to exact
solutions if known, or results from Monte Carlo simulations. On the one hand, this
thesis supports the statement that existing PC expansions may fail or converge poorly.
On the other hand, it has been pointed out that spline chaos, with appropriately chosen
bases, provides significant enhancements and achieves exponential convergence. In
particular, for certain problems such as long-term integration, which has already been
demonstrated, but also for stochastic discontinuities, sharp non-linearities, abrupt slope
changes, or bifurcations, this could be of significant value Stefanou, 2009.
In general, polynomial chaos is shown to be highly efficient compared to sampling
methods, in many cases, by two to three orders Xiu, 2010, which justifies the general
proliferation of new non-sampling methods such as spline chaos. However, it is a new
concept and there remain some open issues. We mention only the most important of
them here:

• Like many other numerical methods, spline chaos suffers from the ’curse of
dimensionality’. As the dimensionality increases, the number of basis functions
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increases rapidly and so do the computational efforts - the efficiency decreases
drastically for high dimensional expansions. Sparse spline chaos could be an
answer and are currently being investigated. Thereby, the bases that contribute
the most are identified and the rest are neglected. But other dimension reduction
techniques could be relevant, too.

• Exploiting the role of quadrature formulas has turned out to be very promising.
This is underlined by the intensive research in the deterministic field and in
efficient spline evaluation in general Giancarlo Sangalli and Tani, 2018. In fact,
numerical examples, investigated by the author, have already shown that spline
chaos and Hermite chaos provide the same approximation quality for Gaussian
inputs if the quadrature points are adjusted in the former case. This is more
noteworthy, as spline chaos is not optimized for Gaussian random variables,
whereas the Hermite chaos corresponds to them.

• Beta distributions, from whose specialization the uniform distribution emerges,
can be a reasonable distribution for parameters due to the limited definition range.
An investigation whether there is an extension of the spline chaos, so that it
corresponds with the beta distribution, would be interesting.

• Broaden the B-Spline approximation to Non-Uniform Rational B-Splines (NURBS)
- commonly used in computer aided design (CAD) and IGA. This may lead to
further improvement through increased flexibility and consequently to a reduction
in the degrees of freedom.

• Restoring the orthogonality by constructing a dual basis of Bi(u) Bellucci, 2014,
i.e. build orthogonal functions Ψj,p, j = 1, . . . , N, such that

EX(Ni(u)ψj,p(u)) = 0 for i, j = 1, . . . , N i 6= j .

A different approach can be found in the work of Sharif Rahman (2020).
• To let the full potential of spline chaos unfold, it is necessary to clarify exactly

which problems can be solved, where polynomials fail. From a current perspective,
this is the case where more complex stochastic fields can no longer be well
represented via conventional distributions.

In conclusion, B-spline chaos has been shown to be a very promising tool for uncertainty
quantification in real applications, as many of the examples in this thesis have demon-
strated. From a historical perspective, the long-term goal may be a general spline chaos
with sparse structure. The development from Hermite space, over general polynomial
spaces to B-spline space indicates this. However, it remains a new concept, and much
more research efforts are needed to further exploit its potential.
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Babuŝka, Ivo, Tempone, Raúl, and Zouraris, Georgios E. (2005). “Solving elliptic bound-
ary value problems with uncertain coefficients by the finite element method: The
stochastic formulation”. In: Computer Methods in Applied Mechanics and Engineering
194.12-16, pp. 1251–1294. issn: 00457825. doi: 10.1016/j.cma.2004.02.026 (cit. on
p. 103).

Babuška, Ivo, Tempone, Raúl, and Zouraris, Georgios E. (2004). “Galerkin Finite Ele-
ment Approximations of Stochastic Elliptic Partial Differential Equations”. In: SIAM
Journal on Numerical Analysis 42.2, pp. 800–825. issn: 0036-1429. doi: 10 . 1137 /
S0036142902418680 (cit. on pp. 79, 103, 105–107, 109, 110).

117

https://doi.org/10.1016/J.CMA.2012.03.026
https://doi.org/10.1016/J.CMA.2012.03.026
https://doi.org/10.1016/S0898-1221(99)00117-0
https://doi.org/10.1016/S0045-7825(02)00354-7
https://linkinghub.elsevier.com/retrieve/pii/S0045782502003547
https://doi.org/10.1016/j.cma.2004.02.026
https://doi.org/10.1137/S0036142902418680
https://doi.org/10.1137/S0036142902418680


Bibliography

Bazilevs, Y, Beirão Da Veiga, L., Cottrell, J A, Hughes, T. J.R., and Sangalli, G (2006).
“Isogeometric analysis: Approximation, stability and error estimates for h-refined
meshes”. In: Mathematical Models and Methods in Applied Sciences 16.7, pp. 1031–1090.
issn: 02182025. doi: 10.1142/S0218202506001455 (cit. on pp. 25, 39, 41–43, 45, 108).

Bazilevs, Y., Calo, V. M., Hughes, T. J R, and Zhang, Y. (2008). “Isogeometric fluid-
structure interaction: Theory, algorithms, and computations”. In: Computational Me-
chanics 43.1, pp. 3–37. issn: 01787675. doi: 10.1007/s00466-008-0315-x (cit. on
p. 4).

Beck, Joakim, Tamellini, Lorenzo, and Tempone, Raúl (2019). “IGA-based multi-index
stochastic collocation for random PDEs on arbitrary domains”. In: Computer Methods
in Applied Mechanics and Engineering 351, pp. 330–350. issn: 00457825. doi: 10.1016/j.
cma.2019.03.042. arXiv: 1810.01661 (cit. on pp. 3, 4).

Beck, Joakim, Tempone, Raul, Nobile, Fabio, and Tamellini, Lorenzo (2012). “On the
optimal polynomial approximation of stochastic PDEs by Galerkin and collocation
methods”. In: Mathematical Models and Methods in Applied Sciences 22.09, p. 1250023

(cit. on p. 3).

Beckmann, Petr (1973). Orthogonal polynomials for engineers and physicists. Golem Press,
Boulder, Colorado (cit. on p. 25).

Bellman, Richard (1966). “Dynamic programming”. In: Science 153.3731, pp. 34–37 (cit.
on p. 3).

Bellucci, Michael A. (2014). “On the explicit representation of orthonormal Bernstein
Polynomials”. In: arXiv: 1404.2293 (cit. on pp. 31, 115).

Boor, Carl de (1972). “On calculating with B-splines”. In: Journal of Approximation Theory
6.1, pp. 50–62. doi: 10.1016/0021-9045(72)90080-9 (cit. on p. 37).

Bressan, Andrea and Sande, Espen (2019). “Approximation in FEM, DG and IGA: a
theoretical comparison”. In: Numerische Mathematik 143.4, pp. 923–942 (cit. on p. 44).

Cameron, R. H. and Martin, W. T. (1947). “The Orthogonal Development of Non-Linear
Functionals in Series of Fourier-Hermite Functionals”. In: The Annals of Mathematics
48.2, p. 385. issn: 0003486X. doi: 10.2307/1969178 (cit. on pp. 50, 55, 56, 113).

Cheney, Elliott Ward (1966). Introduction to approximation theory. McGraw-Hill (cit. on
p. 33).

Chihara, Theodore S (2014). An Introduction to Orthogonal Polynomials. Courier Corpora-
tion (cit. on pp. 25, 26).

Cottrell, J.A., Evans, J.A., Lipton, S., Scott, M.A., and Sederberg, T.W. (2010). “Isogeomet-
ric analysis using T-splines”. In: Computer Methods in Applied Mechanics and Engineering
199.5-8, pp. 229–263. issn: 0045-7825. doi: 10.1016/J.CMA.2009.02.036 (cit. on p. 4).

118

https://doi.org/10.1142/S0218202506001455
https://doi.org/10.1007/s00466-008-0315-x
https://doi.org/10.1016/j.cma.2019.03.042
https://doi.org/10.1016/j.cma.2019.03.042
http://arxiv.org/abs/1810.01661
http://arxiv.org/abs/1404.2293
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.2307/1969178
https://doi.org/10.1016/J.CMA.2009.02.036


8

Bibliography

Cottrell, J.A., Reali, A., and Bazilevs, Y. (2006). “Isogeometric analysis of structural
vibrations”. In: Computer Methods in Applied Mechanics and Engineering 195.41-43,
pp. 5257–5296. issn: 0045-7825. doi: 10.1016/J.CMA.2005.09.027 (cit. on p. 4).

Courant, Richard and Hilbert, David (2008). Methods of Mathematical Physics: Partial
Differential Equations. John Wiley & Sons (cit. on p. 34).

COX, M. G. (1972). “The Numerical Evaluation of B-Splines”. In: IMA Journal of Applied
Mathematics 10.2, pp. 134–149. doi: 10.1093/imamat/10.2.134 (cit. on p. 37).

Da Veiga, L Beirao, Buffa, Annalisa, Rivas, Judith, and Sangalli, Giancarlo (2011). “Some
estimates for h–p–k-refinement in isogeometric analysis”. In: Numerische Mathematik
118.2, pp. 271–305 (cit. on p. 36).

Da Veiga, L Beirao, Buffa, Annalisa, Sangalli, Giancarlo, and Vázquez, Rafael (2014).
“Mathematical analysis of variational isogeometric methods”. In: Acta Numerica 23,
p. 157 (cit. on pp. 36, 45).

Da Veiga, L Beirao, Cho, Durkbin, and Sangalli, Giancarlo (2012). “Anisotropic NURBS
approximation in isogeometric analysis”. In: Computer Methods in Applied Mechanics
and Engineering 209, pp. 1–11 (cit. on pp. 36, 45).

Davis, Philip J and Rabinowitz, Philip (2007). Methods of numerical integration. Courier
Corporation (cit. on p. 3).

Deb, Manas K., Babuška, Ivo M., and Oden, J.Tinsley (2001). “Solution of stochastic
partial differential equations using Galerkin finite element techniques”. In: Computer
Methods in Applied Mechanics and Engineering 190.48, pp. 6359–6372. issn: 0045-7825.
doi: 10.1016/S0045-7825(01)00237-7 (cit. on pp. 105, 106, 109).

Deodatis, George (1991). “Weighted integral method. I: stochastic stiffness matrix”. In:
Journal of Engineering Mechanics 117.8, pp. 1851–1864 (cit. on p. 52).

Deodatis, George and Shinozuka, Masanobu (1991). “Weighted integral method. II:
response variability and reliability”. In: Journal of Engineering Mechanics 117.8, pp. 1865–
1877 (cit. on p. 52).

Devroye, Luc (1986). Non-Uniform Random Variate Generation. Springer New York. doi:
10.1007/978-1-4613-8643-8 (cit. on p. 16).

Ding, Chensen, Cui, Xiangyang, Deokar, Rohit. R., Li, Guangyao, Cai, Yong, and Tamma,
Kumar. K. (2018). “Modeling and simulation of steady heat transfer analysis with ma-
terial uncertainty: Generalized <i>n</i> th order perturbation isogeometric stochastic
method”. In: Numerical Heat Transfer, Part A: Applications 74.9, pp. 1565–1582. issn:
1040-7782. doi: 10.1080/10407782.2018.1538296. url: https://www.tandfonline.
com/doi/full/10.1080/10407782.2018.1538296 (cit. on p. 4).

119

https://doi.org/10.1016/J.CMA.2005.09.027
https://doi.org/10.1093/imamat/10.2.134
https://doi.org/10.1016/S0045-7825(01)00237-7
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1080/10407782.2018.1538296
https://www.tandfonline.com/doi/full/10.1080/10407782.2018.1538296
https://www.tandfonline.com/doi/full/10.1080/10407782.2018.1538296


Bibliography

Ding, Chensen, Deokar, Rohit R., Cui, Xiangyang, Li, Guangyao, Cai, Yong, and Tamma,
Kumar K. (2019). “Proper orthogonal decomposition and Monte Carlo based iso-
geometric stochastic method for material, geometric and force multi-dimensional
uncertainties”. In: Computational Mechanics 63.3, pp. 521–533. issn: 01787675. doi:
10.1007/s00466-018-1607-4 (cit. on p. 4).

Ding, Chensen, Deokar, Rohit R., Ding, Yanjun, Li, Guangyao, Cui, Xiangyang, Tamma,
Kumar K., and Bordas, Stéphane P.A. (2019). “Model order reduction accelerated
Monte Carlo stochastic isogeometric method for the analysis of structures with high-
dimensional and independent material uncertainties”. In: Computer Methods in Applied
Mechanics and Engineering 349, pp. 266–284. issn: 00457825. doi: 10.1016/j.cma.2019.
02.004 (cit. on p. 4).

Ding, Chensen, Tamma, Kumar K., Cui, Xiangyang, Ding, Yanjun, Li, Guangyao, and
Bordas, Stéphane P.A. (2020). “An nth high order perturbation-based stochastic
isogeometric method and implementation for quantifying geometric uncertainty
in shell structures”. In: Advances in Engineering Software 148. issn: 18735339. doi:
10.1016/j.advengsoft.2020.102866. url: https://www.sciencedirect.com/
science/article/pii/S096599781931186X (cit. on p. 4).

Ding, Chensen, Tamma, Kumar K., Lian, Haojie, Ding, Yanjun, Dodwell, Timothy J.,
and Bordas, Stéphane P.A. (2021). “Uncertainty quantification of spatially uncorre-
lated loads with a reduced-order stochastic isogeometric method”. In: Computational
Mechanics. issn: 14320924. doi: 10.1007/s00466-020-01944-9 (cit. on p. 5).

Ditlevsen, Ove and Madsen, Henrik O (1996a). Structural reliability methods. Vol. 178.
Wiley New York (cit. on p. 2).

Ditlevsen, Ove and Madsen, Henrik O (1996b). Structural reliability methods. Vol. 178.
Wiley New York (cit. on p. 52).

Dsouza, Shaima M., Varghese, Tittu Mathew, Budarapu, P. R., and Natarajan, S. (2020).
“A non-intrusive stochastic isogeometric analysis of functionally graded plates with
material uncertainty”. In: Axioms 9.3. issn: 20751680. doi: 10.3390/AXIOMS9030092.
url: https://www.mdpi.com/784258 (cit. on p. 5).

Engel, David Douglas (1982). The multiple stochastic integral. Vol. 265. American Mathe-
matical Soc. (cit. on p. 51).

Evans, John A, Bazilevs, Yuri, Babuška, Ivo, and Hughes, Thomas JR (2009). “n-
Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite
element method”. In: Computer Methods in Applied Mechanics and Engineering 198.21-26,
pp. 1726–1741 (cit. on p. 44).

Farin, Gerald E. (1995). NURB Curves and Surfaces: From Projective Geometry to Practical
Use. USA: A. K. Peters, Ltd. isbn: 1568810385 (cit. on p. 40).

120

https://doi.org/10.1007/s00466-018-1607-4
https://doi.org/10.1016/j.cma.2019.02.004
https://doi.org/10.1016/j.cma.2019.02.004
https://doi.org/10.1016/j.advengsoft.2020.102866
https://www.sciencedirect.com/science/article/pii/S096599781931186X
https://www.sciencedirect.com/science/article/pii/S096599781931186X
https://doi.org/10.1007/s00466-020-01944-9
https://doi.org/10.3390/AXIOMS9030092
https://www.mdpi.com/784258


8

Bibliography

Farouki, Rida T. (2000). “Legendre–Bernstein basis transformations”. In: Journal of
Computational and Applied Mathematics 119, pp. 145–160. issn: 03770427. doi: 10.1016/
S0377-0427(00)00376-9 (cit. on pp. 31, 65).

Feller, William (1968). An introduction to probability theory and its applications. 3rd Edition.
John Wiley & Sons (cit. on p. 9).

Field, R. V. and Grigoriu, M. (2004). “On the accuracy of the polynomial chaos ap-
proximation”. In: Probabilistic Engineering Mechanics. Vol. 19. Elsevier, pp. 65–80. doi:
10.1016/j.probengmech.2003.11.017 (cit. on pp. 55, 67–70, 81, 82, 85, 96).

Funaro, Daniele (2008). Polynomial approximation of differential equations. Vol. 8. Springer
Science & Business Media (cit. on p. 34).

Gardiner, Crispin W et al. (1985). Handbook of stochastic methods. Vol. 3. Springer Berlin
(cit. on p. 22).

Gentle, James E (2006). Random number generation and Monte Carlo methods. Springer
Science & Business Media (cit. on pp. 15, 16).

Ghanem, R. and Spanos, P.D. (1993). “A stochastic Galerkin expansion for nonlinear
random vibration analysis”. In: Probabilistic Engineering Mechanics 8.3-4, pp. 255–264.
issn: 0266-8920. doi: 10.1016/0266-8920(93)90019-R (cit. on p. 52).

Ghanem, R.G. and Spanos, P.D. (2003). Stochastic Finite Elements: A Spectral Approach.
revised. Mineola, New York: Dover Publications, INC., p. 222 (cit. on pp. 3, 47–51, 55,
60, 103).

Ghanem, Roger (1999). “Ingredients for a general purpose stochastic finite elements
implementation”. In: Computer Methods in Applied Mechanics and Engineering 168.1-4,
pp. 19–34 (cit. on p. 51).

Ghanem, Roger and Spanos, P D (1990). “Polynomial Chaos in Stochastic Finite El-
ements”. In: Journal of Applied Mechanics 57.1, pp. 197–202. issn: 0021-8936. doi:
10.1115/1.2888303 (cit. on p. 55).

Gómez, Héctor, Calo, Victor M, Bazilevs, Yuri, and Hughes, Thomas JR (2008). “Isoge-
ometric analysis of the Cahn–Hilliard phase-field model”. In: Computer methods in
applied mechanics and engineering 197.49-50, pp. 4333–4352 (cit. on p. 4).

Gould, Phillip L (1999). Introduction to Linear Elasticity. Springer-Verlag (cit. on p. 98).

Grigoriu, Mircea (1995). Applied non-gaussian processes: Examples, theory, simulation, linear
random vibration, and MATLAB solutions(Book). Englewood Cliffs, NJ: Prentice Hall,
Inc, 1995. (cit. on pp. 22, 81).

Grigoriu, Mircea (2003). Stochastic Calculus: Applications in Science and Engineering.
Birkhäuser, p. 774. isbn: 0-8176-4242-0 (cit. on pp. 9, 21–23, 47–49, 57).

121

https://doi.org/10.1016/S0377-0427(00)00376-9
https://doi.org/10.1016/S0377-0427(00)00376-9
https://doi.org/10.1016/j.probengmech.2003.11.017
https://doi.org/10.1016/0266-8920(93)90019-R
https://doi.org/10.1115/1.2888303


Bibliography

Grigoriu, Mircea (2006). “Evaluation of Karhunen–Loève, Spectral, and Sampling Repre-
sentations for Stochastic Processes”. In: Journal of Engineering Mechanics 132.2, pp. 179–
189. issn: 0733-9399. doi: 10.1061/(ASCE)0733-9399(2006)132:2(179) (cit. on p. 70).

Haji-Ali, Abdul-Lateef, Nobile, Fabio, Tempone, Raúl, and Wolfers, Sören (2020). “Mul-
tilevel weighted least squares polynomial approximation”. In: ESAIM: Mathematical
Modelling and Numerical Analysis 54.2, pp. 649–677 (cit. on p. 3).

Hastings Jr, Cecil, Wayward, Jeanne T, and Wong Jr, James P (2015). Approximations for
digital computers. Princeton University Press (cit. on p. 16).

Hien, T D and Lam, N N (2016). “Investigation into the effect of random load on the
variability of response of plate by using Monte Carlo simulation”. In: International
Journal of Civil Engineering and Technology 7.5, pp. 169–176. issn: 0976-6316. url:
http://www.iaeme.com/IJCIET/index.asp169http://www.iaeme.com/IJCIET/
issues.asp?JType=IJCIET&VType=7&IType=5http://www.iaeme.com/IJCIET/
issues.asp?JType=IJCIET&VType=7&IType=5 (cit. on p. 4).

Hien, Ta Duy and Nguyen, Phu Cuong (2020). “Perturbation based stochastic isoge-
ometric analysis for bending of functionally graded plates with the randomness of
elastic modulus”. In: Latin American Journal of Solids and Structures 17.7, pp. 1–19. issn:
16797825. doi: 10.1590/1679-78256066. url: https://www.scielo.br/j/lajss/a/
6KDXj5b4ZMfpLGcKMYyFXzS/abstract/?lang=en (cit. on p. 4).

Hien, Ta Duy and Noh, Hyuk Chun (2017). “Stochastic isogeometric analysis of free vi-
bration of functionally graded plates considering material randomness”. In: Computer
Methods in Applied Mechanics and Engineering 318, pp. 845–863. issn: 00457825. doi:
10.1016/j.cma.2017.02.007 (cit. on p. 4).

Hörmann, Wolfgang, Leydold, Josef, and Derflinger, Gerhard (2013). Automatic nonuni-
form random variate generation. Springer Science & Business Media (cit. on p. 16).

Hughes, T.J.R., Cottrell, J.A., and Bazilevs, Y. (2005). “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement”. In: Computer Methods
in Applied Mechanics and Engineering 194.39, pp. 4135–4195. issn: 0045-7825. doi:
10.1016/j.cma.2004.10.008 (cit. on pp. 3, 40, 98).

Itô, K. (1951). “Multiple Wiener Integral”. In: Journal of the Mathematical Society of Japan
2.1 (cit. on p. 51).

Itô, Kiyosi et al. (1984). An Introduction to Probability Theory. Cambridge University Press
(cit. on p. 9).

Jackson, Dunham (2012). Fourier series and orthogonal polynomials. Courier Corporation
(cit. on p. 25).

Jahanbin, Ramin and Rahman, S. (2021). “Isogeometric methods for karhunen-loÈve
representation of random fields on arbitrary multipatch domains”. In: International

122

https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(179)
http://www.iaeme.com/IJCIET/index.asp169http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5
http://www.iaeme.com/IJCIET/index.asp169http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5
http://www.iaeme.com/IJCIET/index.asp169http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5
https://doi.org/10.1590/1679-78256066
https://www.scielo.br/j/lajss/a/6KDXj5b4ZMfpLGcKMYyFXzS/abstract/?lang=en
https://www.scielo.br/j/lajss/a/6KDXj5b4ZMfpLGcKMYyFXzS/abstract/?lang=en
https://doi.org/10.1016/j.cma.2017.02.007
https://doi.org/10.1016/j.cma.2004.10.008


8

Bibliography

Journal for Uncertainty Quantification 11.3, pp. 27–57. issn: 21525099. doi: 10.1615/Int.
J.UncertaintyQuantification.2020035185. url: https://www.dl.begellhouse.
com/journals/52034eb04b657aea,6849ac9f50c363c1,54f797055666cd22.html (cit.
on p. 4).

Jahanbin, Ramin and Rahman, Sharif (2020). “Stochastic isogeometric analysis in lin-
ear elasticity”. In: Computer Methods in Applied Mechanics and Engineering 364. issn:
00457825. doi: 10.1016/j.cma.2020.112928. url: https://www.sciencedirect.com/
science/article/pii/S0045782520301110 (cit. on p. 5).

Jakeman, John D, Franzelin, Fabian, Narayan, Akil, Eldred, Michael, and Plfüger, Dirk
(2019). “Polynomial chaos expansions for dependent random variables”. In: Computer
Methods in Applied Mechanics and Engineering 351, pp. 643–666 (cit. on p. 47).

Kaintura, Arun, Dhaene, Tom, and Spina, Domenico (2018). “Review of polynomial
chaos-based methods for uncertainty quantification in modern integrated circuits”.
In: Electronics 7.3, p. 30 (cit. on p. 52).

Karatzas, Ioannis and Shreve, Steven (2014). Brownian motion and stochastic calculus.
Vol. 113. Springer (cit. on pp. 9, 22).

Karhunen, Kari (1947). “Über lineare Methoden in der Wahrscheinlichkeitsrechnung”.
In: Amer. Acad. Sci. 37.I, pp. 3–97 (cit. on p. 49).

Knuth, Donald E (1998). The art of computer programming: Volume 3: Sorting and Searching.
Addison-Wesley Professional (cit. on p. 15).

Koekoek, Roelof, Lesky, Peter A, and Swarttouw, René F (2010). Hypergeometric orthogonal
polynomials and their q-analogues. Springer Science & Business Media (cit. on p. 26).

Koekoek, Roelof and Swarttouw, Rene F (1996). “The Askey-scheme of hypergeometric
orthogonal polynomials and its q-analogue”. In: arXiv preprint math/9602214 (cit. on
p. 26).

L’Ecuyer, Pierre (1994). “Uniform random number generation”. In: Annals of Operations
Research 53.1, pp. 77–120 (cit. on p. 15).

Lemaire, Maurice (2013). Structural reliability. John Wiley & Sons (cit. on p. 2).

Li, Keyan, Gao, Wei, Wu, Di, Song, Chongmin, and Chen, Taicong (2018). “Spectral
stochastic isogeometric analysis of linear elasticity”. In: Computer Methods in Applied
Mechanics and Engineering 332, pp. 157–190. issn: 00457825. doi: 10.1016/j.cma.2017.
12.012 (cit. on pp. 4, 50).

Li, Keyan, Wu, Di, and Gao, Wei (2018). “Spectral stochastic isogeometric analysis for
static response of FGM plate with material uncertainty”. In: Thin-Walled Structures
132, pp. 504–521. issn: 02638231. doi: 10.1016/j.tws.2018.08.028 (cit. on pp. 4, 50).

123

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020035185
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020035185
https://www.dl.begellhouse.com/journals/52034eb04b657aea,6849ac9f50c363c1,54f797055666cd22.html
https://www.dl.begellhouse.com/journals/52034eb04b657aea,6849ac9f50c363c1,54f797055666cd22.html
https://doi.org/10.1016/j.cma.2020.112928
https://www.sciencedirect.com/science/article/pii/S0045782520301110
https://www.sciencedirect.com/science/article/pii/S0045782520301110
https://doi.org/10.1016/j.cma.2017.12.012
https://doi.org/10.1016/j.cma.2017.12.012
https://doi.org/10.1016/j.tws.2018.08.028


Bibliography

Li, Keyan, Wu, Di, and Gao, Wei (2019). “Spectral stochastic isogeometric analysis for
near stabity analysis of plate”. In: Computer Methods in Apped Mechanics and Engineering
352, pp. 1–31. issn: 00457825. doi: 10.1016/j.cma.2019.04.009 (cit. on pp. 4, 50).

Li, Keyan, Wu, Di, Gao, Wei, and Song, Chongmin (2019). “Spectral stochastic isoge-
ometric analysis of free vibration”. In: Computer Methods in Applied Mechanics and
Engineering 350, pp. 1–27. issn: 00457825. doi: 10.1016/j.cma.2019.03.008 (cit. on
pp. 4, 50).

Liu, Wing Kam, Belytschko, Ted, and Mani, A (1986). “Random field finite elements”.
In: International journal for numerical methods in engineering 23.10, pp. 1831–1845 (cit. on
p. 52).

Liu, WK, Belytschko, T, and Mani, A (1986). “Probabilistic finite elements for nonlinear
structural dynamics”. In: Computer Methods in Applied Mechanics (cit. on p. 52).

Liu, Zhenyu, Yang, Minglong, Cheng, Jin, and Tan, Jianrong (2021). “A new stochas-
tic isogeometric analysis method based on reduced basis vectors for engineering
structures with random field uncertainties”. In: Applied Mathematical Modelling 89,
pp. 966–990. issn: 0307904X. doi: 10.1016/j.apm.2020.08.006. url: https://www.
sciencedirect.com/science/article/pii/S0307904X20304352 (cit. on p. 5).

Liu, Zhenyu, Yang, Minglong, Cheng, Jin, Wu, Di, and Tan, Jianrong (2020). “Stochastic
isogeometric analysis for the linear stability assessment of plate structures using a
Kriging enhanced Neural Network”. In: Thin-Walled Structures 157. issn: 02638231.
doi: 10.1016/j.tws.2020.107120. url: https://www.sciencedirect.com/science/
article/pii/S0263823120309940 (cit. on p. 5).

Liu, Zhenyu, Yang, Minglong, Cheng, Jin, Wu, Di, and Tan, Jianrong (2021). “Meta-model
based stochastic isogeometric analysis of composite plates”. In: International Journal
of Mechanical Sciences 194. issn: 00207403. doi: 10.1016/j.ijmecsci.2020.106194.
url: https://www.sciencedirect.com/science/article/pii/S0020740320342995
(cit. on p. 5).

Loève, Michel (1948). “Functions aleatoires du second ordre”. In: Processus stochastique
et mouvement Brownien, pp. 366–420 (cit. on p. 49).

Loève, Michel (1977). Probability Theory. 4th edition. Springer-Verlag, Berlin (cit. on
p. 49).

Luis, Alamilla-López Jorge (2015). “An Approximation to the Probability Normal
Distribution and its Inverse”. In: Ingeniería, Investigación y Tecnología 16.4, pp. 605–611.
issn: 1405-7743. doi: https://doi.org/10.1016/j.riit.2015.09.012 (cit. on p. 16).

Lüthen, Nora, Marelli, Stefano, and Sudret, Bruno (2021). “Sparse polynomial chaos
expansions: Literature survey and benchmark”. In: SIAM/ASA Journal on Uncertainty
Quantification 9.2, pp. 593–649 (cit. on pp. 3, 48).

124

https://doi.org/10.1016/j.cma.2019.04.009
https://doi.org/10.1016/j.cma.2019.03.008
https://doi.org/10.1016/j.apm.2020.08.006
https://www.sciencedirect.com/science/article/pii/S0307904X20304352
https://www.sciencedirect.com/science/article/pii/S0307904X20304352
https://doi.org/10.1016/j.tws.2020.107120
https://www.sciencedirect.com/science/article/pii/S0263823120309940
https://www.sciencedirect.com/science/article/pii/S0263823120309940
https://doi.org/10.1016/j.ijmecsci.2020.106194
https://www.sciencedirect.com/science/article/pii/S0020740320342995
https://doi.org/https://doi.org/10.1016/j.riit.2015.09.012


8

Bibliography

Mack, Chris A (2011). “Fifty years of Moore’s law”. In: IEEE Transactions on semiconductor
manufacturing 24.2, pp. 202–207 (cit. on p. 1).

Mika, Michal L, Hughes, Thomas JR, Schillinger, Dominik, Wriggers, Peter, and Hiem-
stra, René R (2021). “A matrix-free isogeometric Galerkin method for Karhunen–Loève
approximation of random fields using tensor product splines, tensor contraction and
interpolation based quadrature”. In: Computer Methods in Applied Mechanics and Engi-
neering 379, p. 113730 (cit. on pp. 4, 50).

Moore, Gordon (1965). “Moore’s law”. In: Electronics Magazine 38.8, p. 114 (cit. on p. 1).

Nguyen, HX, Hien, TD, Lee, J, And, H Nguyen-Xuan - Aerospace Science, and 2017,
Undefined (2017). “Stochastic buckling behaviour of laminated composite structures
with uncertain material properties”. In: Aerospace Science and Technology 66, pp. 274–283.
url: https://www.sciencedirect.com/science/article/pii/S1270963816305855
(cit. on p. 4).

Ogura, Hisanao (1972). “Orthogonal functionals of the Poisson process”. In: IEEE
Transactions on Information Theory 18.4, pp. 473–481 (cit. on p. 56).

Pavlack, Bruna, Paixão, Jessé, Da Silva, Samuel, Cunha Jr, Americo, and Garcıéa
Cava, David (2021). “Polynomial Chaos-Kriging metamodel for quantification of
the debonding area in large wind turbine blades”. In: Structural Health Monitoring,
p. 14759217211007956 (cit. on p. 52).

Petromichelakis, Ioannis, Psaros, Apostolos F, and Kougioumtzoglou, Ioannis A (2018).
“Stochastic response determination and optimization of a class of nonlinear elec-
tromechanical energy harvesters: A Wiener path integral approach”. In: Probabilistic
Engineering Mechanics 53, pp. 116–125 (cit. on p. 53).

Pinkus, Allan (2012). N-widths in Approximation Theory. Vol. 7. Springer Science &
Business Media (cit. on p. 36).

Rahman, Sharif (2018). “A polynomial chaos expansion in dependent random variables”.
In: Journal of Mathematical Analysis and Applications 464.1, pp. 749–775 (cit. on p. 47).

Rahman, Sharif (2020). “A spline chaos expansion”. In: SIAM/ASA Journal on Uncertainty
Quantification 8.1, pp. 27–57 (cit. on pp. 5, 115).

Rao, Malempati M and Swift, Randall J (2006a). Probability theory with applications.
Vol. 582. Springer Science & Business Media (cit. on p. 9).

Rao, Malempati M and Swift, Randall J (2006b). Probability theory with applications.
Vol. 582. Springer Science & Business Media (cit. on pp. 52, 103, 104).

Ripley, Brian D (2009a). Stochastic simulation. Vol. 316. John Wiley & Sons (cit. on p. 3).

Ripley, Brian D (2009b). Stochastic simulation. Vol. 316. John Wiley & Sons (cit. on p. 15).

125

https://www.sciencedirect.com/science/article/pii/S1270963816305855


Bibliography

Rosenblatt, Murray (1952). “Remarks on a multivariate transformation”. In: The annals
of mathematical statistics 23.3, pp. 470–472 (cit. on pp. 48, 104).

Ross, Sheldon M (1996). Stochastic Processes. 2nd Edition. John Wiley & Sons (cit. on
p. 22).

Sakamoto, Shigehiro and Ghanem, Roger (2002). “Polynomial Chaos Decomposition for
the Simulation of Non-Gaussian Nonstationary Stochastic Processes”. In: Journal of
Engineering Mechanics 128.2, pp. 190–201. issn: 0733-9399. doi: 10.1061/(ASCE)0733-
9399(2002)128:2(190) (cit. on p. 81).

Sande, Espen, Manni, Carla, and Speleers, Hendrik (2019). “Sharp error estimates for
spline approximation: Explicit constants, n-widths, and eigenfunction convergence”.
In: Mathematical Models and Methods in Applied Sciences 29.06, pp. 1175–1205 (cit. on
pp. 6, 36, 44, 45, 103, 110).

Sande, Espen, Manni, Carla, and Speleers, Hendrik (2020). “Explicit error estimates for
spline approximation of arbitrary smoothness in isogeometric analysis”. In: Numerische
Mathematik 144.4, pp. 889–929 (cit. on pp. 25, 36, 44, 45, 107, 110).

Sangalli, G., Hughes, T.J.R., Beirão da Veiga, L., Auricchio, F., and Reali, A. (2010).
“Isogeometric Collocation Methods”. In: Mathematical Models and Methods in Applied
Sciences 20.11, pp. 2075–2107. issn: 0218-2025. doi: 10.1142/s0218202510004878 (cit.
on p. 4).

Sangalli, Giancarlo and Tani, Mattia (2018). “Matrix-free weighted quadrature for a
computationally efficient isogeometric k-method”. In: Computer Methods in Applied
Mechanics and Engineering 338, pp. 117–133 (cit. on p. 115).

Schillinger, Dominik, Dedè, Luca, Scott, Michael A., Evans, John A., Borden, Michael
J., Rank, Ernst, and Hughes, Thomas J.R. (2012). “An isogeometric design-through-
analysis methodology based on adaptive hierarchical refinement of NURBS, immersed
boundary methods, and T-spline CAD surfaces”. In: Computer Methods in Applied
Mechanics and Engineering 249-252. Higher Order Finite Element and Isogeometric
Methods, pp. 116–150. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.
2012 . 03 . 017. url: https : / / www . sciencedirect . com / science / article / pii /
S004578251200093X (cit. on p. 4).

Schoutens, Wim (2012). Stochastic processes and orthogonal polynomials. Vol. 146. Springer
Science & Business Media (cit. on p. 26).

Schumaker, Larry (2007). Spline functions: Basic theory, third edition. Cambridge University
Press, pp. 1–582. doi: 10.1017/CBO9780511618994 (cit. on pp. 33, 37, 39, 43, 59).

Schwab, Christoph, Schwab, Ch, and Schwab, CH (1998). p-and hp-finite element methods:
Theory and applications in solid and fluid mechanics. Oxford University Press (cit. on
p. 45).

126

https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1142/s0218202510004878
https://doi.org/https://doi.org/10.1016/j.cma.2012.03.017
https://doi.org/https://doi.org/10.1016/j.cma.2012.03.017
https://www.sciencedirect.com/science/article/pii/S004578251200093X
https://www.sciencedirect.com/science/article/pii/S004578251200093X
https://doi.org/10.1017/CBO9780511618994


8

Bibliography

Schwab, Christoph and Todor, Radu Alexandru (2006). “Karhunen–Loève approximation
of random fields by generalized fast multipole methods”. In: Journal of Computational
Physics 217.1, pp. 100–122 (cit. on p. 50).

Spanos, P. D. and Ghanem, Roger (1989). “Stochastic Finite Element Expansion for
Random Media”. In: Journal of Engineering Mechanics 115.5, pp. 1035–1053. issn: 0733-
9399. doi: 10.1061/(ASCE)0733-9399(1989)115:5(1035) (cit. on pp. 3, 81).

Spanos, Pol D., Beer, Michael, and Red-Horse, John (2007). “Karhunen–Loéve Expansion
of Stochastic Processes with a Modified Exponential Covariance Kernel”. In: Journal of
Engineering Mechanics 133.7, pp. 773–779. issn: 0733-9399. doi: 10.1061/(ASCE)0733-
9399(2007)133:7(773) (cit. on p. 81).

Stefanou, George (2009). The stochastic finite element method: Past, present and future. doi:
10.1016/j.cma.2008.11.007 (cit. on pp. 49, 55, 70, 85, 114).

Sudret, B and Der Kiureghian, A (2000). “Stochastic finite element methods and reliabil-
ity. A state-of-the-art-report”. In: Technical Rep. UCB/SEMM-2000/08, Univ. of California,
Berkeley, CA November (cit. on p. 48).

Sudret, Bruno (2007). “Uncertainty propagation and sensitivity analysis in mechanical
models–Contributions to structural reliability and stochastic spectral methods”. In:
Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France 147

(cit. on pp. 1, 2).

Sun, Xiang, Pan, Xiaomin, and Choi, Jung-Il (2021). “Non-intrusive framework of
reduced-order modeling based on proper orthogonal decomposition and polynomial
chaos expansion”. In: Journal of Computational and Applied Mathematics 390, p. 113372

(cit. on p. 52).

Szegö, G. (1939). Orthogonal Polynomials. Vol. 23. 213. isbn: 9780821810231. doi: 10.1090/
coll/023 (cit. on p. 25).

Takacs, Stefan and Takacs, Thomas (2016). “Approximation error estimates and inverse
inequalities for B-splines of maximum smoothness”. In: Mathematical Models and
Methods in Applied Sciences 26.07, pp. 1411–1445 (cit. on p. 36).

Takada, Tsuyoshi (1990). “Weighted integral method in stochastic finite element analy-
sis”. In: Probabilistic Engineering Mechanics 5.3, pp. 146–156 (cit. on p. 52).

Tao, Tianyou, Wang, Hao, and Zhao, Kaiyong (2021). “Efficient simulation of fully
non-stationary random wind field based on reduced 2D hermite interpolation”. In:
Mechanical Systems and Signal Processing 150, p. 107265 (cit. on p. 49).

Timan, A F (1963). Theory of approximation of functions of a real variable. Pergamon Press,
Oxford (cit. on p. 33).

127

https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(773)
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(773)
https://doi.org/10.1016/j.cma.2008.11.007
https://doi.org/10.1090/coll/023
https://doi.org/10.1090/coll/023


Bibliography

Todd, J. (1963). Introduction to the constructive theory of functions. Birkhäuser Verlag, Basel
(cit. on p. 33).

Van Trees, Harry L (2004). Detection, estimation, and modulation theory, part I: detection,
estimation, and linear modulation theory. John Wiley & Sons (cit. on p. 50).

Wan, Xiaoliang and Karniadakis, George Em (2005). “An adaptive multi-element gener-
alized polynomial chaos method for stochastic differential equations”. In: Journal of
Computational Physics 209.2, pp. 617–642. issn: 0021-9991. doi: 10.1016/J.JCP.2005.
03.023 (cit. on pp. 89, 91).

Wang, Wenpei, Chen, Guohai, Yang, Dixiong, and Kang, Zhan (2019). “Stochastic
isogeometric analysis method for plate structures with random uncertainty”. In:
Computer Aided Geometric Design 74. issn: 01678396. doi: 10.1016/j.cagd.2019.
101772 (cit. on p. 4).

Wang, Zhiheng and Ghanem, Roger (2021). “An extended polynomial chaos expansion
for PDF characterization and variation with aleatory and epistemic uncertainties”. In:
Computer Methods in Applied Mechanics and Engineering 382, p. 113854 (cit. on p. 52).

Wiener, Norbert (1938). “The homogeneous chaos.” In: Amer. J. Math 60897.4, p. 936.
issn: 00029327. doi: 10.2307/2371268 (cit. on pp. 3, 50, 51).

Xiu, Dongbin (2010). Numerical Methods for Stochastic Computations: A Spectral Method
Approach. Princeton University Press, p. 142. isbn: 9780691142128 (cit. on pp. 25, 26,
32–35, 47, 48, 51, 55, 60, 61, 64, 89, 114).

Xiu, Dongbin and Karniadakis, George Em (2002). “The Wiener–Askey Polynomial
Chaos for Stochastic Differential Equations”. In: SIAM Journal on Scientific Computing
24.2, pp. 619–644. issn: 1064-8275. doi: 10.1137/S1064827501387826 (cit. on pp. 3, 26,
55–58, 61, 87).

Xiu, Dongbin and Karniadakis, George Em (2003). “Modeling uncertainty in flow
simulations via generalized polynomial chaos”. In: Journal of Computational Physics
187.1, pp. 137–167. issn: 0021-9991. doi: 10.1016/S0021-9991(03)00092-5 (cit. on
p. 56).

Zhang, Hongguan and Shibutani, Tadahiro (2019). “Development of stochastic isogeo-
metric analysis (SIGA) method for uncertainty in shape”. In: International Journal for
Numerical Methods in Engineering 118.1, pp. 18–37. issn: 10970207. doi: 10.1002/nme.
6008. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6008 (cit. on
p. 4).

Zhang, Jian, Yue, Xinxin, Qiu, Jiajia, Zhuo, Lijun, and Zhu, Jianguo (2021). “Sparse
polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for
global sensitivity analysis”. In: Mechanical Systems and Signal Processing 157, p. 107727

(cit. on p. 52).

128

https://doi.org/10.1016/J.JCP.2005.03.023
https://doi.org/10.1016/J.JCP.2005.03.023
https://doi.org/10.1016/j.cagd.2019.101772
https://doi.org/10.1016/j.cagd.2019.101772
https://doi.org/10.2307/2371268
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1016/S0021-9991(03)00092-5
https://doi.org/10.1002/nme.6008
https://doi.org/10.1002/nme.6008
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6008


Work History

Research Assistant

Christoph

Eckert

Contact

Skills

Applied mathematics

Uncertainty Quantification

Isogeometric Analysis

Object-orientated

programming and modeling

Mixed dimensional problems

in structural analysis

Evolutionary algorithms (AI)

Software

Java

Phython

JavaScript

Julia

C/C++

MATLAB

Proficient Research Assistant skilled in performing uncertainty

quantification to facilitate research for efficient representation and

analysis of stochastic fields in partial differential equations. Versed in

completing diverse range of computational research tasks under strict

schedules. Familiar with documentation requirements and bringing an

organized and precision-minded approach.

Research Assistant

Institute for Risk and Reliability, Hannover, Germany

Derived new methods and generated object-

orientated frameworks for performing stochastic

analysis.

Attended seminars, symposiums and international

conferences to improve overall knowledge and

present of own research progresses including one

key note.

Demonstrated strong writing skills to published one

paper plus two in preparation, eleven conference

papers, two posters.

2016-10 -

Current

Teaching Assistant

Institute for Computer Science in Civil Engineering,

Hannover

Lectureship for 'Database systems for engineers', and

'Isogeometric Analysis'.

Exercise instructor for 'Geometric Modeling &

Visualization', 'Stochastic for Engineers', 'Numerics for

Engineers'.

Extensive knowledge in preparation and execution

of online and distance learning materials.

Supervision of 4 master's theses, 5 bachelor's theses,

2 practical projects, 4 seminar papers, 3 project

papers.

2014-02 -

2016-10

Student Assistant

Leibniz University Hannover, Hannover

Supported student learning objectives through

personalized and small group assistance in many

different institutes.

2010-10 -

2014-01



Education

Certifications

Committee work

Languages

German

English

Master of Science: Mathematics

Leibniz University Hannover - Hannover

2015-10 -

Current

Master of Science: Computational

Engineering

Leibniz University Hannover - Hannover

Graduated summa cum laude

Six month at Cardiff University, Wales

2012-10 -

2014-10

Bachelor of Science: Mathematics

Leibniz University Hannover - Hannover

2010-10 -

2015-05

Bachelor of Science: Computational

Engineering

Leibniz University Hannover - Hannover

2009-10 -

2013-02

Mathematics in Business

Universität Bielefeld - Bielefeld

2008-10 -

2009-10

Professionalization of teaching 'Pro Lehre' - 120 working

hours

2019-06

Deputy of the research assistants in the faculty council

since 2016-01. Voting member on various committees.



Publications and Conferences 
 
 
Journal Publications: 

1. Eckert,	C.,	Beer,	M.;	Spanos,	P.D.	(2020):	A	Polynomial	Chaos	Method	for	
Arbitrary	Random	Inputs	using	B-Splines,	Probabilistic	Engineering	
Mechanics,	60,	Article	103051.	
DOI:	10.1016/j.probengmech.2020.103051	 
 

2. Eckert,	C.,	Beer,	M.;	Spanos,	P.D.:	On	the	accuracy	of	spline	chaos	
approximation.		In	preparation.	
 

3. Eckert,	C.,	Beer,	M.;	Spanos,	P.D.:	Stochastic	Galerkin	Isogeometric	
Analysis	of	Elliptic	Partial	Differential	Equations.		In	preparation.	
 

Conference Proceedings & Abstracts: 

1. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2018):	B-Spline	based	Polynomial	
Chaos	Approximation	for	Random	Variables,	8th	Conference	on	
Computational	Stochastic	Mechanics,	Paros,	Greece.	(Proceedings)	
 

2. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2018):	Polynomial	Chaos	
Approximation	Using	B-Splines,	World	Congress	in	Computational	
Mechanics,	New	York,	USA.	(Proceedings	&	Poster	submitted)	
 

3. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2019):	B-Spline	based	Polynomial	
Chaos	for	Stochastic	Galerkin	Methods,	2019	EMI	International	Conference,	
Lyon,	France.		
 

4. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2019):	On	Solving	Euler-Bernoulli	
Beams	using	a	B-Spline	based	Representation	for	Random	Variables,	8th	
GACM,	Kassel,	Germany.	(Proceedings	&	Key	Note)	
 

5. Eckert,	C.	(2019):	B-Spline	Chaos	for	Random	Quantities,	8th	GACM,	
Kassel,	Germany.	(Poster)	
 

6. Eckert,	C.;	Beer,	M.	(2019):	Systemic	Risk	Measure	in	Structural	
Mechanics,	ESREL	2019,	Hanover,	Germany.	
 

7. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2020):	B-Spline	Chaos:	An	
Isogeometric	Approach	for	Uncertainty	Quantification,	Eccomas	Congress	
2020	&	14th	WCCM,	Virtual	Conference.		
 

8. Eckert,	C.;	Beer,	M.;	Spanos,	P.	D.	(2022):	Spline	Chaos:	An	efficient	
representation	of	stochastic	processes,	SIAM	Conference	on	Uncertainty	
Quantification,	Atlanta,	Georgia,	U.S.	(Invited	Talk) 


