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“I have never tried that before,
so I think I should definitely be able to do that.”

Pippi Longstocking (Astrid Lindgren)
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Abstract

Quantum computing is one of the most exciting research areas of the last decades.
At the same time, methods of machine learning have started to dominate science,
industry and our everyday life. In this thesis we combine these two essential
research topics of the 21st century and introduce dissipative quantum neural
networks (DQNNs), which are designed for fully quantum learning tasks, are
capable of universal quantum computation and have low memory requirements
while training.

We start the discussion of this interdisciplinary topic by introducing artificial
neural networks, which are a very common tool in classical machine learning. Next,
we give an overview on quantum information. Here we focus on quantum algorithms
and circuits, which are used to implement quantum neural networks. Moreover, we
explain the opportunities and challenges arising with today’s quantum computers.

The discussion of the architecture and training algorithm of the DQNNs forms
the core of this work. These networks are optimised with training data pairs in
form of input and desired output states and therefore can be used for characterising
unknown or untrusted quantum devices. We not only demonstrate the generalisa-
tion behaviour of these quantum neural networks using classical simulations, but
also implement them successfully on actual quantum computers.

To understand the ultimate limits for such quantum machine learning methods,
we discuss the quantum no free lunch theorem, which describes a bound on the
probability that a quantum device, which can be modelled as a unitary process
and is optimised with quantum examples, gives an incorrect output for a random
input. This gives us a tool to review the learning behaviour of quantum neural
networks in general and the DQNNs in particular.
Moreover we expand the area of applications of DQNNs in two directions. In

the first case, we include additional information beyond just the training data
pairs: since quantum devices are always structured, the resulting data is always
structured as well. We modify the DQNN’s training algorithm such that knowledge
about the graph-structure of the training data pairs is included in the training
process and show that this can lead to better generalisation behaviour.

Both the original DQNN and the DQNN including graph structure are trained
with data pairs in order to characterise an underlying relation. However, in
the second extension of the algorithm we aim to learn characteristics of a set
of quantum states in order to extend it to quantum states which have similar
properties. Therefore we build a generative adversarial model where two DQNNs,
called the generator and discriminator, are trained in a competitive way.
Overall, we observe that DQNNs can not only be trained efficiently but also,

similar to their classical counterparts, modified to suit different applications.

Keywords: quantum computing, neural network, machine learning
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Kurzzusammenfassung

Quantencomputer bilden eines der spannendsten Forschungsgebiete der letzten
Jahrzehnte. Zur gleichen Zeit haben Methoden des maschinellen Lernens begonnen
die Wissenschaft, Industrie und unseren Alltag zu dominieren. In dieser Arbeit
kombinieren wir diese beiden wichtigen Forschungsthemen des 21. Jahrhunderts
und stellen dissipative quantenneuronale Netze (DQNNs) vor, die für Quantenler-
naufgaben konzipiert sind, universelle Quantenberechnungen durchführen können
und wenig Speicherbedarf beim Training benötigen.

Wir beginnen die Diskussion dieses interdisziplinären Themas mit der Einführung
künstlicher neuronaler Netze, die beim klassischen maschinellen Lernen weit ver-
breitet sind. Dann geben wir einen Überblick über die Quanteninformationstheorie.
Hier fokussieren wir uns auf die zur Implementierung von quantenneuronalen
Netzen nötigen Quantenalgorithmen und -schaltungen. Außerdem erläutern wir
die Chancen und Herausforderungen der heutigen Quantencomputer.

Die Diskussion der Architektur und des Trainingsalgorithmus der DQNNs bildet
den Mittelpunkt dieser Arbeit. Diese Netzwerke werden mit Trainingsdaten-
paaren in Form von Eingangs- und gewünschten Ausgangszuständen optimiert
und können daher zur Charakterisierung unbekannter oder nicht vertrauenswürdi-
ger Quantenbauelemente verwendet werden. Wir demonstrieren nicht nur das
Generalisierungsverhalten dieser Netze anhand klassischer Simulationen, sondern
konstruieren auch eine erfolgreiche Implementierung für Quantencomputer.
Um die ultimativen Grenzen solcher Methoden zum maschinellen Lernen von

Quantendaten zu verstehen, führen wir das quantum no free lunch-Theorem ein,
welches eine Begrenzung für die Wahrscheinlichkeit beschreibt, dass ein als unitärer
Prozess modellierbares und mit Quantendaten optimiertes Quantenbauelement
eine falsche Ausgabe für eine zufällige Eingabe herausgibt. Das Theorem gibt
uns ein Werkzeug, um das Lernverhalten von quantenneuronalen Netzwerken im
Allgemeinen und der DQNNs im Besonderen zu überprüfen.

Darüber hinaus erweitern wir den Anwendungsbereich von DQNNs auf zwei
Weisen. Im ersten Fall beziehen wir Informationen zusätzlich zu den Trainingsdaten
mit ein: Da Quantenbauelemente immer eine gewisse Struktur haben, sind auch
die resultierenden Daten strukturiert. Wir modifizieren den Trainingsalgorithmus
der DQNNs so, dass Kenntnisse über die Struktur genutzt werden können und
zeigen, dass dies zu einem besseren Trainingsergebnis führen kann.

Sowohl das ursprüngliche DQNN als auch das Graphen-DQNN wird mit Daten-
paaren trainiert, um eine zugrunde liegende Relation zu charakterisieren. Als
zweite Erweiterung wollen wir jedoch die Eigenschaften einer Menge einzelner
Quantenzustände untersuchen, um sie mit Quantenzuständen ähnlicher Eigen-
schaften zu erweitern. Daher konstruieren wir ein Modell, bei dem zwei DQNNs,
Generator und Diskriminator genannt, kompetitiv trainiert werden.
Zusammenfassend stellen wir fest, dass DQNNs nicht nur effizient trainiert,

sondern auch, ähnlich wie ihre klassischen Gegenstücke, an unterschiedliche An-
wendungen angepasst werden können.

Schlagwörter: Quantencomputer, Neuronales Netz, Maschinelles Lernen
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1

Introduction

Results of machine learning (ML) [1–4], the well-known subfield of artificial intel-
ligence where knowledge is gained from experiences rather than from instructions,
have carried over into our everyday life in the last decade: our web search engines
rearrange and optimise results based on learned user characteristics [5–7], we are
used to traffic forecasting and always up-to-date commute-estimating apps [8, 9],
spam and phishing emails can be automatically classified [10–13] and several apps
even offer smart replies [14–16], on social media platforms the tools of ML allow
recommendation of friends, posts or tags [17,18], identification of illegal, unwanted
or fake data [19–22] and actually allow the platforms to extract informations on
the user’s personality, interests or mental health [23–27].

Also, generally, the application of ML techniques in neuroscience, medical diag-
nosis, and healthcare is widespread [28–31]. Here especially ML algorithms, which
learn from data samples, are common. Such methods can be, for instance, used
for side effect prediction of drugs [32] or for analysing or classifying tomography-
computed, X-ray, and magnetic resonance images [33–40].

Since ML can be applied in nearly every area where enough data is accumulated,
it is without question that also a multitude of industries make use of these
mechanisms [41–43]. However, ML approaches can even be a powerful tool in
reducing greenhouse gas emissions, helping society adapt to a changing climate
and model extreme weather events [44–46].
Because ML is, as illustrated above, used on so many different problems in

various areas, plenty of different methods exist. However, the use of artificial neural
networks (NNs) [3, 4, 47] is very common. These networks consist of a layered
architecture built up of fundamental units, originally inspired by the neurons of a
human’s neural network. These units are linked via weighted connections, which
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1. Introduction

are updated during a training process. After that, the network ideally is able to
master specific tasks, such as classifying pictures [3].

The development of such neural networks and machine learning, in general, would
be unimaginable without the invention of the modern computer [48]. Living in the
age of laptops, smartphones and smartwatches and constantly observing arrivals
of new technologies can give the expectation of endless growing computational
potential. The so-called Moore’s law [49], describes the observation that the
number of transistors on a silicon chip doubles every 18 to 24 months. However,
the inevitable end of this law was predicted, and indeed a turning point was
reached in 2009 when reducing the transistor dimensionality could not improve
the device performance any more [50]. The demand for new device architectures
and information processing methods arose and is even more motivated trough the
exponentially increasing amount of data created every day [51].

One promising candidate can be found in the field of quantum information [52],
the study of information processing tasks that can be carried out using quantum
mechanical systems: quantum computers containing hundreds of quantum bits
became experimentally realisable in the last years [53–55] and give the opportunities
to exploit the laws of quantum mechanics to avoid the limits of classical computing.
These quantum bits, called qubits, are physically implemented as two-state

devices. Since these have different characteristics than their classical counterparts,
it is possible to find quantum algorithms which outperform classical computers for
specific tasks [56–58]. Today’s quantum computers do not yet comprise of enough
qubits to run the most useful quantum algorithms. However, the arrival and public
access [59] of these devices is a huge motivation for research in many scientific
areas.

One of them is quantum machine learning (QML) [60–62], whose invention was
motivated by the great success of classical ML and the big hope invested in quantum
computers. Generally we can divide the field into three categories: classical ML
with quantum data [63–65], quantum speed-ups for classical ML [66–69], and
quantum algorithms used on quantum data [70–79].
In the first category, quantum data is fed into a classical machine learning

algorithm, for instance, to construct representations of many-body systems [65]
or estimating physical parameters in quantum metrology [63]. On the contrary,
quantum speed-ups for classical ML are motivated with the hope that quantum
information processors, which produce patterns which are classically challenging
to create, can probably also recognise patterns, which are difficult to distinguish
classically [60]. Here, for example, subroutines of an otherwise classical algorithm
are quantised [66] using classical data encoded as quantum states.
In this work, we focus on the last category, which raises the most questions.

Here both, the algorithm and the training data are based on quantum mechanics,
and in analogy to the classical case, quantum neural networks (QNNs) [74, 77,
79–95] are a widely spread tool for solving quantum tasks for which no generic
quantum algorithm exists. Furthermore, exploiting such QNNs with ML allows
to characterise quantum states and operations with fewer samples, compared to

2



quantum state tomography [96], or quantum process tomography [97], where the
number of needed samples increases exponentially with the number of particles [98]
and the characterisation of even today’s still minimal quantum devices is impossible.
Here QNNs can be explicitly useful since they allow to use quantum devices
themselves to cope with large amounts of produced quantum data.
However, the search for the most optimal quantum versions of a neuron, net-

work structure or training algorithm is still ongoing, and the advent of the above
mentioned early quantum computers motivates scientists to find executable imple-
mentations of QNNs. This work addresses these questions and presents so-called
dissipative quantum neural networks (DQNNs) [79]. Their training algorithm is
designed for fully quantum learning tasks and allows efficient optimisation with
memory requirements scaling only with the width, not the length of the QNN.
Moreover, we demonstrate that it can be successfully implemented on today’s
quantum computers [99].
Due to the rapid progress in quantum learning theory, it is also important

to understand the ultimate limits for training methods. Therefore we present
the quantum no free lunch (QNFL) theorem [100]. It describes a bound on the
probability that a quantum device, which can be modelled as a unitary process
and is trained with quantum examples, gives an incorrect output for a random
input. This theorem gives us a tool to review the prior demonstrated DQNNs.

The DQNNs discussed before are exclusively trained with training data pairs in
form of input and desired output states. We extend this ansatz in two directions.
Quantum data is always structured due to the structure of the device producing
it. In the first extension we present a variation of the DQNN training algorithm
using the graph structure of quantum data [101] and demonstrate that we can
improve the learning efficiency and the generalisation behaviour by including this
additional information.
Whereas both the original DQNN and the DQNN, including graph structure,

focus on characterising an unknown quantum operation while learning from the
data pairs, we further undertake the task of extending a set of quantum states to
states which have similar properties. Hence, in the second extension we follow a
generative adversarial approach, where two DQNNs, a generator and a discriminator
model, are trained in a competitive manner [102]. Learning characteristics of the
training data, the generative model is able to produce quantum states with similar
properties. The resulting extended quantum data set can be, for example, useful
for training other QNN architectures or experiments.

Outline

Since the topic is interdisciplinary, we begin with two introductory chapters,
whereof one or both can be skipped based on the experience and knowledge of the
reader. In Chapter 2 we introduce classical artificial neurons, neural networks
and their training algorithms. This helps to follow the discussion of their quantum
analogues. Further, we give an overview of standard methods and applications.
In contrast, Chapter 3 introduces the field of quantum information. Here we

3



1. Introduction

not only present the characteristics of qubits but also how these can be used in
quantum algorithms to outperform classical algorithms. Moreover, we introduce
quantum circuits which provides the basis for the implementation of QNNs on
today’s quantum devices. It is followed by a discussion of quantum computers and
an introduction to quantum neural networks.

The heart of this thesis is Chapter 4, where the DQNNs are introduced. Here
we present an analogue of the classical neuron and explain the architecture of these
kinds of QNNs. We define loss functions, which are optimised during the training
algorithm. Moreover, we not only show the results of a classical simulation but also
of the implementation on actual quantum computers. At the end, we discuss the
training behaviour of the DQNN compared to another QNN architecture [103–105].
The following part, Chapter 5, contains an introduction to the classical NFL
theorem and the derivative and application of the QNFL theorem.
In Chapter 6, we give a short overview on how graph-structured data is used

in classical ML. Afterwards, we explain and demonstrate how to include the graph
structure of quantum training data into the optimisation algorithm of the DQNN.
Therefore, we formulate new loss functions and rules to update the network during
the training and present their usage in classical simulations and quantum device
implementation.
We refer to the generative adversarial NNs in Chapter 7. After explaining

their basic concepts in classical ML, we transfer the model to QNNs and construct
generative adversarial DQNNs. Further, we show that these are able to extend
data sets to quantum states which have similar properties, given only a few samples.
Here we include classical simulations as well as simulations of quantum devices.
Finally, Chapter 8 concludes our results and gives an outlook of potential further
research directions.

4



2

Classical neural networks

For all vertebrate and also most invertebrate animals, the brain is the nervous
system’s centre. This complex organ and also the whole nervous system is built of
billions of fundamental units, referred to as neurons [106]. The connection of one
of these building blocks to others through so-called synapses allows interactions.
Whereas the connections within smaller groups of neurons can be recorded, studying
the communication between a larger population of these units is very tough [107].

Therefore in the middle of the 20th century, the first computational models for
neural networks were proposed [108–110]. Based on these ideas, artificial neural
networks, also abbreviated by neural networks (NNs) [111–113] arose and could
be performed on the at this time available electronic computers. Soon, NNs were
applied to describe biological neural networks. Further, the usage for AI got more
attention.

Nowadays, NNs built of many layers of neurons are highly used tools for machine
learning (ML) [1, 3, 4, 47] and applied in endless different fields of research and
sectors of industry [114]. We will discuss some of them throughout the chapter
when presenting different NN methods.

In the following we will focus on NN build of simple consecutive layers trained
with training data pairs but also refer to other techniques. We start our discussion
by explaining the building blocks and different architectures of NNs in Section 2.1
and Section 2.2, in order to explain the training process later on. It follows
an introduction to training data and its usage in Section 2.3. We will further
discuss different optimisation techniques used for training the NN architectures in
Section 2.4. Since this work’s limit allows only giving a brief overview into the
huge world of NNs, we refer to [1, 3, 4] for a comprehensive discussion.

5



2. Classical neural networks

2.1 Artificial neurons

The perceptron, developed by Frank Rosenblatt in 1958 [115], was the first artificial
neural network with complex adaptive behaviour [113]. Until today versions of
this building block, referred to as artificial neurons, are used for NN architectures.

Such a neuron takes n inputs {x1, . . . , xn} and has a single binary output y, also
called activation as depicted in Figure 2.1. Every input has an assigned weight
wi ∈ R. Additionally, the neuron is equipped with a bias b ∈ R. The neuron’s
output is computed through

y = κ(z) = κ
(∑

i

wixi + b
)
, (2.1)

where κ(z) denotes a so-called activation function.

x1

x2

...

xn

κ
(∑

iwixi + b
)

y

w1

w2

wn

Figure 2.1.: Artificial neuron. The building block of NNs takes n inputs and
outputs an activation y using the activation function κ.

Rosenblatt originally allowed only binary inputs xi ∈ {0, 1} and used the step
function, see Figure 2.2a, as the activation function κ for the definition of the
perceptron. Hence, the output is binary. To intuitively understand the method of
a neuron, we can imagine the perceptron’s task as deciding between two choices,
0 and 1. The inputs xi can be seen as arguments with different importances wi,
where an argument with wixi < 0 is pro-choice 0 and wixi > 0 is pro-choice 1,
respectively. The step function and the bias b describe a threshold. Depending
on which side of the threshold the weighted sum

∑
iwixi of the arguments is, the

perceptron “decides” for the output 0 or 1.

Activation functions

In the context of NNs, where neurons are layered, we can say that the step function,
used in the original definition of the perceptron, activates the neuron if the input
is above a certain threshold. Otherwise, the neuron is deactivated, which means
the input will not propagate further through the network, as will be described in
Section 2.2. It turns out that using the step function as the activation of a neuron

6



2.1. Artificial neurons

causes problems: sometimes, a slight change in the weights or bias of any single
perceptron in the network can flip the perceptron’s binary output and therefore
also changes completely the output of the NN. This behaviour can damage the
training process [3], and it is aimed that small changes in the input cause only
minor changes in the output of NNs. This can be realised by choosing activation
functions different from the step function.

We can generally say that choosing the activation functions wisely is crucial for
good training results since the activation functions decide if an input of a neuron
is relevant. To better understand the activation process, we discuss the advantages
and disadvantages of some standard activation functions in the following. An
overview of the named functions can be found in Figure 2.2.

For simplicity, we restrict the discussion to activation functions with one input.
This input is often chosen to be the weighted sum z =

∑
iwixi + b of the preceding

layer’s outputs xi. There exist similar functions with many inputs, defined directly
on the outputs xi. One example is the softmax function [4] defined for n outputs
zi via

κsoftmax(z1, . . . , zn)i =
expzi∑n
i=j expzj

.

The most straightforward smooth activation would be a linear function, for
example, the identity. Nevertheless, non-linear activation functions are usually cho-
sen for the activation of neurons, since linear activation functions are problematic.
First of all, the derivative of a linear function is a constant. As we will see later
when explaining the back-propagation algorithm in Section 2.4, the derivative is
used to update the neurons. If the derivative is a constant, it does not include
any information about how the network operates on the input data. On the other
hand, compositions of linear functions are linear functions again. Thus the whole
network, built of many of these neurons, technically collapses to a single-layer
network.

On the contrary, non-linear functions create more complex mappings. A common
choice is the differentiable and monotonic Sigmoid function [116, 117], also named
logistic function. Whereas it transforms the output smoothly into a number ∈ [0, 1],
the mean disadvantage of this function is that its gradient is vanishing for very low
or high input values. This stops the network’s learning process, as will be clear in
Section 2.4. Nevertheless neurons using the Sigmoid function for activation, also
commonly called Sigmoid neurons, find applications, for example in classification
tasks [118,119].
The hyperbolic tangens (TanH) is similar to the Sigmoid function, but often

preferred over it, because it is symmetric around the origin, which makes its output
values centred around the zero value. One can express the hyperbolic tangens
using the Sigmoid function, namely

κTanH(z) =
2

1 + e−2z
− 1 = 2κsigmoid(2z)− 1.

Hence the problems with vanishing gradients are the same.
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2. Classical neural networks

κstep(z) =

{
0 if z ≥ 0

1 if z < 0

−4 −2 2 4

0.5

1

(a) Binary Step

κlin(z) = αz

−4 −2 2 4

−1

−0.5

0.5

1

(b) Linear function

κsigmoid(z) =
1

1 + e−z
.

−4 −2 2 4

0.5

1

(c) Sigmoid/logistic function

κTanH(z) =
2

1 + e−2z
− 1

−4 −2 2 4

−1

−0.5

0.5

1

(d) Hyperbolic tangens

κReLU(z) = max(0, z).

−2 −1 1 2

0.5

1

1.5

2

(e) Rectified Linear Unit

κLReLU(z) = max(αz, z).

−2 −1 1 2

−0.5

0.5

1

1.5

2

(f) Leaky Rectified Linear Unit

Figure 2.2.: Activation functions. This figure presents the graphical and math-
ematical representation of a selections of activation functions.
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2.2. Network architecture

The rectified linear unit (ReLU) deactivates the neuron if the output is smaller
than zero. Otherwise, a linear function, for example, the identity, acts. This
activation function is computationally very inexpensive. Since the gradient becomes
zero for non-positive input values, training algorithms based on the gradients fail
in these cases.
The leaky rectified linear unit solves this problem, with slightly descending

outputs for inputs smaller than zero, see Figure 2.2f. A further variation of this
activation function is the parametrised ReLU, where the parameter α is optimised
during network training. All versions of ReLU have the disadvantage that the
function’s output is not always in [0, 1], which is often desirable.

2.2 Network architecture

After the first enthusiasm about perceptrons, it got rapidly clear that these one-
layer NNs were quite limited in computational power [120]. It was discovered
that stacking these early artificial neurons in layers increases the computational
power. Whereas with only one of the by Rosenblatt introduced perceptrons, only
the learning of linearly separable classes can be performed, i.e. a linear hyperplane
can divide two classes, with multi-layer perceptrons also non-linear classification
problems can be solved [121,122].
In this section, we describe how to build such multi-layer NNs out of neurons.

Since we will only mention a few different NN architectures in the following, but
many more exist, we point to [123] for a more complete overview.

l = in l = 1 · · · l = L l = out

input layer hidden layer output layer

Figure 2.3.: Feed-forward NN. We depict neurons as circles. This figure shows
a feed-forward NN with L hidden layers. The connections between
the neurons are denoted by arrows.
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2. Classical neural networks

Most often, the neurons in NN are arranged layerwise, see Figure 2.3. We call
the first layer of neurons, which get the initial input, the input layer. The last
layer of neurons is named output layer. This layer’s output is the final output of
the network. The layers in between are called hidden layers.

Further, we call networks with many hidden layers deep NNs [4]. While working
through a considerable amount of the layers, the original information gets more
and more abstract, and in that way, the complex data processing is divided into a
series of simple nested assignments.

Feed-forward neural networks

The simplest NN architecture can be found in feed-forward neural networks [124].
Here the neurons get the output of previous layers neurons as an input, and no
loops are built-in. Furthermore, such NNs are often built of fully connected layers,
i.e. layers where all the inputs from one layer are connected to every neuron of the
next layer. See Figure 2.3 for a depiction.

Despite this simple structure, these networks are widely used, for example,
for modelling the spread of COVID-19 [125], forecasting of wind power [126], or
studying the drying kinetics of pistachio nuts [127]. Since many applications of
feed-forward NNs are based on pattern recognition [128–130], we will describe
how handwritten digits can be classified using a supervised training ansatz and a
feed-forward neural network in Section 2.3.

Recurrent neural networks

Recurrent neural networks (RNNs) [4, 47, 131–133] are constructed in a more
complicated way than the feed-forward NNs we discussed above. Such RNNs can
be used for working with data sequences, which can be, for example of temporal
order as in speech recognition [134–136], video analysis [137–139] or language
processing tasks [140, 141]. Instead of, for instance, the whole text is being fed
into the algorithm as one single input, the RNN allows several inputs xt during
the time the algorithm is running, for example, the single words, and gives also
outputs yt during the running process. These outputs are not only based on the
according input but also on the hidden layers of the preceding time step t − 1.
Figure 2.4 shows the simplest version of an RNN.

10



2.2. Network architecture

x0 x1 x2

y0 y1 y2

t

layers

Figure 2.4.: Recurrent neural network. This figure represents an RNN consist-
ing of a one-neuron input, hidden (colored) and output layer in tree
steps t ∈ {0, 1, 2}.

Convolutional neural networks

Yet another NN structure can be found in convolutional neural networks (CNN)
[4,47,142–144]. Besides fully connected layers, as we used in the feed-forward NNs,
also so-called convolutional layers are used to shape networks of this class. These
layers use the convolution of the layer’s input, often inserted in matrix form, with
another matrix, often called kernel.
A common example is the input of a grey-scale image in form of a matrix.

Sharpening the image can be executed by executing a convolution between the
image matrix and a kernel, which is in this case a sharpening matrix, see Figure 2.5.

3 3 4 3 3 3
3 4 5 6 4 4
3 4 18 20 15 4
4 7 25 43 14 4
3 4 18 16 11 4
3 4 4 6 9 4

∗
-1 -1 -1
-1 5 -1
-1 -1 -1

sharpening kernel

=

-23 -37 -42 -38
-49 -24 -30 -24
-44 -5 78 -47
-48 -19 -50 -45

Figure 2.5.: Matrix convolution. In this example for a convolution of a matrix
with a sharpening kernel the computation of one matrix element is
highlighted for demonstration. The number 78 is the sum of the
element-wise multiplications of the highlighted matrix elements.

In many applications, additional layers which reduce the number of parameters
of their input are used. These layers are referred to as pooling layers. An example
for such a filter is max pooling, where the filter selects the biggest value of an array,
exemplary depicted in Figure 2.6. Furthermore, average pooling is common, where
every array is replaced by its average value.
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2. Classical neural networks

-23 -37 -42 -38
-49 -24 -30 -24
-44 -5 78 -47
-48 -19 -50 -45

→ -23 -24
-5 78

Figure 2.6.: Max pooling. An example for pooling is max pooling, where the
filter selects the biggest element of every array.

A typical CNN starts with a convolutional layer, followed by additional con-
volutional layers or pooling layers and ends with a fully connected output layer.
The architecture of CNNs was inspired by the neurobiological model of the visual
cortex [145].
Since CNNs are good tools for analysing image data [146], nowadays CNNs

have a big impact on many domains, for example, health informatics [31]. These
kinds of NNs are used, for example, on tomography-computed images to categorise
them by body-parts [33, 34] or to classify diseases [35]. Other applications are
based on X-ray images, for instance to classify tuberculosis [36] or diagnosis of
COVID-19 [37, 38]. Furthermore, magnetic resonance images of the brain are
processed [39,40].

G

training data

D

Figure 2.7.: GAN. The generative NNG produces data, whereas the discriminative
NN D has the training goal to distinct between the by G produced
data and the training data.

Adversarial neural networks

The task of handwritten digit recognition was mentioned above and will be studied
in the following two sections. Such a problem is a typical classification task. A
different goal would be to train a NN to be able to produce such digit images.
We call such a NN model generative. An adversarial process, where two NNs are
trained, see Figure 2.7, can be used to train such a generative adversarial network
(GAN) [147]: the generative model G captures the data distribution and produces
data, whereas the other model, referred to as discriminative model D estimates
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2.3. Training data and loss functions

the probability D(~x) that a sample ~x came from the training data rather than
from G. Both of the NNs have different training goals and are well trained at the
end. Therefore, we are left with a perfectly well-trained generator. We will explain
the training process in detail in Section 7.1.

2.3 Training data and loss functions

So far, we only described the information flow of input data through the NN. The
neurons, and hence the NN, are parametrised through weights and biases, see
Equation (2.1), and sometimes parameters of the activation function, for example,
like in the parametrised ReLu, defined in Figure 2.2f. What is missing now is an
algorithm to optimise the parameters in a way that the NN satisfies our standards.
To explain the comparison on which the parameter’s update is based, we first

have to define a training goal. As mentioned in the introduction, we focus on
supervised learning tasks in this chapter. These kinds of learning tasks are based
on training data, most often structured in pairs, each containing an input and the
desired output value.
At this point, an example comes in handy: one of the most, if not the most

famous data set is the MNIST data set introduced in [146] and available at [148].
This set contains thousands of greyscale 28× 28 = 784-pixel images of handwritten
digits and the suiting label of the set {0, 1, . . . , 9}.
Based on this data set, the task, a typical classification problem, is clear: we

want to train the NN so that we can feed it an unseen image saved as a vector
x of length 784 and want to get the correct digit of the set {0, 1, . . . , 9}. Due to
the characteristics of the training algorithm, we convert the digits into vectors of
dimension 10. See Figure 2.8 for an example.

xi =
∧ , di = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

Figure 2.8.: MNIST data set. In this figure an exemplary input, a 784-pixel
image, and desired output, a vector in R10 are depicted.

To test the training process it makes sense to divide the provided training data
set of length N into a supervised training set SSV containing S pairs and in a
unsupervised validation set SUSV build of the remaining data. The latter stays
unseen by the network during the training and is only used for validation. We can
denote the two sets as

SSV =
{
{xi, di}

}S
i=1

SUSV =
{
{xi, di}

}N
i=S+1

.

The original MNIST data contains, for example, S = 60000 training pairs and
N − S = 10000 testing pairs [148].
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2. Classical neural networks

Training and validation loss

Given a NN suiting the MNIST example, i.e. one with a 784-neuron input layer
and a 10-neuron output layer, we can load an image saved as xi to the network
and feed-forward the information as described in Section 2.2. We suppose further
that we get a vector of dimension 10 as an output, consisting of the by the NN
estimated probabilities that xi has a specific label. We denote the process with
a function Ew,b : R784 → R

10, which depends on the weights and biases, saved in
vectors w and b. The output of the network can then be denoted as Ew,b(xi).

Independently from the supervised training task it is indispensable to compare
the network’s output Ew,b(xi) ∈ R10 with the desired output di ∈ R10. This is
done by a loss function, also referred to as cost function or objective function. Not
only should this function compare the two pieces of information, but it should
also converge to a global extreme point, which is achieved if the training goal is
accomplished. Further, it is optimal if the gradient of the loss is continuous since
the below-presented algorithm is based on it.

A common loss function is the mean squared error (MSE) [149,150], also often
simply called the quadratic cost. Given the network’s output Ew,b(xi) and the
desired output yi we can use the MSE to form the training loss

LSV,MSE(w, b) =
1

S

S∑
i=1

||di − Ew,b(xi)||2. (2.2)

If this loss functions gets small during training we are sure that the algorithm
found weights and biases which suite the aim. For validation, we can define the
validation loss

LUSV,MSE(w, b) =
1

N − S

N∑
i=S+1

||di − Ew,b(xi)||2. (2.3)

Note that the validation is a not neglectable part of the training since, in some
cases, the training leads to parameters that let the NN perform very well on the
training data set but cannot generalise the same performance to unseen data.
We refer to this issue as overfitting and can detect it with the validation data
set. Overfitting can be avoided with early stopping [4], where the implementation
includes stopping the training to the time where the validation loss LUSV begins
to rise again, although the training loss error LSV still gets smaller.

Choice of the loss function

The choice of the loss depends on the learning problem and method. For example,
the MSE is very sensitive towards outliers, due to the quadratic behaviour. In
cases where this causes problems, for example where the input is not normally
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2.3. Training data and loss functions

distributed, the mean absolute error (MAE), namely

LSV,MAE(w, b) =
1

S

S∑
i=1

|di − Ew,b(xi)|,

can be an alternative. Note that the validation loss can be defined for MAE in
analogy to Equation (2.3). This also holds for the loss functions presented in the
following.
Another common loss function for regression problems is the smooth mean

absolute error, also called Huber loss [151]. This loss function is defined piecewise
and depends on an additional parameter ζ, namely

LSV,Huber(w, b) =
1

S

S∑
i=1

{
1
2
(di − Ew,b(xi))2 for di − Ew,b(xi) ≤ ζ

ζ(|di − Ew,b(xi)| − 1
2
ζ) otherwise.

Loss functions containing the entropy were proved to be useful for classification
tasks [152–155]. The most simple case is binary classification, where we have
training data pairs, containing an input xi and a label d(xi) = 0 or d(xi) = 1. The
network’s output for such an input is the probability Ew,b(xi) = pxi(0) that the
input is labelled with d(xi) = 0. Since 1− pxi(0) = pxi(1) we can use the binary
cross entropy (BCE) as loss function, i.e.

LSV,BCE(w, b) = − 1

S

S∑
i=1

d(xi) log(Ew,b(xi)) + (1− d(xi)) log(1− Ew,b(xi)).

From this definition, it gets clear that minimising this loss function leads to a
correctly labelling NN.

When working with more then two, namely C, different classes, the class labels
are unit vectors, similar to the example in Figure 2.8. The NN’s output has to
be a C dimensional vector Ew,b(xi) = pxi with pxi,j ∈ R+

0 . Here the general cross
entropy (CE) is used to formulate the loss function

LSV,CE(w, b) = − 1

S

S∑
i=1

C∑
j=1

d(xi)j log (Ew,b(xi)j) .

As an example we can assume C = 3 classes and the label of a specific training
data i input is d(xi) = {0, 1, 0}, i.e. it belongs to the second class. The network
predicts the probabilities pxi = {0.2, 0.5, 0.3}, hence 50 precent for the correct
label. The according summand in LSV,BCE is then 0× 0.2 + 1× 0.5 + 0× 0.3.

Since classification tasks are a vast field in ML, many other loss functions were
studied. Alternatives to the CE are, for example, the pairwise loss [156], which
runs over pairs of training data inputs, or the triplet loss [157] working with the
assumption that a training data input is closer to all inputs with the same label,
then to those which are labelled differently. More definitions of loss functions can
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2. Classical neural networks

be found, for example, at [4].

Unsupervised learning approaches

The so far discussed approaches are supervised [158–160]. These model the
relationships or patterns between the input features and the target prediction
output. At the end of the process, the NN can imitate the relation and predict
output values for unseen data. For these kinds of models, having enough and
proper training data is key.
Beyond that, also unsupervised algorithms [161–163] are used. These methods

do not rely on labelled input and output data and are especially useful in cases
where it is unclear what kind of patterns to look for in the data. An example
of unsupervised learning is k-means clustering [164–166]. The algorithm aims to
partition data into k clusters given a set of vectors and minimises the within-cluster
sum of squares. Note that k is fixed beforehand. One method used for finding the
number of clusters is, for example, the elbow method [167].
There are also hybrid versions of unsupervised and supervised learning. These

are often used for classification problems, where only a small subset of the data is
labelled because obtaining labels is expensive or impossible. In these algorithms,
the classification is based not only on the labelled part of the data but also on all
data bits. Applications for semi-supervised learning [168,169] are for example in
speech analysis [170], image search [171] or genomics [172].
An examples for a semi-supervised ansatz will be presented in Section 6.2,

where machine learning with graphs [173–175] is discussed. A graph describes the
connection between different vertices, and only some of the vertices are labelled.
These labels can be, for example, of the form of input and output data pairs as we
met them in the above explained supervised ansatz. In addition to the supervised
data, the training algorithms then also use the information implemented via a
graph structure.
A third large area of machine learning alongside supervised and unsupervised

learning is reinforcement learning [176]. This method is modelled as a Markov
decision process, where we have a set of environment and agent states, a set of
actions and the probability of transition from one state to another under a specific
action. Further, some rules describe what the agent observes, and a (positive
or negative) reward is given after transitioning from one state to another with a
specific action. The training goal is to maximise the sum of rewards.

2.4 Optimisation

We have already argued that layering neurons is very beneficial in contrast to
training single neurons. However, these multi-layer networks were not helpful
first since no suiting training algorithm could be found. This changed with the
invention of the back-propagation algorithm [177–179], which will be discussed at
the end of this section.
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The all-over optimisation procedure using such an algorithm can be defined as
follows: we feed information through the network and get output data. This output
data is compared with some desired output, as discussed in Section 2.3. Based on
this comparison, the parameters are updated. This process is repeated until the
desired accuracy is reached. We will describe the update of the parameters in the
following, assuming to train a simple feed-forward NN.

Gradient descent

The training algorithm improves the network by changing the before training
randomly initialised parameters w0 and b0. By definition this is done by optimising
the training loss discussed in Section 2.3, i.e. finding a global extreme point of
LSV(w, b).

The most common method for this purpose is gradient descent, which was pro-
posed for non-linear optimisation problems by [180] based on earlier contributions
of Augustin-Louis Cauchy and Jacques Hadamard. With this technique, a local
minimum can be found by changing the parameters wt and bt into the direction of
the gradient of the loss function concerning the parameters, namely

wt+1 = wt − η∇wtLSV(wt, bt)

bt+1 = bt − η∇btLSV(wt, bt),

where t denotes the training step or epoch and η the learning rate. Although there
is mathematically no guarantee for success, numerical experiments have shown
that the method reliably finds global minima of deep NNs [181].

Alternatives to gradient descent

Finally, we want to name some optimisation methods different from the above-
described gradient descent method. A more detailed overview of such methods
and their variations can be found at [4], the comparison of different proposals
in [182,183]. We can summarise the gradient descent method via the rule

ϑt+1 = ϑt − η∇ϑtLSV(ϑt),

for updating a parameter ϑ and name some adaptions of this rule in the following.
To optimise the computing time of each training step, stochastic gradient descent

(SGD) can be utilised. Whereas the in Section 2.4 described method uses the
loss function evaluated on all S training pairs, here for each training epoch only
one random training pair is chosen, the loss function evaluated and the gradients
computed [184]. A good compromise is mini-batch stochastic gradient descent,
where a randomly chosen set of M < S training pairs is selected and used instead
of just one [185].
A faster converging technique is the momentum method [186, 187], where we

update the parameter is done via ϑt+1 = ϑt+M(t) while preserving the momentum
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of the last update via an additional parameter µ by using

M(t+ 1) = µM(t)− η∇ϑtLSV(ϑt).

For very steep parts of the parameter change, the momentum gets bigger and
finding the extrema is accelerated. On the other hand, with this method, the change
of the parameter gets small if we get near the turning point, and overshooting it is
less likely.
So far, we treated the learning rate η as a beforehand fixed and unchanged

parameter during the training. On the contrary, some optimisation methods
use adaptive learning rates changing individually for each parameter during the
training [4]. One of the first proposed adaptive learning technique was the detla-
bar-delta algorithm [188], which is based on a simple idea: if the partial derivative
of the loss with respect to the parameter remains of the same sign, the learning
rate increases, otherwise it decreases.
A very common optimisation algorithm using adaptive learning rates is Adam

[189], a synonym for adaptive moments. It can be seen as an improvement of
two previously invented methods, AdaGrad [190], and RMSProp [191]: Using
AdaGrad, the learning rates scale inversely proportional to the square root of the
sum of all squared values of the earlier epoch’s gradients. RMSProp is a slight
improvement of this technique as it uses the squared gradients of earlier epochs
primarily. The method Adam is based on RMSProp, but also includes techniques
of the momentum method.

Back-propagation algorithm

When it comes to calculating the gradients of the loss needed for the parameter
update, it is often referred to the already above-mentioned back-propagation
algorithm [177–179]. This algorithm can be applied for loss functions that can be
written as averages over the loss for a specific training pair since the derivatives
of the training loss are computed through the averaging of the derivatives of the
training loss of single training examples. Further, the loss has to be a function
of the NN’s output Ew,b(xi). Both is the case for the in Equation (2.2) defined
training loss. A very detailed and graphic description can be found in [3]. In the
following, we will present a summary.

Since the parameters denoted in the vectors w and b change during the training
epochs, their value depends on t. Due to that also the training loss LSV and the
activations yl depend on t. Note that for convenience, we drop the parameter t in
the description of the gradient evaluation for a specific epoch, in the following.

For every layer l we save the weights of the neurons connection in a matrix wl,
where wlj,k is the weight from the kth neuron in layer number l − 1 to the jth
neuron in layer l. See Figure 2.9 for an example. Further, we describe the biases
in in vectors bl, where blj describes the bias of the jth neuron in the lth layer.
Since we work with feed-forward NNs, we can use wl, bl and the activation

function κ to express the activation of layer l trough the activation of layer (l− 1),

18



2.4. Optimisation

wl11

wl12

wl13

wl21

wl22

wl23

yl−11

yl−12

yl1

yl2

yl3

Figure 2.9.: Notation for back-propagation algorithm. Two layers l− 1 and
l of a feed-forward NN containing two and three neurons are connected
via weights {wl11, . . . , wl23}.

namely
yl = κ

(
zl
)

= κ
(
wlyl−1 + bl

)
,

where the component zlj of zl is the weighted input to the activation for neuron j
in layer l.

Since the loss function describes the difference between the desired output and
the networks output we define the error of the jth neuron in layer l as

δlj =
∂LSV(w, b)

∂zlj
,

and describe the errors in layer l as vector δl.

In the following we will use a � b to denote the element-wise product, i.e.
(a� b)i = aibi, also referred to as Hadamard product. Due to the chain rule we
can express the error of the last layer, namely layer L, as

δL = ∇yLSV(w, b)� ∂κ(zL)

∂zL
.

As the name of the algorithm already revealed we can now back-propagate this
error through the NN and hence compute the error of an arbitrary layer l using
the error of the preceding layer l + 1, in other words

δl = ((wl+1)T δl+1)� ∂κ(zl)

∂zl
.
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The components of the gradients ∇bLSV(w, b) and ∇wLSV(w, b) are thus

∂LSV(w, b)

∂blj
= δlj

∂LSV(w, b)

∂wljk
= yl−1k δlj,

where yl−1 = κ(zl−1) is the activation of layer l− 1. An implementation in Python
of the back-propagation algorithm used for classifying handwritten digits can be
found at [3].

In Chapter 4 we will introduce a quantum version of a feed-forward NN, which
can be optimised with an algorithm similar to the classical back-propagation
method we described above. Before digging deeper into quantum NNs, we will
give an introduction to quantum information in the following chapter.
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Quantum information

As described in Chapter 1, in the past decades, the power of classical computers
has grown exponentially. Nevertheless, boundaries for classical computers exist [50].
For instance, the description of more sizeable quantum systems is still impossible
on today’s classical supercomputers since the dimension of quantum systems scales
exponentially with the number of basic building blocks.

Consequently, in the eighties, Richard Feynman proposed the concept of quantum
computers [192] with the aim to simulate many-body quantum systems with the
use of a quantum system of the same size instead of a classical computer. Building
on this idea, the field of quantum computing evolved in the last decades and is
now one of the most rapidly developing research areas. Until today many quantum
algorithms were proposed with the aim of solving a particular task more efficiently
than classical supercomputers. The first breakthroughs happened in the nineties,
among them the Deutsch-Jozsa algorithm [56], Shor’s factoring algorithm [57] and
Grover’s search algorithm [58].
Whereas the key developments remained on the more theoretical side first, in

the last years processing quantum information on quantum computers has become
experimentally possibly [53–55]. These first quantum computers are called noisy
intermediate-scale quantum (NISQ) devices, comprise up to a few hundred quantum
bits and give the opportunities to test quantum algorithms for their behaviour
under high noise levels.
The arrival of these new devices and also their public access [59] lead to many

attempts of solving problems on these devices. It should be underlined at this
point that computations on quantum computers containing only about 100 qubits
can be, in many cases, simulated classically. The emergence of NISQ devices
should not be underrated but also not overrated, or as John Preskill appropriately
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formulated in [53]: “The 100-qubit quantum computer will not change the world
right away — we should regard it as a significant step toward the more powerful
quantum technologies of the future.”
Altogether, we can conclude that we are still at the beginning of the quantum

information era. However, instead of feeling disappointed, this should be seen as
an even more significant motivation for study and research in the area of quantum
information these days, in the view of many so far undiscovered opportunities.
To make the research presented from Chapter 4 onwards accessible to people

new to quantum information, we will discuss the basic definitions in this chapter.
We start by introducing the quantum bit and its characteristics differing from
the classical bits in Section 3.1. Based on this, we define quantum gates and
circuits in Section 3.2. In Section 3.3 we not only deliver insight into why quantum
algorithms can outperform classical algorithms but also give an overview of the
most famous quantum algorithms. Section 3.4 explains how quantum circuits can
be implemented and describes the state of the art of quantum computers. Since
the topic of this thesis is the study of quantum neural networks, we conclude
with a review of these in Section 3.5. For a wholesome introduction to quantum
information, we point to [52].

3.1 Quantum bits

In classical information theory, basic binary units of information, called bits,
are used for information processing. These bits - physically implemented with
a two-state device - can only have one of two values, commonly represented as
either 0 or 1. The quantum equivalent is named qubit. It represents a two-level
quantum mechanical system, often denoted in terms of |0〉 and |1〉. These levels
can, for example, be two different polarisations of a photon (vertical and horizontal
polarisation), two different alignments of spin (up and down) or two states of an
electron orbiting an atom (ground state and excited state). But, they can also be
defined by more complex systems based on very cold superconducting electrical
circuits in which several electrons move [52,53].

Superposition

Whereas the state of a classical bit can be either 0 or 1, the qubit is allowed to
be in a coherent superposition of both levels |0〉 and |1〉 simultaneously. For a
mathematical description of these qubit states we identify the levels with two
orthonormal basis vectors

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (3.1)

A qubit in a so called pure state can than be described as a normalised vector |φ〉
in a two-dimensional complex Hilbert space H = C2. Using the in Equation (3.1)
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defined basis states we can express such a state as superposition

|ψ〉 = α |0〉+ β |1〉 , (3.2)

where α and β are complex numbers and |α|2 + |β|2 = 1.
In quantum mechanics the Dirac notation, read as bra 〈∗| and ket |∗〉, is the

standard notation for states. Here 〈ψ| denotes the conjugate transpose of the
vector |ψ〉. The eponymous bra-ket 〈ψ1|ψ2〉 expresses the scalar product of the
vectors 〈ψ1| and |ψ2〉. At this point it is worth to accentuate that this description
only includes pure states. Density matrices, discussed later in this section, provide
a more general notion of statistical ensembles of pure states.

Since the description of a pure qubit state is a vector with norm 1 we can depict
such a state on the surface of a sphere. For this purpose we rewrite Equation (3.2)
as

|ψ〉 = eiγ
(

cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
)
. (3.3)

The visualisation of quantum states with two numbers θ and φ, depicted in
Figure 3.1, is named Bloch sphere. Note that the condition |α|2 + |β|2 = 1 defines
a 3-dimensional sphere. The Hopf fibration [193], mapping from the unit 3-sphere
to the two-dimensional states space C2, is used to describe the sphere with two
parameters θ and φ, namely as

|ψ〉Bloch = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 . (3.4)

The factor eiγ can be ignored, since it has no observable effects which is in detail
explained in [52]. We will discuss the abandoning of this total phase later in this
chapter again.

Like for the classical bits there are two possible outcomes for the measurement
of a qubit, also often taken to be 0 and 1. After measuring in the basis denoted in
Equation (3.1) such a qubit state collapses in the pure state |0〉 or |1〉, respectively.
It is possible to compute the probabilities of getting a special measurement outcome.
With probability

p0 = 〈ψ|0〉 〈0|ψ〉 = | 〈0| (α |0〉+ β |1〉) |2 = |α 〈0|0〉 |2 = |α|2

the measured value will be 0. We call M0 = |0〉 〈0| a measurement operator.
Analogous we get p1 = |β|2 with the operator M1 = |1〉 〈1|.

To summarise, a qubit can be in an infinite number of possible states, but after
the measurement, we again only receive binary information as with the classic bit
and the superposition information seems lost. However, with quantum algorithms,
this fundamental property of quantum mechanics can be used effectively and is
the reason for quantum speed up, as will be explained in Section 3.3.
Although not relevant for this work, we want to mention at this point the

existence of the generalised concept of qudits. These describe quantum systems
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ϕ

θ

x̂

ŷ

|0〉

|1〉

|ψ〉Bloch

Figure 3.1.: Bloch sphere. Pure qubit states can be represented as points on the
surface of a sphere.

with d > 2 levels. In the case of d = 3 the name qutrit is established. Albeit
most of the studies in quantum information theory operate with qubits, these
higher-level bits can be still beneficial in some contexts [194–198].

Multiple qubits

In the same way, as classical bits unfold their full potential only when used in strings
of many bits, a quantum system and, therefore, quantum computing becomes
much more attractive when involving more than one qubit.
We describe n qubits with the tensor product of 2n basic states living in the

Hilbert space H = (C2)
⊗n

= C2n , namely

|q1〉 ⊗ |q2〉 ⊗ . . .⊗ |qn〉 = |q1q2 . . . qn〉 , (3.5)

where qi indicates the state of the ith qubit with qi ∈ {0, 1}.
In that way the basic states of a two qubit system can be denoted as |00〉, |01〉,
|10〉, and |11〉. A general pure two-qubit state can be expressed as a superposition

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

in H = C4, where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 and αij ∈ C.
In the same manner a pure n qubit state can be described as the superposition

|ψ〉 =
∑

q1,...,qn∈{0,1}

αq1,...,qn |q1 . . . qn〉

in H = C2n with complex coefficients αq1,...,qn .
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3.1. Quantum bits

At this point, the exponential growth of the Hilbert space with the number of
qubits becomes obvious, and with this, the high costs when simulating quantum
systems classically fall into place. On the other hand, this exponential relationship
indicates the extensive capacity of quantum computing.

Mixed states

To this point all mentioned quantum states were pure states, which can be
represented as vectors in C2n . Though in general a system has to be described by
a mixtures of these pure states. Such a mixed state can be described with a matrix
ρ ∈ H = C2n × C2n with positive eigenvalues, tr (ρ) = 1, a so called density matrix.
If the state ρ is a mixture of m pure states |ψi〉, we can describe as a convex

combination of these states, namely as

ρ =
m∑
i

pi |ψi〉 〈ψi|

with
∑

i pi = 1. We can view a pure state rather as special case of the mixed state
and can write it as

ρ = |ψ〉 〈ψ| .

Note that at this point the total phase of |ψ〉 is lost (compare Equation (3.3) and
Equation (3.4)). For the density matrix of a pure state it is ρ = ρ2 and tr (ρ2) = 1.
As explained when using the bracket notation in Equation (3.5), we use the

tensor product to build the composite of two quantum systems, for example, two
qubits. When working with mixed states, for example, a qubit A in the state
ρA ∈ HA and qubit B in the state ρB ∈ HB, we can describe the composite of
both qubits with the state

ρAB = ρA ⊗ ρB
in the Hilbert space HA ⊗HB. Not only the composition of systems is frequently
used in quantum algorithms, but also the reduction to a subsystem is an important
tool: tracing over the space HB gives

ρA = trB(ρAB) ∈ HA.

The most simple composition of n systems can be written as

ρ1,...,n = ρ1 ⊗ . . .⊗ ρn.

When tracing out the ith system we get

tri (ρ1,...,n) = ρ1 ⊗ . . . ρi−1 ⊗ ρi+1 . . .⊗ ρn.

We want to close the description of mixed states with two remarks. Since
with the density matrix we generalised the description of a quantum state, we
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have to update the way to calculate probabilities: a mixed state ρ collapses into
the state |ψ〉 after measurement with probability p = tr (|ψ〉 〈ψ| ρ) = 〈ψ|ρ|ψ〉.
More generally we can describe a measurement with an linear operator M , called
observable. The expectation value of the measurement outcome is given by tr(ρM)
when measuring ρ. We point to [52] for a complete discussion of observables.

The second remark concerns the representation of one-qubit states in the Bloch
sphere, see Figure 3.1. Mixed one-qubit states can be represented in this way as
well. Whereas the pure states lie on the surface of the Bloch sphere, a general
mixed state lies inside. Hence the representation requires the radius r and is given
by

ρ =
1 + ~r~σ

2
,

where ~r ∈ R2 is called the Bloch vector and ~σ = (σx, σy, σz)
T is built from the

Pauli matrices, which are denoted in Figure 3.2.

Entanglement

Next to superposition, entanglement is one of the most popular and fundamental
features in quantum mechanics. Both are crucial elements in quantum algorithms.
Whereas superposition can be defined on just one particle, entanglement requires
two or more qubits. Precisely, a pair or set of qubits are called entangled when
each qubit cannot be described independently of the state of the remaining qubits.

For the simplest example of entanglement we discuss the pure two qubit state

|Φ+〉 =
1√
2

(|00〉+ |11〉) . (3.6)

This state describes the superposition of two cases: after measurement with
probability 0.5, both of the qubits are in te state |0〉 or with the same probability
both of them are in the state |1〉. When measuring only one qubit, the other qubit
will collapse into the same state. In this sense the two qubits are entangled.
|Ψ+〉 in is one of the four Bell states [199] displayed in Figure 3.5b. These states

are maximally entangled superpositions of |0〉 and |1〉. For all four states yields:
measuring one qubit determines the state of the second qubit. The measurement
outcomes are correlated. Even if the two qubits are spatially separated, this
correlation remains, which is discussed in the EPR paradox by Albert Einstein,
Boris Podolsky, and Nathan Rosen [200].
In general, we name a quantum state of two or more systems entangled, if it is

not separable. Further, we name a pure state of n subsystems separable if it can
be written in the form

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 .

For mixed states the equivalent form is the convex sum

ρ =
∑
i

piρ
i
1 ⊗ · · · ⊗ ρin.
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If there exists only a single coefficient with pk 6= 0, separable two-particle states are
also often called product states and can be described in the form ρAB = ρA ⊗ ρB.

State distances

During quantum algorithms, it is often essential to compare two quantum states.
We will see a use case in Section 4.2, where the update of a quantum neural
network algorithm is based on the difference of two states.

Although many different proposals for measuring how close two quantum states
exist, the fidelity is one of the most referenced options. We define the fidelity of
two density matrices as

F (ρ, σ) ≡
(

tr
√√

ρσ
√
ρ

)2

, (3.7)

where F (ρ, ρ) = 1. The fidelity can be expressed as F (|φ〉 〈φ| , ρ) = 〈φ|ρ|φ〉 if one
of the states is pure and as F (|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2 if both of the states are pure.
Note that in some literature the fidelity, in contrast to Equation (3.7), is defined
differently, namely as F (ρ, σ) ≡ tr

√√
ρσ
√
ρ.

If at least one of the states is pure, the fidelity as a measure of closeness has some
advantages: It can be measured using the SWAP test, which we will explain later
in this work, see Section 4.6. Another essential point is that the fidelity measure
has an operational meaning: it defines the probability 〈φ|ρ|φ〉 (or | 〈ψ|φ〉 |2) that ρ
(or |φ〉) passes the test being the same as |ψ〉 in measurements.

However, when comparing two mixed states, the fidelity still has an interpretation:
It is the largest fidelity between any two purifications of given states. Armin
Uhlmann describes this fact in [201]: if we assume ρ and σ are two states of a
quantum system A, and B is a second system with dimension greater than or
equal to the dimension of A, then the fidelity can be described as

F (ρ, σ) = max | 〈ψ0|φ0〉 |

where the maximisation runs over all |ψ0〉 and |φ0〉 which are purification of ρ and
σ in AB. Although the authors of [202] show an operational interpretation of
this theorem, the drawback of the fidelity becomes clear at this point: due to the
maximisation progress, excessive computational complexity is required to evaluate
the fidelity of two mixed states on a quantum computer.
A good alternative for comparing two mixed states is the Hilbert-Schmidt

distance [203]

dHS (ρ, σ) ≡ tr
(
(ρ− σ)2

)
,

because it can be evaluated on a quantum computer [204,205]. In this work, we
use the Hilbert-Schmidt distance as a training loss with mixed states for graph-
structured quantum data, see Section 6.4. It is important to note that this distance
reaches its minimum, i.e. dHS (ρ, ρ) = 0, if the two compared states coincide. In
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3. Quantum information

contrast, the fidelity reaches the maximum, the value 1, in this case.

3.2 Quantum circuits

To exploit quantum mechanics for quantum computing, so-called quantum circuits
are needed. These describe the processes of initialising qubit states, applying
operations on these qubits and reading out results via measurements. Since we
already discussed qubits and measurements, we will start the discussion of quantum
circuits by introducing quantum operations, called quantum gates. Further, we
will explain how these operations and circuits can be depicted. We will conclude
this section by discussing exemplary quantum circuits.

One-qubit gates

Similar to logic gates, which manipulate classical information and are used for
classical computing, we define quantum gates. Some of the classical gates have a
direct quantum analogue. One example is the NOT gate transferring the state |0〉
in |1〉 and |1〉 in |0〉. Written out in Dirac notation this also called Pauli X-gate is
of the form

X = |1〉 〈0|+ |0〉 〈1| ,

or in matrix notation with respect to the basis in Equation (3.1)

σx =

(
0 1
1 0

)
.

In circuit notation we depict a gate X as

X ,

where the line denotes the qubit. Applying this gate on the in Equation (3.1)
presented basis states gives the expected results, namely

X |0〉 = |1〉 〈0|0〉+ |0〉 〈1|0〉 = |1〉
X |1〉 = |1〉 〈0|1〉+ |0〉 〈1|1〉 = |0〉 .

Thus the gate X interchanges the roles of the two basis states in an arbitrary pure
one-qubit state, i.e.

X |ψ〉 = X (α |0〉+ β |1〉) = β |0〉+ α |1〉 = |ψ′〉 .

With the X-gate as an example, we have shown how one-qubit gates act on
pure states. From here, important questions arise: which gates are allowed in
quantum computing and how are they constraint? As explained in Section 3.1,
every normalised element in C2 can describe a pure one-qubit quantum state,
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3.2. Quantum circuits

namely |ψ〉 = α |0〉+β |1〉 with |α|2 + |β|2 = 1. For the state U |ψ〉 = |ψ′〉 resulting
from applying the gate U the same constraint has to be fulfilled, specifically
〈ψ|ψ〉 = 1 = 〈ψ′|ψ′〉. It follows that the gate has to be unitary defined through
U †U = 1, where U † denotes the adjoint of the matrix U .
Although every unitary matrix is a legitimate quantum gate, some gates are

more frequently used in algorithms than others. In Figure 3.2 we list some fa-
mous one-qubit gates. The Hadamard gate H provides a possibility to build
superposition of states. It is also often applied in order to measure in the ba-
sis {|±〉 = 1√

2
(|0〉 ± |1〉)}±. In general it is possible to measure in the basis

{U |0〉 , U |1〉} by applying U † before measuring in the basis {|0〉 , |1〉}.

X Y Z H T S(
0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)
1√
2

(
1 1
1 −1

) (
1 0
0 ei

π
4

) (
1 0
0 i

)
Figure 3.2.: A selection of one-qubit gates. The gates X (also called NOT),

Y and Z are represented by Pauli matrices σx, σy and σz. Further
famous gates are the Hadmard gate H, the T -gate also known as
π
8
-gate and the phase gate S.

Note that all elements of SU(2), i.e. those unitaries on C2 with det(U) = 1 are
given by SU(2) = {exp(inσ)}, where n ∈ R3 and σ is the vector of Pauli matrices
σ = (σx, σy, σz), see Figure 3.2.

Multi-qubit gates

So far, we only discussed gates acting on one-qubit states, but also operations
on multiple qubits simultaneously, as depicted in Figure 3.3a, are regularly used.
An typical example for a multi-qubit gate is the controlled-not gate, abbreviated
by CNOT, see Figure 3.3b. This gate affects two qubits, where one is called the
controlled qubit, and the other is the target qubit. If the controlled qubit is in the
state |1〉, the basic states of the target qubits get interchanged, i.e. we apply the
X gate. Otherwise, the identity operates.

U

(a) 3-qubit gate U .

=̂


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(b) CNOT gate.

Figure 3.3.: Multi-qubit gates. In general multi-qubit gates are depicted as
gates covering diverse lines, symbolising the qubits, see (a). The
CNOT gate has a special notation, depicted in (b).
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Before we describe the circuits comprised of quantum gates, we want to comment
on density matrices in this context. Although the qubits are usually initialised
in pure states at the beginning, mixed states occur during quantum circuits. For
applying a gate on a mixed state ρ we multiply the gate from the left side and its
adjugate from the right side that is ρ′ = XρX†. Due to unitarity the constraint
tr (ρ) = 1 = tr (ρ′) stays fulfilled.

Circuits

Since it is impossible to directly implement an arbitrary number of different gates
in a quantum computer, the question naturally arises whether complex operations
can be approximated by breaking them down into sequences of elementary gates.
Indeed the Solovay-Kitaev theorem [206] states that every unitary U can be
approximated with an accuracy of ε by a sequence of gates from G of length
O
(
logc

(
1
ε

))
, where G is finite universal gate set and c is a constant based on the

choice of U . The small error is unavoidable in praxis.
Finite sets of quantum gates are called universal if it is possible to build any

arbitrary single-qubit gate with them. One of the most common universal sets
contains the gates {CNOT, H, S, T}. The quantum computers used for the numerics
in this work fragment the operations into the gates {CNOT, RZ, SX,X}, where
RZ = e−i

θ
2
X and S =

√
X. Additionally, the identity operation is usually also

directly included in these universal gate sets. The quantum operations built from
these sets of gates can be represented in a quantum circuit. Every horizontal line
depicts a qubit. Following the lines from left to right depicts the evolution in time.

Next to gates also tensor products, tracing out subsystems and measurements can
be depicted in quantum circuits. In Figure 3.4, the circuit describes building the
tensor product of two one-qubit states ρA and ρB, applying a gate U and reducing
the system to the first qubit. The resulting state, namely trB

(
U (ρA ⊗ ρB)U †

)
, is

measured.

U
ρA

ρB

Figure 3.4.: Exemplary quantum circuit. This circuit depicts building the
tensor product of ρA and ρB, applying a two-qubit gate U , tracing out
the qubit B and measuring the resulting state.

Further, it follows from the Stinespring dilation theorem [52] that every descrip-
tion of a quantum circuit through tensor products, unitary transformations and
reductions to subsystem is equivalent to the description via a completely positive
(CP) map. We call a bounded linear operator P on a Hilbert space positive if it a
bounded operator T exists so that P = T †T . Using this, the definition of a CP
map can be expressed in the following way:
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Definition 3.1 (Completely positive map). Let A and B be C∗-algebras and
E : A → B a linear map. E is called positive if it maps positive elements
(corresponding to the positive operators) to positive elements. We can define a new
map

id⊗ E : Cn×n ⊗ A → Cn×n ⊗B

and call E completely positive if id⊗ E is positive for all n.

Moreover we can write every CP map in the form E(ρ) =
∑

αAαρA
†
α, where the

operators Aα are called Kraus operators and satisfy
∑

αA
†
αAα = 1. This is called

Kraus decomposition [207].
A more concrete example of a quantum circuit is explained in [52]: the circuit in

Figure 3.5a is built of a Hadamard and CNOT-gate and outputs the various Bell
states, see Figure 3.5b.

|ψout〉
|x〉 H

|y〉

(a) Circuit.

input |xy〉 output |ψout〉

|00〉 |Φ+〉 = 1√
2

(|00〉+ |11〉)

|01〉 |Φ−〉 = 1√
2

(|00〉 − |11〉)

|10〉 |Ψ+〉 = 1√
2

(|01〉+ |10〉)

|11〉 |Ψ−〉 = 1√
2

(|01〉 − |10〉)

(b) Inputs and outputs.

Figure 3.5.: Bell state producing circuit. The circuit depicted in (a) produces
the Bell states according to given input states. The relations between
input and output is shown in (b).

Sampling random unitaries and quantum states

We have already argued that all unitaries are legitimate quantum gates. Therefore,
these mathematical operations play a central role in quantum information [52].
When it comes to initialising random unitaries or integrating over all possible
unitaries, phrases like “U is uniformly sampled at random with respect to the
Haar measure” are often used in the description of quantum algorithms. In the
following, we briefly motivate the Haar measure [208]. For a detailed discussion of
the unitary group we point to [209].
A measure formulates the notion of how objects are distributed. The Haar

measure is used to make results of measure theory applicable in group theory.
Given a matrix-valued function f(Y ) on the unitary group U(d) we write the
integral U(d) of d× d matrices of f(Y ) with respect to Haar measure as

I =

∫
dY f(Y ).
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The Haar measure is left- and right-invariance with respect to shifts via multipli-
cation. Hence ∫

dY f(Y U) =

∫
d(Y ′U †) f(Y ′) =

∫
dY ′ f(Y ),

where U ∈ U(d) is a fixed unitary. The right-invariant can be spelled out, respec-
tively.

Since we can sample unitary operations using the Haar measure, also sampling
quantum states uniformly at random is possible: Therefore, we simply generate
the unitaries and apply them to a fixed basis state, i.e. d |ψ〉 ≡ dW |0〉 [210]. In
this work, the Haar measure is used for determining an optimal lower bound on the
probability that a quantum neural network gives an incorrect output for random
input, see Chapter 5.

3.3 Quantum algorithms

The big goal for quantum algorithms is quantum supremacy. This aim is reached
when a quantum algorithm can solve a specific task that cannot be solved in any
feasible time by today’s classical computers. On the one hand, this definition is
not very strict and has often spark discussions on whether quantum supremacy
was reached in a specific case or not [211]. On the other hand, proposals of such
quantum algorithms are sometimes the motivation for new classical algorithms
outperforming the proposed quantum algorithm [212].
However, work in this direction already has also shown that quantum circuits

can prepare probability distributions that are not reachable in classical computing
[104, 213–219]. In this section, we expound on the benefits of quantum algorithms
compared to classical ones. Therefore, we study a simplified version of Deutsch’s
algorithm [52]. In the end, we give a short overview of the most famous early
quantum algorithms.

Exponential memory capacity

One advantage of quantum information is the exponential memory capacity:
whereas the state space of a classical computer grows with 2b, where b is the
number of computational bits, a q-qubit quantum device is described with a,
much larger, 2b-dimensional Hilbert space, as was explained in Section 3.1. When
aiming to solve exponential problems, for example like simulating a quantum
system [192,220], classical computers run out of memory capacity very quick, and
quantum computers can lead to opportunities.

Quantum parallelism

Besides, classical computers compute only classical functions. Assume, for example,
a function, which get two bits as an input, i.e. the input is {0, 0}, {0, 1}, {1, 0}
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or {1, 1}. If we want the output for all four inputs, we need to run the function
four times. Due to the superposition principle, described in Section 3.1, one
can argue that a quantum computer taking a q-qubit quantum state as an input
computes the output for 2q inputs in parallel. This principle is called quantum
parallelism [56, 221] and can eventually lead to speed-up over classical computers.

To be more precise, we assume in the following that the aim is to compute
outputs of a classical one-bit function f(x) : {0, 1} → {0, 1} for both inputs, 0 and
1 simultaneously. Two qubits are initialised as |x〉 = |0〉+|1〉√

2
and |y〉 = |0〉. Using a

two-qubit unitary Uf , defined trough Uf |x, y〉 = |x, y ⊕ f(x)〉, the function f(x)
can be worked out on both inputs via

Uf |x, y〉 =
|0, f(0)〉+ |1, f(1)〉√

2

Note that f(x) is a binary function and y ⊕ f(x) denotes the addition of y and
f(x) modulo 2.

The problem with quantum parallelism is that measurements are required to
extract classical data out of the quantum algorithm. The measurement gives only
one result, f(0) when |0〉 is measured and f(1) for |1〉, respectively. The benefit of
parallelism is not available. However, we explain in the following how this problem
can be avoided and determining f(0)⊕ f(1) is possible. To this end, we follow [52]
to present a simplified version of Deutsch’s algorithm [221], depicted as a quantum
circuit in Figure 3.6.

Deutsch’s algorithm

Unlike the ansatz above we initialise two qubits in the state |ψ1〉 = |xy〉, where

|x〉 = H |0〉 =
|0〉+ |1〉√

2
,

|y〉 = H |1〉 =
|0〉 − |1〉√

2
.

Applying the unitary Uf gives

Uf |ψ1〉 = |ψ2〉 =

±
(
|0〉+|1〉√

2

)
⊗
(
|0〉−|1〉√

2

)
if f(0) = f(1)

±
(
|0〉−|1〉√

2

)
⊗
(
|0〉−|1〉√

2

)
if f(0) 6= f(1).

For the derivation it helps to see first that

Uf

(
|x〉 ⊗

(
|0〉 − |1〉√

2

))
= (−1)f(x) |x〉 ⊗

(
|0〉 − |1〉√

2

)
.
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After applying a Hadamard gate on the first qubit of |ψ1〉 we end with the resulting
state

(H ⊗ 1) |ψ2〉 = |ψ3〉 =

± |0〉 ⊗
(
|0〉−|1〉√

2

)
if f(0) = f(1)

± |1〉 ⊗
(
|0〉−|1〉√

2

)
if f(0) 6= f(1).

Since

|ψ3〉 =

{
f(0)⊕ f(1) = 0 if f(0) = f(1)

f(0)⊕ f(1) = 1 if f(0) 6= f(1),

we can rewrite |ψ3〉 as

|ψ3〉 = ± |f(0)⊕ f(1)〉 ⊗
(
|0〉 − |1〉√

2

)
.

|ψ1〉 |ψ2〉 |ψ3〉

Uf

|0〉 H H

|1〉 H

Figure 3.6.: Deutsch’s algorithm. The quantum two-qubit circuit for Deutsch’s
algorithm is build of three Hadamard gates and a Unitary operation
Uf .

Hence when measuring the first qubit of |ψ3〉, we can determine f(0) ⊕ f(1),
which is remarkable since we only used one evaluation of f(x) during the process.
Although a classical computer can work with probabilistic methods evaluating f(0)
with probability 0.5 and f(1) with the same probability, a quantum algorithm can
work with the interference of the values. In that way, the determination of global
information, for example, here f(0)⊕ f(1), is possible.

Famous algorithms

To conclude this section, we want to give a quick overview of the most famous
quantum algorithms.

We already motivated and explained Deutsch’s algorithm [221] above, which is
able to compute whether a one-bit function f(x) is constant, i.e. f(0)⊕f(1) = 0 or
balanced, i.e. f(0)⊕ f(1) = 1. The generalisation from a one-bit to n-bit function
of Deutsch’s algorithm is known as Deutsch-Jozsa algorithm [56].
An algorithm that solves a problem of more practical use is Shor’s factoring

algorithm [57]: using the quantum version of the Fourier transform [52,222] this
algorithm can find the prime factors of a given number. Remarkable is that whereas
the best nowadays known classical algorithm runs in sub-exponential time [223],
Shor’s factoring algorithm runs in polynomial time.
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Next to quantum Fourier transform-based algorithm, quantum search algorithms
gained much attention: the task is to find a particular item given a list of length
N . Classically this problem requires approximately N operations. Although
not providing a speed-up as sensational as Shor’s algorithm, it is noteworthy
that Grover’s search algorithm [58] solves the task using only approximately

√
N

operations. More detailed reviews of the mentioned algorithms can be found
at [224].

3.4 Quantum computers

From the view of a theoretician, it is compelling to sink directly into the theory
of new algorithms after learning the basics of quantum computing. However, we
should bear in mind that all these approaches have the most beneficial effect
in physical realisation. Therefore we will give in the following lines a short
introduction to the problems but also the successes of the experimental side of
quantum computing.

Qubit implementation

Since the quantum computer’s elementary component is the qubit, implementing
the latter is fundamental for building a quantum computer. As explained in
Section 3.1 such a two-level system can be realised through a physical object
that can exist in a superposition of two states. The problem is that, on the one
hand, these physical qubits have to be well isolated to preserve their features
but, on the other hand, accessible for the computational tasks and measurements
[52]. Achieving a good balance of both of these requirements is the leading
implementation problem. Moreover, a general rule is that the decoherence time
has to be longer than the gate operation time. The therm decoherence describes
here the irreversible interactions of the qubits with the environment, also referred
to as leakage [225,226].

The quality of the qubit implementation can be described by the accuracy with
which quantum gates can be performed. The error rate per gate for two-qubit gates
with the best hardware for controlling trapped ions [227,228] or superconducting
circuits [229–231] is above 0.1%. This induces a limit in the number of quantum
gates that can be applied within one quantum circuit before the noise overwhelms
the signal. Other limiting parameters are the time per gate execution and the
measurement error probability. The time per gate execution strongly depends on
the specific quantum computer model, whereas the measurement error probability
is often about 1% [53].

NISQ devises

Despite these challenges, in the last years, large-scale quantum computation became
possible. Big companies like Microsoft, Google and IBM competed in building
quantum computers. In 2019, IBM launched a quantum processor containing 53
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qubits [211]. In the same year, Google announced their processor Sycamore, also
including 53 qubits based on a superconducting circuit [55].
Today’s quantum devices are called noisy intermediate-scale quantum devices

(NISQ devices) [53–55]. These early quantum computers are characterised by
their high sensitivity to the environment (noisy) and limited number of available
qubits and applicable gates (intermediate-scale). Due to these limitations, today’s
quantum computers do not achieve fault-tolerant quantum computation [232, 233].
However, future generations of these devices may be able to perform tasks which
exceed the capabilities of classical supercomputers.

Noteworthy is moreover that IBM offers the free access to some of their quantum
devices [59]. Naturally, the availability of NISQ devices leads to new opportunities.
One of them is the implementation of quantum learning algorithms.

3.5 Quantum neural networks

In the last section, we discussed the exciting and ongoing progress on quantum
computers. Beforehand, Chapter 2 gave an introduction to the widely spreading
world of neural networks, including various algorithms, optimisation methods and
countless applications. Hence it is not surprising that merging both of these topics
in the field of quantum machine learning (QML) [60, 61, 68, 70, 73, 234–237] carries
great promise for the discovery of new opportunities.
As discussed in Chapter 2, the method of artificial neural networks (NNs)

is very popular in classical machine learning (ML). Consequently, in the past
years, the construction of a quantum analogue and its usage for QML was of
great interest. The term quantum neural network (QNN) was introduced first by
Subhash Kak in 1995 [238] with the motivation of connecting investigations in the
field of neuroscience with characteristics of quantum computation. Whereas the
proposals in the nineteenths remain to be of a rather theoretical idea [238–240],
today QNNs are mostly viewed as a subset of practical quantum circuits containing
parametrised gates. Many different proposals on how to construct these have been
made [74,77,79–95]. Similar to their classical counterparts QNNs are often build
of a fundamental building block. These quantum perceptrons have been proposed
in various ways in the last years [79,83–85,89,95,241–245]. Note, that some of the
named QNNs are designed for pure quantum tasks, whereas others can be used
for classical input. In the latter case, the classical data has to be encoded first.
In [246] it is shown, for example, how to encode a binary vector of dimension d
using log2 d qubits.

The detailed discussion of all of these proposals would exceed the scope of this
section. However, we want to describe two of them here shortly as they will play
a role in the rest of the thesis: Chapter 4 considers comprehensively the QNNs
proposed in [79], called dissipative quantum neural networks (DQNNs). In this
ansatz, the QNN is built of multiple layers of qubits. The quantum perceptrons
connect qubits of two consecutive layers with unitary operations and feed-forward
the input state over the layers through the network. On the contrary, other QNN
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proposals are constructed by just one layer of qubits. The perceptrons are then, for
example, defined as a sequence of alternating unitary operators [103–105] which
act all on the same qubits. Such an algorithm will be discussed in Section 4.7.
Note that an overview of the most recent QNN proposals can be found in [247].

Implementation

QNNs can be implemented on today’s quantum computers as variational quantum
algorithms (VQA) [62]. Their process is a quantum-classical hybrid: the algorithms
themselves are executed on a quantum computer, but the optimisation process
is done classically. In particular parametrised quantum circuits [237, 248–250]
are used for the implementation. These quantum circuits consist of unitary
transformations and can be modified using parameters ~θ. Further, a quantum
algorithm computes the training loss function. During the training the parameters
are updated classically such that the training loss is optimised [101,248,251–253],
since this task can be efficiently fulfilled in this way.
A substantial benefit of VQAs is that they can be successfully executed on

NISQ devices. As explained in Section 3.4 these devices are highly impaired
through noise entering with each quantum gate [53]. This limits the number
of quantum gates within one quantum circuit before the noise outweighs the
algorithm’s performance. It follows that only quantum circuits of small depth can
be applied. In contrast to famous methods like Shor’s factoring algorithm [57]
or Grover’s search algorithm [58] which require too many gates, QNNs can be
executed on these early quantum computers. In Section 4.6 and Section 4.7 we
will discuss the implementations of two of the QNN proposals mentioned above.

Challenges

Although we can train QNNs on today’s NISQ devices, the execution remains
challenging: both, the limited number of available qubits as well as the high noise
levels can lead to problems and limits. Especially when working with quantum
circuits of higher depth, the accurate computation of the loss gradients becomes
ambitious [53,254–256].
This is not the only challenge we have to accept: Barren plateaus, the phe-

nomenon of exponentially vanishing gradients of the training loss function in the
number of qubits [247,257–260], can lead to significant problems. The update of
the parameters ~θ is based on the gradient of the training function, similar to the
classical case which was explained in Section 2.4. When this gradient approaches
zero for all components the change of the parameters will stagnate and so the
training process. Meeting this case, it is advisable to change the architecture of
the QNN and/or the training function.
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Opportunities

As well as their classical analogous, QNNs are able to perform a variety of tasks.
The algorithms can be used for tasks including classical data, for example image
processing [90,261]. However, with the advent of quantum computers containing
more than just a handful qubits the task of coping with large amounts of quantum
data becomes crucial. State tomography [96], or quantum process tomography [97],
where the number of needed samples increases exponentially with the number of
particles [98] is out of question.
Hence, it is exciting that QNNs allow characterisations with fewer samples

compared to tomography methods. Specifically, they can be applied for the
classification of classical or quantum data [77, 93, 262] or de-noising quantum data
[85,263–266]. Also the learning of graph-structured quantum data [99,267–271] was
studied. This will be discussed in detail in Chapter 6. Moreover the characterisation
of quantum devices is possible, often formulated as the assignment of learning an
unknown unitary operation [79,101,267,268,272,273].
The latter task will be discussed in the next chapter of this work, where the

topic of QNNs will be presented in detail using the example of DQNNs. The
discussion includes a precise description of the DQNN architecture and algorithm,
implementation details and training results.
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Dissipative quantum neural networks

The introductions to machine learning (ML) and quantum information in Chapter 2
and Chapter 3 prepared the reader for the following chapter, probably the heart
of this thesis. The here presented quantum analogue of a classical neuron [79]
leads not only to a quantum feed-forward neural network capable of universal
quantum computation with remarkable generalisation behaviour and robustness
to noisy training data but is also the basis for further ongoing studies. Two of
them, the usage of graph-structured data (see Chapter 6) and an ansatz for a
quantum generative adversarial network (see Chapter 7), will be presented later in
this work.

As discussed in Chapter 1, one can categorise quantum machine learning (QML)
techniques into classical ML improving quantum tasks, quantum algorithms speed-
ing up classical ML and exploiting quantum computing devices for tasks with
quantum data. The dissipative quantum neural networks (DQNNs) is integrated
into the latter category. It consists of layers of qubits and can be trained with
pairs of quantum states. A training data pair consists of an input state and an
aimed output according to the training goal.

The DQNN is built of quantum perceptrons. Such a building block connects two
consecutive layers of qubits and can be represented as a completely positive (CP)
transition map. The word dissipative describes the action of these maps: such a
map does not only contain tensoring the state of the current layer to the state of
the next layer’s qubits and applying unitary operations but also tracing out the
qubits from the first of the two layers. In this way, the layer-to-layer transition
maps feed-forward input states through the DQNN. The obtained output state can
then be compared with the aimed output. This comparison is made through the
fidelity of two quantum states and allows conclusions about how the perceptron

39



4. Dissipative quantum neural networks

unitaries must be updated to fulfil the training goal better.
Both, the simulation on classical computers as well as the implementation

on quantum computers provide fast optimisation of the network. We focus on
supervised training in this chapter and challenge the algorithm with the job of
learning an unknown unitary operation. In addition to that, quantum neural
networks (QNNs) of this kind can also be exploited for unsupervised learning task
and act as quantum autoencoders to de-noise entangled quantum states [265].
One advantage of DQNNs is that the dissipative structure leads to reduced

memory requirements, since the number of required qubits scales with only the
width, not the depth of the QNN. This enables us to train deep QNNs, if the
quantum device allows qubits to be “reused”. Furthermore, no disturbing effects of
the Barren plateau phenomenon, discussed in Section 3.5, have been observed in
the studies of [79]. When the quantum neurons are sufficiently local and sparse,
the QNNs might totally avoid these feared vanishing gradients of the training
loss function [94]. Finally, numerical results have shown that DQNNs reach the
fundamental information-theoretic limits on quantum learning stated in the form
of the quantum no free lunch (QNFL) theorem. This bound will be discussed in
Chapter 5.
This chapter will introduce the reader to DQNNs in their entirety. The first

four sections follow the work of [79]. We start by explaining the layer-to-layer
transition maps and the general network architecture in Section 4.1. We focus on
the task of learning an unknown unitary, hence in Section 4.2 we formulate the
training data for this exemplary task and a suiting loss for training the DQNN.
Further, we define a second loss function for testing the behaviour of the QNN after
training. The training algorithm itself is explained in Section 4.3. All derivations
of the rules used for updating the quantum perceptrons are derived at this point.
Section 4.4 describes a vivid proof of the above-mentioned universality. The
classical simulation of the training leads to promising results, which are presented
in Section 4.5. Additionally, the implementation on a NISQ quantum device and
training results are discussed in Section 4.6, following [101]. We end the chapter
with a comparison of the DQNN algorithm with another QNN architecture in
Section 4.7.

4.1 Network architecture

In analogy to a classical neural network (NN), see Section 2.2, the DQNN is build
of quantum perceptrons acting on qubits arranged in layers. We start with a
description of the perceptrons which act as building blocks of the QNN and explain
how the QNN is built using these afterwards.

Quantum perceptron

The perceptrons are engineered as arbitrary unitary operators. Such a perceptron
unitary acts on m+ n qubits and depends on (2m+n)2 − 1 parameters. We define
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shift

(a) Network.

U
ρin

|0〉 〈0| ρout

(b) Implementation

Figure 4.1.: Quantum perceptron. The implementation of the perceptron, here
acting on 4 qubits with m = 3 and n = 1, can be depicted in network
notation (a). The implementation as quantum circuit includes initiali-
sation of m qubits in the input state and n in the zero state, applying
a unitary operation U and tracing out m qubits (b).

m of the qubits as input qubits and n as output qubits. It is further needed for the
algorithm that the input qubits are initialised in a state ρin and the output qubits
in a product state |0...0〉, respectively. After applying the perceptron unitary, the
m input qubits are traced out and we are left with the n-qubit state ρout. This
output state has in general not the same dimension as the input state. Figure 4.1
makes clear how an exemplary perceptron can be depicted in network or quantum
circuit notation. One single perceptron can be seen as a small DQNN consisting
only of two layers of qubits and one unitary operation.

Before describing how to build a large DQNN constructed of many perceptrons,
we want to make two remarks: for simplicity, we set n = 1 here, i.e. the perceptrons
are m+ 1-qubit unitaries. As we will see in Section 4.4 this will not threaten the
universality of this model. Further, although we suppose working with 2-level
qubits, it can be handy to notice that a so defined perceptron can be easily
generalised for qudits.

Quantum neural network

The DQNN is a quantum circuit built out of L+ 2 layers of qubits. We name the
first layer input layer, the last layer output layer and count the L layers in between,
namely the hidden layers, with the variable l, see Figure 4.2. In each layer, the
perceptron unitaries are applied layerwise and from top to bottom. In that way
two subsequent layers are fully connected through perceptrons. Remember that to
each perceptron an arbitrary unitary is assigned, and therefore the perceptrons
do not generally commute. The order of application of the perceptron unitaries is
indicated with over- and under-crossings in Figure 4.2.

In the introduction to this chapter we already mentioned that the whole network
can be expressed as a composition of layer-to-layer transition maps. This notation
will be highly important through the whole chapter. According to the definition of
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U1 = U1
3U

1
2U

1
1

l = in l = 1 . . . l = L l = out

input layer hidden layers output layer

Figure 4.2.: Network representation of a DQNN. This DQNN consists of L+2
layers of qubits, and L+ 1 layers of quantum perceptrons represented
by unitary operations U l

j.

a single perceptron, we can phrase the output state of the DQNN as

ρout = E
(
ρin) = EL+1

(
EL
(
. . . E2

(
E1
(
ρin)) . . . )) , (4.1)

using the CP maps E l defined via

E l(X l−1) ≡ trl−1
( 1∏
j=ml

U l
j(X

l−1 ⊗ |0...0〉l 〈0...0|)
ml∏
j=1

U l
j

†)
, (4.2)

where U l
j is assigned to the jth perceptron acting on the qubit layers l − 1 and

l, and ml is the total number of perceptrons acting on layers l − 1 and l. See
Definition 3.1 for an introduction to CP maps. From this notation, it becomes
clear that the information propagates from the input to the output layer and a
quantum feed-forward NN is implemented. This fact is the groundwork for the
back-propagation algorithm, which we will discuss in Section 4.3.

We want to close the discussion of the network architecture with a short obser-
vation: it is possible to see the quantum circuit of the network as a single unitary
U = UoutULUL−1 . . . U1, where U l = U l

ml
. . . U l

1 are the layer unitaries, comprised
of a product of quantum perceptrons acting on the qubits in layers l− 1 and l, see
Figure 4.2. However, note that every U l

k has to be extended by identities for the
remaining qubits to get the correct dimensions when implementing the architecture.
We leave these off for a cleaner notation here. Taking this into account the formula
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for the output state can be expressed as

E
(
ρin) ≡ trin,hid(U(ρin ⊗ |0...0〉hid,out 〈0...0|)U

†).

4.2 Loss functions

After describing the structure of the DQNN and before explaining the algorithm,
we need to formulate a training goal. In this section, we do so by formulating two
loss functions: one is aimed to be maximised during training, and a second one is
used to check the trained DQNN afterwards.

Training and validation data

We start by specifying a learning task. Therefore, imagine the following setting: we
have access to a not-trusted or uncharacterised quantum device or a similar source
acting as a unitary Y on m-qubit input states. This device can be repeatedly
initialised and applied to arbitrary states. In that way it is possible to prepare
training data pairs, also called supervised data, structured as {|φin

x 〉 , |φSV
x 〉} with

|φSV
x 〉 = Y |φin

x 〉 and x = 1, 2, . . . , N . Notice that the input state generally does
not have to be pure, but we district our discussion to this case for simplicity
here. In the following we use the notation ρin

x ≡ |φin
x 〉 〈φin

x | for the input. Notice
further that after generating N training data pairs, we will only use S of them for
training. N − S pairs will not be used for the training algorithm, but for testing
the generalisation behaviour of the trained network as explained later.

At this point we have to mention a crucial point: in our scenario and using the
in the afterwards discussed algorithm, it is essential that we can request multiple
copies of each of our S training pairs to overcome quantum projection noise in
evaluating the derivative of the loss function. Since cloning an unknown quantum
state is not possible [52], we can not simply copy the training data pairs. Instead
we assume we have a device, where it is possible to press the button x and we get
the training data pair {|φin

x 〉 , |φSV
x 〉}. It is worth mentioning at this point that this

procedure in combination with QML is still more efficient then characterising a
n-qubit device via tomography [96,97], where the number of needed samples scales
exponentially with the number of qubits n.
The more neurons we use to build the QNN, the more copies per training

round are needed. In detail we need nproj × npar copies, where npar is the total
number of parameters in the network and nproj the factor coming from repetition
of measurements to reduce projection noise. npar is linear in the number of neurons.
It is given by

nDQNN =
L+1∑
l=1

ml∑
j=1

#param(U l
j) =

L+1∑
l=1

ml∑
j=1

(4(ml−1+1) − 1) =
L+1∑
l=1

ml × (4(ml−1+1) − 1),

where #param(U l
j) denotes the number of parameters used to describe U l

j and ml
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is the number of perceptrons acting on the qubit layers l − 1 and layer l. The −1
term appears because the overall phase of the unitaries is unimportant. Moreover,
we assume that the used DQNN has number of input and output qubits suiting
the training data, i.e. m = m0 = mL+1.

Training loss

Since we already discussed the training data set and goal, we can now investigate
the loss functions. Given an architecture in the form of a DQNN, the aim is now
to exploit the training pairs to learn the action of the given quantum device and
perfectly reproduce it through the network. This means the loss function should
not only be meaningful to the problem, but reach a global extremum if the training
goal is reached. During the training it is to avoid that the the gradient of the
loss function vanishes. Furthermore, we require that the function be efficiently
computed on a quantum computer.
The training algorithm, explained in Section 4.3, naturally includes updating

the DQNN. This is the centrepiece of the training and the main step to reach our
training goal which can be formulated the following way: we desire the network’s
output E

(
ρin
x

)
to be as close as possible to the correct output |φSV

x 〉 for a specific
input |φin

x 〉. We use an essentially unique measure of closeness for (pure) quantum
states, to quantify this, and define the training loss function as the fidelity F
between the QNN output and the desired output, averaged over the training data.
We aim to optimise, more precisely to maximise, the loss function during training.
For pure supervised states the loss function takes the form

LSV =
1

S

S∑
x=1

F (|φSV
x 〉 〈φSV

x | , ρout
x ) =

1

S

S∑
x=1

〈φSV
x |ρout

x |φSV
x 〉

and has the domain [0, 1]. We aim for the value 1 during training, since the fidelity
reaches 1, if the two compared states are equal.
Choosing the fidelity as a distance measure of a pure state and a mixed state

has a few advantages. Not only is the fidelity a good generalisation of the risk
function considered in training classical NN, but it can also be measured and has
an operational meaning. See Section 3.1 for a more detailed discussion.

Validation loss

Quantum data is generally very limited. Therefore it is of great interest to analyse
how well the network performs on unseen data. After the training we can do this
with checking how well the network predicts the N − S unsupervised outcomes.
For this task we specify the validation loss

LUSV =
1

N − S

N∑
x=S+1

〈φUSV
x |ρout

x |φUSV
x 〉.
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This loss functions also helps to analyse, if the training the DQNN leads to
overfitting, i.e. the model matches the training data but does not perform accurately
on unseen data, which is generally to avoid.

4.3 Training algorithm

With the loss function and QNN ansatz in hand, we can explain how the training
proceeds. In the following, we will lead through the algorithm which can be found
as a summarised version in Figure 4.3. The rest of this section will be somewhat
technical. Nonetheless, we encourage the reader not to skip these parts, since
the proofs allow a deeper understanding of the algorithm and structure of the
DQNN. We begin with the derivation of the update matrix (see Proposition 4.1).
It follows a derivation of the adjoint channel F lt of E lt (see Proposition 4.2) as well
as a revealing discussion on the form of the update matrix, which can be expressed
in terms of the layer-to-layer channels. We close the section with calculating of
the change in the training loss during training (see Proposition 4.3) in a way that
is similar to the classical back-propagation explained in Section 2.4.

Overview

In the first step, the initialisation, all perceptron unitaries U l
j the DQNN is build

of are initialised by randomly chosen unitaries and all qubit states in all layers are
initialised in the zero state. The copies of training data pairs are prepared.

The feed-forward part of the algorithm promotes the input of every training pair
through the network, which is described with Equation (4.1). For every layer, the
state of the previous layer ρl−1x is tensored with the layer l initialised in the state
|0...0〉. The unitaries U l = U l

ml
. . . U l

1 acting on layer l − 1 and layer l are applied.
Finally, the layer l − 1 is traced out and the resulting state ρlx is saved and used
for the next feed-forward step.
The next piece of the algorithm, the back-propagation, is very similar to the

previous part. The only differences are that we propagate the output part of the
training pair, and that the propagation direction is the opposite. This means we
start at the end of the network with the state ρSV

x and use the adjoint channel of
E l instead of E l itself for the propagation. The resulting states are saved as σl−1x .
We will derive the exact form of the adjoint channel F lt(X l) in Proposition 4.2.

The information gained in the feed-forward and back-propagation parts of the
algorithm, saved as states ρlx and σl−1x , is used for updating the network’s unitaries
in a way that optimises the training loss. Assuming that the unitaries depend on
a parameter t and using gradient descent leads to the update rule

U l
j(t+ ε) = eiεK

l
j(t)U l

j(t),

where ε is the training step size. It follows that also the layer-to-layer map
E l(t) ≡ E lt and its adjoint F l(t) ≡ F lt depend on the parameter t. We will
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Initialisation:

Assign randomly chosen unitaries U l
j for all

j and l and initialise all qubits in |0〉.

... ...

Feed-forward:
Feed-forward every training pair input ρin

x through the network, i.e. apply the
channel E l to output state l − 1 for every l. This includes:

Tensor the state ρl−1x with the state |0...0〉,
demonstrating initialised layer l.

... ...

Apply the unitaries U l = U l
ml
. . . U l

1 acting
on layer l − 1 and layer l

... ...

Trace out layer l− 1 and store the resulting
state ρlx.

... ...

Back-propagation:
Back-propagate every training pair output ρSV

x by applying F lt , the adjoint
channel of E l, to output state l for every l. This includes:

Tensor the state σlx with the identity on
layer l − 1.

... ...

Apply U l† = U l†
1 . . . U

l†
ml

and multiply with
according identities, see Proposition 4.2.

... ...

Trace out layer l and store the resulting
state σl−1x .

... ...

Updating the network:
Using feed-forward and back-propagation, evolve the update matrices
K l
j = η 2ml−1 i

S

∑S
x=1 trrestM

l
j, where the trace traces out all qubits that are

not affected by U l
j, η is the learning rate, ml−1 the number of perceptrons in

layer l− 1 and S is the number of training pairs. M l
j is discussed in Figure 4.4.

Update all unitaries U l
j with the update rule

U l
j → eiεK

l
jU l

j.

... ...

Figure 4.3.: DQNN training algorithm. The steps feed-forward, back-
propagation and updating are repeated until the training loss reaches
its maximum.
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determine the update matrix in Proposition 4.1. Note that the steps feed-forward,
back-propagation and updating are repeated until the training loss reaches its
maximum. We will discuss training results in Section 4.5 (classical simulation)
and Section 4.6 (NISQ device implementation).

Derivation of the update matrix

The above mentioned update rule is based on the update matrices. In the following
it will be shown of which form these matrices have to be to improve the perceptrons’
performance on the training data.

Proposition 4.1. The update matrix for a QNN trained with pure states |φSV
x 〉

has to be of the form

K l
j(t) =

η2ml−1i

S

∑
x

trrest
(
M l

j(x, t)
)
,

where

M l
j(x, t) =

[
U l
j(t) . . . U

1
1 (t)

(
ρin
x ⊗ |0...0〉 〈0...0|

)
U1
1
†
(t) . . . U l

j

†
(t),

U l
j+1

†
(t) . . . UL+1

mL+1

†
(t)
(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U l
j+1(t)

]
,

U l
j is assigned to the jth perceptron acting on the qubit layers l − 1 and l and η is

the learning rate.

Proof. To show the statement we derive dLSV(t)/dt. Therefore the output state of
the update step t+ ε is needed. Note that the unitaries act on the current qubit
layers and we do not write out the identity matrices for a cleaner notation, e.g. U2

1

is the short form of U2
1 ⊗ 122,3,...m2

.

ρout
x (t+ ε) = trin,hid

(
eiεK

L+1
mL+1

(t)UL+1
mL+1

(t) . . . eiεK
1
1 (t)U1

1 (t)
(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t)e−iεK

1
1 (t) . . . UL+1

mL+1

†
(t)e−iεK

L+1
mL+1

(t)
)

=ρout
x (t) + iε trin,hid

([
KL+1
mL+1

(t), UL+1
mL+1

(t) . . . U1
1 (t)(

ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t) . . . UL+1

mL+1

†
(t)
]

+ . . .

+ UL+1
mL+1

(t) . . . U1
2 (t)

[
K1

1(t), U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t)
]
U1
2
†
(t) . . . UL+1

mL+1

†
(t)
)

+O
(
ε2
)
.

The derivative of the loss function, up to the first order in ε, can be written as

dLSV(t)

dt
= lim

ε→0

LSV(t+ ε)− LSV(t)

ε
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= lim
ε→0

1
S

∑S
x=1 〈φSVx | (ρoutx (t+ ε)− ρoutx (t)) |φSVx 〉

ε

=
1

S

S∑
x=1

tr

(
(1in,hid ⊗ |φSV

x 〉 〈φSV
x |)

([
iKL+1

mL+1
(t), UL+1

mL+1
(t) . . . U1

1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t) . . . UL+1

mL+1

†
(t)
]

+ . . .

+ UL+1
mL+1

(t) . . . U1
2 (t)

[
iK1

1(t), U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t)
]

U1
2
†
(t) . . . UL+1

mL+1

†
(t)

))

=
i

S

S∑
x=1

tr

([
UL+1
mL+1

(t) . . .
(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
. . . UL+1

mL+1

†
(t),

1in,hid ⊗ |φSV
x 〉 〈φSV

x |
]
iKL+1

mL+1
(t) + . . .

+
[
U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t),

U1
2
†
(t) . . . UL+1

mL+1

†
(t)
(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U1
2 (t)

]
iK1

1(t)

)
=
i

S

S∑
x=1

tr
(
ML+1

mL+1
(t)KL+1

mL+1
(t) + . . . +M1

1 (t)K1
1(t)
)
,

where

ML+1
mL+1

(t) ≡
[
UL+1
mL+1

(t) . . .
(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
. . . UL+1

mL+1

†
(t),

1in,hid ⊗ |φSV
x 〉 〈φSV

x |
]
,

M1
1 (t) ≡

[
U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t),

U1
2
†
(t) . . . UL+1

mL+1

†
(t)
(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U1
2 (t)

]
.

With |0...0〉hid,out 〈0...0| we denote the initialised qubits of the hidden layers and
the output layer. We describe the identity on the space of the input and hidden
layer’s qubits with 1in,hid. With the usage of the Pauli matrices σ ≡ {1, σx, σy, σz},
defined in Figure 3.2, the parameter matrices Kj

l can be parametrised as

K l
j(t) =

∑
α1,α2,...,αml−1

,β

K l
j,α1,...,αml−1

,β(t)
(
σα1 ⊗ . . . ⊗ σαml−1 ⊗ σβ

)
.

The index αi counts the qubits in the previous layer, β describes the current qubit
in layer l. In the next step, we maximise dLSV

dt
because we aim to maximise the

loss function in every step of the training algorithm. Therefore we introduce a
Lagrange multiplier λ ∈ R to ensure a finite solution. Without this condition the
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extrema would be ±∞.

max
Kl
j,α1,...,β

(dLSV(t)

dt
− λ

∑
αi,β

K l
j,α1,...,β

(t)2
)

= max
Kl
j,α1,...,β

( i
S

S∑
x=1

tr
(
ML+1

mL+1
(t)KL+1

mL+1
(t) + . . . +M1

1 (t)K1
1(t)
)

− λ
∑
α1,...,β

K l
j,α1,...,β

(t)2
)

= max
Kl
j,α1,...,β

( i
S

S∑
x=1

trα1,...,β

(
trrest

(
ML+1

mL+1
(t)KL+1

mL+1
(t) + . . . +M1

1 (t)K1
1(t)
))

− λ
∑
α1,...,β

K l
j,α1,...,β

(t)2
)
.

The notation trrest describes tracing out all qubits which are not effected by
K l
j,α1,...,β

. As a next step we take the derivative of the gained expression with
respect to K l

j,α1,...,β
:

i

S

S∑
x=1

trα1,...,β

(
trrest

(
M l

j(t)
)(
σα1 ⊗ . . . ⊗ σβ

))
− 2λK l

j,α1,...,β
(t) = 0,

This is equivalent to

K l
j,α1,...,β

(t) =
i

2Sλ

S∑
x=1

trα1,...,β

(
trrest

(
M l

j(t)
)(
σα1 ⊗ . . . ⊗ σβ

))
.

We finally can express the parameter matrices as

K l
j(t) =

∑
α1,...,β

K l
j,α1,...,β

(t)
(
σα1 ⊗ . . . ⊗ σβ

)
=

i

2Sλ

∑
α1,...,β

S∑
x=1

trα1,...,β

(
trrest

(
M l

j(t)
)(
σα1 ⊗ . . . ⊗ σβ

))(
σα1 ⊗ . . . ⊗ σβ

)
=
η2ml−1i

S

S∑
x=1

trrest
(
M l

j(t)
)
,

where η = 1/λ is the learning rate and

M l
j(t) =

[
U l
j(t)U

l
j−1(t) . . . U

1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t) . . . U l

j−1
†
(t)U l

j

†
(t),

U l
j+1

†
(t) . . . UL+1

mL+1

†
(t)
(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U l
j+1(t)

]
.
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Derivation of the adjoint channel

Knowing how the update is done, we can describe the entire training algorithm.
Nevertheless, we aim to understand the structure of the update matrices more
deeply. To write the commutator M l

j(t) in terms of layer-to-layer channels, we
need the adjoint channel of E which is derived in the following.

Proposition 4.2. The adjoint channel Ft(X) for the CP map
E lt(X l−1) = trl−1

(
U l(t)(X l−1 ⊗ |0...0〉l 〈0...0|)U l†(t)

)
is of the form

F lt(X l) = trl
((
1l−1 ⊗ |0...0〉l〈0...0|l

)
U l†(t)

(
1l−1 ⊗X l

)
U l(t)

)
.

Proof. In order to show which form the adjoint channel F lt has, we express E lt
in its Kraus representation [207], which was introduced in Section 3.2. For any
operator X l−1 on the (l − 1)th layer we can phrase

E lt(X l−1) =
∑
α

Alα(t)X l−1Alα
†
(t),

where the Kraus operators Aα are maps from the (l − 1)th layer of ml−1 qubits to
the lth layer of ml qubits. Naturally the adjoint channel F lt can be written as

F lt(X l) =
∑
α

Alα
†
(t)X lAlα(t), (4.3)

for any operator X l on the lth layer. Our aim is to express the Kraus operators
Alα. We choose {|α〉}α to be an orthonormal basis in the (l − 1)th layer. Further
we assume |b〉 , |c〉 are any vectors in the (l − 1)th layer and |d〉 , |e〉 any vectors in
the lth layer. Using Equation (4.2) and U l(t) = U l

ml
(t) . . . U l

1(t) we get〈
d
∣∣ E lt( |b〉 〈c| )∣∣e〉 =

〈
d
∣∣∣ trl−1

(
U l(t)

(
|b〉 〈c| ⊗ |0...0〉l 〈0...0|

)
U l†(t)

)∣∣∣e〉
=
∑
α

〈
α, d
∣∣U l(t)

(
|b〉 〈c| ⊗ |0...0〉l 〈0...0|

)
U l†(t)

∣∣α, e〉
=
∑
α

〈
α, d
∣∣U l(t)

∣∣b, 0...0〉〈n, 0...0∣∣U l†(t)
∣∣α, e〉.

Defining Alα(t) with 〈d|Alα(t) |b〉 =
〈
α, d
∣∣U l(t)

∣∣b, 0...0〉 and using Eq. (4.3) we
reach the expression

〈b| F lt(|d〉 〈e|) |c〉 =
∑
α

〈b|Alα
†
(t) |d〉 〈e|Alα(t) |c〉

=
∑
α

〈
b, 0...0

∣∣U l†(t)
∣∣α, i〉〈α, e∣∣U l(t)

∣∣c, 0...0〉
=
〈
b, 0...0

∣∣U l†(t)
(
1l−1 ⊗ |d〉 〈e|

)
U l(t)

∣∣c, 0...0〉
=
〈
b
∣∣∣ trl

(
1l−1 ⊗ |0...0〉l〈0...0|lU l†(t)

(
1l−1 ⊗ |d〉 〈e|

)
U l(t)

)∣∣∣c〉.
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Extracting the action of F l(t) on a general operator X l leads to

F lt(X l) = trl
(
1l−1 ⊗ |0...0〉l〈0...0|lU l†(t)

(
1l−1 ⊗X l

)
U l(t)

)
.

Beneficial form of the update matrix

We successfully derived the adjoint channel of E . At this point, we can discuss the
structure of

M l
j(x, t) =

[
U l
j(t) . . . U

1
1 (t)

(
ρin
x ⊗ |0...0〉 〈0...0|

)
U1
1
†
(t) . . . U l

j

†
(t),

U l
j+1

†
(t) . . . UL+1

mL+1

†
(t)
(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U l
j+1(t)

]
,

see Proposition 4.1, in more detail. At a second glance, the commutator expression
presents an exciting structure: the first part of the commutator is the input
state propagated through the network until we reach the unitary U l

j we wish
to update. The second part is obtained by back-propagation of the matching
desired supervised output state with stopping right before U l

j. This observation is
visualised in Figure 4.4.

... ...

l − 1 l

U l
j

U l
1

...

...

shift

(a) First element of the commutator.

shift ... ...

l − 1 l

U l
j+1
†

U l
ml

†

...

...

(b) Second element of the commutator.

Figure 4.4.: The commutator M l
j. The actions of the two parts of M l

j become
clear in network notation.

Using the the derived channels we can rewrite M l
j(x, t) as

M l
j(x, t) =

[
U l
j(t) . . . U

1
l (t)

(
ρl−1x (t)⊗ |0...0〉 〈0...0|

)
U1
l
†
(t) . . . U l

j

†
(t),

U l
j+1

†
(t) . . . U l

ml

†
(t)
(
1in,hid ⊗ σlx(t)

)
U l
ml

(t) . . . U l
j+1(t)

]
,
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where the density matrix of the l layer concerning the xth training data can be
expressed via ρl−1x (t) = E l−1t

(
. . . E2t

(
E1t
(
ρin
x

))
. . .
)
. In an analogous way we write

σlx(t) = F l+1
t

(
. . .FLt

(
FL+1
t

(
|φSV
x 〉 〈φSV

x |
))
. . .
)
using back-propagation. Note here

again that both, the feed-forward channels E as well as the corresponding adjoint
channels, depend on the unitary parameter t and change during the training.

At this point, it becomes clear why the layer structure of the network is beneficial:
to update a perceptron unitary U l

j, we need to evaluate K l
j. Therefore only the

output state of the previous layer, ρl−1, obtained by feed-forward propagation
through the network, and the state of the following layer σl, obtained by back-
propagation of the desired output up to the current layer is needed. It follows that
the parameter matrices can be received with only accessing two qubit layers at
any time, and there is no need to access the whole network for updating a single
perceptron. This fact allows us to train deep DQNNs.

Change of the training loss

Connecting to Section 2.4 where the classical back-propagation algorithm is de-
scribed, we want to close this technical section with the derivation of a handy
formula for the change in the training loss function using the layer-to-layer channels.

Proposition 4.3. The change in the loss function can be written as

dLSV(t)

dt
=

i

S

N∑
x=1

L+1∑
l=1

tr
(
σlx(t)Dlt

(
ρl−1x (t)

))
,

where Dlt = ∂E lt/∂t is the derivative of the channel E lt .

Proof. We already evaluated dLSV(t)
dt

in the proof of Proposition 4.1. As a primary
step we translate the gained expressions to the channel formalism and get

dLSV(t)

dt
=
i

S

S∑
x=1

tr

(
1in,hid ⊗ |φSV

x 〉 〈φSV
x |([

KL+1
mL+1

(t), UL+1
mL+1

(t) . . . U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t) . . . UL+1

mL+1

†
(t)
]

+ · · ·+ UL+1
mL+1

(t) . . . U1
2 (t)

[
K1

1(t), U1
1 (t)

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1
1
†
(t)
]

U1
2
†
(t) . . . UL+1

mL+1

†
(t)
))

=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr

((
1in,hid ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

. . . U l
j+1

[
K l
j,

U l
j . . . U

1
1

(
ρin
x ⊗ |0...0〉hid,out 〈0...0|

)
U1†

1 . . . U l†

j

]
U l†

j+1 . . . U
L+1†

mL+1

)
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=
i

S

N∑
x=1

L+1∑
l=1

ml∑
j=1

tr

(
U l+1
1

†
(t) . . . UL+1

mL+1

†
(t)
(
1L ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
mL+1

(t) . . . U l+1
1 (t)

U l
mj

(t) . . . U l
j+1(t)

[
K l
j(t), U

l
j(t) . . . U

l
1(t)
(
ρl−1x ⊗ |0...0〉l 〈0...0|

)
U l
1

†
(t) . . . U l

j

†
(t)
]

U l
j+1

†
(t) . . . U l

mj

†
(t)

)
.

For a shorter notation we define

A =U l+1†

x . . . UL+1†
(
1l,...,L ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1
x . . . U l+1

x

B =U l
ml
. . . U l

j+1

[
K l
j, U

l
j . . . U

1
1

(
ρin
x ⊗ |0...0〉1,...,l 〈0...0|

)
U1†

1 . . . U l†

j

]
U l†

j+1 . . . U
l†

ml

and rewrite the change of the loss function as

dLSV

dt
=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr
((
10,...,l−1 ⊗ A

)(
B ⊗ |0...0〉l+1,...,L+1 〈0...0|

))
=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr
(
A
(

tr0,...,l−1(B)⊗ |0...0〉l+1,...,L+1 〈0...0|
))

=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr
(
A
(

tr0,...,l−1(B)⊗ 1l+1,...,L+1

)(
1l ⊗ |0...0〉l+1,...,L+1 〈0...0|

))
=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr
((
1l ⊗ |0...0〉l+1,...,L+1 〈0...0|

)
A
(

tr0,...,l−1(B)⊗ 1l+1,...,L+1

))
=
i

S

S∑
x=1

L+1∑
l=1

ml∑
j=1

tr
(

trl+1,...,L+1

((
1l ⊗ |0...0〉l+1,...,L+1 〈0...0|

)
A
)

tr0...l−1(B)
)
.

(4.4)

After propagating the state ρin
x trough the first l − 1 qubit layers of the network

we get the expression

ρl−1x =E l−1
(
. . . E1

(
ρin
x

)
. . .
)

= trl−2

((
U l−1

(
E l−2

(
. . . E l−3

(
|φSV
x 〉 〈φSV

x |
)
. . .
)
⊗ 1l−1

)
U l−1†

)
= . . .

= tr1,...,l−2

(
U l−1 . . . U1

(
E1
(
ρin
x

)
⊗ |0...0〉2,...,l-1 〈0...0|

)
U2† . . . U l−1†

)
= tr1,...,l−2

(
U l−1 . . . U2

(
tr0

(
U1
(
ρin
x ⊗ |0...0〉1 〈0...0|

)
U1†
)
⊗ |0...0〉2,...,l-1 〈0...0|

)
U2† . . . U l−1†

)
= tr0,...,l−2

(
U l−1 . . . U1

(
ρin
x ⊗ |0...0〉1,...,l-1 〈0...0|

)
U1† . . . U l−1†

)
.
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This can be used to express tr0,...,l−1(B) via

tr0,...,l−1(B) = tr0,...,l−1

(
U l
ml
. . . U l

j+1

[
K l
j, U

l
j . . . U

1
1

(
ρin
x ⊗ |0...0〉1,...,l 〈0...0|

)
U1†

1 . . . U l†

j

]
U l†

j+1 . . . U
l†

ml

)
= trl−1

(
U l
ml
. . . U l

j+1

[
K l
j, U

l
j . . . U

l
1

(
tr0,...,l−2

(
U l−1
x . . . U1(

ρin
x ⊗ |0...0〉1. . . l-1 〈0...0|

)
U1† . . . U l−1†

)
⊗ |0...0〉l 〈0...0|

)
U l†

1 . . . U
l†

j

]
U l†

j+1 . . . U
l†

ml

)
= trl−1

(
U l
ml
. . . U l

j+1

[
K l
j, U

l
j . . . U

l
1

(
ρl−1x ⊗ |0...0〉l 〈0...0|

)
U l†

1 . . . U
l†

j

]
U l†

j+1 . . . U
l†

ml

)
. (4.5)

In the proof of Proposition 4.2 it was shown that the structure of the adjoint
channel of E l is

F l(X l) = trl
((
1l−1 ⊗ |0...0〉l 〈0...0|

)
U l†
(
1l−1 ⊗X l

)
U l
)
.

With this in hand we can back propagate a supervised state |φSV
x 〉 〈φSV

x | L− l qubit
layers through the network and ending up with the state

σlx =F l+1
(
. . .FL+1

(
|φSV
x 〉 〈φSV

x |
)
. . .
)

= trl+1

((
1l ⊗ |0...0〉l+1 〈0...0|

)
U l+1†

(
1l ⊗F l+2

(
. . .FL+1

(
|φSV
x 〉 〈φSV

x |
)
. . .
))
U l+1

)
= . . .

= trl+1,...,L

((
1l ⊗ |0...0〉l+1,...,L 〈0...0|

)
U l+1† . . . UL†

(
1l,...,L−1 ⊗FL+1

(
|φSV
x 〉 〈φSV

x |
))
UL . . . U l+1

)
= trl+1,...,L

((
1l ⊗ |0...0〉l+1,...,L 〈0...0|

)
U l+1† . . . UL†

(
1l,...,L−1 ⊗ trL+1

((
1L ⊗ |0...0〉L+1 〈0...0|

)
UL+1†

(
1L ⊗ |φSV

x 〉 〈φSV
x |
)
UL+1

))
UL . . . U l+1

)
= trl+1,...,L+1

((
1l ⊗ |0...0〉l+1,...,L 〈0...0| ⊗ 1L+1

)
(
U l+1† . . . UL† ⊗ 1L+1

)(
1l,...,L ⊗ |0...0〉L+1 〈0...0|

)(
1l,...,L−1 ⊗ UL+1†

)(
1l,...,L ⊗ |φSV

x 〉 〈φSV
x |
)(
1l,...,L−1 ⊗ UL+1

)(
UL . . . U l+1 ⊗ 1L+1

))
= trl+1,...,L+1

((
1l ⊗ |0...0〉l+1,...,L 〈0...0| ⊗ 1L+1

)(
1l,...,L ⊗ |0...0〉L+1 〈0...0|

)
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(
U l+1†

x . . . UL† ⊗ 1L+1

)(
1l,...,L−1 ⊗ UL+1†

)(
1l,...,L ⊗ |φSV

x 〉 〈φSV
x |
)(
1l,...,L−1 ⊗ UL+1

)(
UL . . . U l+1 ⊗ 1L+1

))
= trl+1,...,L+1

((
1l ⊗ |0...0〉l+1,...,L+1 〈0...0|

)
U l+1† . . . UL+1†

(
1l...L ⊗ |φSV

x 〉 〈φSV
x |
)

UL+1 . . . U l+1
)

= trl+1,...,L+1

((
1l ⊗ |0...0〉l+1,...,L+1 〈0...0|

)
A
)
.

With this, Equation (4.4) and Equation (4.5) we acquire the expression

dLSV(t)

dt
=
i

S

N∑
x=1

L+1∑
l=1

tr
(
σlx

mj∑
j=1

U l
mj

(t) . . . U l
j+1(t)

[
K l
j(t), U

l
j(t) . . . U

l
1(t)(

ρl−1x ⊗ |0...0〉l 〈0...0|
)
U l
1

†
(t) . . . U l

j

†
(t)
]
U l
j+1

†
(t) . . . U l

mj

†
(t)
)
.

It is possible to reformulate the latter equation as

dLSV(t)

dt
=
i

S

N∑
x=1

L+1∑
l=1

tr
(
σlx(t)Dlt

(
ρl−1x (t)

))
,

where F lt denotes the adjoint channel of the channel E lt and the quantum state
σlx(t) is defined as σlx(t) = F l+1

t

(
. . .Fout

t

(
|φSV
x 〉 〈φSV

x |
)
. . .
)
. Further Dlt = ∂E lt/∂t

is the derivative of the channel E lt , defined as

Dlt
(
X l−1) =

mj∑
j=1

trl−1
(
U l
mj
. . . U l

j+1

[
K l
j, U

l
j . . . U

l
1

(
ρl−1x ⊗ |0...0〉l 〈0...0|

)
U l
1

†
. . . U l

j

†]
U l
j+1

†
. . . U l

mj

†)
.

Due to the length of this section, we take a moment to conclude the results. In
the preceding pages, we explained the training algorithm of the DQNN. We not
only derived the desired necessary update rule for optimising training loss, defined
Section 4.2, but also showed that for the update of the lth layer of the network,
only the quantum states of two neighbouring layers are needed. Finally, we derived
an expression for the change of the mentioned loss during training in equivalence
to the classical back-propagation. Before we proceed with presenting the DQNN
architecture with convincing numerical results, we discuss the previously mentioned
universality of the DQNN.
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4. Dissipative quantum neural networks

4.4 Universality

Classical NNs composed of classical perceptrons can represent any function [274].
In the following, we discuss that the in Section 4.1 presented quantum perceptron
holds the same feature for QNNs.

As already motivated in Section 3.2, from the Stinespring dilation theorem
[52] directly follows that every description of a quantum circuit through tensor
products, unitary transformations and reductions to subsystems is equivalent to
the description as a CP map. Figure 4.5 describes this relation using a quantum
circuit. The only task is to find the suiting unitary. This is exactly what the
algorithm presented in Section 4.3 does. Therefore it is clear that we can implement
any CP map with the DQNN algorithm.

E Uρin ρout
ρin ρout

ωancilla

Figure 4.5.: Stinespring theorem in quatum circuits. A CP map E can
be represented using tensoring an ancilla state, applying a unitary
transformation and tracing out a subsystem.

However, it is more remarkable that a QNN, comprised of the DQNN quantum
perceptrons acting on 4-level qudits (equivalent to pairs of 2-level qubits) that
commute within each layer, is capable of carrying out universal quantum computa-
tion. In the following, we use such a construction to illustrate that it is possible
to construct a DQNN simulating an arbitrary quantum circuit consisting out of
these perceptrons. Without loss of generality only two qubit gates on neighbouring
qubits are used in the circuit.

To construct a QNN that is equivalent to that circuit, we first number the
neurons of the QNN, the 4-level qudits, by two indices. Neuron (l, j) is the jth
neuron in lth layer. We assume there are ml neurons in the lth layer. Further we
suppose that every neuron (l, j) is connected to neurons (l−1, j) and (l+1, j−(−1)l

mod ml) and other connections do not exist. The neurons are marked as rectangles
in Figure 4.6a.

We further construct the neurons in a way that every neuron corresponds to two
qubits. Each neurons qubits are labelled A and B and initialised in the state |00〉.
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(b) Implementation.

Figure 4.6.: DQNN universality proof. A DQNN constructed out of pairs of
perceptrons using unitary operations U l

j and SWAP gates (a) is equiv-
alent to a quantum circuit of two-qubit gates U l

j acting on alternating
pairs of qubits (b).

We consider that every operation of the network has the form

ρl = trl−1(U
l−1(ρl−1 ⊗ [

ml−1⊗
j=0

|00〉(l,j) 〈00|])U l−1†).

U l =
∏0

j=ml−1 U
l
j consists of the perceptrons acting on the qubit layers l and l + 1.

Note that, different to the preceding chapters, we let the indices l and j start at 0.
This results in a much simpler expression of U l

j when using the modulo notation.
The operation acting on the neuron (l, j) are defined as

U l
j =V l

j SWAP[(l, j, A), (l + 1, j − 1− (−1)l

2
mod ml, B)]

SWAP[(l, j, B), (l + 1, j +
1 + (−1)l

2
mod ml, A)],
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4. Dissipative quantum neural networks

see Figure 4.6a. Notice that the SWAP operators acting on two qubits: on one
qubit that corresponds to the neuron (l, j) and one of the l + 1th layer. V l

j is a
unitary that acts on the qubits of the neuron (l, j). All the SWAP operations
commute for a fixed l, because they act on different pairs of qubits.

An in that way constructed DQNN is equivalent to the quantum circuit of two-
qubit gates V l

j that act on alternating pairs of qubits like depicted in Figure 4.6b.
Qubit A in neuron (0, 0) on the left hand side diagram corresponds to the qubit
labelled by a on the right hand side. Similarly, the (0, 0) B qubit corresponds to
the qubit labelled by b and so on.
It is known that two-qubit gates are universal [52]. The SWAP operation is a

two-qubit operation, thus the pictured quantum circuit is universal. It is clear
that the construction depicted in Figure 4.6 is by far not the most efficient ones
but shows the universality of the in a very neat way.

4.5 Classical simulation

Different aspects of the DQNN training algorithm have been discussed in this
chapter so far. However, no training results were presented heretofore. The
algorithm described in Section 4.3 can be indeed fully simulated on a classical
computer. Note that since the Hilbert space dimension scales exponentially with
the number of qubits, the simulation is even on supercomputers restricted to a few
qubits. The simulation is still useful to study the behaviour of the algorithm.

Hence in this section, we describe a classical simulation of the DQNN algorithm
using QuTip [275], a quantum toolbox in Python. The code can be found at [276].
We start with a short description of the code. A welcome side effect is getting
a good overview of the parameters and data needed during the algorithm. We
conclude the section with numerical results.

Algorithm

A description of the code can be found in Algorithm 1. We explained the parts of
the algorithm procedure in detail in Section 4.3. Hence we will focus on technical
details here only.

The behaviour of the algorithm can be controlled with the parameters step size
ε, learning rate η and number of epochs rT . The latter was not discussed in this
work until now and determines how often the training algorithm using all data
pairs and updating all QNN unitaries is repeated.
Beyond the parameters, the data pairs can be seen as inputs of the algorithm

as well. However, the code in [276] includes preparing the training and validation
data using a randomly chosen unitary Y , which is aimed to simulate with the
DQNN after sucessful training.

The output of the algorithm is the trained network, saved in network unitaries
and lists of the values of the loss functions, which will be exploited in the following
to discuss the training success.
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4.5. Classical simulation

Algorithm 1 Classical simulation of the DQNN algorithm.
1: Set parameters step size ε, learning rate η and number of epochs rT
2: Set s = 0
3: Assign the QNN unitaries U l

j(0) randomly
4: Provide S training data pairs {|φin

x 〉 , |φSV
x 〉}

5: Provide N − S validation data pairs {|φin
x 〉 , |φT

x 〉}
6: for rT training epochs do
7: Save the values of training loss LSV and validation loss LUSV

8: for all l and x do
9: Feed-forward the input state ρl−1x (t) = E l−1t

(
...E1t

(
ρin
x

)
...
)

10: Back-propagate the output states σlx(t) = F l+1
t

(
...FL+1

t

(
|φSV
x 〉 〈φSV

x |
)
...
)

11: end for
12: for all l and j do
13: Calculate the update matrix K l

j(t) = η2ml−1 i
S

∑
x trrest

(
M l

j(x, t)
)

14: Update the unitaries U l
j(t+ ε) = eiεK

l
j(t)U l

j(t)
15: end for
16: end for
17: Feed-forward the input state ρl−1x (t) = E l−1t

(
. . . E1t

(
ρin
x

)
. . .
)

18: Save the values of training loss LSV and validation loss LUSV

0 100 200 300 400 500 600 700 800 900 1000
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0.8

1

Training epochs rT

L
(t

)

Validation loss LUSV
Training loss LSV

Figure 4.7.: Training a DQNN. The validation and training loss converge to the
value 1 during the training of a QNN in rT = 1000 steps using
10 training pairs and 90 testing pairs (based on a unitary Y ∈ U(4)),
η = 1 and ε = 0.01.

59



4. Dissipative quantum neural networks
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Figure 4.8.: Generalisation analysis of a DQNN. This plot shows the training
and validation loss after training a QNN in rT = 1000 steps
with η = 1 and ε = 0.01 using 100 data pairs (based on a unitary Y ),
where S pairs were used for training and 100 − S pairs for testing.
We vary the number of S. All values are averaged over 10 individual
training attempts.

In Figure 4.7 the training and validation loss during the whole training algorithm
of an exemplary QNN is plotted. The training loss increases faster during the
process, but also the validation loss reaches 0.9 after only rT = 363 epochs. The
training and the validation loss end with a value of nearly 1. Since the losses are
based on the fidelity of the desired states and the output states of the DQNN, we
can conclude that it simulates satisfyingly the unknown unitary Y on the training
input states as well as on the unseen validation input states.

Generalisation analysis

In the plot mentioned above S = 10 of 100 data pairs build the training set. The
remaining pairs are saved for validation. To study how well the QNN is able to
generalise, S can be varied. Therefore we only compare the end value of the loss
function, namely the values obtained in the last line of Algorithm 1. We averaged
these values over 10 individual training attempts for all values of S ∈ [1, 14] to get
a more valid result. Figure 4.8 presents this scenario. As expected, the validation
loss increase with the number of training pairs. It is remarkable that using only
six of 100 data pairs for training leads to a validation loss over 0.95.

Noise analysis

We have already seen a very good generalisation behaviour. Since the approach
is to implement the DQNN on currently available quantum devices, we test the

60



4.6. NISQ device implementation
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Figure 4.9.: Testing the noise robustness of a DQNN. The training and
validation loss after training a QNN changes with the noise
parameter δ. The training was done in rT = 1000 steps with η = 1
and ε = 0.01 using 20 training and 80 testing pairs (based on a unitary
Y ). The loss values are averaged over 10 individual training attempts.

algorithm for robustness to noise. Therefore we replace the supervised states with
|φSV
x,δ〉, using a new parameter δ and a for every training pair randomly choosen

state |ψrandom〉 of the same dimension as |φSV
x 〉, i.e. we build

|φSV
x,δ〉 =

(1− δ) |φSV
x 〉+ δ |ψrandom〉

||(1− δ) |φSV
x 〉+ δ |ψrandom〉 ||

.

In the same way as when observing the generalisation behaviour in Figure 4.8
we compare the last values of the loss functions and average over 10 completely
independent trainings. In Figure 4.9 we plot the validation loss for different values
of δ.
We can observe that both, the training and the validation loss, take higher

values then 0.7 for δ ≤ 0.3. If the noise exceeds this value of delta, the training
loss rests at a value around 0.55 and the validation loss around 0.25.
Discussing only a few examples, we could already observe the great learning

behaviour of the DQNN with outstanding generalisation possibility and robustness
to noise. More numerical experiments, including 1- and 3-qubit training states
and deeper networks, can be found in the appendix in Chapter A.

4.6 NISQ device implementation

In the preceding paragraphs, we have already discussed the training results of the
DQNN algorithm using a simulation running on a classical computer. However, in
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this section, we explain the implementation of the same algorithm on a quantum
computer, more precisely on a NISQ device. A short introduction to NISQ devices
was given in Section 3.4. Since the implementation presented in Section 4.5 differs
from the implementation on these early quantum devices we denote the latter with
DQNNNISQ .

Implementation of DQNNNISQ

We already explained the quantum perceptron and the network architecture in
detail in Section 4.1. Since the implementation on the NISQ device is based on this,
we want to shortly remind the reader of the basic idea at this point. The quantum
perceptron is defined as a unitary U l

j acting on ml−1+1 qubits: ml−1 qubits, placed
in layer l − 1, are the input ρl−1 of the perceptron, and the last qubit belongs to
layer l and is initialised in the zero state. We get the perceptron’s output state
after applying the unitary U l

j to the ml−1 + 1 qubits and tracing out the ml−1
input qubits. The perceptron layers of the DQNN can be summarised in unitaries
U l = U l

ml
. . . U l

1. We will use this layer notation to describe the implementation of
the DQNN on a NISQ device. As before, we assume m = m0 = mL+1, hence we
train the DQNN to imitate a unitary operation.

As a first and essential step to build a DQNNNISQ , the DQNN’s perceptron has to
be implemented. In the classical simulation discussed in Section 4.5 the perceptrons
were defined by unitary matrices, whose entries would be updated during the
training algorithm. As explained in Section 3.5, QNNs can be implemented on
a quantum computer via parametrised quantum circuits [237,248–250] consisting
of parametrised quantum gates. For this, two aspects need to be considered: the
realisation should be universal and the number of gates and parameters small.
Here, we present the work of [101], where a balance of these objectives leads to
good training results on NISQ devise as plotted later in this section. A detailed
discussion of over-parametrisation can be found at [277].
To express the perceptron unitaries we apply a result of studies on the imple-

mentation of two-qubit gates [278–283]: using a two-qubit canonical gate and
twelve single qubit gates, see Figure 4.10, every arbitrary two-qubit unitary can
be simulated.

Zp1 Y p2 Y p3

Zp4 Y p5 Y p6

CAN (px, py, pz)
Zp7 Y p8 Y p9

Zp10 Y p11 Y p12

Figure 4.10.: Implementation of a two-qubit unitary. An arbitrary two-qubit
unitary operation can be implemented using one two-qubit gate and
twelve single qubit gates.

Hereby the two-qubit canonical gate CAN(px, py, pz) is defined as the composition
of three two-qubit gates

CAN(px, py, pz) =e−i
π
2
pxX⊗Xe−i

π
2
pyY⊗Y e−i

π
2
pzZ⊗Z
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=RXX(pxπ)RYY(pyπ)RZZ(pzπ).

using the Pauli matrices X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
and the

parameters px, py, pz ∈ R [282]. It is worth mentioning that the gates RXX(p),
RYY(p) and RZZ(p) are standard in quantum computing libraries. The single qubit
gates Y p and Zp are parametrised Pauli operators and, up to a phase, equivalent
to rotations around the y and z axis, namely

Y p ≈ RY (πp) = e−i
π
2
pY

Zp ≈ RZ(πp) = e−i
π
2
pZ .

The sequences of single gates Y p and Zp with parameters p1, . . . , p3 ∈ R, see
Figure 4.10, can be rephrased in form of the gate

u(p1, p2, p3) =

 cos(p1/2) −eip3 sin(p1/2)

eip2 sin(p1/2) ei(p3+p2) cos(p1/2)

 ,

which is a standard gate in most of the quantum computing libraries as well. We
can proceed in the same way for the parameters p4, . . . , p12 ∈ R.
So far, we have only discussed how to implement two-qubit unitaries. The

quantum perceptron unitaries U l
j are in general ml−1 + 1-qubit unitaries. These

qubit unitaries connect ml−1 qubits from layer l − 1 with one qubit of layer l.
This motivates to replace one of these ml−1 + 1-qubit unitaries with ml−1 two-
qubit unitaries acting on one of the qubits in layer l − 1 and the qubit in layer l.
Numerical results presented later in this section justify this idea.
After clarifying the implementation of the quantum perceptron, we can build

the network circuit layerwise. Every DQNNNISQ consists of M =
∑L+1

l=0 ml qubits.
The first m qubits are initialised in the input state |φin〉. The remaining qubits
are initialised in the zero state |0〉. For every layer, we first apply the single-qubit
gates u(p1, p2, p3) to all qubits of the layer, followed by the unitary U l, expressed
via ml−1 of the CAN-gates. After layer l is complete the ml−1 input qubits are
neglected and the ml input qubits act as input qubits for the new layer l + 1.
Different to the classical simulation the feed-forward process is not at the end
when the last layer is reached: an extra layer of single-qubit gates follows, see
Figure 4.11b. After that, the output of the circuit is a mL+1-qubit quantum state
ρout.
See Figure 4.11 for an example: the implementation of the DQNN depicted in

Figure 4.11a is visualised in Figure 4.11b. The first layer unitary U1 = U1
3U

1
2U

1
1 is

written out in two-qubit unitaries (implemented via CAN-gates) in Figure 4.11c.
The two two-qubit unitaries needed for expressing the perceptron unitary U1

1 are
marked with dashed and dotted lines in Figure 4.11a and Figure 4.11c.

To summarise the description of the implementation we shortly discuss the num-
ber of parameters. The u-gates, placed before every unitary layer and additionally
at the end to the output state are described by 3

∑L+1
l=1 ml−1 + 3mL+1 parameters.
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(a) Network.

U1

U2

|φin〉
2

u⊗2

|000〉
3

u⊗3

|00〉
2

u⊗3 ρout

(b) Implementation.

U1 =

(c) U1 expressed by two-qubit unitaries.

Figure 4.11.: Implementation of a DQNNNISQ . A DQNNNISQ consisting of
two layers of quantum perceptrons and seven qubits (a) can be
implemented as quantum circuit using u-gates and unitary operations
representing the layers of the network (b). The first layer including
three perceptrons can be decomposed in six two-qubit gates (c). The
perceptron U1

1 is marked exemplarily in dashed and dotted lines (see
a and c).

64



4.6. NISQ device implementation

The CAN-gates are parametrised via 3
∑L+1

l=1 ml−1ml real numbers. It results that
the quantum circuit is described by

nDQNNNISQ = 3
L+1∑
l=1

ml−1(1 +ml) + 3mL+1

parameters.

Implementation of the training algorithm

As the reader may notice, we so far only described the processing of the input state
through the DQNN and becoming the output state. This is only one component,
the feed-forward part, of the training algorithm. In the following lines, the rest of
the algorithm will be explained.

Analogously to the preceding discussions we use the same learning task, i.e. learn
an unknown unitary Y ∈ U(2m) from a given training set {|φin

x 〉 , |φSV
x 〉}Sx=1 where

|φSV
x 〉 = Y |φin

x 〉. Further we use the fidelity as a training loss function, namely

LSV(ωt) =
1

S

S∑
x=1

〈φSV
x |ρout

x (ωt)|φSV
x 〉 ,

where ρout
x denotes the network’s output and the vector ωt = (ω1(t), ..., ωn(t))T

with n = nDQNNNISQ comprises the parameters describing the quantum circuit.
In the classical simulation, the training takes place by updating the entries of

unitary matrices following an update rule, including an updated matrix. This
update matrix was derived using the derivative of the loss function and requires the
knowledge of the states of each layer’s qubits. Since this is not possible on the NISQ
device, the implementation of the algorithm uses parametrised quantum gates.
The parameters change during the training in order to maximise the loss function.
Gradient descent is a good tool to find out in which direction the change should
be done. Note that the gradient descent method can be technically exchanged by
any other optimising algorithm.

More precicely the nDQNNNISQ parameters of the quantum circuit are initialised
as ω0. After every training epoche all parameters are updated by ωt+1 = ωt + dωt,
where dωt = η∇LSV (ωt) using the learning rate η and the gradient is of the form

∇kLSV (ωt) =
LSV (ωt + εek)− LSV (ωt − εek)

2ε
+O

(
ε2
)
.

The vectors ek are defined as ejk = δk,j, k, j = 1, ..., nDQNNNISQ . The parameters
step size ε > 0 and learning rate η are used analogously to Section 4.5. Note at this
point that for calculating the gradient, the training loss function, and therefore
the whole quantum circuit, has to be evaluated for the parameters ωt + εek and
ωt − εek for every k.
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H

H

H

. . .

...

...

ρout

|φSV
x 〉

→ p

Figure 4.12.: Implementation of the of destructive swap test. m CNOT
gates, m Hadamard gates and 2m measurements are used to calculate
the fidelity 〈φSV

x |ρout|φSV
x 〉 = p · c.

The overall procedure of the algorithm resembles with Section 4.1, where the
algorithm was presented in detail. The training and validation data, i.e. the set of
training pairs and the set of testing pairs, are initialised. The reader is invited
to think again of an uncharacterised quantum device acting as a unitary Y on
m-qubit input states. Further, the step size ε and learning rate η are determined
conformable to the circumstances, and the parameters ω0 initialised randomly. As
a second step the quantum circuit in Figure 4.11 is executed for all the states in
the training set: m qubits are initialised in a state |φSV

x 〉 and another m qubits
in |φin

x 〉. Note again that it is m = m0 = mL+1 for learning a unitary. All the
other qubits are initialised in the zero state |0〉. The network circuit, depicted in
Figure 4.11b, is evaluated.

At this point m qubits are in the state ρout and another m qubits in the state
|φSV
x 〉. We conveniently label the qubits in this order q1, . . . q2m. The next step

is to calculate the training loss to update the parameters ωt. For this purpose
for all training data pairs, the circuit is executed and the so-called destructive
SWAP-test [204, 205, 284] is used to execute the fidelity: m CNOT gates and m
Hadamard gates are applied as depicted in Figure 4.12. All qubits are measured
in the computational basis and the results are alternating saved in a list, i.e.
q1, qm, q2, qm+1, . . . qm−1q2m. If we exemplary assume m = 1, i.e. when comparing
two one-qubit states, the list can only be of the form {0, 0}, {0, 1}, {1, 0} or {1, 1}.
Due to the quantum projection noise, we execute these measurements M times
and save the ratio of the occurrence of each list as components of a vector p. It is
reasoned in [205] that the fidelity of the states |φSV

x 〉 and ρout
x can be obtained by

F (|φSV
x 〉 〈φSV

x | , ρout
x ) = p · c,

where c = (1, 1, 1,−1)⊗m.

Using the SWAP-test not only the parameters can be updated via ωt+1 = ωt+dω.
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4.6. NISQ device implementation

Also the validation loss

LUSV(ωt) =
1

N − S

N∑
x=S+1

〈φUSV
x |ρout

x (ωt)|φUSV
x 〉

is calculated in the same way.
In Figure 4.13 the complete quantum circuits, including initialising, the

DQNNNISQ algorithm and the SWAP-test, is depicted. The box with the title
“DQNN” represents the in the above paragraph described DQNN part of the
quantum circuit, see Figure 4.11. For a better overview and due to its analogy to
the calculation of the training loss, the validation data and the validation process
are not depicted.

DQNN

|0〉⊗m
m

|φSV〉

|0〉⊗m
m

|φin〉
n

|0〉⊗n
n m

H

Figure 4.13.: Implementation of training a DQNNNISQ . The train-
ing process includes initialising the qubits, performing the
DQNNNISQ quantum circuit and executing the SWAP-test. The num-
ber of used qubits is 2m+n, wherem = m0 = mL+1 and n =

∑L
l=1ml.

Device execution

Before plotting some results, we shortly have to mention a third loss function, next
to the training and validation loss. The identity loss is worked out using Y = 1

and parameters which make the network, assuming there would be no noise, act
as the identity. Nevertheless, indeed, all the gates are still applied and add noise
to the circuit. Hence this loss gives a good insight for the best possible training
loss an ideally trained network could generate.
In Figure 4.14 the training of an exemplary DQNNNISQ learning an unknown

unitary Y ∈ U(4) is depicted. Based on the quantum no free lunch theorem, see
Chapter 5, four training pairs are used to achieve the depicted training success.
Another four data pairs were used to calculate the validation loss.

Before the training algorithm was executed, the parameters were initialised in
the range [0, 2π). The algorithm was carried out on the 7-qubit quantum device
ibmq_casablanca hosted by IBM [59]. For the implementation and execution
of the algorithm, we used the open-source SDK Qiskit [285], which allows the
decomposition of the above-explained parametrised quantum circuits to a circuit
able to execute by the IBM quantum devices. It is noteworthy at this point to
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Figure 4.14.: Training a DQNNNISQ . A DQNNNISQ network has been
trained on ibmq_casablanca with ε = 0.5 and η = 1.0 in 100 epochs.
The training loss is computed using 4 training pairs (based on a
unitary Y ∈ U(4)). After every fifth epoch, the identity loss using 4
output training states and the validation loss is additionally measured
using 4 validation data pairs, are analysed as well.

underline again that the training took place in a hybrid manner, meaning that the
loss functions were evaluated indeed by the quantum implementation however the
update of the parameters happened classically.
It looks like the training and validation loss are correlated to the variation of

the identity loss. This strengthens the assumption that the identity loss arises
from the noise of the quantum device and is not just based on statistical errors.
We can understand from the plot that the training loss exceeds the identity loss
after a few training epochs and come to the result that the network is able to
generalise the information provided through the training data despite the high
noise levels. Because of the small number of parameters, effects of barren plateaus
are not encountered.

4.7 Comparison to quantum approximate optimisation
algorithm

We want to close this chapter with a comparison of the above comprehensively
discussed DQNNNISQ with another QNN architecture, the quantum approximate
optimisation algorithm (QAOA) [103–105]. For this, we follow the work of [101]
where not only both QNNs were challenged to learn an unknown unitary, but also
the noise tolerance of the two approaches are compared, when implemented on an
IBM NISQ device [59]. The QAOA leads not only to solutions of combinatorial
problems [235,256,286–292] and is universal for quantum computation [293], but
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4.7. Comparison to quantum approximate optimisation algorithm

was also successfully used to learn unknown unitaries [272]. Since the latter was
the leading learning example in this chapter, a comparison of the DQNNNISQ and
QAOA suggests itself. We begin with a short introduction to the QAOA. A
comparison with numerical results ensues.

Quantum approximate optimisation algorithm

The QAOA can be interpreted in various ways. In the following, we discuss the
QAOA according to [103]. There, this algorithm is described as a QNN and this
suits the comparison to the DQNNNISQ the best. Despite this similar implementa-
tion, these two approaches differ in crucial aspect: whereas the DQNNNISQ works
in a dissipative manner and a perceptron acts on layers of different qubits, in
the QAOA setting, a perceptron is defined as a sequence of operations, and all
perceptrons act on the identical qubits.
The QAOA is sometimes also called quantum alternating operator ansatz, due

to the fact that it is working with a sequence of alternating unitary operations
e−iApl , e−iBkl ∈ U(d), where pl, kl ∈ R. The matrices A and B are hermitian and
initialised using the Gaussian unitary ensemble [103]. τ of these operator pairs
can be phrased as

U = e−iBkτ e−iApτ · · · e−iBk1e−iAp1 .

The output state of the algorithm can be written as ρout = U |φin〉 〈φin| U †.
Such an operator sequence can be interpreted as a (τ + 1)-layer QNN, where

the number of neurons per layer m is equal in every layer. A layer l is defined as
an operator pair e−iApl , e−iBkl acting on all m neurons of layer l− 1. The changed
neurons are the inputs for the layer l + 1. This procedure is depicted for two
neurons q1 and q2 in Figure 4.15a.
The implementation of QAOA as a quantum circuit is very simple. The m

qubits are initialise in the input state |φin〉 with dimension d = 2m. The number
of sequences τ is chosen to be d2/2. In that way the QAOA leads to an optimal
solution [272] and the number of parameters is nQAOA = d2 = 4m. See Figure 4.15b
for the illustration of the implementation of an exemplary QAOA circuit.

QAOA

|0〉⊗m
m

|φSV〉

|0〉⊗m
m

|φin〉 H

Figure 4.16.: Implementation of training the QAOA. After the qubits are
initialised the QAOA quantum circuit can be executed. The SWAP-
test allows calculating the values of the loss functions. The number
of used qubits is 2m.

The QAOA circuit can be trained equivalently to the training of the
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q2

q1

q2

q1

q2

q1

q2

q1

...

(a) Network.

...

...
e−iAp1 e−iBk1 e−iApτ e−iBkτ|φin〉 ρout

(b) Implementation.

Figure 4.15.: Implementation of the QAOA. A two-qubit QAOA can be rep-
resented as a (τ + 1)-layer QNN, where the same qubits are used in
every layer (a). The implementation as a quantum circuit consistis
of a sequence of alternating unitary operations (b).
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Figure 4.17.: Training a QAOA. The plot shows the training of an m = 2
QAOA on ibmq_casablanca with ε = 0.15 and η = 1.0 in 100 epochs.
The training loss is computed using 4 training pairs. After every
fifth epoch, the identity loss using 4 output training states and the
validation loss is additionally measured using 4 validation data pairs,
are analysed as well.
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DQNNNISQ circuit including the following steps: The training and validation data
set consisting of pairs of states {|φin

x 〉 , |φSV
x 〉}Nx=1 are prepared, where |φSV

x 〉 = Y |φin
x 〉.

The circuit parameters are initialised randomly. The input states are carried
through the quantum circuit and the resulting output states and the supervised
states are used to calculate the validation with the SWAP-test. Gradient de-
scent is performed to update the parameters. Despite the equivalence to the
DQNNNISQ training, the training algorithm of a QAOA is depicted as a circuit in
Figure 4.16.
In Figure 4.17 the training of an m = 2 QAOA is depicted while learning an

unknown unitary Y ∈ U(4). Four training pairs are used to achieve the depicted
training success. Another four data pairs were used to calculate the validation loss.
The identity loss is defined as explained in Section 4.6. In analogy to Figure 4.14
the QAOA was carried out on the 7-qubit quantum device ibmq_casablanca by
IBM [59].
In comparison to Figure 4.14, where the same device was used to train the

DQNNNISQ , the validation loss does not exceed the identity loss in the process of
training the QAOA. However, it seems to be correlated to the identity loss. Since
comparing two results of single training sessions is not very fair, we cite in the
following the results on generalisation and gate noise analysis of [101].

Comparison of DQNNNISQ and QAOA

In the following, we compare both networks, the DQNNNISQ and the QAOA, with
m = 2 input and output qubits. The DQNNNISQ algorithm comes in the form
of four qubits, two of them in both of the layers. The QAOA includes only two
qubits, and we choose τ = 8. To calculate the loss functions, two more qubits for
training each of the QNNs are needed.

For the training S = 4 pairs of training data, N −S = 4 pairs of validation data
are used. Additional four state pairs are used to evaluate the identity loss.
A difference is, that the nDQNNNISQ = 24 parameters of the DQNNNISQ are

initialised in the range [0, 2π), where the nQAOA = 16 parameters needed for the
QAOA are initialised in the range [−1, 1]. Further, different parameters η and ε
has been found as optimal (see the captions of Figure 4.18 and Figure 4.19 for
examples).

As already discussed in Section 4.2 we are interested in the networks generalisa-
tion capabilities and use the validation loss LUSV for studying it. Both network’s
quantum circuits were executed on a simulator of ibmq_casablanca imitating the
real-time noise of this NISQ device. After repeating the same training with the
same circumstances and the same number of supervised pairs S but different initial
parameters, we get an average of the testing loss for each S. The results of this
numerical experiment can be found in Figure 4.18.

First of all, we can say that both, the DQNNNISQ and the QAOA, can generalise
the information given through the training data pairs. As expected, the validation
loss gets larger with the increasing number of training pairs. It also becomes clear
that the DQNNNISQ reaches higher values which have to be observed together with

71



4. Dissipative quantum neural networks

1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S

L

DQNNNISQ identity loss
QAOA identity loss
DQNNNISQ validation loss LUSV
QAOA validation loss LUSV

Figure 4.18.: Generalisation analysis. This figure compares the generalisation
behaviours of a DQNNNISQ (ε = 0.5, η = 1.0) and a m = 2
QAOA (ε = 0.15, η = 0.1), each trained with S training pairs for
rT = 1000 epochs on a ibmq_casablanca simulator.

the higher identity loss. Since the training results seem to be strongly affected by
the noise of the executing quantum device, a noise analysis of both of the QNN
attempts will be discussed in the succeeding paragraph.

Two primary types of noise are the readout noise, occurring during the measure-
ments, and the gate noise [294]. Since both networks are trained, read out and
updated with the same methods but consist of different gates we focus only on the
gate noise in the following.

Using a depolarising quantum error channel [52] we are able to test the influence
of gate noise on the QNNs. In the numerical experiments, the channel was
parametrised by the depolarisation probabilities λg = kλg

0 for the basis gates
g = CNOT, SX, RZ and scaling factor k. To simulate the gate errors of a special
NISQ devise, the parameter λg

0 has to be chosen appropriately, for example
λCNOT
0 = 3.14 × 10−2, λSX

0 = 1.18 × 10−3 and λRZ
0 = 0 for the approximation of

ibmq_16_melbourne [295].
In Figure 4.19 the values of identity, validation and training losses of the

DQNNNISQ and QAOA for different error probability factors k are shown. To value
the results, the reader must consider that the noise factor k = 1 corresponds to
the gate noise of currently available NISQ devices. The results are gained using
the of the qubit coupling map IBM device ibmq_16_melbourne.
Both attempts give excellent results, i.e. all losses equal one, for the noise-free

case k = 0. When increasing the gate noise, the DQNNNISQ leads to a higher
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Figure 4.19.: Gate noise analysis. Here, the robustness to gate noise of a
DQNNNISQ (ε = 0.25, η = 0.5) and a m = 2 QAOA (ε = 0.05,

η = 0.05) is compared. Each are trained with S training pairs for
rT = 1000 epochs on a ibmq_16_melbourne simulator.

identity loss compared to the QAOA. This concedes in a higher training and
validation loss.

To conclude, we can say that both QNNs succeed in learning an unknown unitary
operation. Albeit it also becomes clear that the DQNNNISQ algorithm attends this
learning task more reliably than the QAOA and is less susceptible to gate noise.
The results indicate that the DQNNNISQ is more suitable for learning an unknown
unitary operation on a NISQ device of the current stage compared to the QAOA.
Nevertheless, it needs to be said that the noise still forbids reaching high values in
the loss functions in both algorithms.
In the preceding sections, we studied the behaviour of the DQNN algorithm

characterising a unitary operation, using numerical results gained with classical
simulation or the execution on a NISQ device, where we could see that the DQNNs
can be successfully trained and perform well on unseen data. In contrast, the
following chapter discusses the theoretical boundaries of such a learning process
and allows observing the performance of the DQNN from a new perspective.
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5

No free lunch theorem

Due to the continuous rapid progress in the field of quantum learning theory, it
is also significant to understand the ultimate limits for quantum learning devices
and methods. The preceding chapter introduced a quantum neural network (QNN)
structure that can successfully learn an unknown unitary Y even with limited
data. Before we continue in Chapter 6 and Chapter 7 with discussing some further
opportunities these QNNs offer, we want to take a step back and look at the
boundaries such a learning process has imposed by the quantum no free lunch
(QNFL) theorem [100].

Therefore we assume the studied device can be modelled as a unitary process
and is trained with quantum examples. We will describe in the following how
to find an optimal lower bound on the probability that such a QNN gives an
incorrect output for a random input. This bound equips us with a helpful metric
to check how well particular quantum machine learning (QML) architectures and
algorithms perform.
The here discussed result can be classed within the research on fundamental

information-theoretic limits on quantum learning [70, 72, 75, 271, 296, 297] and
is related to the work on the optimal quantum learning of unitary operations
considering storage and later retrieval of unknown quantum processes. The version
of the QNFL theorem we discuss here was stated in [100] and assumes the usages
of training data consisting of quantum states for the goal of learning an unknown
unitary process. This work was later generalised by [298] to the case where these
quantum states can be entangled to a reference system.

Since the here presented bound is based on the quantum version of the no free
lunch (NFL) theorem [299], a result of classical learning theory, we begin with
a brief explanation of the latter in Section 5.1. In Section 5.2, we derive the
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QNFL theorem following [100]. During the derivation, some Haar measure integral
identities for the unitary group are used. We present the proofs of these collectively
after the derivation for a neat overview. The derived bound is then used to check
the in Chapter 4 presented dissipative quantum neural network (DQNN) algorithm.
We end the chapter with a short but essential note on orthonormal training pairs.

5.1 Classical no free lunch theorem

The classical NFL theorem states that an optimisation algorithm that performs
better for one class of problems must perform worse for another class. We simply
get no class "for free". Despite different mathematical formulations of this theorem
existing, we follow the notation of [274] hereafter.

After introducing the principle of supervised ML in Chapter 2, the following
setting should be very familiar to the reader: let X and Y be two finite sets. We
name X the input and Y the output set. For an unknown function f : X → Y
we call the function h : X → Y a hypothesis. This hypothesis is based on a
subset S ⊂ X × Y containing training pairs S = {(xx, f(xx)) |xx ∈ X, f(xx) ∈
Y, j = 1, 2, . . . S}, where f(xx) is the desired output given input xx. It should yield
hS(xx) = f(xx) for all j = 1, 2, . . . S}. Note that we assume S < |X|, otherwise
there would be nothing to predict.

The big question leading to the NFL theorem is: how well does a given hypothesis
perform? To determine this we define the risk Rf(h) as the probability that hS
gives the wrong answer, namely

Rf (h) ≡ P[hS(x) 6= f(x)].

When averaging over all possible training sets with S elements (ES ) and over all
possible functions from X to Y (Ef ), the NFL theorem takes the shape

Ef [ES [Rf (hS)]] ≥
(
|X| − S
|X|

)(
|Y | − 1

|Y |

)
=

(
1− S

|X|

)(
1− 1

|Y |

)
, (5.1)

where hS denotes an optimal hypothesis given the training data S. It follows
naturally that if a learning algorithm performs better at predicting f for one part
of the problem, there are other parts where the algorithm will perform worse.

Inspecting Equation (5.1) in detail, we can understand the classical NFL theorem
in the following way: if hS is perfectly trained for S data pairs, getting the wrong
answer can be explained in two steps. First of all, x 6∈ S, otherwise the optimal
hypotheses would give us the correct answer. This circumstance is reflected in
the first factor. The second factor describes the probability that the hypothesis
guesses any point y ∈ Y but the right one.
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No free lunch theorem for invertible functions

When comparing the classical and the, in the next section introduced, QNFL
theorem, we should bear in mind a crucial point: a classical function f does not
have to be invertible. If we have f determined on some subset of the inputs, we
have no information about the action of f on the complement of this subset. In
contrast, unitary quantum operations are always invertible. Thus if we already
have the operation determined on one subspace, we know that the operation takes
the complementary subspace to the complementary subspace of the output.
Therefore in [100] it is argued toward comparing the QNFL theorem with a

classical NFL theorem for invertible functions. This bound is derived as

Ef [ES [Rf (hS)]] ≥
(
|X| − S
|X|

)(
|X| − S − 1

|X|

)
= 1− S + 1

|X|
.

The above-gained intuition of Equation (5.1) helps us to understand this new
bound quickly: if our perfectly trained hypothesis is invertible, it is in particular
injective assuming |X| = |Y |. It follows that we have fewer chances of being wrong
when guessing the correct point in Y because S of these training points are already
omitted: we get the classical NFL theorem for invertible functions if we substitute
the cardinality of Y by |X| − S in the numerator of the second factor, where S is
the number of data pairs used for training the hypothesis.

5.2 Quantum no free lunch theorem

After gaining a good intuition of the classical NFL theorem, we will derive the
quantum analogue in the coming paragraphs following the work of [100].

For this purpose we replace the sets X and Y mentioned in the last section with
an input Hilbert space Hin and output Hilbert space Hout. To replace the role of
the expressions |X| and |Y | we use d = dim(Hin) and d′ = dim(Hout).
Moreover, the aim is not to define an unexplored function f but to determine

an unknown unitary operation Y . As we are familiar with from Chapter 4 the
training data is of the form {|φin

x 〉 , |φSV
x 〉}, x = 1, 2, . . . , N , where |φin

x 〉 ∈ Hin and
|φSV
x 〉 = Y |φin

x 〉 ∈ Hout and we formulate the hypothesis as a unitary U . We assume
that the unitary U can exactly reproduce the action of the unknown unitary Y on
the training pairs of the set S, namely

U |φin
x 〉 = |φSV

x 〉 = Y |φin
x 〉 , x = 1, 2, . . . , N.

The most interesting part of generalising the classical NFL theorem is to find a
good quantum risk analogously to the classical risk in Section 5.1. Here we choose
the square of the trace norm distance ‖A‖1 ≡ 1

2
tr |A| between the outputs of Y

and U applied to the same input, averaged over all pure states. A discussion of
the risk in the quantum setting can be found in [75], details concerning the trace
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norm in [52]. Hence we formulate the risk as

RY (U) ≡
∫
d |ψ〉 ‖Y |ψ〉 〈ψ|Y † − U |ψ〉 〈ψ|U †‖21

=1−
∫
d |ψ〉 | 〈ψ|Y †U |ψ〉 |2

=1− 1

d(d+ 1)

(
d+ | tr(Y †U)|2

)
(5.2)

=
d

d+ 1
− 1

d(d+ 1)
| tr(Y †U)|2,

where the integral runs over pure states induced by a Haar-measure-distributed
unitary W applied to an arbitrary state d |ψ〉 ≡ dW |0〉 [209, 210]. A short
introduction to the Haar-measure can be found Section 3.2. We explicitly evaluate
the integral S4 ≡

∫
dY Y † ⊗ Y † ⊗ Y ⊗ Y and thus the identity used above∫

d |ψ〉 | 〈ψ|Y †U |ψ〉 |2 = − 1
d(d+1)

(
d+ | tr(Y †U)|2

)
in Proposition 5.2. In the same

way as in the classical case the risk defines the probability that the hypothesis
fails to reproduce the action of Y or in other words the probability of incorrectly
learning a unitary process.

The next step is to average the risk RY (U) over all possible training sets S and
unitaries Y . The first average is trivial. When averaging over all unitaries Y , we
need to have in mind that U is the best guess for our unknown unitary operation
Y given the training set S and therefore U depends on Y in a not obvious way.
Consequently we formulate∫

dY RY (U) =
d

d+ 1
− 1

d(d+ 1)

∫
dY | tr(Y †U)|2.

To evaluate the integral, we use the fact that U and Y act on the training set S in
the same way. Due to linearity we know further that the unitaries Y and U are
equal on the subspace HS ≡ span(S).

Let H⊥S be the subspace complementary to HS. Although we have no insight
into the action of Y on this space, we can use the properties Y has as a unitary. To
understand these constraints, we take a closer look at the unitary Y †U . Due to the
properties of the training set and the direct sum decomposition Hin = HS ⊕H⊥S
we can write Y †U in the following block decomposition:

Y †U =

 1n A

B W

 =

 1n 0

0 W

 = 1n ⊕W.

1n denotes the S-dimensional identity on the subspace HS, and A, B, and W
stand for S × (d− S), (d− S)× S, and (d− S)× (d− S) block matrices. For the
simple reason that Y †U is a unitary, the norm of each row and column vector has
to be equal to 1. It follows that A = B = 0 and W is unitary. Because of this
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form, the trace of Y †U can be written as a sum of traces over HS and H⊥S , namely

| tr(Y †U)|2 =| trHS(Y †U) + trH⊥S (Y †U)|2

=|n+ trH⊥S (Y †U)|2

=S2 + 2SRe(trH⊥S (Y †U)) + | trH⊥S (Y †U)|2

=S2 + 2SRe(tr(W )) + | tr(W )|2.

We have no further constraints on the unitary W and need to guess W randomly
with respect to Haar measure on the unitary group U(d− S). It follows that the
average over Y is cut down to the average of W over the unitary group U(d− S).
As a result we get∫

dY | tr(Y †U)|2 =

∫
dW

(
n2 + 2SRe(tr(W )) + | tr(W )|2

)
. (5.3)

The second integrand on the right hand side is linear in W and vanishes. To
demonstrate this one can simply substitute W ′ = exp−iθ dW and get

I =

∫
dW tr(W )

=

∫
dW ′ exp−iθ exp−iθ tr(W ′)

=

∫
dW ′ exp−2iθ tr(W ′)

= exp−2iθ I.

It follows I = 0. The last summand in Equation (5.3) equals
∫
dY | tr(Y )|2 ≡

tr(S2) = 1
d

tr(SWAP) = 1. The identity S2 = 1
d
SWAP is shown in Proposition 5.1and

the integral results in ∫
dY | tr(Y †U)|2 = S2 + 1.

Overall the QNFL theorem is of the form

EY [ES [RY (U)]] ≥ 1− 1

d(d+ 1)
(S2 + d+ 1).

Haar measure itegral identities for the unitary group

Above, we described the derivation of a quantum analogue to the classical NFL
theorem. In this context we evaluated integrals running over pure states induced by
a Haar-measure-distributed unitaryW applied to an arbitrary state d |ψ〉 ≡ dW |0〉
[209,210]. More precisely, we need two results for the derivation, in the following
formulated and proven as Proposition 5.1 and Proposition 5.2.
As already introduced in Section 3.2, we write the integral over the unitary
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group U(d) of d× d matrices of f(Y ) with respect to Haar measure as

I =

∫
dY f(Y ),

where f(Y ) is a matrix-valued function on U(d). Recall that The Haar measure
is left- and right-invariant with respect to shifts via multiplication. With this in
mind we show that S2 can be expressed using the SWAP operation. Note that we
use tensor network diagrams for the derivations. An introduction to the topic can
be find at [300].

Proposition 5.1.

S2 ≡
∫
dY Y † ⊗ Y =

1

d
SWAP

Proof. To proof this identity we note that S2 fulfils

S2 = (1⊗ eiεX)S2(e
−iεX ⊗ 1)

for any hermitian operator X and ε > 0 infinitesimally small. Expanding the right
hand side to the first order in ε leads to

0 = iε(1⊗X)S2 − iεS2(X ⊗ 1),

and further to
S2(X ⊗ 1) = (1⊗X)S2.

The expression is valid for any hermitian operator. Therefore we can assume in
the following that X is each of a Hilbert-Schmidt orthonormal hermitian operator
basis λα, α = 0, 1, . . . , d2 − 1, with tr(λαλβ) = δαβ. If we replace X with λα,
multiply the expression on the right by λα ⊗ 1 and sum over α we end up with
the equation ∑

α

S2(λ
αλα ⊗ 1) =

∑
α

(1⊗ λα)S2(λ
α ⊗ 1). (5.4)

We can express the identity SWAP =
∑

α λ
α ⊗ λα in such a diagram as

λα

λα
=
∑
α

When wiring together the outputs of this diagram we end up with

λα λα
λα

λα

∑
α

=
∑
α

= = d 1

Equation (5.4) can be represented as
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λα λα
S2

λα
S2

λα∑
α

=
∑
α

Using the above described identities leads to

S2

S2

d =

Now we can use the integral representation of S2, namely

S2

Y †

Y
=

∫
dY

and connect the outputs. In tensor network diagrams this can be depicted as

S2
Y †

Y

=

∫
dY =

Finally we end up with

S2 =
1

d

which is another way to denote
∫
dY Y † ⊗ Y = 1

d
SWAP.

Using network diagram also the second needed identity used in the proof of the
QNFL theorem can be proven.

Proposition 5.2.

S4 ≡
∫
dY Y † ⊗ Y † ⊗ Y ⊗ Y

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

Proof. The tensor-network diagram of the stated identity is
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S4

Y †

Y †

Y

Y

=

∫
dY

In analogy to the proof of Proposition 5.1 we get the equation

S4(X ⊗ 1⊗ 1⊗ 1) + S4(1⊗X ⊗ 1⊗ 1) = (1⊗ 1⊗X ⊗ 1)S4 + (1⊗ 1⊗ 1⊗X)S4

by mapping Y to eiεXY with infinitesimal small ε. Further we follow the same
proof strategy and set X = λα, multiply on the right by λα ⊗ 1⊗ 1⊗ 1, and sum
over α. We end up with

S4

λα λα

S4

λα

λα
S4

λα

λα

S4

λα

λα∑
α

+ =
∑
α

+

Defining an operator M as

M = +
1

d

and using the identities derived in the proof of Proposition 5.1 leads to

S4

M

S4

S4

d = +

For the first summand we can use the identity

Y †

Y †

Y

Y

S2

∫
dY = =

1

d

The second summand can be rewritten similar, and we end up with
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S4

M

d =
1

d
+

1

d

By assuming the inverse is as well a linear combination of the identity and the
SWAP operation, and using SWAP× SWAP = 1 we can show that the inverse of
M is given by

M−1 =
d2

d2 − 1
− d

d2 − 1

It remains to multiply both sides by M−1 ⊗ 1 ⊗ 1 and the result is the aimed
identity

S4 =
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

For the sake of completeness we shortly note how this representation of S4 helps
to derive Equation (5.2) using X ≡ Y †U , namely∫

d |ψ〉 | 〈ψ|X |ψ〉 |2 =

∫
dY 〈0|Y †X†Y |0〉 〈0|Y †XY |0〉

=

∫
dY

Y †

Y †

Y

Y

〈0|

〈0|

X†

X

|0〉

|0〉

=
| tr(X)|
d2 + 1

− d

d(d+ 1)
+

d

d2 + 1
− | tr(X)|
d(d+ 1)

=− 1

d(d+ 1)

(
d+ | tr(X)|2

)
.
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Figure 5.1.: NFL theorem bounds. The figure shows the average quantum risk
based on the classical NFL theorem, the classical NFL theorem for
invertible functions and the QNFL theorem for |X| = 4 or respectively
for a quantum data set of four state pairs. Further numerical results
of the risk of a under the same conditions trained DQNN are
plotted.

Numerical results

At this point, three bounds on the training success of a learning algorithm are
stated: the NFL theorem, the NFL theorem for invertible functions and the QNFL
theorem. In the following, we not only want to compare these three results but
also numerical results based on the DQNN algorithm introduced in Chapter 4.

In Figure 5.1, where the bounds are plotted, it becomes clear that the behaviour
of NFL bound for invertible functions is very similar to the standard classical NFL
theorem. The different slope shows the additionally available information when
assuming the invertibility of the unknown function.
Further, one can see that the QNFL bound gives a stronger lower bound than

its classical analogue. A paragraph in [100] describes the case of a single qubit
as a good example to gain intuition: one could be wrong and assume that we
can completely determine the action of Y when using just a single training pair
{|φin

x 〉 , Y |φin
x 〉}. Hence, the complement of the subspace K spanned by |φin

x 〉 has
to be mapped to the complementary subspace determined by Y |φin

x 〉. However,
his does not apply for the reason that there is nevertheless the freedom of a phase.
One can get a feeling of the big impact of this freedom when noticing that we
evaluate the risk averaged over the Hilbert space. In the here described case this
is the average over all superposition inputs α |φin

x 〉+ β |φin
x 〉. Therefore the freedom

of a phase affects the action of Y on nearly all inputs. In the classical case the
analogue would be a function f on {0, 1}. Having the information of a single
training pair, the action of f is determined for half of the inputs. Hence for half of
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the cases, we are 100% sure. For the other input we can guess with being correct
50% of the time. In total, our hypothesis predicts the right output in 75% of the
cases.
We so far only compared the QNFL theorem to the classical counterpart. As

mentioned, the QNFL theorem is a bound on the training success of the in
Chapter 4 described training algorithm. Consequently, Figure 5.1 also depicts the
risk for an exemplary DQNN performed with the algorithm presented in Section 4.5.
Therefore we choose a unitary Y uniformly at random, build 4 data pairs and
train the QNN in rT = 1000 steps using S = 1, . . . , 4 supervised training pairs.
After the training, C = 10 randomly chosen input states |φR

x 〉 are used to evaluate
the quantum risk by empirical average, namely

RY (U) =
1

C

C∑
x=1

‖Y |φR
x 〉 〈φR

x |Y † − U |φR
x 〉 〈φR

x |U †‖21,

where the unitary U describes the trained DQNN. The values describing the
behaviour of the DQNN in Figure 5.1 are gained by averaging the risks RY (U) for
10 different unitaries Y .

We can note that the numerical results of the DQNN are close to achieving the
QNFL bound. Since empirical averages are included in the process of evaluating
the quantum risk and the DQNN is not trained to the maximum value of the
training loss function, the slight discrepancy seen in Figure 5.1 was to be expected.

Comment on orthonormal training pairs

We want to conclude the chapter with a short but essential note on using orthonor-
mal training pairs, i.e. (|φin

x 〉 , Y |φin
x 〉) with 〈φx|φk〉 = δxk, for learning an unknown

unitary operstion since this case can lead to problems. This circumstance can be
explained with the above chose quantum risk function, hence a remark at this
point is suitable.
We want to start this discussion with the known case of not orthonormal |φin

x 〉.
The aim is to train the network until it is U = Y , but indeed it is always possible
that U is only equal to Y up to a global phase, namely U = Y expiθ. Applying
the in Equation (5.2) defined risk function makes this clear, since∑

x

‖Y |φin
x 〉 〈φin

x |Y † − U |φin
x 〉 〈φin

x |U †‖21 = 0.

However, in the case of orthonormal training pairs, also local phases are possible,
i.e. cases exist where the phase θx depends on the training pair, namely U |φin

x 〉 =
expiθx Y |φin

x 〉. This by far worse case when learning a unitary operation is only
possible, if the training pairs are orthogonal. To make this clear we can study
the following case: the operation we want to learn is the identity, Y = 1 and
the training pairs are basis states {|φin

x 〉}x = {|0...0〉 , |0...1〉 , ..., |1...1〉}. If global
phases come across the risk function cannot tell the difference between the identity
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and the diagonal matrix with local phases written as U = Diag(expiθ1 , ..., expiθd).
We can reason from this short discussion that orthonormal training pairs should
be avoided in training algorithms as described above.
To summarise, the QNFL theorem gives us a tool to review the in Chapter 4

presented DQNN algorithm. This algorithm uses training data for characterising
a unitary operation. Here, the information for updating the DQNN parameters
was based on training data pairs in the form of input states and desired output
states. In the following chapter, we extend this supervised ansatz to the usage of
the training data’s possible underlying graph structure.
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Training with graph-structured quantum data

Graph-structured data is omnipresent throughout the social and natural sciences.
In nearly every scientific area graphs, sets of in some way connected or related
objects, are indispensable. These correlations, called edges, between the objects,
named vertices, can be for example from spatial, temporal or causal nature.
Whether it comes to representing computational devices, studying social media
platforms [301], sampling road networks [302] or learning interactions between
proteins [32], graphs provide a theoretical framework to describe these and many
more complex systems in a helpful way [303].

Consequently, approaches including graph-structured data are widely spread in
the area of classical machine learning (ML). At one hand unsupervised learning
algorithms [304–307] exist. Such methods exhibit good learning behaviour with
well-encoded graph structure and aim tasks like finding missing graph connections
or labels. Further, there are semi-supervised methods [173,308]. These use loss
functions with one part making use of the graph structure of the data and another
supervised loss term using supervised training pairs. Further, also methods encod-
ing the graph structure directly in the representations, called graph convolutional
neural networks [309–312], exist. A summary of some common classical approaches
is presented in Section 6.2.

In the field of quantum machine learning (QML), research on how to work with
graph-structured classical and quantum data was done as well. This includes
quantum algorithms for classical graph-structured data like quantum walks [313], a
quantum analogue of the random walk. Further, the usage of graph-structured data
in quantum convolutional neural networks [270,271] has received much attention.

Nevertheless, when it comes to using graph structure for quantum neural networks
(QNNs), previous work has mainly focused on building the graph structure into
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6. Training with graph-structured quantum data

the QNN [269,270]. However, we present in this chapter an approach on how to
make an arbitrary, not to the graph structure of the data aligned, QNN learn the
graph structure of noisy and unreliable quantum data sources during training [99].
Based on the dissipative quantum neural network (DQNN) architecture presented
in Chapter 4 we not only introduce a new loss function and suiting update rules
for DQNNs, but also present examples that prove that the learning performance
can be improved by learning and considering the graph structure in contrast to
a simple supervised learning ansatz. We will see that exploiting this additional
information can be highly beneficial, especially when data for supervised learning
is rare but information on the structure of the problem is available.

To introduce the reader to the topic, we start this chapter with the basic graph
theory definitions in Section 6.1 and give a survey of problems and methods in
the field of classical ML on graphs Section 6.2. It follows a general discussion of
quantum sources with graph structure, see Section 6.3, and the presentation of
appropriate information-theoretic loss functions in Section 6.4 for their characteri-
sation according to the approach of [99]. Further, we describe how to adjust the
training algorithm described in Section 4.3 to utilise the new loss functions, see
Section 6.7. We conclude this chapter with some numerical results: the classical
simulation in Section 6.6, as well as the training on actual quantum computers
Section 6.7, show the benefits of using graph information.

6.1 Basic definitions

This section will present the most fundamental definitions of graph theory. For a
complete introduction to this field, we point to [314–316].

v1

v2ξ2

v3

v4 ξ4

v5 v6

e13

e12

e23

e34

e35
e56

Figure 6.1.: Exemplary graph. This connected graph G1 consists of eight ver-
tices V (G1) = {v1, . . . , v8}, which are represented as heptagons and
connected through the edges E(G1) = {e13, . . . e56}. The vertices v2
and v4 are labelled with labels ξ2 and ξ4.

A graph G{V,E} is defined through the vertex set, also called node set, V (G) =
{v1, . . . , vN}, and the edge set E(G) = {ewx}w,x. An edge ewx connects vertices vw
and vx if they are neighbours, referred to as vw ∼ vx. These connections denote
usually the relationship of the vertices, describes for example spacially, causal or
temporal closeness of the vertices. The number of neighbours of a vertex vx is
called the degree of vx.
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6.2. Classical machine learning with graph-structured data

A path of k vertices is a sequence of k distinct vertices such that consecutive
vertices are adjacent. We further denote a graph as complete if there is an edge
between every pair of vertices. This definition should be not confused with a
connected graph, where simple every pair of vertices can be connected with a path.

To be useful for ML graph-structure has to be encoded into continuous low-
dimensional representations. A helpful tool is the adjacency matrix. For a graph
with N vertices this N ×N matrix is defined by

A =


Awx = 1 if there is an edge ewx
Awx = 0 if there is no edge
Axx = 0.

The graph depicted in Figure 6.1 can be described with an adjacency matrix

A(G1) =


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0

 .

Note that in this work, we only discuss so-called simple graphs, where at most
one edge between a pair of vertices is allowed. Further, we only study undirected
graphs, where the existence of an edge ewx is equivalent to the presence of an edge
exw. Moreover, we assume that the relevance or meaning of all edges is equal.
In contrast, there is the concept of weighted graphs, where the adjacency matrix’
entries can be arbitrary values rather than just ∈ {0, 1}.

Every vertex can optionally be assigned to a label. Such a label can stand for a
category, a number, a user profile in a social network, or some quantum data, to
name a few examples. In the classical case, labels often are formulated as binary
label vectors ξ(vx).

6.2 Classical machine learning with graph-structured data

Exploiting the graph structure of complex data sets has significant potential for
new scientific breakthroughs. However, the challenge is to activate this potential
by choosing the right techniques. Not only network analysis methods [317] but
also ML approaches [175] were utilised for this.
ML techniques are often categorised into supervised tasks with the aim of

getting the desired output given an input, or unsupervised tasks engaging with
the assignment of learning patterns. Also semi-supervised tasks exist, which can
be seen as a combination of both approaches. In the field of ML on graphs, these
labels are used as well, just as mentioned in the introduction of this chapter.
However, due to the characteristics of graphs, further (sub-)categories turned to
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be reasonable and valuable. We will present a selection of them shortly in the
following paragraphs. This will supply the reader with a short but comprehensive
overview of the field of ML on graphs. For a more detailed and comparing review
we point to [175,318,319]. Note further that there exist methods, preparing graphs
for such algorithms, for example by removing unnecessary neighbors [320].

Node classification

A widespread problem category is node classification [318, 321–323], where the
aim is to use the information of the graph to find missing vertex labels. Imagine
building a graph where the vertices refer to publications and the edges symbolise
citations two papers have in common. If we then label some of the vertices with
topics treated in the according to publication, it is possible to forecast missing
labels by exploiting the graph structure [324]. Since usually the training set is
built of the full graph (including the labelled and unlabelled vertices) and the
existing labels, vertex classification is often classified as a semi-supervised task.

Link prediction

Not only absent labels but also missing edges can be the focus of a problem. A
well-known example for link prediction [318,325,326] can be found in polypharmacy:
the usage of drug combinations is common for beating complex or co-existing
diseases but also offers a higher risk of side effects. Data on these effects is usually
scarce. However, [32] presents an approach named Decagon for modelling them.
It uses a graph with protein-protein, drug-protein and drug-drug (polypharmacy)
interactions, including many different edge types that stand for distinct side effects.
The algorithm is evidentially able to find missing edges and therefore predict side
effects of drug combinations. In the same way as vertex classification, relation
prediction is often categorised as semi-supervised.

Community detection

Whereas in the last two categories, missing graph data information was gained
through the learning algorithm using some supervised data in the vertex labels,
community detection [327] is an unsupervised process. The algorithms only input
is the graph G = (V,E) itself. In many contexts, graphs naturally are clustered:
vertices included in such a cluster are much more likely to be connected with other
included vertices than with those from outside the cluster. An example is the
connection of user profiles on social media platforms: these will be likely clustered,
for instance, by the users home location. Algorithms finding such clusters in graphs
can be used, for example, to discover fraudulent anomalies in financial transaction
networks given the histories of transactions of people using the networks [328].
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Graph classification

On the contrary to the three above mentioned categories graph classification [329]
is not based on one single graph but is instead feed with different graphs in order
to categorise them. For example, we assume a given graph-based representation of
the structure of some molecules. The algorithm can be trained such that it reads
the graph and classifies the molecule in some way, for instance, by its toxicity [330].

Graph-convolution networks

The last method we want to mention in this short overview is directly encoding the
graph structure in the representations. These so-called graph-convolution networks
(GCNs) [309–312] are one of the most prominent graph deep learning models
and especially useful when other graph-based ML methods face problems. The
techniques can also be used on data types that are not structured initially as a
graph, such as image or text data, and graph-structured data with very complex
patterns. A concrete example is building a representation of video input as a
space-time region graph and recognising actions in these videos, for example like
"opening a book" [331]. A review of GCNs can be found in [332].

6.3 Quantum graph-structured data

In the last section, we gained an insight into the success of classical graph-structured
data processed in classical ML algorithms. Nevertheless, not only these achieve-
ments are the motivation to study the use of quantum graph-structured data. The
properties of the data itself prompt this kind of ansatz: quantum data, produced by
structured devices, will always be structured since spatial and causal arrangements
lead to different correlations between the states. In the following, we give some
examples of how graph-structured data can emerge. We close this section by
developing a notation describing the graph structure of the quantum data set in a
way that is useful for the training of QNNs.

Motivational examples

One can imagine a set of N quantum information processors represented by the
vertices of a graph. We assume we know in which way these processors are arranged.
For every processor, some of the other processors are closer than the rest. We
can relate particularly close processors with edges between the concerning vertices
encoding the correlations between the processors. We further assume we not only
know the structure of the processors, but also have access to a training data set
of S < N outputs and inputs {(ρin

x , ρ
out
x ) |x = 1, 2, . . . , S} defined as follows: we

know that processing the state ρin
x with the processor x can lead to the state ρout

x .
In other words, we own a training pair consisting of an input and output state for
some of the processors, but not all of them. The aim would be now to learn the
input and output relations for all the N processors. This scenario can be seen as
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the foundation of various physically relevant situations. The quantum NISQ device
clusters [53] are one example where the quantum data is in some way spacially
graph-structured.
An other example is structure due to time steps. Imagine simulating a quan-

tum system with Hamiltonian H ∈ B(H) for some period of time in steps
t ∈ {0, ε, 2ε, . . . (N − 1)ε}. Based on an initial state |ρin〉 ∈ H the states
|ψt〉 ≡ eitH/~ |ρin〉 evolve. Such a structure can also be interpreted as a line
graph with N vertices.

Notation

After motivating graph-structured quantum data, we introduce some convenient
notation to describe such in the following. For this, we tie in with Section 4.3 and
assume having access to one or more quantum devices producing uncharacterised
quantum states. We further suppose that the quantum information device can be
described by a completely positive map E mapping from an input state ρx to an
output state σx = E(ρx). The device can be described with {(px, ρx)}x∈V , where
ρx occurs with probability px.

Additionally to the setting in Chapter 4 we presume the quantum states ρx are
linked to the vertices of a graph G = (V,E), namely

ρ : V → D(H).

where V denote the vertices of the graph and D(H) the density matrices on H.
More specifically, we assume that the graph structure is associated with the device’s
outputs.
We further exabit the graph-structure with an edge set E. In this sense two

states ρw and ρx which are information-theoretic close, defined by some metric
d(ρw, ρx) ∼ ε, are connected with an corresponding edge (w, x) ∈ E. We discuss
the choice of the metric in Section 6.4. These edges can be described in an
adjacency matrix A.

Additionally to this N×N matrix we have a training data set on hand. Therefore
this setting can be categorised as semi-supervised. The training data set is
structured as{(

ρ1, |φSV
1 〉 〈φSV

1 |
)
, . . . ,

(
ρS, |φSV

S 〉 〈φSV
S |
)
, ρS+1, . . . , ρN

}
, (6.1)

where the first S entries are the quantum state pairs describing the supervised
data (as in the supervised setting discussed in Chapter 4) and the remaining
N−S entries describe unsupervised vertices without information about the output.
Throughout this chapter, we will call the vertices labelled with the input state and
the desired output state as supervised and the remaining vertices as unsupervised.
An example containing one supervised vertex and two unsupervised vertices is
depicted in Figure 6.2.

We aim to find the output states of the unsupervised vertices by exploiting the
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supervised vertices and the graph structure. Hence we can categorise the problem
as a semi-supervised node classification question.
For the validation process of our examples presented in Section 6.6 we assume

moreover to have access to the overall data set, i.e.{(
ρ1, |φSV

1 〉 〈φSV
1 |
)
, . . . ,

(
ρS, |φSV

S 〉 〈φSV
S |
)
,(

ρS+1, |φUSV
S+1 〉 〈φUSV

S+1 |
)
, . . . ,

(
ρN , |φUSV

N 〉 〈φUSV
N |

)}
.

Using this additional data, we can test if the new graph loss function, presented
in the next section, increases the generalisation behaviour of the DQNN training
algorithm. In the use case, this additional data is not necessary, and the data in
the form of Equation (6.1) is sufficient. Note that we assume that the training
and validation data consist of pure states in the following, but mixed states are
possible in general as well.

v1

{ρin
1 , ρ

SV
1 }

v2

ρin
2

v3

ρin
3 ∈ D(C2 ⊗ C2)

Figure 6.2.: Graph and QNN. A line graph with N = 3 vertices whereof S = 1
is supervised is depicted on the left-side of the figure. The labels of
the vertices are either input states (unsupervised vertex) or pairs of
input and output states (supervised vertex). The dimension of the
input state should match the input layer of the QNN, the dimension
of the supervised states the output layer, respectively.

6.4 Loss functions

As in Chapter 4 we use pairs of quantum states as training data to learn unknown
quantum information processes. In addition to that, we include here information
about the problem’s graph structure. The task is now to find a way that the in
Chapter 4 presented DQNN can learn and generalise from this graph data. Hence
in the following, we will guide through different loss functions used in the proposal
of [99]. To remind the reader, we describe the learning architecture we train with
the function E , i.e. ρout = E

(
ρin
)
.
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Training loss

We already discussed how to train a DQNN with pure supervised states using the
fidelity in Section 4.3, namely with the supervised loss

LSV ≡
1

S

S∑
x=1

〈φSV
x | E

(
ρin
x

)
|φSV
x 〉 .

In addition, we define here a new loss in order to exploit the graph structure
of the output states of the device. These output states are, in general, mixed.
Even though the fidelity is defined for mixed states, the computation complexity
required to evaluate it is immense. Therefore, we choose a different measure here,
namely the Hilbert-Schmidt distance

dHS(ρ, σ) ≡ tr((ρ− σ)2).

Keep in mind that the Hilbert-Schmidt distance reaches its minimum if the two
compared states resemble. In contrast, the fidelity reaches the maximum, the value
1, in this case. See Section 3.1 for a more detailed discussion of the fidelity and
the Hilbert-Schmidt distance.
We use the adjacency matrix A of the graph G to include the graph structure

information during the learning process and define the graph-based loss as

LG ≡
∑
w,x∈V

[A]wxdHS(E(ρin
w ), E(ρin

x ),

where and [A]wx denotes the matrix element of A relating to vertices v and w.
The full training loss function is now specified as the combination of supervised

and graph-based loss, with the graph part controlled by a Lagrange multiplier γ:

LSV+G = LSV + γLG.

Defining the training loss in that way forces the network to map supervised input
states to the desired output states and also considers the graph structure of the
data.

In the same way as represented in Section 4.3 where we described the training of
a neural network without using graph-structure, the training task is to maximise
the training loss function, here LSV+G with γ ≤ 0. The maximum depends on the
Lagrange multiplier, and by tuning it, we can decide the importance of the graph
structure while training.

Validation loss

We aim the quantum neural network to lead to the right output state for a given
input state in the same way as in Chapter 4 and therefore use the equivalent
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validation loss, namely

LUSV =
1

N − S

N∑
x=S+1

〈φUSV
x |E

(
ρin
x

)
|φUSV
x 〉,

to check the trained quantum neural networks behaviour using the unsupervised
data pairs. We will use this function to study numerical examples in Section 6.6.

6.5 Training algorithm

For training the DQNN, including the graph information, we use an algorithm
of the same structure as described in Section 4.3. The only difference is the new
training loss function LSV+G = LSV + γLG leads to new update rules which we
formulate in Hermitian matrices K l

j,SV+G(s) for jth qubit in lth layer. Following
the discussions in Chapter 4 we recognise that all calculations are linear in the
loss function, and therefore we can make the ansatz

K l
j,SV+G(s) = K l

j,SV(s) + γ ·K l
j,G(s),

where K l
j,SV(s) denotes the update matrix derived in Section 4.3. It remains to

derive the unsupervised update matrix K l
j,G(s) to clarify the training algorithm

when using graph-structured quantum data for training a DQNN.

Proposition 6.1. The update matrix for training a QNN with a graph structure
between the output states {ρout

w , ρout
x } encoded via the adjacency matrix [A]wx (and

without any supervised states) is

K l
j,G(s) = 2ml−1+1iη

∑
v∼w

[A]wxtrrest
(
M l

j{w,x}(s)
)
,

where

M l
j{w,x}(s) =

[
U l
j(s)U

l
j−1(s) . . . U

1
1 (s)

((
ρin
w − ρin

x

)
⊗ |0 . . . 0〉1〈0 . . . 0|

)
U1
1
†
(s) . . . U l

j−1
†
(s)U l

j

†
(s),

U l
j+1

†
(s) . . . Uout

mout

†
(s)
(
1in,hidden ⊗

(
ρout
w − ρout

x

))
Uout
mout

(s) . . . U l
j+1(s)

]
.

Proof. The derivation is analogous to the proof of Proposition 4.1. Given the
graph-based loss

LG ≡
∑
w,x∈V

[A]wxdHS(E(ρin
w ), E(ρin

x ),

we take the derivative with respect to the step parameter. We get

dLG(s)

ds
= lim

ε→0

LG(s+ ε)− LG(s)

ε
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=2i
∑
w,x∈V

[A]wx tr
((
1in, hidden ⊗

(
ρout
w − ρout

x

))
([
Kout
mout

, Uout
mout

. . . U1
1

()
U1
1
†
. . . Uout

mout

†]
+ . . .

+ Uout
mout

. . . U1
2

[
K1

1 , U
1
1

(
ρin
w − ρin

x

)
U1
1
†]
U1
2
†
. . . Uout

mout

†
))

=2i
∑
w,x∈V

[A]wx tr
([
Uout
mout

. . . U1
1

(
ρin
w − ρin

x

)
U1
1
†
. . . Uout

mout

†
,

(
1in, hidden ⊗

(
ρout
w − ρout

x

))]
Kout
mout

+ . . .+
[
U1
1

(
ρin
w − ρin

x

)
U1
1
†
,

U1
2
†
. . . Uout

mout

†(
1in, hidden ⊗

(
ρout
w − ρout

x

))
Uout
mout

. . . U1
2

]
K1

1

)
=2i

∑
w,x∈V

[A]wx tr
(
Mout

mout{w,x}(s)K
out
mout

(s) + . . .M1
1{w,x}(s)K

1
1(s)

)
,

where

M l
j{w,x}(s) =

[
U l
j(s)U

l
j−1(s) . . . U

1
1 (s)

((
ρin
w − ρin

x

)
⊗ |0 . . . 0〉1〈0 . . . 0|

)
U1
1
†
(s) . . . U l

j−1
†
(s)U l

j

†
(s),

U l
j+1

†
(s) . . . Uout

mout

†
(s)
(
1in,hidden ⊗

(
ρout
w (s)− ρout

x (s)
))
Uout
mout

(s) . . . U l
j+1(s)

]
.

As a next step we expand K l
j,G(s) using Pauli matrices

K l
j,G(s) =

∑
α1,...,αml−1

,β

K l
j,α1,...,αml−1

,β(s)
(
σα1 ⊗ . . .⊗ σαml−1 ⊗ σβ

)
.

Since dsLG(s) is linear in the coefficients K l
j,α1,...,αml−1

,β(s) we can solve

min
Kl
j,α1,...,β

(dLG(s)

ds
− λ

∑
α1,...,β

K l
j,α1...,β

(s)2
)
,

analogously to the proof in Proposition 4.1 using the Lagrange multiplier λ ∈ R.
Inserting the resulting coefficients

K l
j,α1...,β

=
i

λ

∑
w,x∈V

[A]wx trα1,...,αml−1
,β

(
trrest

(
M l

j{w,x}
)(
σµ1 ⊗ . . .⊗ ση

))
gives the desired expression for the update matrices, namely

K l
j,G(s) =2ml−1+1iη

∑
w,x∈V

[A]wx trrest
(
M l

j{w,x}(s)
)
,

where η = 1/λ is the learning rate.
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Using the above-reasoned ansatz

K l
j,SV+G(s) = K l

j,SV(s) + γ ·K l
j,G(s)

we end up with the update matrix

K l
j,SV+G(s) =

2ml−1ηi

S

S∑
x=1

trrest
(
M l

j{x}(s)
)
+γ2ml−1+1iη

∑
w,x∈V

[A]wx trrest
(
M l

j{w,x}(s)
)
,

for maximising the training loss LSV+G = LSV +γLG, where γ < 0 is the parameter
to tune the influence of the graph structure.

6.6 Classical simulation

In the last section, we derived the update rule for the training loss, including the
graph’s information. Using these results and the algorithm described in Section 4.3
we can simulate the training on a quantum computer using QuTip [275], a quantum
toolbox in Python. The results are presented analogously to the training of the
DQNN without graph structure in Section 4.5. The code can be found at [276].
As already mentioned in Section 4.5 we are limited to small quantum systems

due to the exponential scaling of the Hilbert space dimension with number of qubits.
Despite this constraint, we will present three numerical studies following [99].

Example I: connected clusters

The first graph we study is a connected graph of degree N = 8. The vertices have
pairs of quantum states, including an input and output state, as labels. The first
four vertices v1 . . . v4 form a cluster, as well as the vertices v5 . . . v7. Vertex v8
connects the two clusters, see Figure 6.3a. The output states are chosen in a way
that connected vertices are associated to closer output states in the sense of the
Hilbert-Schmidt distance. The input states |φin

x 〉 are random 3-qubit states built
via a normal (Gaussian) distribution and are not linked to the graph structure in
any way. Note that the coefficients depicted in Figure 6.3a are only recorded to
three decimal places.
The graph structure, saved in an adjacency matrix, is the foundation of the

training loss LG. As introduced above, we also include a supervised learning part,
packed in LSV. For this purpose, we assume that S of the state pairs are used for
training. In Figure 6.3a these S = 3 supervised vertices are shaded.
Figure 6.3b depicts the validation loss during rT = 1000 training epochs in

the supervise case (γ = 0) supervised and semi-supervised (i.e. supervised plus
graph-based) case (γ = −0.5) with S = 3. Although we do not reach a fidelity of
1, the plot clarifies that the learning algorithm performs better when the graph
structure is exploited.

We already observed that interpolation of the action on the supervised vertices
on the unsupervised vertices is possible after training the network with three of

97



6. Training with graph-structured quantum data

v1{|φin
1 〉 , |0〉}

v2

{|φin
2 〉 , 0.997 |0〉+ 0.071 |1〉}

v3

{|φin
3 〉 , 0.988 |0〉+ 0.152 |1〉}

v4

{|φin
4 〉 , 0.97 |0〉+ 0.243 |1〉}

v8

{|φin
8 〉 , 0.659 |0〉+ 0.753 |1〉}

v5

{|φin
5 〉 , 0.152 |0〉+ 0.988 |1〉}

v6

{|φin
6 〉 , 0.071 |0〉+ 0.997 |1〉}

v7 {|φin
7 〉 , |1〉}

(a) Graph with labels.
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(b) Validation loss during training with S = 3 supervised training pairs.
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(c) Validation loss after training with different S averaged over 30 sets.

Figure 6.3.: Connected clusters. This figure compares the training (b) and
generalisation behaviour (c) of optimising a DQNN (rT = 1000
epochs, ε = 0.01) with and without using the graph structure repre-
sented in (a).
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v1

{|φin
1 〉 , |0〉}

v2

{|φin
2 〉 , 0.99 |0〉+ 0.21 |1〉}

v3

{|φin
3 〉 , 0.96 |0〉+ 0.28 |1〉}

v4

{|φin
4 〉 , 0.89 |0〉+ 0.45 |1〉}

v5

{|φin
5 〉 , 0.78 |0〉+ 0.62 |1〉}

v6

{|φin
6 〉 , 0.62 |0〉+ 0.78 |1〉}

v7

{|φin
7 〉 , 0.45 |0〉+ 0.89 |1〉}

v8

{|φin
8 〉 , 0.27 |0〉+ 0.96 |1〉}

v9

{|φin
9 〉 , 0.12 |0〉+ 0.99 |1〉}

v10

{|φin
10〉 , |1〉}

(a) Graph with labels.
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(b) Validation loss during training with S = 3 supervised training pairs.
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(c) Validation loss after training with different S averaged over 30 sets.

Figure 6.4.: Line. This illustration draws the comparison of the training (b) and
generalisation behaviour (c) of optimising a DQNN (rT = 1000
epochs, ε = 0.01) trained with and without using the graph structure
(a).
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the eight data pairs. We test how the number of supervised vertices S affects the
training process for a generalisation study. Therefore we randomly chose S < N of
the N = 8 training pairs, trained the network in rT = 1000 steps and average the
last values of the loss functions over 10 completely independent training attempts.
The results are depicted in Figure 6.3c and show that for S ≥ 2 the graph-based
loss term optimises the training significantly.

Example II: Line

In the second example, N = 10 pairs of quantum states are the labels of vertices
aligned in a line graph, see Figure 6.4a: the states were chosen to be – according to
the fidelity – evenly spaced along a line between the endpoints associated with |0〉
and |1〉. In the same way, as in the connected-clusters data set, the input states
|φin
x 〉 are random 3-qubit states and the output states suit the graph structure.

Again we assume three vertices to be supervised.
In Figure 6.4b the validation loss is depicted. The training loss involving the

graph structure (γ = 0) yields a much higher validation loss function during the
training. As in the example above the graph, structure supports the training. The
maximum value of the fidelity is not reached, but after only 376 training epochs,
we exceed LUSV(s) = 0.8.

In the generalisation study, see Figure 6.4c, it becomes clear that a validation
loss of over 0.6 with only 5 of 10 supervised vertices can be achieved when the
graph structure is exploited.

Example III: Classic deep walk

Using the quantum states forming connected clusters or a line graph we could, as
described above, observe that including the graph structure of the output states in
the training process can increase the training success. However, the input states,
fed into the QNN, were random states. In the following we describe an ansatz,
where both, the input and the desired output states, are related to a graph.

We use a synthetic graph, motivated by the social distance attachment model
in [333]. In contrast to the graphs used in this chapter before to every vertex
not only labels are assigned, but also a embedding vector. The graph is build
classically be randomly assigning labels to vertices such that the average number
of labels per vertex is a constant. The number of possible labels is 8, this means
we can describe the labels of every vertex x as a string of 8 binary numbers. Our
graph contains 32 vertices. The average number of labels per vertex is 3.

To create edges between the labelled vertices, let d (ξw, ξx) denote the hamming
distance between the label vectors ξw and ξx for vertices w and x. We denote
with h the level of homophily and b the characteristic distance. In graph theory,
homophily describes how often linked vertices have the same labels or similar
features [334]. Further we generate an edge between two vertices w and x with
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0 1 2 3 4 5 6 7 8 9 10
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SV
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)

γ = −0.5 (supervised + graph)
γ = 0 (supervised)

Figure 6.5.: Deep walk. The plot describes the generalisation behaviour of a
DQNN (rT = 2000 epochs, ε = 0.01) trained with and without

using the graph structure of a graph with 32 vertices produced by a
classical deep walk. Each data point demonstrates an averaged over 5
independent training attempts.

the probability

pwx =
1

1 + [b−1d (ξw, ξx)]
h
.

As higher we choose the value of h, the chance of vertices with similar labels are
more likely connected.
As a last step we assign every vertex to an embedding vector ~e = {α, β, γ, δ}.

The embedding vector is computed using the method DeepWalk [304] using walks
of length 1 and the number of walks per vertex as 10. These embedding vectors
will be used to construct input quantum states.

We now construct the corresponding quantum data, namely the quantum input
and output states of the vertices. We adopt the graph structure and change
the labels in the following way. Every vertex is assigned to a pair of quantum
states: a 2-qubit state |φE

x 〉 based on the embeddings and a 3-qubit state |φL
x〉

build based on the labels. |φE
x 〉 is the normalised version of the superposition

α |00〉+ β |01〉+ γ |10〉+ δ |11〉. To build |φL
x〉 we link the states {|000〉 , . . . , |111〉}

to the 8 possible labels. The output state assigned to a specific vertex is now
built as the superposition of these basis states assigned to the vertex’ labels. If for
example a vertex has the labels 2, 3 and 8 the output state would be a superposition
of the states |001〉,|010〉 and |111〉.
We use |φE

x 〉 as input states and |φL
x〉 as desired output states to train DQNNs.

The generalisation analysis in Figure 6.5, shows that with 3 ≤ S ≤ 10 supervised
vertices, the validation loss is lower when ignoring the problem’s graph structure.
For larger values of S both learning strategies are about equally good, which
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is discussed in the appendix, see Figure B.2 using a smaller amount of training
rounds, since a study of the loss functions for all S and rT = 2000 exceeds the
computational power of the authors of this thesis. The evaluation of the loss
functions is plotted in the appendix as well, see Figure B.2.

6.7 NISQ device implementation

In the last section, we discussed training a DQNN using the newly introduced
training loss function LSV+G. The results were done using the classical simulation
presented in Section 4.5. We will now test the behaviour of this new loss function
using the NISQ device implementation, denoted with DQNNNISQ and discussed in
Section 4.6.
As in Section 4.6 explained, the update of the parameter vector ωs is done in

classical manner using the gradient of the training loss, i.e. ωs+1 = ωs + dω, where
dω = η∇LSV+G (ωt) and

∇kLSV+G (ωs) =
LSV+G (ωs + εek)− LSV+G (ωs − εek)

2ε
+O

(
ε2
)
.

LSV+G function includes both the fidelity and the Hilbert-Schmidt distance. There-
fore, additionally to the implementation presented in Section 4.6, we have to
evaluate the Hilbert-Schmidt distance. This can be done by three evaluations of
the SWAP test, since dHS(ρ, σ) = tr(ρ2)− 2tr(ρσ) + tr(σ2) and tr(ρσ) = p · c can
be measured with the SWAP test [205], explained in Section 4.6.
The training of the DQNNNISQ using the graph-structured quantum data is

presented in Figure 6.6a (connected clusters) and Figure 6.6a (line). Despite the
noise levels, we can observe that using the graph structure of the problem increases
the validation loss reached after about 500 epochs and seems to lead to a more
stable training.

The plots in Figure 6.6 are based on numerics presented in the work of [335]. We
point the reader to this source for more experiments with graph-structured quantum
data and NISQ devices and a comparison of the behaviour of DQNNNISQ and QAOA
with the semi-supervised loss function LSV+G.

In this chapter we presented a variation of the DQNN training algorithm
presented in Chapter 4 by including knowledge of the graph structure of the
training data into the learning process. We could see that this extension can
increase the reached validation loss. In the next chapter, we will extend the DQNN
ansatz in another direction and follow a generative adversarial approach where
two DQNNs, a generator and a discriminator model, are trained in a competitive
manner.

102



6.7. NISQ device implementation

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

Training epochs rT

L
U

SV
(s

)

λ = −0.5 (supervised + graph)
λ = 0 (supervised)

(a) Training with connected clusters data set.
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(b) Training with line data set.

Figure 6.6.: Training a DQNNNISQ using graph-structured quantum
data. The figures depict the validation loss during training a

DQNNNISQ in 500 epochs with the datasets connected clusters
(a), see Figure 6.3a, and line (b), see Figure 6.4a. In both training
attempts S = 3 training pairs are supervised.
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7

Quantum generative adversarial networks

In the preceding chapters, we worked with training data in the form of pairs of
input and output quantum states in order to learn the relation between them.
We defined loss functions that compared the output of a quantum neural network
(QNN) with the desired output and demonstrated that is possible to update the
network based on this and achieve good training results. The whole training
algorithm rests upon the fact that we have access to related data pairs. In contrast,
in the following we undertake the task of extending a set of quantum states to
states which have similar properties.
We present a QNN training algorithm [102] which can not only learn the

common characteristics of such data sets but also generates states with suiting
requirements. The proposal is based on the dissipative quantum neural networks
(DQNNs) presented Chapter 4. More precisely, we will use two DQNNs acting in
competition, whereof one acts in a generative and the other in a discriminative
manner, to learn from unlabelled quantum data.
In classical machine learning (ML) we generally distinguish between discrimi-

native and generative models. The in Chapter 2 discussed example of classifying
handwritten digits based on the MNIST dataset [148] is a typical discriminative
task: the neural network (NN) learns in a supervised way to decide between the ten
options. Such problems have in common that it is easy to find a proper training loss
function which is aimed to be optimised during training [3]. In contrast, generative
models produce data. Speaking in the example of handwritten digits, we would
train a generative model to produce different “handwritten” digits from a random
input. The downside of generative models is that these, due to the difficulty of
approximating many probabilistic computations, are much more complicated to
train than discriminative models.
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This changed with the arrival of generative adversarial networks (GANs) [147],
consisting of a generative and discriminative part. The generative model generates
samples by passing random noise through, for example, a multi-layer perceptron.
The discriminative part, which can also be realised by a multi-layer perceptron, is
trained to distinguish the data produced by the generator from the training data.
On the other hand, the generative model aims to “fool” the discriminator. In this
opposing way, it is possible to train the generator [147,162,336] and GANs have
since found a lot of applications [336], ranging from classification or regression
tasks [336–338] to the generation [339] and improvement [340] of images.
In the field of quantum machine learning (QML), such generative adversarial

processes, referred to as quantum generative adversarial networks (QGANs) [341–
348], were studied, as well. Some of these models are defined as a quantum-classical
hybrid, include a quantum generator and a classical discriminator, and are used to
learn from classical input data [346,347]. Moreover, the authors of [342] present the
usage of quantum or classical data and two quantum processors in an adversarial
learning setting. Furthermore, the work of [341] designs quantum circuits for
the generator and discriminator NNs and trains them using data which has two
possible labels assigned. A further recent proposal is the Entangling QGAN [348]:
here, the discriminative model has access to a state produced by the generator a
training data set and a parametrised SWAP test is used to “entangle” the states.
Since we could observe excellent learning behaviour using the in Chapter 4

presented DQNNs in a supervised ansatz, in this chapter, we introduce a QGAN
based on these types of QNNs. This so called discriminative quantum generative
adversarial network (DQGAN) [102] is, in contrast to some of the above named
proposals, a fully quantum architecture and is trained with quantum data. Different
to the approach in [341] in the DQGAN algorithm only the discriminator has access
to training data, and we only work with unlabelled quantum states as training
data. In fact, the generative model gets a random quantum state as input, whereas
the discriminator receives either the output of the generative model or a training
data state as input. Since quantum data is always rare, this model aims to produce
states with similar features as the training data. In that way, we generated more
quantum data of the same kind, which could be, for example, useful to train other
QNNs.

We start this chapter with a discussion of classical GAN methods in Section 7.1
since the quantum analogues are based on these. It follows a presentation of the
already advertised DQGAN architecture, see Section 7.2. We discuss the data
sets and loss functions used for training and validation of DQGAN in Section 7.3.
Based on this, we formulate the update rules for training the DQGAN training
algorithm in Section 7.4. We conclude with a classical simulation of the algorithm
and show results of an implementation suitable for a NISQ device in Section 7.5
and Section 7.6.
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7.1 Classical adversarial networks

In this section, we summarise the work of [147], who propose the first GAN model
and explore the particular case where the generative model generates samples by
passing random noise through a multi-layer perceptron. The discriminative model
is built as a multi-layer perceptron as well. It has access to generator’s synthetic
samples and samples from the stack of training data. However, the generator part
has no direct admission to the training data. In general, GANs are usually realised
with multi-layer NNs consisting of convolutional or fully connected layers [336].

Network architecture

For describing the proposal of [147] we call the generative model, capturing the
data distribution and producing data, G. The other model, the discriminator, is
denoted by D and estimates the probability D(x) that a given sample x is based
on the training data set rather than produced by the generator G.
Here G takes a random input z with distribution pin and outputs x with

probability distribution pG. On the other hand the probability distribution pdata

describes sampling x from the training data. The second network D gets x either
based on pG or pdata as an input. These relations are depicted in Figure 7.1
for the case G(x) : [0, 1] → [0, 1] × [0, 1], D(x) : [0, 1] × [0, 1] → [0, 1], and
D(G(x)) : [0, 1]→ [0, 1].

z xG
pin pG

training data x
pdata

D(x)D

Figure 7.1.: GAN. The discriminative model D gets the input x either of the
generator G or from the training data set.

Training

For the training we assume that both models, G(x, θG) and D(x, θD) are imple-
mented by multilayer perceptrons and parametrised by θG and θD, respectively.
Both models are trained simultaneously but with a different aim. The training goal
of model G is to maximise the probability of D making a mistake. The aim of D is
to always make the correct distinction. Therefore the whole problem corresponds
to a minimax problem: We train D to maximise the probability of assigning the
correct label to both training examples and samples from G. Simultaneously we
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train G to minimise log(1−D(G(z)), i.e. we train the generator to produce fake
data which cannot be distinguished by the discriminator D.

min
G

max
D

(L(D,G)) = min
G

max
D

(
Ex∼pdata [logD(x)] +Ex∼pin(z)[log(1−D(G(z)))]

)
During the training, we alternate between rD epochs of optimising D and rG

of optimising G. Here, it is essential to choose rD in a way that G changes
slowly enough [147]. rT describes how often alterations are repeated. The authors
of [147] choose an algorithm based on minibatch stochastic gradient, as shown in
Algorithm 2. Further, they recommend using a momentum method for the update.
Both of these techniques were explained in Section 2.4.

Algorithm 2 Minibatch stochastic gradient descent for GAN training.
for for rT epochs do

for rD epochs do
Sample minibatch {zi}Si=1 from noise prior pin(z).
Sample minibatch {xi}Si=1 from data generating distribution pdata(x).
Update the discriminator by ascending its stochastic gradient

∇θD
1

S

S∑
i=1

[logD(xi) + log(1−D(G(zi)))].

end for
for rG epochs do

Sample minibatch of S noise samples {zi, . . . , zS} from noise prior pin(z).
Update the generator by descending its stochastic gradient

∇θG
1

S

S∑
i=1

log(1−D(G(zi)))].

end for
end for

At this point, we want to mention one of the main difficulties occurring when
training a GAN, called mode collapse [349]. This describes the situation where
the generative model only produces a selection of the aimed training data. When
we think in the example of producing “handwritten” digits, the generator would,
for example, produce some of the digits never or only rarely.
Mode collapse often occurs when the discriminator is not trained well enough.

On the other hand, when the discriminator is trained optimal, the gradient used
in Algorithm 2 vanishes. Different solutions were proposed since this is a common
problem in generative ML. One of them is the in [349] discussed Wasserstein
GAN. Here, instead of the discriminative, a critic network is applied. Using the
Wasserstein distance [350] the two different kinds of outputs of the critic are
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compared and aimed to be maximised by the critic: the output of the critic getting
training data as input and the output of it getting the generated data. In the
same way as the original GAN, this results in a minimax problem, i.e.

min
G

max
D

(L(D,C)) = min
G

max
D

( 1

S

S∑
i=1

C(xi)− C(G(zi))
)
.

Theoretical results

Before discussing GAN applications, we shortly want to mention some theoretical
results of the original GAN, proposed in [147], with the aim of getting a better
intuition of the training algorithm.
Whereas the generator’s and discriminator’s data distribution changes during

the training, the training samples generating distribution pdata does not change.
In the first phase of Algorithm 2, G is fixed and only the discriminator is trained.
We can formulate this phase as

L(G,D) =

∫
x

pdata(x) log(D(x))dx+

∫
z

pin(z) log(1−D(G(z))dz

=

∫
x

pdata(x) log(D(x)) + pG(x) log(1−D(x))dx.

For (a, b) ∈ R2\{0, 0}, the function y → a log(y)+b log(1−y) achieves its maximum
in [0, 1] at a

a+b
. Hence for a fixed generator G, the optimal discriminator, denoted

by D∗, is

D∗(x) =
pdata(x)

pdata(x) + pG(x)
.

After training the discriminator, the generator G gets trained. The authors
of [147] observed that the discriminator is more likely to classify the data at first.
Experimental results show that after several training iterations, including updating
D and G, we can reach the state of pG = pdata. The discriminator is unable to
differentiate between the two distribution, i.e. D(x) = 1

2
.

Indeed the authors of [147] showed that the global minimum of the training
criterion

C(G) = max
D
L(G,D)

=Ex∼pdata [logDG(x)] +Ez∼pin [log(1−DG(G(z)))]

is achieved if and only if pG = pdata.
Moreover it was demonstrated that pG actually converges to pdata, given G and

D have enough capacity at each step of Algorithm 2 so that the discriminator is
allowed to reach its optimum given G, and pG is updated so as to improve the
criterion

Ex∼pdata [logD
∗
G(x)] +Ex∼pG [log(1−D∗G(x))].
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Applications

The authors of [147] trained their proposed GANs at a range of datasets, including
the already in Section 2.3 discussed MNIST dataset [148]. Therefore we want
to take the opportunity to continue the discussion of the demonstrative MNIST
dataset and present in Figure 7.2 the input and output of a, in the context of a
GAN, trained generator. Although the authors do not claim that the resulting
samples are better than samples generated by previously existing methods, the
figure shows that after 90000 training epochs, it is possible to recognise digits in
the outputs. The output is quite diverse, so no mode collapse accrued.

(a) Input z (b) Output G(z)

Figure 7.2.: Generating “handwritten” digits. Using the code proposed in
[147] and the MNIST data set [148] we trained a generator G in a
GAN context. After 90000 epochs the G generated the output depicted
in (b) from the input in (a).

Although generating pictures of digits is indeed a good demonstration example,
we will discuss more practicable applications of GANs in the following lines. Based
on the original proposal discussed above, generative NNs are applied in many
areas today [336]. These network architectures allow training in semi-supervised
and unsupervised learning manner, for example, when producing data pairs is
expensive or impossible.
So far, we have focused on the output of the generator. However, also the in

GAN training acquired discriminator can be of use, for example, for classification
or regression tasks [336–338]. Moreover, generators can be used to simply generate
more labelled training samples for training further NNs [351,352].

Also, image synthesis, i.e. the generation of images, plays a significant role in the
usage of GANs. Many different techniques arose, for example, algorithms where
both, the generator and the discriminator, are fed with additional labels. Using
the latter ansatz, for example, “reverse captioning”, i.e. the generation of pictures
due to their description is possible [339].

In contrast, the MNIST example displayed in Figure 7.2 belongs in the category
of GANs used for image-to-image translation. Here an input image gets processed to
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an output image. The model pix2pix [353] can, for example, learn to generate maps
from aerial photos or colourise greyscale images. Furthermore, super-resolution is
a scope of application. Using GANs, low-resolution images can be upscaled in a
realistic and natural-looking way [340].

For a more detailed discussion of different kinds of GANs and their applications,
we point to [162,336].

7.2 Dissipative quantum generative adversarial network

In analogy to the in Figure 7.1 depicted classical GAN, the in the following presented
DQGAN, proposed in [102], is constructed of two DQNNs, the generative model,
and the discriminative model, described through the completely positive maps EG
and ED, respectively. The number of qubits in the last layer of the generator is
equal to the number of qubits in the first layer of the discriminator, so that the
generator’s output can be used as input for the discriminator. We are given a
set of training states {|φTx 〉}Nx=1. Moreover, several sets of random states {|ψin

x 〉}
are needed during the training algorithm. The aim is that the generative DQNN
produces states similar to the training states |φTx 〉. Note that we assume the states
of these sets to be pure.

|ψin〉 1

3

2

EG ρG

|φT 〉

3

2

ρout

3

2

4ED

Figure 7.3.: DQGAN. The here depicted DQGAN consists of four qubits. Qubits
2 and 3 are shared by the generative and the discriminative DQNN.
The state of these qubits is either the generator applied on the input
state, i.e. EG(|ψin〉 〈ψin|) or a given training state |φT 〉.

Figure 7.3 presents a minimalistic DQGAN: both, the generator and the dis-
criminator consist of two layers and involve three qubits, respectively. Since the
qubits of the second layer of the generator, qubits 2 and 3, are shared with the
discriminator, the whole DQNN includes four qubits, if the discriminator gets a
generated state EG(|ψin〉 〈ψin|) as an input. In the other case, these qubits are
directly initialised by a training data state and the DQNN consists only of qubits
2, 3 and 4. In equations we can describe this as
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ρout =

{
ED(EG(|ψin〉 〈ψin|)) for generated data
ED(|φT 〉 〈φT |) for training data.

Note that in DQNN manner, the generator depicted in Figure 7.3 consists of two
two-qubit unitaries UG1 and UG2, acting on qubits 1 and 2, and on qubits 1 and 3.
On the contrary, the discriminator is described by a single three-qubit unitary UD.
To clarify the network structure of the DQGAN, we explain in the following how
the states migrate through the network, assuming the depicted example.
The generator gets a random state |ψin

x 〉 as an input. Next, we initialise the
output of the generator as |00〉, tensor this state to the input state, apply the
network unitaries and trace out the input layer. This can be described as

ρG,x = EG(|ψin
x 〉 〈ψin

x |) = tr{1}

(
UG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |00〉 〈00|)U †G1U

†
G2

)
.

The discriminator’s input is either the output of the generator ρG,x leading to

ρG+D,x = tr{2,3}(UD(ρG,x ⊗ |0〉 〈0|)U †D)

or in the other case the training state |φTx 〉 leading to

ρD,x = tr{2,3}(UD(|φTx 〉 〈φTx | ⊗ |0〉 〈0|)U
†
D).

7.3 Loss functions

In the same way as the in Section 4.2 described loss function for the supervised
DQNN, the loss functions to train the DQGAN are based on the fidelity. The
discriminative model ED aims to output the state |1〉 when fed with a state |ψin〉
and identify “false” data, i.e. states generated by EG, with outputting the state |0〉.

During the training only S < N of the states {|φTx 〉}Nx=1 are used. However, we
aim that at the end of the training that every of the generator’s output states is
close to a state of the full data set {|φTx 〉}Nx=1. In other words we desire that the
generator does not reproduces only the S given states but extends this data set.

Training loss

In analogy to the classical case we can describe the training process through

min
G

max
D

(
1

S

S∑
x=1

〈0| ED(EG(|ψin
x 〉 〈ψin

x |)) |0〉+
1

S

S∑
x=1

〈1| ED(|φTx 〉 〈φTx |) |1〉

)
,

(7.1)
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and the updates of the discriminator and the generator take place consecutively.
For updating the generator we maximise the loss function

LD(ED, EG) =
1

S

S∑
x=1

〈0| ED(EG(|ψin
x 〉 〈ψin

x |)) |0〉+
1

S

S∑
x=1

〈1| ED(|φTx 〉 〈φTx |) |1〉 .

The generator is trained through maximising

LG(ED, EG) =
1

S

S∑
x=1

〈1| ED(EG(|ψin
x 〉 〈ψin

x |)) |1〉 .

As shown in Algorithm 3, in every training round two new sets of random states
{|ψin

x 〉}Sx=1 are used to evaluate LD and LG, respectively. Note further that LG
differs from the corresponding term in Equation (7.1): the fidelity is calculated
with respect to |1〉 instead of |0〉 and hence the generator is trained by maximising
LG rather than minimising. Using this arrangement it will be more convenient to
compare the loss functions in Section 7.5 and Section 7.6.

Validation loss

In the final stages of the training, we aim that every output of the generator is
close to one of the given states {|φTx 〉}Nx=1. Therefore we produce V additional
random states {|ψin

x 〉}Vx=1. For every of these validation states, we search for the
best suiting state of the data set through maxTx=1

(
〈φTx | EG(|ψin

i 〉 〈ψin
i |) |φTx 〉

)
and

build the mean value over all V generated states, i.e.

LV (ED, EG) =
1

V

V∑
i=v

N
max
x=1

(
〈φTx | EG(|ψin

i 〉 〈ψin
i |) |φTx 〉

)
.

This validation loss function is used to test the training success.

7.4 Training algorithm

Since the presented algorithm consists of two parts, we define the training epochs
with three parameters: the overall repetition of alternating between training the
discriminator and the generator rT , a parameter rD describing the repetition of
training discriminator and a parameter rG describing the repetition of training
generator. These parameters are used in the for loops of the pseudo-code in
Algorithm 3, which gives an overview of the algorithm. The last three steps
describe the validation process after the training.
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Algorithm 3 Training of a DQGAN.
initialise network unitaries
for rT epochs do

make a list of S randomly chosen states of the training data list {|φTx 〉}Nx=1

for rD epochs do
make a list of S random states |ψin

x 〉
update the discriminator unitaries with maximising LD

end for
for rG epochs do

make a list of S random states |ψin
x 〉

update the generator unitaries with maximising LG
end for

end for
make a list of V random states |ψin

x 〉
propagate each |ψin

x 〉 through the generator to produce V new states
compute LV

Derivation of the update matrices

Analogous to the DQNN update rule presented in Section 4.3 the unitaries will be
updated through

U l
j(t+ ε) = eiεK

l
j(t)U l

j(t).

Before we derive the form of the update matrices K l
j in general we take a smaller

step first and discuss the update of the minimal example which is depicted in
Figure 7.3 and consists of three unitaries. These unitaries can be updated via

UD(t+ ε) =eiεKD(t)UD(t)

UG1(t+ ε) =eiεKG1(t)UG1(t)

UG2(t+ ε) =eiεKG2(t)UG2(t).

We want to use this minimal example and explain how the update changes the
output states. Note that in the following the unitaries act on the current layers,
e.g. is UG1 is actually UG1 ⊗ 1 and UG2 represents 1⊗ UG2.

In the first part of the algorithm the generator is fixed and the discriminator is
updated. When the discriminator is fed with training data we get the output state

ρDout(t+ ε) = tr{2,3}

(
eiεKDUD

(
|φTx 〉 〈φTx | ⊗ |0〉 〈0|

)
U †De

−iεKD
)

= tr{2,3}

(
UD

(
|φTx 〉 〈φTx | ⊗ |0〉 〈0|

)
U †D + iε

[
KD, UD

(
|φTx 〉 〈φTx | ⊗ |0〉 〈0|

)
U †D

]
+O(ε2)

)
=ρDout(t) + iε tr{2,3}

( [
KD, UD

(
|φTx 〉 〈φTx | ⊗ |0〉 〈0|

)
U †D

] )
+O(ε2).
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In the case the discriminator gets input of the generator we get the output state

ρG+D
out (t+ ε) = tr{1,2,3}

(
eiεKDUDUG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2U

†
De
−iεKD

)
= tr{1,2,3}

(
UDUG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2U

†
D

+ iε
[
KD, UDUG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2U

†
D

]
+O(ε2)

)
=ρG+D

out (t)

+ iε tr{1,2,3}

( [
KD, UDUG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2U

†
D

] )
+O(ε2).

The update of the generator, assuming a fixed discriminator, is

ρG+D
out2 (t+ ε) = tr{1,2,3}

(
UDe

iεKG2UG2e
iεKG1UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)

U †G1e
−iεKG1U †G2e

−iεKG2U †D

)
= tr{1,2,3}

(
UD

(
UG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2

+ iε UG2

[
KG1, UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1

]
U †G2

+ iε
[
KG2, UG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2

] )
U †D +O(ε2)

)
=ρG+D

out2 (t)

+ iε tr{1,2,3}

(
UD

(
UG2

[
KG1, UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1

]
U †G2

+
[
KG2, UG2UG1(|ψin

x 〉 〈ψin
x | ⊗ |000〉 〈000|)U †G1U

†
G2

] )
U †D

)
+O(ε2).

To derive the update matrices in general, i.e. beyond this minimal example,
we assume in the following a generator consisting of unitaries U1

1 . . . U
g
mg and a

discriminator built of unitaries U g+1
1 . . . UL+1

mL+1
. The update matrices K l

j update
the generator if l ≤ g, where g is the generator’s number of perceptron layers.
Otherwise, the matrices describe discriminator updates. Note that in the sections
describing the numerical results, Section 7.5 and Section 7.6, we will always use
g = 1, i.e. a generator with just one perceptron layer connecting two layers of
qubits.

Proposition 7.1. The update matrix for a DQGAN trained with pure states |φT
x 〉

has to be of the form

K l
j(t) =

η2ml−1i

S

∑
x

trrest
(
M l

j(x, t)
)
,
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where

M l
j =
[
U l
j . . . U

1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)U

1†
1 . . . U l†

j ,

U l†
j+1 . . . U

L+1†
mL+1

(1in+hid ⊗ |1〉 〈1|)UL+1
mL+1

. . . U l
l+1

]
for l ≤ g and

M l
j =
[
U l
j . . . U

g+1
1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1 . . . U l†

j

− U l
j . . . U

g+1
1 U g

mg . . . U
1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)U

1†
1 . . . U g†

mgU
g+1†
1 . . . U l†

j ,

U l†
j+1 . . . U

L+1†
mL+1

(1in+hid ⊗ |1〉 〈1|)UL+1
mL+1

. . . U l
l+1

]
else. Here U l

j is assigned to the jth perceptron acting on layers l − 1and l, g is the
number of perceptron layers of the generator, and η is the learning rate.

Proof. To study the training of the discriminator, we need to compute the output
state after an update with KD. Note that in the following the unitaries act on the
current layers, e.g. U l

1 denotes actually U l
1 ⊗ 1l2,3,...,ml . First we fix the generator.

To derive the update for the discriminator, we compute the state when it is fed
with the training data, i.e.

ρDout(t+ ε) = trin(D)+hid

(
eiεK

L+1
mL+1UL+1

mL+1
. . . eiεK

g+1
1 U g+1

1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1 e−iεK

g+1
1 . . . UL+1†

mL+1
e−iεK

L+1
mL+1

)
=ρDout(t) + iε trin(D)+hid

([
KL+1
mL+1

, UL+1
mL+1

. . . U g+1
1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1 . . . UL+1†

mL+1

]
+ · · ·+ UL+1

mL+1
. . . U g+1

2

[
Kg+1

1 , U g+1
1 |φTx 〉 〈φTx |

⊗ |0...0〉 〈0...0| U g+1†
1

]
U g+1†
2 . . . UL+1†

mL+1

)
+O(ε2).

Analogously we formulate the state when the discriminator gets the generator’s
output as input as

ρG+D
out (t+ ε) = trin(G)+hid

(
eiεK

L+1
mL+1UL+1

mL+1
. . . eiεK

g+1
1 U g+1

1 U g
mg . . . U

1
1 (|ψin

x 〉 〈ψin
x |

⊗ |0...0〉 〈0...0|)U1†
1 . . . U g†

mgU
g+1†
1 e−iεK

g+1
1 . . . UL+1†

mL+1
e−iεK

L+1
mL+1

)
=ρDout(t) + iε trin(G)+hid

([
KL+1
mL+1

, UL+1
mL+1

. . . U1
1 (|ψin

x 〉 〈ψin
x |

⊗ |0...0〉 〈0...0|)U1†
1 . . . UL+1†

mL+1

]
+ . . .

+ UL+1
mL+1

. . . U g+1
2

[
Kg+1

1 , U g+1
1 U g

mg . . . U
1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)

U1†
1 . . . U g†

mg U
g+1†
1

]
U g+1†
2 . . . UL+1†

mL+1

)
+O(ε2).
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Further, the derivative of the discriminator loss function is of the form

dLD
dt

= lim
ε→0

LD(t) + iε 1
S

∑S
x=1 〈1| trin+hid(. . . ) |1〉 − LD(t)

ε

=
i

S

S∑
x=1

trin+hid

(
1in+hid ⊗ |1〉 〈1|

(([
KL+1
mL+1

, UL+1
mL+1

. . . U g+1
1 |φTx 〉 〈φTx |

⊗ |0...0〉 〈0...0|U g+1†
1 . . . UL+1†

mL+1

]
+ . . .

+ UL+1
mL+1

. . . U g+1
2

[
Kg+1

1 , U g+1
1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1

]
U g+1†
2 . . . UL+1†

mL+1

)
−
([
KL+1
mL+1

, UL+1
mL+1

. . . U1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)U

1†
1 . . . UL+1†

mL+1

]
+ . . .

+ UL+1
mL+1

. . . U g+1
2

[
Kg+1

1 , U g+1
1 U g

mg . . . U
1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)

U1†
1 . . . U g†

mg U
g+1†
1

]
U g+1†
2 . . . UL+1†

mL+1

)))
=
i

S

S∑
x=1

trin+hid

([
UL+1
mL+1

. . . U g+1
1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1 . . . UL+1†

mL+1

− UL+1
mL+1

. . . U1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)U

1†
1 . . . UL+1†

mL+1
,

1in+hid ⊗ |1〉 〈1|
]
KL+1
mL+1

+ · · ·+
[
U g+1
1

(
|φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0|

)
U g+1†
1

− U g+1
1 U g

mg . . . U
1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|)

U1†
1 . . . U g†

mgU
g+1†
1 , UL+1†

mL+1
. . . U g+1†

2 1in+hid ⊗ |1〉 〈1|U g+1
2 . . . UL+1

mL+1

]
Kg+1

1

)
=
i

S

S∑
x=1

trin+hid

(
ML+1

mL+1
KL+1
mL+1

+ · · ·+M g+1
1 Kg+1

1

)
.

Note that at this point |φTx 〉 〈φTx | ⊗ |0...0〉 〈0...0| denotes 1in(G)+hid(G)⊗ |φTx 〉 〈φTx | ⊗
|0...0〉 〈0...0|, to match the dimension of the other summand. To this point the
generator was fixed. As a next step we fix the discriminator. Using the state

ρG+D
out2 (s+ ε) = trin(G)+hid

(
UL+1
mL+1

. . . U g+1
1 eiεK

g
mgU g

mg . . . e
iεK1

1U1
1 (|ψin

x 〉 〈ψin
x |

⊗ |0...0〉 〈0...0|)U1†
1 e
−iεK1

1 . . . U g†
mge

−iεKg
mgU g+1†

1 . . . UL+1†
mL+1

)
=ρDout(t) + iε trin()+hid

(
UL+1
mL+1

. . . U g+1
1

[
Kg
mg , U

g
mg . . . U

1
1 (|ψin

x 〉 〈ψin
x |

⊗ |0...0〉 〈0...0|)U1†
1 . . . U g†

mg

]
U g+1†
1 . . . UL+1†

mL+1
+ . . .

+ UL+1
mL+1

. . . U1
2

[
K1

1 , U
1
1 (|ψin

x 〉 〈ψin
x | ⊗ |0...0〉 〈0...0|) U

1†
1

]
U1†
2 . . . UL+1†

mL+1

)
+O(ε2)
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the derivative of the loss function for training the generator can be written as

dLG
dt

= lim
ε→0

LG(t) + iε 1
S

∑
x 〈1| trin+hid(. . . ) |1〉 − LG(t)

ε

=
i

S

S∑
x=1

tr
(
1in+hid ⊗ |1〉 〈1|

((
U l+1
ml+1

. . . U g+1
1

[
Kg
mg , U

g
mg . . . U

1
1 (|ψin

x 〉 〈ψin
x |

⊗ |0...0〉 〈0...0|)U1†
1 . . . U g†

mg

]
U g+1†
1 . . . U l+1†

ml+1
+ . . .

+ U l+1
ml+1

. . . U1
2

[
K1

1 , U
1
1 (|ψin

x 〉 〈ψin
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1
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In both updates, we parametrise the parameter matrices analogously to the proof
of Proposition 4.1 as

K l
j(t) =

∑
α1,α2,...,αml−1

,β

K l
j,α1,...,αml−1

,β(t)
(
σα1 ⊗ . . . ⊗ σαml−1 ⊗ σβ

)
,

where the αi denote the qubits in the previous layer and β denotes the current
qubit in layer l. To reach the maximum of the loss function as a function of the
parameters fastest, we maximise dL

dt
. Since this is a linear function, the extrema

are at ±∞. To ensure that we get a finite solution, we introduce a Lagrange
multiplier λ ∈ R. Hence, to find K l

j we have to solve a following maximisation
problem for the discriminator update and for the generator update. Since both
are solved analogously we only formulate the maximisation for the discriminator
update here, namely

max
Kl
j,α1,...,β

(
dC(t)

dt
− λ

∑
αi,β

K l
j,α1,...,β

(t)2

)

= max
Kl
j,α1,...,β

(
i

S

S∑
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1 Kg+1

1

)
− λ

∑
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(t)2

)

= max
Kl
j,α1,...,β

( i
S

S∑
x=1

trα1,...,β

(
trrest

(
ML+1

mL+1
KL+1
mL+1

+ · · ·+M g+1
1 Kg+1

1

))
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− λ
∑
α1,...,β

K l
j,α1,...,β

(t)2
)
.

Taking the derivative with respect to K l
j,α1,...,β

leads to

i

S

S∑
x=1

trα1,...,β

(
trrest

(
M l

j(t)
) (
σα1 ⊗ . . . ⊗ σβ

))
− 2λK l

j,α1,...,β
(t) = 0,

hence,

K l
j,α1,...,β

(t) =
i

2Sλ

S∑
x=1

trα1,...,β

(
trrest

(
M l

j(t)
) (
σα1 ⊗ . . . ⊗ σβ

))
This produces the matrix

K l
j(t) =

∑
α1,...,β

K l
j,α1,...,β

(t)
(
σα1 ⊗ . . . ⊗ σβ

)
=

i

2Sλ
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)) (
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)
=
η2ml−1i

2S

S∑
x=1

trrest
(
M l

j(t)
)
,

where η = 1/λ is the learning rate and trrest traces out all qubits that the perceptron
unitary U l

j does not act on.

Notice again that K l
j updates the generator if j ≤ g for the generator’s number

of perceptron layers g. The definition of M l
j is
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j =
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1
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]
else.
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7. Quantum generative adversarial networks

7.5 Classical simulation

Just like in Chapter 4 and Chapter 6, where we discussed the initially proposed
DQNNs [79] and the extension to graph-structured quantum data [99], we use
classical simulation to study the above-described training methods for DQGANs.
In contrary to the corresponding sections in the chapters mentioned above, we

structure this section into two parts. The first part describes how the data set used
for training the DQGAN. Next, we use the classical simulation to demonstrate
how the generator’s and discriminator’s training losses and the validation loss
evolve during the training process. In the last part, we explain how to study the
generated states’ diversity. The used code can be found at [276].

Training set

As an exemplary data set we use a set of pure one-qubit states which build a line
on the Bloch sphere, namely

dataline =

{
(N − x) |0〉+ (x− 1) |1〉
||(N − x) |0〉+ (x− 1) |1〉 ||

}N
x=1

, (7.2)

see also Figure 7.5a. To use dataline for the training it is shuffled. The first S of
the resulting set, denoted as {|φTx 〉}Sx=1, will be used for the training process and
can be accessed by the generative model. The full data set {|φTx 〉}Nx=1 with N > S
is used for computing the validation loss. In the following we choose N = 50 and
S = 10.

Evaluation of the loss functions

In Figure 7.4a, both training losses and the validation loss during training of a
1-1-1 DQGAN are plotted. For all in the following presented examples we choose
rD = rG = 1, ε = 0.01 and η = 1 and a network architecture of 1-1-1. Note that in
Figure C.1 in the appendix, the training of a 1-3-1 DQGAN is documented as well.
Compared to the prior loss function plots in this work, the evaluation of the

losses is much more eventful. The validation loss reaches values over 0.95 after
rT = 475 training epochs. In the first training epochs, the training loss of the
generator shrinks and the discriminator training loss increases. This behaviour is
inverted after rT = 100. Following the remaining training, we find that this process
is repeated. The generator’s and discriminator’s opposing goals, formulated in the
training loss functions, explain this behaviour.
Furthermore, we can observe the saturation of the validation loss at nearly 1.

This means that every output of the generator is close to one state of dataline.
Note that here we define the closeness through the fidelity of two quantum states:
the larger the fidelity is, the closer the states are. However, from this plot, it is
not clear if the generator produces the same state time after time or, in the other
extreme, reproduces all states of the set dataline. In both cases, the validation
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(c) Diversity of the generator’s output after rT = 500 training epochs.
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(d) Diversity of the generator’s output after rT = 800 training epochs.

Figure 7.4.: Training a DQGAN. (a) depicts the evolution of the loss functions
during the training of a DQGAN in rT = 1000 epochs with η = 1
and ε = 0.01 using 50 data pairs where 10 are used as training pairs.
The dashed lines mark the diversity checks after 300 (b), 500 (c) and
800 (d) training epochs rT for the generator’s output.
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7. Quantum generative adversarial networks

loss would be maximal. Hence, we have to study the diversity of the generator’s
output in the following.

Diversity of the generator’s output

Since our aim is to train the generator for producing extended data sets, we want
its output to be diverse. We build a set of 100 by the generator produced states
to test the diversity. For each of these, we find the element with the index x in
dataline, which is the closest concerning the fidelity of two states.
Following this procedure, we count how many times every element in dataline

was (approximately) reproduced by the generator. In Figure 7.4b to 7.4d these
numbers are depicted in the form of histograms. According to the definition of
dataline in Equation (7.2), x = 1 corresponds to the state |0〉 and x = 50 to |1〉,
respectively. The number in the histogram related to, for example, x = 1 shows
how often the output of the generator was approximately |0〉. The different colours
describe whether an element of dataline was used as a training state or not. We
can see that the DQGAN can generalise, and not only the training states get
reproduced. Specifically, we show this diversity checks after 300, 500, and 800
training epochs. Comparing Figure 7.4b to 7.4d with the plots of the loss functions
in Figure 7.4a (see the dashed lines), let us resume that the training of the DQGAN
has to be stopped, in this case, after about 300 training epochs to have a good
balance between a large diversity and a significant validation loss.
Figure 7.5, where the output of the generator is plotted for different training

epochs in Bloch spheres, confirms this statement. At every of these training steps
we build a set of 100 states produced by the generator and plot these states in a
Bloch sphere. For the discussion of other training data sets we point to Figure C.2
in the appendix.
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Figure 7.5.: Output of the generator. To compare the output of the generator
(b-i), during the training of a DQGAN, to the data set dataline

(a) we plot the states in Bloch spheres.
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7. Quantum generative adversarial networks

7.6 NISQ device implementation

The last section described results of the classical simulation of the DQGAN. In the
following we want to discuss DQGANNISQ , i.e. the implementation of the DQGAN
algorithm for a NISQ device. In Section 4.6 we described DQNNNISQ in full detail.

Two main things are different in the implementation of DQGANNISQ compared to
the DQGANNISQ . Firstly, we have two instead of one training functions. Depending
on the phase of the algorithm, see Algorithm 3, we update the parameters ωGs
of the generator or the discriminator’s parameters ωDs using the gradient of the
training loss LG or LD, respectively. Whereas one measurement per input is needed
for computing LG, two are needed for executing LD for one input.

Secondly, we have to implement the quantum circuit, in order that the discrimi-
nator can be used in two ways, i.e.

ρout =

{
ED(EG(|ψin〉 〈ψin|)) for generated data
ED(|φT 〉 〈φT |) for training data.

Moreover, we could observe that a small change compared to the
DQNNNISQ implementation presented in Section 4.6 is helpful for the training
the DQGANNISQ . We describe the modification, which increases the computa-
tional power of the DQGANNISQ without using additional qubits, in the appendix in
Figure C.3. In the following we denote this modification with a + when describing
the DQNN architecture, for example in 2-3-2+. Further we use different learning
rates for the generator and discriminator, denoted by ηD and ηG, respectively.

For training a DQGANNISQ we use the same loss functions LG and LD as well
as the same training data, dataline. We choose S = 10 equally spaced training
states of the set for the training. Further, we select that for each of the rT epochs,
the discriminator is trained rD = 4 times with a learning rate ηD = 0.5 and the
discriminator rG = 1 times with a learning rate ηG = 0.1. The results of the
training are depicted in Figure 7.6.

After rT = 100 epochs, see Figure 7.6a, we see that the generator produces states
in a little more than half of the training data range. The generator’s diversity is
improved to two-thirds of the training data range after rT = 440 training epochs
which is depicted in Figure 7.6b. Although not all states of the aimed data sets
get produced by the generator, a majority of the produced states is closer to a
validation state than a training state. We see this as a training success, since the
generator does not only learn to reproduce the training states but instead learns to
extend the given training data. For more numerical results using DQGANNISQ we
point to Chapter C and [354].
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(a) Diversity of the generator’s output after rT = 100 training epochs.
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(b) Diversity of the generator’s output after rT = 440 training epochs.

Figure 7.6.: Training a DQGANNISQ . The training set features S = 10 equally
spaced quantum states from dataline. The remaining states from
dataline are used as validation states. The DQGANNISQ features a 1-1+
generator and a 1-1+ discriminator, and employs the hyper-parameters
rD = 4, ηD = 0.5, rG = 1 and ηG = 0.1.

The numerical experiments with DQGANs and DQGANsNISQ have shown that
DQNNs can be trained in a generative adversarial context. Moreover, we could
observe that, in contrast to the DQNN and graph-DQNN, the choice of the number
of training rounds is crucial: a DQGAN trained in to many training epochs leads
to low diversity in the generator’s output states. This result builds almost the end
of this thesis: in the ensuing chapter, we want to conclude the results of this work
and give an outlook.
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8

Conclusion and outlook

In this thesis, we investigated quantum neural networks (QNNs). These architec-
tures combine two of the most exciting research areas of the 21st century: machine
learning and quantum computation. We summarise our results and name ideas for
future research questions in the following.

We entered the topic of QNNs in two steps. Firstly, we introduced the reader
to their classical counterparts. There, we began with explaining the functionality
of the building blocks of neural networks (NNs) and their activation functions.
It followed an overview of some popular network architectures and methods.
Our focus was on supervised feed-forward NNs. Next, the general approach of
optimising NNs was clarified. With a view to the following chapters, we focused
on the gradient descent and back-propagation methods.

Secondly, we gave an overview of the field of quantum information. We intro-
duced qubits, the quantum analogous to the classical binary bits, and explained
their characteristics, including the phenomenons of superposition, mixed states
and entanglement. To prepare for the definitions of quantum loss functions, we
explained how to compare two quantum states. Moreover, we introduced quantum
circuits, which are used to exploit quantum mechanics for quantum computing,
and gave an intuition on how the characteristics of quantum mechanics can be
used to outperform classical algorithms. Since quantum computation became
experimentally possible in the last years, we described the state of the art of
these devices. Moreover, we introduced the topic of QNNs with the focus on the
implementation, challenges and opportunities.
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8. Conclusion and outlook

Dissipative quantum neural networks

We presented dissipative quantum neural networks (DQNNs) [79, 99, 101, 102],
which are designed for fully quantum learning tasks, and are capable of universal
quantum computation. These types of QNNs are built of layers of qubits, which
are connected via perceptrons. Such a perceptron is engineered as an arbitrary
unitary operation and acts on qubits of two consecutive qubit layers.

We described the propagation of an input state ρin through the network using a
completely positive map E . This map is defined as a composition of layer-to-layer
transition maps, i.e. ρout = E

(
ρin
)
. Such a transition map not only contains

tensoring the current layer’s state to the state of the next layer qubits and applying
the perceptron unitaries operations, but also tracing out the qubits from the first
of the two layers. For this reason, these QNNs are called dissipative.

Further, we presented training and validation loss functions, which are based on
the fidelity of two states and compare the output state of the network with the
desired state. Moreover, we discussed how the perceptron unitaries get updated
in every training epoche based on the knowledge gained from the computation of
the training loss. We formulated the update of the unitary U l

j , assigned to the jth
perceptron acting on layers l− 1 and l, as U l

j → eiεK
l
jU l

j . Next, we made clear that
for such an update, only two states are needed: the output state of the previous
layer, ρl−1, obtained by feed-forward propagation through the network, and the
state of the following layer σl, obtained by back-propagation of the desired output
up to the current layer. This allows us to train deep DQNNs since the memory
requirements scale only with the width, not the length of the QNN.

After explaining why DQNNs are capable of universal quantum computing, we
presented examples of classical simulations. We could observe that using S training
data pairs of the form {|φin〉 , Y |φin〉}, these QNNs can learn the unknown unitary
Y in a feasible number of training epochs, which could be demonstrated by using
validation data pairs of the same form. Varying the number S has shown that
for only a small number of training pairs, nearly perfect training results can be
reached, i.e. the fidelity between the desired state and the network’s output is
nearly one. Further, we could observe that the training algorithm is robust to noise
in the training data. Next, we presented an implementation of the DQNN training
algorithm on a NISQ device, called DQNNNISQ [101], and tested it with the same
learning task. Despite the high noise levels, we observed that the DQNNNISQ could
generalise the information provided through the training data pairs.

Using the task of learning an unknown unitary, we compared the training success
of DQNNsNISQ with an implementation of the quantum approximate optimisation
algorithm (QAOA) [103–105]. Whereas in the DQNNNISQ context, a perceptron
acts on layers of different qubits, in the QAOA setting, a perceptron is defined
as a sequence of operations, and all perceptrons act on the identical qubits. We
could observe that both QNN architectures succeed in the learning task. However,
the results indicate that the DQNNNISQ is more suitable for learning an unknown
unitary operation compared to the QAOA.
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As described in Section 3.5, many different models for a quantum perceptron
and QNNs were proposed in the last years. An open research task is to perform
a more exhaustive comparison, including more versions of QNNs and find out
which QNN architectures best suits the training tasks. Further, in the following
years, it will be essential to optimise the implementations of QNNs in general and
the implementation of DQNNsNISQ in particular for quantum devices of coming
generations.

No free lunch theorem

To understand the ultimate limits for QNNs, we presented the quantum no free
lunch (QNFL) theorem [100]. This result describes a bound on the probability that
a quantum device, which can be modelled as a unitary process and is optimised
with quantum data pairs, gives an incorrect output for a random input. The
theorem enabled us to review the learning behaviour of QNNs.

For describing the proof of the QNFL theorem, we motivated a quantum risk by
comparing the unknown unitary and the device approximated unitary using an
average over all pure states. We compared the resulting bound with the classical
no free lunch theorem for invertible functions. Further, we found that the results
gained with the DQNN algorithm are close to achieving the QNFL bound. However,
a slight discrepancy was expected since the process of evaluating the quantum risk
includes empirical averages.

The here presented work on the QNFL theorem was already generalised by [298]
to the case where these quantum states can be entangled to a reference system.
Beyond that, the understanding of ultimate limits for quantum learning devices
in different variations is key for further progress in the field of quantum machine
learning.

Quantum machine learning with graph-structured data

The above mentioned QNN architectures were trained with quantum data pairs.
Moreover, we studied two extensions of this ansatz. The first one includes a
possible underlying graph structure of the training data [101]. The structure of
quantum devices leads to structured quantum data. Hence, we assumed to have
knowledge about the underlying graph and found a training loss function including
such a structure in the training process of the DQNNs and the DQNNsNISQ .

In the first two examples, we chose the desired output states to have a structure
of a line graph and a graph describing a connected cluster. The input states were
chosen to be random. In both examples, we could observe that including the graph
structure in the training process leads to better generalisation results than a simple
supervised ansatz.
Moreover, to also make the input states assigned to the graph structure, we

used a synthetic classical graph, where each vertex was assigned to a label and
an embedding vector. The graph was constructed via a classical deep walk. We
used the embedding of a vertex to construct an input state and the labels for
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constructing desired output states. Thus, both parts of a training data pair relied
on the graph. Using a so constructed data set, we noticed that the training process
leads to better results when including the knowledge on the graph structure,
especially if only a few of the desired output states were supervised.
The in this work studied graphs were synthetically constructed. An exciting

research direction would be to test the in [101] proposed graph-based loss function,
using output data generated from actual quantum devices of which the build-in
structure is known.

Quantum generative adversarial networks

In the second extension, we discussed a different training goal. Whereas the
original DQNN and the DQNN making use of graph structure were trained with
data pairs in order to learn an underlying relation, we aimed for characterising
a set of quantum states in order to extend it to quantum states having similar
properties with the discriminative quantum adversarial network (DQGAN).
After describing the original classical generative adversarial networks (GANs),

we explained how to build the DQGANs. Such an architecture is built of two
DQNNs, where one of them plays a generative and one a discriminative role. The
discriminator gets either the generator’s output or a training data state as an input
and is trained to distinguish well between these categories. The generator’s goal is
to trick the discriminator. These training goals can be realised in two different
training losses, which are optimised successively in one training epoch.

Using the DQGAN, it is possible to extent a given data set to states with similar
characteristics. We described a way to study the diversity of such a generated data
set. In this regard, we found that, different to the training DQNN and DQNN with
graph structure, more training epochs do not give better results. When training
DQGANs, we could observe that a more extended training can lead to a maximum
validation loss. However, after some training epochs, our examples showed that
the generator only produces a small set of different states. We could assert that a
carefully chosen number of training rounds can lead to both, a good validation
loss and the generator’s output diversity.

In this thesis, we only discussed a limited amount of examples for training data
used to train DQGANs. The study of other data sets is of interest. One example
could be a set of states with similar degrees of entanglement (concerning a chosen
entanglement measure) [355]. Moreover, the application of the data sets produced
by the generator is to study. In classical machine learning, the output of GANs is
used, for example, for the training of other NN architectures, when training data
is rare. Whether such an ansatz can be executed successfully using DQGANs, is
left open as a future research topic. Further, GANs are not the only adaption
of simple feed-forward NNs. It is also of interest to study the applications and
behaviour of DQNNs in a recurrent or convolutional neural network settings. We
leave these topics open for future work.
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Conclusion

This work introduced DQNNs, which are designed for fully quantum learning tasks,
are capable of universal quantum computation and have low memory requirements
while training. We showed via the QNFL theorem that these QNNs can be nearly
optimally trained when learning an unknown unitary operation. Moreover, we
demonstrated that DQNNs can make use of the graph structure of quantum data
and can also be trained in a generative adversarial setting in order to extend
quantum data sets.

Since we are still at the beginning of the age of quantum computers, this work
leads to many interesting further research questions. We believe that QNNs will
be essential for analysing and processing huge amounts of quantum data produced
by the quantum devices of future generations. Today, we can already look back
on many successes in the field of quantum computation in the last few years.
Therefore we presume that quantum computing, including more qubits and less
noise, compared to nowadays’ NISQ devices, will be experimentally possible in the
following decades. Quantum computers will not solve all of our world’s problems.
However, if applied wisely, we believe that they can lead to more exciting and
fruitful applications in the coming time.
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Dissipative quantum neural networks

In Section 4.5 the classical simulation of a dissipative quantum neural network
(DQNN) was explained. The numerical simulation, including a generalisation
analysis and noise robustness testing, was done with 2-3-2 DQNNs. In the follow-
ing, we want to embrace the opportunity of an appendix and show some more
examples. We study the following DQNN architectures: 1-1-1 in Figure A.1, 1-2-1
in Figure A.2, 2-3-2 in Figure A.3, 3-4-3 in Figure A.4, and 2-3-4-3-2 in Figure A.5.
Note that the results in Figure A.3 were already discussed in Section 4.5. We
replotted them here here again for better comparison. All results are obtained
with the code available at [276]. The training data pairs of all examples are of the
form {|φin

x 〉 , |φSV
x 〉} with |φSV

x 〉 = Y |φin
x 〉, where Y is a unitary. In the plots values

of the the training loss

LSV =
1

S

S∑
x=1

F (|φSV
x 〉 〈φSV

x | , ρout
x ) =

1

S

S∑
x=1

〈φSV
x |ρout

x |φSV
x 〉 ,

and the validation loss

LUSV =
1

N − S

N∑
x=S+1

〈φUSV
x |ρout

x |φUSV
x 〉,

with |φUSV
x 〉 = Y |φin

x 〉 are depicted.

Training

At first we comment on the evaluation of the loss function during a single training
session. In all examples the validation and the training loss reach values near 1.
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However, we can notice differences in the process: For training a 1-1-1 DQNN
with S = 20 training pairs and N − S = 80 validation pairs the validation loss
LUSV reaches a value 0.95 at rT = 382. For the other architectures the same value
is reached at rT = 164 (1-2-1), rT = 420 (2-3-2), and rT = 552 (3-4-3). We can see
as well that the distance between the validation and training loss is bigger.
But, especially in the first 500 rounds of training the 2-3-4-3-2, the validation

loss is increasing rather slowly and a validation loss value of 0.95 is not reached
until rT = 795. Despite that, a fidelity of nearly 1 is reached at the end of the
training. Note though that these values are not averaged over many training
attempts and therefore are probably not very comparable, since every training
process is unique due to the randomly assigned unitary initialisation and the
generation of the training data pairs.

Generalisation

A better comparison can be made for the different generalisation analysis plots.
Here, every data point depicts an average over 10 independent training attempts.
For training a 1-1-1 DQNN in 1000 training epochs, the validation loss LUSV

reaches a value higher than 0.8 with only S = 2 supervised training pairs. For
the other architectures, the same value is reached at S = 2 (1-2-1), S = 5 (2-3-2),
S = 9 (3-4-3), and S = 6 (2-3-4-3-2). As expected via the quantum no free lunch
theorem, explained in Chapter 5, the generalisation of states of bigger dimensions
general needs more training data pairs. Further, we want to point out that the
values S = 5 (2-3-2) and S = 6 (2-3-4-3-2) lead to the assumption that additional
layers do not improve the generalisation behaviour.

Noise robustness

Analogously to the generalisation analysis, every data point in in the noise robust-
ness plots is generated via an average over 10 independent training attempts.
Comparing the training of the 1-1-1 and the 1-2-1 DQNN, we can see that the

additional qubit does not improve the resistance against noise. Further, we notice
that the noise robustness shrinks with the number of qubits in the input layer.
For δ = 0.3, the 1-1-1 DQNN reaches a validation loss of 0.79 and the 1-2-1 a
validation loss of 0.83. Using the same δ, we reach validation loss values of 0.73
(2-3-2), 0.50 (2-3-4-3-2), and 0.62 (3-4-3) for the other DQNN architectures.
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Figure A.1.: 1-1-1 DQNN. The plots describe the training (a) and generalisation
behaviour (b) as well as the noise robustness (c) of training the DQNN
in k = 1000 training epochs with η = 1, ε = 0.01 and N = 100 data
pairs (based on a unitary Y ∈ U(2)).
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Figure A.2.: 1-2-1 DQNN. The plots describe the training (a) and generalisation
behaviour (b) as well as the noise robustness (c) of training the DQNN
in k = 1000 training epochs with η = 1, ε = 0.01 and N = 100 data
pairs (based on a unitary Y ∈ U(4)).
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Figure A.3.: 2-3-2 DQNN. The plots describe the training (a) and generalisation
behaviour (b) as well as the noise robustness (c) of training the DQNN
in k = 1000 training epochs with η = 1, ε = 0.01 and N = 100 data
pairs (based on a unitary Y ∈ U(4)).
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Figure A.4.: 3-4-3 DQNN. The plots describe the training (a) and generalisation
behaviour (b) as well as the noise robustness (c) of training the DQNN
in k = 1000 training epochs with η = 1, ε = 0.01 and N = 100 data
pairs (based on a unitary Y ∈ U(9)).
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Figure A.5.: 2-3-4-3-2 DQNN. The plots describe the training (a) and generali-
sation behaviour (b) as well as the noise robustness (c) of training
the DQNN in k = 1000 training epochs with η = 1, ε = 0.01 and
N = 100 data pairs (based on a unitary Y ∈ U(4)).
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Training with graph-structured quantum data

In Section 6.6, we described how to build a set of quantum data pairs with an
underlying graph-structure using a classical walk. In the following, we plot the
evolution of the validation loss after training a DQNN with

LSV+G = LSV + γLG,

where

LSV ≡
1

S

S∑
x=1

〈φSV
x | E

(
ρin
x

)
|φSV
x 〉 ,

and
LG ≡

∑
w,x∈V

[A]wxdHS(E(ρw), E(ρx)).

All results are generated with the code available at [276]. In Figure B.2,

LUSV =
1

N − S

N∑
x=S+1

〈φUSV
x |E

(
ρin
x

)
|φUSV
x 〉

is plotted for a training with γ = 0 and γ = −0.5 using the graph-structured
data built based on a classical deep walk. Since we discussed the generalisation
behaviour of this training example only for 1 ≤ S ≤ 10 in Section 6.6, Figure B.2
plots the values of the loss functions after rT = 1000 training rounds for 1 ≤ S ≤ 32.
The figure shows that for cases with less than 15 of 32 supervised vertices, the
validation loss is lower when ignoring the problem’s graph structure. After that
threshold both learning strategies are about equally good.
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Figure B.1.: Deep walk training. The figure describes the training of a
DQNN (rT = 2000 epochs, ε = 0.01) trained with and with-

out using the graph structure of a graph with 32 vertices produced
by a classical deep walk. S = 10 supervised data pairs are used.
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Figure B.2.: Deep walk generalisation behaviour. The plot describes the
generalisation behaviour of a DQNN (rT = 1000 epochs, ε = 0.01)
trained with and without using the graph structure of a graph with
32 vertices produced by a classical deep walk. Each data point
demonstrates an averaged over 10 independent training attempts.

144



C

Quantum generative adversial networks

In Section 7.5 we discussed the classical simulation of the DQGAN algorithm. In
the following we extend the numerical examples of this section. All results are
generated with the code available at [276].
First, in Figure C.1 we compare the behaviour of the loss functions,

LD(ED, EG) =
1

S

S∑
x=1

〈0| ED(EG(|ψin
x 〉 〈ψin

x |)) |0〉+
1

S

S∑
x=1

〈1| ED(|φTx 〉 〈φTx |) |1〉 ,

LG(ED, EG) =
1

S

S∑
x=1

〈1| ED(EG(|ψin
x 〉 〈ψin

x |)) |1〉 ,

LV (ED, EG) =
1

V

V∑
i=v

N
max
x=1

(
〈φTx | EG(|ψin

i 〉 〈ψin
i |) |φTx 〉

)
,

for two different DQGAN architectures: 1-1-1 and 1-3-1. For the training we use
S = 10 states of the data sets

dataline =

{
(N − x) |0〉+ (x− 1) |1〉
||(N − x) |0〉+ (x− 1) |1〉 ||

}N
x=1

,

dataline’ =

{
(N − x) |000〉+ (x− 1) |001〉
||(N − x) |000〉+ (x− 1) |001〉 ||

}N
x=1

,

for N = 50, respectively. In both plots the opposed behaviour of LG and LD can
be observed. Further, we notice that the validation loss does not reach values as
high as in the case of the 1-1-1 network.
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(a) Training a DQGAN.
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(b) Training a DQGAN.

Figure C.1.: Training a DQGAN. The evolution of the training losses and
validation loss during the training of a (a) and a (b)
DQGAN in rT = 1000 epochs with η = 1 and ε = 0.01 using 50
data pairs of the data sets dataline or dataline’ whereof 10 are used for
training.146
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(d) Two clusters trained with DQNNQ.

Figure C.2.: Diversity analysis of a DQGAN. This plot describes the output’s
diversity of a DQGAN (DQGANQ) trained in 200 epochs with
η = 1 (ηD = 0.5, ηG = 0.1) and ε = 0.01 (ε = 0.25) using 10 quantum
states of the data sets dataline (a), datacl (b,d) and datacl+ (c). The
states from dataline are used as validation states.

So far, we have only described single runs of the DQGAN algorithm. In the
following, we average in ten independent training attempts the data points of the
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bar diagrams introduced in Section 7.5.
Figure C.2a depicts such an averaged bar diagram resulting after 200 training

epochs of training a DQGAN with ten randomly chosen training states of the
data set dataline. We can see that all elements of dataline get produced relatively
equally.
Further, we extend our study with a second data set,

datacl =

{
(2N − 1) |0〉+ (x− 1) |1〉
||(2N − 1) |0〉+ (x− 1) |1〉 ||

}N
2

x=1

∪
{

(2N − 1) |0〉+ (x− 1) |1〉
||(2N − 1) |0〉+ (x− 1) |1〉 ||

}2N

x=
3N
2

.

If we train a DQGAN and compare the generator’s output with the datacl data
set, we expect that mainly some of the first and last states get produced. To
study this, we train the DQGAN with S = 10 randomly chosen training states
of this set. Figure C.2b depicts the distribution of the generator’s output after
200 training epochs. As expected, the generator does not produce all elements in
dataline equally often. Due to the average of ten independent training attempts, the
states |0〉 and |1〉 are very prominent in this plot. Since the state |0〉 is produced
more often, we assume that the training states randomly chosen in every training
attempt the S = 10 training data states were more often chosen of the first part
of the cluster.
Further, by removing an arbitrary state of the data set datacl and replacing it

by 1√
2
(|0〉 + |1〉) we obtain the connected cluster data set datacl+. Figure C.2c

shows the diversity of a generator resulting by training a DQGAN with this data
set. We can see that some states in the middle are generated more often compared
to the plot in Figure C.2b. However, the state 1√

2
(|0〉+ |1〉) is not produced very

often (x = 25) and the resulting peak in the histogram is rather shifted more in
the direction of the |1〉 state (x = 50).

In Figure C.2d the generator’s diversity is depicted after a single training run of
DQGANNISQ using the data set datacl in rT = 200 training epochs and compared
the output to the data set dataline. We can see that the generator is able to
extend the clustered training data. However, similar to the training results of a
DQNN shown in Figure C.2b, the DQGANNISQ does not achieve to produce the full
range of training data. Note that we here use a slightly different implementation,
compared to the one presented in Figure 4.11. The differences are marked with
orange dashed lines in Figure C.3.
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Figure C.3.: Implementation of a DQNN+
NISQ . A DQNN+

NISQ of the ar-
chitecture 2-3-2+ (a) can be implemented as quantum circuit using
u-gates and unitary operations representing the layers of the network
(b). Different to the DQNNNISQ , U l is decomposed into two unitaries,
U1
a and U1

b , and u-gates. The difference of a DQNN+
NISQ compared

to a DQGANNISQ is marked in orange dashed lines (c). U1
a and U1

b

are expressed via two-qubit unitaries (d).
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