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Datum der Veröffentlichung: Februar 1998



Zusammenfassung

Die vorliegende Arbeit ist in drei Kapitel unterteilt. Das erste Kapitel gibt hauptsächlich einen

kurzen Überblick über die Konstruktion und Eigenschaften von Gromov-Witten-Invarianten

und den sogenannten gravitational descendants, die eine Erweiterung der Gromov-Witten-

Invarianten darstellen. Wir beschränken uns dabei auf den Fall des Grundkörpers C und auf

Kurven vom Geschlecht null.

In Kapitel 2 betrachten wir Gromov-Witten-Invarianten von Aufblasungen von Punkten. Auf-

blasungen sind in gewissem Sinne die einfachsten Fälle von Varietäten, deren Modulräume

stabiler Abbildungen zu hohe Dimension haben. Wir untersuchen sowohl die Berechenbarkeit

als auch die enumerative Bedeutung der Invarianten. Hierbei ist die enumerative Bedeutung

besonders interessant, weil Kurven auf der Aufblasung X̃ von X (als strikte Transformierte)

mit solchen auf dem ursprünglichen Raum X zusammenhängen, so daß die Gromov-Witten-

Invarianten von X̃ unter Umständen auch auf X interpretiert werden können als Anzahlen von

Kurven, die globale Multiplizitätenbedingungen in den aufgeblasenen Punkten erfüllen. Be-

nutzt man exzeptionelle Klassen als Inzidenzbedingungen für die Kurven, so können auch

Tangentialbedingungen an Untervarietäten in den aufgeblasenen Punkten behandelt werden.

Was die Berechenbarkeit betrifft, so zeigen wir, daß es zumindest für konvexe Varietäten im-

mer möglich ist, die Gromov-Witten-Invarianten der Aufblasung aus denen der ursprünglichen

Varietät zu bestimmen. Hierzu geben wir einen expliziten Algorithmus an, mit dem die Zahlen

berechnet werden können. Zur enumerativen Bedeutung zeigen wir, daß die Invarianten die er-

wartete Deutung haben für Aufblasungen von Pr in einem Punkt sowie unter gewissen Bedin-

gungen für Aufblasungen von P3 in bis zu vier Punkten. Andererseits werden wir aber sehen,

daß Gromov-Witten-Invarianten von Aufblasungen von Pr mit r ≥ 4 in mindestens zwei Punk-

ten fast nie enumerativ sind. Der Fall von Aufblasungen von P2 wurde bereits von Göttsche

und Pandharipande [GP] behandelt, die die Invarianten in diesen Fällen berechnen und bei

fast allen ihre enumerative Bedeutung zeigen. Wir geben schließlich noch einige numerische

Anwendungen der Gromov-Witten-Invarianten von Aufblasungen an, unter anderem auch als

Ausblick im Fall gewisser Aufblasungen entlang von Untervarietäten, wodurch wir wohlbe-

kannte Multisekanten-Formeln erhalten.

In Kapitel 3 betrachten wir Degenerations-Invarianten. Das Hauptresultat ist hier die Er-

weiterung des Ergebnisses von Vakil [V] auf Degenerationen zu beliebigen Hyperflächen Q ⊂
Pr und nicht nur zu Hyperebenen. Im Gegensatz zu [V] müssen hierzu virtuelle Funda-

mentalklassen auf den betrachteten Modulräumen definiert und benutzt werden, da Q im all-

gemeinen nicht konvex ist. Wir zeigen, daß die Gleichungen, die man erhält, die Gromov-

Witten-Invarianten von Pr mit denen von Q durch eine Reihe von Degenerations-Invarianten

verbindet. Dies beantwortet teilweise die Frage nach dem Zusammenhang zwischen Gromov-

Witten- und Degenerations-Invarianten. Als interessantes nicht-triviales Beispiel betrachten

wir den Fall einer Quintik Q ⊂ P4 und zeigen, wie man die Anzahl rationaler Kurven vom Grad

1 und 2 auf Q aus gewissen Gromov-Witten-Invarianten und gravitational descendants von P4

berechnen kann. Wir vermuten, daß ähnliche Methoden auch für Kurven höheren Grades und

womöglich auch höheren Geschlechts anwendbar sind, da die Arbeit von Vakil gezeigt hat,

daß Degenerations-Invarianten im Gegensatz zu Gromov-Witten-Invarianten vergleichsweise

gut dazu geeignet sind, Anzahlen von Kurven von höherem Geschlecht zu berechnen.

Schlagworte: enumerative Geometrie, Gromov-Witten-Invarianten, Degenerationsmethoden



Abstract

This thesis is divided into three chapters. The first one mainly gives a short overview of the

construction and properties of Gromov-Witten invariants and the so-called gravitational de-

scendants, which are an extension of the Gromov-Witten invariants. Everything will be done

over C and for curves of genus zero.

Chapter 2 deals with Gromov-Witten invariants of blow-ups of points. Blow-ups are in some

sense the simplest cases of varieties whose moduli spaces of stable maps have too big dimen-

sion. We address the questions both of computation and of enumerative significance of the

invariants. Here, the enumerative significance is particularly interesting since (via strict trans-

form) curves on the blow-up X̃ of X are related to curves on the original space X , such that the

Gromov-Witten invariants of X̃ should be interpretable on X as numbers of curves satisfying

global multiplicity conditions at the blown-up points. Using exceptional classes as incidence

conditions for the curves, even tangency conditions to subvarieties at the blown-up points are

tractable.

Concerning the computation, we show that at least for convex varieties, it is always possible

to compute the Gromov-Witten invariants of the blow-up from those of the original space.

This is done by giving an explicit algorithm to calculate the numbers. As for the enumerative

significance, we show that the invariants are enumerative on the blow-up of Pr at one point,

and under certain conditions on the blow-up of P3 at up to four points. On the negative side, we

will see that Gromov-Witten invariants on blow-ups of Pr with r ≥ 4 in at least two points are

almost never enumerative. The case of blow-ups of P2 has already been considered by Göttsche

and Pandharipande [GP] who compute the invariants and prove the enumerative significance of

almost all of them in this case. We also give various numerical applications of Gromov-Witten

invariants of blow-ups, including as an outlook the case of certain blow-ups along subvarieties,

leading to well-known multisecant formulas.

In chapter 3, we consider degeneration invariants. The main result is the extension of the re-

sults of Vakil [V] in that we allow degenerations to arbitrary hypersurfaces Q ⊂ Pr and not

only hyperplanes. In contrast to [V], this requires the use of certain virtual fundamental classes

on the moduli spaces, since Q is in general not convex. We will show that the equations we

get relate the Gromov-Witten invariants of Pr to those of Q through a sequence of degenera-

tion invariants, answering in part the question of the connection between Gromov-Witten- and

degeneration invariants. As an interesting non-trivial example we take Q ⊂ P4 to be a quintic

threefold and show how to calculate the numbers of rational curves on Q of degrees 1 and 2

from certain Gromov-Witten invariants and gravitational descendants on P4. Similar methods

are supposed to work for arbitrary degree, and perhaps also for higher genus, as the work of

Vakil has shown that degeneration invariants are quite suitable to compute numbers of curves

of higher genus, in contrast to Gromov-Witten theory.

Keywords: enumerative geometry, Gromov-Witten invariants, degeneration techniques



Contents

Preface 1

1 Gromov-Witten invariants and descendants 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Moduli spaces of stable maps . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Virtual fundamental classes . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Gromov-Witten invariants . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Gravitational descendants . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Curves with higher order contact . . . . . . . . . . . . . . . . . . . . 21

2 Gromov-Witten invariants of blow-ups 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Calculation of the invariants . . . . . . . . . . . . . . . . . . . . . . 31

2.3 A vanishing theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Enumerative significance — general remarks . . . . . . . . . . . . . 42

2.5 Enumerative significance — the case P̃r(1) . . . . . . . . . . . . . . 49

2.6 Enumerative significance — the case P̃3(4) . . . . . . . . . . . . . . 55

2.7 Tangency conditions via blow-ups . . . . . . . . . . . . . . . . . . . 65

2.8 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.9 Blow-ups of subvarieties . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Degeneration invariants 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Degeneration to a hyperplane in Pr . . . . . . . . . . . . . . . . . . . 79

3.3 Degeneration to a hypersurface in Pr . . . . . . . . . . . . . . . . . . 85

3.4 Degeneration invariants and descendants . . . . . . . . . . . . . . . . 95

3.5 Lines and conics on the quintic threefold . . . . . . . . . . . . . . . . 98

Bibliography 109





Preface

In the last few years, there has been enormous progress in enumerative geometry in-

spired by the work of physicists. The starting point was the famous paper by Candelas,

de la Ossa, Green, and Parkes [COGP] in which the authors calculated the numbers of

rational curves of degree d on a generic quintic threefold, for any d. In fact, these num-

bers are expected to be finite by a naive dimension count, although it is still unknown

whether this really holds for any degree. The methods used by Candelas et al., namely

a certain equivalence of string theories called “mirror symmetry”, are however not at

all mathematically rigorous, and probably neither from a physicists point of view, since

they involve some guesswork motivated merely by the fact that the resulting numbers

should be non-negative integers. Mathematicians were able to verify the numbers eas-

ily for degrees 1 and 2, but already the case of degree 3 is so complicated to attack with

classical methods that Ellingsrud and Strømme [ES] needed some 30 pages to verify

only this one number. Similar calculations for higher degree would be increasingly

complicated, if not impossible.

Inspired by these facts, the mathematical breakthrough in modern mathematical enu-

merative geometry has begun about four years ago with the work of Kontsevich and

Manin [K], [KM1]. The basic idea is the notion of stable maps, due to Kontsevich,

which provides the analogue of Deligne-Mumford stable curves. In the same way as

the latter give rise to a proper smooth moduli stack M̄g,n of n-pointed curves of genus

g, stable maps can be used to construct a moduli space M̄g,n(X ,β), where X is a smooth

projective variety and β ∈ A1(X) a homology class. An element of this space is given

by a tuple (C,x1, . . . ,xn, f ), where C is a curve of arithmetic genus g with at most nodes

as singularities, xi are distinct smooth marked points on C, f : C → X is an arbitrary

map, and where a certain stability condition is satisfied. The space M̄ := M̄g,n(X ,β)

should be viewed as a compactification of the space of those stable maps where the

underlying curve C is irreducible, although the latter space is in general not dense in

M̄. Due to some technical difficulties, the actual construction of M̄ has only been given

one year later by Behrend and Manin in [BM]. Up to that point, the expected properties

of these spaces had been given as axioms [KM1].

Nowadays, the moduli spaces M̄g,n(X ,β) are the basic objects of study in almost any

modern treatment of enumerative geometry. Usual enumerative questions are to count

curves of given genus and homology class in a given projective variety X that satisfy

certain additional conditions, such as e.g. intersecting given subvarieties of X , being

1



2 PREFACE

tangent or having higher contact to subvarieties, or having certain types of singularities

at some subvarieties. In general, one hopes to express such conditions as suitable

cycles on the moduli space M̄ and then wants to calculate the intersection product of

these cycles for all conditions that one wants to impose. If this intersection is zero-

dimensional, one then hopes to be actually able to compute the intersection, and that

the degree of this zero-cycle is in fact the answer to the original enumerative problem.

Both these hopes are however far from being fulfilled in general. As for the computa-

tion, the moduli spaces of stable maps are in general neither smooth nor even of con-

stant dimension, and their full cohomology groups are extremely complicated. Thus

it is almost hopeless to expect to be able to compute any intersection product on them

just by computing their full cohomology rings. In general, one cannot even compute

the dimensions of their cohomology groups. Hence, to be able to do calculations at all,

one has to restrict oneself to certain types of cycles in M̄. If one chooses these cycles

such that the intersection of two of them is computable and again of the same type, one

can at least do calculations in the corresponding subring of the cohomology of M̄.

There are several ways how to do this. By far the most effort is nowadays spent on

so-called Gromov-Witten theory, which is also a theory inspired by physics. In this

theory, first of all one defines a virtual dimension of the moduli space of stable maps

which is based on the deformation theory of the elements of this space. If X is not

a so-called convex variety, i.e. if there are obstructions to the deformations such that

the actual dimension of the moduli space is bigger than the virtual one, one uses the

structure of the obstructions to define a so-called virtual fundamental class on M̄. This

is a cycle in the homology of the moduli space in the virtual dimension. If we have

a convex variety, i.e. if there are no obstructions, then the virtual fundamental class

will be the usual one. The general theory of these virtual fundamental classes has been

introduced in algebraic geometry by the work of Behrend and Fantechi [BF], [B] about

two years ago. It is not restricted to the case we have at hand, but the inspiration to give

such a construction was certainly given by Gromov-Witten theory. There also exists

a symplectic construction of virtual fundamental classes, introduced by Li and Tian

[LT1], [LT2], which has recently shown to be the same as the algebro-geometric one

[LT3].

One then considers the evaluation maps evi : M̄ →X that map (C,x1, . . . ,xn, f ) to f (xi),

pulls back cohomology classes γi on X to the moduli space via the various evi, and

considers the intersection of these pullbacks. If the codimensions of these classes

sum up to the virtual dimension of M̄, one can evaluate the intersection on the virtual

fundamental class to get a number. The numbers obtained that way are the so-called

Gromov-Witten invariants. They are supposed to represent numbers of curves in X

satisfying incidence conditions with generic representatives of the classes γi.

The main point of the Gromov-Witten invariants is that, in genus zero, there is actually

a way to get relations between them which are often sufficient to compute all of them

by a recursive strategy. This is done by considering the morphism M̄0,n(X ,β)→ M̄0,4
∼=
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P1 for n ≥ 4, given by mapping (C,x1, . . . ,xn, f ) to (C,x1, . . . ,x4) and stabilizing. One

then looks at a point, i.e. divisor, in M̄0,4 corresponding to the curve with two rational

components and two of the marked points on each of them. Taking the pullback of this

divisor to M̄, one obtains a sum of divisors on M̄ whose points correspond to certain

reducible curves with two components that can be described explicitly. It turns out that,

when intersecting such a divisor with pullbacks via the evaluation maps and evaluating

the result on the virtual fundamental class, one indeed gets a product of two Gromov-

Witten invariants corresponding to the two components. Now, the linear equivalence

of two points in M̄0,4 as above that differ only by the labeling of the marked points,

pulls back to give equations among the Gromov-Witten invariants. In favourable cases,

e.g. on Pr, these equations suffice to compute all the invariants. In general, however,

this is not the case, e.g. it is impossible to calculate the numbers of rational curves on

the quintic threefold mentioned above using these methods.

Recently, there has emerged a different approach to get relations between certain cy-

cles in M̄: one again looks at pullbacks of cohomology classes on X via the evaluation

maps, but now moves the subvarieties representing these classes to very special po-

sitions, e.g. such that they are all contained in a fixed hyperplane. This again causes

the stable maps satisfying these incidence conditions to become reducible, making a

similar procedure work as above. The types of reducible curves arising here are more

complicated, however. These methods, usually called degeneration methods (since one

degenerates the incidence subvarieties in X to lie in special positions), have their ori-

gin in the work of Caporaso and Harris [CH3]. In this paper, the authors work on P2

and do not yet use the language of stable maps. The translation of these methods to

the spaces of stable maps has been done later by Vakil [V], where they have also been

generalized to degenerations to hyperplanes in higher-dimensional projective spaces.

The precise connection between the invariants obtained that way, which we call degen-

eration invariants, and the Gromov-Witten invariants, is still unclear in general.

As for the enumerative significance of Gromov-Witten- and degeneration invariants,

there are lots of things that may go wrong. Whereas on “nice” spaces such as Pr it is

clear that the invariants actually count the numbers of curves that they are supposed

to count, there is no hope to get such a statement on arbitrary varieties X . In the

Gromov-Witten case this arises mainly from the virtual fundamental classes, which

are in general not interpretable in geometric terms. So whenever the dimension of M̄

is too big, such that we have to use virtual fundamental classes and cannot use the

ordinary fundamental class of M̄, the enumerative significance of the invariants is not

at all clear. In the theory of degeneration invariants, no other spaces than Pr have been

considered so far, but of course one has to expect similar problems there.

This thesis is divided into three chapters. The first one mainly gives a short overview

of the construction and properties of Gromov-Witten invariants and the so-called grav-

itational descendants, which are an extension of the Gromov-Witten invariants. Every-

thing will be done over C and for curves of genus zero.
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Chapter 2 deals with Gromov-Witten invariants of blow-ups of points. Blow-ups are in

some sense the simplest cases of varieties whose moduli spaces of stable maps have too

big dimension. We address the questions both of computation and of enumerative sig-

nificance, where the enumerative significance is particularly interesting since, via strict

transform, curves on the blow-up X̃ of X are related to curves on the original space X ,

such that the Gromov-Witten invariants of X̃ should be interpretable on X as numbers

of curves satisfying global multiplicity conditions at the blown-up points. Using ex-

ceptional classes as incidence conditions for the curves, even tangency conditions to

subvarieties at the blown-up points are tractable.

Concerning the computation, we show that at least for convex varieties, it is always

possible to compute the Gromov-Witten invariants of the blow-up from those of the

original space. This is done by giving an explicit algorithm to calculate the numbers.

As for the enumerative significance, we show that the invariants are enumerative on the

blow-up of Pr at one point, and under certain conditions on the blow-up of P3 at up to

four points. On the negative side, we will see that Gromov-Witten invariants on blow-

ups of Pr with r ≥ 4 in at least two points are almost never enumerative. The case of

blow-ups of P2 has already been considered by Göttsche and Pandharipande [GP] who

compute the invariants and prove the enumerative significance of almost all of them

in this case. We also give various numerical applications of Gromov-Witten invariants

of blow-ups, including as an outlook the case of certain blow-ups along subvarieties,

leading to well-known multisecant formulas.

In chapter 3, we consider degeneration invariants. The main result is the extension

of the results of Vakil [V] in that we allow degenerations to arbitrary hypersurfaces

Q ⊂ Pr and not only hyperplanes. In contrast to [V], this requires the use of certain

virtual fundamental classes on subspaces of M̄, since Q is in general not convex. We

will show that the equations we get relate indeed the Gromov-Witten invariants of Pr

to those of Q through a sequence of degeneration invariants, answering in part the

question of the connection between Gromov-Witten- and degeneration invariants. As

an interesting non-trivial example we take Q ⊂ P4 to be a quintic threefold and show

how to calculate the numbers of rational curves on Q of degrees 1 and 2 from certain

Gromov-Witten invariants and gravitational descendants on P4. Similar methods are

supposed to work for arbitrary degree, and perhaps also for higher genus, as the work

of Vakil has shown that degeneration invariants are quite suitable to compute numbers

of curves of higher genus, in contrast to Gromov-Witten theory.

I would like to thank my advisor Prof. K. Hulek for invaluable support and many

helpful discussions. My work has been inspired by my visit of A. Beauville in Paris, the

conference on enumerative geometry in Rome 1997, the AMS Santa Cruz conference

1995, and in particular by my stay at the Mittag-Leffler institute last spring during

the year on “Enumerative geometry and its interactions with theoretical physics”. My

work has partly been financed by the project HCM ERBCHRXCT 940557 (AGE).



Chapter 1

Gromov-Witten invariants and

descendants

1.1 Introduction

We start our work by recalling the basic constructions of Gromov-Witten theory and

giving various applications to enumerative geometry. Apart from lemma 1.3.3, propo-

sition 1.3.5, and section 1.6, the material in this chapter is not new. Main references

are: [ML], [FP], [BM] for section 1.2, [BF], [B] for section 1.3, [ML], [FP], [BM],

[KM1], [B] for section 1.4, and [KM2], [G] for section 1.5. Intersection theory on

Deligne-Mumford stacks that will be used to construct the Gromov-Witten invariants

and descendants has been developed in [Vi].

Throughout our work, we will only consider enumerative problems concerning rational

curves. Therefore, whenever we talk of (pre-)stable curves or maps and their moduli

spaces in the sequel, it is always assumed tacitly that the curves are of arithmetic genus

zero.

Let us first fix some notation that will be used throughout the work. Let X be a complex

smooth projective variety of dimension r = dim X . For 0 ≤ i ≤ r, we denote by Ai(X)Ai(X)Ai(X)

the algebraic part of H2i(X) modulo torsion and by Ai(X)Ai(X)Ai(X) the algebraic part of H2i(X)

modulo torsion. These are finitely generated abelian groups. The classes in Ai(X) will

be said to have codimension i. By abuse of notation, we will often denote a subvariety

of X and its fundamental class in A∗(X) or A∗(X) (via Poincaré duality) by the same

symbol if no confusion can result. The intersection product of two elements γ, γ′ in

A∗(X) (or A∗(X) via Poincaré duality) will be denoted γ · γ′. The class of a point will

be denoted pt.

If X = Pr, the hyperplane class will be called H ∈ A1(X), and the class of a line will

be called H ′H ′H ′ ∈ A1(X).

This chapter is organized as follows. In section 1.2, we recall the construction of the

moduli spaces of stable maps and state some of their properties. The question whether

5



6 CHAPTER 1. GROMOV-WITTEN INVARIANTS AND DESCENDANTS

these moduli spaces are smooth stacks of the expected dimension and what to do if they

are not leads to the definition of virtual fundamental classes in section 1.3. We will

then introduce Gromov-Witten invariants in 1.4 and gravitational descendants in 1.5.

In section 1.6, we use gravitational descendants to obtain some enumerative results

concerning curves with tangency conditions to a hyperplane in Pr and some virtual

numbers of curves satisfying higher order contact conditions, which will be needed in

section 3.4.

1.2 Moduli spaces of stable maps

In this section we will recall the construction of the moduli spaces of stable maps,

which will be the basic objects of study both for Gromov-Witten theory and degenera-

tion techniques. The main idea of this concept is to find a good compactification of the

space of maps from P1 with n distinct marked points to X . This is done by allowing

P1 to degenerate to certain singular curves, but it is of course crucial to only allow the

“right” singular curves to get a well-behaved moduli space. This leads to the definition

of stable maps, due to Kontsevich [K].

We start by recalling briefly the definitions of prestable and stable curves and their

moduli spaces.

Definition 1.2.1 An n-pointed prestable curve (of genus zero) (C,x1, . . . ,xn) is a

proper, reduced, connected curve C with h1(C,O) = 0 and at worst ordinary double

points as singularities, together with n distinct smooth points xi ∈C. The points xi will

be called the marked points of (C,x1, . . . ,xn). A point on C is called special if it is ei-

ther a singular point of C or one of the xi. A morphism (C,x1, . . . ,xn)→ (C′,x′1, . . . ,x
′
n)

between n-pointed prestable curves is a morphism ϕ : C →C′ such that ϕ(xi) = x′i for

all i.

Note that the condition h1(C,O) = 0 means that C is a “tree of smooth rational curves”.

Definition 1.2.2 An n-pointed stable curve is an n-pointed prestable curve with finite

automorphism group. Equivalently, it is an n-pointed prestable curve (C,x1, . . . ,xn)

such that each irreducible component of C has at least three special points.

One then defines the notion of a family of stable curves in the usual way: a family of n-

pointed stable curves over a base scheme S is a scheme C together with a flat, projective

morphism π : C → S and n sections x1, . . . ,xn of π, such that for each geometric fibre

Cs → s ∈ S of π, (Cs,x1(s), . . .,xn(s)) is an n-pointed stable curve. Together with the

obvious definition of morphisms between such families, this defines a functor M̄0,nM̄0,nM̄0,n

from the category of schemes to the category of sets (the subscript 0 refers to the genus

of the curves). It is now a well-known theorem that M̄0,n is actually a smooth proper
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algebraic Deligne-Mumford stack. There is also a projective scheme which is a coarse

moduli space for this stack.

One now adapts this definition to the case of stable maps:

Definition 1.2.3 An n-pointed prestable map to X is a tuple C = (C,x1, . . . ,xn, f )

where (C,x1, . . . ,xn) is a prestable curve and f : C → X is a morphism. We call f∗[C]∈

A1(X) the homology class of C. A morphism (C,x1, . . . ,xn, f ) → (C′,x′1, . . . ,x
′
n, f ′)

between n-pointed prestable maps to X is a morphism ϕ : C →C′ such that f ′ ◦ϕ = f

and ϕ(xi) = x′i for all i.

Definition 1.2.4 An n-pointed stable map to X is an n-pointed prestable map to X

whose automorphism group is finite. Equivalently, it is an n-pointed prestable map

(C,x1, . . . ,xn, f ) to X such that each irreducible component of C on which f is constant

has at least three special points. We will call a stable map (C,x1, . . . ,xn, f ) irreducible

if C is irreducible.

The following picture shows an example of a stable map:

C X

f f(C  )3

f(C  )1
C 1

C 2

C 3

2

x1

x

x3

(Here the prestable curve C consists of three components C1,C2,C3, of which the com-

ponent C2 gets contracted by f to a point. The map would not be stable without the

marked point x3.)

We will sometimes associate to a stable map a topology τ, by which we mean the

homeomorphism class of the n-pointed topological space (C,x1, . . . ,xn) together with

the data of the homology classes f∗[Ci] ∈ A1(X) on each irreducible component Ci of

C. This definition can be made much more precise and formal using the language of

graphs [BM], however then the notation is likely to get very messy, so we will not

make use of it.

We now say what a family of stable maps should be. This is exactly what one would

expect: a family of n-pointed stable maps to X of homology class β ∈ A1(X) over a

base scheme S is given by the data

C
f //

π
��

X

S

x1,...,xn

TT
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where C is a scheme, π is a flat, projective morphism and x1, . . . ,xn are sections of

π, such that for each geometric fibre Cs → s ∈ S of π, (Cs,x1(s), . . . ,xn(s), f |Cs
) is an

n-pointed stable map to X of homology class β. Together with the definition of mor-

phisms between such families, this again defines a functor M̄0,n(X ,β)M̄0,n(X ,β)M̄0,n(X ,β). The following

deep theorem is already a strong indication that we made the right choice about which

singular curves to allow.

Theorem 1.2.5 M̄0,n(X ,β) is a proper algebraic Deligne-Mumford stack. Moreover,

there exists a projective scheme which is a coarse moduli space for this stack.

Proof See e.g. [BM] theorem 3.14, [ML] part I, [FP] section 1.2. ✷

Hence, when we talk about M̄0,n(X ,β) in the sequel we will always mean the corre-

sponding stack. Most of our applications, however, can be done equally well on the

coarse moduli space. In general, the moduli space M̄0,n(X ,β) will neither be smooth,

nor irreducible, nor connected — we will meet lots of examples for this throughout our

work.

Obviously, we can also consider the substack M(X ,τ) ⊂ M̄0,n(X ,β) consisting of all

stable maps of topology τ, and the collection of the various M(X ,τ) for fixed β (there

are only finitely many of them) forms a decomposition of M̄0,n(X ,β). The substack

of M̄0,n(X ,β) corresponding to irreducible stable maps will be denoted M0,n(X ,β)M0,n(X ,β)M0,n(X ,β). If

X = Pr, one also writes M̄0,n(P
r,d) instead of M̄0,n(P

r,d H ′).

Here are some easy concrete examples for moduli spaces of stable maps.

• M̄0,n(X ,0) = M̄0,n ×X .

• M̄0,0(P
r,1) = G(1,r) is the Grassmannian of lines in Pr (here all stable maps in

the moduli space are irreducible).

• M̄0,1(P
r,1) is the universal line over G(1,r) (again all stable maps in the moduli

space are irreducible).

We now list a few standard facts about M̄0,n(X ,β).

Proposition 1.2.6

(i) There exist evaluation maps evi : M̄0,n(X ,β) → X sending (C,x1, . . . ,xn, f ) to

f (xi) (1 ≤ i ≤ n).

(ii) If p : X → Y is a morphism between smooth projective varieties, there is an

induced map φ : M̄0,n(X ,β) → M̄0,n(Y, p∗β) given by composing f with p and

stabilizing if necessary.

(iii) If n ≥ 3 or β 6= 0 there exist maps M̄0,n+1(X ,β) → M̄0,n(X ,β) given by forget-

ting xn+1 and stabilizing if necessary. These maps identify M̄0,n+1(X ,β) as the

universal curve over M̄0,n(X ,β).
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(iv) If n ≥ 3 there exist maps M̄0,n(X ,β) → M̄0,n given by forgetting the map f and

stabilizing the curve if necessary.

Proof See [BM]. ✷

Here, in (ii), (iii), and (iv) by “stabilizing if necessary” we mean that we contract

components of C that have become unstable. For example, if we have a stable map in

M̄0,n(X ,β) with underlying prestable curve (C,x1, . . . ,xn) as in the following picture

on the left, and if we apply the map (iv) in the proposition, then the resulting stable

curve in M̄0,n will be the one on the right:

stabilizing

C C1

C 2

3

C 4

C 5 C 1

C 2

C 5

Finally, a word of warning: despite the suggestive notation, it is not in general true that

M̄0,n(X ,β) is a compactification of M0,n(X ,β) in the sense that M0,n(X ,β) is dense in

M̄0,n(X ,β). In fact, it may even happen that M0,n(X ,β) is empty but M̄0,n(X ,β) is not:

if we take for example X to be the blow-up of P2 in one point and β = H +E (where

H denotes the hyperplane class and E the exceptional divisor), then there are certainly

reducible stable maps in X having homology class β but no irreducible ones.

In the next section we will study the question which conditions on X have to be satisfied

in order for M̄0,n(X ,β) to be “well-behaved”.

1.3 Virtual fundamental classes

We now try to compute the dimension of the moduli spaces of stable maps M̄0,n(X ,β).

If we do this naively on the level of tangent spaces, we see that a deformation of a

stable map (C,x1, . . . ,xn, f ) is comprised of a deformation of the marked curve (this

deformation space has dimension dim M̄0,n = n− 3) and a deformation of the map

f with first order deformation space H0(C, f ∗TX). If we pretend that the obstruc-

tion space H1(C, f ∗TX) to deforming f vanishes, we would therefore get the result

χ(C, f ∗TX)+n−3 =−KX ·β+dim X +n−3 as the expected dimension of M̄0,n(X ,β).

This motivates the following definition.

Definition 1.3.1 We say that X is convex if H1(P1, f ∗TX) = 0 for all maps f : P1 → X .

In any case, we call

vdim M̄0,n(X ,β) := −KX ·β+dim X +n−3

the virtual or expected dimension of the moduli space M̄0,n(X ,β).
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Note that this definition of convexity is equivalent to the condition that H1(C, f ∗TX) =

0 for all prestable curves C of genus zero (see [FP] lemma 10).

Proposition 1.3.2 If X is a convex variety then M̄0,n(X ,β) is a smooth stack of pure

dimension vdim M̄0,n(X ,β). (Its coarse moduli space is then locally the quotient of a

smooth variety by a finite group, and it is actually a fine moduli space away from the

elements with non-trivial automorphism group.)

Proof See e.g. [ML] part I, [FP] section 1.2. ✷

The most important examples for convex varieties are homogeneous spaces, hence in

particular Pr.

If X is convex, the basic idea of Gromov-Witten theory is to compute intersection prod-

ucts of total codimension vdim M̄0,n(X ,β) on the moduli space and evaluate them on

its fundamental class to get some numbers that can then be interpreted geometrically.

To be able to do this also in the case when X is not convex, one constructs a “virtual

fundamental class”

[M̄0,n(X ,β)]virt ∈ Avdim M̄0,n(X ,β)(M̄0,n(X ,β))

that will serve as a replacement for the usual fundamental class. We now describe very

briefly the construction of this virtual fundamental class as introduced by K. Behrend

and B. Fantechi in [BF], [B].

The first ingredient of the construction of the virtual fundamental class is the relative

intrinsic normal cone associated to a morphism p : Y → Z, where Y and Z are alge-

braic stacks and Y is in addition of Deligne-Mumford type. To construct it, one chooses

local embeddings (in the étale topology) of Y into a scheme M which is smooth over

Z, i.e. we look at commutative diagrams of the form

U
g //

i
��

M

j

��
Y

p // Z

where U and M are affine schemes, g : U → M is a local immersion, i : U → Y is étale

and j : M → Z is smooth. One now defines the relative intrinsic normal cone CY/Z of

π : Y → Z to be the (Artin) stack over Y which is (étale) locally on the various open

subsets U of Y given by the stack quotient

CY/Z|U := [CU/M/g∗TM/Z]

where CU/M denotes the usual normal cone of U in M. (Of course one has to check

that these local definitions glue to give a global object on Y .) The dimension of CY/Z

is always equal to the dimension of Z.
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As a simple example, we can look at the case where p itself is smooth on the open

subset U of Y . Then we can choose M = U and get the result that CY/Z|U = BTU/Z :=

[U/TU/Z] is the so-called “classifying stack” of TU/Z over U , the fibre of which over a

point u ∈ U is “a point divided by the relative tangent space TU/Z,u”. In particular, if

p : Y → Z is smooth everywhere, then CY/Z = BTY/Z.

In our case we will apply this construction with Y = M̄0,n(X ,β) and Z = M0,n, where

M0,n denotes the moduli stack of n-pointed prestable curves of genus zero (this is not

a Deligne-Mumford stack since there exist elements in M0,n with infinite automor-

phism group). The map p is given by sending (C,x1, . . . ,xn, f ) to (C,x1, . . . ,xn), i.e. by

forgetting the map f , but without stabilizing the curve (in contrast to proposition 1.2.6

(iv)). Hence we get a relative intrinsic normal cone CM̄0,n(X ,β)/M0,n
over M̄0,n(X ,β).

The second ingredient of the construction of the virtual fundamental class is a relative

obstruction theory for M̄0,n(X ,β) over M0,n. In our case, this is meant to be the

two-term complex R•π∗ f ∗TX where

M̄0,n+1(X ,β)
f //

π
��

X

M̄0,n(X ,β)

with f = evn+1 being the evaluation map (see proposition 1.2.6 (i)) and π being the map

forgetting the point xn+1 and stabilizing (see proposition 1.2.6 (iii)). This complex can

be realized in the derived category as a two-term complex of vector bundles E0 →

E1 (see [B] proposition 5), i.e. in particular we have ker (E0 → E1) = π∗ f ∗TX and

coker (E0 → E1) = R1π∗ f ∗TX . The construction of the virtual fundamental class will

not depend on the choice of this realization of the complex R•π∗ f ∗TX .

We can now construct the Artin stack [E1/E0] over M̄0,n(X ,β), and there is a natural

closed immersion CM̄0,n(X ,β)/M0,n
→֒ [E1/E0] (see [BF] theorem 4.5). Now consider the

diagram of stacks over M̄0,n(X ,β)

C′ //
� _

��

CM̄0,n(X ,β)/M0,n
� _

��

M̄0,n(X ,β)
0 // E1

// [E1/E0]

where C′ is defined such that the square is cartesian, and where 0 denotes the zero

section of the vector bundle stack E1. We now define the virtual fundamental class

of M̄0,n(X ,β) to be

[M̄0,n(X ,β)]virt = 0![C′] ∈ A∗(M̄0,n(X ,β)).
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Since the relative dimension of [E1/E0] over M̄0,n(X ,β) is −(−KX ·β+dim X) and the

dimension of CM̄0,n(X ,β)/M0,n
is n−3, the virtual fundamental class is in fact a cycle of

dimension

n−3−KX ·β+dim X = vdim M̄0,n(X ,β),

as required.

A simple example is the case when there is an open subset U ⊂ M̄0,n(X ,β) (again in

the étale topology) where there are no obstructions, i.e. R1π∗ f ∗TX = 0 on U . Then,

locally on U , we can take E1 = U to be the trivial bundle on U and E0 = (π∗ f ∗TX)|U .

So we must also have C′ = U (note that C′ →֒ E1 is an inclusion of Deligne-Mumford

stacks over U), and taking 0![C′] will of course give us U again — or to be precise,

when computing the virtual fundamental class on M̄0,n(X ,β) we will get the cycle [Ū ]

plus other cycles with support disjoint from U .

If we finally take into account the semicontinuity of the function h1(C, f ∗TX) on the

moduli space M̄0,n(X ,β) and observe that M̄0,n(X ,β) is smooth over M0,n and hence

smooth over C at all points where there are no obstructions (see [BF] proposition 7.3),

we have just proven

Lemma 1.3.3 Let (C,x1, . . . ,xn, f ) ∈ M̄0,n(X ,β) be a stable map with h1(C, f ∗TX) =

0. Then (C,x1, . . . ,xn, f ) lies in a unique irreducible component Z of M̄0,n(X ,β) of

dimension vdim M̄0,n(X ,β), and if R denotes the union of all the other irreducible

components, then

[M̄0,n(X ,β)]virt = [Z]+ some cycle supported on R.

In particular, if X is convex, so that h1(C, f ∗TX) always vanishes, then the virtual fun-

damental class coincides with the usual one. This “global version” of lemma 1.3.3

has also been stated in [BF] (proposition 7.3), however we will also need the “local

version” from above in the next chapter. If the obstructions do not vanish but form

a vector bundle, it follows by the definition of the map 0! that one can compute the

virtual fundamental class as follows:

Lemma 1.3.4 If E := R1π∗ f ∗TX is locally free, then

[M̄0,n(X ,β)]virt = crk E(E) · [M̄0,n(X ,β)].

Proof See [BF] proposition 7.3. ✷

We now give another possibility to compute virtual fundamental classes, which will be

needed in chapter 3.
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Proposition 1.3.5 Let X be a smooth projective variety and H,Y smooth subvarieties

of X intersecting transversally in Q = H ∩Y , so that we have a cartesian diagram of

inclusions

Q
� � i //
� _

j

��

H� _

h
��

Y
� � g // X .

Assume that the map A1(Q) → A1(H)⊕A1(Y ) induced by the inclusions is injective,

so that there is a cartesian diagram of inclusions

M̄0,n(Q,β) �
� i′ //

� _

j′

��

M̄0,n(H, i∗β)
� _

h′

��

M̄0,n(Y, j∗β) �
� g′ // M̄0,n(X ,h∗i∗β).

Then, if X , H, and Y are convex, we have

[M̄0,n(Q,β)]virt = M̄0,n(H, i∗β) · M̄0,n(Y, j∗β) ∈ A∗(M̄0,n(Q,β)),

where the dot denotes the intersection product in M̄0,n(X ,h∗i∗β).

Remark 1.3.6 The assumption of the injectivity of the map A1(Q) → A1(H)⊕A1(Y )

is not essential, it just simplifies the result a little bit. In general, the following proof

shows that the intersection product M̄0,n(H, i∗β) · M̄0,n(Y, j∗β) yields the sum of all

virtual fundamental classes [M̄0,n(Q,β′)]virt with i∗β′ = i∗β and j∗β′ = j∗β. Note that

there can be only finitely many such β′ with M̄0,n(Q,β′) 6= /0.

Remark 1.3.7 The proposition can in particular be used to describe the virtual fun-

damental class of any smooth hypersurface Q ⊂ Y = Pr of degree δ, if one takes

Y = Pr → X = PN with N =
(

r+δ
δ

)
− 1 to be the degree δ Veronese embedding and

H ⊂ X the hyperplane such that Q = H ∩Y .

Proof (of proposition 1.3.5) It is possible to prove this using [BF] proposition 7.5, by

showing that the obstruction theories R•πQ∗ f ∗QTQ and R•πH∗ f ∗HTH are “compatible”

over g′ in the sense of [BF]. (Here, as usual, πQ : M̄0,n+1(Q,β) → M̄0,n(Q,β) is the

universal curve and fQ = evn+1 : M̄0,n+1(Q,β) → Q the evaluation map, similarly for

πH and fH .) However, since we did not introduce the notations used there, we will give

an alternative proof here.

Recall that [M̄0,n(Q,β)]virt was defined by the relative obstruction theory R•πQ∗ f ∗QTQ

over M0,n. On the other hand, the intersection product

M̄0,n(H, i∗β) · M̄0,n(Y, j∗β) ∈ A∗(M̄0,n(Q,β))
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can also be viewed as a virtual fundamental class arising from a relative obstruction

theory, namely from the two-term complex ( j′∗TM̄Y
→ i′∗NM̄H/M̄X

), where TM̄Y
denotes

the relative tangent bundle of M̄0,n(Y, j∗β) over M0,n, similarly for TM̄H
and TM̄Y

, and

NM̄H/M̄X
= h′∗TM̄X

/TM̄H
. This follows e.g. from [BF] section 6, “the basic example”.

We will now show that these two relative obstruction theories coincide, i.e. that the

corresponding two-term complexes are quasi-isomorphic, so that the two virtual fun-

damental classes agree.

First we look at the complex ( j′∗TM̄Y
→ i′∗NM̄H/M̄X

) defining the intersection product.

As Y is a convex variety, M̄0,n(Y, j∗β) is a smooth stack, and its relative tangent bundle

TM̄Y
over M0,n is given by the degree zero term of its relative obstruction theory, i.e.

by πY ∗ f ∗Y TY (see [BF] definition 4.4). To compute j′∗TM̄Y
= j′∗πY ∗ f ∗Y TY , note that we

have a commutative diagram

Q
� _

j

��

M̄0,n+1(Q,β)
fQoo

πQ //
� _

j′′

��

M̄0,n(Q,β)
� _

j′

��

Y M̄0,n+1(Y, j∗β)
fYoo πY // M̄0,n(Y, j∗β).

As πY and πQ are flat morphisms and the right square is cartesian, it follows by [EGA3]

remarques 7.7.9 that

j′∗TM̄Y
= j′∗πY ∗ f ∗Y TY

= πQ∗ j′′∗ f ∗Y TY

= πQ∗ f ∗Q j∗TY .

Moreover, since Y is convex such that for every stable map (C,x1, . . . ,xn, f ) to Y (and

in particular for every such stable map to Q) we have H1(C, f ∗TY ) = 0, it follows that

R1πQ∗ f ∗Q j∗TY = 0.

Similar calculations apply to H and X instead of Y , so we get by the same reasoning

that

i′∗NM̄H/M̄X
= πQ∗ f ∗Qi∗NH/X

= πQ∗ f ∗QNQ/Y

and that R1πQ∗ f ∗QNQ/Y = 0.

We have thus shown that the relative obstruction theory ( j′∗TM̄Y
→ i′∗NM̄H/M̄X

) used to

define the intersection product is given by

R•πQ∗ f ∗Q( j∗TY → NQ/Y ).

But by the normal sequence of j, the complex (TQ) is quasi-isomorphic to ( j∗TY →

NQ/Y ), so the proposition follows. ✷

We finish this section by mentioning a non-trivial example of a virtual fundamental

class that we will meet again several times throughout our work. We consider multiple

covering maps of certain infinitesimally rigid curves on a threefold.
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Lemma 1.3.8 Let X be a smooth projective threefold and β ∈ A1(X) a homology class

with KX ·β = 0 (hence vdim M̄0,0(X ,β) = 0). Let L ⊂ X be a smooth, infinitesimally

rigid rational curve in X with normal bundle NL/X = O(−1)⊕O(−1). Assume that

for some d ≥ 1, we have β = d [L].

Then the moduli space M̄0,0(X ,β) contains a connected component Z ∼= M̄0,0(P
1,d) of

dimension 2d − 2 corresponding to degree d multiple covering maps C → L, and the

virtual fundamental class of (M̄0,0(X ,β) restricted to) Z is equal to

[Z]virt =
∫

M̄0,0(P1,d)
c2d−2

(
R1π∗ f ∗(O(−1)⊕O(−1))

)
∈ A0(Z) ∼= Q

where π : M̄0,1(P
1,d) → M̄0,0(P

1,d) is the universal curve and f : M̄0,1(P
1,d) → P1

the evaluation map. (Note that this number need not be an integer since we are working

on stacks.)

Proof As the curve L cannot be deformed in X (not even infinitesimally), it is clear

that the space of stable maps into L forms a connected component Z of M̄0,0(X ,β)

which is obviously isomorphic to the space of stable maps to L ∼= P1 of degree d,

hence Z = M̄0,0(P
1,d).

Because of the normal sequence

0 → f ∗TL → f ∗NL/X → f ∗TX → 0

and h1(C, f ∗TL) = 0 we can write

R1π∗ f ∗TX = R1π∗ f ∗NL/X = R1π∗ f ∗(O(−1)⊕O(−1)).

The statement of the lemma now follows from lemma 1.3.4. ✷

Note that this integral depends on nothing but d, in particular not on the variety X . We

will postpone the actual computation of this number to example 2.8.5, it will turn out to

be d−3. In fact, this number has some history. Its most important application is the case

where X is a quintic threefold, so that KX ·β = 0 for all β. All methods to compute the

numbers of rational curves of a given degree on X will determine the degree of the zero-

cycle [M̄0,0(X ,β)]virt ∈ A0(M̄0,0(X ,β)). The result above tells you that this number

counts not only the number of rational curves of class β, but also d-fold covering maps

of all rational curves of class β/d. Knowing that these multiple coverings are counted

with multiplicity d−3, one can then subtract them from the degree of the zero-cycle

[M̄0,0(X ,β)]virt to get the actual number of rational curves of degree β on X .

When the numbers of rational curves on the quintic threefold had been computed first

by physicists [COGP], they just guessed the multiplicity d−3 because it was the only

one that turned their predictions of the number of rational curves into non-negative

integers. Later, Yu. Manin [M] and independently P. Aspinwall and D. Morrison [AM]

(using an a priori different definition of the multiplicity) derived this multiplicity rig-

orously, however their methods are very complicated. In example 2.8.5, we will give

a remarkably simple way to compute it as a byproduct of our work on Gromov-Witten

invariants of blow-ups.
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1.4 Gromov-Witten invariants

We now come to the definition of Gromov-Witten invariants. Let X be a smooth pro-

jective r-dimensional variety, β ∈ A1(X) an effective homology class, and n ≥ 0. Let

γ1, . . . ,γn ∈ A∗(X) be classes on X . Then we define the associated Gromov-Witten

invariant to be the intersection product on M̄0,n(X ,β)

IX
β (γ1 ⊗ . . .⊗ γn)IX
β (γ1 ⊗ . . .⊗ γn)IX
β (γ1 ⊗ . . .⊗ γn) := (ev∗1γ1 · . . . · ev∗nγn) · [M̄0,n(X ,β)]virt ∈ Q.

if ∑n
i=1 codim γi = vdim M̄0,n(X ,β), and zero otherwise.

The idea of this definition is to count (irreducible) stable maps (C,x1, . . . ,xn, f ) of

homology class β with f (xi) ∈ Vi for all i, where the Vi are generic subschemes of X

representing the classes γi. It is however not clear that this interpretation is valid, and

indeed in some cases it is not.

Note that, as M̄0,n(X ,β) is a Deligne-Mumford stack, the Gromov-Witten invariants

need not be integers. In many cases, however, they will be non-negative integers, in

particular if they have an enumerative meaning as certain numbers of curves.

Now some remarks concerning the notation. We will often drop the superscript X .

The Gromov-Witten invariant is by definition multilinear in the γi, therefore we use the

notation γ1 ⊗ . . .⊗γn. (It is obviously also symmetric under permutations of the γi, but

we will not use the notation γ1 · . . . · γn because we want to reserve the dot notation for

the intersection product of cycles.) Because of the multilinearity, we will often choose

a homogeneous basis B = {T0, . . . ,Tq} of the vector space A∗(X) and only consider

invariants where the γi are chosen from among this basis. To shorten notation, we

will often write T = γ1 ⊗ . . .⊗ γn or T = Tj1 ⊗ . . .⊗ Tjn and call T ∈ (A∗(X))⊗⊗⊗n a

collection of classes. Correspondingly, we write ev∗T for ev∗1γ1 · . . . · ev∗nγn. If X = Pr,

the invariant Iβ(T ) is also denoted by Id(T ), where β = d H ′. If the fundamental class

of X is in the invariant, we will write this as Iβ(X ⊗ . . .), as we want to reserve the

notation Iβ(1) for the case where n = 0, considering 1 as an element in (A∗(X))⊗⊗⊗0.

There are now two obvious questions concerning the invariants: firstly how to compute

them, and secondly whether they are enumeratively meaningful, i.e. whether they are

really equal to the number of curves in X with homology class β satisfying the given

incidence conditions.

We will first address the question of computation. The key ingredients of the compu-

tation are the following four relations among the invariants:

Proposition 1.4.1 Properties of Gromov-Witten invariants

(i) (Mapping to a point) If β = 0, then the invariant is equal to the triple intersection

product:

I0(γ1 ⊗ . . .⊗ γn) =

{
γ1 · γ2 · γ3 if n = 3 and ∑i codim γi = r,

0 otherwise.
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(ii) (Fundamental class) If β 6= 0 and the invariant contains the fundamental class

of X , then the invariant is zero:

Iβ(X ⊗T ) = 0 for all T and all β 6= 0.

(iii) (Divisor axiom) If β 6= 0 and γ ∈ A1(X) is a divisor, then

Iβ(γ⊗T ) = (γ ·β) Iβ(T ) for all T .

(iv) (Splitting axiom) Choose a homogeneous basis B = {T0, . . . ,Tq} of A∗(X), de-

fine g = (gi j) to be the intersection matrix

gi jgi jgi j =

{
Ti ·Tj if codim Ti +codim Tj = r,

0 otherwise,

and let g−1 = (gi jgi jgi j) be the inverse matrix. Choose β ∈ A1(X), four classes

µ1, . . . ,µ4 ∈ A∗(X) and a collection T = γ1 ⊗ . . .⊗ γn of classes such that

n

∑
i=1

codim γi +
4

∑
i=1

codim µi = −KX ·β+ r +n.

Then we have the equation

0 = ∑
β1,β2

∑
T1,T2

∑
i, j

gi j
(

Iβ1
(T1 ⊗µ1 ⊗µ2 ⊗Ti) Iβ2

(T2 ⊗µ3 ⊗µ4 ⊗Tj)

−Iβ1
(T1 ⊗µ1 ⊗µ3 ⊗Ti) Iβ2

(T2 ⊗µ2 ⊗µ4 ⊗Tj)
)
.

where the sum is taken over

• all effective classes β1,β2 ∈ A1(X) with β1 +β2 = β,

• all T1 = γi1 ⊗ . . .⊗ γin1
and T2 = γ j1 ⊗ . . .⊗ γ jn2

such that i1 < · · · < in1
,

j1 < · · ·< jn2
, and {i1, . . . , in1

}
•

∪{ j1, . . . , jn2
}= {1, . . . ,n} (i.e. “the classes

of T get distributed in all possible ways onto the two factors”),

• all 0 ≤ i, j ≤ q.

In the sequel we will call this equation Eβ(T ; µ1,µ2 | µ3,µ4)Eβ(T ; µ1,µ2 | µ3,µ4)Eβ(T ; µ1,µ2 | µ3,µ4).

Proof See e.g. [ML] part I, [FP] in the case of convex X , or [KM1], [B] for general X .

In the convex case, the ideas behind the four properties are as follows:

(i) This follows from the fact that M̄0,n(X ,0) = M̄0,n ×X .

(ii) If γn is the fundamental class of X in the invariant Iβ(γ1 ⊗ . . .⊗ γn), then the in-

tersection product to be computed on M̄0,n(X ,β) is actually the pull-back of an

intersection product on M̄0,n−1(X ,β), but on M̄0,n−1(X ,β) it vanishes for dimen-

sional reasons.
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(iii) This can be understood geometrically since the condition that an additional

marked point is mapped to a divisor γ does not restrict the curve at all, but fixes

the marked point to be one of the γ ·β points of intersection of the curve with the

divisor.

(iv) One can derive this equation by considering the morphism π : M̄0,n(X ,β) →

M̄0,4
∼= P1 (for n ≥ 4) forgetting the map and all but the first four marked points

(see proposition 1.2.6). One now looks at the inverse image under π of the two

points in M̄0,4 corresponding to the stable curves

2x

1x 1x

3xx3

x4

x2

x4

A generic point in this inverse image can be shown to correspond to a reducible

curve with two irreducible components, with the marked points x1,x2 (resp.

x1,x3) on the one component and x3,x4 (resp. x2,x4) on the other, with the other

marked points distributed in any way on the two components, and with homol-

ogy classes β1,β2 on the two components such that β1 + β2 = β. The linear

equivalence of the pullback of the two above points (i.e. divisors) in M̄0,4 then

yields the desired equation.

✷

The relations (i), (ii), and (iii) just tell us that we know all invariants with β = 0, and that

we do not have to consider fundamental classes and divisors in the invariants. The most

important (and most complicated) equations are of course those of the splitting axiom,

which are sometimes also called the associativity equations of quantum cohomology

or the WDVV equations (the name “splitting axiom” for these equations has historical

reasons, for they have been written down before the theory of virtual fundamental

classes existed). We will use them in the sequel in the form where we split off the

summands where β1 or β2 are zero: by part (i) of the proposition and the definition of

gi j the equation Eβ(T ; µ1,µ2 | µ3,µ4) then becomes

0 = Iβ(T ⊗µ1 ⊗µ2 ⊗µ3 ·µ4)+ Iβ(T ⊗µ3 ⊗µ4 ⊗µ1 ·µ2)

−Iβ(T ⊗µ1 ⊗µ3 ⊗µ2 ·µ4)− Iβ(T ⊗µ2 ⊗µ4 ⊗µ1 ·µ3)

+ ∑
β1,β2 6=0

∑
T1,T2

∑
i, j

gi j
(

Iβ1
(T1 ⊗µ1 ⊗µ2 ⊗Ti) Iβ2

(T2 ⊗µ3 ⊗µ4 ⊗Tj)

−Iβ1
(T1 ⊗µ1 ⊗µ3 ⊗Ti) Iβ2

(T2 ⊗µ2 ⊗µ4 ⊗Tj)
)
.

One can try to use these equations to determine all Gromov-Witten invariants recur-

sively from some hopefully small set of initial numbers that can be calculated by other

means. A result in this direction is the following proposition.
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Proposition 1.4.2 (First Reconstruction Theorem) If A∗(X) is generated as a ring

by divisor classes, then there exists an explicit algorithm to compute all Gromov-

Witten invariants recursively from those invariants Iβ(T ) where T contains at most

two classes.

Proof See [KM1] theorem 3.1. The interested reader may perhaps want to look at the

proof of lemma 2.2.4 (iii) which is completely analogous and should show how the

First Reconstruction Theorem works. ✷

How strong this statement is depends very much on the variety X . For example, on X =

Pr the only invariant with at most two classes is IH ′(pt ⊗ pt), which is 1 for geometrical

reasons since this invariant simply counts the number of lines through two points.

Hence in this case we can calculate all Gromov-Witten invariants. For example, the

following table lists some of the famous numbers Nd = IP
2

d H ′(pt⊗⊗⊗(3d−1)) of rational

curves of degree d in P2 through 3d−1 generic points:

d 1 2 3 4 5 6 7

Nd 1 1 12 620 87304 26312976 14616808192

However, if for example X is a quintic threefold in P4, then the only invariants on

X are those corresponding to the numbers of degree d rational curves on X without

any further conditions, hence the invariants are Id H ′(1), where H ′ is the class of a line

in the quintic and 1 denotes the element 1 ∈ (A∗(X))⊗⊗⊗0. Therefore, in this case the

proposition does not help at all to compute these numbers (and in fact all equations

from the splitting axiom are trivial in this case).

Finally we come to the question of enumerative significance of the invariants. The

following proposition tells us that in the case of homogeneous varieties the invariants

actually count what one would expect.

Proposition 1.4.3 Let X = G/P be a homogeneous variety, where G is a Lie group

and P a parabolic subgroup. Let β ∈ A1(X) be an effective homology class and let

V1, . . . ,Vn be pure-dimensional subvarieties of X with [Vi] = γi ∈ A∗(X) such that

∑
i

codim γi = vdim M̄0,n(X ,β).

Then, for generic elements gi ∈ G, the Gromov-Witten invariant Iβ(γ1 ⊗ . . .⊗ γn) is

equal to the number of irreducible stable maps (C,x1, . . . ,xn, f ) with f∗[C] = β and

f (xi) ∈ giVi for all i, each counted with multiplicity one, and for all these stable maps

the morphism f : C → X is generically injective.

Proof This is basically the Bertini-Kleiman theorem together with the statement that

homogeneous varieties are convex so that their virtual fundamental class coincides

with the usual one. See e.g. [ML] part I, [FP] lemma 14. ✷
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1.5 Gravitational descendants

We will now extend the definition of Gromov-Witten invariants in that we want to

compute intersection numbers on M̄0,n(X ,β) of a bigger variety of classes than just

pullbacks of classes on X via the evaluation maps.

Recall that π : M̄0,n+1(X ,β) → M̄0,n(X ,β) can be identified with the universal curve

over M̄0,n(X ,β) by proposition 1.2.6 (iii). So, for any 1 ≤ i ≤ n, we have sections

si : M̄0,n(X ,β) → M̄0,n+1(X ,β) of π mapping the stable map C = (C,x1, . . . ,xn, f ) to

the point xi on C. We now define the i-th cotangent line to be the line bundle

Li := s∗i ωπ

on M̄0,n(X ,β), where ωπ denotes the relative dualizing sheaf of π. It can also be char-

acterized by the exact sequence

0 → L∨
i → s∗i TM̄0,n+1(X ,β)

s∗i (dπ)
−→ TM̄0,n(X ,β) → 0

on M̄0,n(X ,β) (note that dπ is not of maximal rank everywhere on M̄0,n+1(X ,β), but it

is of maximal rank at all points in si(M̄0,n(X ,β)) since the marked points of a stable

map are always nonsingular points on the curve). The fibre of Li over a stable map

(C,x1, . . . ,xn, f ) is obviously canonically isomorphic to the cotangent space T∨
C,xi

.

The definition of the so-called gravitational descendants is now in complete anal-

ogy to the definition of the Gromov-Witten invariants, however we also allow the first

Chern classes of the cotangent lines Li in the intersection product. Hence we define

IX
β (γ1ck1 ⊗ . . .⊗ γnckn)IX
β (γ1ck1 ⊗ . . .⊗ γnckn)IX
β (γ1ck1 ⊗ . . .⊗ γnckn) :=

(
n

∏
i=1

(ev∗i γi · c
ki

1 (Li))

)
· [M̄0,n(X ,β)]virt ∈ Q

where c is to be considered as a formal variable, Π denotes the intersection product,

and where γi ∈ A∗(X) and ki ≥ 0 are such that the dimension condition

n

∑
i=1

(codim γi +ki) = vdim M̄0,n(X ,β)

is satisfied (otherwise we define the invariant to be zero, as usual). The Gromov-Witten

invariants are obviously included here if we set all ki equal to zero.

In analogy to the properties of the Gromov-Witten invariants in proposition 1.4.1, there

are similar rules for the gravitational descendants that allow one to always calculate the

descendants from the Gromov-Witten invariants:

Proposition 1.5.1 For any smooth projective variety X , there is an explicit algorithm

to compute all gravitational descendants on X from the Gromov-Witten invariants on

X .
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Proof See e.g. [KM2] theorem 1.2, [G] equation (2). ✷

Hence, in particular, all gravitational descendants are known on Pr.

Concerning the enumerative significance of the gravitational descendants, nothing at

all has appeared in the literature so far, and only very few results seem to be known.

Indeed, the question of enumerative significance is much more delicate here, especially

since there is not even an obvious educated guess one could make about the meaning

of the invariants as in the Gromov-Witten case. In general, one will have to combine

several Gromov-Witten invariants and descendants to get geometrically interpretable

numbers. Nevertheless, gravitational descendants are a useful tool in enumerative ge-

ometry. We will see some applications in the next section, and in particular later in

section 3.4.

1.6 Curves with higher order contact

In this section we will use gravitational descendants to compute some virtual numbers

of rational curves in X = Pr having contact of given order m to a hyperplane H ⊂ X

in a given subvariety of H (and satisfying additional incidence conditions such that

we expect finitely many such curves). We say “virtual” here because in many cases,

the numbers that we calculate receive contributions from possibly infinite families of

curves with components in H, such that they cannot be interpreted directly in enumer-

ative geometry. We will see how to compute the enumeratively correct numbers in

section 3.2. We include the virtual results here mainly because they will be needed in

section 3.4, where they give new results in combination with degeneration invariants.

As a first application, we give a method to compute enumeratively correct numbers of

curves with certain tangency conditions (that could also be obtained by other methods,

though).

Let X = Pr and let H ⊂ X be a fixed hyperplane. Fix n ≥ 1 and d ≥ 1 and consider

the moduli space M̄0,n(X ,d). We are going to define two subspaces M̄(m), M̄′(m) of

M̄0,n(X ,d) that can be considered as moduli spaces of stable maps having contact of

order m to H at the point x1 of the curve.

Definition 1.6.1 For m ≥ 1, we denote by M̄(m)M̄(m)M̄(m) the closure in M̄0,n(X ,β) of the space

of irreducible stable maps (C,x1, . . . ,xn, f ) of degree d to X with f (C) 6⊂ H such that

the divisor f ∗H on C contains the point x1 with multiplicity m.

To define M̄′(m), we need some preliminary remarks. We set M̄nM̄nM̄n := M̄0,n(X ,d) and

M̄n+1M̄n+1M̄n+1 := M̄0,n+1(X ,d), and consider the commutative diagram

M̄n+1

π
��

evn+1

!!❈
❈❈

❈❈
❈❈

❈

M̄n

s1

KK

ev1

// X
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where s1 maps (C,x1, . . . ,xn, f ) ∈ M̄n to the point x1 on the universal curve M̄n+1. Let

the equation of H be h = 0 for h ∈ H0(OX(H)). Then we have a section

ev∗n+1h ∈ H0(ev∗n+1O(H))

on M̄n+1. Differentiating this section up to order m− 1 with respect to xn+1 yields a

section

dm−1ev∗n+1h ∈ H0(Pm−1
M̄n+1/M̄n

(ev∗n+1O(H))),

where Pm−1
M̄n+1/M̄n

denotes the functor of relative principal parts of order m−1 (or (m−

1)-jets) and dm−1 = dm−1
M̄n+1/M̄n

is the derivative up to order m− 1, see [EGA4] 16.3,

16.7.2.1 for precise definitions. Now we take the pullback of this section via s1 to

obtain a section s ∈ H0(E) on M̄n, where

sss := s∗1dm−1ev∗n+1h and EEE := s∗1P
m−1
M̄n+1/M̄n

⊗ev∗1O(H)

(where Pm−1
M̄n+1/M̄n

:= Pm−1
M̄n+1/M̄n

(O)).

Definition 1.6.2 With the above notation, we define M̄′(m)M̄′(m)M̄′(m) to be the zero scheme of

the section s ∈ H0(E).

The definition of M̄′(m) expresses exactly the condition that the map h◦ f has to vanish

up to order m−1 at the point x1. It is obvious from the definitions that M̄(m) ⊂ M̄′(m).

The expected codimension of both spaces in M̄0,n(X ,d) is m.

We gave these two definitions because the space M̄(m) is the “enumeratively correct

one” in the sense that the curves we want to count are dense in it, whereas the space

M̄′(m) is easier to describe since it is the zero locus of a section of a vector bundle

that we know well (see next lemma). We are now going to compare the two spaces

M̄(m) and M̄′(m). Let RRR ⊂ M̄0,n(X ,d) be the substack of reducible stable maps and

ZZZ ⊂ M̄0,n(X ,d) the substack corresponding to stable maps (C,x1, . . . ,xn, f ) where x1

lies on a component C0 of C with f (C0) ⊂ H.

Lemma 1.6.3 E is a vector bundle of rank m on M̄0,n(X ,d) with top Chern class

cm(E) = ∏m−1
i=0 (i c1(L1) + ev∗1H), where L1 denotes the first cotangent line as in the

previous section.

Proof We use the notations introduced above. As the morphism π is smooth at all

points in s1(M̄n), there is an exact sequence

0 → L1
⊗⊗⊗i → s∗1P

i
M̄n+1/M̄n

→ s∗1P
i−1
M̄n+1/M̄n

→ 0

for all i > 0 (see e.g. [EGA4] 16.10.1, 16.7.3), and hence

0 → L1
⊗⊗⊗i⊗ev∗1O(H) → s∗1P

i
M̄n+1/M̄n

⊗ev∗1O(H) → s∗1P
i−1
M̄n+1/M̄n

⊗ev∗1O(H) → 0.
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As s∗1P
0
M̄n+1/M̄n

= O, it follows by induction that E is a vector bundle of rank m, and

that its top Chern class is given by

cm(E) =
m−1

∏
i=0

(i c1(L1)+ev∗1H).

✷

Lemma 1.6.4 If M̄′(m)\(R∪Z) is not empty, it is reduced of pure codimension m in

M̄0,n(X ,d). Moreover, there are local equations defining M̄′(m) away from R∪Z that

form a regular sequence.

Proof If m > d, then M̄′(m)\(R∪Z) is obviously empty, so we assume from now on

that m ≤ d.

For an irreducible stable map (C,x1, . . . ,xn, f ) to Pr not contained in H, the map f is

given by r + 1 sections f0, . . . , fr ∈ H0(P1,O(d)). Choose coordinates (u : v) on P1

such that x1 ∈ P1 is the point (0 : 1), and choose coordinates (z0 : · · · : zr) on Pr such

that the equation of H is z0 = 0. If we then write f0(u : v) = ∑i aiu
ivd−i, then the

equation s = 0 is given by

f0(x1) =
∂ f0

∂u
(x1) = · · · =

∂m−1 f0

∂um−1
(x1) = 0

⇐⇒ a0 = a1 = · · · = am−1 = 0.

From this we see that the m functions defining M̄′(m) locally form a regular sequence

and that M̄′(m) is reduced away from R∪Z. ✷

Lemma 1.6.5

(i) The stack M̄′(m)∩ (R\Z) has codimension at least m+1 in M̄0,n(X ,d).

(ii) At a point (C,x1, . . . ,xn, f ) ∈ M̄′(m) ∩ (R∩Z), M̄′(m) ∩ (R∩Z) has codimension

at least d0 + 2 in M̄0,n(X ,d), where d0 is the degree of f on the component on

which x1 lies.

Proof We start with (i) and decompose M̄0,n(X ,d) into the subspaces M(X ,τ) accord-

ing to the topology of the curves. So fix a reducible topology τ and consider a stable

map (C,x1, . . . ,xn, f )∈ M̄′(m)∩M(X ,τ) such that x1 lies on a component C0 of C that is

not mapped into H by f . Consider the connected components C1, . . . ,Cℓ of C\C0. As-

sume that ni of the marked points are on Ci and that f has degree di on Ci for 0 ≤ i ≤ ℓ.

We also mark the intersection points C0 ∩Ci, which we call p1, . . . , pℓ on C0 and qi on

Ci, such that C0 becomes a stable map with n0 + ℓ marked points and Ci becomes a

stable map with ni +1 marked points for i > 0. Then, by lemma 1.6.4, C0 varies in a

family of dimension

dim M̄0,n0+ℓ(X ,d0)−m = d0(r +1)+ r +n0 + ℓ−m−3, (1)
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whereas Ci for i > 0 varies in a family of dimension at most

dim M̄0,ni+1(X ,di) = di(r +1)+ r +ni−2.

Moreover, the condition that the points pi and qi have to map to the same point in X

reduces the dimension of the family by r = dim X for each pair of points (it is clear,

e.g. because of the projective automorphisms, that these are r independent conditions

each). So we get the result that the dimension of M̄′(m) ∩M(X ,τ) at our chosen stable

map is at most

dim M̄0,n0+ℓ(X ,d0)−m−
ℓ

∑
i=1

dim M̄0,ni+1(X ,di)− r ℓ

= d(r +1)+ r +n−m−3− ℓ

= dim M̄0,n(X ,d)−m− ℓ.

As ℓ ≥ 1, we have proven (i).

As for (ii), the proof is exactly the same, with the only exception that the curve C0 is a

stable map contained in H without multiplicity conditions, so C0 varies in a family of

dimension

dim M̄0,n0+ℓ(H,d0) = dim M̄0,n0+ℓ(X ,d0)−d0 −1

instead of M̄0,n0+ℓ(X ,d0)−m as in (1). This replaces m with d0 +1 in the result. ✷

We now come to the main result that tells us how to compute numbers of curves satisfy-

ing contact conditions, modulo correction terms from certain curves with components

in H.

Proposition 1.6.6 For m ≤ d, the stack M̄(m) has codimension m in M̄0,n(X ,d), and its

fundamental class satisfies

[M̄(m)] =
m−1

∏
i=0

(i c1(L1)+ev∗1H)+µ,

where µ is a cycle with support in R∩ Z, i.e. in the space of those reducible stable

maps (C,x1, . . . ,xn, f ) such that x1 lies on a component C0 of C with f (C0) ⊂ H. If

moreover m = 2, then µ is a cycle with support in the space of reducible stable maps

(C,x1, . . . ,xn, f ) such that x1 lies on a component that is contracted by f .

Proof By definition, it is clear that (as sets)

M̄(m) = M̄′(m)\(R∪Z∪ M̄′(m+1)). (1)

First of all, we see that M̄(m) has codimension m in M̄0,n(X ,d) by lemma 1.6.4.
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Again by lemma 1.6.4, M̄′(m+1)\(R∪Z) has codimension at least m+1 in M̄0,n(X ,d),

so we can write (1) as

M̄(m) = M̄′(m)\(R∪Z).

We now want to take the fundamental class on both sides of the equation. Note that

the fundamental class of a section of a vector bundle is given by the top Chern class

of the bundle if the functions defining the section locally form a regular sequence (see

[F1] proposition 14.1). In our case, this is true away from R∪Z by lemma 1.6.4, so by

lemma 1.6.3 we get

[M̄(m)] =
m−1

∏
i=0

(i c1(L1)+ev∗1H)+µ,

where µ ∈ Am(M̄0,n(X ,d)) is a cycle with support in M̄′(m) ∩ (R∪Z). (This should be

viewed as the intersection-theoretic analogue of lemma 1.3.3 and can be proven in the

same way. See also [F1] example 14.1.4.)

Note that the codimension of M̄′(m) ∩ (R\Z) is at least m +1 by lemma 1.6.5 (i). The

same is true for M̄′(m)∩ (Z\R), since curves in this stack are contained in H, and

dim M̄0,n(H,d) = dim M̄0,n(X ,d)−d−1 < dim M̄0,n(X ,d)−m.

This means that the support of the cycle µ ∈A∗(M̄0,n(X ,d)) must actually be contained

in R∩Z.

If moreover m = 2, then even M̄′(m) ∩ (R∩ Z) has codimension at least m + 1 = 3

whenever f is not of degree zero on the component on which x1 lies. ✷

As a first application, we compute the numbers of curves satisfying certain tangency

conditions:

Corollary 1.6.7 Let X = Pr and H ⊂ X be a hyperplane. Let d ≥ 2, n ≥ 1, and k ∈

{0, . . . ,r−1}. Choose an effective class γ1 ∈Ak(X) and a collection of effective classes

T = γ2 ⊗ . . .⊗ γn in A≥r−k(X) such that 2 + ∑codim γi = dim M̄0,n(X ,d). Then, for

generic subvarieties Vi ⊂ X with [Vi] = γi, the invariant

Id(γ1 ·H · (H +c)⊗T )

is equal to the number of irreducible stable maps (C,x1, . . . ,xn, f ) to X of degree d with

f (xi) ∈Vi for i ≥ 2 and f (x1) ∈V1 ∩H such that f (C) is tangent to H at x1.

Proof By proposition 1.6.6, the invariant stated in the corollary is equal to the inter-

section product

ev∗T · ev∗1γ1 · ([M̄
(2)]−µ) (1)
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on M̄0,n(X ,d), where µ is some cycle supported on the space Z′ of reducible stable

maps such that x1 lies on a component that gets contracted by f . As this component

must have at least three special points, we can write Z′ = Z1 ∪ Z2, where Z1 is the

subspace of Z′ where the component on which x1 lies contains at least one other marked

point, and Z2 is the subspace of Z′ where this component contains at least two nodes

of the curve.

As the subspace of M̄0,n(X ,d) corresponding to curves with at least two nodes has

codimension 2, it follows that the subspace corresponding to curves with at least two

nodes and x1 mapped to H has codimension 3. Therefore, the space Z2 has codimen-

sion at least 3, and since µ is a cycle of codimension 2, its support must actually lie in

Z1.

Note that for all curves in the intersection (1), x1 is mapped to V1 ∩H and xi to Vi for

i > 1. But V1 ∩H ∩Vi = /0 for i > 0 by the condition on the codimensions of the cycles

γi, so we conclude that

ev∗T · ev∗1γ1 ·µ = 0,

such that we can neglect µ in (1).

But now, as by definition the generic element of M̄(2) corresponds to an irreducible

stable map with x1 mapped to H such that f (C) is tangent to H there, and as the

subvarieties Vi are chosen generically, the statement of the corollary follows by the

Bertini lemma. (For a precise statement, see lemma 2.4.7. The fact that the generic

element of M̄(2) has no automorphisms follows in the same way as in lemma 2.4.8, as

the space of N-fold coverings in M̄(2) is of dimension at most

( d

N
(r +1)+ r +n−3−m

)
+2N −2

= (d(r +1)+ r +n−3−m)+2N−2+d(r +1)(
1

N
−1)

= dim M̄(2) +(N −1)(2−
d

N
(r +1))

≤ dim M̄(2) +(N −1)(2−1 ·3)

< dim M̄(2),

so that these stable maps do not appear in the generic intersection.) ✷

As a numerical example, the following table lists some numbers of degree d rational

curves in P2 tangent to H (a) at a point in H and (b) somewhere in H, and intersecting

in addition 3d−3 (resp. 3d −2) generic points:

d 1 2 3 4 5 6

(a) Id(pt · (H +c)⊗ pt⊗⊗⊗(3d−3)) 1 1 10 428 51040 13300176

(b) Id(H · (H +c)⊗ pt⊗⊗⊗(3d−2)) 0 2 36 2184 335792 106976160
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As already mentioned, these numbers can also be obtained by the degeneration meth-

ods in section 3.2. L. Ernström and G. Kennedy [EK2] have also computed these

numbers in P2, together with those for any number of simultaneous tangency condi-

tions. In section 2.7, we will use Gromov-Witten invariants of blow-ups to compute

some numbers of curves tangent to other subvarieties than hyperplanes.

We finish this section with an instructive example showing why the analogue of corol-

lary 1.6.7 gives only “virtual numbers” and not the enumeratively correct ones for

higher order contact conditions. Consider the invariant

IP
2

3 (pt · (H +c) · (H +2c)⊗ pt⊗⊗⊗5) = 14

that is supposed to count rational plane cubics intersecting 5 generic points P1, . . . ,P5

and having contact of order 3 to a line H ⊂ X = P2 at a point P ∈ H. Degeneration

methods tell us that the correct enumerative answer is

I
H/X

3,(2,1)
(pt⊗⊗⊗5 |H ⊗X) = 7

(see section 3.2 for notations and results, and section 3.1 for this particular example).

The difference arises from the following two types of curves:

P1

P

P2

P3

P4

P5

H HP

P1

P2

P3

P4

P5

(B)(A)

The curves in (A) consist of a line through P and one of the Pi, and a conic through

P and the other Pi. The marked point mapped to P lies on a component contracted

by f , so h ◦ f is identically zero around this point. There are 5 curves of this type,

corresponding to the choice of the point Pi lying on the line.

The curves in (B) consist of the line H itself together with a conic through P1, . . . ,P5.

As the marked point mapped to P lies on a component that is mapped into H by f , again

h◦ f is identically zero around this point. There are 2 curves of this type, according to

the fact that the line and the conic can be glued at any of the two intersection points.

This explains the difference of 7 between the two results given above. It should be

noted, however, that in general the unwanted stable maps that get counted by the meth-

ods of this section will form infinite families, so that it is not always as easy as in the

above example to subtract their contribution to get the enumeratively correct result.





Chapter 2

Gromov-Witten invariants of blow-ups

2.1 Introduction

There are at least two motivations to look at Gromov-Witten invariants of blow-ups.

Firstly, a blow-up X̃ of a convex variety X provides an easy example for a non-convex

variety, in the sense that one has reasonably good control over the stable maps with

h1(C, f ∗TX̃) 6= 0 since they all must be such that they intersect the exceptional divisor.

Hence this gives a good class of examples where one can study the effects of virtual

fundamental classes on Gromov-Witten theory. In fact, so far the Gromov-Witten in-

variants of no other non-convex variety have been studied in detail, apart from the

famous quintic threefold.

Secondly, curves on the blowup X̃ of a variety X are closely related to curves on X . At

least for irreducible curves not contained in the exceptional divisor, the strict transform

of curves gives a correspondence between curves in X̃ of specified homology class and

curves in X intersecting the blown-up variety with a given (global) multiplicity. Hence,

being able to calculate Gromov-Witten invariants of blow-ups, one can hope to solve

enumerative problems on X involving multiplicity conditions at the blown-up variety.

Apart from the last section of this chapter, we will only be concerned with blow-ups

of points, since both the calculation and the question of enumerative significance get

very complicated in the case of blow-ups of general subvarieties.

We now introduce some notation which will be used throughout this chapter when

dealing with blow-ups. Let X be a smooth r-dimensional convex variety, r ≥ 2. Fix

a homogeneous basis B = {T0, . . . ,Tq} of A∗(X) of increasing codimension such that

T0 = [X ] and Tq = pt.

Let p : X̃ = X̃(s)→ X be the blow-up of X at s generically chosen points P1, . . . ,Ps ∈X ,

and let Ei be the exceptional divisors. If we define Tq+1, . . . ,Tq̃ with q̃ = q + s(r−1)

to be the classes

Ek
i ∈ A∗(X̃) where 1 ≤ i ≤ s,1 ≤ k ≤ r−1

29
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(in any order), then

B̃ = {p∗T1, . . . , p∗Tq,Tq+1, . . . ,Tq̃}

is a homogeneous basis of A∗(X̃). We call the classes p∗T1, . . . , p∗Tq non-exceptional

and Tq+1, . . . ,Tq̃ exceptional. A collection of classes T will be called non-exceptional

if all its classes are non-exceptional.

In terms of the basis B̃, the intersection theory on X̃ is given by

p∗Tj · p∗Tj′ = p∗(Tj ·Tj′)

p∗Tj ·E
k
i = 0

Ek
i ·E

k′

i′ = δi,i′E
k+k′

i

Er
i = (−1)r−1pt

for 1 ≤ j, j′ ≤ q; 1 ≤ i, i′ ≤ s; 1 ≤ k,k′ ≤ r−1. If there is no danger of confusion, we

will write the classes p∗T1, . . . , p∗Tq simply as T1, . . . ,Tq.

The homology group A1(X̃) has a canonical decomposition

A1(X̃) = A1(X)⊕ZE ′
1⊕·· ·⊕ZE ′

s

where E ′
iE ′
iE ′
i denotes the class of a line in the exceptional divisor Ei

∼= Pr−1, such that E ′
i =

−(−Ei)
r−1 via Poincaré duality. We denote the s +1 projections onto the summands

of the above decomposition by d : A1(X̃) → A1(X)d : A1(X̃) → A1(X)d : A1(X̃) → A1(X) and e1, . . . ,es : A1(X̃) → Ze1, . . . ,es : A1(X̃) → Ze1, . . . ,es : A1(X̃) → Z, and we

set e = e1 + · · ·+ese = e1 + · · ·+ese = e1 + · · ·+es. If X = Pr, we will identify A1(X) with Z in the obvious way and

consider d as a function d : A1(X̃) → Z.

For a homology class β ∈ A1(X̃), we call d(β) the non-exceptional part and e(β) the

exceptional part. The class β is called a non-exceptional class if ei(β) = 0 for all

i and a purely exceptional class if d(β) = 0 and ei(β) 6= 0 for at least one i. For a

homology class β ∈ A1(X), we will denote the corresponding non-exceptional class in

A1(X̃) also by β.

Since the Gromov-Witten invariants are multilinear in the cohomology classes, we

will only consider invariants of the form Iβ(T ) where the cohomology classes in T =

Tj1 ⊗ . . .⊗Tjn are chosen to be in B̃.

The canonical divisor on X̃ is given by KX̃ = p∗KX +(r−1)E (see [GH] section 1.4),

hence the virtual dimension of the moduli space M̄0,n(X ,β) is

vdim M̄0,n(X̃ ,β) = −KX̃ ·β+n+ r−3

= vdim M̄0,n(X ,d(β))+(r−1)e(β).

This chapter is organized as follows. We first address the question of how one can

compute the Gromov-Witten invariants of blow-ups. We state and prove an explicit

algorithm how to reconstruct all invariants of X̃ from those of X in section 2.2. In
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section 2.3, we prove a vanishing theorem saying mainly that if one has a homology

class β with d(β) 6= 0 and ei(β) > 0 for some i (such that there are no irreducible

curves with this homology class), then a Gromov-Witten invariant Iβ(T ) vanishes if it

contains “not too many” exceptional cohomology classes in T . We then come to the

enumerative significance of the invariants which will be discussed only on X̃ = Pr(s).

Section 2.4 contains some general remarks, introductory lemmas and counterexamples

to enumerative significance. Then we study the cases P̃r(1) in 2.5 and P̃3(4) in 2.6

in detail. In section 2.7 it is shown how Gromov-Witten invariants Iβ(T ) with excep-

tional cohomology classes in T can lead to numbers of curves with certain tangency

conditions. Finally, we give many numerical examples of Gromov-Witten invariants of

blow-ups in 2.8 and finish the chapter with a short outlook on blow-ups of subvarieties

in section 2.9.

Independently from our work, L. Göttsche and R. Pandharipande studied blow-ups of

P2. In their paper [GP], they show how to calculate the Gromov-Witten invariants

on P̃2(s) and prove enumerative significance for all invariants Iβ(T ) where ei(β) ∈

{−1,−2} for some i or T contains at least one point class.

2.2 Calculation of the invariants

The aim of this section is to prove the following.

Theorem 2.2.1 Let X be a convex variety and X̃ the blow-up of X at some points.

Then there exists an explicit algorithm to compute the Gromov-Witten invariants of X̃

from those of X .

The computation is done in three steps. Firstly, we show in lemma 2.2.2 that all in-

variants IX̃
β (T ) with β and T non-exceptional are actually equal to the corresponding

invariants on X . Secondly, in lemma 2.2.4 we compute the invariants IX̃
β (T ) with β

purely exceptional using a technique similar to the First Reconstruction Theorem of

Kontsevich and Manin. Thirdly, we state and prove an algorithm that allows one to

compute all Gromov-Witten invariants on X̃ recursively from those obtained in the

first two steps.

Lemma 2.2.2 Let T = Tj1, . . . ,Tjn be a collection of non-exceptional classes and let

β ∈ A1(X) be a non-exceptional homology class. Then

IX̃
β (T ) = IX

β (T ).

In this case we will say that the invariant IX̃
β (T ) is induced by X .
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Proof Consider the commutative diagram

M̄0,n(X̃ ,β)
φ

//

evi

��

M̄0,n(X ,β)

evi

��

X̃
p // X

for 1 ≤ i ≤ n. First we show that φ∗[M̄0,n(X̃ ,β)]virt = [M̄0,n(X ,β)]virt: since X is con-

vex, M̄0,n(X ,β) is a smooth stack of the expected dimension d = vdim M̄0,n(X ,β).

Let Z1, . . . ,Zk be the connected components of M̄0,n(X ,β), so that Ad(M̄0,n(X ,β)) =

Q[Z1]⊕·· ·⊕Q[Zk]. Since vdim M̄0,n(X̃ ,β) = d, we must therefore have

φ∗[M̄0,n(X̃ ,β)]virt = α1[Z1]+ · · ·+αk[Zk]

for some αi ∈ Q.

To see that all αi = 1, pick a stable map Ci ∈ Zi whose image does not intersect the

blown-up points. Then φ−1(Ci) consists of exactly one stable map C̃i, and the map

φ : M̄0,n(X̃ ,β) → M̄0,n(X ,β) is a local isomorphism around the point C̃i. Hence C̃i is a

smooth point of an irreducible component Z̃i of M̄0,n(X̃,β). Denote by R̃i the union of

the other irreducible components of M̄0,n(X̃ ,β). Then, by lemma 1.3.3,

[M̄0,n(X̃ ,β)]virt = [Z̃i]+ some cycle supported on R̃i.

Now, since φ : Z̃i → Zi is a local isomorphism around C̃i, we have φ∗[Z̃i] = [Zi]. How-

ever, the pushforward of a d-cycle supported on R̃i will give no contribution to αi since

Ci and therefore Zi is not contained in the image of R̃i under φ. We conclude that all

αi = 1 and that therefore

φ∗[M̄0,n(X̃ ,β)]virt = [Z1]+ · · ·+[Zk]

= [M̄0,n(X ,β)]

= [M̄0,n(X ,β)]virt.

To complete the proof, note that by the projection formula

IX̃
β (T ) = (∏

i

ev∗i p∗Tji) · [M̄0,n(X̃ ,β)]virt

= (∏
i

φ∗ev∗i Tji) · [M̄0,n(X̃ ,β)]virt

= (∏
i

ev∗i Tji) ·φ∗[M̄0,n(X̃ ,β)]virt

= (∏
i

ev∗i Tji) · [M̄0,n(X ,β)]virt

= IX
β (T ).

✷
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Remark 2.2.3 This lemma is actually the only point in the proof of theorem 2.2.1

where the convexity of X is needed. Hence, one can formulate the theorem also in the

following, more general way:

Let X be a smooth projective variety and X̃ the blow-up of X at some points. There

exists an explicit algorithm to compute all Gromov-Witten invariants IX̃
β (T ) of X̃ from

those where β and T are non-exceptional.

The proof would be literally the same, just skipping lemma 2.2.2. In fact, it may even

be that lemma 2.2.2 also holds for non-convex X , but I do not know how to prove it in

this case.

Lemma 2.2.4 Let T = Tj1, . . . ,Tjn ∈ B̃ be a collection of classes and let β ∈ A1(X̃) be

a purely exceptional homology class. Then

(i) If β is not of the form d ·E ′
i for d > 0 and some 1 ≤ i ≤ s, then IX̃

β (T ) = 0.

Moreover, the invariant can only be non-zero if all classes in T are exceptional

with support in the exceptional divisor Ei.

(ii) IX̃
E ′

i
(Er−1

i ⊗Er−1
i ) = 1 for all 1 ≤ i ≤ s.

(iii) All other invariants with purely exceptional homology class can be computed

recursively.

Proof

(i) This follows easily from the fact that a Gromov-Witten invariant IX̃
β (T ) is always

zero if there is no stable map in M̄0,n(X̃ ,β) satisfying the conditions given by T .

(ii) Note that M̄0,2(X̃ ,E ′
i)
∼= M̄0,2(P

r−1,1) and that this space is of the expected di-

mension (which is 2r−2), hence we do not need virtual fundamental classes to

compute this invariant. Choose two curves Y1,Y2 ⊂ X intersecting transversally

at the blown-up point Pi, and let γ1,γ2 ∈ Ar−1(X) be their cohomology classes.

Let Ỹk be the strict transform of Yk for k = 1,2. Then Ỹ1 and Ỹ2 intersect Ei

transversally at different points, so the invariant

IX̃
E ′

i
([Ỹ1]⊗ [Ỹ2]) = IX̃

E ′
i
((γ1 +(−Ei)

r−1)⊗ (γ2 +(−Ei)
r−1))

simply counts the number of lines in Ei through two points in Ei, which is 1.

Therefore, by the multilinearity of the Gromov-Witten invariants and by (i) we

conclude that

IX̃
E ′

i
(Er−1

i ⊗Er−1
i ) = IX̃

E ′
i
((γ1 +(−Ei)

r−1)⊗ (γ2 +(−Ei)
r−1))

= 1.
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(iii) (This is essentially the First Reconstruction Theorem of Kontsevich and Manin,

see proposition 1.4.2.) As in (ii) we assume that X̃ = P̃r(1) and that we want to

compute the invariant I
d E ′(E j1 ⊗ . . .⊗E jn) for some d and some ji. Consider the

equation Ed E ′(T ; Ea,Eb | Ec,E) for some T consisting of exceptional classes

and for some 2 ≤ a ≤ r−1, 2 ≤ b ≤ r−1, 1 ≤ c ≤ r−1:

0 = Id E ′(T ⊗Ea ⊗Eb ⊗Ec ·E) (1)

+ Id E ′(T ⊗Ec ⊗E ⊗Ea ·Eb) (2)

− Id E ′(T ⊗Ea ⊗Ec ⊗Eb ·E) (3)

− Id E ′(T ⊗Eb ⊗E ⊗Ea ·Ec) (4)

+ (terms with homology classes d′E ′ with d′ < d). (5)

We want to compute the invariants by induction on the degree d and on the num-

ber of non-divisorial classes in the invariant. Obviously, the terms in (5) have

lower degree and those in (2) and (4) have same degree but a smaller number of

non-divisorial classes than (1). The degree of (3) is equal to that of (1), and its

number of non-divisorial classes is not bigger than that of (1). In any case, we

can write

Id E ′(T ⊗Ea ⊗Eb ⊗Ec+1) = Id E ′(T ⊗Ea ⊗Eb+1 ⊗Ec)

+ (recursively known terms).

Thus if a Gromov-Witten invariant contains at least three non-divisorial classes,

we can use this equation repeatedly to express Id E ′(T ⊗Ea ⊗Eb ⊗Ec+1) in

terms of Id E ′(T ⊗Ea ⊗Eb+c ⊗E) (and recursively known terms), which again

has fewer non-divisorial classes. This makes the induction work and reduces

everything to invariants with at most two non-divisorial classes. However, since

vdim M̄0,n(X̃ ,d E ′) = (r − 1)d + r + n− 3 and each class has codimension at

most r, it is easy to check that the only such invariant is the one calculated in (ii).

✷

We now come to the main part of the proof of theorem 2.2.1, namely the algorithm

to compute all invariants on X̃ from those calculated so far. We will first state the

algorithm in such a way that it can be programmed easily on a computer, and afterwards

give the proof that it really does the job. Many numbers computed using this algorithm

can be found in section 2.8.

From now on, Gromov-Witten invariants will always be on X̃ unless otherwise stated,

so we will often write them as Iβ(T ) instead of IX̃
β (T ).

Algorithm 2.2.5 Suppose one wants to calculate an invariant IX̃
β (T ). Assume that the

invariant is not induced by X and that β is not purely exceptional. We may assume with-

out loss of generality that the sum of the codimensions of the non-exceptional classes
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in T is at least r + 1 (hence in particular that there are at least two non-exceptional

classes) — otherwise choose a divisor ρ ∈ B with ρ ·β 6= 0 (such a ρ exists because β

is not purely exceptional) and use T ⊗ρ⊗⊗⊗(r+1) instead of T , which gives essentially

the same invariant by the divisor axiom.

We can further assume without loss of generality that T contains no exceptional divisor

class and that the classes Tj1, . . . ,Tjn in T are ordered such that the non-exceptional

classes are exactly Tj1, . . . ,Tjm, where codim Tj1 ≥ ·· · ≥ codim Tjm . In particular, Tj1

and Tj2 are two non-exceptional classes with maximal codimension in T .

We now distinguish the following three cases.

(A) n > m, i.e. Tjn = Ek
i (for some 1 ≤ i ≤ s, 2 ≤ k ≤ r−1) is an exceptional class.

Then use the equation

Eβ(T
′ ; Tj1,Tj2 | Ei,E

k−1
i ) where T ′ = Tj3 ⊗ . . .⊗Tjn−1

.

(B) n = m (i.e. there is no exceptional class in T ), Tj1 = pt and codim Tj2 ≥ 2. Then

choose µ,ν ∈ B such that codim µ = 1, codim ν = r−1, and µ ·ν 6= 0. Since the

invariant to be computed is not induced by X , there is an i ∈ {1, . . . ,s} such that

Ei ·β 6= 0. Use the equation

Eβ(T
′ ; µ,ν | Ei,Tj2) where T ′ = Tj3 ⊗ . . .⊗Tjn .

(C) n = m, and it is not true that Tj1 = pt and codim Tj2 ≥ 2. Then again there is an

i ∈ {1, . . . ,s} such that Ei ·β 6= 0. Use the equation

Eβ+E ′
i
(T ′ ; Tj1,Tj2 | Ei,E

r−1
i ) where T ′ = Tj3 ⊗ . . .⊗Tjn .

Here, “use equation E” means: the Gromov-Witten invariant Iβ(T ) to be calculated

appears in E linearly with non-zero coefficient. Solve this equation for Iβ(T ) and

compute recursively with the same rules all other invariants in this equation that are

not already known.

Proof (of theorem 2.2.1) Suppose we want to compute an invariant Iβ(T ). If the

invariant is induced by X , it is assumed to be known by lemma 2.2.2. If β is purely

exceptional, the invariant is known by lemma 2.2.4. In all other cases, use the algorithm

2.2.5 to compute the invariant recursively. We have to show that the equations to be

used in fact do contain the desired invariants linearly with non-zero coefficient, and

that the recursion stops after a finite number of calculations.

To do this, we will define a partial ordering on pairs (β,T ) where β ∈ A1(X̃) is an

effective homology class and T is a collection of cohomology classes. Choose an

ordering of the effective homology classes in A1(X) such that, for α1,α2 6= 0 being two

such classes, we have α1 < α1 +α2 (this is possible since the effective classes in A1(X)

form a semigroup with indecomposable zero). For a collection of classes T = Tj1 ⊗
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. . .⊗Tjn , we assume as in the description of the algorithm that the classes are ordered

such that the non-exceptional classes are exactly Tj1, . . . ,Tjm, where codim Tj1 ≥ ·· · ≥

codim Tjm , and that codim Tj1 + · · ·+ codim Tjm ≥ r + 1 (by possibly adding non-

exceptional divisor classes). Then we define

v(T )v(T )v(T ) = min {k ; codim Tj1 + · · ·+codim Tjk ≥ r +1},

i.e. “the minimal number of non-exceptional classes in T whose codimensions sum

up to at least r + 1”. With this, we now define the partial ordering on pairs (β,T ) as

follows: say that (β1,T1) < (β2,T2) if and only if one of the following holds:

• d(β1) < d(β2),

• d(β1) = d(β2) and v(T1) < v(T2),

• d(β1) = d(β2), v(T1) = v(T2), and e(β1) < e(β2).

Obviously, this defines a partial ordering satisfying the “descending chain condition”,

i.e. there do not exist infinite chains (β1,T1) > (β2,T2) > (β3,T3) > .. . . This means

that, to prove that the recursion stops after finitely many calculations, it suffices to

show that the equations in the algorithm compute the desired invariant Iβ(T ) entirely

in terms of invariants that are either known by the lemmas 2.2.2 and 2.2.4 or smaller

with respect to the above partial ordering. We will do this now for the three cases (A),

(B), and (C).

(A) The equation reads

0 = Iβ(T
′⊗Tj1 ⊗Tj2 ⊗Ei ·E

k−1
i ) (1)

+ Iβ(T
′⊗Ei ⊗Ek−1

i ⊗Tj1 ·Tj2) (2)

+ (no further Iβ( · ) I0( · )-terms since Ei ·Tj1 = Ek−1
i ·Tj2 = 0)

+ (some I
β−d E ′

i
( · ) I

d E ′
i
( · )-terms) (3)

+ (some Iβ1
( · ) Iβ2

( · )-terms with d(β1),d(β2) 6= 0). (4)

The term (1) is the desired invariant. If the term in (2) is non-zero, it has the same

d(β) and smaller v(T ), since the two non-exceptional classes Tj1 , Tj2 of maximal

codimensions codim Tj1 , codim Tj2 are replaced by one class of codimension

codim Tj1 +codim Tj2 . Hence, the term (2) is smaller with respect to our partial

ordering. The terms in (3) have the same d, the same or smaller v (note that all

non-exceptional classes from the original invariant must be in the left invariant

I
β−d E ′

i
( · )), and smaller e. Finally, the terms in (4) have smaller d. Hence, all

terms in (2), (3) and (4) are smaller with respect to our partial ordering.
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(B) The equation reads

0 = Iβ(T
′⊗Ei ⊗Tj2 ⊗µ ·ν) (1)

+ (no further Iβ( · ) I0( · )-terms since Ei ·Tj2 = Ei ·µ = Tj2 ·ν = 0)

+ (no I
β−d E ′

i
( · ) I

d E ′
i
( · )-terms since I

d E ′
i
( · ) would have to contain at least

one of the non-exceptional classes Tj2 , µ, ν)

+ (some Iβ1
( · ) Iβ2

( · )-terms with d(β1),d(β2) 6= 0). (2)

Here, obviously, (1) is the desired invariant and the terms in (2) have smaller d

and are therefore smaller with respect to the partial ordering.

(C) The equation reads

0 = Iβ+E ′
i
(T ′⊗Tj1 ⊗Tj2 ⊗Ei ·E

r−1
i︸ ︷︷ ︸

(−1)r−1 pt

) (1)

+ Iβ+E ′
i
(T ′⊗Ei ⊗Er−1

i ⊗Tj1 ·Tj2) (2)

+ (no further Iβ( · ) I0( · )-terms)

+ Iβ(T
′⊗Tj1 ⊗Tj2 ⊗Ei) IE ′

i
(Ei⊗Er−1

i ⊗Er−1
i )

︸ ︷︷ ︸
=−1

(−1)r−1 (3)

+ (no further I
β−d E ′

i
( · ) I

d E ′
i
( · )-terms since there are not enough exceptional

classes to put into I
d E ′

i
( · ))

+ (some Iβ1
( · ) Iβ2

( · )-terms with d(β1),d(β2) 6= 0). (4)

Here, (3) is the desired invariant. (4) has smaller d, and (2) has the same d and

smaller v, as in case (A)-(2). The term (1) has the same d, but is not necessarily

smaller with respect to the partial ordering. We distinguish two cases:

(i) If T ′⊗Tj1 ⊗Tj2 contains a non-divisorial (non-exceptional) class, then the

invariant (1) will be computed in the next step using rule (B), which ex-

presses it entirely in terms of invariants with smaller d.

(ii) If T ′⊗Tj1 ⊗Tj2 contains only divisor classes, the invariant (1) will be com-

puted in the next step using (C). This time, (2) vanishes (for Tj1 ·Tj2 = 0

since Tj1 = pt), (4) has smaller d, and (1) will be computed by (B) as in (i)

in terms of invariants with smaller d.

Hence, combining (C) with possibly one other application of (B) and/or (C), the

desired invariant will again be computed in terms of invariants that are smaller

with respect to the partial ordering.

This finishes the proof. ✷
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Corollary 2.2.6 There exists an explicit algorithm to compute all Gromov-Witten in-

variants on P̃r(s) for all r ≥ 2, s ≥ 1.

Proof Compute the invariants of Pr using the First Reconstruction Theorem 1.4.2, and

then use theorem 2.2.1. ✷

2.3 A vanishing theorem

We will now prove a vanishing theorem saying that a Gromov-Witten invariant Iβ(T )

with d(β) 6= 0 and ei(β) ≥ 0 for some i vanishes under favourable conditions, mainly

if ei(β) > 0 and if there are “not too many” exceptional classes in T . The proof of

the proposition is quite involved, but as a reward it is also very sharp in the sense

that numerical calculations on P̃r(1) have shown that an invariant (with non-vanishing

d(β) and non-negative e(β)) is “unlikely to vanish” if the conditions of the proposition

are not satisfied. We will then apply the proposition to prove corollary 2.3.2, which

is a first hint that Gromov-Witten invariants on blow-ups will lead to enumeratively

meaningful numbers.

To state the proposition, we need an auxiliary definition. For T ∈ B̃ and 1 ≤ i ≤ s we

define

wi(T)wi(T )wi(T ) =

{
m−1 if T = Em

i for some m,

0 otherwise.

If T = Tj1 ⊗ . . .⊗Tjn is a collection of classes, we set wi(T ) = wi(Tj1)+ · · ·+wi(Tjn).

Proposition 2.3.1 Let β and T be such that for some 1 ≤ i0 ≤ s the following three

conditions hold:

(i) d(β) 6= 0,

(ii) wi0(T ) > 0 or ei0(β) > 0,

(iii) wi0(T ) < (ei0(β)+1)(r−1).

Then Iβ(T ) = 0.

Proof The proof will be given inductively following the lines of the algorithm 2.2.5.

For invariants induced by X or invariants with purely exceptional homology class, the

proposition does not say anything, so all we have to do is to go through the three

equations (A) to (C) and show that the statement of the proposition is correct for the

invariant to be determined if it is correct for all the others.
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For the proof of the proposition, we will refer to the classes Ti and Tj in the splitting

axiom (see proposition 1.4.1 (iv))

0 = ∑ gi j
(

I(. . .⊗Ti) I(. . .⊗Tj)
)

as the additional classes of a certain summand in the equation.

Assume that we are calculating an invariant Iβ(T ) and that a term Iβ1
(T1) Iβ2

(T2) oc-

curs in the corresponding equation (A), (B), or (C) such that (β,T ) satisfies the condi-

tions of the proposition, but neither (β1,T1) nor (β2,T2) does. We will show that this

assumption leads to a contradiction.

We first distinguish the two cases wi0(T ) > 0 and ei0(β) > 0 according to (β,T ) satis-

fying (ii).

• wi0(T ) > 0. This means that we have an exceptional non-divisorial class in the

invariant and hence that we are in case (A) of the algorithm. Moreover, we can

assume that we use case (A) of the algorithm with i = i0. Since the term in (A)-

(2) in the proof of theorem 2.2.1 satisfies the conditions of the proposition if the

desired invariant (A)-(1) does, we only need to consider the terms (A)-(3) and

(A)-(4).

From (A)-(1) we know that

wi(T ) = wi(T
′)+wi(E

k
i ) = wi(T

′)+k−1,

whereas in all other terms Iβ1
(T1) Iβ2

(T2) we have

wi(T1)+wi(T2) = wi(T
′)+wi(E

k−1
i )+ ε(r−2) = wi(T

′)+k−2+ ε(r−2),

(1)

where ε = 1 if the additional classes happen to be classes in the exceptional

divisor Ei, and ε = 0 otherwise. Combining both equations, we get

wi(T1)+wi(T2) = wi(T )−1+ ε(r−2). (∗)

Now we again distinguish two cases.

(a) (β1,T1) and (β2,T2) satisfy (ii). If (β1,T1) does not satisfy (i), then β1 is a

purely exceptional class, so all classes in T1 must be exceptional, i.e.

wi(T1) = vdim M̄0,0(X̃ ,β1) = ei(β1)(r−1)+ r−3

= (ei(β1)+1)(r−1)−2.

So we have the two possibilities

(β1,T1) does not satisfy (i) ⇒ wi(T1) ≥ (ei(β1)+1)(r−1)−2,

(β1,T1) does not satisfy (iii) ⇒ wi(T1) ≥ (ei(β1)+1)(r−1).



40 CHAPTER 2. GROMOV-WITTEN INVARIANTS OF BLOW-UPS

The same is true for (β2,T2). However, since β is not purely exceptional, it

is not possible that both (β1,T1) and (β2,T2) do not satisfy (i). We conclude

that

wi(T1)+wi(T2) ≥ (ei(β1)+1+ei(β2)+1)(r−1)−2

= (ei(β)+2)(r−1)−2

> wi(T )+ r−3 since (β,T ) satisfies (iii).

This is a contradiction to (1).

(b) (β1,T1) does not satisfy (ii), i.e. wi(T1) = ei(β1) = 0. Since wi(T1) = 0, T1

does not contain exceptional classes Ek
i for k > 1. Since ei(β1) = 0, T1 also

does not contain Ei (otherwise Iβ1
(T1) = 0 by the divisor axiom). Hence T1

does not contain Ek
i for any k, and in particular we conclude that ε = 0 in

(1):

wi(T2) = wi(T )−1 < wi(T )

< (ei(β)+1)(r−1)

= (ei(β2)+1)(r−1).

Therefore (β2,T2) satisfies (iii). It also satisfies (ii), since otherwise we

would have ei(β1) = ei(β2) = 0 and hence get zero by the divisor axiom

from the class Ei in (A). Hence, (β2,T2) cannot satisfy (i), i.e. we must be

looking at the invariants (A)-(3). However, the invariant I
d′E ′

i
( · ) appearing

there can never be non-zero if the additional classes are non-exceptional.

We reach a contradiction.

• ei0(β) > 0 and wi0(T ) = 0. Then we can be in any of the cases (A) to (C) of the

algorithm. Note that ei0(β1)+ ei0(β2) is equal to ei0(β) or ei0(β)+1 (the latter

case appearing exactly if we are in case (C) and i = i0). In any case, it follows

that

ei0(β1)+ei0(β2) ≥ ei0(β) ≥ 1,

hence we can assume without loss of generality that ei0(β1) ≥ 1. In particular,

(β1,T1) satisfies (ii). We are going to show that it also satisfies (i) and (iii), which

is then a contradiction to our assumptions.

The case that (β1,T1) does not satisfy (i), i.e. that d(β1) = 0, could only occur

in (A)-(3) and for β1 = d E ′
i . Since

1 ≤ ei0(β1) = ei0(d E ′
i) = d δi,i0

we must have i = i0. But this means that we have a class Ek
i = Ek

i0
in T which is

a contradiction to wi0(T ) = 0. Hence (β1,T1) must satisfy (i).

As for (iii), we compute wi0(T1). There are no exceptional classes E2
i0
, . . . ,Er−1

i0

in T ′ since wi0(T ) = 0. Hence the only such classes in T1 can come from
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– the additional classes,

– the four special classes used in the equation (A), (B), or (C).

Both can contribute at most r−2 to wi0(T1), hence

wi0(T1) ≤ 2r−4 < 2(r−1) ≤ (ei0(β1)+1)(r−1).

Therefore (β1,T1) also satisfies (iii), arriving at the contradiction we were look-

ing for.

✷

As a corollary we can now prove a relation between the Gromov-Witten invariants of

X̃ that one would expect from geometry. Namely, if we want to express the condition

that curves of homology class β pass through a generic point in X , we expect to be able

to do this in two different ways: either we add the class of a point to T , or we blow

up the point and count curves with homology class β−E ′. The following corollary

states that these two methods will always give the same result, no matter whether the

invariants are actually enumeratively meaningful or not.

Corollary 2.3.2 Let (β,T ) be such that, for some 1≤ i≤ s, we have ei(β)= wi(T )= 0

and d(β) 6= 0. Then

Iβ−E ′
i
(T ) = Iβ(T ⊗ pt).

Proof Consider the equation Eβ(T ; λ,λ | Ei,E
r−1
i ) for an arbitrary divisor λ ∈B with

λ ·β 6= 0:

0 = Iβ(T ⊗λ⊗λ⊗Ei ·E
r−1
i ) (1)

+ (no further Iβ( · ) I0( · )-terms)

+ Iβ−E ′
i
(T ⊗λ⊗λ⊗Ei) IE ′

i
(Ei⊗Er−1

i ⊗Er−1
i )

︸ ︷︷ ︸
=−1

(−1)r−1 (2)

+ (no further I
β−d E ′

i
( · ) I

d E ′
i
( · )-terms since there are not enough exceptional

classes to put into I
d E ′

i
( · ))

+ (some Iβ1
( · ) Iβ2

( · )-terms with d(β1),d(β2) 6= 0). (3)

Using proposition 2.3.1, we will show for any term Iβ1
(T1) Iβ2

(T2) in (3) that it van-

ishes. Since ei(β1)+ei(β2) = ei(β) = 0, we have without loss of generality one of the

following cases:

• ei(β1) = ei(β2) = 0. Then Iβ1
(T1) Iβ2

(T2) = 0 by the divisor axiom because of

the class Ei in the equation.
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• ei(β1) > 0. Then we show that (β1,T1) satisfies conditions (i) to (iii) of the

proposition and hence vanishes. (i) and (ii) are obvious. As for (iii), the only

classes contributing to wi(T1) can come from

– the additional classes,

– the special class Er−1
i used in the equation.

Both can contribute at most r−2 to wi(T1), hence

wi(T1) ≤ 2r−4 < 2(r−1) ≤ (ei(β1)+1)(r−1).

Therefore (β1,T1) also satisfies (iii).

Now that we know that all terms in (3) vanish, the above equation becomes

Iβ(T ⊗λ⊗λ⊗Ei ·E
r−1
i ) = Iβ−E ′

i
(T ⊗λ⊗λ⊗Ei)(−1)r−1.

Since Ei ·E
r−1
i = (−1)r−1pt and Ei · (β−E ′

i) = 1, the corollary follows. ✷

2.4 Enumerative significance — general remarks

After having computed all Gromov-Witten invariants on blow-ups of projective space

(see corollary 2.2.6), we now come to the question of enumerative significance of the

invariants. For most of the time, we will be concerned with invariants IX̃
β (T ) where T is

non-exceptional, leading to numbers of curves on X intersecting the blown-up points

with prescribed multiplicities. Only in section 2.7 we will consider some invariants

containing exceptional classes in T , leading to numbers of curves on X with certain

tangency conditions.

For the rest of the chapter, we will only work with X̃ = P̃r(s). We start by giving a

precise definition of an enumeratively significant invariant.

Definition 2.4.1 Let β ∈ A1(X̃) a homology class with d(β) 6= 0 and ei(β)≤ 0, and let

T = γ1⊗ . . .⊗γn be a collection of non-exceptional effective classes γi ∈ A≥1(X) such

that ∑i codim γi = vdim M̄0,n(X̃ ,β).

Then we call the Gromov-Witten invariant IX̃
β (T ) enumerative if, for generic sub-

schemes Vi ⊂ X̃ with [Vi] = γi, it is equal to the number of irreducible stable maps

(C,x1, . . . ,xn, f ) with f being generically injective, f∗[C] = β, and f (xi) ∈ Vi for all i

(where each such stable map is counted with multiplicity one).

Note that irreducible stable maps (C,x1, . . . ,xn, f ) on X̃ of homology class β with f

generically injective correspond bijectively to irreducible curves in X̃ of homology

class β, and hence via strict transform to irreducible curves in X of homology class

d(β) intersecting the blown-up points Pi with global multiplicities −ei(β). Hence it is

clear that we can also give the following interpretation of enumerative invariants:
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Lemma 2.4.2 If Iβ(T ) is enumerative, then for generic subschemes Vi ⊂ X̃ with [Vi] =

γi, it is equal to the number of irreducible rational curves C ⊂ X of homology class

d(β) intersecting all Vi, and in addition passing through each Pi with global multiplicity

−ei(β). Every such curve is counted with multiplicity ♯(C∩V1) · . . . · ♯(C∩Vn).

In general, one would then expect these curves to have −ei smooth local branches at

every point Pi.

We will now give an overview of the results about enumerative significance of Gromov-

Witten invariants on P̃r(s). Assume that d(β) 6= 0, ei(β)≤ 0, and that T is a collection

of non-exceptional effective classes.

(i) If s = 1 then Iβ(T ) is enumerative. This will be shown in theorem 2.5.3.

(ii) If r = 2 then Iβ(T ) is enumerative if ei(β)∈{−1,−2} for some i or T contains at

least one point class. This has been proven by L. Göttsche and R. Pandharipande

in [GP].

(iii) If r = 3, s ≤ 4, and T contains only point classes, then Iβ(T ) is enumerative if

and only if β is not equal to d H ′− d E ′
i − d E ′

j for some d ≥ 2 and i 6= j with

1 ≤ i, j ≤ s. We will prove this in theorem 2.6.4.

(iv) If r = 3 and T contains not only point classes, then Iβ(T ) is in general not

enumerative.

(v) If r ≥ 4 and s ≥ 2 then Iβ(T ) is “almost never” enumerative.

We start our study of enumerative significance by showing the origin of potential prob-

lems with enumerative significance, thereby giving counterexamples to enumerative

significance in the cases (iv) and (v) above.

The most obvious problem is that a stable map (C,x1, . . . ,xn, f ) may be reducible, with

some of the components mapped to the exceptional divisor. The part of the moduli

space corresponding to such curves will in general have too big dimension. For exam-

ple, consider the case X̃ = P̃3(1), β = 4H ′. Stable maps in M0,0(X̃ ,β) will not intersect

the exceptional divisor at all, hence M0,0(X̃,β) has the expected dimension. However,

consider reducible curves C = C1 ∪C2 where f is of homology class 4H ′−3E ′ on C1

and of homology class 3E ′ on C2. These can be depicted as follows:

C

E

1

C 2
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The space of such curves C1 is (at least) of dimension vdim M̄0,0(X̃ ,4H ′− 3E ′) =

4 · 4−3 · 2 = 10, the space of curves C2 of homology class 3E ′ through a given point

(namely one of the points of intersection of C1 with E) is of dimension 3 ·3−1−1 = 7

(note that E ∼= P2). Hence the part of the moduli space M̄0,0(X̃ ,β) corresponding

to those curves has dimension (at least) 17, but we have vdim M̄0,0(X̃ ,β) = 4 · 4 =

16. Note that this is in agreement with the fact that these curves certainly cannot be

deformed into smooth quartics not intersecting the exceptional divisor, hence they are

not contained in the closure of M0,0(X̃ ,β) in M̄0,0(X̃ ,β).

However, this will cause no problems when computing Gromov-Witten invariants,

since, intuitively speaking, the curve C2 cannot satisfy any incidence conditions with

generic non-exceptional varieties. So if we try to impose vdim M̄0,0(X̃ ,β) = 16 non-

exceptional conditions on these curves, we will get zero, since the curve C1 can satisfy

at most 10 of the conditions and C2 can satisfy none at all. For a mathematically more

precise statement of this fact, see proposition 2.5.2 (i) which is the important step in

the proof of enumerative significance in the case of only one blow-up.

When we consider more than one blow-up, things get more complicated, since then

for example multiple coverings of the lines joining the blown-up points will cause

problems. As an example, consider X̃ = P̃r(2), β = (d +q)H ′−qE ′
1 −qE ′

2 for some

r ≥ 2, d ≥ 1, q ≥ 2, and look at reducible stable maps as above with C1 of homology

class d H ′ and C2 of homology class qH ′−qE ′
1 −qE ′

2, being a q-fold covering of the

strict transform of the line between P1 and P2:

E 1 E 2

C 1

C 2

We have just learned that C2 for itself will make no problems, since no generic (non-

divisorial) non-exceptional incidence conditions can be satisfied on this component.

However, it may well happen that the dimension of the moduli space of curves C1

meeting the line through P1 and P2 (i.e. vdim M̄0,0(X̃ ,d H ′)− (r− 2)) is bigger than

that of both components together:

vdim M̄0,0(X̃ ,d H ′)− (r−2) = (r +1)d + r−3− (r−2),

vdim M̄0,0(X̃ ,β) = (r +1)d +(1−q)(r−3),

⇒ vdim M̄0,0(X̃ ,d H ′)− (r−2)−vdim M̄0,0(X̃ ,β) = (q−1)(r−3)−1.

If this last number is non-negative, we will obviously get non-wanted contributions to

our Gromov-Witten invariants from these reducible curves, since all vdim M̄0,0(X ,β)

conditions that we impose on the curve can be satisfied on C1. This will always happen

if r ≥ 4, showing that in this case there is no chance of getting enumerative invariants.
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The reader who wants to convince himself of this fact numerically can find some ob-

viously non-enumerative invariants of this kind in example 2.8.4. For r = 3, we will

see that multiple coverings of lines joining blown-up points only make problems if

they form the only component of an irreducible curve, see theorem 2.6.4 and example

2.8.3. In fact, in the case where β = d H ′− d E ′
1 − d E ′

2, such that we “count” d-fold

coverings of lines, we get other important invariants, see example 2.8.5.

Since the case of P̃4(s) for s ≥ 2 will not lead to enumerative invariants and the case

of P̃2(s) has been studied almost exhaustively in [GP], it only remains to look at blow-

ups of P3. We will look at the case X̃ = P̃3(4) in detail in section 2.6 (which then

includes, of course, also the cases X̃ = P̃3(s) with s < 4). Here, in analogy to the

situation discussed above, one gets problems with too big dimensions for reducible

curves as above, where C2 is now a curve contained in a plane spanned by three of

the blown-up points. These problems arise in particular because in this case it is no

longer true that C2 can satisfy no incidence conditions. To be more precise, C2 can

satisfy incidence conditions with generic curves, but not with generic points in P̃3(4).

This is the reason why we have to make the assumption that all cohomology classes in

the invariant are point classes (see theorem 2.6.4). If we do not assume this, we can

again easily get non-enumerative invariants, e.g. I
P̃

3(4)
4H ′−2E ′

1−2E ′
2−2E ′

3
((H2)⊗⊗⊗4) = −1, to

mention the easiest one.

In the remainder of this section, we will prove some statements about irreducible

curves in blow-ups that will be needed for both cases P̃r(1) and P̃3(4). We start by

computing h1(P1, f ∗TX̃) in the next two lemmas.

Lemma 2.4.3 Let p : X̃ → X be the blow-up of a smooth variety at some points

P1, . . . ,Ps and let E = E1 ∪ ·· · ∪ Es be the exceptional divisor. Let C be a smooth

curve and f : C → X̃ a map such that f (C) 6⊂ E. Then there is an injective morphism

of sheaves on X̃

f ∗p∗TX(− f ∗E) → f ∗TX̃

which is an isomorphism away from f−1(E).

Proof Since E = {P1, . . . ,Ps}×X X̃ , we have i∗ΩX̃/X = ΩE/{P1,...,Ps} = ΩE where i :

E → X̃ is the inclusion. As ΩX̃/X has support on E, this can be rewritten as i∗ΩE =

ΩX̃/X . Hence, there is an exact sequence of sheaves on X̃

0 → p∗ΩX → ΩX̃ → i∗ΩE → 0.

Dualizing, we get

0 → TX̃ → p∗TX →Ext1(i∗ΩE ,OX) → 0.

By duality (see [H] theorem III 6.7), we have

Ext1(i∗ΩE ,OX) = i∗Ext1(ΩE ,NE/X̃) = i∗TE(−1)
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where O(−1) := OE1
(−1)⊗ . . .⊗OEs(−1). Therefore we get a morphism p∗TX →

i∗TE(−1) which we can restrict to E to get a morphism p∗TX |E → i∗TE(−1) fitting into

a commutative diagram

0 −−−→ p∗TX(−E) −−−→ p∗TX −−−→ p∗TX |E −−−→ 0∥∥∥
y

0 −−−→ TX̃ −−−→ p∗TX −−−→ i∗TE(−1) −−−→ 0.

From this we can deduce the existence of an injective map p∗TX(−E) → TX̃ which

is clearly an isomorphism away from E. Applying the functor f ∗ we get the desired

morphism f ∗p∗TX(− f ∗E) → f ∗TX̃ . Since the image of f is not contained in E, this

morphism is also injective and an isomorphism away from f−1(E). ✷

Lemma 2.4.4 Let C = P1, X̃ = Pr(s), f : C → X̃ a morphism, β = f∗[C] ∈ A1(X̃), and

ε ∈ {0,1}.

(i) If f (C) 6⊂ E or f is a constant map then h1(C, f ∗TX̃(−ε)) = 0 whenever d(β)+

e(β)≥ 0. (Here, f ∗TX̃(−ε) is to be interpreted as f ∗TX̃ ⊗OC(−ε).) In particular,

this always holds for s = 1 (since then d(β)+e(β) = deg f ∗(H−E) and f ∗(H−

E) is an effective divisor on C).

(ii) If f (C) ⊂ E and the map f : C → E ∼= Pr−1 has degree e > 0 then

h1(C, f ∗TX̃(−ε)) = e+ ε−1.

Proof

(i) If f is a constant map then the assertion is trivial, so assume that f (C) 6⊂ E and

set d = deg f ∗H, e = −deg f ∗E. By lemma 2.4.3 we have an exact sequence

0 → f ∗p∗TX(e) → f ∗TX̃ → Q → 0

with some sheaf Q on C with zero-dimensional support. Hence to prove the

lemma it suffices to show that h1(C, f ∗p∗TX(e− ε)) = 0. But this follows from

the Euler sequence on Pr pulled back to C and twisted by OC(e− ε):

0 →OC(e− ε) → (r +1)OC(d +e− ε) → f ∗p∗TX(e− ε) → 0

since d +e− ε ≥−1 by assumption.

(ii) We consider the normal sequence

0 → TE → i∗TX̃ → NE/X̃ → 0.

As NE/X̃ = OE(−1), pulling back to C and twisting by OC(−ε) yields

0 → f ∗TE(−ε) → f ∗TX̃(−ε) →OC(−e− ε) → 0. (1)
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In complete analogy to (i), it follows by the Euler sequence of E ∼= Pr−1

0 →OC(−ε) → rOC(e− ε) → f ∗TE(−ε) → 0

that h1(C, f ∗TE(−ε)) = 0. Hence we deduce from (1) that

h1( f ∗TX̃(−ε)) = h1(C,OC(−e− ε)) = e+ ε−1.

✷

We now come to the Bertini lemma 2.4.7 which is our main tool to prove the transver-

sality of the intersection products in the Gromov-Witten invariants.

Lemma 2.4.5 Let M be a scheme of finite type and f : M → Pr a morphism. Then, for

a generic hyperplane H ⊂ Pr, we have:

(i) f−1(H) is (empty or) of pure codimension 1 in M.

(ii) If M is smooth then the divisor f−1(H) is a smooth subscheme of M counted

with multiplicity one.

Proof See e.g. [J] corollary 6.11. ✷

Lemma 2.4.6 Let M be a scheme of finite type, X a smooth, connected, projective

scheme, and f : M → X a morphism. Let L be a base point free linear system on X .

Then, for generic D ∈ L, we have:

(i) f−1(D) is (empty or) purely 1–codimensional.

(ii) If M is smooth then the divisor f−1(D) is a smooth subscheme of M counted

with multiplicity one.

Proof The base point free linear system L on X gives rise to a morphism s : X → Pm

where m = dim L. Composing with f yields a morphism M → Pm, and the divisors

D ∈ L correspond to the inverse images under s of the hyperplanes in Pm. Hence, the

statement follows from lemma 2.4.5, applied to the map M → Pm. ✷

Lemma 2.4.7 Let M be a Deligne-Mumford stack of finite type, X a smooth, con-

nected, projective scheme and fi : M → X morphisms for i = 1, . . . ,n. Let γi ∈ Aci(X)

be cycles of codimensions ci ≥ 1 on X that can be written as intersection products of

divisors on X

γi = [D′
i,1] · · · · · [D

′
i,ci

] (i = 1, . . . ,n)

such that the complete linear systems |D′
i, j| are base point free (this always applies,

for example, for effective cycles in the case X = Pr). Let c = c1 + · · ·+ cn. Then, for

generic Di, j ∈ |D′
i, j|, we have:
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(i) Vi := Di,1∩·· ·∩Di,ci
is smooth of pure codimension ci in X , and the intersection

is transverse. In particular, [Vi] = γi.

(ii) V := f−1
1 (V1)∩ ·· · ∩ f−1

n (Vn) is of pure codimension c in M. In particular, if

dim M < c then V = /0.

(iii) If dim M = c and M contains a dense, open, smooth substack U such that each

geometric point of U has no non-trivial automorphisms thenV consists of exactly

( f ∗1 γ1 · . . . · f ∗n γn)[X ] points of M which lie in U and are counted with multiplicity

one.

Proof

(i) follows immediately by recursive application of lemma 2.4.5 to the scheme X .

(ii) If M is a scheme, then the statement follows by recursive application of lemma

2.4.6. If M is a Deligne-Mumford stack, then it has an étale cover S → M by a

scheme S, so (ii) holds for the composed maps S → M → X . But since the map

S → M is étale, the statement is also true for the maps M → X .

(iii) A Deligne-Mumford stack U whose generic geometric point has no non-trivial

automorphisms always has a dense open substack U ′ which is a scheme (see e.g.

[Vi]. To be more precise, U is a functor and hence an algebraic space ([DM] ex.

4.9), but an algebraic space always contains a dense open subset U ′ which is a

scheme ([Kn] p. 25)). Since U ′ is dense in M and therefore M\U ′ has smaller

dimension, applying (ii) to the restrictions fi|M\U ′ : M\U ′ → X gives that V is

contained in the smooth scheme U ′, hence it suffices to consider the restrictions

fi|U ′ : U ′ → X . But since U ′ is a smooth scheme, we can apply lemma 2.4.6 (ii)

recursively and get the desired result.

✷

As we needed for lemma 2.4.7 (iii) that the generic element of M has no non-trivial

automorphisms, we now give a criterion under which circumstances this is satisfied for

our moduli spaces of stable maps.

Lemma 2.4.8 Let X̃ = Pr(s) and β ∈ A1(X̃) with d(β) > 0 and d(β)+ e(β) ≥ 0. As-

sume that β is not of the form d H ′−d E ′
i for 1 ≤ i ≤ s and d ≥ 2. Then, if M0,n(X̃ ,β) is

not empty, it is a smooth stack of the expected dimension, and if C = (C,x1, . . . ,xn, f )

is a generic element of M0,n(X̃ ,β) then C has no automorphisms and f is generically

injective.

Proof Set d = d(β) and e = e(β). We can assume that e≤ 0 since otherwise M0,n(X̃ ,β)

is empty.

It follows from lemma 2.4.4 (i) that M0,n(X̃ ,β) is a smooth stack of the expected di-

mension. Note that an irreducible stable map can only have automorphisms if it is
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a multiple covering map onto its image. Therefore it suffices if we compute, for all

N ≥ 2, the dimension of the subspace ZN ⊂ M0,n(X̃ ,β) consisting of N-fold coverings

and show that it is smaller than the dimension of M0,n(X̃ ,β).

So assume that N ≥ 2 and that ZN 6= /0, so that β = Nβ′ for some β′ ∈ A1(X̃). We

set d′ = d(β′) and e′ = e(β′). Since d′ + e′ ≥ 0, we can apply lemma 2.4.4 (i) to

see that the space of stable maps of homology class β′ is of the expected dimension

(r + 1)d′ + (r − 1)e′ + r + n− 3. The dimension of ZN is exactly bigger by 2N − 2

because of the moduli of the covering. Hence we have

dim ZN = (r +1)d′+(r−1)e′ + r +n−3+2N −2

= (r +1)d +(r−1)e+ r +n−3+((r +1)d′+(r−1)e′)(1−N)+2N −2

= dim M0,n(X̃ ,β)+((r +1)d′+(r−1)e′−2)(1−N).

Therefore, to prove the lemma, it suffices to show that (r + 1)d′ +(r− 1)e′ > 2. We

distinguish two cases:

• If e′ = 0, then

(r +1)d′+(r−1)e′ = (r +1)d′ ≥ (2+1) ·1 = 3 > 2.

• If e′ ≤−1, then

(r +1)d′+(r−1)e′ = (r +1)(d′+e′)−2e′ ≥−2e′ ≥ 2,

but if we had equality, this would mean d′ + e′ = 0 and e′ = −1, hence β′ =

H ′−E ′
i for some i and therefore β = N H ′−N E ′

i , which is the case we excluded

in the lemma.

This finishes the proof. ✷

2.5 Enumerative significance — the case P̃r(1)

In this section we will prove that all invariants Iβ(T ) on X̃ = P̃r(1) are enumerative.

We start with the computation of h1(C, f ∗TX̃) for arbitrary stable maps. To state the

result, we need the following definition: for any prestable map (C,x1, . . . ,xn, f ) to X̃ we

define η(C, f ) to be “the sum of the exceptional degrees of all irreducible components

of C which are mapped into E”, i.e.

η(C, f )η(C, f )η(C, f ) := ∑
C′

{ e |C′ is an irreducible component of C such that f∗[C
′] = eE ′ }.

Obviously, η(C, f ) only depends on the topology τ of the prestable map in the sense

of section 1.2, so we will write η(τ) = η(C, f ).
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Lemma 2.5.1 Let C be a prestable curve, X̃ = P̃r(1), and f : C → X̃ a morphism. Then

h1(C, f ∗TX̃) ≤ η(C, f ), with strict inequality holding if η(C, f ) > 0.

Proof The proof is by induction on the number of irreducible components of C. If C

itself is irreducible, the statement follows immediately from lemma 2.4.4 for ε = 0.

Now let C be reducible, so assume C = C0 ∪C′ where C′ ∼= P1, C0 ∩C′ = {Q}, and

where C0 is a prestable curve for which the induction hypothesis holds. If η(C, f ) > 0,

we can arrange this such that η(C0, f0) > 0.

Consider the exact sequences

0 → f ∗TX̃ → f ∗0 TX̃ ⊕ f ′
∗
TX̃

ϕ
→ f ∗QTX̃ → 0

0 → f ′
∗
TX̃(−Q) → f ′

∗
TX̃

ψ
→ f ∗QTX̃ → 0

where f0, f ′, and fQ denote the restrictions of f to C0, C′, and Q, respectively.

From these sequences we deduce that

dim coker H0(ϕ) = h1(C, f ∗TX̃)−h1(C0, f ∗0 TX̃)−h1(C′, f ′
∗
TX̃)

dim coker H0(ψ) = h1(C′, f ′
∗
TX̃(−Q))−h1(C′, f ′

∗
TX̃).

Since we certainly have dim coker H0(ϕ) ≤ dim coker H0(ψ), we can combine these

equations into the single inequality

h1(C, f ∗TX̃) ≤ h1(C0, f ∗0 TX̃)+h1(C′, f ′
∗
TX̃(−Q)).

Now, by the induction hypothesis on f0, we have h1(C0, f ∗0 TX̃) ≤ η(C0, f0) with strict

inequality holding if η(C0, f0) > 0. On the other hand, we get h1(C′, f ′
∗
TX̃(−Q)) ≤

η(C′, f ′) by lemma 2.4.4 for ε = 1. As η(C, f ) = η(C0, f0)+η(C′, f ′), the proposition

follows by induction. ✷

We now come to the central proposition already alluded to in section 2.4: given a part

M(X̃,τ) of the moduli space M̄0,n(X̃ ,β) corresponding to the topology τ (see section

1.2), we consider the map

φ : M(X̃ ,τ) →֒ M̄0,n(X̃ ,β) → M̄0,n(X ,d(β))

given by mapping (C,x1, . . . ,xn, f ) to (C,x1, . . . ,xn, p◦ f ) and stabilizing if necessary

(φ exists by the functoriality of the moduli spaces of stable maps, see proposition

1.2.6 (ii)). We show that, although M(X̃ ,τ) may have too big dimension, the image

φ(M(X̃,τ)) has not. Part (ii) of the proposition, which is of similar type, will be needed

later in section 2.7.

Proposition 2.5.2 Let X̃ = P̃r(1) and β ∈ A1(X̃) with d(β) > 0. Let φ : M̄0,n(X̃ ,β) →

M̄0,n(X ,d(β)) be the morphism as above, and let τ be a topology of stable maps of

homology class β (so that M(X̃ ,τ) ⊂ M̄0,n(X̃ ,β)). Then we have
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(i) dim φ(M(X̃,τ))≤ vdim M̄0,n(X̃ ,β). Moreover, strict inequality holds if and only

if τ is a topology corresponding to reducible curves.

(ii) At least one of the following holds:

(a) dim φ(M(X̃,τ)) ≤ vdim M̄0,n(X̃ ,β)− r,

(b) dim M(X̃ ,τ) ≤ vdim M̄0,n(X̃ ,β)−2,

(c) dim M(X̃ ,τ) ≤ vdim M̄0,n(X̃ ,β)−1 and η(τ) = 0,

(d) dim M(X̃ ,τ) = vdim M̄0,n(X̃ ,β) and τ is the topology corresponding to

irreducible curves,

(e) dim M(X̃,τ) = vdim M̄0,n(X̃ ,β)− 1 and τ is a topology corresponding to

reducible curves having exactly two irreducible components, one with ho-

mology class β−E ′ and the other with homology class E ′.

Proof We start by defining some numerical invariants of the topology τ that will be

needed in the proof.

• Let SSS be the number of nodes of a curve with topology τ. We divide this num-

ber into S = SEE +SXX +SXE , where SEESEESEE (resp. SXXSXXSXX , SXESXESXE) denotes the number

of nodes joining two exceptional components of C (resp. two non-exceptional

components, or one exceptional with one non-exceptional component). Here

and in the following we call an irreducible component of C exceptional if it is

mapped by f into the exceptional divisor and it is not contracted by f , and non-

exceptional otherwise.

• Let PPP be the (minimal) number of additional marked points which are necessary

to stabilize C. We divide the number P into P = PE +PX , where PEPEPE (resp. PXPXPX ) is

the number of marked points that have to be added on exceptional components

(resp. non-exceptional components) of C to stabilize C.

Now we give an estimate for the dimension of M(X̃ ,τ). The tangent space TM(X̃ ,τ),C

at a point C = (C,x1, . . . ,xn, f ) ∈ M(X̃ ,τ) is given by the hypercohomology group (see

[K] section 1.3.2)

TM(X̃,τ),C = H1(T ′
C → f ∗TX̃)

where T ′
C = TC(−x1 −·· ·− xn) and where we put the sheaves T ′

C and f ∗TX̃ in degrees

0 and 1, respectively. This means that there is an exact sequence

0 → H0(C,T ′
C) → H0(C, f ∗TX̃) → TM(X̃ ,τ),C → H1(C,T ′

C) (1)

(note that the first map is injective because C is a stable map). By lemma 2.5.1, we

have

dim H0(C, f ∗TX̃) ≤ χ(C, f ∗TX̃)+η(C, f ). (2)
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Moreover, by Riemann-Roch we get χ(C,T ′
C) = S +3−n. It follows that

dim TM(X̃ ,τ),C ≤ χ(C, f ∗TX̃)+η(C, f )+n−S−3

= vdim M̄0,n(X̃,β)+η(C, f )−S,

and therefore

dim M(X̃,τ) ≤ vdim M̄0,n(X̃ ,β)+η(τ)−S.

If η(τ)−S < 0, then statement (i) is obviously satisfied. Moreover, if η(τ) = 0 then we

also have (ii)-(c), and if η(τ) > 0 then we have strict inequality also in (2) and therefore

(ii)-(b). Therefore we can assume from now on that η(τ)−S ≥ 0. If η(τ) = 0, then

we must also have S = 0, which means that the curve is irreducible. But then (i) and

(ii)-(d) are satisfied. So we can also assume in the sequel that η(τ) > 0. It follows then

from lemma 2.5.1 that we have strict inequality in (2), hence

dim TM(X̃ ,τ),C ≤ vdim M̄0,n(X̃ ,β)+η(C, f )−S−1. (3)

We now give an estimate of the dimension of the image φ(M(X̃,τ)). As we always

work over the ground field C, we can do this on the level of tangent spaces, i.e. we

have

dim φ(M(X̃,τ)) ≤ max C∈M(X̃ ,τ) dim (dφ)(TM(X̃,τ),C).

Hence our goal is to find as many vectors in ker dφ as possible. We do this by finding

elements in the kernel of the composite map (see (1))

H0(C, f ∗TX̃)/H0(C,T ′
C) →֒ TM(X̃ ,τ),C → TM̄0,n(X ,d(β)),φ(C).

Let C0 be a maximal connected subscheme of C consisting only of exceptional com-

ponents of C. Let f0 be the restriction of f to C0 and let Q1, . . . ,Qa be the nodes

of C which join C0 with the rest of C (they are of type SXE). Now every section of

f ∗0 TE(−Q1 −·· ·−Qa) can be extended by zero to a section of f ∗TX̃ which is mapped

to zero by dφ since these deformations of the map take place entirely within the excep-

tional divisor. As E ∼= Pr−1 is a convex variety, we have

h0(C0, f ∗0 TE) = χ(C0, f ∗0 TE) = r−1+ r η(C0, f0)

and therefore we can estimate the dimension of the space of deformations that we have

just found:

h0(C0, f ∗0 TE(−Q1 −·· ·−Qa)) ≥ r−1+ r η(C0, f0)− (r−1)a.

(The right hand side of this inequality may well be negative, but nevertheless the state-

ment is correct also in this case, of course.)



2.5. ENUMERATIVE SIGNIFICANCE — THE CASE P̃r(1) 53

We will now add up these numbers for all possible C0, say there are BBB of them. The sum

of the η(C0, f0) will then give η(C, f ), and the sum of the a will give SXE . Note that

there is a PE-dimensional space of infinitesimal automorphisms of C, i.e. a subspace

of H0(C,T ′
C), included in the deformations that we have just found, and that these are

exactly the trivial elements in the kernel of dφ. Therefore we have

dim ker dφ ≥ B(r−1)+ r η(C, f )− (r−1)SXE −PE

= (r−2)( B︸︷︷︸
≥1

+η(C, f )−SXE︸ ︷︷ ︸
≥0

)+B+2η(C, f )−SXE −PE

(B ≥ 1 since η(C, f ) > 0

and η(C, f )−SXE ≥ 0 since η(C, f )−S ≥ 0)

≥ (r−2)+B+2η(C, f )−SXE −PE .

Combining this with (3), we get the estimate

dim φ(M(X̃,τ)) ≤ dim TM(X̃ ,τ),C−dim ker dφ

≤ vdim M̄0,n(X̃ ,β)− r +1− (SXX +SEE +B+η(τ)−PE).

To prove the proposition, it remains to look at the term in brackets. First we will show

that

PE ≤ SXX +SEE +B+η(τ). (4)

Look at PE , i.e. the exceptional components of C where marked points have to be added

to stabilize C. We have to distinguish three cases:

(A) Components on which two points have to be added, and whose (only) node is of

type SEE : those give a contribution of 2 to PE , but they also give at least 1 to η(τ)

and to SEE (and every node of type SEE belongs to at most one such component).

(B) Components on which two points have to be added, and whose (only) node is

of type SXE : those give a contribution of 2 to PE , but they also give at least 1 to

η(τ) and to B (since such a component alone is one of the C0 considered above).

(C) Components on which only one point has to be added: those give a contribution

of 1 to PE , but they also give at least 1 to η(τ).

This shows (4), finishing the proof of (i). As for (ii), (a) is satisfied if we have strict

inequality in (4), so we assume from now on that this is not the case and determine

necessary conditions for equality by looking at the proof of (4) above. First of all,

we see that every maximal connected subscheme of C consisting only of exceptional

components contributes 1 to B, but this gets accounted for only in case (B) above, so if

we want to have equality, every such maximal connected subscheme must actually be

an irreducible component of type (B), which in addition gives a contribution of exactly
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2 to PE and exactly 1 to η(τ). So all exceptional components of the curve must actually

be lines with no marked points, connected at exactly one point to a non-exceptional

component of the curve. Moreover, for equality we must also have SXX = 0, since

these nodes have not been considered above at all.

Hence, in summary, we must have one non-exceptional irreducible component C0 of

homology class β−qE ′, and q exceptional components of homology class E ′ with no

marked points, each connected at exactly one point to C0. But it is easy to compute

the dimension of φ(M(X ,τ)) for these topologies: the map φ simply forgets the q

exceptional components, so

dim φ(M(X̃,τ)) = dim M0,n(X̃ ,β−qE ′)

= vdim M̄0,n(X̃ ,β−qE ′) by (i)

= vdim M̄0,n(X̃ ,β)−q(r−1).

Hence we see that (ii)-(a) is satisfied for q > 1 and (ii)-(e) for q = 1.

This completes the proof. ✷

We now combine our results to prove the enumerative significance of the Gromov-

Witten invariants of P̃r(1). Some examples of these numbers can be found in 2.8.1 and

2.8.2.

Theorem 2.5.3 Let X̃ = P̃r(1), β = d H ′ + eE ′ ∈ A1(X̃) an effective homology class

with d > 0 and e ≤ 0, and T = γ1 ⊗ . . .⊗ γn a collection of non-exceptional effective

classes such that ∑i codim γi = vdim M̄0,n(X̃ ,β). Then Iβ(T ) is enumerative.

Proof The proof goes along the same lines as that of lemma 2.2.2. For irreducible

stable maps (C,x1, . . . ,xn, f ) we have h1(C, f ∗TX̃) = 0 by lemma 2.4.4 (i). Therefore,

if Z ⊂ M̄0,n(X̃ ,β) denotes the closure of M0,n(X̃ ,β), then lemma 1.3.3 tells us that

[M̄0,n(X̃ ,β)]virt = [Z]+α

where α is a cycle of dimension vdim M̄0,n(X̃ ,β) supported on M̄0,n(X̃ ,β)\M0,n(X̃ ,β).

But if φ : M̄0,n(X̃ ,d H ′ + eE ′) → M̄0,n(X ,d H ′) denotes the morphism induced by the

map p : X̃ → X , we must have φ∗α = 0 by proposition 2.5.2 (i). So, considering the

commutative diagram

M̄0,n(X̃ ,β)
φ //

evi

��

M̄0,n(X ,d H ′)

evi

��

X̃
p // X
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for 1 ≤ i ≤ n, it follows by the projection formula that

IX̃
β (T ) = (∏

i

ev∗i p∗γi) · [M̄0,n(X̃ ,β)]virt

= (∏
i

ev∗i γi) ·φ∗[M̄0,n(X̃ ,β)]virt

= (∏
i

ev∗i γi) ·φ∗[Z].

= (∏
i

ev∗i p∗γi) · [Z].

Hence we are evaluating an intersection product on the stack Z.

Unless d + e = 0 and d ≥ 2, the theorem now follows from the Bertini lemma 2.4.7

(iii) in combination with lemma 2.4.8 saying that the generic element of Z has no

automorphisms and corresponds to a generically injective stable map. However, if

d + e = 0 and d ≥ 2, then the image of every stable map in M0,n(X̃ ,d H ′− d E ′) is a

line through the blown-up point. These curves can obviously only satisfy as many in-

cidence conditions as the curves in M0,n(X̃ ,H ′−E ′). But vdim M̄0,n(X̃ ,d H ′−d E ′) >

vdim M̄0,n(X̃ ,H ′−E ′), so the Gromov-Witten invariant will be zero, which is also the

enumeratively correct number. ✷

2.6 Enumerative significance — the case P̃3(4)

In this section, we discuss the enumerative significance of the Gromov-Witten invari-

ants on X̃ = P̃3(4). First we fix some notation. As the four points to blow up on

X = P3 we choose P1 = (1 : 0 : 0 : 0), P2 = (0 : 1 : 0 : 0), P3 = (0 : 0 : 1 : 0), and

P4 = (0 : 0 : 0 : 1). For 1 ≤ i < j ≤ 4, we denote by Li j ⊂ X̃ the strict transform of the

line PiPj. The Li j are disjoint from each other, and we set L =
⋃

i< j Li j. For 1 ≤ i ≤ 4,

we let Hi be the strict transform of the hyperplane in X spanned by the three points Pj

with j 6= i, and we set H =
⋃

i Hi. As usual, Ei denotes the exceptional divisor over Pi.

We set E =
⋃

i Ei.

Let β ∈ A1(X̃) be an effective homology class with d(β) > 0. The first thing to do is to

look at irreducible curves of homology class β and to see whether their moduli space

M0,0(X̃ ,β) is smooth and of the expected dimension, which in this case is

vdim M̄0,0(X̃ ,β) = 4d(β)+2e(β).

In the case of one blow-up in section 2.5, this followed easily from lemma 2.4.4 (i)

since there we always have d(β)+ e(β) ≥ 0. However, for multiple blow-ups, this is

not necessarily the case. Our way to solve this problem is to use a certain Cremona

map to transform curves with d(β) + e(β) ≤ 0 into others with d(β)+ e(β) ≥ 0, so

that lemma 2.4.4 can be applied again. Before we can describe this map, we need a

definition.
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Definition 2.6.1 Let (C, f ) ∈ M0,0(P̃
3(4),β) be an irreducible stable map such that

f (C) 6⊂ L. Then we set λi j(C, f ) to be the “multiplicity of f along Li j”, defined as

follows: if ϕ1 : Ỹ → P̃3(4) is the blow-up of P̃3(4) along L with exceptional divisors

Fi j over Li j, then there is a well-defined map ϕ−1
1 ◦ f : C → Ỹ , and we define

λi j(C, f )λi j(C, f )λi j(C, f ) := Fi j · (ϕ
−1
1 ◦ f )∗[C] ≥ 0.

Finally, we define~λ(C, f )~λ(C, f )~λ(C, f ) to be the vector consisting of all λi j(C, f ), and set

λ(C, f )λ(C, f )λ(C, f ) = ∑
i< j

λi j(C, f ).

We can now describe the Cremona map announced above.

Lemma 2.6.2 There exists a birational map ϕ : P̃3(4) 99K P̃3(4) which is an isomor-

phism outside L with the following property:

If (C, f ) ∈ M0,0(P̃
3(4),β) is an irreducible stable map such that f (C) 6⊂ L, so that the

transformed stable map (C,ϕ◦ f ) ∈ M0,0(P̃
3(4),β′) exists, then the homology class β′

of the transformed stable map satisfies

d(β′) = 3d(β)+2e(β)−λ(C, f ),

e(β′) = −4d(β)−3e(β)+2λ(C, f ).

Hence, in particular, we have

• 4d(β′)+2e(β′) = 4d(β)+2e(β),

• if d(β)+e(β) ≤ 0, then d(β′)+e(β′) ≥ 0.

Proof The birational map ϕ : P̃3(4) 99K P̃3(4) we want to consider is most easily

described in the language of toric geometry (see e.g. [F2]). Let ∆′ in R3 be the complete

simplicial fan with one-dimensional cones {〈vi〉 | 1 ≤ i ≤ 4}, where

v1 = (1,0,0), v2 = (0,1,0), v3 = (0,0,1), v4 = (−1,−1,−1),

corresponding to the toric variety X∆′ = P3. Let ∆ be the blow-up of ∆′ at the four torus-

invariant points as described in [F2] section 2.4, so that the toric variety X∆ associated

to ∆ is P̃3(4). The fan ∆ can be described explicitly as follows: it is the complete fan

with one-dimensional cones

{±〈vi〉 | 1 ≤ i ≤ 4}

and two-dimensional cones

{〈vi,−v j〉 | 1 ≤ i, j ≤ 4; i 6= j}∪{〈vi,v j〉 ; 1 ≤ i < j ≤ 4}.
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The Picard group of X∆ is generated by the divisors corresponding to the one-dimen-

sional cones, we will denote the divisor corresponding to the cone 〈vi〉 by Hi and the

divisor corresponding to the cone −〈vi〉 by Ei. This coincides with the definition of Hi

and Ei given above, and these divisors satisfy the three relations

H : = H1 +E2 +E3 +E4

= H2 +E1 +E3 +E4

= H3 +E1 +E2 +E4

= H4 +E1 +E2 +E3 (1)

where H denotes the pullback of the hyperplane class under the map p : P̃3(4) → P3.

Now denote by −∆ the fan obtained by mirroring ∆ at the origin in R3. Then, of course,

we also have X−∆
∼= P̃3(4). The map ϕ we want to consider is now the obvious rational

map ϕ : X∆ 99K X−∆ which is the identity on the torus (C∗)3 contained in both X∆ and

X−∆. Note that the one-dimensional cones of ∆ and −∆ are the same, so that ϕ is an

isomorphism away from a subvariety of P̃3(4) of codimension 2.

In more geometric terms, we can describe ϕ as the so-called “flip” of the 6 lines L, i.e.

one blows up these lines (that have normal bundle O(−1)⊕O(−1) in P̃3(4)) to get a

variety Ỹ with the 6 exceptional divisors F̂i j
∼= P1 ×P1 corresponding to Li j, and then

blows down the Fi j again with the roles of base and fibre reversed in P1 ×P1. One can

write these two steps as in the following diagram:

Ỹ
ϕ1

zz✉ ✉
✉ ✉
✉ ✉
✉ ✉
✉ ✉

ϕ2

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

X∆
∼= P̃3(4)

ϕ //❴❴❴❴❴❴❴ X−∆
∼= P̃3(4).

The variety Ỹ can be depicted as follows:

E

EE

E

F

F F

F

H4

21

4

1,2

1,3 2,3

1,4 F2,4

3

^ ^
^

^

^

^

^ ^

^

F3,4

^

^
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Here, we denoted the strict transforms of Hi and Ei under ϕ1 by Ĥi and Êi, respectively.

These are all isomorphic to P̃2(3). The divisors Ĥ1, Ĥ2, and Ĥ3 have not been drawn

to keep the picture simple.

We now look more closely at the divisors in Ỹ . Obviously, we have

ϕ∗
1H1 = Ĥ1 + F̂23 + F̂24 + F̂34,

ϕ∗
1E1 = Ê1,

and similarly for Hi and Ei with i = 2,3,4. The Picard group of Ỹ is the free abelian

group generated by the Ĥi, Êi, and F̂i j, modulo the three relations induced by (1)

Ĥ := ϕ∗
1H = Ĥ1 + Ê2 + Ê3 + Ê4 + F̂23 + F̂24 + F̂34

= Ĥ2 + Ê1 + Ê3 + Ê4 + F̂13 + F̂14 + F̂34

= Ĥ3 + Ê1 + Ê2 + Ê4 + F̂12 + F̂14 + F̂24

= Ĥ4 + Ê1 + Ê2 + Ê3 + F̂12 + F̂13 + F̂23. (2)

If we now have a stable map in (C, f ) in Ỹ , we also get stable maps (Ci, fi) in P̃3(4) by

composing f with ϕi for i = 1,2. We will now compute the homology classes of these

two stable maps.

The homology class of (C1, f1) is β = d H ′+∑i ei E ′
i where

d = H ·ϕ1∗ f∗[C]

= Ĥ · f∗[C]

= (Ĥ1 + Ê2 + Ê3 + Ê4 + F̂23 + F̂24 + F̂34) · f∗[C],

ei = −Ei ·ϕ1∗ f∗[C]

= −Êi · f∗[C].

The homology class of (C2, f2) is obtained by reversing the roles of Ĥi and Êi and

substituting F̂12 ↔ F̂34, F̂13 ↔ F̂24, and F̂14 ↔ F̂23, so it is β′ = d′H ′ +∑i e′i E ′
i where

d′ = (Ê1 + Ĥ2 + Ĥ3 + Ĥ4 + F̂14 + F̂13 + F̂12) · f∗[C]

= (3Ĥ1 −2Ê1 + Ê2 + Ê3 + Ê4 − F̂12 − F̂13 − F̂14 +2F̂23 +2F̂24 +2F̂34) · f∗[C]

(by substituting Ĥ2, Ĥ3, and Ĥ4 from (2))

= 3d +2(e1 +e2 +e3 +e4)− (∑
i< j

Fi j) · f∗[C]

︸ ︷︷ ︸
=λ(C1, f1)=λ(C2, f2)=:λ

,

e′1 = −Ĥ1 · f∗[C]

= −d −e2 −e3 −e4 +(F̂23 + F̂24 + F̂34) · f∗[C],

and similarly for e2, e3, and e4. Defining e = ∑i ei and e′ = ∑i e′i, we arrive at the

equations

d′ = 3d +2e−λ,

e′ = −4d −3e+2λ.
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In particular, we see that 4d′+2e′ = 4d +2e and that, if d +e ≤ 0, then

d′+e′ = −d −e+λ ≥ λ ≥ 0.

✷

We now use this map to prove some properties of irreducible stable maps in X̃ = P̃3(4).

As already mentioned in section 2.4, apart from the case where M0,n(X̃ ,β) is smooth

of the expected dimension (case (iii) below), we have to consider the cases where the

curves are multiple coverings of one of the Li j (case (i)) and where they are contained

in one of the Hi (such that they cannot satisfy any incidence conditions with generic

points in X̃ , see case (ii)). One of the most important statements of the next lemma

is the final conclusion that, although the dimension of the moduli space may be too

big, the curves can never satisfy more incidence conditions (with points) as one would

expect from the virtual dimension of the moduli space.

Lemma 2.6.3 Let β ∈ A1(X̃) be a homology class such that M0,0(X̃ ,β) 6= /0. Set

n :=
1

2
vdim M̄0,0(X̃ ,β) = 2d(β)+e(β).

Then at least one of the following statements holds:

(i) n = 0 and β = d H ′− d E ′
i − d E ′

j for some d > 0, 1 ≤ i < j ≤ 4. All curves in

M0,0(X̃,β) are contained in Li j.

(ii) n > 0, and for generic points Q1, . . . ,Qn ∈ X̃ , we have

ev−1
1 (Q1)∩·· ·∩ev−1

n (Qn) = /0

in M0,n(X̃ ,β).

(iii) n > 0, dim M0,0(X̃ ,β) = vdim M̄0,0(X̃ ,β), and for a generic element C = (C, f )∈

M0,0(X̃,β), f is generically injective, C has no automorphisms, and f (C) inter-

sects neither L (which is a disjoint union of 6 smooth rational curves) nor H∩E

(which is a union of 12 smooth rational curves).

In particular, it is impossible that n < 0, and in any case we have

ev−1
1 (Q1)∩·· ·∩ev−1

n′
(Qn′) = /0

in M0,n′(X̃ ,β) for generic points Q1, . . . ,Qn′ ∈ X̃ if n′ > n.

Proof Let (C, f ) ∈ M0,0(X̃ ,β) be a stable map, d = d(β), ei = ei(β), e = ∑i ei, and

assume that β 6= 0 (since otherwise M0,0(X̃ ,β) = /0).

If d = 0, then n = e(β) > 0 and f (C) is contained in an exceptional divisor. Then it is

clear that for a generic point in X̃ , no curve in M0,0(X̃ ,β) meets this point. Therefore,

(ii) is satisfied.
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Now assume d > 0, then we must have ei ≤ 0 for all i. The curve f (C) cannot be con-

tained at the same time in three of the Hi, since their intersection is empty. This means

that there are at least two of the Hi, say H1 and H2, in which f (C) is not contained. It

follows that

d +e2 +e3 +e4 = deg f ∗H1 ≥ 0 and d +e1 +e3 +e4 = deg f ∗H2 ≥ 0.

Since e4 ≤ 0 and e3 ≤ 0, this also means that d +e2 +e3 ≥ 0 and d +e1 +e4 ≥ 0, and

therefore n = 2d +e≥ 0: the virtual dimension of the moduli space cannot be negative.

Moreover, if n = 0 then we must have equality everywhere, which means

e1 = −d, e2 = −d, e3 = 0, e4 = 0.

Hence we are in case (i), and it is clear that all these curves are d-fold coverings of L12.

It remains to consider the case when n > 0. We distinguish four cases.

Case 1: β = d H ′−d E ′
i for d > 1 and some 1 ≤ i ≤ 4. Then the curves in M0,0(X̃ ,β)

must obviously be d-fold coverings of a line through the exceptional divisor Ei. Those

cannot pass through two generic points, however n = 2d − d = d ≥ 2, hence (ii) is

satisfied.

We assume therefore from now on that β is not of this form.

Case 2: d +e ≥ 0. We show that (iii) is satisfied.

• dim M0,0(X̃ ,β) = vdim M̄0,0(X̃ ,β): This follows because h1(C, f ∗TX̃) = 0 by

lemma 2.4.4 (i).

• the generic element of M0,0(X̃ ,β) has no automorphisms and corresponds to a

generically injective map: This follows from lemma 2.4.8.

• the generic element of M0,0(X̃ ,β) does not intersect L and H∩E : Let L be one

of the 18 smooth rational curves in L∪ (H∩E), we will show that the generic

element of M0,0(X̃ ,β) does not intersect L. Assume that (C, f ) is a stable map in

X̃ such that there is a point x ∈C with f (x) = Q ∈ L. Consider C = (C,x, f ) as

an element of M = M0,1(X̃ ,β). The tangent space to M at the point C is (see [K]

section 1.3.2)

TM,C = H0(C, f ∗TX̃)/H0(C,TC(−x)).

If Z ⊂ M denotes the substack of those stable maps with f (x) ∈ L, then the

tangent space to Z at C is

TZ,C = {s ∈ TM,C ; s(x) ∈ f ∗TL,Q}.

However, by lemma 2.4.4 (i) for ε = 1 we see that

h0(C, f ∗TX̃(−x)) = h0(C, f ∗TX̃)−3,



2.6. ENUMERATIVE SIGNIFICANCE — THE CASE P̃3(4) 61

i.e. that the map H0(C, f ∗TX̃) → f ∗TX̃ ,Q, s 7→ s(x) is surjective. Therefore the

tangent space to Z at C has smaller dimension than that to M. Since M is smooth

at C, it follows that Z has smaller dimension than M at C, proving the statement

that the generic element of M0,0(X̃ ,β) does not intersect L.

Case 3: d +e < 0 and ei = 0 for some i. Without loss of generality assume that e4 = 0.

Since then 0 > d +e = deg f ∗(H −E1−E2−E3) = deg f ∗H4, we conclude that f (C)

must be contained in H4. Hence (ii) is satisfied.

Case 4: d +e < 0 and all ei 6= 0. We show that (iii) is satisfied using the Cremona map

of lemma 2.6.2. We use in the following proof the notations of this lemma. Cer-

tainly no curve in M0,0(X̃ ,β) is contained in L. So if we decompose M0,0(X̃ ,β) into

parts M~λ
according to the value of~λ(C) then ϕ gives injective morphisms from M~λ

to M0,0(X̃ ,β~λ
) with β~λ

calculated in the proof of lemma 2.6.2. In particular we have

d(β~λ
)+e(β~λ

) ≥ 0, so that we can apply the results of case 2 to M0,0(X̃ ,β~λ
). We there-

fore have

dim M~λ
≤ dim M0,0(X̃ ,β~λ

) (1)

= vdim M̄0,0(X̃,β~λ
) by case 2

= 4d(β~λ
)+2e(β~λ

)

= 4d(β)+2e(β) by lemma 2.6.2

= vdim M̄0,0(X̃,β).

If~λ 6= 0, i.e. if all curves in M~λ
intersect L, then the transformed curves in M0,0(X̃ ,β~λ

)

also have to intersect L. But the generic curve in M0,0(X̃ ,β~λ
) does not intersect L by

the results of case 2, so it follows that we must have strict inequality in (1). Since

the dimension of M̄0,0(X̃ ,β) cannot be smaller than its virtual dimension, this means

that M~λ
is nowhere dense in M0,0(X̃ ,β) for~λ 6=~0. In other words, M~0 is dense in

M0,0(X̃ ,β), so it obviously suffices to prove (iii) for M~0.

But this is now easy: it follows from the above calculation that the dimension of M~0
is equal to the virtual dimension of M̄0,0(X̃ ,β). The other statements of (iii) about the

generic curves in the moduli space are obviously preserved by the Cremona map ϕ, so

they follow from the fact that the space M0,0(X̃ ,β~0) has these properties.

This completes the proof that we always have one of the cases (i) to (iii). The statement

that n ≥ 0 has already been proven, and the fact that

ev−1
1 (Q1)∩·· ·∩ev−1

n′
(Qn′) = /0

in M0,n′(X̃ ,β) for generic points Q1, . . . ,Qn′ ∈ X̃ if n′ > n follows easily in all cases:

for (i) because the image of all curves in the moduli space is contained in an Li j, for

(ii) it is trivial, and for (iii) it follows from the Bertini lemma 2.4.7 (ii). ✷

To prove enumerative significance for the Gromov-Witten invariants on P̃3(4), we now

finally have to consider reducible stable maps. Some numerical examples can be found

in 2.8.3.
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Theorem 2.6.4 Let X̃ = P̃3(4) and β ∈ A1(X̃) an effective homology class which is

not of the form d H ′ − d E ′
i − d E ′

j for some d ≥ 2 and i 6= j. Let T = pt⊗⊗⊗n, where

n = 2d(β)+e(β). Then Iβ(T ) is enumerative.

Proof Let Q1, . . . ,Qn be generic points in X̃ . First we want to show that all points in

the intersection

I := ev−1
1 (Q1)∩·· ·∩ev−1

n (Qn) (1)

on M̄0,n(X̃ ,β) correspond to irreducible stable maps. To do this, we decompose the

moduli space M̄0,n(X̃ ,β) into the spaces Mτ := M(X̃ ,τ) according to the topology of

the curves and show that I∩Mτ is empty for each τ corresponding to reducible curves.

So assume that τ is a topology corresponding to stable maps (C, f ) whose irreducible

components that are not contracted by f are C1, . . . ,Ca. For 1 ≤ i ≤ a, let βi 6= 0 be the

homology class of f on Ci and let ni be the number of markings on the component Ci.

By a maximal contracted subscheme we will mean a maximal connected subscheme

of C consisting only of components of C that are contracted by f . A maximal con-

tracted subscheme will be called marked if it contains at least one of the marked

points. For each 1 ≤ i ≤ a, we define ρi to be the number of marked maximal con-

tracted subschemes of C that have non-empty intersection with Ci.

We can assume that each maximal contracted subscheme hast at most one marked

point, since otherwise the intersection (1) will certainly be empty. This means that

each maximal contracted subscheme must have at least two points of intersection with

the other components of the curve, since otherwise the prestable map (C,x1, . . . ,xn, f )

would not be stable. We conclude that each marked point that lies in a contracted

component (there are (n−∑i ni) of them) must be counted in at least two of the ρi:

∑
i

ρi ≥ 2(n−∑
i

ni). (2)

Now there is a morphism

Φ : Mτ → M0,n1+ρ1
(X̃ ,β1)×·· ·×M0,na+ρa(X̃ ,βa) (3)

mapping a stable map C to its non-contracted components, where on each such com-

ponent we take as marked points the ni marked points of C lying on this component

together with the intersection points of the component with the maximal contracted

subschemes. We denote by Φi : Mτ → M0,ni+ρi
(X̃ ,βi) the composition of Φ with the

projections onto the factors of the right hand side of (3).

We now consider again the intersection I in (1) and show that Φ(I ∩Mτ) is empty for

all topologies τ but the trivial one, hence showing that I ∩Mτ is empty. Note that in

Φi(I∩Mτ) the image point of each of the ni +ρi marked points is fixed to be a certain



2.6. ENUMERATIVE SIGNIFICANCE — THE CASE P̃3(4) 63

Q j. But we have seen in lemma 2.6.3 that, if Φi(I∩Mτ)⊂M0,ni+ρi
(X̃ ,βi) is non-empty,

this requires ni +ρi to be at most 2d(βi)+e(βi). Therefore we get

n ≤ 2n−∑
i

ni

(2)
≤∑(ni +ρi) ≤ ∑

i

(2d(βi)+e(βi))

= 2d(β)+e(β) =
1

2
vdim M̄0,0(X̃ ,β) = n.

Hence we must have equality everywhere, which means first of all that ∑i ni = n and

therefore ρi = 0 for all i. Moreover, it follows that the number ni of marked points

with prescribed image in Φi(I ∩Mτ) is equal to 2d(βi)+ e(βi) for all i, showing that

there can be no component of C of type (ii) according to the classification of lemma

2.6.3 (to be precise, that for all i, C is mapped under Φi to a moduli space which is not

of type (ii)). If there are only components of type (i), then we have the case that β =

d H −d E ′
i −d E ′

j for some d > 2 and i 6= j (note that there cannot be two components

of type (i) with different (i, j) since the Li j do not intersect). As we excluded this case

in the theorem, we conclude that there must be at least one component of C of type

(iii). We are going to show that there is in fact only one component which must then

necessarily be of type (iii).

We first exclude components of type (i). Note that on each component Ci of type

(iii) we impose ni generic point conditions. Since dim M0,ni
(X̃ ,βi) = 3ni, this means

by the Bertini lemma 2.4.7 (ii) that Φi(I ∩Mτ) ⊂ M0,ni
(X̃,βi) is zero-dimensional (if

not empty). Moreover, if we let Zi ⊂ M0,ni
(X̃ ,βi) be the substack of curves intersecting

L∪(H∩E), then dim Zi < 3ni by lemma 2.6.3, and hence again by Bertini, Φi(I∩Mτ)

will not intersect Zi, i.e. the curves in Φi(I∩Mτ) do not intersect L∪ (H∩E). This is

true for any component of type (iii). Hence, if there were also a component of type (i)

which is contained in an Li j, the curve would not be connected, which is impossible.

Therefore we can only have components of type (iii).

Assume now that we have at least two components of type (iii). We will again show

that these components do not intersect, leading to a contradiction. We define

V1 :=
⋃

(C,x1,...,xn1
, f )∈Φ1(I∩Mτ)

f (C) ⊂ X̃ ,

V2 :=
a⋃

i=2

⋃
(C,x1,...,xni

, f )∈Φi(I∩Mτ)

f (C) ⊂ X̃ .

We already remarked that Φi(I ∩Mτ) is zero-dimensional for all i and corresponds to

curves none of which intersects L∪ (H∩E), hence V1 and V2 are one-dimensional

subvarieties of X̃\(L∪ (H∩E)). We now define

M := {diag (v0,v1,v2,v3) | vi ∈ C∗}/C∗ ⊂ PGL (3)

to be the space of all invertible projective diagonal matrices. Obviously the elements

of M can be considered as automorphisms of P̃3(4) with our choice of the blown-up



64 CHAPTER 2. GROMOV-WITTEN INVARIANTS OF BLOW-UPS

points. We now consider the map

Ψ : V1 ×M→ X̃\(L∪ (H∩E))

(Q,µ) 7→ µ(Q)

and determine the dimension of its fibres. Fix a point Q′ ∈ X̃\(L∪ (H∩E)).

• If Q′ /∈H∪E , then for any Q∈ X̃\(L∪(H∩E)) there is at most one µ∈M such

that µ(Q) = Q′ (in fact, there is exactly one such µ if Q /∈ H∪E and no such µ

otherwise). Therefore the fibre Ψ−1(Q′) is one-dimensional (in fact, isomorphic

to V1\(H∪E)).

• If Q′ ∈ Hi for some i, then any Q ∈ X̃\(L∪ (H∩E)) that can be transformed

into Q′ by an element of M must also lie in Hi. In this case, we then have

a C∗-family of elements of M mapping Q to Q′. Since V1 meets Hi only in

finitely many points (otherwise we would be in case (ii) of lemma 2.6.3), the

fibre Ψ−1(Q′) is again (at most) one-dimensional.

• If Q′ ∈ Ei for some i, we again get at most one-dimensional fibres by exactly the

same reasoning as for the Hi.

We have thus shown that all fibres of Ψ are at most one-dimensional. Hence Ψ−1(V2)

can be at most two-dimensional. But this means that there must be a µ ∈ M such

that V1×{µ}∩Ψ−1(V2) = /0, or in other words such that µ(V1)∩V2 = /0. So if we now

transform the prescribed images Qi ∈ X̃ of those marked points lying on the component

C1 by µ, this will transform V1 to µ(V1), with the result that the component C1 does not

intersect the others. This would lead to curves that are not connected, which is a

contradiction.

So we finally see that only the trivial topology τ corresponding to irreducible curves

can contribute to I, and moreover that these irreducible curves are of type (iii) accord-

ing to lemma 2.6.3. Hence if we let Z ⊂ M̄0,n(β) be the closure of the substack corre-

sponding to irreducible curves and R be the union of the other irreducible components,

then by lemma 1.3.3 we can write

[M̄0,n(β)]virt = [Z]+ some cycle supported on R.

But as we have just shown, the intersection I to be considered is disjoint from R, so we

can drop this additional cycle and evaluate the intersection on Z. Then it follows from

the Bertini lemma 2.4.7 (iii) that the invariant Iβ(T ) is enumerative, since the generic

element of Z has no automorphisms, as shown in lemma 2.6.3. ✷
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2.7 Tangency conditions via blow-ups

In this section we will show how to count curves in X = Pr of given homology class β

that intersect a fixed point P ∈ X with tangent direction in a specified linear subspace

of TX ,P. One would expect that this can be done on the blow-up X̃ of X at P, since the

condition that a curve in X has tangent direction in a specified linear subspace of TX ,P

of codimension k (where 1≤ k ≤ r−1) translates into the statement that the strict trans-

form of the curve intersects the exceptional divisor E in a specified k-codimensional

projective subspace of E ∼= Pr−1. As such a k-codimensional projective subspace of E

has class −(−E)k+1, we would expect that the answer to our problem is

IX̃
β−E ′(T ⊗−(−E)k+1)

where T denotes as usual the other incidence conditions that the curves should satisfy.

We will show in theorem 2.7.1 that this is in fact the case as long as k 6= r−1. However,

if k = r − 1, so that we want to have a fixed tangent direction at P, things get more

complicated. This can be seen as follows: consider the invariant IX
β (T ⊗ pt⊗⊗⊗2) on X ,

about which we know that it counts the number of curves on X through the classes in

T and through two generic points P and P′ in X . We now want to see what happens if

P′ and P approach each other and finally coincide. Basically, if P′ approaches P, there

are two possibilities: either the two points x and x′ on the curve that are mapped to P

and P′ also approach each other (left picture), or they do not (right picture):

P P’ P’P

In the limit P′ → P, the curves on the left become curves through P tangent to the

limit of the lines PP′, and those on the right simply become curves intersecting P with

global multiplicity two. But the latter we have already counted in theorem 2.5.3. So

we expect in this case

IX
β (T ⊗ pt⊗⊗⊗2) = (curves through T and through P with specified tangent)

+2 IX̃
β−2E ′(T )

where the factor two arises because in the right picture, the points x and x′ on the curve

can be interchanged in the limit where P = P′ and x 6= x′. This should motivate the

results of the following theorem. Some numerical examples can be found in 2.8.6.
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Theorem 2.7.1 Let X = Pr and let 0 6= β ∈ A1(X) be an effective homology class. Let

P ∈ X be a point, k ∈ {1, . . . ,r−1} and W a generic projective subspace of P(TX ,P) of

codimension k. Let T = γ1⊗ . . .⊗γn be a collection of effective classes in X such that

∑i codim γi = vdim M̄0,n(X ,β)− r +1−k.

Then, for generic subschemes Vi ⊂ X with [Vi] = γi, the number of irreducible stable

maps (C,x1, . . . ,xn+1, f ) satisfying the conditions

• f generically injective,

• f∗[C] = β,

• f (xi) ∈Vi for all i,

• f (xn+1) = P,

• the tangent direction of f at xn+1 lies in W (i.e. if f̃ :C → X̃ is the strict transform,

then f̃ (xn+1) ∈W ⊂ P(TX ,P) ∼= E),

is equal to

IX̃
β−E ′(T ⊗−(−E)k+1) if k < r−1,

IX
β (T ⊗ pt⊗⊗⊗2)−2 IX̃

β−2E ′(T ) if k = r−1,

where each such curve is counted with multiplicity one.

Proof Consider the Gromov-Witten invariant IX̃
β−E ′(T ⊗−(−E)k+1). We will show

that this invariant counts what we want, apart from a correction term in the case k =

r−1.

As usual, we decompose the moduli space M̄0,n+1(X̃ ,β−E ′) according to the topology

of the curves

M̄0,n+1(X̃ ,β−E ′) =
⋃
τ

M(X̃ ,τ)

and determine which parts M(X̃ ,τ) give rise to contributions to the intersection

ev−1
1 (V1)∩·· ·∩ev−1

n (Vn)∩ev−1
n+1(W ) (1)

on M̄0,n+1(X̃ ,β−E ′) (note that [W ] = −(−E)k+1 on X̃).

We use proposition 2.5.2 (ii) and distinguish the five cases of this proposition. Assume

that M(X̃ ,τ) satisfies (a). Set I := ev−1
1 (V1)∩ ·· · ∩ ev−1

n (Vn) on M̄0,n+1(X ,β). By the

Bertini lemma 2.4.7 (ii), this intersection is of codimension

∑
i

codim Vi = vdim M̄0,n(X̃ ,β)− r +1−k

= vdim M̄0,n+1(X̃ ,β−E ′)−k−1

≥ dim φ(M(X̃ ,τ))+ r−k−1 (by (a))

≥ dim φ(M(X̃ ,τ)), (since k ≤ r−1)
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where φ : M(X̃ ,τ) →֒ M̄0,n+1(X̃ ,β − E ′) → M̄0,n+1(X ,β) is the morphism given by

proposition 1.2.6 (ii). Hence, by Bertini again, φ−1(I) will be a finite set of points.

But since the point xn+1 of the curves in φ−1(I) is not restricted at all, it is actually

impossible that φ−1(I) is finite unless it is empty. So we see that we get no contribution

to the intersection (1) from M(X̃,τ).

Before we look at the cases (b) to (e) of proposition 2.5.2 (ii), we set Z = ev−1
n+1(E) ⊂

M̄0,n+1(X̃ ,β−E ′) and decompose Z analogously to M̄0,n+1(X̃ ,β−E ′) as Z =
⋃

τ Z(τ).
Then we obviously have

dim Z(τ) =

{
dim M(X̃ ,τ)−1 if xn+1 is on a non-exceptional component of the curve,

dim M(X̃ ,τ) if xn+1 is on an exceptional component of the curve.

(2)

There are evaluation maps evi : Z(τ) → X̃ for 1 ≤ i ≤ n and ẽvn+1 : Z(τ) → E ∼= Pr−1,

and the intersection (1) now becomes the intersection

ev−1
1 (V1)∩·· ·∩ev−1

n (Vn)∩ ẽv−1
n+1(W ), (3)

on Z(τ), where Vi ⊂ X̃ and W ⊂ Pr−1 are chosen generically.

We now continue to look at the cases (b) to (e) of proposition 2.5.2 (ii). If M(X̃ ,τ)

satisfies (b), then the intersection (3) will be empty by Bertini, since

∑
i

codim γi +codim W = vdim M̄0,n(X ,β)− r +1

= vdim M̄0,n+1(X̃ ,β−E ′)−1

≥ dim M(X̃ ,τ)+1 (by (b))

≥ dim Z(τ)+1. (by (2))

Similarly, this follows for (c): because of η(τ) = 0 we have no exceptional component,

hence we must have the first possibility in (2), i.e.

∑
i

codim γi +codim W = vdim M̄0,n+1(X̃ ,β−E ′)−1

≥ dim M(X̃ ,τ) (by (c))

≥ dim Z(τ)+1. (by (2))

Hence we are only left with the cases (d) and (e). In case (d) we must have the first

possibility in (2) since the curve is irreducible, hence

∑
i

codim γi +codim W = vdim M̄0,n+1(X̃ ,β−E ′)−1

= dim M(X̃ ,τ)−1 (by (d))

= dim Z(τ). (by (2))
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The intersection (3) is transverse and finite by Bertini. Moreover, the dimension

of M(X̃ ,τ) coincides with vdim M̄0,n+1(X̃ ,β−E ′), and there are no obstructions on

M̄(X̃,τ) by lemma 2.4.4 (i). Hence, using lemma 1.3.3 in the same way as we did in

the proof of theorem 2.5.3, we see that we get a contribution to the Gromov-Witten

invariant IX̃
β−E ′(T ⊗−(−E)k+1) from exactly the curves we wanted. One can depict

these curves as follows:

E
f(C)

W

n+1f(x      )

Note that, by corollary 2.3.2, in the case k = r−1 we have

IX̃
β−E ′(T ⊗−(−E)r) = IX̃

β−E ′(T ⊗ pt) = IX
β (T ⊗ pt⊗⊗⊗2).

It remains to look at case (e). There we have

∑
i

codim γi +codim W = vdim M̄0,n+1(X̃ ,β−E ′)−1

= dim M(X̃ ,τ) (by (e))

≥ dim Z(τ). (by (2))

Note that again there are no obstructions on M̄(X̃ ,τ) by lemma 2.5.1.

Hence, to get a non-zero contribution from (e) to the intersection (3), we must have

equality in the last line, which fixes the component where xn+1 lies. We thus have

reducible curves with exactly two components, one component C1 with marked points

x1, . . . ,xn and homology class β−2E ′, and the other component C2 with marked point

xn+1 and homology class E ′. Moreover, the intersection (3) must be transverse and

finite by Bertini. But this is only possible if k = r − 1, since the only conditions on

the exceptional line C2 are that it has to intersect C1 and that xn+1 maps to W , and this

cannot fix C2 uniquely unless W is a point, i.e. k = r−1. This finishes the proof of the

theorem in the case k < r−1.

In the case k = r−1, we have just shown that the curves in the intersection (3) look as

follows:

E

f(C   )2

W=f(x      )n+1

f(C   )1
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Here, one has to show that the generic curve of homology class β−2E ′ intersects the

exceptional divisor twice, and not only once with multiplicity two. But this is easy to

see: irreducible curves of homology class β−2E ′ intersecting the exceptional divisor

once with multiplicity two correspond via strict transform to curves of homology class

β in Pr having a cusp at P. For maps f : P1 → X = Pr it is however easy to see that the

requirement that a specified point x ∈ P1 is mapped to P and that d f (x) = 0 imposes

2r independent conditions, so the space of irreducible stable maps of homology class

β with a cusp at P has dimension

dim M0,1(X ,β)−2r = dim M0,0(X̃ ,β−2E ′)−1,

so the generic curve in X̃ of homology class β−2E ′ does indeed intersect the excep-

tional divisor twice and looks as in the picture above.

Therefore, to get the correct enumerative answer, we have to subtract the contribution

from this case (e). But this is easily done, since we now know that this contribution is

twice the number of curves of homology class β−2E ′ satisfying the conditions T (the

factor two arises since the component C2 can be attached to both points of intersection

of the component f (C1) with E). By theorem 2.5.3, we know that this number is

IX̃
β−2E ′(T ). This finishes the proof also in the case k = r−1. ✷

These results should be compared with corollary 1.6.7 where we already computed

other numbers of curves with tangency conditions.

One can of course ask whether the analogue of theorem 2.7.1 is true also for several

tangency conditions at different points. As imaginable from our work in this chapter,

the answer in general is no, and the problems arising here are essentially the same as

those discussed in the previous sections when considering multiple blow-ups.

However, as (most) invariants on P̃2(s) are enumerative by [GP], one can expect an

analogue of theorem 2.7.1 in this case. Indeed, numerical calculations show that this

seems to be true: if one calculates with these methods what should be the number

of rational curves in P2 tangent to c general lines at c fixed points, and intersecting

additional a general points, one obtains exactly the numbers N(a,0,c) of Ernström and

Kennedy [EK2] that have been computed by completely different methods and shown

to be enumeratively correct.

2.8 Numerical examples

Example 2.8.1 Gromov-Witten invariants on P̃2(1)

According to theorem 2.5.3, the Gromov-Witten invariants I
P̃

2(1)
d H ′+eE ′(pt⊗⊗⊗(3d+e−1)) for

d > 0 are equal to the numbers of degree d plane rational curves meeting 3d + e− 1

generic points in the plane, and in addition passing through a fixed point in P2 with
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global multiplicity −e. All these curves are counted with multiplicity one. Some of

the invariants are listed in the following table.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

e = 0 1 1 12 620 87304 26312976 14616808192

e = −1 1 1 12 620 87304 26312976 14616808192

e = −2 0 0 1 96 18132 6506400 4059366000

e = −3 − 0 0 1 640 401172 347987200

e = −4 − 0 0 0 1 3840 7492040

e = −5 − 0 0 0 0 1 21504

e = −6 − − 0 0 0 0 1

The equality of the first two lines follows from the geometric meaning of the invari-

ants (see theorem 2.5.3) as well as from corollary 2.3.2. In [GP], L. Göttsche and R.

Pandharipande also compute the numbers given here, together with those for blow-ups

of P2 in any number of points, and they prove the enumerative significance of all these

numbers if the prescribed multiplicity in at least one of the blown-up points is one or

two. The numbers for e =−2 have been computed earlier by different methods in [P2].

The fact that I
P̃

2(1)
d H ′−(d−1)E ′(pt⊗⊗⊗2d) = 1 can also be understood geometrically: a curve C

of degree d in P2 passing with multiplicity d −1 through a point P has genus

1

2
(d−1)(d−2)−

1

2
(d−1)(d −2) = 0,

i.e. it is always a rational curve. Hence the space of degree d rational curves with a

(d −1)-fold point in P is simply a linear system of the expected dimension, showing

that the corresponding Gromov-Witten invariant must be 1.

Example 2.8.2 Gromov-Witten invariants on P̃3(1)

As in the previous example, the Gromov-Witten invariants I
P̃

3(1)
d H ′+eE ′(pt⊗⊗⊗(2d+e)) for d >

0 are equal to the numbers of degree d rational curves in P3 meeting 2d + e generic

points, and in addition passing through a fixed point in P3 with global multiplicity −e.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

e = 0 1 0 1 4 105 2576 122129 7397760

e = −1 1 0 1 4 105 2576 122129 7397760

e = −2 0 0 0 0 12 384 23892 1666128

e = −3 − 0 0 0 0 0 620 72528

e = −4 − 0 0 0 0 0 0 0

Example 2.8.3 Gromov-Witten invariants on P̃3(2)

By theorem 2.6.4, the numbers I
P̃

3(2)
d H ′+e1 E ′

1+e2 E ′
2
(pt⊗⊗⊗(2d+e1+e2)) for d > 0 are enumer-

ative unless d > 2, e1 = −d, e2 = −d (for those cases, see proposition 2.8.5). This
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means that they are equal to the numbers of degree d rational curves in P3 meeting

2d + e1 + e2 generic points in P3, and in addition passing through two fixed points

with global multiplicities −e1 and −e2, respectively.

(e1,e2) d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

(−2,−2) 1/8 0 0 1 48 4374 360416 39100431

(−3,−2) − 0 0 0 0 96 14040 2346168

(−3,−3) − 1/27 0 0 0 1 384 119134

(−4,−2) − 0 0 0 0 0 0 18132

(−4,−3) − − 0 0 0 0 0 640

(−4,−4) − − 1/64 0 0 0 0 1

The numbers with one of the ei =−1 can be obtained from corollary 2.3.2 and example

2.8.2.

Example 2.8.4 Gromov-Witten invariants on P̃4(2)

The invariants I
P̃

4(2)
d H ′+e1 E ′

1+e2 E ′
2
( · ) for d > 0 are enumerative if only one of the blown-

up points is involved (i.e. if one of the ei is zero) or if one of the ei is equal to −1

(by corollary 2.3.2). It has already been mentioned that in almost all other cases,

the invariants are not enumerative. As examples, we list in the following table some

invariants I
P̃

4(2)
d H ′+e1 E ′

1+e2 E ′
2
(T ) where T = pt⊗⊗⊗a ⊗ (H2)⊗⊗⊗b with a ≥ 0, 0 ≤ b ≤ 2 being

the unique numbers such that 5d +3e1 +3e2 +1 = 3a+b.

(e1,e2) d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

(−1,−1) 1 0 1 161 270 831 1351863

(−2,−1) 0 0 0 9 16 105 233040

(−2,−2) − 1/4 0 5/4 9/4 29/2 154683/4

(−3,−1) − 0 0 0 0 0 2625

(−3,−2) − 0 0 0 3/4 1 2533/2

(−3,−3) − − 1/27 13/108 −1/12 −1/54 32471/108

(−4,−1) − 0 0 0 0 0 0

(−4,−2) − − 0 0 0 0 16

Example 2.8.5 Non-enumerative invariants on P̃3(4)

We have seen in theorem 2.6.4 that the only non-enumerative invariants on P̃3(4) are

those of the form I
d H ′−d E ′

1−d E ′
2
(1) for d ≥ 2. We will now compute these invariants.

Let X̃ = P̃3(2). Let L be the strict transform of the line joining the two blown-up points,

its normal bundle in X̃ is O(−1)⊕O(−1). If we let β = d H ′−d E ′
1 −d E ′

2 for some

d ≥ 2, then we also have KX̃ ·β = 0, so that we can apply lemma 1.3.8 to see that the

Gromov-Witten invariant I
P̃

3(2)
d H ′−d E ′

1−d E ′
2
(1) is equal to the integral

∫
M̄0,0(P1,d)

c2d−2

(
R1π∗ f ∗(O(−1)⊕O(−1))

)
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where π : M̄0,1(P
1,d) → M̄0,0(P

1,d) is the universal curve and f : M̄0,1(P
1,d) → P1

the evaluation map. The importance of this invariant has already been discussed in

detail in the end of section 1.3.

To actually compute the invariant, we use the equation Eβ+E ′
1
(1 ; H,H | E1,E

2
1). The

only possibilities how the homology class β +E ′
1 = d H ′− (d −1)E ′

1 −d E ′
2 can split

up into two effective classes are

β1 = d1 H ′−d1 E ′
1 −d1 E ′

2, β2 = d2 H ′− (d2 −1)E ′
1 −d2 E ′

2

for d1 +d2 = d and d1,d2 ≥ 0. First we look at the invariants with homology class β2

and claim that they all vanish for d2 ≥ 2. The virtual dimension of M̄0,0(X̃ ,β2) is 2,

so we have to impose two conditions on the curves we are counting. It is easy to see

that all stable maps with homology class β2 are reducible, such that one component

maps to a line in the exceptional divisor E1
∼= P2, and all the others into L. This means

that no such curve can intersect the strict transform of a general line in P̃3(2) or of a

general line through P2, and hence Iβ2
(T ) vanishes whenever T contains one of the

classes H2, E2
2 , and pt. But also no such curve can intersect two strict transforms of

general lines in P̃3(2) through P1, so we also have Iβ2
((H2 −E2

1)⊗⊗⊗2) = 0. Hence, by

the multilinearity of the Gromov-Witten invariants it follows that all invariants with

homology class β2 vanish for d2 ≥ 2.

The equation Eβ+E ′
1
(1 ; H,H | E1,E

2
1) reduces therefore to the simple statement

0 = Id H ′−d E ′
1−d E ′

2
(H ⊗H ⊗E1) IE ′

1
(E1 ⊗E2

1 ⊗E2
1)

︸ ︷︷ ︸
=−1

− I(d−1)H ′−(d−1)E ′
1−(d−1)E ′

2
(H ⊗E1 ⊗E1) IH ′−E ′

2
(H ⊗E2

1 ⊗E2
1).

The invariant I
H ′−E ′

2
(H ⊗E2

1 ⊗E2
1) is easily computed to be −1, e.g. using the algo-

rithm 2.2.5. Hence, by the divisor axiom we get

d3 Id H ′−d E ′
1−d E ′

2
(1) = (d −1)3 I(d−1)H ′−(d−1)E ′

1−(d−1)E ′
2
(1).

Together with I
H ′−E ′

1−E ′
2
(1) = 1 (which follows for example from corollary 2.3.2), we

see that

Id H ′−d E ′
1−d E ′

2
(1) = d−3.

It should be noted that our additional considerations above to prove the vanishing of

Gromov-Witten invariants of homology class d2 H ′− (d2 − 1)E ′
1 − d2 E ′

2 for d2 > 0

would not have been necessary to compute the desired invariants, they just made the

calculation easier. According to theorem 2.2.1, we could of course also use the algo-

rithm 2.2.5 without further thinking, and everything would take care of itself.
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Example 2.8.6 Curves with tangency conditions

The following table shows some of the numbers

Nr,k,d,T =

{
I
P̃

r(1)
d H ′−E ′(T ⊗−(−E)k+1) if k < r−1

IP
r

d H ′(T ⊗ pt⊗⊗⊗2)−2 I
P̃

r(1)
d H ′−2E ′(T ) if k = r−1

which are according to theorem 2.7.1 equal to the numbers of curves in Pr of degree d

through generic subspaces of Pr according to T , and intersecting a fixed point P ∈ Pr

with tangent direction contained in a given linear subspace of TPr,P of codimension k.

(r,k) T d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

(2,1) pt⊗⊗⊗(3d−3) 1 10 428 51040 13300176 6498076192

(3,1) pt⊗⊗⊗(2d−2) ⊗H2 1 3 28 485 14376 639695

(3,2) pt⊗⊗⊗(2d−2) 0 1 4 81 1808 74345

The numbers in the first row have already been computed by L. Ernström and G.

Kennedy [EK2] by different methods.

2.9 Blow-ups of subvarieties

In the last section of this chapter we will discuss two examples of blow-ups of Pr

along higher-dimensional subvarieties, leading to well-known classical results about

multisecants of space curves and abelian surfaces in P4, respectively.

Example 2.9.1 Blow-ups of curves in P3

Let X = P3 and Y ⊂ X be a smooth curve of degree d and genus g. Let X̃ be the

blow-up of X along Y . We are going to compute the Gromov-Witten invariants

q := IX̃
H ′−4E ′(1) and t := IX̃

H ′−3E ′(H2)

where E ′ is the class of a fibre over a point in Y . Irreducible curves of homology class

H ′ + eE ′ for e < 0 obviously correspond to lines in Y intersecting the curve Y with

multiplicity −e, i.e. to (−e)-secants of Y . Hence, we expect t to be the number of

3-secants of Y intersecting a fixed line and q to be the number of 4-secants of Y . It is

however not at all clear that this interpretation is valid, and indeed in some cases it is

not, since there are e.g. space curves with infinitely many 4-secants. We will be able

to see this already from the result since the numbers t and q can well be negative.

Nevertheless, t and q can be regarded to be the “virtual” number of 3-secants through a

line and 4-secants, respectively. These (virtual) numbers have already been computed

classically — the computation goes back to Cayley (1863). Some more recent work

on this topic has been done by Le Barz [L]. We will see that the numbers we obtain by

Gromov-Witten theory are the same, although it is not clear that, in the case where there
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are infinitely many such multisecants, the classical and the Gromov-Witten definition

of the “virtual number” agree.

Of course, the algorithms we developed so far do not tell us how to compute the num-

bers, so we will sketch here a possible way to calculate them.

Step 1: Intersection ring. (This can be computed easily using the methods of [F1].)

The ring structure of A∗(X̃) is determined by A1(X̃) = 〈H,E〉 and A2(X̃) = 〈H2,F〉

(where E is the exceptional divisor and F is the Poincaré dual of the homology class

E ′ introduced above) and the following non-zero intersection products involving at

least one exceptional class:

E ·E = (4d +2g−2)F −d H2,

E ·H = d F,

E ·F = −pt.

Step 2: Invariants with homology class β = eE ′, e > 0. Since these curves have to be

contained in the exceptional divisor, the invariants IeE ′(T ) are certainly zero if T con-

tains a non-exceptional class. By the divisor axiom, the only independent classes to

compute are therefore IeE ′(F⊗⊗⊗e). The curves that are counted there must be e-fold

coverings of a fibre over a point in Y , so this invariant is zero for e ≥ 2 since we then

require the curve to lie in two different fibres. Finally, the geometric statement that

IE ′(H2 −F) = 1 (we count curves that are a fibre over a point in Y , and the condition

H2 −F fixes the point) means that IE ′(F) = −1.

Step 3: Invariants with homology class β = H ′. For geometric reasons, the invariant

IH ′(T ) is zero if T contains an exceptional class and coincides with the corresponding

one on P3 otherwise, i.e.

IH ′((H2)⊗⊗⊗4) = 2, IH ′((H2)⊗⊗⊗2 ⊗ pt) = 1, IH ′(pt⊗⊗⊗2) = 1.

Step 4: Invariants with homology class β = H ′+eE ′, e < 0. The main equation that

we use is EH ′+(e+1)E ′(T ; H,H | E,E) for e < 0. Assume that T contains no divisor

classes. Let α be the number of classes F in T and assume further that α+e 6= 0. Then

the equation reads after some ordering of the terms

IH ′+eE ′(T ) =
1

α+e

(
(2g−2+(6+2e)d)IH ′+(e+1)E ′(T ⊗F)

+((e+1)2 −d)IH ′+(e+1)E ′(T ⊗H2)
)
.

We now list the results in the order they can be computed recursively (and state the

equations used to compute the invariant in the cases where α + e = 0 such that the
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above equation is not applicable).

IH ′−E ′((H2)⊗⊗⊗3) = 2d,

IH ′−E ′(H2 ⊗ pt) = d,

IH ′−E ′(T ⊗F⊗⊗⊗2) = 0 for any T ,

IH ′−E ′(F ⊗H2 ⊗H2) = 1 using EH ′(H2⊗H2 ; H,H | E,F),

IH ′−E ′(F ⊗ pt) = 1 using EH ′(pt ; H,H | E,F),

IH ′−2E ′(H2 ⊗H2) = d(d−2)+1−g,

IH ′−2E ′(pt) =
d(d−3)

2
+1−g,

IH ′−2E ′(F ⊗H2) = d −1,

IH ′−2E ′(F ⊗F) = 1 using EH ′−E ′(F ; H,H | E,F),

IH ′−3E ′(H2) = t =
(d−1)(d−2)(d −3)

3
−g(d −2),

IH ′−3E ′(F) =
(d−1)(d−4)

2
+1−g,

IH ′−4E ′(1) = q =
1

12
(d −2)(d−3)2(d −4)−

g

2
(d2 −7d +13−g).

The numbers t and q coincide with the classical ones stated in [L].

Example 2.9.2 Blow-up of an abelian surface in P4

In analogy to example 2.9.1 we will now blow up an abelian surface Y of degree 10 in

X = P4. The invariant IH ′−6E ′(1), where E ′ again denotes the fibre over a point in Y ,

is expected to be the number of 6-secants of the abelian variety, which is known to be

25. One can show that this is indeed the case. Since the calculation is very similar to

the one in 2.9.1, we will sketch only very briefly the steps to obtain the result.

Step 1: Intersection ring. Assume that Y is generic such that A1(Y ) is one-dimensional.

Let α ∈ A1(Y ) be a hyperplane section of Y . Define γ = j∗g∗α, where j : E → X̃ is the

inclusion and g : E → Y the projection. Let F be the Poincaré dual of E ′ introduced

above. Then A∗(X̃) is determined by

A1(X̃) = 〈H,E〉, A2(X̃) = 〈H2,γ〉, A3(X̃) = 〈H3,F〉

and the following non-zero intersection products involving at least one of the excep-
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tional classes:

E ·E = 5γ−10H2,

E ·H = γ,

E · γ = 50F −10H3,

E ·H2 = 10F,

E ·F = −pt,

γ · γ = −10pt,

γ ·H = 10F.

Step 2: Initial data for the recursion. The invariants with homology class H ′ again co-

incide with those on P4 or are zero if they contain an exceptional cohomology class.

Invariants with homology class eE ′ are zero for e ≥ 2, and the relevant invariants for

e = 1 are IE ′(F) = −1 and IE ′(γ⊗ γ) = 10.

Step 3: Recursion relations. To determine an invariant IH ′+eE ′(T ) for e < 0, use the

following equations:

• If T contains a class F , use equation EH ′+(e+1)E ′(T ′ ; H,H | E,F), where T ′ is

defined by T = T ′⊗F .

• If T contains a class γ, use equation EH ′+(e+1)E ′(T ′ ; H,H | γ,E), where T ′ is

defined by T = T ′⊗ γ.

• If T contains no exceptional class, use EH ′+(e+1)E ′(T ; H,H | E,E).

Using these equations, one can determine the invariants recursively for decreasing val-

ues of e and finally obtain I
H ′−6E ′(1) = 25.

It should be remarked that this calculation can be done for any surface in P4. The

computations can then still be done in the same way, however they get of course much

more complicated since they will involve the numerical invariants of the surface.



Chapter 3

Degeneration invariants

3.1 Introduction

In this chapter, we will study a different method to compute enumerative results on

rational curves in X = Pr, which goes back to L. Caporaso and J. Harris [CH3] and

has been studied extensively in a recent paper by R. Vakil [V]. To state the idea, recall

that for Gromov-Witten invariants we studied intersections of the form ev−1
1 (V1)∩

·· ·∩ ev−1
n (Vn) on the moduli space M̄0,n(X ,β) of stable maps (C,x1, . . . ,xn, f ), where

evi : (C,x1, . . . ,xn, f ) 7→ f (xi) are the evaluation maps, and Vi ⊂X are subvarieties of X .

Usually, one can then prove or at least expect statements of the form that for generically

chosen Vi, the above intersection is transverse and of the expected dimension, such that

it can be interpreted in enumerative geometry and calculated as an intersection product

on M̄0,n(X ,β) (see e.g. proposition 1.4.3).

The idea of degeneration methods is now to fix a hyperplane H in X and let one Vi after

the other degenerate to lie in H, such that they are not generic any more. The result

is that in each degeneration step, some of the curves in the intersection ev−1
1 (V1)∩

·· · ∩ ev−1
n (Vn) will become reducible, with irreducible components in H. If one can

count these (note that they are built up of components with smaller degree than the

original curves, so that inductive computation methods are supposed to work), this

gives a method to compute the original invariant, since the intersection product on the

moduli space is of course not affected by the degeneration.

It turns out that, to describe the curves appearing in the degenerations, one also has to

consider moduli spaces of curves having intersections with H with prescribed multi-

plicities, e.g. curves tangent to H at a certain point. This is a big difference between

the Gromov-Witten program and the degeneration techniques: the recursive equations

we obtain in this chapter involve a by far bigger set of invariants.

To see in a simple example how a degeneration works, suppose we want to count

rational plane cubics through 5 generic points in the plane and having contact of order

3 to a line H in a specific point P ∈ H (see upper picture on the next page). One can

77
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show that there are finitely many such curves (see lemma 3.2.2). We now let one of

the 5 generic marked points, which we called Q, degenerate to lie in H. The methods

of this chapter will show that this makes the curves degenerate in two possible ways:

some of the curves will become the union of H with a conic tangent to H somewhere,

where the conic intersects the remaining four generic marked points (bottom left). One

can show that there are 2 such conics (e.g. by applying degeneration again), and that

each of them counts with multiplicity 2 (in the language of corollary 3.2.12, we have

m1 = 2), so the contribution from these curves is 4. The other possible degeneration is

that the curves split up into three lines, one of which equal to H. The four remaining

generic marked points are distributed on the two lines not in H (bottom right). As

there are 1
2

(
4
2

)
= 3 ways of doing this, these curves give a contribution of 3, so that

we conclude that the answer to our original problem in the upper picture is 4 +3 = 7.

(This number has already been mentioned in the end of section 1.6.)

H

P

P

Q

H

HP

Q Q

degenerate

From this example we can see another point in which the calculations will get more

complicated than in the Gromov-Witten case: we have to consider reducible curves

consisting of more than two components (in contrast to proposition 1.4.1 (iv)).

But degeneration techniques have also advantages over the computation of Gromov-

Witten invariants by means of proposition 1.4.1, apart from the obvious one that one

can count curves with multiplicity conditions to a hyperplane, if one is interested in

them. One of the big advantages is that degeneration methods seem to be better suited

to count curves of higher genus, see e.g. [V], where all numbers of elliptic curves in

Pr satisfying generic incidence conditions are computed. This has not been achieved

so far with Gromov-Witten methods. Another important advantage is that, since the

reducible curves appearing in the degeneration have components contained in H, the

equations arising from degeneration techniques will relate curves in the ambient space

X to curves in the hyperplane H, whereas the equations 1.4.1 for Gromov-Witten in-

variants do not combine invariants on different varieties. In fact, we will see in section

3.3, when we generalize the degeneration methods to the case of an arbitrary hypersur-

face in Pr, that also in this case the equations relate Gromov-Witten invariants on Pr to

Gromov-Witten invariants on the hypersurface, even if the hypersurface is not convex.
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This chapter is organized as follows. In section 3.2, we give a short introduction to the

results of R. Vakil [V] on degenerations to hyperplanes in Pr. We will then generalize

the construction to the case of hypersurfaces in section 3.3, involving the definition of

virtual fundamental classes on the moduli spaces (which was not necessary for hyper-

planes). Certain degeneration invariants for lines, i.e. numbers of lines with contact

of given order to the hypersurface, are calculated in section 3.4 using gravitational de-

scendants. Finally, to give a non-trivial explicit application, we show in section 3.5

how to compute the numbers of lines and conics on the quintic threefold using de-

generations of curves in P4 to the quintic — a calculation which is not possible using

just the properties 1.4.1 of Gromov-Witten invariants on the quintic. We hope that this

method will generalize to arbitrary degree. The calculation also indicates how the con-

siderably complicated equations among the degeneration invariants may be organized

in terms of generating functions and differential operators.

3.2 Degeneration to a hyperplane in Pr

We will start our study of degeneration invariants by stating the important constructions

and results of R. Vakil [V] on degenerations to hyperplanes in Pr. A slightly different

notation will be used to make the connection with Gromov-Witten invariants more

obvious. As in the Gromov-Witten case, the first thing to do is to define the moduli

spaces.

Definition 3.2.1 Let X = Pr with r ≥ 2, d > 0, and n ≥ 0. Fix a hyperplane H ⊂ X .

Let s > 1 and α = (α1, . . . ,αs) be an s-tuple of positive integers such that ∑i αi = d.

Then we define the moduli space M̄0,n,s(H/X ,d |α)M̄0,n,s(H/X ,d |α)M̄0,n,s(H/X ,d |α) to be the closure in M̄0,n+s(X ,d)

of the space of irreducible stable maps (C,x1, . . . ,xn,y1, . . . ,ys, f ) of degree d to X with

f (C) 6⊂ H such that the divisor f ∗H on C ∼= P1 is equal (not just linearly equivalent) to

∑i αiyi.

To simplify notation, we will often drop the H in the notation of the moduli space

and write M̄0,n,s(X ,d |α)M̄0,n,s(X ,d |α)M̄0,n,s(X ,d |α). If we want to indicate the names of the marked points, we

will also write M̄0,n,s(X ,d |α) as M̄0,I,J(X ,d |α) if I = {x1, . . . ,xn} and J = {y1, . . . ,ys}

with the marked points named as above. The same convention will be applied for the

moduli spaces of stable maps M̄0,n+s(X ,d) which we then write as M̄0,I∪J(X ,d).

As usual, the evaluation maps will be denoted evxi
: M̄0,n,s(X ,d |α) → X and evyi

:

M̄0,n,s(X ,d |α) → H (note that the evaluation maps evyi
map to H and not to X , as we

always have f (yi) ∈ H by definition).

Hence, the generic curve in M̄0,n,s(X ,d |α) consists of irreducible curves, with ex-

actly s points of intersection y1, . . . ,ys with H, and with prescribed local multiplicities

α1, . . . ,αs to H at these points. As an example, the following picture shows (the image

of) a generic stable map in M̄0,2,2(X ,3 |(2,1)):



80 CHAPTER 3. DEGENERATION INVARIANTS

x

x2

1

y1
y2

H

It is, however, not at all obvious how the “boundary curves” in M̄0,n,s(X ,d |α) look

like, i.e. those that do not satisfy f (C) 6⊂ H and f ∗H = ∑i αiyi. We will come to this

question later.

Lemma 3.2.2 The dimension of M̄0,n,s(X ,d |α) is the expected one, namely

dim M̄0,n,s(X ,d |α) = dim M̄0,n+s(X ,d)−∑
i

αi

= (r +1)d + r +n+ s−3−d.

Proof See [V] proposition 2.11. ✷

We now come to the definition of the degeneration invariants, which is completely

analogous to the definition of the Gromov-Witten invariants.

Definition 3.2.3 With notations as above, let γ1, . . . ,γn ∈A∗(X) and µ1, . . . ,µs ∈A∗(H)

be classes on X and H, respectively. Then we define the associated degeneration

invariant to be the intersection product on M̄0,n,s(X ,d |α)

I
H/X

d,α (γ1 ⊗ . . .⊗ γn |µ1⊗ . . .⊗µs)I
H/X

d,α (γ1 ⊗ . . .⊗ γn |µ1 ⊗ . . .⊗µs)I
H/X

d,α (γ1 ⊗ . . .⊗ γn |µ1 ⊗ . . .⊗µs)

:= (ev∗x1
γ1 · . . . · ev∗xn

γn · ev∗y1
µ1 · . . . · ev∗ys

µs) · [M̄0,n,s(X ,d |α)] ∈ Q

if the dimension condition ∑i codim γi +∑i codim µi = dim M̄0,n,s(X ,d |α) is satisfied,

and zero otherwise. As in the previous section, we will often abbreviate T = γ1⊗ . . .⊗

γn and D = µ1 ⊗ . . .⊗µs and write the invariant as I
H/X

d,α (T |D) or simply Id,α(T |D).

Also, to shorten notation, we sometimes write ev∗T for ev∗x1
γ1 · . . . ·ev∗xn

γn. In addition,

if T = γ1 ⊗ . . .⊗ γn is as above and γ ∈ A∗(X), we define

γ ·i Tγ ·i Tγ ·i T := γ1 ⊗ . . .⊗ γi−1 ⊗ γ · γi⊗ γi+1 ⊗ . . .⊗ γn

for 1 ≤ i ≤ n. Analogous notations will be used for D.

Remark 3.2.4 As we defined the moduli space M̄0,n,s(X ,d |α) such that the space of

irreducible stable maps (C,x1, . . . ,xn,y1, . . . ,ys, f ) with f (C) 6⊂ H and f ∗H = ∑i αiyi

is dense in it, and since we know that it is of the expected dimension, it is clear by the

Bertini lemma 2.4.7 (iii) that the invariants I
H/X

d,α (T |D) have an enumerative mean-

ing: if Vi and Wj are generic subvarieties of X and H, respectively, with [Vi] = γi and
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[Wj] = µ j, then the invariant counts (with multiplicity one) irreducible stable maps

(C,x1, . . . ,xn,y1, . . . ,ys, f ) of degree d with f (xi) ∈Vi for 1 ≤ i ≤ n and f (y j) ∈Wj for

1 ≤ j ≤ s, such that f has multiplicity α j along H at the point y j. This also explains

the name “degeneration invariant”, since, in contrast to the Gromov-Witten case, the

subvarieties that the curve has to meet are no longer completely generic, but s of the

subvarieties, namely Wj for 1 ≤ j ≤ s, have been degenerated to lie in H.

As in the Gromov-Witten case, an interpretation of degeneration invariants as numbers

of curves in X (instead of maps to X) is also possible.

Example 3.2.5 From the geometric meaning of the invariants it follows that we can

recover the Gromov-Witten invariants of X from the degeneration invariants of H in

X if we set α = (1, . . . ,1) and D = X⊗⊗⊗d: we then just require d points of transverse

intersection with H at arbitrary points of H, which is the generic case for a degree d

curve in X . The only difference is that in the degeneration invariant, the d points of

intersection have been marked y1, . . . ,yd, which gives a factor of d! corresponding to

the permutation of these points. Hence we have

IX
d (T ) =

1

d!
I

H/X

d,(1,...,1)
(T |H⊗⊗⊗d)

(where the H in the invariant denotes the fundamental class).

Example 3.2.6 The number of degree d rational curves in Pr tangent to H at a spec-

ified point P ∈ H and intersecting additional classes T such that the dimension con-

dition is satisfied, has been calculated in theorem 2.7.1 to be I
X̃(1)
d H ′−E ′(T ⊗−E2). In

terms of degeneration invariants, it is also given by 1
(d−2)! I

H/X

d,(2,1,...,1)(T | pt⊗H⊗⊗⊗(d−2)),

where the factor 1
(d−2)! again corresponds to the permutations of the d − 2 uncon-

strained points of intersection of the curve with H. See also corollary 1.6.7 for an

alternative description of these numbers in terms of gravitational descendants.

We now come to the key idea in the theory of degeneration invariants, which will also

lead to a possibility to compute all of them. In the definition of the invariants, assume

that n ≥ 1 and look at a partial intersection

ev∗x1
Ĥ · [M̄0,n,s(X ,d |α)]∈ A∗(M̄0,n,s(X ,d |α)),

where Ĥ is a generic hyperplane in X . The generic point in ev−1
x1

(Ĥ) then corresponds

to an irreducible curve not contained in H, and by intersecting with further pullbacks

of classes via the evaluation maps, we obviously get a degeneration invariant. But

now we let Ĥ degenerate to our distinguished hyperplane H. This does of course not

affect the above cycle in A∗(M̄0,n,s(X ,d |α)), but the geometric appearance of ev−1
x1

(H)

is drastically different: in general it will contain many components corresponding to

reducible curves which are partly contained in H. In [V] theorem 2.13 the divisor ev∗x1
H

has been computed explicitly, it consists of spaces Dℓ(~d,I,J ) in M̄0,n,s(X ,d |α) which

we now describe.
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Definition 3.2.7 Fix a moduli space M̄0,n,s(X ,d |α) as above with n ≥ 1.

Let ℓ≥ 0 be a non-negative integer. Let ~d = (d0, . . . ,dℓ) be ℓ+1 integers with ∑ℓ
i=0 di =

d, d0 ≥ 0, and di > 0 for i > 0. Let I = (I0, . . . , Iℓ) be a decomposition of the set

{x1, . . . ,xn} such that x1 ∈ I0, and let J = (J0, . . . ,Jℓ) be a decomposition of the set

{y1, . . . ,ys}.

For all 1 ≤ i ≤ ℓ, define mimimi := di−∑k∈Ji
αk and assume that mi > 0.

Then we define D
H/X

ℓ (~d,I,J )D
H/X

ℓ (~d,I,J )D
H/X

ℓ (~d,I,J ) = Dℓ(~d,I,J )Dℓ(~d,I,J )Dℓ(~d,I,J ) to be the closure in M̄0,n+s(X ,d) of the

space of stable maps (C,x1, . . . ,xn,y1, . . . ,ys, f ) satisfying:

• C has exactly ℓ+1 irreducible components C0, . . . ,Cℓ,

• C0 ∩Ci 6= /0 for all i > 0, i.e. the curve C consists of a component C0 with ℓ

attached components Ci,

• f (C0) ⊂ H, f (Ci) 6⊂ H for i > 0,

• f has degree di on Ci for 0 ≤ i ≤ ℓ,

• for each 0 ≤ i ≤ ℓ, the marked points of Ci are exactly Ii ∪Ji,

• for each 1 ≤ i ≤ ℓ, we have ( f |Ci
)∗H = mi(C0 ∩Ci)+∑k∈Ji

αkyk.

We call two such spaces Dℓ(~d,I,J ), Dℓ(~d
′,I ′,J ′) (and also the corresponding triples

(~d,I,J ) and (~d′,I ′,J ′)) equivalent if they differ just by relabeling of the components

C1, . . . ,Cℓ.

Thus, a generic element in Dℓ(~d,I,J ) may look as follows:

H

x

x

y

y

C 2

C 0

C 1
2

1

1

2

(Here, we have ℓ = 2, I = {{x1},{x2}, /0}, J = {{y1}, /0,{y2}}, m1 = 2, m2 = 1,

α2 = 1. The value α1 cannot be seen in the picture since no multiplicity condition has

to be satisfied at points yi in C0.)

With this definition, we can now describe the main result of R. Vakil (on curves of

genus zero):
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Theorem 3.2.8 Every Dℓ(~d,I,J ) is a divisor in M̄0,n,s(X ,d |α), and we have

ev∗x1
H = ∑

ℓ≥0
∑

~d,I,J

m1 · . . . ·mℓ Dℓ(~d,I,J ),

where the sum is taken over all equivalence classes (~d,I,J ) as in definition 3.2.7, and

where mi is defined as above.

Proof See [V] proposition 2.11, theorem 2.16, theorem 2.19. ✷

To get some information on degeneration invariants from this equation, we will inter-

sect it later with pullbacks of classes via the evaluation maps such that the total inter-

section becomes zero-dimensional. Then we obviously get a degeneration invariant on

the left hand side of the equation. We claim that on the right hand side, we get a sum

over products of a Gromov-Witten invariant and various degeneration invariants. To

see this, we write the spaces Dℓ(~d,I,J ) in a different way that makes it more obvious

how the curves in these spaces are built up of ℓ+1 components.

Lemma 3.2.9 For fixed ~d,I,J let

ΠXΠXΠX := M̄0,I0∪J0∪{p1,...,pℓ}(X ,d0)×
ℓ

∏
i=1

M̄0,Ii∪Ji∪{qi}(X ,di).

Let evpi
,evqi

: ΠX → X be the evaluation maps. Define

ZXZXZX :=
ℓ⋂

i=1

(
(evpi

×evqi
)−1(∆X)

)
⊂ ΠX

where ∆X ⊂ X ×X is the diagonal. Then there is an inclusion ZX →֒ M̄0,n+s(X ,d), and

ZX is smooth of dimension M̄0,n+s(X ,d)− ℓ. Moreover, we have

ZX =
ℓ

∏
i=1

(evpi
×evqi

)∗(∆X)

as cycles on ΠX .

Proof See [BM] chapter 7 property III, and proposition 7.4 for smoothness and the

statement on the dimension. The idea is of course that ZX is the closure of the space

of curves in M̄0,n+s(X ,d) consisting of ℓ+1 components with the specified topology,

degrees, and marked points. The factors of ΠX describe the ℓ + 1 components, the

points pi and qi mark the gluing points C0∩Ci of the components, and the gluing itself

is accomplished by the pullback of the diagonal ∆X via evpi
×evqi

. ✷

It is obvious that our spaces Dℓ(~d,I,J ) are contained in ZX , which we will regard

from now on either as substack of ΠX or of M̄0,n+s(X ,β). On can describe the spaces

Dℓ(~d,I,J ) explicitly as follows:
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Lemma 3.2.10 Let ΠX be as in lemma 3.2.9. Let

Γ := M̄0,I0∪J0∪{p1,...,pℓ}(H,d0)×
ℓ

∏
i=1

M̄0,Ii,Ji∪{qi}(X ,di |(αJi
,mi)) ⊂ ΠX ,

where (αJi
,mi)(αJi
,mi)(αJi
,mi) is denotes the sequence (αk1

, . . . ,αksi
,mi) with Ji = {αk1

, . . . ,αksi
}. Let

evpi
,evqi

: Γ→ H be the evaluation maps and ∆H ⊂H×H the diagonal. Then the cycle

Dℓ(~d,I,J ) on ΠX is given by

Dℓ(~d,I,J ) = Γ ·
ℓ

∏
i=1

(evpi
×evqi

)∗(∆H).

Remark 3.2.11 In this and the following section, we will meet various evaluation

maps to various spaces A. If we want to indicate the target space of the evaluation

maps, we will write evA,x for the evaluation at the point x to the space A. However,

by abuse of notation we will often drop this subscript if the target space is clear from

the context, in particular if we have constructions of the form (ev×ev)∗(∆A) which we

will meet frequently in the sequel.

Proof (of lemma 3.2.10) This is the content of [V] section 2.5.1 translated into our

language. The space Γ restricts the curves such that the component C0 lies in H and

such that the other components have the right multiplicities along H. The evaluation

maps again perform the gluing of the components Ci with C0. ✷

We will meet many of these gluing arguments in the next section.

As we have already mentioned, we now get relations between the degeneration invari-

ants by intersecting equation 3.2.8 with pullbacks via the evaluation maps. Since we

will do this again in more detail in the next section, we just state the result. We write

it in a form that it generalizes easily to the case of hypersurfaces in the next section.

Many numerical examples can be found in [V].

Corollary 3.2.12 Let X = Pr with r ≥ 2, d > 0, and n ≥ 0. Fix a hyperplane H ⊂ X

and denote the inclusion by i : H →֒ X . Let s > 1 and α = (α1, . . . ,αs) be an s-tuple
of positive integers such that ∑i αi = d. Let γ ∈ A∗(X), and let T = γ1 ⊗ . . .⊗ γn

and D = µ1 ⊗ . . .⊗ µs be collections of classes on X and H, respectively, such that

∑codim γi +∑codim µi +codim γ+1 = dim M̄0,n+1,s(X ,d |α). Then we have

I
H/X

d,α (γ ·H ⊗T |D) =
s

∑
k=1

αk I
H/X

d,α (T |(i∗γ) ·k D) (1)

+ ∑
ℓ≥0

∑
~d,I,J

∑
ik, jk

gi1 j1 · · ·giℓ jℓ IH
d0

(i∗γ⊗ i∗T0 ⊗D0 ⊗Ti1 ⊗ . . .⊗Tiℓ) (2)

·
ℓ

∏
k=1

(
mk I

H/X

dk,(αJk
,mk)

(Tk |Dk ⊗Tjk)
)

(3)

where Tk denotes the classes γi with i ∈ Ik, Dk the classes µi with i ∈ Jk. As in propo-

sition 1.4.1 (iv), we have chosen a basis {T0, . . . ,Tq} (as a vector space) of A∗(H)
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and denote by gi j the inverse intersection matrix on H with respect to this basis.

The sum is taken over all equivalence classes (~d,I,J ) where ~d = (d0, . . . ,dℓ) with

∑i di = d and d(i) > 0 for i ≥ 0, where I = (I0, . . . , Iℓ) is a partition of {x1, . . . ,xn},

and J = (J0, . . . ,Jℓ) a partition of {y1, . . . ,ys}. Here, the numbers mk are defined to be

dk −∑i∈Jk
αi for k > 0, and it is assumed that the sum is taken only over those ~d and J

such that all mk are positive.

Proof See [V] theorem 2.20. ✷

This corollary suffices to compute all degeneration invariants of H/X recursively: sup-

pose we want to compute an invariant Id,α(T ′ |D). It can be shown that, by the dimen-

sion condition, there must be at least one class γ′ in T ′ which is not the fundamen-

tal class of X such that it can be written as γ′ = γ ·H. Then apply corollary 3.2.12,

which expresses Id,α(T ′ |D) = Id,α(γ ·H ⊗T |D) entirely in terms of invariants (1)

with fewer classes in T , invariants (2) on a variety of lower dimension, and invariants

(3) of smaller degree d. This finally reduces everything to the number of lines through

two points in P1, which is 1.

It should be noted that, in contrast to the equations among the Gromov-Witten invari-

ants, corollary 3.2.12 relates invariants on different varieties, namely invariants on X

to invariants on H. Therefore it is interesting to generalize the theory of degeneration

invariants to the case where H becomes a hypersurface of any degree so that one can

relate invariants on Pr to invariants on hypersurfaces. This will be done in the next

section.

3.3 Degeneration to a hypersurface in Pr

We will now carry over the theory developed in the previous section to the case of

a smooth hypersurface Q of arbitrary degree δ in Y = Pr. The main problem here

is that the various moduli spaces need not have the expected dimension — although

a definition of moduli spaces M̄0,n,s(Q/Y,d |α) and D
Q/Y

ℓ (~d,I,J ) could be written

down in the same way, the statements of lemma 3.2.2 and proposition 3.2.8 would in

general not be true. The main reason for this is that the curves in Dℓ(~d,I,J ) contain a

component in the hypersurface Q, and if Q is not convex such that the spaces of curves

in Q have too big dimension, then Dℓ(~d,I,J ) will have too big dimension as well.

Our idea to solve this problem is as follows. Assume that we have a hypersurface

Q of degree δ in Y = Pr. By the degree δ Veronese embedding, we consider Y as a

subvariety of X = PN (where N =
(

r+δ
δ

)
−1), such that Q = X ∩H for a hyperplane H:

Q
� � //
� _

��

H� _

��
Y

� � // X .
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There is an induced cartesian diagram of moduli spaces

M̄0,n(Q,d) �
�

//
� _

��

M̄0,n(H,δd)
� _

��

M̄0,n(Y,d) �
� // M̄0,n(X ,δd).

where M̄0,n(Q,d) is defined to be the union of all M̄0,n(Q,β) such that Q · i∗β = δd in

Y . (If dim Q ≥ 3, then by the Lefschetz theorem A1(Q) is one-dimensional, such that

there is only one such space M̄0,n(Q,β).) We fix this setup for the rest of the section.

This description of Q as an intersection of two projective spaces Y and H gives us the

following possibility to define moduli spaces M̄0,n,s(Q/Y,d |α) and a virtual funda-

mental class on them:

Definition 3.3.1 Let d > 0, n ≥ 0, s > 1 and α = (α1, . . . ,αs) be an s-tuple of positive

integers such that ∑i αi = δd. Then we define the moduli space M̄0,n,s(Q/Y,d |α)M̄0,n,s(Q/Y,d |α)M̄0,n,s(Q/Y,d |α) by

the cartesian diagram

M̄0,n,s(Q/Y,d |α) �
�

//
� _

��

M̄0,n,s(H/X ,δd |α)
� _

��

M̄0,n+s(Y,d) �
� // M̄0,n+s(X ,δd),

i.e. as the intersection M̄0,n,s(H/X ,δd |α)∩ M̄0,n+s(Y,d) in M̄0,n+s(X ,δd). (Here and

in the rest of this section, when we write ∩ for the intersection of moduli spaces, we

always mean the fibre product as above.) We define the virtual fundamental class on

M̄0,n,s(Q/Y,d |α) to be the corresponding intersection product

[M̄0,n,s(Q/Y,d |α)]virt := M̄0,n,s(H/X ,δd |α) · M̄0,n+s(Y,d) ∈ A∗(M̄0,n,s(Q/Y,d |α)).

We use analogous simplifications of the notation as in definition 3.2.1, in particular we

will often write M̄0,n,s(Y,d |α) instead of M̄0,n,s(Q/Y,d |α).

This definition gives us the analogue of the moduli spaces M̄0,n,s(X ,d |α) in section

3.2: the space M̄0,n+s(Y,d) expresses that the curves have to lie in Y , and the space

M̄0,n,s(X ,δd |α) expresses that these curves in Y must have the local multiplicities αi

to H and hence to Q =Y ∩H. The expected dimension of the space of curves satisfying

these conditions is

vdim M̄0,n,s(Y,d |α)vdim M̄0,n,s(Y,d |α)vdim M̄0,n,s(Y,d |α) : = dim M̄0,n+s(Y,d)−∑
i

αi

= (r +1)d + r +n+ s−3−δd,

which is also the dimension of the cycle M̄0,n+s(Y,d) · M̄0,n,s(X ,δd |α), as is easy to

check using lemma 3.2.2. Hence the virtual fundamental class of M̄0,n,s(Y,d |α) is

really a cycle of dimension vdim M̄0,n,s(Y,d |α).

The definition of the degeneration invariants of Q/Y is now obvious:
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Definition 3.3.2 With notations as above, let γ1, . . . ,γn ∈A∗(Y) and µ1, . . . ,µs ∈ A∗(Q)

be classes on Y and Q, respectively. Then we define the associated degeneration

invariant on Q/Y to be the intersection product on M̄0,n,s(Y,d |α)

I
Q/Y

d,α (γ1⊗ . . .⊗ γn |µ1 ⊗ . . .⊗µs)I
Q/Y

d,α (γ1 ⊗ . . .⊗ γn |µ1 ⊗ . . .⊗µs)I
Q/Y

d,α (γ1 ⊗ . . .⊗ γn |µ1 ⊗ . . .⊗µs)

:= (ev∗x1
γ1 · . . . · ev∗xn

γn · ev∗y1
µ1 · . . . · ev∗ys

µs) · [M̄0,n,s(Y,d |α)]virt ∈ Q

if the dimension condition ∑i codim γi +∑i codim µi = vdim M̄0,n,s(Y,d |α) is satisfied,

and zero otherwise. Note that the evaluation maps evxi
map to Y , whereas evyi

map to

Q. We will apply the simplifications of the notation of definition 3.2.3.

According to the definition, the degeneration invariants of Q/Y have an expected enu-

merative meaning, which is literally the same as in 3.2.4, replacing H and X by Q and

Y . In general, it is however not clear that this interpretation is valid, and in many cases

it will not be. But by the same argument as in example 3.2.5, it is at least still true that

one can recover the Gromov-Witten invariants of Y from the degeneration invariants

of Q/Y if we set α = (1, . . . ,1):

IY
d (T ) =

1

(δd)!
I

Q/Y

d,(1,...,1)(T |Q⊗⊗⊗δd).

Remark 3.3.3 Our definition of the moduli spaces M̄0,n,s(Y,d |α) and their virtual fun-

damental classes is a little bit unsatisfactory. We have learned from Gromov-Witten

theory that a better way would probably be to define the moduli spaces without an em-

bedding of Y into some auxiliary space, and to define their virtual fundamental classes

using a suitable obstruction theory on the moduli space. This would allow us to ex-

tend the definition to hypersurfaces in arbitrary smooth projective varieties. In view

of chapter 2, an interesting example we have in mind is of course the case of the ex-

ceptional divisor in a blow-up. The invariants on the blow-up X̃ are then supposed to

count curves on X̃ with given local multiplicities to the exceptional divisor, hence via

strict transform they should count curves on X with given local multiplicities to the

blown-up point, e.g. multiplicity 2 would correspond to curves with a cusp there. In-

deed, some very few numerical calculations have shown that this seems to be possible.

We hope to be able to work out a theory of these generalized degeneration invariants

in the future.

Returning to our original situation of a hypersurface Q in Y = Pr, we now want to

compute the degeneration invariants of Q/Y . To do this, we will show in the remaining

part of this section that corollary 3.2.12 carries over almost without change. Consider

the equation of theorem 3.2.8, with d replaced by δd, and intersect it with M̄0,n+s(Y,d)

in M̄0,n+s(X ,δd):

ev∗X ,x1
H·M̄0,n,s(X ,δd |α) · M̄0,n+s(Y,d)

= ∑
ℓ≥0

∑
~δ,I,J

m1 · . . . ·mℓ Dℓ(~δ,I,J ) · M̄0,n+s(Y,d)
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where now~δ = (δ0, . . . ,δℓ) is a vector such that ∑δi = δd, and mimimi := δd −∑k∈Ji
αk.

Obviously, when we intersect this equation with further pullbacks via evaluation maps,

we will get a degeneration invariant of Q/Y on the left hand side of the equation. To

analyze the right hand side, we now study the intersection Dℓ(~δ,I,J ) · M̄0,n+s(Y,d).
The main point of the following proposition is that everything splits up into ℓ + 1

factors corresponding to the components of the curves in Dℓ(~δ,I,J ).

Proposition 3.3.4 The intersection Dℓ(~δ,I,J )∩ M̄0,n+s(Y,d) on M̄0,n+s(X ,δd) can

only be non-zero if~δ = (δ0, . . . ,δℓ) is of the form (δd0, . . . ,δdℓ) for some integers di.

In this case, it is isomorphic to a subspace of Γ0 ×·· ·×Γℓ, where

Γ0 = M̄0,I0∪J0∪{p1,...,pℓ}(H,δd0)∩ M̄0,I0∪J0∪{p1,...,pℓ}(Y,d0)

⊂ M̄0,I0∪J0∪{p1,...,pℓ}(X ,δd0),

Γi = M̄0,Ii,Ji∪{qi}(X ,δdi |(αJi
,mi))∩ M̄0,Ii∪Ji∪{qi}(Y,di)

⊂ M̄0,Ii∪Ji∪{qi}(X ,δdi) for i > 0,

and where, as before, (αJi
,mi) is meant to be the sequence (αk1

, . . . ,αksi
,mi), where

Ji = {αk1
, . . . ,αksi

}.

Moreover, the intersection product Dℓ(~δ,I,J ) ·M̄0,n+s(Y,d) in M̄0,n+s(X ,δd), viewed

as a cycle on Γ0 ×·· ·×Γℓ via the above inclusion, is equal to

Dℓ(~δ,I,J ) · M̄0,n+s(Y,d) =

(
ℓ

∏
i=1

(evpi
×evqi

)∗(∆Q)

)
·Γ′

0 ×·· ·×Γ′
ℓ,

where evpi
, evqi

are the evaluation maps to Q, ∆Q is the diagonal in Q×Q, and where

we denote by Γ′
i the intersection products corresponding to Γi

Γ′
0 = M̄0,I0∪J0∪{p1,...,pℓ}(H,δd0) · M̄0,I0∪J0∪{p1,...,pℓ}(Y,d0) ∈ A∗(Γ0),

Γ′
i = M̄0,Ii,Ji∪{qi}(X ,δdi |(αJi

,mi)) · M̄0,Ii∪Ji∪{qi}(Y,di) ∈ A∗(Γi) for i > 0.

Proof First of all, it is clear that~δ must be of the form (δd0, . . . ,δdℓ), since every com-

ponent of the curves in Dℓ(~δ,I,J ) ·M̄0,n+s(Y,d) is contained in Y , hence its homology

class in X must be a multiple of δ.

We start with the definition of the various moduli spaces that we will need in the proof.

First of all, we abbreviate

M̄X
0M̄X
0M̄X
0 = M̄0,I0∪J0∪{p1,...,pℓ}(X ,δd0),

M̄X
iM̄X
iM̄X
i = M̄0,Ii∪Ji∪{qi}(X ,δdi) for i > 0,

M̄Y
0M̄Y
0M̄Y
0 = M̄0,I0∪J0∪{p1,...,pℓ}(Y,d0),

M̄Y
iM̄Y
iM̄Y
i = M̄0,Ii∪Ji∪{qi}(Y,di) for i > 0,

M̄H
0M̄H
0M̄H
0 = M̄0,I0∪J0∪{p1,...,pℓ}(H,δd0),

M̄′
iM̄′
iM̄′
i = ev−1

qi
(H) ⊂ M̄X

i for i > 0,

M̄α
iM̄α
iM̄α
i = M̄0,Ii,Ji∪{qi}(X ,δdi |(αJi

,mi)) for i > 0.
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As in the previous section, these are the moduli spaces of the components of the curves

in Dℓ(~δ,I,J ), with the points where they will be glued later marked pi and qi. The

space M̄′
i corresponds to curves in X with marked point qi on H, the meaning of the

other spaces is obvious. With these notations, define the following moduli spaces, each

of which describes the ℓ+1 components, only with different additional conditions:

ΠXΠXΠX = M̄X
0 ×·· ·× M̄X

ℓ

(“all components in X , not connected”),

ZXZXZX =
ℓ⋂

i=1

(
(evpi

×evqi
)−1(∆X)

)
⊂ ΠX

(“all components in X , connected”),

ΠYΠYΠY = M̄Y
0 ×·· ·× M̄Y

ℓ

(“all components in Y , not connected”),

ZYZYZY =
ℓ⋂

i=1

(
(evpi

×evqi
)−1(∆Y )

)
⊂ ΠY

(“all components in Y , connected”),

Π̃XΠ̃XΠ̃X = M̄H
0 × M̄X

1 ×·· ·× M̄X
ℓ

(“component C0 in H, others in X , not connected”),

Π′
XΠ′
XΠ′
X = M̄H

0 × M̄′
1 ×·· ·× M̄′

ℓ

(“component C0 in H, others in X with marked point qi

mapped to H, not connected”),

Z′
XZ′
XZ′
X = ZX ∩ Π̃X

(“component C0 in H, connected”).

The moduli spaces ΠX and ZX have already been introduced in lemma 3.2.9, the oth-

ers are completely analogous. The proof will now contain various gluing arguments

how spaces corresponding to “non-connected” curves (denoted by the letter Π above)

can be made into others corresponding to “connected” curves (denoted by the letter Z

above) by pullbacks of diagonals via various evaluation maps. This is done in com-

plete analogy to lemmas 3.2.9 and 3.2.10 and can be proven in the same way, as we

will always do it in the case where the ambient spaces are projective spaces.

We now start with the proof of the proposition, which consists of several steps.

Step 1. There is a cartesian diagram

ZY
� � //

� _

��

M̄0,n+s(Y,d)
� _

��

Dℓ(~δ,I,J )
� � // ZX

� � i // M̄0,n+s(X ,δd)
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with i![M̄0,n+s(Y,d)] = ZY , so that the intersection Dℓ(~δ,I,J ) · M̄0,n+s(Y,d) to be cal-

culated is equal to the intersection product

Dℓ(~δ,I,J ) ·ZY

on ZX . As ZX ⊂ ΠX , this enables us to work entirely on ΠX and its various subspaces.

Hence, unless otherwise stated, all intersection products from now on will be assumed

to be on ΠX .

Step 2. Consider the diagram

ZY� _

��

Dℓ(~δ,I,J )
� � // Z′

X
� � // ZX .

This allows us to break up the intersection product Dℓ(~δ,I,J ) · ZY on ZX into two

steps: first we will intersect Z′
X with ZY in ZX , and then intersect the result (which will

be a cycle in a space contained in Z′
X ) with Dℓ(~δ,I,J ) in Z′

X .

Step 3. We compute the intersection of Z′
X and ZY in ZX . By definition, we have Z′

X =

ZX ∩ Π̃X and ZY = ∏(evpi
× evqi

)∗(∆Y ) ·ΠY , so the intersection of Z′
X and ZY in ZX is

equal to

∏(evpi
×evqi

)∗(∆Y ) ·ΠY · Π̃X .

We claim that this is equal to

∏(evpi
×evqi

)∗(∆Q) ·ΠY ·Π
′
X .

To see this, consider the following commutative diagrams:

(Q×Q)ℓ
� � // (Y ×Y )ℓ

S

OO

� � //
� _

��

R

OO

� � //
� _

��

ΠY� _

��
Π′

X
� � //

��

Π̃X
� � i //

��

ΠX

(H ×H)ℓ
� � k // (X ×X)ℓ

(Q×Q)ℓ //

��

(Y ×Y )ℓ

��

∆ℓ
Q

g

cc● ● ● ● ● ● ● ● ●
//

��

∆ℓ
Y

j

;;①①①①①①①①①

��
∆ℓ

H

{{✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇

// ∆ℓ
X

##●
●●

●●
●●

●●

(H ×H)ℓ
k // (X ×X)ℓ

where the exponent ℓ denotes the ℓ-fold cartesian product. The spaces R and S are

defined such that the middle two squares in the left diagram are cartesian. Note that

the lower left square is also cartesian by the definition of the spaces Π′
X and Π̃X , as well
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as all squares in the right diagram. The vertical maps to (Q×Q)ℓ, (Y ×Y )ℓ, (H ×H)ℓ,

and (X ×X)ℓ are the evaluation maps at the points pi and qi.

Now, the intersection product ∏(evpi
×evqi

)∗(∆Y ) ·ΠY · Π̃X is by definition equal to

j!i!ΠY ∈ A∗(R×(Y×Y )ℓ ∆ℓ
Y )

which is the same as

k! j!i!ΠY ∈ A∗(S×(Q×Q)ℓ ∆ℓ
Q)

because S×(Q×Q)ℓ ∆ℓ
Q is isomorphic to R×(Y×Y )ℓ ∆ℓ

Y and k! is the identity under this

identification: to see this, note that

S×(Q×Q)ℓ ∆ℓ
Q =

(
R×(Y×Y )ℓ ∆ℓ

Y

)
×(X×X)ℓ (H ×H)ℓ

by construction of the diagram. But the right hand side of this equation is actually

equal to R ×(Y×Y )ℓ ∆ℓ
Y since all elements in this space map to (H × H)ℓ under the

evaluation map to (X ×X)ℓ, because the elements in R correspond to connected curves

with component C0 in H.

On the other hand, the intersection product ∏(evpi
×evqi

)∗(∆Q) ·ΠY ·Π′
X is by defini-

tion equal to

g!k!i!ΠY ∈ A∗(S×(Q×Q)ℓ ∆ℓ
Q).

Hence, as g! = j! (see [F1] theorem 6.2), the statement that

∏(evpi
×evqi

)∗(∆Y ) ·ΠY · Π̃X = ∏(evpi
×evqi

)∗(∆Q) ·ΠY ·Π′
X

follows from the commutativity k! j! = j!k! (see [F1] section 6.4). To summarize, we

have shown that the intersection product of Z′
X and ZY in ZX is equal to

∏(evpi
×evqi

)∗(∆Q) ·ΠY ·Π′
X .

Step 4. We describe Dℓ(~δ,I,J ) as subspace of Z′
X , in analogy to lemma 3.2.10: if we

denote by pi : Z′
X → M̄′

i the projections for i > 0, then we can write Dℓ(~δ,I,J ) as

ℓ

∏
i=1

p∗i M̄α
i ·Z′

X .

(From the geometric construction, it is clear that this is true on the level of sets. The

proof that it is also an equality of cycles follows in the same way as in lemma 3.2.10,

as this just depends on H and X , but not on Q and Y .)

Step 5. Inserting the results of steps 3 and 4 into step 2, we get the result that the

intersection product Dℓ(~δ,I,J ) ·ZY on ZX is equal to

∏(evpi
×evqi

)∗(∆Q) ·
ℓ

∏
i=1

p∗i M̄α
i ·ΠY ·Π′

X .
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(where we denote the projections Π′
X → M̄′

i also by pi, by abuse of notation). But note

that

ℓ

∏
i=1

p∗i M̄α
i ·Π′

X = M̄H
0 × M̄α

1 ×·· ·× M̄α
ℓ ,

which follows directly from the definitions. So we finally see that the desired intersec-

tion is equal to

∏(evpi
×evqi

)∗(∆Q) · (M̄H
0 × M̄α

1 ×·· ·× M̄α
ℓ ) ·ΠY

= ∏(evpi
×evqi

)∗(∆Q) ·
(
(M̄H

0 · M̄Y
0 )× (M̄α

1 · M̄Y
1 )×·· ·× (M̄α

ℓ · M̄Y
ℓ )
)

= ∏(evpi
×evqi

)∗(∆Q) · (Γ′
0×·· ·×Γ′

ℓ).

This finishes the proof. ✷

This proposition now tells us that we get recursion formulas for the invariants of Q/Y

which already look very similar to those of H/X in corollary 3.2.12:

Corollary 3.3.5 Let Y = Pr with r ≥ 2, d > 0, and n ≥ 0. Fix a smooth hypersurface

Q⊂Y of degree δ and denote the inclusion by i : Q →֒Y . Let s > 1 and α = (α1, . . . ,αs)

be an s-tuple of positive integers such that ∑i αi = δd. Let γ ∈ A∗(Y), and let T =

γ1 ⊗ . . .⊗ γn and D = µ1 ⊗ . . .⊗µs be collections of classes on Y and Q, respectively,

such that ∑codim γi + ∑codim µi + codim γ + 1 = vdim M̄0,n+1,s(Y,d |α). Then we

have

I
Q/Y

d,α (γ ·Q⊗T |D) = ∑
ℓ≥0

∑
~d,I,J

∑
ik, jk

gi1 j1 · · ·giℓ jℓ I
Q
d0

(i∗γ⊗ i∗T0 ⊗D0 ⊗Ti1 ⊗ . . .⊗Tiℓ)

·
ℓ

∏
k=1

(
mk I

Q/Y

dk,(αJk
,mk)

(Tk |Dk ⊗Tjk)
)

where Tk denotes the classes γi with i ∈ Ik, Dk the classes µi with i ∈ Jk. As in propo-

sition 1.4.1 (iv), we have chosen a basis {T0, . . . ,Tq} (as a vector space) of A∗(Q) and

denote by gi j the inverse intersection matrix on Q with respect to this basis. The sum

is taken over all equivalence classes (~d,I,J ) where ~d = (d0, . . . ,dℓ) with ∑i di = d,

d(0) ≥ 0 and d(i) > 0 for i ≥ 0, where I = (I0, . . . , Iℓ) is a partition of {x1, . . . ,xn},

and J = (J0, . . . ,Jℓ) a partition of {y1, . . . ,ys}. Here, the numbers mk are defined to be

δdk −∑i∈Jk
αi for k > 0, and it is assumed that the sum is taken only over those ~d and

J such that all mk are positive.

Remark 3.3.6 The Gromov-Witten invariant I
Q
d0

( · ) in the corollary is to be inter-

preted as the corresponding intersection product on the space M̄(Q,d0) as introduced

in the beginning of this section. This means that the invariant is equal to the sum of all

I0
β0

( · ) such that i∗β0 is d0 times the class of a line, where i : Q →֒ Y is the inclusion.
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Remark 3.3.7 The main difference in the equations of corollaries 3.2.12 and 3.3.5 is

that in 3.3.5, we still sum over all ~d with d(0) ≥ 0, whereas in 3.2.12, we require

d(0) > 0. We will see in the next corollary that this difference is exactly the line (1) in

3.2.12.

Proof (of corollary 3.3.5) This follows almost immediately from proposition 3.3.4.

As indicated before this proposition, we consider the equation of theorem 3.2.8, with

d replaced by δd, and intersect it with M̄0,n+s(Y,d) in M̄0,n+s(X ,δd) to obtain

ev∗X ,x1
H·M̄0,n,s(X ,δd |α) · M̄0,n+s(Y,d)

= ∑
ℓ≥0

∑
~δ,I,J

m1 · . . . ·mℓ Dℓ(~δ,I,J ) · M̄0,n+s(Y,d).

Intersecting with ev∗T and ev∗D for T and D as in the corollary yields on the left hand

side of this equation the degeneration invariant I
Q/Y

d (γ ·Q⊗T |D) (note that ev∗X ,x1
H =

ev∗Y,x1
Q). To evaluate the right hand side, insert the result of proposition 3.3.4 for the

intersection product Dℓ(~δ,I,J ) · M̄0,n+s(Y,d) to see that ~δ = (δd0, . . . ,δdℓ) and that

this intersection is equal to

(
ℓ

∏
i=1

(evpi
×evqi

)∗(∆Q)

)
·Γ′

0 ×·· ·×Γ′
ℓ (2)

where

Γ′
0 = M̄0,I0∪J0∪{p1,...,pℓ}(H,δd0) · M̄0,I0∪J0∪{p1,...,pℓ}(Y,d0)

Γ′
i = M̄0,Ii,Ji∪{qi}(X ,δdi |(αJi

,mi)) · M̄0,Ii∪Ji∪{qi}(Y,di) for i > 0.

By proposition 1.3.5 and remark 1.3.6, we see that Γ′
0 is just equal to the virtual funda-

mental class [M̄0,I0∪J0∪{p1,...,pℓ}(Q,d)]virt . By definition, Γ′
i is equal to the virtual fun-

damental class of M̄0,Ii,Ji∪{qi}(Y,di |(αJi
,mi)). Hence, noting that ∆Q = ∑i j gi j Ti ×Tj,

we get the desired result. ✷

As indicated, to obtain the final form of the recursion relations, which is then almost

the same as in the previous section, we now consider the terms in corollary 3.3.5 with

d0 = 0 separately.

Corollary 3.3.8 With the notations as in corollary 3.3.5, we have

I
Q/Y

d,α (γ ·Q⊗T |D) =
s

∑
k=1

αk I
Q/Y

d,α (T |(i∗γ) ·k D) (1)

+ ∑
ℓ≥0

∑
~d,I,J

∑
ik , jk

gi1 j1 · · ·giℓ jℓ I
Q
d0

(i∗γ⊗ i∗T0 ⊗D0 ⊗Ti1 ⊗ . . .⊗Tiℓ) (2)

·
ℓ

∏
k=1

(
mk I

Q/Y

dk ,(αJk
,mk)

(Tk |Dk ⊗Tjk)
)

(3)

where the second sum is as in corollary 3.3.5, but only over those ~d such that d0 > 0.
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Proof Look at the summands in corollary 3.3.5 where d0 = 0. They contain a factor

I
Q
0 (i∗γ⊗ i∗T0 ⊗D0 ⊗Ti1 ⊗ . . .⊗Tiℓ)

which is a Gromov-Witten invariant with homology class zero. We know by proposi-

tion 1.4.1 (i) that there can only be three classes in such an invariant. But there are also

at least three classes in this invariant:

• i∗γ,

• Ti1 , because we must have ℓ ≥ 1, since otherwise we would have d = 0,

• one of the classes in D0: note that we have mi = δdi −∑k∈Ji
αk > 0, so by

summing these inequalities up we get δd − δd0 −∑k/∈J0
αk > 0. But as d0 = 0

and ∑s
k=1 αk = δd, we conclude that J0 6= /0, so that we have at least one class µ j

in D0.

This means that there can be no further classes in the Gromov-Witten invariant than

those, i.e. we must have ℓ = 1, I0 = /0 and J0 = { j} for some 1≤ j ≤ s, and the invariant

becomes

I
Q
0 (i∗γ⊗µ j ⊗Ti1).

This means that the corresponding summand in corollary 3.3.5 is

∑
i, j

gi jm1 I
Q
0 (i∗γ⊗µ j ⊗Ti) I

Q/Y

d,(α′,m1)
(T |D′⊗Tj)

where D′ contains all classes of D except µ j, and α′ contains all numbers of α except

α j. By definition of the inverse intersection matrix, this summand becomes

m1 I
Q/Y

d,(α′,m1)
(T |D′⊗ (i∗γ) ·µ j) = α j I

Q/Y

d,α (T |(i∗γ) · j D)

(note that m1 = δd −∑k∈J1
αk = ∑k∈J0

αk = α j).

Inserting this into the result of corollary 3.3.5, we get the stated equation. ✷

We thus got indeed equations relating Gromov-Witten invariants on Y (they are in-

cluded in the degeneration invariants) to Gromov-Witten invariants on Q. However,

although the equations that we get are the same as in the case of a hyperplane, they do

not suffice to calculate all degeneration invariants in the case of a general hypersurface.

The reason is that there are invariants Id,α(T |D) where T contains no classes at all,

so that the equation cannot be applied directly to compute these invariants. To say the

same thing geometrically, this means that for hypersurfaces Q, even after degenerating

all incidence conditions into Q, there are still irreducible curves not contained in Q

satisfying these conditions. We will see examples for this in 3.4.3 and 3.4.4.

Therefore, to get concrete relations between the Gromov-Witten invariants of Y and Q,

we need to calculate the other degeneration invariants appearing in the equations by

different methods. A possibility how to do this for d = 1 in some cases will be given

in the next section.
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3.4 Degeneration invariants and descendants

We will now give an explicit formula for some degeneration invariants of degree d = 1,

some of which could not be obtained by the equations in corollary 3.3.8. The main

application of these results is that they allow us in some cases to get explicit relations

between the Gromov-Witten invariants of Y and those of Q up to degree 2 involving

no unknown numbers any more. This will be applied explicitly in section 3.5 for the

quintic threefold.

The computation will be done using gravitational descendants, using the results of

section 1.6. In fact, most of the work has already been done in that section.

Proposition 3.4.1 Let Y = Pr and Q ⊂ Y be a smooth hypersurface of degree δ. Let

n ≥ 0 and m ∈ {1, . . . ,δ}. Let γ ∈ A≥r−2(Y) and γ1, . . . ,γn ∈ A≥2(Y ) be classes in Y

and set T = γ1 ⊗ . . .⊗ γn. Assume that the dimension condition

codim γ+∑
i

codim γi = vdim M̄0,n,δ−m+1(Y,1 |(m,1, . . . ,1))

= dim M̄0,n+1(Y,1)−m

= 2r +n−m−1

is satisfied, and that there are only finitely many lines in Q. Then the degeneration

invariant

I
Q/Y

1,(m,1,...,1)(T | i∗γ⊗Q⊗⊗⊗(δ−m))

is equal to the gravitational descendant

(δ−m)! IY
1 (γ ·

m−1

∏
i=0

(Q+ i c)⊗T ).

Proof By definition, the degeneration invariant in the proposition is equal to the inter-

section product

(ev∗x1
γ1 · . . . · ev∗xn

γn · ev∗Q,y1
i∗γ) · [M̄0,n,δ−m+1(Y,1 |(m,1, . . .,1))]virt.

Inserting the definition of the virtual fundamental class, this becomes the intersection

product

(ev∗T · ev∗Y,y1
γ) · M̄0,n,δ−m+1(X ,δ |(m,1, . . .,1)) · M̄0,n+δ−m+1(Y,1) (1)

on M̄0,n+δ−m+1(X ,δ), where H and X are as in the previous section. Denote by

p : M̄0,n+δ−m+1(X ,δ) → M̄0,n+1(X ,δ)
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the projection map that forgets all points yi except y1. Pushing the zero-cycle (1)

forward via p yields

(ev∗T · ev∗Y,y1
γ) · p∗(M̄0,n,δ−m+1(X ,δ |(m,1, . . .,1)) · M̄0,n+δ−m+1(Y,1))

= (ev∗T · ev∗Y,y1
γ) · M̄0,n+1(Y,1) · p∗M̄0,n,δ−m+1(X ,δ |(m,1, . . .,1)).

Recall that in 1.6.1 we defined a space M̄(m) which is, in our case, the closure in

M̄0,n+1(X ,δ) of the space of irreducible stable maps (C,x1, . . . ,xn, f ) of degree δ to X

with f (C) 6⊂H such that the divisor f ∗H on C contains the point x1 with multiplicity m.

Therefore, by definition of the moduli space M̄0,n,δ−m+1(X ,δ |(m,1, . . .,1)) it follows

that

p∗M̄0,n,δ−m+1(X ,δ |(m,1, . . .,1)) = (δ−m)! M̄(m),

where the factor (δ−m)! arises from the permutations of the δ−m forgotten marked

points. Thus, the degeneration invariant stated in the proposition is equal to

(δ−m)! (ev∗T · ev∗Y,y1
γ) · M̄0,n+1(Y,1) · M̄(m). (2)

But we have already calculated the class of M̄(m): by proposition 1.6.6 it is given by

m−1

∏
i=0

(i c1(Ly1
)+ev∗X ,y1

H)+µ,

where Ly1
denotes the cotangent line of the point y1 (see section 1.5), and where µ

is some cycle with support on the space of reducible stable maps (C,x1, . . . ,xn,y1, f )

such that y1 lies on a component C0 of C with f (C0) ⊂ H. But note that there can be

no such curves in the intersection (2) since

• if f has degree 0 on C0, then by stability there must be at least one other marked

point xi in C0. Hence this point maps to Q and must satisfy the incidence condi-

tions γ ∈ A≥r−2(Y ) and γi ∈ A≥2(Y ), which is impossible,

• if f has degree 1 on C0, then the curve is mapped to a line contained in Q. But by

assumption there are only finitely many lines in Q, so no marked point on such a

line can satisfy a generic incidence condition in A≥2(Y). This would mean that

there are actually no marked points xi, but then the curve could not be reducible

by stability.

In any case, we can drop the cycle µ, so (2) becomes the intersection product on

M̄0,n+1(Y,1)

(δ−m)! (ev∗T · ev∗Y,y1
γ) ·

m−1

∏
i=0

(i c1(Ly1
)+ev∗Y,y1

Q),

which is by definition the gravitational descendant stated in the proposition. ✷

Note that by proposition 1.5.1, this allows us to compute the degeneration invariants

explicitly in the cases where proposition 3.4.1 is applicable. We finish this section by

giving three such examples.
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Example 3.4.2 Let Q ⊂ Y = P2 be a smooth curve of degree δ. We want to count the

tangents to Q through a fixed point P ∈ P2.

The “classical solution” is to consider the projection from P onto a line L ⊂ P2. Then,

in the generic situation, the tangents to Q through P correspond to the ramification

points of the projection Q → L. Hence the desired number is given by the Hurwitz

formula

2g(Q)−2−δ(2g(L)−2) = δ2 −δ.

The alternative solution using degeneration invariants and proposition 3.4.1 is

1

(δ−2)!
I

Q/Y

1,(2,1,...,1)(pt |Q⊗⊗⊗(δ−1)) = IY
1 (Q · (Q+c)⊗ pt)

= δ2 IY
1 (H2 ⊗ pt)+δ IY

1 (H · c⊗ pt)

= δ2 ·1+δ · (−1)

= δ2 −δ

(where we divided by (δ− 2)! in the beginning to remove the permutations of the

marked points y2, . . . ,yδ−1).

Example 3.4.3 Again let Q ⊂ Y = P2 be a smooth curve of degree δ. We want to

compute the number of inflection points of Q, i.e. the number of lines in P2 having

contact of order at least 3 with the curve. In analogy to the previous example, our

answer will be

1

(δ−3)!
I

Q/Y

1,(3,1,...,1)(1 |Q
⊗⊗⊗(δ−2)) = IY

1 (Q · (Q+c) · (Q+2c))

= 3δ2 IY
1 (pt · c)+2δ IY

1 (H · c2)

= 3δ2 ·1+2δ · (−3)

= 3δ2 −6δ.

This coincides with the well-known classical result.

Example 3.4.4 As the most important example, we will now compute some degree 1

degeneration invariants of a quintic threefold Q ⊂ Y = P4 that will be needed in the

next section. The input data, namely the corresponding Gromov-Witten invariants and

gravitational descendants in P4, are well-known to be the following:

T IY
1 (T ) T IY

1 (T ) T IY
1 (T )

(H2)⊗⊗⊗6 5 pt · c⊗ (H2)⊗⊗⊗2 1 pt · c2 ⊗H2 1

(H2)⊗⊗⊗4 ⊗H3 3 pt · c⊗H3 1 H3 · c2 ⊗ (H2)⊗⊗⊗2 −1

(H2)⊗⊗⊗2 ⊗ (H3)⊗⊗⊗2 2 H3 · c⊗ (H2)⊗⊗⊗3 1 H3 · c2 ⊗H3 −2

(H3)⊗⊗⊗3 1 H3 · c⊗H3 ⊗H2 0 pt · c3 1

pt ⊗ (H2)⊗⊗⊗3 1 H3 · c⊗ pt −1 H3 · c3 ⊗H2 −3

pt ⊗H3 ⊗H2 1 H3 · c4 −5

pt⊗⊗⊗2 1
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Using proposition 3.4.1, we can now calculate the following degeneration invariants

I(m,T ,γ) :=
1

(5−m)!
I

Q/Y

1,(m,1,...,1)(T | i∗γ⊗Q⊗⊗⊗(5−m)) :

γ = H2 γ = H3

m T I(m,T ,γ) m T I(m,T ,γ)

2 (H2)⊗⊗⊗3 6 2 (H2)⊗⊗⊗2 1

2 H2 ⊗H3 5 2 H3 1

2 pt 4 3 H2 2

3 (H2)⊗⊗⊗2 13 4 1 6

3 H3 11

4 H2 37

5 1 130

The numbers with m = 1 are not stated as they are trivially equal to the corresponding

Gromov-Witten invariants.

3.5 Lines and conics on the quintic threefold

In this last section, we will give a non-trivial example for the techniques developed

in this chapter: we compute the number of lines and conics on a quintic threefold

Q ⊂ Y = P4 using degeneration invariants of Q/Y . The input to the calculation will

be the Gromov-Witten invariants up to degree 2 in P4 and the degree 1 degeneration

invariants of example 3.4.4. The fact that we know the latter only for degree 1 is the

only reason why the method of computing the numbers of rational curves on Q by

means of degeneration invariants only works up to degree 2 so far. These numbers of

lines and conics on the quintic threefold are of course well-known [Ka], however we

hope to generalize our methods to higher degree in the future, and, to be optimistic,

also to higher genus, as degeneration methods seem to be quite suitable to compute

numbers of curves of higher genus (see [CH3] and [V]). For rational curves on Q,

there exist by now mathematically rigorous methods [K], [Gi] to verify the physicists’

numbers [COGP]. The numbers of elliptic curves on Q, however, as conjectured by

physicists [BCOV], have not been verified mathematically so far.

As the recursion relations of corollary 3.3.8 are quite complicated, we will organize

the invariants and equations in terms of generating functions and differential opera-

tors, which makes the result easier to state. As this requires the tensor products in

collections of classes γ1 ⊗ . . .⊗ γn to become multiplication in a polynomial ring, we

have to change the notation in this section:
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Definition 3.5.1 Consider polynomial rings in formal variables VVV := Q[H2,H3,H4]

and WWW := Q[H2,H3,H4,M3,M4,C]. We give V and W a grading by

deg H2 = 1, deg H3 = 2, deg H4 = 3, deg M3 = 2, deg M4 = 3, deg C = 1.

Next, we define algebra homomorphisms by

iYiYiY :V →
⊗

A∗(Y )

H2 7→ H2, H3 7→ H3, H4 7→ H4,

iQiQiQ :V →
⊗

A∗(Q)

H2 7→
1

5
i∗H, H3 7→

1

5
i∗H2, H4 7→

1

5
i∗H3,

where i : Q →֒Y is the inclusion. With these notations, define a functional ΦΦΦ : V ×W →

Q, the “functional of Gromov-Witten- and degeneration invariants on Y”, on pairs of

monomials as follows:

If p,q are monomials in V with deg (pq) = 5d +1 for d ∈ {1,2}, set j to be 5d minus

the number of factors in q, and define

Φ(p,q) :=

{

1
j!

I
Q/Y

d,(1,...,1)(iY (p) |Q⊗⊗⊗ j ⊗ iQ(q)) if j ≥ 0,

I
Q
d (iQ(q)) if j = −1.

(Note that the only possibility for j to be negative is j =−1, p = 1, and q = H5d+1
2 .) If

m ≥ 1 and p,q are monomials in V with deg (pqM3Cm−1) = 6, set j to be 5−m minus

the number of factors in q (which is always non-negative), and define

Φ(p,qM3Cm−1) :=
1

j!
I

Q/Y

1,(m,1,...,1)(iY (p) | iQ(H3)⊗Q⊗⊗⊗ j ⊗ iQ(q)).

Analogously, if m ≥ 1 and p,q are monomials in V with deg (pqM4Cm−1) = 6, set j to

be 5−m minus the number of factors in q (which is again always non-negative), and

define

Φ(p,qM4Cm−1) :=
1

j!
I

Q/Y

1,(m,1,...,1)(iY (p) | iQ(H4)⊗Q⊗⊗⊗ j ⊗ iQ(q)).

We set Φ(p,q) to zero on all other pairs of monomials and extend Φ linearly to V ×W .

For p ∈V , we abbreviate

Φ(p) := Φ(p,1),

Φ(pM3Cm−1) := Φ(p,M3Cm−1),

Φ(pM4Cm−1) := Φ(p,M4Cm−1).
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Remark 3.5.2 As the Gromov-Witten invariants are included in the degeneration in-

variants by means of the equation

IY
d (T ) =

1

(5d)!
I

Q/Y

d,(1,...,1)(T |Q⊗⊗⊗5d),

the numbers Φ(p) = Φ(p,1) for p ∈V are just the Gromov-Witten invariants of Y (of

degrees 1 and 2) of Y . The invariants Φ(pM3Cm−1) and Φ(pM4Cm−1) are the degree

1 degeneration invariants that we know by example 3.4.4. Hence, the functional Φ( · )

(with only one entry) can be assumed to be completely known. On the other hand,

the numbers that we want to calculate, namely the degree 1 and 2 Gromov-Witten

invariants on Q, are

I
Q
1 (1) = 56 Φ(1,H6

2) = n1n1n1,

I
Q
2 (1) = (

5

2
)11 Φ(1,H11

2 ) = n2n2n2 +
1

8
n1.

Here, nd denotes the number of rational curves of degree d on Q. The fact that the lines

on Q also contribute to I
Q
2 (1) with a factor of 1

8
has already been discussed in the end

of section 1.3, in particular in lemma 1.3.8.

Our goal is now to translate the equations of corollary 3.3.8 into our new language.

This will be done in the following lemma.

Lemma 3.5.3 For all p ∈V , q ∈W we have

Φ(5pH2,q) = Φ(p,(5H2 +H3∂H2
+H4∂H3

+M4∂M3
(1+C∂C))q)

+n1 Φ

(

p, ∑
m≥1

mM3Cm−1
∂m+5

H2

5m+5(m+5)!
q

)

,

Φ(5pH3,q) = Φ(p,(5H3 +H4∂H2
)q) ,

Φ(5pH4,q) = Φ(p,5H4 q) .

Proof We give the proof for the first equation, the others are completely analogous

(and easier). We may assume that p and q are monomials and that the dimension

condition deg (pq) = 5d is satisfied, since otherwise there is nothing to show. Assume

for a moment that q ∈ V . As in the definition above, let j be 5d minus the number of

factors in q. Let T = iY (p), D = Q⊗⊗⊗ j ⊗ iQ(q), and γ = H ∈ A∗(Y). Then, the left hand

side of the recursion equation in corollary 3.3.8 (for α = (1, . . . ,1)) is by definition

equal to

I
Q/Y

d,α (γ ·Q⊗T |D) = j!Φ(5pH2,q).

We now consider the right hand side of the equation 3.3.8 and start with the terms (1)

∑
k

I
Q/Y

d,(1,...,1)(T |(i∗γ) ·k D).
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If D = µ1 ⊗ . . .⊗µs, then (1) this is a sum over s terms, where in each sum one of the

µi is replaced according to the rule

Q 7→ i∗γ ·Q = i∗H, (A)

i∗H 7→ i∗γ ·H = i∗H2, (B)

i∗H2 7→ i∗γ ·H2 = i∗H3, (C)

i∗H3 7→ i∗γ ·H3 = i∗H4 = 0. (D)

Translating this into statements about the monomial q, this means that we have e.g. in

(C) to replace H3 with H4, and the coefficient of this monomial will be the number of

factors H3 in q. This is accomplished by the differential operator H4∂H3
. Similarly, the

contributions from (B) are counted by H3∂H2
. The terms (D) give no contribution at

all. Finally, in (A), we have to distinguish two cases:

• If j > 0, then for (A) we have to multiply q with 5H2 (note that iQ(5H2) = i∗H),

and the coefficient of this term should be equal to the number of classes Q in

D, namely j. However, since the definition of Φ(p,q) involves a factor of 1
j!

and multiplying q by 5H2 decreases j by one, this automatically produces the

desired factor of j. Hence, the contributions from (A) are described by 5H2q,

i.e. counted by j!Φ(5p,H2q).

• If j = 0, then there are no terms in (A) at all. Note that j = 0 is only possible

if p = 1 and q = H5d
2 . The result 5H2q that we got for j > 0 therefore yields

Φ(1,5H2 ·H5d
2 ) = Φ(1,5H5d+1

2 ), which has by definition a different meaning,

namely 5I
Q
d (iQ(q)). If we look at the equation 3.3.8, we see that this is exactly

the term (2) for ℓ = 0. Hence, in this case 5H2q describes (A) as well as the

terms in (2) with ℓ = 0.

But note that terms in (2) with ℓ = 0 can only occur only if j = 0, i.e. if p = 1 and q is

a power of H2, because otherwise there would be non-divisorial classes in the invariant

I
Q
d ( · ), which is impossible because vdim M̄0,0(Q,d) = 0. In summary, we have shown

that in any case, the sum of the terms in (1) and those in (2) with ℓ = 0 is given by

j!Φ(p,(5H2 +H3∂H2
+H4∂H3

)q),

still under the assumption that q ∈ V . If now q ∈ W\V , such that it contains a factor

MiC
m−1 for i ∈ {3,4}, the replacement above has to be done in exactly the same way,

with the only difference that the equations 3.2.12 give a multiplicity of m. As (1 +

C∂C)MiC
m−1 = mMiC

m−1, it follows that for general p ∈V and q ∈W , the sum of the

terms in (1) and those in (2) with ℓ = 0 is given by

j!Φ(p,(5H2 +H3∂H2
+H4∂H3

+M4∂M3
(1+C∂C))q) .
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Now we consider the terms in (2) and (3) of corollary 3.3.8 in the remaining case ℓ = 1.

These can only occur for d = 2, and then for fixed I and J they give the contribution

∑
ik

mgik I
Q
1 (i∗γ⊗ i∗T0 ⊗D0 ⊗Ti) I

Q/Y

1,(m,1,...,1)(T1 |Tk ⊗D1). (E)

As already mentioned above, there can be no non-divisorial classes among i∗γ⊗ i∗T0⊗

D0⊗Ti, so it follows that T0 = 1 (and hence T1 = T ), and that Ti = i∗H, where we have

chosen the basis i∗{Y,H,H2,H3} of A∗(Q). This means that Tk = i∗H2 and gik = 1
5

(with no sum any more). Moreover, all classes in D0 must be of the form iQ(H2) =
1
5

i∗H.

Denote by q0,q1 ∈V the monomials with q0q1 = q corresponding to the decomposition

of D in D0 and D1. Then the dimension condition for I
Q/Y

1,(m,1,...,1)(T | i∗H2 ⊗D1) is

deg (pq1) = 5−m. As deg (pq) = 10, it follows that deg q0 = 10− (5−m) = 5+m.

As we have just seen that q0 ∈Q[H2], it follows that q0 = Hm+5
2 , such that (E) evaluates

to

m
1

5
I

Q
1 (i∗γ⊗ (

1

5
i∗H)⊗⊗⊗(m+5) ⊗ i∗H) I

Q/Y

1,(m,1,...,1)(T | i∗H2 ⊗D1)

=
1

5m+6
mn1 I

Q/Y

1,(m,1,...,1)(T | i∗H2 ⊗D1).

Moreover, note that q1 = q/q0 = q/(H2)
m+5, hence D1 is obtained from D by deleting

m + 5 classes 1
5

i∗H corresponding to iY (H2). The choice of which classes to delete

gives a combinatorial factor of
(

N
m+5

)

, where N denotes the exponent of H2 in q. Putting

all this together, we see that we can write the contribution (E) as

j!

5m+5
mn1 Φ

(

p,M3Cm−1
∂m+5

H2

(m+5)!
q

)

.

Summing this over all possible multiplicities m ≥ 1 (in fact we only need 1 ≤ m ≤ 5

for dimensional reasons) now yields the desired result. ✷

We now want to write these equations in a from such that it becomes easy to apply

them recursively. To do this, we make the following definition:

Definition 3.5.4 Define the differential operator f : W →W by

fff :=
1

10
H3∂2

H2
+

1

5
H4∂H2

∂H3
−

1

300
H4∂3

H2
+

1

5
M4∂M3

∂H2
(1+C∂C),

and set FFF := exp ( f ) : W →W .

Note that F is an invertible operator that preserves degrees and maps V to V . The

operator has been designed to make the following lemma work:
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Lemma 3.5.5 For all p ∈V , q ∈W we have

Φ(pH2,Fq) = Φ(p,FH2q)+n1 Φ

(

p, ∑
m≥1

mM3Cm−1
∂m+5

H2

5m+6(m+5)!
Fq

)

,

Φ(pH3,Fq) = Φ(p,FH3q),

Φ(pH4,Fq) = Φ(p,FH4q).

Proof Firstly, we claim that F = exp ( f1) exp ( f2) where

f1 =
1

10
H3∂2

H2
and f2 =

1

5
H4∂H2

∂H3
+

1

150
H4∂3

H2
+

1

5
M4∂M3

∂H2
(1+C∂C).

Indeed, this can be verified immediately using the Baker-Campbell-Hausdorff formula

stating that exp (A)exp (B) = exp (A+B+ 1
2
[A,B]) if [A, [A,B]] = [B, [A,B]] = 0.

Now the proof of the lemma is be done by direct computation, using lemma 3.5.3 and

the fact that [A,Bn] = n[A,B]Bn−1 and [A,exp (B)] = [A,B]exp (B) if [B, [A,B]] = 0.

We do it explicitly for the first equation, the other two are proven in the same way.

Consider the product FH2q and push H2 through to the left:

FH2q = exp ( f1)exp ( f2)H2q

= exp ( f1)(H2 +
1

5
H4∂H3

+
1

50
H4∂2

H2
+

1

5
M4∂M3

(1+C∂C))exp ( f2)q

= (H2 +
1

5
H3∂H2

+
1

5
H4∂H3

+
1

5
M4∂M3

(1+C∂C))exp ( f1)exp ( f2)q

= (H2 +
1

5
H3∂H2

+
1

5
H4∂H3

+
1

5
M4∂M3

(1+C∂C))Fq.

But now, writing down the first equation of lemma 3.5.3 for Fq instead of Q and

inserting the above equation yields the desired result. ✷

These equations of lemma 3.5.5 are much nicer than those of lemma 3.5.3, since it is

easy to apply them recursively:

Corollary 3.5.6 For any monomials p,q ∈ W with deg (pq) = 6, where at most one

of them is not in V , we have the equation Φ(pq) = Φ(p,Fq).

Proof As we consider invariants of degree 1, the additional term n1Φ( · ) in the upper

equation of lemma 3.5.5 vanishes. This means that Φ(p′Hi,Fq′) = Φ(p′,FHiq
′) for

i = 2,3,4, p′ ∈V , and q′ ∈W . Applying this equation recursively obviously yields

Φ(p′r,Fq′) = Φ(p′,Fq′r) (1)

for r ∈V . So, if q ∈V , we can set p′ = p, q′ = 1, and r = q to prove the statement of

the corollary. If q /∈V but p ∈V , then q is of the form q = MiC
m−1q̃, and we conclude
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that

Φ(p,Fq) = Φ(p,Fq̃MiC
m−1)

= Φ(pq̃,FMiC
m−1) by (1)

= Φ(pq̃,MiC
m−1) by definition of F

= Φ(pq̃MiC
m−1) by definition 3.5.1

= Φ(pq).

✷

This result already enables us to compute the number of lines on Q:

Corollary 3.5.7 The number of lines on the quintic threefold is n1 = Φ(F−1(5H2)
6) =

2875.

Proof By corollary 3.5.6,

n1 = Φ(1,(5H2)
6) = Φ(F−1(5H2)

6,1) = Φ(F−1(5H2)
6).

But the invariant Φ(F−1(5H2)
6) is known (see remark 3.5.2) since it is made up en-

tirely of Gromov-Witten invariants of P4. The explicit computation using a Maple

program is given at the end of this section. ✷

We now come to the case of conics. The main difference is of course that we have

to cope with the additional term in lemma 3.5.5 that corresponds to reducible curves.

This can be done using the following operator:

Definition 3.5.8 Define the differential operator K : W →W by

KKK := n1

5

∑
m=1

(

mM3Cm−1
∂m+6

H2

5m+6(m+6)!
−m2(m+6)M4Cm−1

∂m+7
H2

5m+7(m+7)!

)

.

The following lemma should be viewed as an analogue of corollary 3.5.6.

Lemma 3.5.9 For any p ∈V with deg p = 11, we have Φ(p) = Φ(1,F p)+Φ(Kp).

Proof We can assume that p is a monomial and write it as p = Hk
2 p′ with p′ ∈

Q[H3,H4]. Then, applying lemma 3.5.5 recursively, we get

Φ(p) = Φ(Hk
2 ,F p′)

= Φ(Hk−1
2 ,FH2p′)+n1 Φ

(

Hk−1
2 , ∑

m≥1

mM3Cm−1
∂m+5

H2

5m+6(m+5)!
F p′

)

= . . .

= Φ(1,F p)+n1

k−1

∑
i=0

Φ

(

Hk−1−i
2 , ∑

m≥1

mM3Cm−1
∂m+5

H2

5m+6(m+5)!
FH i

2p′

)

.
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We want to push the operator F through to the left in the second entry of Φ. To do this,

we compute by a standard calculation the commutator for q ∈V

[M3Cm−1∂m+5
H2

,F]q = −
1

5
mF M4Cm−1∂H2

q.

Inserting this into the above calculation gives

Φ(p)−Φ(1,F p) = n1 ∑
i,m

Φ

(

Hk−1−i
2 ,mFCm−1(M3 −

m

5
M4∂H2

)
∂m+5

H2

5m+6(m+5)!
H i

2p′

)

= n1 ∑
i,m

Φ

(

Hk−1−i
2 Cm−1(mM3 −

m2

5
M4∂H2

)
∂m+5

H2

5m+6(m+5)!
H i

2p′

)

by corollary 3.5.6. We can now perform the sum over i explicitly, since for a ∈ {m +

5,m+6}

k−1

∑
i=0

Hk−i−1
2

∂a
H2

a!
H i

2 =
k−1

∑
i=0

Hk−i−1
2 H i−a

2

(

i

a

)

= Hk−a−1
2

k−1

∑
i=0

(

i

a

)

= Hk−a−1
2

(

k

a+1

)

.

Continuing the calculation from above, this gives

Φ(p)−Φ(1,F p) = n1 ∑
m

Φ

(

m

5m+6

(

k

m+6

)

M3Cm−1Hk−m−6
2 p′

−
m2(m+6)

5m+7

(

k

m+7

)

M4Cm−1Hk−m−7
2 p′

)

= n1 ∑
m

Φ

(

mM3Cm−1
∂m+6

H2

5m+6(m+6)!
p−m2(m+6)M4Cm−1

∂m+7
H2

5m+7(m+7)!
p

)

= Φ(Kp).

✷

Corollary 3.5.10 The number of conics on the quintic threefold is

n2 =
1

211
Φ((1−K)F−1(5H2)

11)−
n1

8
= 609250.
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Proof Apply lemma 3.5.9 to p = F−1(5H2)
11 to get

I
Q
2 (1) =

1

211
Φ(1,(5H2)

11)

=
1

211
Φ(1,F F−1(5H2)

11)

=
1

211
(Φ(F−1(5H2)

11)−Φ(KF−1(5H2)
11))

=
1

211
Φ((1−K)F−1(5H2)

11).

As n2 = I
Q
2 (1)− n1

8
, the result follows. ✷

To finish, we give a short Maple program that can be used to do the explicit calculations

of the numbers of lines and conics, i.e. of the numbers

n1 = Φ(F−1(5H2)
6) = 2875

and n2 =
1

211
Φ((1−K)F−1(5H2)

11)−
n1

8
= 609250.

# A Maple program to compute the numbers of lines and conics on a

# quintic threefold Q using degeneration invariants of Q/Pˆ4

# These are the necessary Gromov-Witten- and degeneration invariants

# of Pˆ4:

# d=1 Gromov-Witten invariants:

inv [ H2ˆ6] := 5:

inv [ H3 *H2ˆ4] := 3:

inv [ H3ˆ2*H2ˆ2] := 2:

inv [ H3ˆ3 ] := 1:

inv [H4 *H2ˆ3] := 1:

inv [H4 *H3 *H2 ] := 1:

inv [H4ˆ2 ] := 1:

# d=1 degeneration invariants:

inv [M3 *H2ˆ4]:= 3:

inv [M3 *H3 *H2ˆ2]:= 2:

inv [M3 *H3ˆ2 ]:= 1:

inv [M3 *H4 *H2 ]:= 1:

inv [M4 *H2ˆ3]:= 1:

inv [M4 *H3 *H2 ]:= 1:

inv [M4 *H4 ]:= 1:

inv [M3*C *H2ˆ3]:= 6:

inv [M3*C *H3 *H2 ]:= 5:

inv [M3*C *H4 ]:= 4:

inv [M4*C *H2ˆ2]:= 1:

inv [M4*C *H3 ]:= 1:

inv [M3*Cˆ2 *H2ˆ2]:= 13:

inv [M3*Cˆ2 *H3 ]:= 11:

inv [M4*Cˆ2 *H2 ]:= 2:

inv [M3*Cˆ3 *H2 ]:= 37:
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inv [M4*Cˆ3 ]:= 6:

inv [M3*Cˆ4 ]:= 130:

# d=2 Gromov-Witten invariants:

inv [ H2ˆ11] := 6620:

inv [ H3 *H2ˆ9 ] := 1734:

inv [ H3ˆ2*H2ˆ7 ] := 473:

inv [ H3ˆ3*H2ˆ5 ] := 132:

inv [ H3ˆ4*H2ˆ3 ] := 36:

inv [ H3ˆ5*H2 ] := 10:

inv [H4 *H2ˆ8 ] := 219:

inv [H4 *H3 *H2ˆ6 ] := 67:

inv [H4 *H3ˆ2*H2ˆ4 ] := 21:

inv [H4 *H3ˆ3*H2ˆ2 ] := 6:

inv [H4 *H3ˆ4 ] := 2:

inv [H4ˆ2 *H2ˆ5 ] := 11:

inv [H4ˆ2*H3 *H2ˆ3 ] := 4:

inv [H4ˆ2*H3ˆ2*H2 ] := 1:

inv [H4ˆ3 *H2ˆ2 ] := 1:

inv [H4ˆ3*H3 ] := 0:

# The differential operator f...

f := a -> H3/10*diff(diff(a,H2),H2) + H4/5*diff(diff(a,H2),H3)

- H4/300*diff(diff(diff(a,H2),H2),H2)

+ (1+C*diff(a,C))*M4/5*diff(diff(a,H2),M3):

# ... and Fˆ(-1) ...

FI := proc (p) local x,s,i;

x := p: s := 0: i := 0:

while (x <> 0) do s := s+x: i := i+1: x := -f(x)/i: od:

expand (s):

end:

# ... and K.

K := proc (p) local s,m,dfac;

dfac := proc (p,n) local i;

p:

for i from 1 to n do diff(",H2)/5/i: od:

expand ("):

end:

s := 0:

for m from 1 to 5 do

s := s + M3*Cˆ(m-1)*m*dfac(p,m+6)

- M4*Cˆ(m-1)*mˆ2*(m+6)*dfac(p,m+7):

od:

expand (s):

end:

# The functional Phi:
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Phi := proc (p) local i,co,var;

co := [coeffs (expand (p),{H2,H3,H4,M3,M4,C},’var’)]:

var := [var]:

sum (co[i]*inv[var[i]],i=1..nops(var)):

end:

# Now calculate the invariants:

# lines: (result 2875)

N1 := Phi ( FI ((5*H2)ˆ6) );

# conics: (result 609250)

N2 := (Phi ( FI ((5*H2)ˆ11) - N1 * K (FI((5*H2)ˆ11)) ) - 2ˆ8 * N1)

/ 2ˆ11;
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Birkhäuser Progress in Mathematics 129 (1995). Preprint alg-geom/9410028

[COGP] P. Candelas, X. de la Ossa, P. Green, L. Parkes: A pair of Calabi-Yau man-

ifolds as an exactly soluble superconformal theory. Nuclear Physics B 359

(1991), 21–74

109



110 BIBLIOGRAPHY

[Co] M. Cornalba: A simple proof of the projectivity of Kontsevich’s space of

maps. Istit. Lombardo Accad. Sci. Lett. Rend. A 129 (1995), no. 1–2, 111–

119

[DM] P. Deligne, D. Mumford: The irreducibility of the space of curves of given

genus. IHES 36 (1969), 75–110
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(eds), Birkhäuser Progress in Mathematics 129 (1995)

[ML] Quantum cohomology at the Mittag-Leff ler institute. Report no. 10 of the

Mittag-Leffler institute by P. Aluffi (ed), 1996/1997. Currently also available

as e-print FSU97-01 in the Florida State University e-print archive, URL

http://www.math.fsu.edu/˜aluffi/eprint.archive.html

[P1] R. Pandharipande: Intersections of Q-divisors on Kontsevich’s moduli space

M̄0,n (Pr,d) and enumerative geometry. Preprint alg-geom/9504004

[P2] R. Pandharipande: The canonical class of M̄0,n(P
r,d) and enumerative ge-

ometry. Internat. Math. Res. Notices 1997, no. 4, 173–186. Preprint alg-

geom/9509004



112 BIBLIOGRAPHY

[RT] Y. Ruan, G. Tian: A mathematical theory of quantum cohomology. J. Diff.

Geom. 42 (1995), 259–367

[S] B. Siebert: Gromov-Witten invariants for general symplectic manifolds.

Preprint dg-ga/9608005

[V] R. Vakil: The enumerative geometry of rational and elliptic curves in pro-

jective space. Preprint alg-geom/9709007

[Vi] A. Vistoli: Intersection theory on algebraic stacks. Inv. Math. 97 (1989),

613–670

[W] E. Witten: Two-dimensional gravity and intersection theory on moduli

space. Surveys in Diff. Geom. 1 (1991), 243–310



Lebenslauf

9.4.1970 geboren in Hannover

1990–1993 Studium der Mathematik und Physik an der Universität

Hannover

Oktober 1992 Vordiplom in Mathematik und Physik, Hannover

1993–1994 Part III Mathematics an der University of Cambridge

Juni 1994 Certificate of Advanced Study in Mathematics, Cambridge

1994–1998 Wissenschaftlicher Mitarbeiter an der Universität Hannover

Februar 1998 Promotion

Hannover, im Februar 1998




	Zusammenfassung
	Abstract
	Contents
	Preface
	1 Gromov-Witten invariants and descendants
	1.1 Introduction
	1.2 Moduli spaces of stable maps
	1.3 Virtual fundamental classes
	1.4 Gromov-Witten invariants
	1.5 Gravitational descendants
	1.6 Curves with higher order contact

	2 Gromov-Witten invariants of blow-ups
	2.1 Introduction
	2.2 Calculation of the invariants
	2.3 A vanishing theorem
	2.4 Enumerative significance —general remarks
	2.5 Enumerative significance —the case ˜ P
	2.6 Enumerative significance —the case ˜ P
	2.7 Tangency conditions via blow-ups
	2.8 Numerical examples
	2.9 Blow-ups of subvarieties

	3 Degeneration invariants
	3.1 Introduction
	3.2 Degeneration to a hyperplane in P
	3.3 Degeneration to a hypersurface in P
	3.4 Degeneration invariants and descendants
	3.5 Lines and conics on the quintic threefold

	Bibliography
	Lebenslauf

