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Abstract

Atom interferometers have proven to have excellent perspectives for many high precision
measurements. Especially the Ramsey-Bordé interferometer plays an important role in the study of
high precision optical frequency standards and fundamental physics. In combination with the laser
cooling and trapping techniques, Ramsey-Bordé interferometry in the time domain on cold trapped
atoms offers higher sensitivity and accuracy for optical frequency standards. In this work the time
domain Ramsey-Bordé interferometry on cold trapped Mg atoms based on the intercombination
transition 'S -’P at 457 nm has been realized.

In a first step a new second harmonic generation (SHG) setup with BBO as nonlinear crystal was
developed to produce the cooling and trapping laser light at 285 nm. The trap dynamics of the Mg
magneto-optical trap (MOT) has been studied in detail. The photoionization cross section of the 'P
state has been measured to be op=(6.3 + 1.6)'10'17 cm’ for =285 nm.Cold collision phenomena for
cold trapped Mg atoms were studied for the first time. The collisional trap loss coefficient 3 has been
determined to be to be smaller than 107" cm?/s. The dynamics of a pulsed MOT, necessary for time
domain Ramsey-Bordé interferometry, has been studied and an optimization procedure for the
Ramsey-Bordé interferometry has been developed.

The theoretical approach for the four zone Ramsey-Bordé interferometry developed by Bordé is
revisited to work out the importance of an additional phase term describing the atom-field interaction
at the four interaction zones. This additional phase term could be demonstrated in a series of
measurements. High resolution Ramsey fringes with line width down to 491 Hz and with a signal-to-
noise ratio of 2.3 could be measured on cold, trapped Mg ensembles. This corresponds to a high line
Qof1.3-10".

To exploit the potential of Mg intercombination line as optical frequency standard, the laser
spectrometer for 457 nm is stabilized to a thermal beam Ramsey resonance. The stability of this
stabilized spectrometer was measured relative to the atomic resonance achieved on the trapped atoms.
The Allan standard deviation has been measured to be 2.7 'IO'U/\/;, which is two orders of
magnitude smaller than previous measured values on Mg atoms and is very close to the stability (2.7

‘10Pat s measuring time) of the present best Cs fountain colock.
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Zus ammenfassung

Atominterferometer haben sich f_r hoch prizise Messungen als gut geeignet erwiesen. Insbesondere
das Ramsey-Bordé-Interferometer spielt eine wichtige Rolle sowohl fiir die physikalischen
Grundlagenforschung, als auch fiir die Realisierung eines priizisen optischen Frequenzstandards. In
Kombination mit Techniken der Speichern und Kiihlen von Atomen mit Laserlicht ermdglicht die
Ramsey-Bordé-Interferometrie im Zeitraum eine hohe Empfindlichkeit und Genauigkeit fiir optische
Frequenzstandards mit kalten Atomen.

In dieser Arbeit wurde die Ramsey-Bordé-Interferometrie im Zeitraum basierend auf dem 'S-’P -
Ubergang von Mg bei 457 nm mit gefangenen kalten Mg Atomen realisiert. In ersten Untersuchungen
wurde eine neue Frequenzverdopplung mit BBO-Kristall als nichtlinearem Kristall aufgebaut, um das
Fallen- und Kiihllaserlicht bei 285 nm zu erzeugen. Die Dynamik der magnetooptischen Falle wurde
detailliert untersucht. Der Photoionisationsquerschnitt des 'P -Zustands wurde gemessen. Er betrigt
Op=(6.3+1.6)'10"" cm”. Kalte St68e von Mg-Atomen wurden erstmals systematisch untersucht. Der
Fallenverlustkoeffizient B wurde zu kleiner als 107 cm’/s bestimmt. Die Dynamik der gepulsten
Falle, die fiir die Ramsey-Bordé-Interferometrie im Zeitraum notwendig ist, wurde studiert. Ein
Optimierungs-verfahren fiir die Ramsey-Bordé-Interferometrie konnte entwickelt werden.

Die von Bordé entwickelte Theorie fiir Vierzonen-Ramsey-Bordé-Interferometrie wurde unter
Beriicksichtigung einer zusitzlichen Phase, die durch die Wechselwirkung zwischen Atom und
Lichtfeld verursacht wird, erweitert. Diese zusitzliche Phase konnte in einer Serie von Messungen
nachgewiesen werden.

Hochstauflésenden Ramseyringe mit einer Linienbreite bis zu 491 Hz und mit einem Signal-zu-
Rausch-Verhiltnis von 2.3 wurden gemessen. Dies entspricht einer hohen Liniengiite Q von 1.3-10".
Um das Potential der Mg-Interkombinationslinie als Frequenzstandard aufzuzeigen, wurde ein 457
nm Laserspektrometer auf das Ramsey-Signal eines thermischen Mg-Atomstrahl frequenzstabilisiert.
Die Stabilitit des frequenzstabilisierten Spektrometers wurde relative zu der mit Hilfe der Falle

bestimmten atomaren Resonanz gemessen. Die Allan-Standardabweichung 6 (T) betrigt dabei 2.7-10°

B/ . Dieser Wert ist um zwei GroBenordnungen kleiner als die bisher erzielte Allan-

Standardabweichung mit gefangenen kalten Mg-Atomen. Er reicht sehr nahe an die Stabilit[t der

bisher besten Cs Atomuhr mit einem Wert von 2:10°" bei T s Messzeit heran.
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Chapter 1

Introduction

Frequency and time are physical quantities which can be measured today with highest precision.
An accuracy of about 10" has been achieved with the commercial Cs beam atomic clocks [Aud
80]. Many other physical quantities can be linked to frequency measurements and there is
tremendous effort to connect as many fundamental constants as possible to frequency standards.
The length has been defined in terms of time by defining the velocity of light propagation as a
constant [Qui 92]. The voltage has been defined in terms of frequency by the Josephson effect
[Jos 62]. The Global Positioning System (GPS) with its various applications, as e.g. guiding the
movement of transporting vehicles in the next century, depends directly on the precision of
atomic clocks. The demand for high precision frequency standards for navigation, radio
astronomy, geophysical investigations and telecommunications motivates people to study more
stable and accurate frequency standards [Mar 89]. Since the stability is inverse proportional to
the line Q, optical frequency standards promise higher stability. The separated oscillatory field
methods at microwave frequencies developed by Ramsey can significantly narrow the spectral
linewidth [Ram 50]. Baklanov et al. [Bak 76] and Bordé et al. [Bor 82] extended the Ramsey
separated oscillatory field towards the optical region for high precision spectroscopy. Bordé
found later that the four zone Ramsey geometry with two pairs of counterpropagating traveling
waves 1s actually a Mach-Zehnder type interferometer [Bor 89]. Atoms are coherently splitted
by single photon absorption or emission events which leads to an entanglement between the

internal states of the atoms and the separated external paths. After the four interaction zones the

A

Atomic beam

Laser beams

Fig. 1.1: Principle of the Ramsey-Bordé interferometer.



atomic waves are recombined to constitute an atom interferometer.

Interferometry has a long history for high precision measurements in physics. Since the 19th
century Fizeau (1853), Michelson (1881) and others used optical interferometry to study the
problem of light propagation. Today the Michelson interferometer is used for modern
gravitational wave detection schemes [Dan 92]. The wave properties of matter were first
proposed by de Broglie in 1924. The concept of matter waves was the key concept in the early
days of quantum mechanics. It was approved by the diffraction of electrons [Dav 27] and atoms
[Est 30]. Matter wave interferometer were first built with electrons [Mar 52] and later with
neutrons [Mai 62]. Today many fundamental physical measurements have been studied by
electron and neutron interferometers, as e.g. the phase shift caused by rotation and gravitation,
the Berry phase, and the Aharonov-Casher effect... [Bad 88].

Atom interferometry opens up much more possibilities because of the internal degrees of
freedom of atoms. In addition atom interferometers can be built at moderate cost and
dimensions compared to neutron interferometer. The development of atom interferometers came
comparatively late due to the lack of appropriate optical elements for a coherent splitting of
atomic waves. Today the field of atom interferometry is well established by recent advances in
atom optical elements [Ada 94]. These include the mechanical gratings and light fields used for
beam splitting. Using micro-fabricated structures Carnal et al. [Car 91] and Keith et al. [Kei 91]
have realized the wave-front dividing type of atom interferometer. Atomic and molecular
properties such as the electric polarizability, the refractive index of matter waves, fundamental
quantum-mechanical issues such as the Heisenberg-microscope and inertial sensing for rotation
have been studied with these interferometers [Sch 97, Cla 94, Pfa 94].

Using light field for splitting of atomic matter waves was discussed very early. In 1933 Kapiza
and Dirac first suggested to diffract electrons with a nearly resonant standing light wave [Kap
33]. The effect has never been observed due to the weak light-electron interaction. However the
strong atom-light interaction allowed for the diffraction of atoms. Under certain conditions the
spontaneous emission can be neglected. Atoms absorb and redistribute photons between the
counterpropagating light waves, and thus obtain discrete momenta by multiples of 2%k along
the k vectors of the standing light waves. Thus the outgoing atoms appear at discrete angles.
This diffraction effect was first demonstrated by the group of Pritchard [Mos 83, Gol 86].

Chebotayev et al. have suggested an interferometer based on such a configuration [Che 85].



Later interferometers with three gratings generated by standing light waves have been realized
[Gil 95, Ras 95].

For some experiment such as the detection of Sagnac effect it is desirable to build an
interferometer with large area to increase the sensitivity. A large momentum transfer from the
beam splitter is essential. To achieve large angle splitting the idea of a blazed phase grating is
used. A blazed grating imposes a periodic triangular phase modulation on an incoming atomic
wave and results in a diffraction pattern dominated by one specific diffraction order or a narrow
distribution of diffraction orders. A variety of proposals and experiments were demonstrated,
such as a blazed-grating with a high momentum splitting of 42+rk. [Pfa 93, Gri 94, Joh 95, 96].
By a sequence of multiple Raman 7 pulses high momentum transfer can also be reached [Wei
94a]. To achieve a large number of m pulses without relevant reduction of the transfer
efficiency, population transfer by coherent adiabatic passage was used [Kuk 89]. Many groups
have demonstrated this method and realized interferometers based on this mechanism [Gau 88,
Mar 91, Wei 94b, Law 94, Gol 94].

Bordé discovered in 1989 that the optical 4 zone Ramsey setup (see Fig.1.1) constitutes an atom
interferometer of Mach-Zehnder type. This interpretation led to a completely new view of many
historical Ramsey spectroscopy-setup that were actually interferometers [Bak 76, Ber 77, Bar
79, Bab 81, Bor 82,84, Hel 82].

Today various extensions of this type of interferometer were developed. Morinaga realized an
interferometer with four copropagating traveling waves [Mor 95]. Because of the symmetry
between the two partial beams, the interference signal is independent of the laser frequency.
Instead of two partial wave interferometer Morinaga has realized a multiple beam
interferometer using up to ten counterpropagating traveling waves [Mor 92]. It was expected
that the fringe width becomes narrower as the number of interaction zones increases which is
similar to optical interference, but experimentally such effect did not appear. In a similar
experiment, recently realized with cold, trapped Mg atoms narrower fringe widths have been
observed as the number of zones increases [Rus 98]. Using multiple internal state systems also
allowed for multiple beam interferometry [Wei 96, Hin 97].

With the fast development of atomic interferometers in recent years, many precision
measurements like the ac and dc polarizability of atoms [Ste 92a, Rie 92, Rie 93, Mor 96], the

inertial effect due to rotation and gravitation [Rie 91, Kas 92a], and quantum topological phases



such as the Aharonov-Bohm and -Casher effect [Miil 95, Zei 95] and many other fundamental
measurements (see Atom Interferometry [Ber 97]) have been realized.

In this wok the application of four zone traveling wave Ramsey-Bordé interferometer will be
used to explore the potential of Mg as optical frequency standard. Through the atom-light
interaction the change of the laser frequency will directly reflect on the phase difference of the
two partial waves. A high sensitivity of the interference signal on the laser frequency is the
result. It is very suitable to act as a frequency discriminator for high precision optical frequency
standard. To maintain the coherence of the 1 P]

atomic wave in the interferometer a forbidden 383p

transition to a long-living state is necessary. The

triplet states of alkali earth elements are good cooling & )
. . . frapping
candidates for this purpose. Except beryllium, 2852 nm g)
where little data is available, Mg has the T=20218
clock transition

narrowest intercombination transition with a

linewidth of 31 Hz [God 92] which corresponds

457.1 nm
7T=51ms

to a line Q of 2-10". For alkali earth elements ]
3s° So

Fig.1.2 Cooling and clock transition of
the ground state. This fast transition is good for magnesium.

there is also a fast singlet transition coupled to

cooling and trapping. For magnesium the cooling transition is closed. All heavier alkali-earth
elements have 'D states, which limit the trap lifetime due to optical pumping. With the laser
cooling and trapping techniques developed in recent years [JOSA 89, Ari 92] Mg atoms can be
cooled to a few mK. At such low temperatures the 1st and 2nd order Doppler effects are
significantly reduced. In addition long spectroscopy times can be reached. Using cold trapped
atoms high precision spectroscopy with the time domain Ramsey-Bordé¢ interferometry (RBI)
is expected.

For high levels of precision the effect of cold collisions may lead to detuning dependent shifts
of the transition frequency. Cold collisions have been extensively studied in recent years [Jul 93,
Wal 94, Wei 95]. At low temperature the collision phenomenon is different from that at normal
temperature since the atomic de Broglie wave length A, can be much larger than the scale of
the interatomic potential. The collision cross section can be as large as )éB/n. Inelastic

collisions can result in trap loss and limit the trap life and the number of trapped atoms. It can



produce sizeable frequency shift in the Cs fountain frequency standard [Gib 93]. On the other
hand cold collisions also open new fields for high precision molecular spectroscopy 1i.e.
Photoassociation spectroscopy on cold atoms [Let 95]. This technique can offer useful
information for both the excited and ground molecular states. It also plays an important role in
the determination of the elastic s-wave scattering length of the ground state of alkali atoms

which are the species used to realize the Bose-Einstein condensation [And 95, Dav 95, Bra 95].

In chapter 2 of this work the manipulation of cold Mg atoms will be described. In a magneto-
optical trap operated at 285 nm a density as high as 5-10'"" atoms/cm® of Mg atoms could be
reached. At such high densities the collisional trap loss was studied. In addition the possibility
of doing photoassociation spectroscopy on cold trapped Mg atoms is discussed. There exists
strong interest in achieving the quantum collective regime with alkali earth atoms. For this
purpose the s-wave scattering length of the Mg atoms is of special interest. In this frame
possibilities to determine the scattering length of **Mg will be discussed in section 2.4.

The main purpose of present work is to optimize the trap for the high precision RBI experiment.
A long term stable trapping laser beam is essential for good signal-to-noise ratio of the
spectroscopy. A new method for second harmonic generating the 285 nm cooling and trapping
laser beam with a BBO crystal is introduced to improve the experimental conditions. Further
optimization of the trap for the interferometry is presented.

The theory of the Ramsey-Bordé interferometry with four traveling wave has been studied by
Bordé [Bor 84] in terms of spinors , by Sterr et al. [Ste 92a] with mechanical interpretation and
by P. Storey et al. [Sto 94] with the Feynman path integral. The phase difference of the two
partial waves introduced in the interaction zone has not been discussed in the literature so far.
This phase leads to a different periodicity of the interference fringes compare to the “standard
theory”. The relevance and dependence of this phase will be discussed in chapter 3. The
influence of this phase on the accuracy of frequency standards is discussed.

The experimental setup for RBI on the trap is described in chapter 4. A special detection
mechanism with the effect of electron shelving, which was first used in the RBI experiment by
K. Sengstock [Sen 94] is revised. Especially, the recapture of the excited *P, state is considered
here. High resolution Ramsey fringes with line widths of down to 491 Hz is reached. The limit

of the present resolution is discussed and further improvements are suggested.



High stability of optical frequency standard is in the center of developments of many
laboratories worldwide. Among the many suggested candidates [Hal 89] we show that a high
stability for a Mg frequency standard in the order of 10" for integration times of a few seconds
is possible. In chapter 5 the stability of a spectrometer stabilized on the Ramsey fringes of a
thermal Mg atomic beam is measured and compared with the Ramsey resonance on the trap. A
detailed comparison with other frequency standards will be given. An outlook of future work is

described at the end of this work.



Chapter 2

Laser manipulation of cold atoms

Laser cooling of atoms has improved many physical research areas. So far various different,
effective cooling methods were developed [Dal 90, Ari 92]. The method of polarization gradient
cooling has reached sub-Doppler temperatures [Dal 89, Wei 89, Let89], whereas velocity
coherent population trapping (VSCPT) and Raman cooling could even beat the photon recoil
limit [Asp 88, Kas 92b]. Due to the 'S, ground state these schemes are not accessible to the
alkali earth elements so far these elements were cooled to Doppler limit temperature. For
applications in frequency standard measurements Doppler temperature are sufficient to reduce
the second order Doppler effect to values of Av/v=10"" [Sen 93]. In addition, e.g. quantum
topological phases such as the Aharanov-Bohm effect [Miil 95] were measured on laser cooled
and trapped atoms. In this chapter the method of manipulation of cold Mg and the optimization

of the cold trap for RBI experiment will be described.

2.1 Methods of laser cooling and trapping

The spontaneous force:

The light forces acting on atoms are based on the momentum transfer during the absorption and
emission of photons. For stimulated emission in the case of a plane laser wave the emitted
photon has the same direction as the absorbed one so there is no momentum transfer and no
force acting on the atom. But for the spontaneous emission the emitted and absorbed photon can
have a different direction and there is a net momentum transfer to the atom. For a two-level
atom the average force due to spontaneous emission can be described by the product of photon

momentum h-k and the photon scattering rate [Let 89]:
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, where I is the laser intensity, I, =mhc/3A’t is the saturation intensity, I' is the line width of
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the cooling transition, A is the laser detuning and v is the velocity of the atom.

This force saturates to hkI'/2 for high laser intensity. At such an intensity the spontaneous force
corresponds to an acceleration of a=1.4:10" m/s? for a Mg atom. The spontaneous force can
decelerate or accelerate the atoms depending on the laser detuning from the atomic resonance
frequency. For a red detuned laser, counterpropagating to an atomic beam the atoms are
decelerated. But after some photon scattering the atom will be decelerated out of resonance and
further deceleration stops. Two method are used to solve this problem. One method is the so
called chirp cooling where the frequency of the cooling laser is varied in time such that it is
always resonant with the cooled atoms [Ert 85]. This method is suitable for preparing pulsed
cold ensembles. In the other method, called Zeeman cooling, the atomic transition energy is
modified to guarantee the resonance condition by the Zeeman effect [Pro 85]. In the experiments
described in this work the Zeeman detunig method is used to decelerate Mg atoms. For atoms
always resonant with the cooling laser beam the condition A=-kv(z)+uB(z) must be fulfilled.
This requires specific magnetic field gradient to efficiently cool the atomic beam. The details of

the magnetic field design for the deceleration of the atoms is described in [Hen 92].

Cooling in optical molasses:
Within a setup of three pairs of counter-propagating red detuned laser beams the velocity of

atoms is reduced in all three dimensions,

the atoms are cooled [Hin 75] . S. Chu first g 1.5
demonstrated this method and called the E !
cooled cloud optical molasses [Chu 85]. @O °e
When the intensity is small the multiphoton % _D.:
scattering effect can be neglected and the <§ "
total force of each pair of laser beams can -1.5
be described as the sum of the spontaneous 60 a0 20 0 20 a0 o0

forces from each laser beam. This cooling .
velocity (m/s)

force can be written as f(v)=-o., v for small Ejg 2 1: Average force acting on a Mg atom
velocity, where o, is the friction coefficient with two counterpropagating -IV2 detuned

laser beams.
and is given by
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Here I is the intensity of each laser beam and N is the dimension. This averaged force is shown
in Fig. 2.1 for Mg atoms with A=-T'/2 and for [.=0.25 mW/mm®.
Besides the cooling effect additional heating effect appears, which is resulted from the random

processes of spontaneous emission. According to the random walk theory the momentum

diffusion rate is described by [Let 89]
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The heating rate <p2>/2m equilibrate the cooling rate o, v> and results in an equilibrium

temperature:

12Nt +(2AT)?
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(2.4)

This temperature has a minimum value when A=-1"/2 and satisfies kyT,=h-I'/2. This temperature

limit T}, is the so called Doppler-cooling limit.

Trapping in a MOT

The optical Earnshaw theory [Ask 83] prevents a stable trapping of two level atoms only using
the spontaneous force. A method to overcome the optical Earnshaw theory was first
demonstrated by Raab et al. and is called magneto-optical trap (MOT) [Raa 87]. The setup is

based on the spatial dependent Zeeman effect to produce a spatial dependent scattering force. In



the MOT, three pairs of counter-propagating "o

laser beams are red detuned and crossed at the

center of two coils in anti-Helmholtz Enfrgv 1
0 1P

configuration. These anti-Helmholtz coils produce
a magnet field B,(z)=bz, where b is a constant. The

corresponding Zeeman shift for a 'S,-'P, transition

is shown in Fig. 2.2. If the atom is at a position o ks o-
with z>0 it will scatter more photons from the o 0 IS
beam since it is shifted more on resonance with the Distance V4 0

Fig. 2.2: E -level of Mg at
0~ beam and experiences a negative force. For z<0 . £ nersy-eve’ o g alom

immersed in a magnetic field B,(z)=bz.
the situation is reversed and the force is reversed.
So the atoms always experience an averaged restoring force. This position dependent restoring

force can be described by Fsp(x) =-Kkx, with

2A
I NI oA . % dx (2.5)
e (2R
I T

where y; is the Bohr magneton.
The total force acting on the atom is given by F(x)=-a,v- kx which leads to the equation of

motion given by

F+yxX+wix=0 (2.6)

with y=a, /M, @’= /M, and M the mass of the atom.

This is just the motion of a damped harmonic oscillator with a oscillation frequency w. The ratio
v?/4w?* determines the character of the motion of the trapped atom. If this ratio is larger than
one, the motion is overdamped. At a typical magnetic field gradient of 65 G/cm in the radial
direction and A=-T'/2 we have & >4.8 10> Nts/m and ®>5.3-10° s ! for typical trap intensity
I/1

>0.01. The ratio y*/4w? is larger than 1.2 so the motion is overdamped. The relaxation to

sat

the origin is governed by the time constant y/w’=385 ps which depends only on the magnetic

10



field gradient and not on intensity and detuning.
When the random scattering process of photons is considered the motion is modified and can

be described by a Fokker-Plank equation [Ste 86]

oP OP 0 yv oP
OB W pph
ot 0z av[ M ov ] 2.7)

The function P(z,v,t) describes the probability distribution of atoms in the phase space of

position and velocity. This leads to a Gaussian distribution of phase space density.

N
ply) = ———e (2.8)
TO O

where 0 ’=k;"T/m and 0,’=k, T/mw>.
Today the MOT is the standard method of creating large atomic ensembles of cold atoms. In the

following the experimental setup of a MOT for the Mg atoms will be described.
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2.2 Experimental setup

2.2.1 The laser systems and frequency stabilization

The laser systems for the cooling and trapping contain two similar home built ring dye lasers ,
in combination with two external cavities for second harmonic generation (SHG) with BBO
crystals. The ring dye lasers are first frequency stabilized to respective reference resonators with
the side-fringe locking technique. The laser frequency can be varied by rotating the Brewster

plate inside the resonator. Due to a

residual frequency drift further

Polarizer

stabilization techniques [Loc 92, Zel 93] —

Chopper

I, cell

/4 plate

Polarizer
PD

To SHG

are used to improve the long term

AOM

stability. The trapping laser is further
stabilized at the u-line of the R115(20-1) I

laser frequency
stabilization

transition of 'Y, molecule by the

570 nm
polarization spectroscopy method. The @
Fig. 2.3: Schematic Diagram of the frequency
stabilization of the trapping laser with Polarization

frequency offset between the Mg 'S,- 'P, spectroscopy.

schematic setup is shown in Fig. 2.3. The

transition and the u-line can be compensated by a frequency variable AOM. For the trapping of
*Mg atoms the modulation frequency of the AOM is usually operated in the region of 96 MHZ.
The second laser is frequency stabilized to a transfer resonator whose length is locked to a He-
Ne laser with lock-in method as shown in Fig. 2.4. The He-Ne laser is frequency stabilized with
polarization technique [Ste 87]. Instead of a direct locking of the dye laser to the resonator its

frequency is first modulated with an

EOM. The side band of the modulated N+ oo
laser beam is then stabilized to the o] | Eom
transfer resonator. The frequency of the B <—l
€9
dye laser can be varied by varying the | §5 - ull N
modulation frequency of the EOM. A , et .
*@47

HF-generator with a frequency tuning

range between 0.3 GHz and 2.7 GHz

controller

f%

Lock-in

Fig. 2.4: Frequency stabilization of the cooling laser
produces the modulation frequency for with lock-in technique.




the EOM. This frequency range is larger than the FSR (1.5 GHz) of the transfer resonator.
Therefore, the laser can then be stabilized to any desired frequency.

The beat signal of the two frequency stabilized laser is about 2 MHZ. The linewidth of each
laser is smaller than this value. The output power of the dye lasers is usually 1 ~1.4 W. Both

lasers are frequency doubled with a nonlinear BBO crystal as described in the next section.

2.2.2 Second harmonic generation (SHG)
The principle of SHG is based on the nonlinear dependence of the dielectric polarization p on

the electric field E. It is related to the field E by the equation:

P(E):X.E+X(2).E2+X(3)-E3+m (2.9)

™ is the nonlinear susceptibility coefficient and is a tensor of rank n. The relevant term

where ¥
for SHG is the term x®. A propagating monochromatic wave of frequency w leads to a new
light wave of doubled frequency. Besides energy the momentum is also conserved i.e. 2k® =k**,
where we have assumed all photons have the same direction. From the relation k=21/(A/n) it
also means that the refraction index must satisfy n® =n**. This condition is called phase
matching. Since for normal material n® <n*”. This condition can be fulfilled only in nonlinear
crystal in which the phase velocity of an optical beam depends on the direction of polarization
of its E vector. 2 (optical axises)

The phase matching can be more easily 0 . ke k2 boynting vector of

20 beam

understood in view of the index surface 7. ©)
in which the distance of a given point ")
from the origin is equal to the index

refraction of a wave propagating along //

this direction. The refraction index n, of l:l
the fundamental (ordinary) wave is \
independent of the propagation direction
and it is represented by a ball with

radius of n,. On the other hand the Fig.2.5: Intersection of k-z plane with index surfaces

refraction index of the second harmonic of a negative uniaxial crystal.
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(extraordinary) wave depends on the propagation and it is represented by an ellipsoid with major
axis n, (n,) and minor axis n, (n,) for a negative (positive) uniaxial crystal. The cross section
of such index surfaces for a negative (n,<n,) uniaxial crystal is shown in Fig. 2.5. The cross
point at n ez “(0)=n." satisfies the phase matching condition, where 0 is the angle between the
optical axis z of the crystal and the propagation wave vector k .

There are two methods to realize the phase matching for SHG which are critical phase matching
and noncritical phase matching. The phase matching angle 0 is 90° for critical phase matching.
This is usually achieved by changing the crystal temperature such that n 62 w(90°):n;". This is
also the method which was used for the experiments with Mg atoms before this work. An ADA
crystal was cooled to -33°C to get the 285 nm radiation. To get enough power this was realized
in an external cavity to enhance the conversion efficiency and usually 10~20 mW of the 285 nm
light were available. The drawback was that maximum enhancement could be achieved for
about half an hour and then dropped down to nearly half the value due to damage in the crystal.
Another inconvenience was that the temperature must often be readjusted to meet the optimum
value.

In the work described here a beta-barium borate (BBO) crystal was used to improve the
experimental conditions. Part of the setup is also described in the diploma thesis of D. Scheller
[Sch 96b]. BBO is a negative uniaxial nonlinear crystal. The refraction index is not very
sensitive to temperature (dn/dT=-1-10" 1/K) . It can’t be temperature tuned to get the required
wavelength so the noncritical phase matching is used. Phase matching can be achieved by

adjusting the phase matching angle 0, (see Fig.2.5) such that it satisfies the following equation

W2 o 20\-2
sin® = ((n;’ :)2 (:”2:)2 (2.10)
ne - n()

The formula for refraction index of BBO can be found in [Dmi 91]. This phase matching angle
for the 285 nm SHG is 43.2° according the above equation.
When a plane wave propagates in an uniaxial crystal, the direction of the propagation wave vector
k generally does not coincide with that of the poynting vector. The direction of the poynting
vector can be defined as the normal to the tangent drown at the point of the intersection of the
vector k with the n(0) curve. It is seen from Fig. 2.5. that for the ordinary beam the poynting

vector has the same direction as the k vector but they are different for the extra-ordinary beam.
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The angle between the poynting vector and the k vector is called walk-off angle and is given by
[She 84]
0))2

p = arctan( — ! !

(%) _ (%)

2) sin(28,)) (2.11)

This angle is 4.8 for the second harmonic wave at 285 nm. This walk-off reduces the efficiency
of SHG as will be seen below.
For a focused Gaussian beam Boyd & Kleinmann has shown that the power of the extraordinary

wave can be described by [Boy 68]

207d,, RCORRIAY
P, - T __Plike  * h(0.BKEn) 2.12
e, cn (n")? —
0 e 0
2
=n P

where d.; is the effective non-linear coefficient that is (1.73+0.07) pm/V in our case, 1 is the
length of the crystal, o, &, the absorption coefficient of the ordinary and extraordinary wave, 1

the conversion coefficient. The focusing factor h depends on the following parameters

0—%bAk phase matching
lk
BV walk-off
2
1 1 .
K :E(oc | _Eaz)b absorption
| (2.13)
:; focus parameter
”_I—TZf position of focus
b:wozk1 confocal parameter
w, laser beam waist
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Fig.2.6: The focusing factor h(oopl,B,O,i,O) as a function of the
focus parameter & for various walk-off parameters B.

Fig. 2.6 shows h(o,,.B,0.£,0) as a function of the focus parameter  for various walk-off
parameter B, where the absorption is neglected (k=0) and the focus is assumed at the middle of

the crystal (u=0). The value of o has been optimized for each h(o,,,B,0,£,0). For a 7mm long

opt?
BBO crystal B=15 and the optimum parameter for optimum h value is
0o, =0.75

Eop=1.43

h( 0,,,B=15,k=0,¢,,u=0)=4.7- 10

In the experiment the optimum value of ¢, is reached by tunning the phase matching angle to

opt

match the optimum SHG power. From the value _, the optimum laser waist is calculated to be

opt
16 um. For the above parameters the theoretically predicted conversion coefficient 1 is 1.1-10™
W', We have measured P, as a function of P, for single pass conditions to determine the value
1. The experimentally measured value for 1 is (5.5£1)-10° W', This value is only half of that
theoretically predicted. A reason for this is probably that the actual crystal has a smaller non-
linear coefficient.

Equation 2.12 shows that the extra-ordinary wave power is proportional to P,>. To enhance the

ordinary wave power the SHG is realized in an external cavity. When the cavity is in resonance

with the input wave the enhancement A of the input power in the cavity is given by [Bor 69]

P, T

A:

1
P, ( 1-y(1-T) (1-V) )
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where P, is the power of ordinary wave in the cavity, T, is the transmission of the input coupler
and V is the loss in the cavity. There is an optimum enhancement for T =V, i.e. A, =1/T, . In this
experiment the transmission of the input coupler is 2.1%. To reach the optimum focus as
mentioned before two focused mirrors M2 and M3 with radius 30 mm are used as shown in Fig.
2.7. The cavity has a total length of 24cm . Such a small cavity has a large cavity linewidth of
12.5MHz which is much larger than the linewidth of the laser (2<MHz). This also means that the

M3

uv

HC-Regulator

— — —

I - —_
l——

|
M2 M1 :
|

|

__________________________ _1

D 0 0 570 nm dye laser

Telescope

Fig. 2.7: SHG with an external cavity. The cavity is locked in
resonance with the input laser through Hinsch-Couillaud method.

cavity lock loop will be more stable since
the trap range is larger when compared to a
long cavity with short cavity linewidth. The .
lock of the cavity mode to the incoming 60
beam is realized by a Hénsch-Couillaud

method [Héan 80].

40

P, (mW)

. 20
The generated extra-ordinary wave power

with cavity enhancement is given by 0 : : : : ;
0,0 0,2 0.4 0,6 0.8 1,0 1,2 1.4

P,=A’nP. Fig. 2.8. shows the generated Py (W)

second harmonic power as a function of the Fig. 2.8: The generated UV-power as a function of
the input power of the fundamental wave. The solid

power of the ordinary wave. Here P, line is a quadratic fit to the measured data.
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describes the second harmonic power generated inside the crystal. The outcoupled power is 77%
of that value since the Fresnel-reflection at the crystal surface has to be considered. The cavity
enhancement is about 30 and can endure some hours without remarkable degradation. Comparing
to ADA-crystal a large improvement has been reached.

The generated extraordinary UV-wave is extremely elliptical. Because the walk-off effect the
size of the extra-ordinary beam will be larger in the near field. Similar to diode laser this results
in a smaller far field beam size in the phase matching angle direction. The ellipticity can be
compensated with cylindrical lenses as shown in Fig. 2.9. To achieve a symmetric beam profile
the ratio of the focal length of the two lenses should be approximately the same ratio of the beam
divergence. The lenses are placed at a distance equal to their respective focal length from the
crystal. The lenses have a focal length of f;=10.5 cm and f,=100 cm respectively which matches
the ratio of the beam divergence. The compensated beam can then be manipulated with spherical
lenses to get the desired beam size. The right picture in Fig. 2.9 shows such a compensated

symmetric beam profile measured by a UV-CCD-camera.

Crystal

Fig. 2.9: Compensation of the ellipticity of the generated extraordinary UV-
wave.

2.2.3 The stabilization and the optical setup

In our system the 570 nm laser and the SHG are at a different table as the trap. The laser beam is
position stabilized to reduce position fluctuation due to the different tables. A four-quadrant
photodiode (QP) together with a mirror mounted on bending PZTs (PM) composites a
stabilization unit (see Fig. 2.10). The error signal detected from the 4-quadrant photodiode is
amplified by a PI-regulator and used to control the PZT-mounted mirror to actively stabilize the
beam position. Two units are needed to stabilize a laser beam [Str 94]. In order to isolate the
coupling between the two stabilization units the position of the first 4-quadrant photodiode QP1

is imaged on to the surface of the second PZT-mirror through a lense.
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Fig.2.10: Laser beam position stabilization and intensity
stabilization.

The laser beam profile is measured with a shaver knife scanning across the laser beam (see
Fig.2.11). The power of the laser beam behind the knife is measured with a photodiode. The
measured power as function of the position of Beam

the knife is shown in Fig.2.12. From the spiter Ning

T

curve the beam size can also be derived. The >®
trapping laser beam has a 1/e* radius of 2.9 \‘
Shaver
mm. kfl'\]i?ee
e~

To measure the beam position fluctuation

half of the laser beam is covered by the knife.

As shown in Fig 2.12.a the slope at this @ AB D

position is maximum which also means the Divider

N o ' ‘ Fig.2.11: Setup for the measurement of the beam
position sensitivity is maximum. The position stability.
measured power fluctuation behind the knife
corresponds to the fluctuations of the beam position. In order to get rid of the power fluctuation
from the source, the measured power is devided by a reference power which is independently
measured with another photodiode. The devided signal is recorded by a computer. The measured

power fluctuation is shown in Fig. 2.12.b. According to the slope in Fig. 2.12.a the power

fluctuation corresponds to a beam position fluctuation of #3.4 um (one standard deviation o ).
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Fig. 2.12: a.) Measured intensity as a function of the position of the scanning

knife. b.)Measured intensity fluctuation when the knife is placed at middle

of the laser beam
To get a stable trap fluorescence the intensity stability is also important. The laser beam intensity
is controlled by an AOM (see Fig. 2.10). A pinhole after the AOM leads to a high quality
Gaussian beam, where 80% of the power can be transmitted. A high sensitive photodiode
(0.133A/W) detects the intensity behind the pinhole such that the intensity fluctuation due to
residual position fluctuations behind the pinhole can also be compensated. The error signal is
obtained from the difference of the detected signal voltage and a reference voltage from a LM399
(temperature coefficient 5 ppm/°C ). A PID-controller controls the HF-generator which regulates
the laser intensity from the AOM in the -1Ist order. Fig. 2.13 shows the residual intensity
fluctuations measured with a photodiode. The intensity fluctuation is +3.3% (one o©). This
intensity fluctuation is directly reflected on
the fluorescence of the trap. With longer
integration time in detecting the fluorescence
this noise can be reduced. Section 2.5 shows

that the noise of the fluorescence can be

I(ty/}

smaller than 1% after 1 s integration time. The

slowing laser beam is similar to the trapping

laser beam except that no beam position 80 : 7 I )

stabilization and pinhole is used. The residual time (s)

Fig.2.13: Residue intensity fluctuation after the

intensity fluctuation of the slowing laser is . ) L
intensity stabilization.

+2.8%.
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The trap and imaging optics

After the stabilization mentioned above the laser beam is splitted into three independent trapping
beams. Each trapping laser beam is retroreflected and a A/4 plate is inserted in each laser beam to
produce the standard MOT configuration. A condenser-lense above the trap can collect 4% of the
fluorescence from the trap. To determine the spatial distribution of the trapped atoms about 50 %
of the fluorescence is detected by a multi-channel plate enhanced CCD-camera. The other 50%
of fluorescence is reflected towards a sensitive photodiode (EG&G UV-100BG) through a HR-
mirror (see Fig. 2.14). From the photodiode signal the number of trapped atoms can be easily
determined. The residual fluorescence transmitted through the HR-mirror is then detected by a

photomultiplier tube (PMT). The transmitted fluorescence is sufficient for the PMT so that an iris

photomultiplier
tube

Trapping laser beam

Fig. 2.14: Experimental setup for the cooling and trapping. The
horizontal trapping laser beam is not shown.

diaphragm is used to control the height of the overall signal. An anti-Helmholtz coil produces a
magnetic-field gradient of 2.6 G/cmA in the axial direction. Three pairs of Helmholtz coils are
used to compensate the stray magnetic field of the slowing-Zeeman-magnet. The atomic source
has an aperture with diameter of Imm and is collimated by a circular collimator (with the same
diameter) 15 cm downstream. This produces an atomic beam with intensity given by I
:(l/f)-(vasAcnO/ZTc\/E 1%), where v, = \/ZkBW 1s the most probable velocity of the atoms in the
oven (695 m/s at 700K), A, and A, is the area of the oven aperture and the collimator,
respectively, n, is the atomic density in the oven (8.0-10” ¢cm™ at 700 K [Smi 54]), 1 is the

distance between oven aperture and collimator, and 1/f is a factor which takes into account the
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effect of aperture thickness and is about 0.7 in our case [Ram 56]. At an oven temperature of 700
K the atomic beam can provide an atomic intensity of 9.5-10'° atom/s. This atomic beam expands

to a radius of 2.6 mm at the trap center. The total setup is shown in Fig. 2.14.
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2.3 Results of the cooling and trapping experiments

2.3.1 Characteristics of the trap

For a careful alignment of the optics and the stabilization described before the Mg trap runs
stable and continuously. The quadruple magnetic field has a typical field gradient of 130 G/cm
in the axial direction. During this work the magnetic field gradient was fixed at that value for
most of the experiment. Atoms can be directly trapped from the thermal atomic beam or from
the laser decelerated atomic beam. The number of trapped atoms is determined by the
photodiode signal. This photodiode has been calibrated with the help of a power meter
calibrated by NIST. The measured sensitivity of the photodiode is the same as that delivered by
the manufacturer 1.e. 0.133 A/W. Fig. 2.15 .

shows the number of trapped atoms captured
5,04

from the laser decelerated atomic beam for - .

£ L] L]
different trap laser intensity. In the maximum & 1

o L]
5.2:10° atoms can be trapped from the slow = *°]

atomic beam. This is an order of magnitude 3.51

004 008 012 016 020 024 028

larger than in previous experiments [Bet 95] |, (mW/mm2)

since we have a larger atomic beam flux and Fig. 2.15: The number of trapped atoms as
a larger trapping laser beam. The number of function of the trap intensity of each beam.
atoms trapped from the slow tail of the thermal atomic beam is a factor of about 200 smaller
than that trapped from slow atomic beam. For an intensity larger than about 0.16 mW/mm? the
number of trapped atoms deceases. This is due to the intensity dependent trap loss mechanism
coming from photoionization which will be discussed in the next section. The spatial
distribution of the trapped atoms is detected by the CCD-camera. The radius of the trap is
generally different in the axial and radial direction of the quadruple magnetic field. They are
sensitive to the alignment of the trapping laser beams. In the usual condition the ratio of radius
in the axial (w,) and radial direction (wy) is measured to be wy= 1.2w,. The calibration of the
diameter with a CCD-camera leads to a great uncertainty. Thus we have measured the
temperature and the spring constant of the trap to derive the absolute trap radius.

Measuring the spring constant

The spring constant is related to the trap position damping time by t,,=a/k as described in

section 2.1. This trap position damping time is determined by measuring the recapture time
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constant when the trap is driven away from

its equilibrium position by another laser 22r

pulse. To measure this time half of the

fluorescence signal is covered. Then, % 20 -

another laser pulse which is frequency ?,

detuned about 4I' to the red side of the E 18 1

resonance is used to push the trap some (%)

diameter distance away from its original ’

position such that the fluorescence is 1_'(6),0021 0,0100 l 0,0102 l 0,010410,0106 l 0,0108
reduced to zero. Fig. 2.16 shows the Time (s)

reappearance of the fluorescence after the Fig. 2.16: The evolution of the trap fluorescence

additional laser pulse. The large background after it is shifted away from its original position.

signal is mainly due to the offset of the operational amplifier of the photodiode. The time
constant determined by the exponential fit is 340 ps. For a trapping intensity of [=(0.17+.02)
mW/mm? and a laser detuning of -(47+2) MHz the theoretically calculated o is o= (1.3410 -
?'+0.34) Nt-s/m. The spring constant is determined to be (3.9+1.0)-10"® Nt/m. This is consistent
with the theoretically calculated value (3.5 + 0.9)-10"® Nt/m according to eq. 2.5. From the

equipartition theorem

—k,T=—xr
5 (2.15)

where T is the temperature of the trap and r is 1/y/eradius of the trap.

With the velocity (0.94+£0.08 m/s) derived in section 2.5 and the measured spring constant
mentioned before the trap radius in the radial direction is determined to be (96+19) um. From
the measured ratio of the trap radius in the radial and axial direction the volume of the trap is
given by V=(,2nw R)3/ 1.2. Since the measured spring constant is consistent with the theoretical
value, we will use the above method to determine the trap volume with the theoretical spring
constant. Together with the number of trapped atoms in Fig. 2.15 a maximum density of
5.0-10'"" atoms/cm’ has been reached.

For a small number of trapped atoms the density is proportional to the number of trapped atoms.

As the number of trapped atoms increases the reabsorption of scattered photons will create a
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repulsive force between the trapped atoms. Using Gauss’s theorem, it is shown [Ses 91, Tow
95] that such a multiple scattering of photons leads to a limit to the attainable trapped density

which is independent of the number of trapped atoms given by

3xc

max

, O 2.16
I o’ (=2-1) (2.16)

L

where x is the spring constant of the trap, o, is the absorption cross section for the trapping
laser, and oy, is the absorption cross section for reradiated photons from the trapped atoms. The
value of g, is given by eq. 2.28. The calculation of oy is more subtle. The spectral distribution
of the reradiated light consists elastic and inelastic contributions. The elastically scattered light
has the same spectral distribution as the trapping laser, while the inelastic scattering has a
Lorentzian form at low light intensity and appear to the form of Mollow triplet at high intensity
[Lou 83]. A. Steane et al. have analyzed this problem and got an approximation relation between

o, and oy [Ste 92b]:

&_1 _ s A?
2 2
o, s+1 (A2+£)+£
4 (2.17)
2
with s = 272
A*+T%/4

where Q is the Rabi frequency.

According to eq. 2.16 the maximum achievable density for our trap is 2-10'* atoms/cm’. This
value is larger than that for alkali atom traps (10" ~10"" atoms/cm?) [Wal 90, Rit 94, Tow 95]
since we have larger k and shorter wavelength. The present trap density is still below this
multiphoton scattering regime. This means the size of trap is independent of the number of
trapped atoms and eq. 2.15 is valid. This is also confirmed by a comparison of the trap size for

a trap filled by the thermal beam and a trap filled by a laser decelerated atomic beam.

2.3.2 Dynamics of the trap

25



The rate equation which determines the number of trapped atoms is given by

%—R—aN-Bfnz(r)d3r (2.18)

where R is the loading rate, « and p describe generally the loss due to collisions with
background atoms and the collision between the trapped atoms.
When the trap density is low the second order term can be neglected and eq. 2.18 has the

solution:

N(t) = N,~(N,-N(0))e * (2.19)

where N=R/a is the number of trapped atoms in steady state. The linear loss coefficient o
determines the loading time constant and also the lifetime of the trap (=1/a). For a Mg MOT
both background gas collisions and photoionization of the trapped atom will contribute to .
The loss rate due to background gas collision is proportional to the vacuum pressure. By
stopping the atomic beam and measuring the decay curve of the fluorescence for different
vacuum pressure, D. Bettermann has measured this rate to ®y=(3.31£0.06)-107-p mbar's™,
where p is the vacuum pressure. During this experiment the vacuum is better than 6-10” mbar
and the loss rate due to background gas collisions is smaller than 0.2 s™.

The second contribution to o is photoionization. Since the photoionization energy of Mg is only
7.64 eV, two UV photons are sufficient to ionize Mg atoms. The loss rate due to this process is

proportional to the population of the excited state N, , the ionization cross section 0p; of the

ex 2

excited state 'P, and the photon flux [Din 92 ]

dN L,
o' ™ S, o™

L
Itot
. 7 (2.20)
and N, = N—— 0
1+I’°’+(%)2
1 r
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where [, =6l is the total trapping laser intensity.

This leads to an additional linear lost term a; given by

tot

py =~y d e (2.21)
hw, 2 1+Imt+(%)2
I, T

From the decay curve of the trap

fluorescence by stopping the atomic 1.4 T | | | 4.0
beam the value of « and the trap lifetime :(2) :::i
t=1/0 can be derived. Fig. 2.17 shows g 08 zsé;
the measured o and T as a function of the Z'j: 115 E;
intensity of each trapping beam. 012, o :,Z

0,00 0,05 0,10 0,15 0,20 0,25 0,30

Intensity (mW/mm 2)

Extrapolating the curve to zero intensity

the trap loss due to background gas Fig.2.17: The linear trap lost o and the trap lifetime
vs. the trap intensity of each laser beam. The trap
loss at zero intensity is due to background gas
corresponds to the trap loss of a collision. Square: a, Circle: T.

collisions is determined to be 0.21 which

background pressure of 6:10° mbar. The trap lifetime can reach 3s for total trapping light
intensity of 0.5 mW/mm® From the curve for o the photoionization cross section is determined

by fitting eq. 2.21 to the curve. This leads

to a value of 0,=(6.3%1.6)-10""7 cm?. This -

value is consistent with the theoretically 4 i

calculated value 6.2:10"" cm? by Mendoza ’\g 3. -

[Men 87]. This cross section has also been “:; 2]

measured before [Bet 95, Sch 96, Ral 96] 3 1

but the values determined in their O s oo ohs 020 o5 oo

| W/ 2
measurements are about a factor of two o (mMW/mm 2)

Fig. 2.18: The loading rate R from the slow
atomic beam as a function of the single trapping
mainly due to the difference in the intensity L.

larger than the present value. This is

measurement of the trapping intensity. In this work the power meter was calibrated with the help

of another power meter calibrated by NIST. So the measured value is reliable.
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From the measured number of trapped atoms and « the loading rate can be determined (N=R/a.).
Fig. 2.18 shows the loading rate from the slowed atomic beam. It is linear to the trapping

intensity

R = 1.8'107°IS atomsl/s (2.22)

where I is in unit of mW/mm?®.
The loading rate from the thermal atomic beam is about a factor of 200 smaller than that from
the slowed. This loading rate is related to the capture velocity v, , under which the atom is

captured. The velocity distribution in an effusive atomic beam is described by [Ram 56]

<
[}

v

S

) = 2 V_z . (2.23)

Vp

where v,=1.22v, with v, and v, is the most probable velocity in the atomic beam and oven,
respectively. Since the trapping laser beam has a larger radius than that of the atomic beam in
the trap center, we assume that atoms with a velocity smaller than v_ will be trapped. With an

atomic beam intensity of I, the capture rate from the thermal beam is given by

R = I [y fv)dv

1, vj (2.24)
m for v «v
2,4 ©r
Vp

This capture rate is similar to that from a vapor cell [Wal 90] and is proportional to vc4 . From
eq.2.22/200 and eq. 2.24 the dependence of capture velocity on the trapping intensity can be

derived:

v =25.8-1" mis (2.25)

28



where I, is in unit of mW/mm?®. For typical

trapping intensity I, varies from .05 to .3
mw/mm? v, is between 12~20 m/s. This
capture velocity is important for the

determination of the trap loss due to

collisions between trapped atoms. In

I I I I I
T t t T t
0,00 0,05 0,10 0,15 0,20 0,25 0,30

general it depends on the direction of 1, (mW/mmz)

Fig. 2.19: The dependence of the velocity capture
range v, on the trapping intensity L.

here is actually an effective capture

motion of the atoms, so what we derived

velocity. This parameter is not easy to access experimentally. It has been measured for a Rb trap

using cold collisions [Hof 96].

Suppressing the Photoionization Loss by means of a Dark MOT

Since the photoionization effect is strongly dependent on the trapping intensity it can be
minimized by reducing the intensity in the trap center. A trapping geometry to do this is the
dark-spontaneous-force trap (SPOT) which has been realized in alkali element to increase the
trapping density [Ket 93]. For alkali atoms the dark SPOT is done by eliminating the repumping
laser in the trap center. Since Mg 'S, state has no Zeeman sublevel the dark SPOT can only be
directly realized on the trapping laser beam
which means that the center of the trapping

laser beam has no intensity. This can be

realized by covering the center of the laser

beam with a dark spot. In order to avoid the . v »,

refraction from the spot it should be imaged | ( el |

at the center of the trap through lenses. Of

course, when the center of the trapping beam

is dark there is also no trapping force in the

center. This results in a leakage tunnel for
|

the trapped atoms. If the dark zone is much Fig. 2.20: A schematic dark SPOT for Mg to
) ) _ suppress the photoionization effect.
smaller than the dimension of the trapping

beam atoms leak to the dark tunnel still have more probability to diffuse to one of the four
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quadrants where the average central force pushes the atoms back to the trap again as shown in
Fig. 2.20. From a Monte-Carlo simulation for a trapping beam radius of 3 mm and intensity I
of 0.06 mW/mm? it is calculated that atoms can still be trapped for a dark hole of radius up to
150 um. The effect of photoionization can be suppressed in this case by more than 80% [Deg
96].

The photoionization effect not only influence the linear trap loss term o« but also the [
parameter. Since for high trap density the absorption of photons from the trapped atoms can
reduce the trapping intensity. This will therefore reduce the effect of photoionization and results
in a negative quadratic loss rate coefficient. The attenuation of the trapping intensity by the

atom cloud to first order can be written as

I(N=1,(1-0, [ n(x,y,2)dz) (2.26)

where o, is the photon absorption cross section. The summation of the six trapping beams

leads to an intensity distribution in the trap given by

x“+y X7tz Pz

I (”)_610(1—%0Ln0\/ﬁot[e 2] e e 2 (2.27)

tot

where the trap density distribution n(r)=n, exp[-r*/20,] with a width of o, is used.
Substituting the above equation into eq. 2.20 and integrating over the volume leads to

Ny 2
(W)PI = o1y +Ppmg (2.28)

where ap; is just the term in eq. 2.21 and f,,=-y270, 0,0, . The mean absorption cross

section 0, in a standing light field is given by [Ses 91, Sie 71]

L
27 1A T 4 (2.29)
roL, I
sat
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Fig. 2.21: Calculated photoionization induced negative By,

For a trap radius of 100um the value of [, varies from -7.6:10"* to -8.5:10" cm’/s for a
trapping intensity of 0.05 ~0.25 mW/mm? as shown in Fig. 2.21. This negative [, together with
the positive 3, caused by the collisions between the trapped atom will change and determine

the total 3. The trap loss due to collisions will be discussed in the next section.
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2.4 Cold collisions
When the density of the trap is high enough the trap loss due to inelastic collisions between
trapped atoms must be considered. In general inelastic cold collisions can be distinguished into
two types.

First type of collision occurs in the absence of an light field and only atoms in the ground states
contribute. Usually only binary collisions are considered. For alkali atoms collision effects are
e.g. the hyperfine structure (HFS) changing collisions or dipolar decay. For noble gas penning
ionization is an additional process. In the BEC regime three body recombination is important and
it is the dominate trap loss for the Rb and Na BEC in the F=1, m=-1 state [Boe 96, Bur 97].
The second type collisions happens in the presence of a light field. Such collisions are one of the
main trap losses in a MOT and will be discussed in more detail in this chapter.

The basic principle of cold collisions between trapped atoms introducing a loss in a MOT is the
fact that in normal trap the laser is red detuned to
the atomic resonance. This red detuned laser can
excite the colliding atoms to an excited molecular
state as indicated in Fig. 2.22. The atoms then

interact via an attractive long range dipole-dipole

potential, V(r)=-C;/r’. This potential is much

larger than that between two atoms in ground state

(1/1°). r
0 Fig. 2.22: Long range potentials for two
atoms both in the ground states and that for
s) are much longer than the collision times (~10"? an atom in the ground state and the other in
the excited state.

At room temperature the radiative lifetimes (~1

s) so that spontaneous emission can be neglected.

This is not the case for atoms cooled to milikelvin temperature and below. Spontaneous emission
can happen during the collisions, a novel and interesting effect in cold collisions. If spontaneous
emission happens the quasi-stable excited molecule will decay to the ground state under emission
a red detuned photon. The excess energy will be distributed to the two atoms. When the energy
is large enough the atom will leave the trap and cause trap loss which is called radiative escape.
Atoms not energetic enough to leave the trap will also heat the trapped atoms which results in
additional radiative heating. Without spontaneous decay the atoms follow the diatomic potential

to small interatomic distances where HES or fine structure (FS) changing processes can happen.
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For alkali atoms spontaneous emission will eventually happen and the atom gains energy equal
to the HFS or FS splitting which is usually larger than the trap depth. For alkali earth atoms the
only possible collisional trap loss is the radiative escape.

In the past few years cold collisions have been intensively studied for alkali atoms and noble
gases [Wal 94, Wei 95]. The collisional trap loss which is characterized by the  parameter is
derived by observing the decay of the trap fluorescence when the trap process is interrupted or by
direct measuring the additional trap loss induced by an additional catalysis laser injected onto the
trap. Since the spontaneous emission must be considered in studying the collisional trap loss,
only two level systems have been treated theoretically [Jul 93]. Hyperfine structure and
multilevel system are still difficult to handle. For alkali earth elements there are four excited
levels to be considered, which are the 12;, '%,, 'TI, and 'II, states. Both 12; and 'II, are not
optically coupled to the ground state and only the '~ state with attractive potential can lead to
a trap loss. It can be treated as a pure two-level system. This makes it possible to quantitatively
compare the measurement and theoretical prediction. In section 2.4.1 the simplest collision
model, the Gallagher-Pritchard model (GP model) [Gal 89], will be used to calculate the
collisional trap loss for a Mg MOT.

The absorption of light by colliding atoms is the phenomenon that characterizes the
photoassociative process. Extending such a process to large detunings allows for high resolution
photoassociative spectroscopy with cold trapped atoms [Let 95]. This spectroscopy can provide
information about the potential curves for both the excited and ground state molecules. These
information are important for the cold collision physics. In section 2.3.2 more details about this

technique will be discussed.

2.4.1 Collisional trap loss in a Mg MOT
The GP model assumes a stationary ground-state atom pair and assume that the excitation rate of

this pair to the excited attractive state is given by

(T,/2)° I, )2

R (rw,I,) =
0 [, ~(AP+(T, /2)2] hw, 21

(2.30)

where wy, I, is the frequency and intensity of the laser, w(r)=w,-C,/r'h is the molecular transition
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frequency, w, is the atomic resonance -lor 21 -2

frequency and A is the wavelength of the o ':

transition. The rate I'y; is the decay rate of the 5 06

molecular excited state. It generally depends on % 0. a

the separation of the atoms and to first order ) .2

approximation it can be taken as a constant J

I',=2I', where I', is the decay rate of the 200 400 soro(oz)oo 100012001400

excited atomic state. Fig. 2.23 shows the Fig. 2.23: Excitation rate of the ground state
excitation rate as a function of the separation of atom p air S as a fugction of interatomic
separation (in atomic units).
the atoms for various laser detunings A=w; -w,,.
The excited atom pair then moves along the attractive potential curve until spontaneous decay
happens at a distance r,.
The radiative decay of the atoms during their collision can be distinguished into two regions.
When they decay at large separation 1,>1yg, they gain kinetic energy AE=C,/r’-C,/r,” which is
smaller than the trap depth and will stay in the trap. For a decay at a short separation r,<ry; the
atoms will escape from the trap. The distance ry;, where the radiative escape dominates depends
on the trap depth. Atoms will be lost only, when they can survive i.e. stay in the excited state till
Iye and then decay during r,<rz;. So the probability of radiative escape for a single collision is
then given by ny, where 1 and vy are the survival probability at ry; and the decay probability for
1,<rgg respectively. The time for atoms to travel from r to 1y 1s equal to f:REdr’/v(r’) , where v(r’)
is the velocity at r’. The survival probability follows the usual exponential decay and can be
written as

or dr’
Tulris (2.31)

n=e

where v(r’) :\/ (2/p)(C3/r'3 -Cy/r 3) and p is the reduced mass.
The time duration which atoms travel from 1z to 0O and back to 1y is equal

t02([odr'iv(r)=[} driv(r')), so the decay probability for ry<ry is given by

oo dr J-r dar

yoloe M iy (2.32)
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If the spontaneous decay does not happen at the first approach, the atoms may again separate out
to the outer turning point r where the pair was excited, approach towards each other again, and so

on. Thus, the total radiative escape probability is given by

ny

Pp(n=ny+(1-y)m*ny+..=————
1-(1-y)n?

(2.33)

The density of Mg-Mg pairs with separation r-r+dr is (n*/2)-47nr*dr, where n is the density of
trapped atoms and the factor 1/2 accounts for double counting. Integrating the product of the
number of pairs, excitation probability and loss probability over the volume we get the total

collisional loss rate:

2
Rwl:ﬁcoln2:2.[(0)0%4nr2Rex(r’(‘oL’1L)PRE(r)dr (2.34)

where the factor 2 accounts for the loss of two atoms for each event.

Substitute eq. 2.30 and eq. 2.33 into eq. 2.34 3., can be calculated as long as 1y is determined.
The distance ryy; is related to the trap depth or in terms of capture velocity v, by Cy/re-Cy/r’=mv 2
,where the initial velocity of the atoms is neglected since it is much smaller than v,. The relation
between v, and the trapping intensity is given by eq. 2.25. The dependence of ., on laser
detuning is usually measured with an additional catalysis laser send onto the trap to have a trap
depth independent photoassociation lasser. We will first calculate the 3., induced by such a
catalysis laser and then go back to the trapping laser induced trap loss. The calculated 3, as a

61 7

B (102 cm¥/s)

B (107"% cm®/s)

(I) 2 4 8 é 1‘0 1‘2 1‘4 1‘6 1‘6 2‘0 2‘2 010 20 30 40 50
1Al (D) v, (m/s)
Fig. 2.24: Collisional trap loss induced by a catalysis laser as a function of its
detuning and as a function of the capture velocity.
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function of the catalysis laser detuning and the different capture velocities is shown in Fig. 2.24
for a catalysis laser intensity of 1 mW/mm? For small detuning the excitation probability is large
but the survival probability is small and vice versa

so there is an optimum detuning in between.

must 401 =

col -
3,5 -

The calculation of trapping laser induced 3

consider the simultaneous trapping intensity g | o
g d
dependence of 1z and R, The calculated 3., asa ¢ 2% _;’/
S 20 ol
function of the single trapping laser intensity is 3 . /
@,
shown in Fig. 2.25. B, varies form 1-10" to 101

0,5 T T T T T T
0,00 0,05 0,10 0,15 0,20 0,25 0,30

I, (mW/mm 2)

4-10" cm?/s for the usual trap intensity as shown.
This value is much smaller than that for an alkali Fig. 2.25: Calculate B, as function of the
atom trap. This is because of the much shorter trapping laser intensity I

lifetime of the 'P, state of Mg and only radiative escape contributes. Most of the collisional
atoms have not enough energy to escape from the trap after the optical collision. It should be note
that the GP model does not consider the so the called population recycling [Hol 94] which is due
to the re-excitation of decayed atoms. To take the population recycling into account the

dispassive Liouille von Neumann equation for the density matrix must be solved. This lead to

Monte Carlo wave function method [Mgl 93].

Measuring the [} parameter
The solution of eq. 2.18 for R=0 is
_ N,o
(o +PNy/V)exp(at)-BN/V

N(1) (2.35)

where V is the volume of the trap. The parameter § can be obtained by fitting the above equation
to the decay curve of the fluorescence. This parameter has been measured with a photo multiplier
tube (PMT) and a much larger negative value than theoretically expected has been obtained [Bet
95, Sch 96]. In this work the fluorescence was detected by a PMT and a photodiode. When the
fluorescence is measured with a PMT the time resolution should be taken into account. In
photon counting mode each pulse has a finite width, the overlapping of the pulse can not be

neglected when the photon countrate is high. Since the photon scattering follow the Poission
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distribution, the probability of counts by pulse overlaps can be described by the following
formula [Ham 93].

P =1-e (2.36)

where R, is the average countrate and T is the resolving time of the photo-counting system. In our
case T is mainly determined by the photoelectron current pulsewidth of the PMT i.e. 25 ns. Ata
count rate of 10° atoms/s the overlap
probability is 2.5%. This will affect the
evaluation of the decay curve of the
fluorescence and should be corrected. When

R, T<<1 The real countrate R, can be

Signal (Arb. U.)

approximated by R =R /(1-R,T), where R

is the measured countrate. During the © ° 19 e 20
time (s)

measurement  of P parameter the Fjg 226: Trap fluorescence measured by

fluorescence has been corrected to get the photodiode. The decay begins when the atomic
beam is interrupted.
real countrate. The photodiode usually has

a large dynamic range where the linearity is still maintained. Nonlinearity can happen in the case
of a strong focusing which has been carefully avoided in this measurement.

Fig. 2.26 shows an example of the decay of the trap fluorescence measured by the photodiode.
The steeper slope at the beginning of the

decay curve indicates a positive [ value. 8]
The measured [ with photodiode and
PMT are shown in Fig. 2.27. The trap

volume is determined with the trap

B (10773 cm%s)

temperature and  spring  constant

described in section 2.3. For the

measurements with the PMT some [3 —
005 010 015 020 025 030

measurements with and  without I (mW/mm?2)

corrected countrate for various incident Fig. 2.27: Measured B v.s. the single trap intensity.

The star is measured from the PMT. The solid line is

light are checked for the same trap .
the theoretically expected value .
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intensity. We conclude that the large negative [} value measured before is mainly due to the
nonlinearity of the PMT. The solid line in Fig. 2.27 is the theoretically expected value with no
consideration of population recycling i.e. the sum of Fig. 2.21 and Fig. 2.25. At low intensity
both positive and negative [3-values have been measured. Since at this regime the [ value is very
small the discrepancies is mainly due to the fluctuation of the fluorescence rate. The deviation
from the theoretical expectation at larger intensity is assumed to be the effect of population
recycling which increases the theoretically predicted [ value shown in Fig. 2.27. At the present

trap intensity this additional effect is expected to be smaller than 5-10™° cm’/s.
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2.4.2 Photoassociative spectroscopy

The above treatment of the trap loss the trapping laser is red detuned a few linewidth from the
atomic resonance. In this regime the molecular state is usually very dense and not resolvable.
When a further detuned catalysis laser is used the trap loss exhibits a discrete peak spectrum
resulting from trap loss due to photoassociation excitation followed by spontaneous emission.
Such a spectrum from cold atoms shows high resolution comparable to bound-bound
spectroscopy as first pointed out by Thorsheim et al. [Tho 87]. In a quantum picture the
transition is from a free-particle-scattering state to a discrete bound state with a transition
probability proportional to the Franck-Condon factor. For free atoms the Franck-Condon factor
is the largest for the high lying levels. Therefore, the typical photoassociation spectroscopy of
cold atoms shows an unresolvable spectrum near dissociation and resolved high lying levels
when the catalysis laser is scanned from atomic resonance toward red detuning [Mil 93, Let 93].
These high lying levels are difficult to access from the bound molecular ground state. Therefore,
photoassociative spectroscopy is a powerful method which complements conventional bound-
bound spectroscopy. When combining the two regimes precise molecular potential constants can
be determined [Jon 96, Lin 96].

Starting from the semicalssical quantization condition [Lan 77]

1 1 R,
e X 2u[E,-V(R)]dR (2.37)
Y
where E, is the energy of level v and R,(v) and R,(v) are the classical inner and outer turning

point respectively, LeRoy and Bernstein show that the binding energy of high lying levels

depends only upon the long-range potential C,/R* and satisfies the relation [LeR.70]

h 3 1 6
—)y—Ww,-v
2u) Caz( p~V) (2.38)

T
D-E,=(—)%

2a
where a=1.120251, vy, is the effective quantum number at the dissociation limit and D is the
dissociation energy. The binding energy D-E, can be measured from the photoassociation

spectroscopy, 1.e. D-E =hw-E,(v), where w, is the atomic resonance frequency and E,(v) is the

measured energy of level v. Fit of the measured binding energy to eq.2.38 the long range
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potential coefficient C; can be obtained. Since C3 is proportional to the square of the dipole
matrix element, which in turn is inversely proportional to the excited state lifetime T [Kin 39]
and satisfies the relation

SELI (2.39)

Ca
2T 2T

the life time of the excited state can then be precisely determined by the measurement of C,

[Abr 95].

The photoassociative spectroscopy for the
. . .60
transition A'%, <X'XZ, in the Mg MOT is

40
difficult to detect through trap loss because -

20 Vig=-CER3+I(1+1) h2uR?
photoionization rate is much larger than the y
0

collisional trap loss rate. In the scope of a 2

current DFG project in this group, a far-off

resonant optical trap (FORT) is planed. In a
10 20 30 40 50 60

R
10" atoms/cm’. When a catalysis laser is far Fig. 2.27: The centrifugal barrier of the

FORT the atomic density is usually larger than

detuned from atomic resonance the population of effective potential Vg
the 'P, excited state is small and the trap loss due to photoionization can be neglected. Also the
trap depth of the FORT is some mK. The corresponding capture velocity is only about 3 m/s and

the B, can be larger than 10" cm®/s. As a consequence the collisional trap loss induced by the

col
catalysis laser should easily be detected.

For alkali earth elements there is another photoassociative spectroscopy can be done with the
triplet transition A*X *XIE; in the MOT. A rough estimate of the collisional trap loss

coefficient B is given by [Jul 93]:

Tt _
B = k—;(lmaﬁl)zpm (2.40)

where the center-of-mass collision energy is e=h’k*/2u, v is the velocity of the colliding
particles and 131D 4 Tepresents the mean probability of photoassociative trap loss over partial

waves whose maximum angular momentum is 1, The maximum angular momentum is

m
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determined by setting the collision kinetic energy 3kT/2 equal to the centrifugal barrier of the
effective potential V, i C /R 3+1(I+1)%*2uR*. For a Mg trap at Doppler temperature it can be
shown that only s-wave scattering contributes. Due to the long lifetime of the triplet excited
state atom pairs excited to this state have a loss probability of 1 and 131D , then only depends on

the effect of excitation. Taking 1, =0 eq. 2.40 can then be written as

max

p=1.810"""P, cm’s (2.41)

where P, is the excitation probability.

For a typical power of 50 mW @ 457nm focused down to a radius of 0.5 mm the intensity is
12 W/cm?. This is much larger than the saturation intensity (40 nW/cm?) of the triplet transition
of the atom. Thus a loss rate coefficient as high as 10™"' cm*/cm is possible. For a trap density
of 10" atoms/cm’ a loss rate coefficient down to 10" can still be detected.

Through photoassociative spectroscopy of cold atoms information on ground state potentials
can also be obtained. A precise knowledge of the ground state potential is important for the
determination of the s-wave scattering length which is relevant for the stability of BEC [Sto
94b]. By analyzing the line shape of the spectra a precise ground state potentials can be
determined [Nap 94]. From the intensity distribution of the spectra the sign of the s-wave
scattering length can be obtained [Abr 95]. The intensity distribution has a minimum for
positive scattering length and the location of the minimum precisely determines the scattering
length [C6t 95, Abr 96].

In the FORT project a new cooling method based on the triplet transition will be developed [Rus
98]. High phase space density towards the quantum degenerate seems possible. In such a regime
the s-wave scattering length determines the collisional properties. In next section the s-wave
scattering length of Mg ground-state atoms is theoretically studied with semiclassical methods

using the available Mg, ground-state potential.
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2.4.3 The s-wave scattering length of **Mg
The scattering from a central potential V(R) is usually treated by partial-wave expansion of the
scattering wave function [Coh 77]. The Schrodinger equation is then reduced to the

determination of the radial wavefunction u,(R) of the Ith partial-wave i.e.

d? Cl1+1) -
[a’R2+k2 N UR)Iu(R)=0 (2.42)

where k=4/2uE/his the wave number, E is the total energy, U(R)=2 uV(R)/h and V(R) is the
interatomic potential. Since we are only interested in the result after the scattering, only the
asymptotic solution for R~ is important . The asymptotic solution of eq. 2.42 can be written as

[Joa 75]

u(R)=Asin(kR-Im/2+8) , R-o (2.43)

where 0, is the scattering phase.

The scattering from V(r) is then characterized by a total cross section

7
= ATy e 1sin®s, (2.44)

el
2 %0

At low energy only s-wave (1=0) scattering contributes. This process can be characterized by a

scattering length:

sind, (k
a = —1im¢ (2.45)
ok

The s-wave scattering cross section in this low energy limit is then o,=47a’ and the wave

function near zero energy is reduced to

uO(R)R—> A(R-a)

— 00

(2.46)
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The scattering length has a simple geometrical meaning: it is the intersection of the asymptote
to u,(R) with the R axis.
The scattering length for a long range potential of the form V(R)=-C,/R" is found by Gribakin

and Flambaum [ Gri 93] in a semiclassical approach.

_ L L
a = a |l-tan(—) tan| ®- 2.47
(n—2) ( 2(n—2))] 247)
where
2 1—1 n_3
B T 2uC, | n2 (n—2)
a=cos( ) (2.48)
n-2 \ h(n-2) I( —1)
n-2
is the mean scattering length and
1
©=—[gy2ul-VR)] 4R (2.49)

Here @ is just the semiclassical phase calculated at zero energy from the classical turning point
R, to infinity and V(R;)=0. The mean scattering length is solely determined by the long range
potential. To calculate ® the actual potential curve must be known.

The Mg, potential

The absorption spectrum of Mg, has been observed and analyzed by Balfour and Douglas [Bal
69,72]. An empirical Rydberg-Klein-Rees (RKR) potential curve for the ground state X 12; is
constructed at the internuclear distances between 6.18 a, and 13.63 a,_ where a, is the Bohr

radius (a0:0.5291771&). It is almost 1identical in shape with a Morse potential

UR-R) = D [1-¢ "F*P (2.50)

with p=1.0543, D =424 cm, R =3.890A.
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At large distance the dispersion potential is described by

o
RlO

V(R)=D _&_ﬁ_ - (2.51)
¢ RS R?

The theoretical value C, = 3.29(x0.17)-10° cm' A has been calculated by Stwally [Stw 71]. By
plotting V(R)+C/R° vs. R* for Balfour’s data he has reported Cy= 0.51(£0.09)-10° cm™A® and
D,=429.26(x0.5) cm™. No appreciable C,/R' correction is needed [Li 73]. Vidal and
Scheingraber use the “inverted perturbation approach” (IPA) method analyzing the data of
Balfour and get C;=3.88(9)-10° cm™ A%, C=3.26(38)-10" cm™A® and D,=430.97(0.15) cm™ [Vid
77].

Similar to the treatment of Gribakin we adopt the following expression for the Mg, X 12;

potential curve:

Y Cc. C
UR) = -D,+D(1-¢ " Rf))2—<R—§+R—88) £R) (2.52)

where the zero potential has been defined at R=co.
Here f(R) is a cutoff function introduced to cancel the 1/R" divergence at small distance and is

given by

F(R) = OR-R)+OR -Rye */* V" (2.53)

where O(x) is a unit step function:

0,0010 o

@(x)=1 (0) when x > (<) 0. We fit the  o000s

0,000

eq. 2.53 to the RKR potential to get 3

-0,0005-
-0,0010+

and R, instead of the value from Balfour

-0,0015-

for the parameters from Stwally and

Potential energy (hatree]

0,0020

Vidal. The best cutoff radius R, is also  -0.002s

determined by the fit. Fig. 2.28 shows Interatomic distance (a,)

Fig. 2.28: RKR potential curve of Mg, ground
state. The Solid line is the fit curve of eq. 2.52.
fitted curve of eq. 2.52 using the The dashed line is the long range potential.

the RKR potential from Balfour and the

44



parameter of Vidal. Also shown is the dispersion potential. The scattering length is then
calculated according to eq. 2.47 for both parameter sets from Stwally and Vidal. The calculated

scattering length is shown in Table L.

C,.D, Stwally C, ,D, Vidal Balfour

B 0.5657 0.5658 0.5579
R, 7.3638 7.3620 7.3510
R, 28.03 27.61

a 2802 58

I ———
Table I: Calculated s-wave scattering length.
The above values are given in atomic units.

To see the effect of the position cutoff R, we have also calculated the scattering length as a

function of R, with the other parameters fixed. The result is shown in Fig. 2.29. The infinite

1000 1000

750 te 750 +ed

500 500
250 250

0 0

-250 -250

-500
-500

=750
-750

Scattering length (ag)

-1000
-1000 24 25 26 27 28 29 30
24 25 26 27 28 29 30

R (0g) Re (@)
Fig. 2.29: The scattering length as a function of R_. The C,, D, are cited
from Left: Stwally and Right: Vidal

scattering length is due to the zero energy resonance which means the potential is nearly able to
bind an s-state [Joa 75]. The scattering length is positive when an s-wave bound state exists
otherwise it is negative. Recently, Arndt. et al. have reported the observation of such a zero-
energy resonance in spin-polarized Cs-Cs collision [Arn 97].

For a bound state with small binding energy E,=h*v*/2u the scattering length is related to the

effective range r, by [Joa 75 ]

Loy (2.54)
a 2 ¢ ’
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where r, is defined by

r, = 2[5 (vg(R) -uy(R))dR (2.55)

Here v(;) (R)=1-R/a and uoo (R) 1s the solution of eq. 2.42 for the s-wave at zero energy (k=0)
normalized such that at large R, uoo (R) :voo (R). It is clear that the scattering length is sensitive to
the binding energy of the least-bound state. Such a binding energy can be directivly measured
using two-photoassociation spectroscopy with cold atoms [Abr 95].

The scattering length calculated from Stwally’s parameter has a very large positive value. This
indicates that the highest bound state is very close to the dissociation limit. Also, because of the
uncertainty of the parameters of the potential, there are possibilities for negative a (-125a, >a>-
2323a,) with the parameters of Stwally. However, the scattering length calculated from Vidals
parameter gives 40a, <a<l61la, within the uncertainty of the parameters. Since the scattering
length is sensitive to the position of the last bound state, the uncertainty of the potential can
easily change the last bound state to an unbound state and hence from positive a to negative a.

Gribakin and Flambaum have also shown that the number of bound states is given by

n-1

n :[9—
b 2(n-2)

1+1 (2.56)

where [ | denotes the integer part of the expression. From the calculated possible @ it shows that
there will be 19 or 20 bound states for **Mg, ground state with the parameters of Stwally or
Vidal, respectively. Because there are still large discrepancies between the potential parameters
the position of the last bound state is still uncertain. The above estimated values should still be
checked when a more precise molecular potential is available. The photoassociative

spectroscopy of cold atoms mentioned above should help to solve this problem.
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2.5 Dynamics of the pulsed trap and optimization for the spectroscopy
The main purpose of our trap is high resolution

Ramsey-Bordé interferometry. For this

experiment the trap will be operated in pulsed

0,5 Trap fluorescence

mode to eliminate some disturbing effects as
0,0 2
Error signal

described in chap. 4. In the pulsed mode the

trapping laser beams are turned on and off e

Signal (Arb. u.)

alternatively. This is done by controlling the A0

AOM as shown in Fig. 2.10. Since this AOM i

-1,5 L L L
0,000 0,002 0,004 0,006
also regulates the intensity stabilization the time s

Fig. 2.30: Transient response of the trap

fluorescence and error signal of the intensity
has to be considered. Any intensity disturbance controller.

transient response of the intensity controller

of the trapping beam is directly reflected in the fluorescence of the trap and increases noises. A
good signal-to-noise ratio is important for the RBI experiment. To measure the transient response
of the intensity controller and the trap fluorescence the trapping beam is therefore turned on and
off at a rate of 50 Hz with turn off time of 1 ms. The measured error signal of the controller and
the trap fluorescence are shown in Fig. 2.30. The over-shooting of intensity after turning on the
trapping laser beam is also seen in the fluorescence of the trap. After turning off the trapping
beam the atom cloud expands freely.
When the trapping beam is turned on again
the fluorescence is only 39% of the
stationary value. This is due to the

quadruple magnetic field which shifts

more atom in the expanded cloud out of
resonance. This effect also reduces the

influence of the intensity over-shooting on 0,0-

the trap fluorescence. Furthermore, the 0o s 10 15 20

width of the over-shooting is only 200 us, Integration time (100ms)

so the signal-to-noise ratio of the trap Fig. 2.31: Noise of the trap fluorescence and the
‘ ‘ trapping laser intensity as a function of the
fluorescence is only weakly deteriorated. jpegration time. Square: Pulsed trap, Circle: cw

Fig. 2.31 shows the measured noise of the trap, Line: trapping laser intensity
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trap fluorescence as a function of the integration time for a cw trap and a pulsed trap. For an
integration time of 1s the noise can be as low as 0.7 % for a cw trap and 0.9% for a pulsed trap.
The solid line shown in Fig. 2.31 shows the fluctuation of the trapping intensity. It is seen that
the noise of the trap fluorescence is mainly due to the fluctuation of the trapping intensity. This
noise is also sensitive to the alignment of the trapping beam. Since the center of quadrupole
magnetic coil is not at the center of the trapping chamber, the trapping beam is close to the wall
of the chamber. Careful alignment is necessary to avoid background scattering from the chamber.
After the over-shooting there is still a rise time of 350 ps in the fluorescence signal. This is the
time require to damp the expanded atomic cloud to the stationary form described in section 2.1.
During the turn off time t_; atoms with velocity v>R /t; (R, is the trap region) will expand to
a region larger than the trap region. After turning on the trapping laser beam these atoms are lost.
The loss probability due to this effusive effect is the part of atoms with velocity larger than R/t

and is given by

v2

= 2[ n(v)dv = 24 [ eizoidv
E v, T vy,
(2.57)

Rtr
1-Erf( )

K
[

V20,1,

where 0, is the width of the velocity distribution. This is an error function dependent on R, , t

and o,. The effusive loss as a function of the

trapping laser off-time is shown in Fig. 2.32 020l Ry =2mm
with o, equal to the velocity of the Doppler o15]

cooling limit. For the RBI experiment this w0/

Rtr =3mm

kind of loss should be as small as possible 0.05]

such that more atoms can contribute to the 0,00+

o 500 1000 1500 2000

spectroscopy. tor (1S)

This effusive loss will result in a smaller Fig. 2.32 The dependence of the effusive lost on
the trapping laser off-time for different trap

number of trapped atoms than in the cw trap. region R
tre
For a pulsed trap with trapping laser off and

on time of t, and t,, respectively, the number of trapped atoms before the next cycle is equal

on?
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to

i

K 2.58
NG,.,) = N, -IN,,~(N(t)-aN@E)le ™ (2:38)
where t,,1s the life time of the trap and o, is the effusive loss described by eq. 2.57.

In stationary state this leads to a new equilibrium state and the number of trapped atoms at the

new equilibrium can be written as [Sen 93]

e " (2.59)

The measured N, as a function of t,; is shown in Fig. 2.33. The solid line is a fit curve to eq. 2.59

with R, 0, , and 7, as the fitting parameter. It is seen that the behavior of the pulsed trap can be
well predicted by eq. 2.59. This fitted lifetime

T,=0.9 s is the same as that derived from the

decay curve of the trap fluorescence. The 2 :ZZ -
fitted velocity 0,=0.94 m/s is consistent with :i 16004
the theoretically predicted value (0.87 m/s) % ::ZZ
within 10%. 8 so0o
Since the trap position can be varied by the i :ZZ

compensation magnetic field, a proper 400 600 800 1000 1200 1400 1600 1800 2000 2200

_ t . @s)
compensation field can be tuned such that the o

Fig. 2.33 The fluorescence of the pulsed trap as a
of the function of the trapping laser off time. The solid
trapping laser beam. It is observed that the line is theoretical fitted line with parameter R, =3
mm, 0,=.94 m/s, t,=0.9 s

trap is at the center of the cross

trap fluorescence is not sensitive to the
change of the compensation field when the trap is operated in cw mode. However, it is sensitive
when the trap is operated in pulsed mode. When the trap is not at the center position this results

in higher effusive loss in the pulsed trap. In this situation the trap fluorescence changes
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dramatically when the trap is changed 2000

from the cw mode to pulsed mode. Also

the fluorescence drops very quickly in the 1800

pulsed trap when the trapping laser off- 1000 L

time is varied. This behavior can not be

500

Fluorescence (Arb. U.)

described by eq. 2.59 as shown in Fig.

2.34. The compensation field should be

adjusted such that there is no significant 0 500 1000 1500 2000

t 5(1s)
Fig. 2.34: Trap fluorescence as a function of the
changed from cw mode to pulsed mode. trapping laser off time when the trap is not at the
center of cross of the trapping laser beam.

change in fluorescence when the trap is

This confirms that the trap is at the center
of the cross of the trapping laser beam. This is important for the RBI experiment with the trap,
since for high resolution RBI the trapping lasers will be turned off longer than 1ms. A high
contrast of fringes can only be obtained when the effusive loss is small. The RBI experiment

with the trap will be described in detail in chap. 4.
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Chapter 3
Ramsey-Bordé Interferometry (RBI)

Heisenbergs uncertainty principle limits the resolution of the spectral linewidth Av by the atom-
field interaction time t through Av-t >1. To overcome this interaction time broadening N.F.
Ramsey developed a two separated zone coherent spectroscopy in the microwave region [Ram
50]. The atomic coherence established in the first interaction zone precesses freely when the
atom 1is in the dark region. At the second interaction zone the phase difference between the
atomic coherence and the radiation field determines the final excitation probability. This method
bas shown a spectral resolution of Av-T=0.65.The time scale is now determined by the atomic
coherence precession period T which is usually much larger than the atom-field interaction time
T. As a consequence precision increases by T/ T as compared to conventional spectroscopy.

In the microwave regime considered by Ramsey the wave length of the microwave field is much
larger than the dimension of the interaction zone and the atomic beam spread. The spatial
variation of the acquired phase in each interaction zone can thus be neglected. This is different
for optical frequencies. The optical wave length is so small that atoms which cross the second
zone will experience spatial dependent phase shifts of even more than 7. This washes out the
fringes when different trajectories are averaged. Baklanov et al. (1976) have used three equally
spaced interaction zones with standing waves to recover the Ramsey fringes [Bak 76]. Later,
Bordé has introduced a geometry with two pairs of counterpropagating traveling waves. Bordé
showed theoretically that the fringes have more contrast [Bor 84]. Such a configuration has been
interpreted as a Mach-Zehnder type interferometer [Bor 89]. Each laser beam can be viewed as
a beam splitter. In the interaction zone the absorption and emission of a resonant photon will split
the atomic wave into a coherent superposition of ground and excited state. As long as the excited
state life time is long enough the two partial waves will recombine at the fourth interaction zone
and cause interference at the two output ports. The final excitation probability i.e. the probability
to appear in one of the output ports depends on the phase difference of the partial waves acquired
during the interaction zone and the free propagation. In the following section the properties of
traveling wave beam splitter will be described. The theoretical treatment of atomic

interferometer signal will be given in section 3.2. Section 3.3 describes the influence of
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additional potentials.

3.1 Light field as a beam splitter based on photon recoil

Consider an atomic beam crossing two pairs of counterpropagating laser beams. Each laser

beam functions as a beam splitter. Therefore, the detailed Ramsey-Bordé geometry consists of 16

possible trajectories as shown in Fig. 3.1.

D 4

Fig. 3.1: Four zone Ramsey-Bordé interferometer. The
two closed path which form two interferometers are
shown as thick lines.

Only two trajectories which form closed paths lead to interference. The effect of a traveling wave
acting as a beam splitter can be simply understood by using the mechanical interpretation [Ste
92a].

Atoms in the ground state with momentum p absorb a photon with energy hw, . Energy and

momentum conservation is given by

2 2 )
P ey, = PR o et 3.1)
2M 2M c

where w, is the atomic eigenfrequency, M is the atomic mass and k is the propagation wave

vector of the laser beam. Equation 3.1 can be simplified to

kP p-s

Y (3.2)
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where A=w,w, is the laser detuning, ZT

d=hk*/2M is the single photon recoil shift.

X
Equation 3.2 just shows the resonance Wit _x  le,pth k>

> g
condition for the Doppler shift e p e AN
v T g p>
compensating the detuning and the photon atomic beam
recoil energy. When A+ the excited state Nm Kk

wave packet does not only pick up laser beam
Fig. 3.2: Traveling light wave as an atomic

beam splitter.
but also along the atomic beam direction

momentum in the z direction (transverse)

(longitudinal). The longitudinal momentum transfer follows from the Heisenberg uncertainty
principle for the localized laser beam waist and the spread in k. This results in both transverse
and longitudinal displacement of the excited state partial wave (see Fig. 3.2). The transverse
displacement will be compensated after the four interaction zone. In contrast, the longitudinal
displacement gives rise to a phase difference between the two partial waves after the four

interaction zones :

dCI) =27 ﬂ (3'3)
)“DB
where
h(A-0) h
ax - 21 X s App=— (3.4)
P, P,

The time T =D/v, denotes the transit time through the first and third dark zone. The detuning

dependent phase difference leads to a periodic Ramsey fringe for the excitation probability :

P o cos(d®) = cos[2T(A-0)] 3.5

A similar argument applies to atoms initially in the ground state with momentum p-hk. After
interacting with the four laser beams these will also form a closed path. The periodic

interference fringe is of the form
P < cos(d®) = cos[2T(A+d)] (3.6)
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The above two terms correspond to the usual blue and red recoil components of the
interferometer as shown in Fig. 3.1 for the bottom and upper closed path.

For atomic beams the time T depends on the longitudinal velocity of the atoms. The velocity
distribution is usually very broad and only a few fringes will be observed when the total
excitation probability P=P,+P_is integrated over the velocity distributions. From another point
of view, the broad velocity distribution implies short de Broglie wave coherence length (some
Apg). Since only longitudinal displacement smaller than the coherence length will contribute to
the visible fringes only few fringes are visible.

In the atomic reference frame the four zone RBI

geometry looks like two pairs of counterpropagating » » % « «
pulses. This is equivalent to a pulsed RBI in an atomic

trap as shown in Fig. 3.3. The difference is that the Fig. 3.3: Scheme for pulsed RBI in the
energy conservation is no more fulfilled. The energy trap.

uncertainty of the laser pulse provides the energy difference between the laser frequency hw,; and
the atomic internal energy. The four pulses will still spilt and recombine the atomic wave
packet.The phase difference between the two partial waves is now better be calculated with the
path integral described in section 3.3. The interference pattern has still the same form as that
derived above. But now the dark interval T is only determined by the pulse separation and
independent of the atomic longitudinal velocity distribution. As a consequence more fringes
appear.

The above treatment does not consider the phase change of the atomic coherence in each
interaction zone. This effect will be discussed in the next section in the frame work of a quantum

mechanical treatment.

3.2 Quantum theory of Ramsey-Bordé¢ interferometry
For a derivation of the Ramsey fringes, the time dependent Schrodinger equation must be solved.
The atom-field interaction for a two-level atom is described in the electric dipole approximation

by the Hamiltonian [All 75]

A2
g-=2 +%w0|e><e|—d-E+i£ (3.7)
2m 2
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where p denotes the momentum operator and I' is the decay rate of the excited state. The electric
dipole coupling term H; =-d-E describes the interaction between the atomic dipolement d and
the electric field E(r,t). The interaction of the atom with a running wave will be considered, i.e.
with an electric field given by : E(r,1)=E (r)/2-expli(kz-w,t+@)] +c.c.. The term e**in the field
operator changes the atomic external state from |p> to [pxkk> which corresponds to absorption
and emission of a photon with momentum tk.

The time evolution of the atomic state [ (r,t)> is governed by the Schrodinger equation:

mair{'(r,t» - AM¥(r0> (3.8)
t

To solve this equation a suitable basis has to be chosen. Since the momentum transfer between
photon and atom reaction should be considered it is convenient to use the product space from
internal and the momentum states with the basis : {|g, p+mtk>, |e, p+(m=1)tk>}, where m is a
integer. In the rotating wave approximation the Schrodinger equation can then be simplified to

a 2®2 matrix equation [Bor 84]:

—i(o0+(mil)6—i§ 0

d emil =
o\ g, 0 -im?d (3.9)
0 Qo(r) e —i(w tvkzwkv 1@
2 emil
+
Q()(r) e i(w tvkzvkv t+@ 0 gm
2

where Q(r)=<e|d-E(r)|g>/ is the Rabi frequency.

When transformed to another basis with the unitary transformation
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(wg o )i-2(mE1)(kz +kv 1)
i

émil e 2 0 emil
_ (3.10)
; (wy~w )t -2m(kz +kv 1) gm

0 e 2

oy
3

the Hamiltonian will be independent of space and time. The Schrodinger equation is then

simplified to

QD .
. ié—i(mil)zé—i(mil)kv I o )e e 5
o emil 2 ¢ 2 2 em_l
a_ = Q) _ (3.11)
t r,t) .
Em 07 pie —ié—imzé—imkv N INY
2 2 “£2

This equation can not be solved analytical unless the Rabi frequency is constant. For constant

Rabi frequency it is shown that the evolution of the atomic state can be simplified to

R LS B [ (3.12)
_ =exp(=L2 . 0,(T _ .
g, (t+7) 2" N e p | 8,0
where
A
A=D" = cos(%)ﬂ' éﬁsin(%)
Q
B=C-= i—osin(&)
Q 2
A, - A:kvz‘[(mil)z—mz]éﬁg (3.13)
Q. =

’ —[(mil)2+m2]6—(2mil)kvz+ig

Q = QA

The wave function of an atom starting in the ground state after interacting with a traveling wave

is then given by
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Q . A .
P> —Eosin%e i2-9)e, p+hk>+ (cosz% +—sin2&) e ®lg, p> (3.14)

where O=arctan[A /Q - tan(Qt/2)].

The excited state population is equal to Q/Q>sin(Qt/2), which is the well-known Rabi
oscillation. For a Q t= 1t/2 pulse, the atom will be in the excited state with 50% probability when
the light field is on resonance, i.e. A ;=0. This corresponds to a 50% beam splitter. A mirror can
then be realized with a 7 pulse. Not only the phase of the laser affects the phase difference at the
exit port, but also an additional phase 6. This phase 0 has usually been neglected in the
literature, but it has important consequences for the RBI experiments and will be discussed in
more detail later.

In the dark region the atoms propagate freely and the transfer matrix is
é(gdmvé)r
e 0

0 é(Q AT
e

The interaction of the atom with the four traveling waves can be treated as the product of the
interaction matrix and the free propagation matrix. The final probability of atoms in the excited

state e ,-1> and |e,,,+1> can thus be written as

+1°

e e = e TI[|B,C,BAA [Pe T+ |B,C,DB, [ +|D,D,BA,f +|D,D,DB e T (3.15)
+[B,C,B.A(D,D,D,B,)" & M P #7% ®s 0 0 7) '
+0(€ izkvz)

eqe = e "TTEIBAA A Pe TTIBIACB D BAAF+D,B,C,B e (3.16)

+[BAAA (D, B,CB,) e & e 20 B e ])
+O(€ iikvz)
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The final total excitation probability is the sum of the above two terms integrated over the

velocity distribution N(v).

P:fofw(eflefl+e+lef1)N(v)d3v (3.17)

The terms proportional to e**"

oscillate very fast with v, and can be neglected when integrated
over v,. The oscillating terms exp[2i(A+0)T] and exp[2i(A-0)T] correspond to the red and blue
component of the interference fringes. The other terms contribute to the incoherent Doppler

background and saturation dip.
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Fig. 3.4 The calculated excitation probability a.) the Doppler and Lamb dip background b.)
the oscillation part of eq.3.17 for t=4 us, T=7.6 us, Q=87 kHz

Fig 3.4 shows the calculated excitation probability of the incoherent background and the
interference terms for t=4 us, T=7.6 us and Q,=87 kHz. The velocity distribution has been
chosen as a Gaussian distribution with width equal to 0.83 m/s which is equivalent to Doppler
temperature. Remarkably the period of the fringe is not 1/2T which is the period of the signal
cos[(A-0)2T]+cos[(A+6)2T]. This is due to the phase 6 mentioned before. To see its effect the
coefficient of exp(i(A+d)2T) must be considered. It can be shown that the coefficient
B,C,B;A,(D,D,D;B,)" of exp[2i(A-8)T] can be expressed as a, -exp[2i(0,+0,)] where a_is a
real number and O=arctan [A ,/Q tan(Q t/2)] , with A ;=A+kv-8 where + is for j=1 and - for j=2.
If Q ©<<1 then 6;=A /2 and

exp[2i(8, +0,)]~exp[i(A~8)21]. (3.18)
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So there is a contribution of an additional phase factor exp[i(A-0)2t] during the finite interaction
time. The fringe of the red component should be of the form exp[i((A-0)2(T+7)] for Q T<<1. A
similar argument applies for the blue component where the oscillation term has the form
exp[i((A+0)2(T+t)] for Q t<<I1. In this case the period of the fringe is 12T, , where T, = T+t
is defined as the effective pulse separation. Therefore the terms B,C,B;A (D D.DB)" and
B,A,A;A,(D,B,C,B,)" do not only affect the fringe envelope but also its periodicity. They contain
the phase difference of the two partial waves in the interferometer introduced by the atom-field
interaction during the four interaction zones. This property has been neglected by Bordé. Its
influence on the fringe periodicity has also been discussed by J. Miiller [Miil 94].

Another interesting case is the Q t= 1/2 pulse scheme.

If At <<1 then 0,=Q 2t/m and

exp[2i(0,+6,)]=expli(A-5)2t-4/m]. (3.19)

The corresponding fringe periodicity is 1/2T, with T, =T+4t/m. Here the fringe periodicity
depends also on the strength of the coupling between the atom and the laser. The additional time
T in the fringe period does not affect the fringe amplitude for the atomic beam experiment since
the fringes of the two recoil components after velocity averaging do not overlap. However, for
pulsed RBI in a trap the two fringes will overlap as mentioned before. Since cos[(A-
8)2T J+cos[(A+0)2T, |=1/2 cos(2T,A) cos(2T,0), the effective pulse separation T, will also affect
the fringe amplitude. The fringe is maximum when T, =n7/26 (multiple of 6.3 us for Mg) where
n is an integer and 0 is the recoil shift in terms of angular frequency. The fringes superpose
constructively when the fringe periodicity is an integer fraction of the recoil separation. The
correct effective pulse separation should be chosen during the experiment in order to get the
maximum fringe amplitude.

When the pulse separation deviates from the maximum value it affects not only the fringe
amplitude but also shifts the position of the two recoil components. For pulsed RBI in a trap the

frequency pulling due to the deviation dT, from the optimum value is

d T,

p
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To reduce the pulling below 1 Hz, the relative error of the effective pulse separation has to be
less than 2.5-10” Because of the dependence of the effective pulse separation T, on the atom-
field coupling the exact maximum T} is not easily determined experimentally. Suppressing one
of the recoil components will be necessary when the RBI is used in the application of an optical
frequency standard. This can be done by turning on shortly the trapping laser between the 2nd
and 3rd spectroscopic pulse. A similar method has already been realized in the thermal atomic
beam interferometer [Sen 93]. There are also other methods that can suppress one of the recoil
component. Detailed discussions can be found in [Bor 77, Hel 87, Din 94].

There are many other factors that will shift the position of the fringes. These will be discussed

in the next section.

3.3 Influence of additional potentials

In comparison with other types of interferometers using photons, electrons or neutrons, atom
interferometers give rise to interesting new investigations due to the variety of internal degrees
of freedom. Any potentials that affect the internal state will influence the phase between the two
arms of the interferometer and hence can be precisely measured. On the one hand this opens new
ways to study atomic properties. On the other hand it requires a careful analysis of any external
influence which potentially affects the interference in view of high precision spectroscopy.

The phase induced by small additional potentials in interferometer can be suitably studied by
Feynman'’s path integral method [Fey 65]. Feynman’s method treats the evolution of the state of
a quantum system in terms of a quantum propagator G(r,t.;r,.t,). The knowledge of the

propagator enables us to determine the time development of the wavefunction.

C(r.t) = [Glrytrt) Bt dr, (3.21)

This quantum propagator can be written as the sum of contributions from all possible paths

connecting the initial (r,,t,) and final (r,,t,) points.

iSp/h
G(rptysrt,) = Y e o (3.22)
r
Each path contributes a phase factor S;/h, where S is the action along the path I' and the
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modules of the contribution is path independent.

In the classical limit S;>>h, the phase Sp/h varies very rapidly between neighboring paths I,
and cause destructive interference. Only the path neighboring the classical path I',, where the
action is extremal will contribute constructively. If the Lagrangian is quadratic in position and
velocity Storey et al. [Sto 94a] have shown that the phase of the final wave function can simply

be determined by the action along this classical path and the phase of the initial state:

i
—Sp (Pt ot )

W(r,t,) = Flit) e " P(r,t,) (3.23)
where F(t,,t,) is a modules independent of r, and r,. The action S (r,,,t,;r,.t,) is the integral of the
Lagrangian L(r, ¥) over the classical path I,

Sulrptyiroty) = [ L@, 7o) di = [y pedr-Hd (3.24)

where H is the classical Hamiltonian.
For small additional potentials, it can be treated as a perturbation of the normal interferometer.
The phase shift introduced by the perturbation can then be obtained by integrating the

perturbation along the unperturbed path I,
1
o = Iy, pdr-Hd (3.25)

When the additional potential is independent of time the Hamiltonian H is just the total energy
E and the momentum is p=y/2M(E-V(r)). The phase shift due to such a weak potential V<< E

is then
do = lfr pdr = —ifr V(r)-dr (3.26)
hooo hy o
In the pulsed RBI the additional potentials are usually only time dependent and the phase shift

introduced by such a time dependent potential is only the time integral of the potential along the

path :
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do = —%f r V(0)dt (3.27)

In the past few years additional potentials acting on an atomic interferometer have been
extensively studied. These include AC, DC Stark effect, pure quantum mechanical topological
phases like Aharonov-Bohm effect and Aharonov-Casher effect and the inertial forces like
gravitation and rotation (Sagnac effect). An overview of these measurements can be found in [Ste
97, You 97]. Some of these effects in the Mg RBI experiment will be summarized in chapter 5.3

with respect to optical frequency standards.
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Chapter 4
Pulsed Ramsey-Bordé interferometry in a Mg Magneto-

Optical Trap

The RBI with a thermal the Mg atomic beam has been subject of numerous studies in the group
of Prof. Ertmer. The resolution of the Ramsey fringes in the atomic beam RBI is limited by the
zone separation through T= D/v. This distance is currently limited by the size of the window for
the four traveling beams. With a maximum of D= 30 mm the best linewidth is 5 kHz. Another
crucial limit is the line shift due to the 2nd order Doppler effect. For a velocity of the atomic
beam of 700 m/s the 2nd order Doppler shift is already 300 Hz. Furthermore the 2nd order
Doppler effect also causes power dependent shifts and asymmetries in the Ramsey fringes [Bar
81]. Reducing the velocity of the atoms is the only way to eliminate such an effect. It can be
done either by optical selection of cold atoms in a gas [Bag 91] or by actively cooling the atoms.
The cooling and trapping techniques described before serve this purpose. The RBI within the
Mg trap has also been studied in this group [Sen 93, Ste 93, Miil 94]. New results based on a

well improved spectrometer and trapping system will be presented in this chapter.

4.1 Methods of pulsed RBI in the trap

'
frapping & : 1 frapping &

detection | spectroscopy | detection .
(] ; ; (] |

frapping laser . _
] 'I'f:ZOmS :1' : 200 us 1.5ms:l :
quadrupole : : : :
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Fig.4.1: Timing schedule for the pulsed RBI in the trap.

To realize RBI in a trap disturbances must be removed during the spectroscopy time. The trap
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is operated in pulsed mode as described in section 2.5. The principle time schedule for the
spectroscopy is shown in Fig. 4.1.

The trapping laser and quadrupole magnetic field will first be turned off. Three pairs of
Helmbholtz coils are used to compensate the stray magnetic fields such that there is only a
magnetic field in the vertical direction when the quadruple magnetic field is turned off. This
bias field is used to define the quantization axis and shifts the Am=+1 components out of
resonance. Therefore, only the Am=0 component will contribute to the interaction. The duration
of the trapping laser off-time t_, depends on spectroscopy time. In this experiment it will be
smaller than 1.5 ms. After turning off the trapping laser about 50 us later, the two pairs of
Ramsey pulses are sent to the trap. The separation the each pulse pair determines the resolution
of the fringes.

Since the life time of the Mg °P, state is long, it is not very efficient to detect its fluorescence
directly. For alkali earth elements the ground state is a common state of a fast transition and
the metastable transition. The fluorescence of the fast transition will be interrupted when the
atom is excited to the metastable state. Such quantum jumps due to electron shelving was first
proposed by Dehmelt [Dem 75] for the case of ‘atomic amplifier’ to detect transitions between
very stable states. In an ensemble of atoms the quantum jumps of single atoms will not directly
be observed. However this effect can still be used to effectively detect small excitations of the
metastable state. Therefore, instead of detecting the fluorescence of the metastable state the
fluorescence of the trapped atoms is detected. This is done by turning on the trapping laser again
for a time duration of t; after the spectroscopy time. The fluorescence from the trap can then be
detected with a photomultiplier or a photodiode . Atoms in the excited °P, state leave the trap
and do not contribute signal. This results in a reduction of the trap fluorescence. After turning
on the trapping laser beam the expanded atom cloud will be recompressed to the normal trap
size within a few hundred us as mentioned in section 2.5. These recycled atoms together with
the newly trapped atoms can be used for next cycle of spectroscopy. Such a repeat of
spectroscopy will result an amplified trap loss due to the spectroscopy and also enhance the
signal-to-noise ratio. This amplification effect will be discussed more detail in the next section.
Typically 50 cycles will be repeated for each frequency point. By scanning the laser frequency

and repeating the procedure the measured spectrum shows the typical Ramsey fringes
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4.2 Quantum amplification detection mechanism

The use of the electron shelving effect in the detection of RBI signals was first introduced by K.
Sengstock [Sen. 93]. This method is still used in present work and will be studied in more
detail. In particular the recapture of the excited ’p, state atoms will be considered since our new
trap has a larger trap region than before.

Consider the time schedule of Fig. 4.1 neglecting the trapping laser off-time. Let t; be the time
just before the ith spectroscopy cycle. Then the number of trapped atoms at any time t between

t. and t,,, should be described by the equation

N@)=N_+[N() (1-a,-0(A)-Nle "+N()a(A)(1-e "™p. (4.1)

The first two terms on the right hand side are similar to eq. 2.19 but with an additional initial
loss a(A) resulting from the spectroscopy. The third term comes from the recapture of the atoms
which decayed from the excited state after the spectroscopy. It is equal to the product of the
initially excited atoms N(t) a(A), the recapture probability p, and the decay probability 1-
exp[t/tT,p,]. The time evolution of the number of trapped atoms according to eq. 4.1 is shown in

Fig. 4.2 for various recapture probabilities.
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Fig. 4.2: Time development of the number of trapped atoms for
various of recapture probability p, . Solid line: pure pulsed trap,
Square: p, =80%,Circle: p.= 50%, Diamond: p,= 0

The trap has an effective trap region of R, =3 mm and a lifetime of t,=0.9 s. For a trapping

laser off-time of 1 ms the effusive loss rate is &,=0.001. The solid line shows the evolution of

65



the pulsed trap without spectroscopic excitation. The evaluation of the pulsed trap with
additional spectroscopic excitation probability o(A)=0.06 and various recapture probabilities is
also shown. It is obvious that the recapture probability has a significant influence on the
additional spectroscopy loss..

A simple model will help to estimate the recapture probability. It is assumed that the trap depth
is much larger than the trap itself. This is approximately true for our experiment. For longer
off-time the trap expands to a larger size and the recapture rate is expected to be smaller. The
atoms are recaptured when they decay to the ground state within the trap region R,, . The time t
for atoms in the *P, excited state with velocity v to travel from the trap center to R, is t= R, /v.
The probability y that the excited atoms decay to the ground state just obeys the exponential
decay law y= 1- exp[-t/t;,] where T, is the natural lifetime of the excited ’P, state. We will
consider the recapture probability of each class of atoms with longitudinal velocity v, (along the
laser pulse direction) which can be excited by a laser with detuning A. The decay probability of

such a class of atoms can be expressed as

Rtr

Y(V) S ~tlt3p; = 1-¢ \/vtzﬂzf T3p; (42)
Z

where v, is the transverse velocity component perpendicular to v, .
The recapture probability for atoms with velocity v, is then equal to the integration of the
product of the velocity distribution of atoms in the transverse direction v, and the decay

probability over v, , i.e.

V,z _ Rtr
1 . 22 JoZolx
p(v) = g e T (e 1) 21y, dv, (4.3)

27y,

Fig. 4.3 shows the calculated recapture probability p,(v,) as a function of v, for a trap with the
same parameter as the one in Fig. 2.33. The velocity range which contributes to the Ramsey
fringes is very narrow and is usually within the Lamb dip width. For a Lamb dip width of 400

kHz the corresponding velocity range of v, is just 0.2 m/s. The recapture probability for this
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velocity range regime is about 47% as
shown in Fig. 4.3. This recapture
probability can be changed by
modifying the trap region R, . A
smaller trap region can reduce the
recapture probability but this will
increase the effusive loss. For the
pulsed RBI the best condition is that
both the recapture probability and the

effusive loss are small. So there is a

Recapture probability

0,0

5 0 5 10
Velocity Vz (m/s)

Fig. 4.3. Calculated recapture probability of the
excited °P, state for a trap with trap region of 3 mm
and velocity 0,=0.95 m/s

trade off between these two. For a trapping laser off-time of 1 ms the optimum trap region is

about 3mm which is the case in this experiment. This will be discussed in more detail in section

4.5.

Equation 4.1 has the similar form as eq. 2.58. There will be a new stationary state for the

number of trapped atoms similar to eq. 2.59, i.e.

N =

sp

1+(a +a(d) p,)

" (4.4)

where p, is defined as the effective lost probability and is equal to

U S
p, = 1-p(l-e ™e'™

(4.5)

If the trap lifetime T, is much larger than t; eq. 4.4 can be simplified to

N =

sp

N

T
1+(a,+a, (A)) —
I
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where o, (A)=a(A) p, is defined as the single cycle spectroscopic loss. The trap loss due to the

spectroscopy is then

@A) N,
N, N, — @.7)
+(at, vty (A)) -

The lifetime of our trap is 1 to 3 s depending on the intensity of the trapping laser and the
trapping time t; 1is about 20 ms. Under these experimental conditions eq. 4.5 can be
approximated as p; = 1-p,. The excitation probability o(A) for one cycle is about 1 to 5%. The
trap loss due to spectroscopy can then be 20% to 70% for a trap region of 3 mm. This shows
clearly the amplification of the trap loss with such a spectroscopic scheme. Since within the

lifetime we perform 7t /t; cycles the

0:9] et NSNS\ s
accumulated trap loss shows such 0.8]
e , , 0,7] MI\/\AN\M.
amplification mechanisms. But this S o6
; g o5 N\/\,ﬁ A “J\/W
does not imply that larger numbers of < 0.4] LYY
. . =< 0,3]
cycles will result in  more o.2] N\J\) \} \, \IM
amplification of Ramsey fringe 07 ettt NINININS s
-20 -10 o 10 20
amplitude.  Substituting the Detunning kHz

calculated  excitation  probability Fig. 4.4 Calculated pulsed RBI signal in the trap for

various cycling times. The parameter for the pulsed
shown in Fig. 3.4 into eq. 4.4 we can (a5 i the same as Fig. 2.33. From upper to bottom the
estimate the pulsed RBI in the trap. cycling time is 0.2, 0.08, 0.03, 0.012 and 0.004 s,

respectively. The Lamb dip has been eliminated.
Fig. 4.4 shows the calculated N, as a

function of the laser detuning for various cycling times t.. The Lamb dip background has been
eliminated. It is seen that the maximum Ramsey fringe amplitude occurs when the averaged
number of trapped atoms is half of that of the cw trap. Higher spectroscopic rates cause more
trap loss and reduced the fringe amplitude. This behavior can be qualitatively understand with
the help of eq. 4.7 which shows that the detected loss is not linear to 1/t; . It will saturate at a
high rate of spectroscopic cycles. Such a nonlinearity makes the fringe amplitude smaller when
spectroscopic rate is large. Quantitatively the fringe amplitude can be determined as follows. For

T,>>t, the fringe amplitude can be calculated according to eq. 4.6 by
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(@, (8-, 8) "N,
N, (a(A)-N, (a(A,) = L (4.8)

(1+(er, vty (A )~) (1+(at, +ot, (A)) )
I I

where o(A, ) and a(A,) correspond to

the maximum and minimum excitation _ z::
probability for the Ramsey fringe near :‘;; Z:i
the center of the Lamb dip. % 0.3
Fig. 4.5 shows the calculated fringe 2?
amplitude as a function of the cycling 6 c‘ig.ng t.mi?ms) S0 00

time according to eq. 4.8 for a trapping Fig- 4.5 The dependence of Ramsey fringe on
) ) cycling time for various parameters. Solid: t,=0.9 s,
laser off-time of 1 ms for different trap R,=3 mm, Dash: 7,=2 s, R,=3 mm, Dot: 7,=3 s,

lifetime and trap region. As can be Ry=2.5 mm
inferred from Fig. 4.5 for longer trap lifetime or smaller trap region the optimum cycling time
is larger. For cycling times shorter than the optimum value the fringe amplitude will drop
rapidly. Experimentally, this region should be avoided.
In principle eq. 4.4 is stationary after an infinite number of spectroscopy cycles. Of course there
is just a number of cycles in the experiment. The number of cycles n required for the signal to
deviate & from the stationary state can be calculate from the criterion N, -N(t,)>€ N, .This
leads to
r
ln[L (e E

ro (A -]
G 4.9)

i

In[(1-a,-a,(A)e ™]

There should be enough cycles for each frequency point to be scanned. Otherwise the fringe
amplitude is reduced. The dependence of number of cycles on the deviation from stationary

state and the cycling time for a trapping laser off-time of 1 ms is shown in Fig. 4.6. For a typical
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experimental cycling time t.= 20 ms the
number of trapped atoms can reach 90 %
of the stationary state after 50 cycles
already.

The discussion in this section has shown
that with the detection scheme described

above even small excitation rates of the

3 . .
P, state can efficiently be detected. pjo 4 6: The number of cycles as a function of &
Therefore, high resolution spectroscopy and t. according to eq. 4.9.

can be implemented with this method. The application of this method in the experiment and the

results will be described in the successive sections.
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4.3 Experimental setup for RBI in a Mg magneto-optical trap

The laser spectrometer
High stability and a narrow band tuneable laser are essential for high precision Ramsey-Bordé
interferometry. The current laser system has been described in detail in the thesis of U. Sterr

[Ste. 93] and modified by V. Rieger [Rie 96]. It will briefly be summarized here.

to

dye laser J = O F_:]__@_H__,_E

AOMO T~ ) 8 5 =
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Fig. 4.7 Schematic setup of the 457nm dye laser spectrometer. The laser
frequency can be varied by controlling the modulation frequency of
AOMO.

The spectrometer consists of a home built ring dye laser frequency stabilized to a high finesse
reference resonator by the Pound-Drever-Hall (PDH) method [Pou 83] as shown in Fig. 4.7. The
resonator is made of Zerodur (Al/1=5 10*K) and has a free spectral range of 289 MHz. With
two high reflective mirrors (R=99.9%) the resonator has a finesse of F=42000. This gives a
linewidth of the resonator of 7kHz. The resonator is suspended inside an evacuated cavity
which is temperature stabilized. In order to tune the laser frequency part of the laser beam
double passes an AOM. This beam frequency modulated at 13.5 MHz with an EOM produces
the necessary side band for the servo loop. The reflected signal from the resonator is frequency
demodulated to get the dispersive servo signal of the PDH method. The low frequency part of
the signal drives the PZT of the laser cavity and the high frequency part is fed to the EOM inside
the laser cavity. The line width of the stabilized laser can be derived from the error signal of the
regular signal which has been determined to be 40 mHz. The residual drift of the stabilized laser

due to the thermal drift of the reference cavity is determined to be 30 Hz/(s°mK).
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Long term stabilization of the spectrometer

For short term the laser will be frequency stabilized to the reference resonator. As mentioned
above there is still thermal drift of the reference resonator, so for long term the laser will be
frequency stabilized on one of the recoil components of the four zone RBI in the thermal atomic
beam. At the same time the pulsed RBI will be performed in the trap. This can be done with 3

tunable AOMs. The complete setup is shown Fig. 4.8.
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Fig. 4.8: Schematic setup for the pulsed Ramsey-Bordé Interferometry

The frequency stabilized laser beam first passes the AOMI. The -1st order of the laser beam is
sent to the atomic beam apparatus for the four zone RBI. Two cat eyes collimate the four
parallel laser beams. After interacting with

the four traveling light wave the atomic beam 600

fluorescence of the excited state is detected 4001
with a PMT. To stabilize the laser frequency 2001
one of the recoil component of the Ramsey
fringes is chosen. The fringe has a linewidth -200r

of 20 kHz as shown in Fig. 4.9. The laser is

Fluorescence (Arb. u.)

-400-

600l H 20 kHz

frequency stabilized to the fringe minimum

with the following method. R T T R 0 50 100

Offset frequency (kHz)

First the modulation frequency of AOMI is Fig. 4.9: One recoil component of the Ramsey

fixed at f = 80MHz and AOMO (shown in fringes for thermal atomic beam.
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Fig. 4.7) is frequency modulated such that the signal of the Ramsey fringe is at the minimum of
the red recoil component. Now the laser frequency is at the frequency corresponding to the
minimum of the red recoil component. Then the laser frequency evolution is determined from
the Ramsey signal at two symmetric points on both sides of the minimum. They are + Af_ Hz
away from the minimum. The signal difference at these two frequency points is used as an error
signal to control the modulation frequency of AOMO. If Sig(f, +Af,)-Sig(f,,-Af,,) is positive the

modulation frequency of AOMO will be reduced with a step frequency f,. and vice verse. This

step
procedure stabilizes the laser frequency to the minimum of the red recoil component. During the
experiment Af_ is fixed to be 8 kHz and the step frequency is kept at 30 Hz. The integration
time for each frequency point is 0.5 second. The optimum parameter for f,.,, Af,, and other
stabilization schemes like using signals at three frequency point to fit to the minimum can be
found in [Sch 97].

RBI in the Trap:

The zeroth order of AOMI1 is used for the RBI experiment in the trap. The pulsed RBI in the
trap is realized by injecting two pairs of counterpropagating laser pulses into the trap. The
separation between the first and second pulse and that of the third and fourth pulse is the same.
AOM?2 and AOM3 produce the required Ramsey pulse pair for forward and backward direction.
These two AOMs are placed in the focus of two telescopes respectively, such that there is no
laser beam misalignment in the trap when the modulation frequency is varied. The alignment of
the forward and backward laser beam is done with the help of an interferometer as shown in Fig.
4.8. The M1 mirror is used as a deflection mirror for the trapping laser beam and also as a beam
splitter for the optical interferometer which consists of AOM2, AOM3, M1, M2 and mirrors in-
between. The backward laser beam is first adjusted to pass through the trap which can be easily
done when the frequency is on resonance with the atomic transition. The transmitted backward
laser beam through M1 will then be retroreflected by adjusting M2. This is done by letting the
laser beam pass through a small aperture after transmitting M 1. Mirror M2 is adjusted such that
the retroreflected beam passes the aperture again. Then the forward laser beam is adjusted such
that clear interference fringes appears at the output of the optical interferometer. Only when the
two laser beams overlap coaxially clear interference appears and confirms the alignment of the
two laser beams.

The spectroscopy in the trap will be fulfilled with the procedure described by in section 4.1. The
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scanning of the laser frequency is done by modifying the modulation frequency of AOM2 and
AOM3. The modulation frequency for these two AOMs are from the same synthesizer to ensure
the same frequency for the two pairs of Ramsey pulses. The measured results will be shown in

the following section.
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4.4 Experimental Results
As mentioned in the last section after turning off the

quadrupole magnetic field there is a bias field in the

2400,
vertical direction to define the quantization axis. F '.'Fe .
2200 HE4 i
The laser polarization is adjusted to be parallel to 3 20001 [ .
2 . %
<
. . . . ~ f
the magnetic field by monitoring the trap loss. For 2 100 J _;
parallel laser polarization and magnetic field the £ 40l '.ﬂ <
g L .
Am=0 transition can be optimally excited and the 1400| ‘I;"fs .._.r
largest trap loss is the result. The results of a 1200——7
8 6 4 2 0 2 4 6 8
saturation spectroscopy performed with two Laser detuning (MHz)

Fig 4.10 Saturation spectroscopy in the

counterpropagating pulses of width 2.4 us is shown
TPropagating p ! trap with pulse width of 2.4 us.

in Fig. 4.10. The asymmetry of the Lamb dip is

mainly caused by the laser beam shift when the modulation frequency of AOM is varied
remarkably. For the high resolution RBI experiment the frequency variation is only some kHz.
In this case the beam displacement is smaller than 1um and can be neglected. The Doppler
profile has a FWHM of 7.8 MHz. From this value the velocity of the trapped atoms is
determined to be 1.1 m/s. This value is very close to that derived in section 2.5.

The pulsed RBI in the trap is performed according the method described in section 4.1. For each
frequency point the spectroscopy rate is typically 50 Hz and the integration time is 1 s. Fig 4.11

shows such a spectrum of 20 kHz periodicity within the Lamb dip.

22

= 21 = A 1 ﬁ.; I-"

=2 1 - el w| -

£ 3 F .%I,l"lfi-i\'#

§ 19 =\'.|I I i ’I\-\-' -.-i ’ E:T-l_-l-r-\_ -

z 18# ;Ej 7 i i': \ ?m ﬁ z

= 0 TR cviE
-200 -150 -100 -50 o 50 100 150 200

Laser detuning (kHz=z)

Fig. 4.11 Pulsed RBI in the trap with a 20 kHz period of fringes.
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To obtain the optimum Ramsey fringe

amplitude the width of the Ramsey pulse = ij
is optimized. Fig. 4.12 shows the & -
measured Ramsey fringe amplitude as a é 0.50] "t . .
function of the pulse width for an intensity § ZZZ T
of 6.8 mW/mm®. The optimum fringe L;;'_’ Z:z .

0,05

amplitude occurs at a pulse width of 4 ps T S r 5o s a0 45 oo
. . Pulse width
which corresponds to a 0.71 pulse. This ulse width (ps)

deviates from the expected 7/2 pulse. Fi'g. 4.12 Ramsey fringe amplitude vs. the pulse
Such a larger value has also been widih.

mentioned by Bordé [Bod 84]. It results from the spatial dependence of the Rabi frequency €,
which is due to the Gaussian profile of the spectroscopic laser beam.

To check the validity of the recapture

model, we have measured the Ramsey

5
fringe amplitude as function of the g 2]
trapping laser off-time as shown in Fig. g
<
4.13. The solid line is the theoretically =
predicted curve according to eq. 4.8. %
. .- .. £
with  the excitation  probability g |
o 400 600 800 1000 1200 1400
calculated from eq. 3.17 but mutiplied t . (s)

with one free fitting parameters o Fig. 4.13: Ramsey fringe amplitude vs. the trapping

match the experimentally measured trap laser off-time t . The solid line is theoretically
loss due to spectroscopy. The fringe expected value .
amplitude does not drop down so fast as expected. The possible reason is that for larger t , the
recapture probability is not so large as expected since the trap has expanded to a large region

where the small trap assumption is not valid any more.

High resolution Ramsey fringes
By variation of the pulse separation of forward and backward Ramsey pulse pairs different
fringe resolution is obtained. Some examples are shown in Fig. 4.14 for an integration time of

1 s. Also shown are the signal-to-noise ratio (S/N) and the linewidth of the fringes, where the
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Fluorescence (Arb. U.)

Offset frequency (kHz)

Fig. 4.14: Ramsey fringes in the trap for different resolutions. The line-width which
is defined as half the period of the fringes and signal-to-noise ratio are shown in the
right side.

linewidth is defined as half the period of the fringes. According to section 3.2 the period of the
fringes should be 1/2T, where T, is the effective pulse separation. The value of effective pulse
separation T, can be derived from the Fourier transformation of the fringes. The periodic fringe

is presented as a function of the

frequency so the Fourier transformation 1600]
of the fringes will be a spectrum peaked — _ ::2&
at 2T,. Fig. 4.15 shows such a Fourier % 1000
spectrum of the fringe from Fig. 4.14 b). Eg 22&
The measured T, should be larger than :2;
experimentally assigned value T+t as 8,600 0,001 0.002

Time (s)

discussed in section 3.2 since the value

. . . Fig. 4.15: Fourier spectrum of the Ramsey fringe
of Qr is larger than 1 in the experiment. shown in Fig.4.14 b).
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Fig. 4.16 shows the measured T, from the Fourier spectrum as a function of T+t. The solid line
is given by T, =T+t. The error bar of each point

is defined as the FWHM of the peak at 2T, shown

400

in Fig. 4.15. The measured effective pulse

separation within the measurement error is g 2004
==

predicted as in section 3.2. The error bar is larger 100

for higher resolution Ramsey fringes due to a

. . . 0 5‘0 1b0 11’)0 260 2‘50 3b0 3150
smaller signal-to-noise ratio. For example the S/N T+t us)

drops down to 1.6 for 796 Hz linewidth as shown F ig. 4.16: The measured effective pulse
separation vs. experimentally assigned T+t

in Fig. 4.14.

The linewidth of 796 Hz corresponds to a Q factor of 8:10", where Q is the resonance

frequency devided by the linewidth. The stability of a laser oscillator stabilized to a resonance

transition can be described by [Ita 91]

K 1
OSIN  fz

0,() -

where K is a dimensionless constant and S/N is the signal-to-noise ratio of a measurement time
T. It is the product of Q and S/N that affects the stability. High Q does not necessarily imply
high stability because the signal-to-noise ratio S/N must also be considered. Fig. 4.14 shows
that the best stability is achieved for the fringe with 2.5 kHz linewidth. For this fringe the Allan
variance was studied in more detail as discussed in chap. 5.

The resolution limit

The fringe contrast is usually defined as the ratio of the fringe amplitude to the Doppler depth.
Itis 16, 14, 9 and 5% for fringes from a to d, respectively in Fig. 4.14. The contrast drops down
for a higher resolution. This loss in contrast can be due to the variation in excitation probability
which is resulted from the Gaussian intensity profile of the spectroscopy laser beams, laser
frequency fluctuation and the signal-to-noise ratio. First we considered the effect of laser
frequency fluctuation and signal-to-noise ratio.

The minimum detectable fringe is usually determined by S/N=1. Assume that there is x% of

noise for the trap signal. Then S/N=1 implies
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Imax -Imin:X%.Imax-i_ X%‘Imin
where I, and [, is the maximum and minimum fluorescence of the fringe. This leads to a

minimum detectable visibility

I -I.
Visibility = —= T - x%
4 I+

max " ' min
Here we will define the fringe visibility as

(LI )( L+ .Y to distinguish it from 45,
contrast as defined above. Note that often ::
visibility is a synonym for contrast. Instead of & :2
contrast the visibility will be used for the E? f:
discussion of the resolution limit of the = ;:
fringes since it is directly related to the S/N. ‘;‘:

5 10 15 20 25

Fig. 4.17 shows the measured fringe visibility Period {kHz)

as a function of the fringe periodicity for a Fig 4.17: Visibility of the fringe vs. the fringe

constant trapping laser off-time. The dashed Period. The solid curve is calculated curve
. o ~with the consideration of laser frequency
line shows the limit of detectable visibility f],ctuation. The dash line is the minimum

which is equal to the noise of the detected detectable visibility.

fluorescence in the corresponding measurement. The solid line is the theoretically predicted
curve with consideration of the spectrometer frequency fluctuation as described below.

The fringe signal is proportional to cos[(A-0)2T,]+cos[(A+0)2T,] under the assumption of
monochromatic light field. In reality the laser is never monochromatic and there are always
fluctuations which affect the phase or the frequency. So the laser has a finite frequency
linewidth and frequency stability. We will treat both properties as frequency fluctuations of an
ideal monochromatic laser. The Ramsey fringes should then be the time averaged value of
<cos[(A+f(t)-0))2T]+cos[(A+f(t)+0)2T]> where f(t) is the frequency fluctuation from ideal
monochromaticity. This time averaging can be more easily treated as an ensemble average
<cos[((A+f )-8 )2T]+cos[((A+f,)+0)2T]>. The frequency fluctuation f, is assumed to have a

Gaussian distribution:
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To calculate the fringe amplitude 1000 samples of frequency fluctuations are used for various
periods of fringes. The average height of the fringes (I, +1,.;,)/2 has been set such that it has the
same value as the experimentally measured height of the 20 kHz period fringe. The calculated
visibility is shown as solid line in Fig. 4.17. The best fit to the measured visibility has a
frequency fluctuation 20, of 920 Hz. The behavior of the measured fringe visibility is in good
agreement with the expected curve. We conclude that the reduction of the visibility when
varying the fringe period is mainly due to the frequency fluctuation of the spectrometer. An
analysis of the contrast as a function of the pulse separation which shows an exponential decay
curve [Sen 94] also confirms this conclusion [Rus 98].

The frequency fluctuation can be traced back to the laser line width and its stability. Since the
measured stability of the spectrometer is 5-10™"° (see section 5.2) this contributes 320 Hz
fluctuation. The residual fluctuation resulting from the laser line width is determined to be
sz%o Hz. The dashed line shows the minimum detectable visibility which is equal

to the noise (0.6% at integration time of 1.0 s) of this measurement. The minimum period is 1.5

491 Hz S/N=2.3
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Fig. 4.18: High resolution Ramsey Fringes with linewidth of 491
Hz.
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kHz which is also consistent with that measurement.

The other effect which reduces the visibility is due to the smaller excitation probability for
higher resolution. In this case the pulse separation will be larger. The atoms will expand more
after the first pulse and experience smaller intensity in the far wing of the Gaussian profile.
Therefore, the excitation probability from the second pulse is smaller. Such an effect
contributes about 6 % in reduction of visibility for T=300 ps. This amount has been checked by
enlarging the spectroscopic laser beam radius from 1.7 to 2.2 mm. The linewidth of the fringes
has been improved towards 491 Hz (see Fig 4.18). This is smaller than the lower limit
mentioned above. Such a large improvement can not be explained with the larger size of the
laser beam. We assumed that it is due to an occasional frequency stability improvement of the
spectrometer. Further frequency stabilization of the spectrometer is discussed in the next

section.

4.5 Some possible improvements

Reducing the spectrometer line width

The present resolution is mainly limited by the linewidth of the spectrometer. Although the
stabilization of the laser to the reference resonator can reach sub-Hz regime the distance
between the spectrometer and the trap is still some meter long. Any disturbance in-between
such as vibrations of the mirrors give rise to phase and frequency fluctuation. It is therefore
important that the frequency stabilization is just located near to the trap. This can be done either
by building a new trap on the spectrometer table or a new frequency discriminator next to the

trap. The later is now in progress.

0.90F
Reducing the recapture probability
0.08
The other improvement is to reduce the %? o.0el
recapture  probability. The recapture = oot
probability of the present experiment as T
. . . . 0083 2.0 2.0 .0 5.0 10,0
mentioned in section 4.2 is about 47%. Trap region R, (mm)

Reducing this recapture probability can pjs 4.19. The dependence of the visibility on

increase the visibility. The trap region is the the trap region with consideration of recapture
(solid line) and no recapture (dashed line) for a

main factor that affects this probability. trapping laser off-time of 1 ms.
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Fig. 4.19. shows the calculated visibility as a function of the trap region for trapping laser off-
time of 1 ms. The maximum visibility occurs at a trap region of 3mm. This maximum value is
a compromise between recapture probability and the effusive loss. Also shown is the visibility
for no recapture. It is clear that the visibility is better since the atoms excited in spectroscopy
will all be lost and enhance the signal.

Reducing the recapture probability is necessary for approaching the limit of the resolution which
is the natural linewidth of the P, state. To

reach this limit, the trapping laser beams 0.8

should be turned off at least as long as the
life time of the P, state. This means that

during a spectroscopic cycle the trapping

laser must be turned off at least for 10 ms. In 0086 50 100 150 200 250 300 350 40,0
Trap region R (mm)
this case the trap expands to a radius of
Fig. 4.20 The dependence of the visibility on the

about 10 mm at the usual MOT temperature. (rap region R, with the consideration of recapture

The trap depth should also be much larger (solid line) and no recapture (dashed line) for a
trapping laser off time of 10 ms.
than this value in order to avoid large

effusive loss rates. For such a large trap radius the recapture rate is also high (~86% for
R,=10mm). Fig. 4.20 shows the Ramsey fringe visibility as a function of the trap region for a
trapping laser off-time of 10 ms. This recapture probability can be decreased by pumping the
°P, state to other states such as °P, or °P, via °D, (3s5d). The trap region can then be made as
large as possible as long as the trapping power is available. The D, has a lifetime of 34 ns.
For a pumping intensity I>I_, =2.6 mW/mm? the atoms will be pumped away after 15 cycles
which corresponds to a pumping time of about 1 us only. This is much shorter than the life time
of the °P, state which means that effective optical pumping can be reached without atoms
decaying back to the ground state. The transition °P,-’D, has a wavelength of 284.9 nm. This
can be obtained from the present second harmonic generation where the power is also enough

for the effective optical pumping.
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Chapter 5

Frequency standards

Since the first atomic beam apparatus used as a frequency standard [Ess 55], atomic frequency
standards have developed rapidly in the microwave region [Aud 76]. In the optical frequency
regime many candidates have been suggested [Hall 89]. The performance of a frequency
standard is usually characterized by two quantities: accuracy and stability. Accuracy refers to
the deviation from the ideal transition frequency of free atoms at rest. The evaluation of the
accuracy of a frequency standard includes all errors derived from independent measurements
and the theoretical predictions of the system. Stability refers to the variation of the average
frequency from one interval time to the next. The characterization of a frequency stability has
been extensively discussed in [IEEE 66]. In the subsection some basic concepts of frequency
stability will be first described. The measurement of the stability of the present Mg frequency
standards and a comparison to other standards will be given in section 5.2. The accuracy will be

summarized in section 5.3.

5.1 Frequency stability
The output of an ideal noise-free nondrifting oscillator would be a pure sine wave, but any real
oscillator is perturbed by random noise and other factors which affect the frequency stability. A

simple model that was widely used to describe a real oscillator is

V() = (Vyre@®) sin[2mvyt+¢(1)] (5.1)

where €(t) is the amplitude fluctuation and ¢(t) characterizes the phase noise.
Usually, for high-quality frequency sources the amplitude fluctuation €(t) is very small and can
be neglected. We will only consider the frequency instability resulting from phase fluctuations.

The instantaneous frequency of such a signal is

1 do@)

11
V() =——[21tv t+P(1)] =V, +
® ant[ o *PDI=V, 2n  dt

(5.2)
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The frequency noise is then the random process defined by

Av(r) = L 400

2n dt (5-3)
Usually the normalized dimensionless fractional frequency fluctuation is introduced:
Av(t
¥ =220 (5.4)

Vo

The characterization of y(t) of a frequency source can be described in the frequency domain
[Cul 66] or time domain [Bar 66, All 66].

Frequency domain

In the frequency domain the fluctuations of the frequency are characterized by the one-side
spectral density S (f) of the fractional frequency fluctuation y(t), where f is a Fourier frequency
component. It has been shown that the spectral density of the frequency fluctuation for usual
frequency generators can be represented as a superposition of independent noise processes by

[Bar 71]

2
SN = X h St (5.5)

where h , are constants.

The various terms corresponding to o

) ) o denomination of the type of noise
represent different types of noise sources.
Typical noise found in the usual frequency -2 Random walk frequency noise
) ) ) -1 Flicker frequency noise
standards are listed in Table I A detailed White frequency noise
discussion of these noises can be found in 1 Flicker phase noise

2 White phase noise

. _________________________________________________________]
Table II. Typical noise in usual frequency
standards.

[Les 79, How 81].
The power spectral density of the
fractional frequency fluctuation of a

slaved laser oscillator locked to an atomic reference as shown in Fig. 5.1 can then be described
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by the following expression [Cut 66]

1 G() p
S =—F7S + S
RXGI T G0T [S,(D1,; |1+G(ﬂ| [S,(D], (5.6)
where the subscripts at, L, I, f indicate [Sy(N]L¢
atomic reference, laser, locked and free l [SU(f)]
Laser Y L
(unlocked to  atomic  reference), | 9 5

respectively. G(f) represents the servo loop

gain K K g(f) and it can be described in "/\/\’K

Atomic Ref

terms of a low pass filter in the stabilization

[Sy(Nlat
Fig. 5.1: Block diagram of the passive atomic
frequency standard.

scheme described in section 4.3. Equation

5.6 can then be rewritten as [Aud 80]

_Qenry 1
SN, = ———= SV, + ———— [S,N], .
y(f) L, 1+(2']'[f7—')2 y(f) L.f 1+(2’]‘[f7")2 y(ﬂ a (5 7)

where T is the time constant of the servo-loop. In the stabilization scheme described in section
4.3, the time constant is mainly determined by the total PMT integration time for the Ist
harmonic technique which is 1 s. It is seen from eq. 5.7 that the fast frequency fluctuation of the
laser is not affected by the servo-loop and the slow ones are determined by the atomic reference.
Consequently, for long term the frequency stability is determined by the atomic reference.
Time domain:

Time and frequency counting techniques are well known. They are more precise than frequency
power spectrum measurements for signals having a low frequency which is the usual case for
high stable frequency standards. Since the instantaneous frequency can not be measured it
always takes some time T to measure the frequency fluctuations. Therefore, the measured

frequency fluctuation is the averaged value over integration time T.

(=) % dr (5.6)
0
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The time domain frequency stability is usually defined by the Allan variance [All 66] or two

sample variance which is equal to the variance of two adjacent measurements.

03(7) = %@M 50> (5.7)

where <> means infinite time average.

In practice, only a finite number of measurements can be realized. Given a set of measured
fractional frequency fluctuation y, where 7, is the integration time of each data point, a new set
of data y;" can be obtained by averaging n adjacent values of y;” with T=nt,. For a set of m data

points y;” the Allan variance for general tT=nt, becomes [All 87]

1 m-2n+1 . _—-
Z G’km_)_’k) (5.8)

0xT) =
y 2m-2n+1) =1

where

1 _
Ye =— LJi (5.9)
n

The time domain 0,(t) and frequency domain S (t) stability can be related by the following

equation [Bar 71]

T . 4
oln) = 2f 5,0 2D 4 (5.10)
0 (TfT)

where it is assumed that a low pass filter shows a sharp cut-off frequency f, since there always
exist low pass filter exist in the measuring system or in the frequency generator. For the type of

noise mentioned above the corresponding time domain Allan variance has the form
2 u
oy(r) =Kz (5.11)
for 2mtf,t>>1. The corresponding values of u are:
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o 2 1 0 -1 -2
u -2 -2 -1 0 1
O

Besides the above mentioned random noise there is another possible contribution to the Allan
variance which comes from the drift of the frequency. It can be shown that for a linear frequency
drift y(t)= kt (k is constant) the Allan variance is

o) =—= (5.12)

=

It is possible to determine the particular noise which perturbs the frequency stability by
measuring 0,(t) and by plotting its variations in log-log coordinates. The slope of 0,(t) then
depends on the noise process which is involved, except for a=1 and 2. In that case one can
distinguish the two kinds of noise by different kinds of techniques [Aud 80].

In the next section the stability of the present spectrometer will be characterized in the time

domain. Comparison with other frequency standards will be described.

5.2 Measurement of the Allan variance
The dye-laser spectrometer as described in section 4.3 has an excellent short term stability. For
long term it is stabilized to the low frequency component of the Ramsey fringe of the thermal
atomic beam. The Ramsey fringes obtained with the thermal atomic beam have a line Q of
3.3-10" and signal to noise ratio (S/N) of 73. When this signal was used for frequency
stabilization a fractional frequency stability of

2.3:10" could be obtained [Rie 96]. In order to

1,0

0,54

measure this frequency stability independent from
0,0 Yoo Mo ke N

Signal (Arb.u.)

the predicted value we have compared the
-0,5
frequency of the laser spectrometer with the

eigenfrequency of atoms in the trap. The frequency 0y 2 2 & 8

Frequency (Arb. u.)

evolution of the spectrometer is derived from the Fig. 5.2: The Ramsey signals for four
fixed AOM modulation frequencies. The
measured values shift when the laser
determine the phase shift we model the fringes by frequency changes .

phase shift of the Ramsey fringes in the trap. To
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the equation

a cos[2T (A+)]+h+c (x-d)? (5.13)

where a and ¢ describe the fringe amplitude and phase, respectively. The last two terms describe
the Lamb dip background. The parameters a, b, ¢, d and ¢ can be first determined from fitting
to the fringe of a complete scan as in Fig. 4.14. Later, the phase can be determined by four
measured points near the zero of the fringe as shown in Fig. 5.2, where zero refers to the net
signal when the Lamb dip background is subtracted. The measurement procedure is described
below. After the laser has been stabilized at the thermal atomic Ramsey fringe minimum some
cycles of Ramsey fringes around the central of Lamb dip in the trap are measured by scanning
the modulation frequency of AOM2 and AOM3 (see Fig. 4.8). From this fringe the initial
parameters a, b, ¢, d and ¢ can be determined. In the consecutive time the fringe signal is
continuously measured only at four fixed frequency points which correspond to the zeros of the
initial fringes. From the four-point fringe signal the phase ¢, can be determined from eq. 5.10
by fixing the amplitude parameter a. The laser

frequency change Av, compared to the initial

scan is then equal to ¢/2T,. For this 5 ]
measurement a 5 kHz Ramsey fringe is % s
measured since it has a better stability according % =

to section 4.4. The sampling time of each §

frequency point is 1 s. From the set of measured .

Sampling time (s)

fractional frequencies y,” =Av/v, with t,=4s
Fig. 5.3: Allan standard deviation of the
spectrometer stabilized on the Ramsey fringe
to eq. 5.8. The measured Allan variance is minimum and measured relatively to the
atomic eigenfrequency in the trap. Three
consecutive measurements are shown.

the Allan variance can be calculated according

shown in Fig. 5.3 for three consecutive
measurements. For short sampling time the
Allan standard deviation is described by o,(7) =2.7-10"%/,/. This behavior is dominated by the
shot noise (white frequency noise) which result from the statistics of counting transitions in a
quantum system. For long term (t>70s) the three consecutive measurements show larger

differences since the available data set is smaller and the error of the measurement increases.
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The measurement also shows possible drifts of the spectrometer at long-term. With still longer
measurements (sampling time up to 600 s) the drift has been confirmed and we get a larger
Allan standard deviation of 0,(t) =5-10""%/y/z. This stability fluctuation depends strongly on the
behavior of the dye laser. The flicker floor is not seen in this range of sampling times. The
stability is possible below 10™* for long-term according to Fig. 5.3. The potential of the stability
is still to be explored when the stabilization of the spectrometer is improved. The drift is
assumed to result from the drift of spectrometer power while it results in an asymmetry of the
fringe through the 2nd order Doppler effect. This will influence the stabilization scheme used at
present and result in a frequency drift. Further intensity stabilization should resolve this
problem.

The stability at a sampling time of 1s which is derived by extrapolating the curve to 1s in Fig.5.3
is (2.7£0.3)-10". Although this stability is the relative stability measured between the thermal
atomic beam and the trap, we believe that it is limited by the stabilization of the spectrometer on
the Ramsey fringe in the thermal atomic beam. The stability is expected to improve when the
spectrometer is stabilized on the Ramsey fringe in the trap. Further evidence can be found by
comparing the stability measured with a second Mg trap. The construction of such a new trap is

in progress in the SFB project in this group.

Comparison with other frequency
standards

In recent years many groups have been
10710

engaged in improving the conventional
Cs frequency standard or investigating 1o
new optical frequency standards [EFTF 1012 |-

95]. Fig. 5.4 shows the stability of some & .|

b>~

classical frequency standards and new
1014

investigations. At 1s sampling time the

1075 |-

stability of the present spectrometer

| | | | | | |
1 10 102 108 104 108 108

stabilized on the thermal Mg atomic
Ramsey fringes is already better than Fig. 5.4: Allan standard deviation of some frequency
the conventional Cs frequency standard standards. Source [Lew 91, Ghe 95, Mal 95]
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and comparable to new Cs fountains. Since both Q and S/N can still be improved for the RBI in

the trap, a further improvement of the stability of Mg frequency standard is expected.

5.3 Frequency accuracy

The evaluation of the frequency accuracy of a spectrometer locked to one of the Ramsey fringes

involves all the effects that shift the position of the fringe. These effects have been intensively

studied [Sen 94, Bet 96]. Some significant effect will be summarized in the following table.

Effect thermal beam RBI Pulsed RBI
residue 1st order Doppler ~300 Hz ~1Hz
shift

2nd order Doppler shift ~300 Hz ~ 10 mHz
phase uncertainty ~ 300 Hz <1mHz
quadr. Zeeman-effect <<'1 Hz (for B<ImG) << 1Hz

(~1.64Hz/G?)

Stark shift (0.3 Hz (V/cm)? | << 1Hz <<1Hz
earth rotation << 1Hz <<1Hz
gravitational effect ~10Hz ~1Hz

More attention should be directed towards the 2nd order Zeeman effect. Since no large efforts
has been done to reduce the stray magnetic field from the Zeeman magnet, there is still a 14 G
bias magnetic field during the spectroscopy in this work. This results in a frequency shift of
about 400 Hz (1.64Hz/G?. With a more carful shielding or other trap configuration (chirp
cooling or the trap configuration developed by PTB) the stray magnetic should not be a problem.
The other effect which was underestimated before, is the frequency pulling due to the neighbor
recoil component. As mentioned in section 3.2 it is not easy to experimentally get the optimum
effective pulse separation T, since it also depends on the Rabi frequency and the pulse width. T,
can vary from T+ T to T+41/n for Q t changing from Q t<<1 to Q t= 7/2. The adjustment of
T and t according to the Ramsey fringe amplitude to reach the optimum value of T, will not be
more exact than 0.1 ps since the fringe amplitude is not so sensitive to such a change. This

already results in a frequency shift of 8 Hz for T=500 ps. Suppression of one of the recoil
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component is the only way to reach higher accuracy. This is easy to realize as mentioned in
section 3.2. Based on pulsed RBI in the trap with one recoil component suppressed an accuracy

of 2:10"° can be obtained.

91



Chapter 6

Conclusion and Outlook

By the systematic studies, the improvements and measurements discussed in this work the
potential for an optical frequency standard based on the Ramsey-Bordé interferometer with
magnesium atoms could be clearly demonstrate. High resolution Ramsey fringes and a high
stability for measurements on trapped atoms are achieved.

The present resolution is mainly limited by the 457 nm laser spectrometer. Many improvements
are possible at this setup and currently investigated. To be accepted by Bureau International des
Poids et Mesures (BIPM) as an optical frequency standard a simple and long term stable laser
source 1s an important factor. The present dye laser system for 457 nm can be replaced by a
frequency doubled solid state laser. The 457 nm laser can be generated from frequency
doubling the Ti:Saphire laser with a KNbO, crystal kept at temperature of 138°C. The
pumping laser for the Ti:Saphire laser can be a compact commercial frequency doubled
Nd:YAG laser which is pumped by a diode laser. Since KnbO; has a large nonlinear coefficient
of d;,=20 pm/V. High efficient SHG can be achieved. In ideal case a conversion coefficient 1
has a value of 2.7-107 1/W for a crystal length of 1 cm. The real power from SHG will be
limited by the thermal effect, the damage threshold of the crystal and the blue light induced
absorption. Further study will be needed to evaluate the SHG efficiency. Another possible SHG
setup is to use the quasi-phase matching method with LiNbO,. A high conversion efficiency is
also expected. Based on such systems a high stable portable Mg frequency standard can be
realized since all the components can be built very compact. For an optical frequency standard
it is important that the frequency can be compared with the present Cs frequency standard. Such
a frequency chain can be realized by phase-locking different laser systems by means of
nonlinear processes. Schantz et al. have compared the Ca stabilized laser and the Cs clock with
the frequency chain developed at the PTB [Sch 96a]. T.W. Hénsch has also developed a method
for the frequency chain through phase locking of harmonic and sum frequencies [Tel 90].
The present work has developed methods according to which the interferometer in the trap can
be easily operated. This can enhance the realization of further experiments on the trap. The
Zeeman 2nd order effect can be precisely measured by varying the magnetic field strength of

the bias magnetic field at the spectroscopy time. The influence of collisions between trapped
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atoms can also be studied by varying the density of the trapped atoms or by proper selection of
the spectroscopic starting time after turning off the trapping laser since different densities can be
reached during the expansion of the atomic cloud. From the observed fringe contrast and the
phase difference of the signals the collision properties like the real and imaginary part of the
scattering amplitude can be deduced.

It is also easy to realize gedanken experiments like the Heisenberg microscope using the time
domain Ramsey-Bordé interferometer in the trap. Between the 2nd and 3rd Ramsey pulse both
paths of the interferometer are in the ground states. By radiating a resonant 285 nm laser pulse
during this time interval the variation of the fringe contrast due to single photon scattering can
be detected. The dependence of the fringe contrast on the distance between the two paths of the
interferometer can be measured by changing the pulse separation between 1st (3rd) and 2nd
(4th) Ramsey pulse. The pulse width and power of the 285 nm laser can be properly chosen
such that the atom scatters in most cases only a single photon. Other influences like the
polarization of the radiating photons is also an interesting effect. The realization of these
experiments, which can be seen in near future [Hin 98] should open more opportunities to study
fundamental quantum mechanical issues like EPR paradox [Ein 35] and GHZ states [Gre 90].
Until now the interference phenomena studied are only one atom interferences since the density
is still much too low that there is only one atom at a time within a single coherence length. The
uncertainty of which way the atom passes the interferometer will result in a quantum limit to the
particle-number fluctuations at the outports of the interferometer. This quantum-noise limit will
limit the sensitivity of the matter-wave interferometer. At high phase densities the coherences
between atoms will influence the quantum-noise limit. The statistical dependent contribution of
the coherences are different for the different atoms and the use of fermionic atoms will tend to
lower the quantum-noise limit [Scu 93]. Magnesium has both fermionic (*Mg) and bosonic
(**Mg, *Mg) isotopes. The extension of the present work towards high phase space density for
the varies Mg isotope is an extremely interesting field to exploit these quantum-noise limits.

To enhance the phase space density the Mg atoms should be further cooled. Besides the cooling
methods suggested in [Rus 98] here another possible cooling method for Mg or other alkali
earth atoms is suggested. It is based on forced evaporative cooling in a far-off resonance trap
(FORT). By appropriate selecting the FORT laser it is possible to build an attractive potential

for the ground 'S, state and a repulsive potential for the excited °P, state. For Mg this case can
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be achieved using the Ar-ion laser 514 nm line as a FORT laser. By focusing a laser beam with
power of 5 W to a waist of 5 pm the trap potential for the ground state is U,=5 mK and the
maximum repulsive potential for the excited state is U ,=72 mK. The repulsive potential can
produce an acceleration larger than 1-10° m/s” for r<5 um, where r is the distance away from the
FORT center. Once the atoms are excited they will never be trapped since the life time of the
excited state is long enough for the atoms to be pushed away from the trap. When the laser
linewidth is narrow enough only a small velocity range of atoms can be excited due to the
narrow intercombination transition. Similar to the RF-induced evaporative cooling in the
realization of BEC, a forced evaporative cooling can be realized in the FORT when the hot
atoms are selectively excited. The scale of s-wave scattering length plays an important role in
the evaporative cooling. Both using external magnetic field [Moe 95] and near resonant light
fields [Fed 96 ] have been suggested to modify the scattering length. For Mg the near resonant
light field method can be used to modify the scattering length. Using the two photon associative
spectroscopy to detect the position of the last bound state [Abr 95] can be used to on line
monitor the effect of the external light field since the scattering length is sensitive to the position
of the last bound state.

Besides the cooling effect the heating effect coming from the FORT laser should also be
considered. With the above mentioned parameter the photon scattering rate resulting from the
off resonant scattering of the FORT laser is 31 photons/s. This will deteriorate the cooling
effect. A method to avoid this is to integrate the above method with a FORT built with the
Nd:YAG laser which is also planned for the Mg project. The Ar* laser intensity can be a factor
of 10 smaller and the potential for the excited state is still repulsive (U,=2mK). The photon
scattering rate can be strongly reduced and the forced evaporative cooling still works. A high

phase density of cold ensembles can be expected.
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