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Abstract

The spin degree of freedom of charge carrier spins and the host’s
nuclear spins in semiconductors are potential sources for the next
generation of spintronics applications which motivate the deliberate
investigation of the spin dynamics of well-controlled model systems
like n-GaAs. Conduction electron spins are mobile in semiconduc-
tors and can be initialized, manipulated, and read out optically.
Optical pumping with circularly polarized light can for example
create a non-equilibrium electron spin polarization close to 100%.
Nuclear spins are practically appealing as well due to their very long
spin relaxation times. The mutual interaction between the electron
and nuclear spin system is mediated via the hyperfine interaction.
Indeed, through this interaction, a non-equilibrium spin polariza-
tion of electrons is transferred to the nuclear spins and results in
dynamic nuclear polarization, which inter alia has an intricate de-
pendence on the doping density. The main objectives of this thesis
are measuring most accurately (i) the temperature dependence of
the electron spin relaxation rate and (ii) the magnetic field, doping,
and temperature dependence of the nuclear spin relaxation rate in
a set of high quality n-GaAs samples from quasi-insulating over the
metal-to-insulator transition up to the quasimetallic regime.

The temperature dependence of the electron spin relaxation time
is measured very accurately for three of the above-mentioned sam-
ples with the optical Hanle depolarization method. The measure-
ments yield, in combination with a theoretical model, a quantitative
insight into the efficiency of the different spin relaxation mecha-
nisms. The longest electron spin relaxation time in n-GaAs results
from an interplay of variable range hopping and hyperfine inter-
action for a doping concentration just below the Mott metal-to-
insulator transition at a finite temperature of ∼ 7 K. At higher
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doping densities the effect of these two mechanisms decreases such
that they are negligible in the highest doped sample. For moderate
and high temperatures, the description of the electron spin relax-
ation becomes unpretentious since the Dyakonov-Perel mechanism
dominates over all other electron spin relaxation mechanisms.

The Overhauser field from nuclear polarization intensifies or weak-
ens the external magnetic field and affects the electron spin orienta-
tion. In order to measure the nuclear spin relaxation, a three-stage
time-resolved detection of the Hanle effect is used. The method in-
cludes optical pumping and measuring the difference of the nuclear
spin polarization before and after a dark (no laser light) interval
of variable length. In this way, the nuclear spin system in the ab-
sence of excitation is investigated. The magnetic field dependence
of the nuclear spin relaxation rate has a typical Lorentzian shape,
showing the spin-spin interaction’s impact at lower magnetic fields.
The strong field doping dependence of the nuclear spin relaxation
rate can be explained quantitatively, considering the effective num-
ber of localized electrons over the entire density regime. Nuclear
spin diffusion to the donor bound electrons increases the relaxation
rate of the nuclear spin measured at 6.5 K and results in a distinct
maximum at the metal-to-insulator transition. The rate in the very
high doped sample increases due to the Korringa mechanism. The
involved mechanisms explain the trend of the relaxation except for
the very low doped sample. The temperature dependence of the
lowest doped sample shows an electron spin relaxation channel af-
fecting the nuclear spin relaxation, which is negligible at high doping
densities.

Key words: gallium arsenide, electron spin relaxation, nuclear
spin relaxation, spin dynamics
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List of Abbreviations,
Symbols, and Constants

Abbreviations

DDI Dipole-Dipole Interaction

DNP Dynamic Nuclear Polarization

DP Dyakonov-Perel

ESR Electron Spin Relaxation
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FD Fermi-Dirac

GaAs Gallium Arsenide

Hanle Hanle Method

HFI Hyperfine Interaction

HWHM Half Width at Half Maximum

KF Knight Field

LP linear polarizer

MIT Metal-to-Insulator Transition

NMR Nuclear Magnetic Resonance

NSR Nuclear Spin Relaxation
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OF Overhauser Field

PEM Photoelastic Modulator

PL Photoluminescence

QPI Quadrupole Interaction

Si Silicon

SOI Spin Orbit Interaction

VRH Variable Range Hopping

Symbols

τc correlation time

θD Debye temperature

γD Dresselhaus constant

nd doping density

m∗e effective electron mass

ωe electron Larmor frequency

ge electron g-factor

τ−1
s,DP electron spin relaxation due to Dyakonov-Perel mechanism

τ−1
s,HFI electron spin relaxation due to hyperfine interaction

τ−1
s,VRH electron spin relaxation due to variable range hopping

τs electron spin relaxation time

Eg energy gap

Bext external magnetic field
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ζ Fermi-Boltzmann factor

fFD Fermi-Dirac distribution

EF Fermi energy

γe gyromagnetic ratio of electron

γn gyromagnetic ratio of nuclear

nH charge carrier concentration determined from the Hall resis-
tance

AHF hyperfine coupling constant

Be Knight field

ωL Larmor frequency

a lattice constant

BL local field

fMB Maxwell-Boltzmann distribution

τp momentum relaxation time

ωn nuclear Larmor frequency

BN nuclear magnetic field

Dav nuclear spin diffusion coefficient

gn nuclear g-factor

ΓESR nuclear spin relaxation rate due to electron spin relaxation

ΓK nuclear spin relaxation rate due to Korringa mechanism

ΓP nuclear spin relaxation rate due to phonon interaction

ΓD nuclear spin relaxation rate due to spin diffusion
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ΓZ nuclear spin relaxation rate due to Zeeman interaction

θN nuclear spin temperature

Ropt optimal hopping distance

γ3 proportionality factor between τc and τp

ξ the ratio of Γss and ΓZ

εr relative permittivity

Dhop specific diffusion constant

T1 spin relaxation time

T2 spin dephasing time

Γss spin-spin relaxation rate

T temperature

Constants

µB Bohr magneton, 9.274 009 994× 10−24 J T−1

aB Bohr radius, 5.291 772 109 03(80)× 10−11 m

kB Boltzmann constant, 1.380 648 52× 10−23 J K−1

me electron mass, 9.109 389 7× 10−31 kg

e elementary charge, 1.602 176 62× 10−19 C

µN nuclear magneton, 5.050 783 699(31)× 10−27 J T−1

h Planck constant, 6.626 070 040× 10−34 J s

~ reduced Planck constant, 1.054 571 800× 10−34 J s

mp proton mass, 1.672 623 1× 10−27 kg

µ0 vacuum permeability, 4π × 10−7 H/m

ε0 vacuum permittivity, 8.854 187 812 8(13)× 10−12 F/m
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1. Introduction & Motivation

Since the use of transistors in the 1940s, semiconductor components
have been of great importance in electronic devices. The develop-
ment of integrated circuits led to the development of computers
based on solid-state circuits at a rapid rate. This advancement has
improved the way of storing, accessing, and processing data. Simula-
tion and computer modeling facilitate the calculation of analytically
intractable problems.

In 1965 the co-founder and chairman of Intel Corporation, Gordon
Moore, wrote an article for the Electronics Magazine. He posited
that the number of components of integrated circuits (including
transistors, resistors, diodes, and capacitors) double roughly ev-
ery year. Later, he revised his prediction to a doubling every 18
months [1]. Since then, Moore’s law has remained valid. However,
nowadays semiconductor technology progress faces fundamental ob-
stacles. Technology approaches the limits of miniaturization and
the performance of traditional transistors. Thus, new ways of pro-
cessing information are required.

Spintronics serves as a promising candidate to solve this prob-
lem by taking advantage of the electron spin instead of the electron
charge [2, 3]. Spin-based devices operate in principle faster than
charge-based ones. Moreover, spins can be polarized by different
methods like optical orientation, spin injection, and also applying
a magnetic field. The heat dissipation problem in charge-based in-
tegrated circuits is less significant in spin-based ones. Thus, trying
to solve the problem of putting more components into one circuit is
accompanied by building new devices with lower energy consump-
tion and dissipation. Beyond these applications based on traditional
bits, spins offer an ideal two-level system for more advanced com-
puter generations: quantum computers. Instead of binary logic, the

13



1. Introduction & Motivation

coherent superposition of the quantum mechanical states gives new
opportunities to serve as quantum bits, the so-called qubits [4].

All of these advances in solid-state-based devices have been pretty
established over the years by a series of ongoing profound and broader
studies in some conventional semiconductors like silicon (Si) [5] and
gallium arsenide (GaAs) [6]. The indirect bandgap is a big challenge
in the optical applications of Si. GaAs is another option for these
components. The direct bandgap of GaAs brings about efficiency in
absorbing and emitting light and better optical performance, like in
light-emitting diodes, lasers, and detectors [6]. Furthermore, most
optical, electronic, and physical properties of GaAs are well stud-
ied in the literature. As a matter of concern, the spin dynamics
in GaAs has been a main topic of research for over half a century
and different experimental methods have been applied along the
way [7–9], but there are still several open questions on electron and
nuclear spin relaxation. In this dissertation, the spin dynamics of
electron and nuclear spins in n-GaAs are investigated for doping
densities from the quasi-insulating over the Mott metal-to-insulator
transition (MIT) up to the quasimetallic regime. In order to explain
the measurement results quantitatively, some of the parameters from
auxiliary transport measurement on the same samples [10] are used.

Optical orientation, a process in which optical excitation with
circularly polarized light excites spin polarized carriers, was first
explained theoretically [11–13] and applied on semiconductors like
Si [14], p-GaSb [15], p-AlGaAs [16], and p-GaAs [17]. Later, the
experiments were done on n-type semiconductors by measuring the
depolarization of the photoluminescence (PL) in a transverse mag-
netic field [12, 16, 18, 19]. This method known as Hanle effect was
applied to measure the electron spin lifetime [19–21]. Other opti-
cal methods to measure the electron spin lifetime are for example
Faraday rotation (FR) [22,23] and spin noise spectroscopy [24]. The
effect of parameters such as doping and temperature on the electron
spin relaxation (ESR) is in any semiconductor system of particular
importance. In 2002, Dzhioev et al. measured the ESR rate on a
range of doping densities in n-GaAs from nd = 1× 1014 cm−3 to
nd = 5× 1017 cm−3 [25,26] at low temperature. The measured dop-
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ing dependency of the ESR rate shows a minimum close to the MIT
and implies different dominant spin relaxation mechanisms in differ-
ent doping regimes. To clarify the involved relaxation mechanisms of
ESR at the MIT, recently a series of optical and magneto-transport
measurements have been performed on a wide range of n-GaAs by
Lonnemann et al. [27]. The result provides at one single temper-
ature a complete quantitative explanation of the involved scatter-
ing processes, which agrees with the experimentally measured ESR
rate. To better understand the longest relaxation time in this set
of samples, the temperature dependence of three of these samples
is measured in this thesis. The result shows that the ESR rate in
the sample below the MIT has a more pronounced temperature de-
pendence in the whole measured temperature range. The interplay
of the hyperfine interaction (HFI) and the variable range hopping
(VRH) in this sample results in the lowest ever measured ESR rate
in n-GaAs structures. The effect of the HFI and the VRH decreases
above the MIT as the doping density increases, such that there is no
significant effect of these two mechanisms at any temperature in the
highest doped sample. At high temperatures, the Dyakonov-Perel
(DP) mechanism dominates in all three samples as expected.

In addition to the electron spin system, the lattice nuclei pos-
sess spin angular momentum with weak coupling to the environ-
ment, emphasizing their potential importance for information stor-
age. The coupling between electron and nuclear spin systems via
HFI results in dynamic nuclear polarization (DNP) [28–32] which
was first suggested by Overhauser in 1953 [33]. In this process,
the lattice nuclei polarize via the interaction with the optically ori-
ented electrons. Lampel was the first to observe the effect of the
DNP on n-Si with nuclear magnetic resonance (NMR) [14]. Using
luminescence depolarization of the electron spin system via Hanle
effect, Paget et al. [34] measured the effect of small external mag-
netic field on the electron-nuclear spin coupling in p-GaAs. Later,
they studied the relaxation of nuclei close to shallow donors via
NMR [35]. The effect of delocalized electrons on the nuclear po-
larization was for example highlighted by Kikkawa et al. [22]. The
effect of external factors on the NSR was also investigated. The dop-
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1. Introduction & Motivation

ing dependence of the nuclear polarization via NMR was observed in
n-GaAs [36, 37]. The linear dependency of the NSR rate with tem-
perature was attributed to the Korringa mechanism [36,38] which is
not valid anymore for very low temperatures in n-GaAs [39]. In all
of the proposed methods to measure the NSR including NMR, trans-
port, and optical measurements, the presence of the spin-polarized
electrons provide feedback that may change the behavior of the nu-
clear spins. Applying a three-stage time-resolved technique to mea-
sure the NSR rate in the absence of nonequilibrium electron spins
solves this problem [40–47]. In this method, the nuclei are polar-
ized in the presence of polarized electrons in the first bright stage.
A dark section follows where the NSR happens without optical ex-
citation, and the remaining nuclear spin polarization is measured
in a subsequent bright stage. This method - as a non-destructive
detection - is used in this thesis to measure the NSR rate in a set
of n-GaAs samples. The rate measured at 6.5 K increases in the
quasi-insulating regime with doping density due to nuclear spin dif-
fusion to the donor electrons and shows a distinct maximum at the
critical density of the MIT. The density dependence of the NSR
rate can be quantitatively calculated over the whole density regime
taking into account the effective number of localized electrons and
the interaction of free electrons via the Korringa mechanism. Only
the NSR rate of the very lowest doped sample shows a significant
deviation from these calculations.

This thesis is organized as follows: Chapter 2 outlines the electron-
nuclear spin system as an interconnected system. Both systems and
the underlying physical features are separately explained in this
chapter. The details of the experimental setup to create, manip-
ulate, and detect the spin polarization are presented in chapter 3.
For measuring the ESR, the Hanle method with no nuclear spin
involvement is used. In the presence of nuclear spin polarization,
a shift of the Hanle curve occurs, named as “oblique Hanle” in
this thesis. Both Hanle and oblique Hanle are explained in chap-
ter 3. The procedures for measuring both the ESR and the NSR
are also completely described in this chapter. Chapter 4 presents
the measurement results with the corresponding theoretical analy-
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sis regarding the ESR and the NSR in two parts. In part I, the
temperature-dependence of the ESR and the involved spin relax-
ation mechanisms including DP, VRH, and HFI are explained. The
results for the NSR are provided in part II. Magnetic field depen-
dence of the NSR is explained in section 4.8. The doping depen-
dence of the NSR for the strong field range is discussed in section 4.9
along with the involved mechanisms. The temperature-dependence
of the NSR for the lowest doped sample suggests, in this case, an
additional NSR channel linked to the ESR rate, explained in sec-
tion 4.10. Finally, chapter 5 summarizes this work and points out
possible future measurements.
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2. Fundamental Concepts

The electron and the lattice nuclei of GaAs have spin angular mo-
mentum and interact with each other. The coupling of the electron
spin system with the nuclear spin system leads to different phenom-
ena. This chapter provides theoretical background on the phenom-
ena related to these systems. Section 2.1 gives a short overview
of the general mutual interaction between the electron and the nu-
clear spin system. The nuclear spin system in GaAs is explained in
detail in section 2.2. This section includes in particular two main
interactions among nuclei, namely, dipole-dipole interaction (DDI)
and quadrupole interaction (QPI). An explanation of the concept
of the local field BL, the spin temperature θN , and the Zeeman
effect are provided as well. Section 2.3 explains the hyperfine in-
teraction (HFI) by coupling between electron and nuclear spins. In
this section, the induced Knight field (KF) from electron spins and
the Overhauser field (OF) from nuclear spins as the static part of
the HFI are summarized. The dynamic nuclear polarization (DNP)
is discussed extensively in the last section of this chapter.

2.1. Electron-Nuclear Spin System

In a direct bandgap semiconductor, the generation of electron-hole
pairs via absorbing photons is very efficient. Therefore, the interac-
tion of circularly polarized light with a direct bandgap III-V semi-
conductor formed in a zinc blende crystal structure like GaAs is of
great importance. In this process, the electron excitation into the
conduction band is accompanied by leaving behind a hole in the va-
lence band. Considering the momentum conservation, the angular
momentum of the absorbed photon equals the change of the total
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2. Fundamental Concepts

optical orientation
with polarized light

polarized luminescence

nuclear
 spin

Overhauser field (OF) 

Knight field (KF)

electron
spin

hyperfine 
interaction

Figure 2.1.: Schematic illustration of the electron-nuclear spin sys-
tem, optical orientation process, and transfer of spin from polarized
electrons to nuclei via HFI. The fields experienced by the electron
and nuclear spins via their counterpart, OF and KF, are also shown.
The blue arrows indicate the spin in each group. The wiggly red
arrows depict the incoming light and the polarized luminescence.

angular momentum of the electron and hole. The distribution of the
spin angular momentum among them is based on the optical selec-
tion rules. With this interband absorption of light, a nonequilibrium
electron spin system can be created. Afterwards, the spin angular
momentum of this electron spin polarization can be transferred to
the nuclei via HFI, and a nuclear polarization arises. Figure 2.1
demonstrates the coupled electron-nuclear spin system and the in-
teraction processes among them.

The underlying mutual interaction among the systems, the HFI,
plays an essential role in spin polarization and spin relaxation in
bulk semiconductors and semiconductor nanostructures. The nu-
clear spins, polarized by the electron spin, act back via an effective
magnetic field, known as Overhauser field (OF), and change the
electron spin precession. The nuclear polarization depends on the
electron spin polarization, which itself depends on the external field.
Investigating the degree of the circular polarization of the PL from
the electron-hole recombination provides information about this mu-
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2.2. Nuclear Spin System in GaAs

tual interaction.

2.2. Nuclear Spin System in GaAs

A nucleus with integer spin results from an even number of nucleons,
while an odd number of nucleons yields a half-integer spin nucleus.
All stable isotopes of GaAs (71Ga, 69Ga, 75As) have spin 3/2. The
relevant properties are summarized in Tab. 2.1 together with their
natural abundances. Figure 2.2 schematically depicts the isotopes
in GaAs with their possible spin orientations as small gray arrows.
The spin of the donor-bound electrons is illustrated by thick black
arrows and the electron wave function unscaled as shaded areas.
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Figure 2.2.: An illustration of different isotopes in GaAs, including
71Ga, 69Ga, and 75As. Their nonzero spins are depicted by tiny gray
arrows. The shaded areas show the wavefunction of the donor bound
electron with thick black arrows representing their spins. The red
wiggly arrow shows the incoming photon interacting with electrons.
Note, that the electron wavefunction is smeared over ≈ 105 nuclei
and not shown to scale.
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2. Fundamental Concepts

In quantum mechanics, the quantized angular momentum L based
on the spin dimensionless operator I is defined as L = ~I and acts as
vector operator on the nucleus’ spin state. Here, the total angular
momentum operator, I2, and the projection in the direction of the
z quantization (Iz) can be measured simultaneously. In general,

I2 |ψ〉 = ~2I(I + 1) |ψ〉 , (2.1)

Iz |ψ〉 = mz~ |ψ〉 ; mz = −I, ..., I.

As the size of the nucleus is much smaller than the lattice con-
stant and the de-Broglie wavelength of the electrons, the nucleus
can be considered as point-like with a magnetic dipole moment
µ associated to the spin angular momentum as µ = γn~I. Here,
γn =

egn
2mp

=
gnµN
~ is the nuclear gyromagnetic ratio given in

Tab. 2.1 for all of the isotopes of GaAs. The nuclear magneton

µN = e~
2mp

= 5.05× 10−27 J/T is much smaller than the electron

magnetic moment µB = 9.3× 10−24 J/T due to the large mass of
nuclei1 [48]. Consequently, even in relatively high magnetic field, the
polarization of nuclei is typically negligible and polarization takes
place via HFI with electrons. At the same time, only the nuclear
spin system is isolated from the lattice making it a good candidate
for recording information for long times. The energy of the nuclear
spin system in an external magnetic field is small but relevant for
spin dephasing and consists of two parts. One part is related to the
spin-spin interaction including DDI and QPI for small fields and
the second one is the Zeeman energy in case of high fields. Both are
explained in detail in the following sections.

2.2.1. Dipole-Dipole Interaction

The magnetic-type nuclear spin interactions between neighboring
nuclear magnetic moments are characterized by the DDI. Consid-
ering two neighboring nuclei, Fig. 2.3 (a), the energy interaction

1me
mp

= 5.05 × 10−4
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2.2. Nuclear Spin System in GaAs

Physical quantity 69Ga 71Ga 75As

spin quantum number I 3/2 3/2 3/2
natural abundance % 60.108 39.892 100
γn ~
µB (×10−3) 0.732 0.930 0.523

magnetic moment (µI/µN ) 2.016 59 2.562 266 1.439 475
quadrupole moment Q (barn) 0.171 0.107 0.314
hyperfine constant AHF (µeV) 38 49 46
nuclear field bN (T ) −1.37 −1.17 −2.76
electronic density η (×103) 2.7 2.7 4.5

Table 2.1.: Summary of the main physical quantities and their values
for the isotopes of GaAs including two gallium isotopes 69Ga and
71Ga and the arsenic isotope 75As [34,49,50].

from spin 2 with magnetic moment µ2 = γ2~I2 on spin 1 with
µ1 = γ1~I1 apart from each other with distance2 r12 is described
by the Hamiltonian:

HDDI = −µ2 ·H12 (2.2)

= − µ0

4πr3
12

µ2 · [
3

r2
12

r12(µ1 · r12)− µ1]

= −µ1 ·H21,

where µ0 is the vacuum permeability and H12 (H21) is the magnetic
field from spin 2 (1) experienced by spin 1 (2), respectively. This
interaction depends on the distance of the two spins r12, the mag-
nitude of the magnetic moments, and their orientation to r12 [51].

2.2.2. Local Field and Spin Temperature Concept

The field that each nucleus experiences from its adjacent nuclei is
denoted as the local field (BL). The spin precession of each spin in

2The distance is in this system large enough such that both dipoles can be
described as point dipoles.
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2. Fundamental Concepts

1

2

r12 +=+ - -

+

+

(a)

(b)

+

Figure 2.3.: Semi-classical picture of the spin-spin interaction. (a)
A magnetic field produced by nuclear spin 2 affects nuclear spin
1. This is shown as hypothetical black curves with green arrows
on top that show the direction of the field. The distance r12 is
a vector joining the centers of the two spins. (b) A spherically
symmetric positive charge together with a region of positive and
negative charge on different poles results in a nonspherical prolate
nucleus where a quadrupole moment exits [52].

this field results in the time T2 which defines the transversal dephas-
ing time within the nuclear spin system. This field differs from one
semiconductor system to another but is usually on the order of a
few mT. The corresponding dephasing time in semiconductors like
GaAs is on the order of (0.1− 1 ms) [31], which is much faster than
the longitudinal relaxation time T1 in the presence of an external
magnetic field. The dephasing time T2 in a structure with a lattice
constant a can be calculated by:

T2 =
1

γnBL
=

~a3

µ2
I

, (2.3)

where ~ is the reduced Plank constant. In case of no effective mag-
netic field B = 0, the average nuclear spin is zero. On the other
hand, when B 6= 0, the average nuclear spin follows:
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2.2. Nuclear Spin System in GaAs

T2

T1

spin

lattice

θN

θL

Figure 2.4.: In a system of nuclear spins (gray arrows) isolated from
the lattice, a quasi equilibrium state characterized by spin temper-
ature θN is reached within the transversal dephasing time T2. Here,
the lattice temperature is denoted with θL. The longitudinal relax-
ation time is T1.

〈I〉 =
I(I + 1)

3

µIB

kBθN
. (2.4)

During the time T2, a thermal equilibrium is established between
the nuclei, which is characterized by a parameter known as spin
temperature, θN [31,53–55]. This temperature can be different from
the lattice temperature θL. Figure 2.4 illustrates the spin and the
lattice temperatures schematically.

In case of B 6= 0, the ratio of population of the spin states sep-
arated by energy ∆E with spin temperature θN is given by the
Boltzmann factor:

NIz

NIz−1
= exp(

∆E

kBθN
), (2.5)

where NIz and NIz−1 are the population of nuclear spin state Iz and
Iz−1, respectively. The spin temperature can be positive or negative
depending on the relative direction of the nuclear polarization and
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Figure 2.5.: Schematic illustration of the nuclear spin temperature
for the positive (left) and negative (right) case. The energy states
of a nucleus with I = 3/2 in an external magnetic field are shown as
black horizontal lines. The splitting between the close energy states
is shown with ∆E = gnµNB, where gn is the nuclear spin g-factor.

the external magnetic field. When the temperature is positive, the
probability of finding an occupied spin state at a higher level is low.
However, when the temperature is negative, higher energy states are
more likely to be occupied. A negative spin temperature is “hotter”
than a positive spin temperature. When a negative-temperature
system comes in contact with a system with a positive temperature,
energy is transferred to the positive temperature system according
to the laws of thermodynamics. Figure 2.5 illustrates positive and
negative nuclear spin temperature schematically.

2.2.3. Quadrupole Interaction

Nuclei can be considered as composite particles, and therefore the
electric quadrupole moment and the QPI is nonzero for I > 1

2 [56].
In this case, the charge distribution within a nucleus is not spherical
any more and a nuclear quadrupole moment is present as illustrated
in Fig. 2.3 (b).

The Hamiltonian responsible for the electronic quadrupole effect
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2.2. Nuclear Spin System in GaAs

HQP can be derived via the Wigner-Eckart theorem [48, 50, 51, 57].
Considering the electric field gradient tensor at the nucleus as Vαβ
and the nuclear quadrupole operator Qαβ as

HQP = ΣαβVαβQαβ , (2.6)

Vαβ = eΣj
∂2

∂rjα∂rjβ

(
1

rj

)
,

Qαβ =
eQ

6I(2I − 1)

[
3

2
(ÎαÎβ + Îβ Îα)− δαβI2

]
,

⇒ HQP = Σαβ
∂2V

∂rα∂rβ

eQ

6I(2I − 1)

[
3

2
(ÎαÎβ + Îβ Îα)− I(I + 1)

]
,

where α and β are three axis directions (x, y, z) and e is the electron
charge. The magnitude of the quadrupole moment Q for GaAs iso-
topes are listed in Tab. 2.1. Interestingly, coupling to phonons due
to QPI affects the nuclear spin relaxation rate at finite temperatures
which is explained extensively in section 4.10.1.

2.2.4. Zeeman Effect

The magnetic moment of the electrons3 (M = geµBS) in solid-state
systems is coupled to the applied external magnetic field B. This
is known as the Zeeman interaction. The Zeeman energy of the
electron spin in B is given by [48]:

Hz = −M ·B = geµBS ·B, (2.7)

where µB is the Bohr magneton and ge is the electron g-factor. The
splitting of the levels in the presence of an external magnetic field
is shown in Fig. 2.6.

The Zeeman energy of a nuclear spin in the presence of B = B0ẑ
is analogous [50]:

Hz = −µ ·B = −γn~B0Iz = −µNgnB0Iz. (2.8)

3S = (σx, σy , σz) where σx,y,z are the Pauli spin matrices.
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B=0 B
S  = +1/2z

E = + gμB

S  = -1/2z

E = - gμB

kx

E

Figure 2.6.: (left) In the absence of a magnetic field, B = 0, the con-
duction band energy levels are degenerate. By applying a magnetic
field, the optical spectral lines are splitted due to the two different
spin orientations. The orientation of the spins of each energy state
is illustrated by blue and red arrows. (right) The Zeeman effect
results in the splitting of the energy E dispersion in the momentum
(k)-space.

Nuclear Zeeman splitting is usually negligible, such that only the
electron Zeeman splitting plays a crucial role in the spin flip-flop
process from HFI [52].

2.3. Hyperfine Coupling of Electron-Nuclear
Spin System

The electron spin S is connected to the nuclear spin I via the mag-
netic interaction known as HFI and plays a key role in the combined
electron-nuclear spin system [31]. The Hamiltonian that describes
this interaction is:
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2.3. Hyperfine Coupling of Electron-Nuclear Spin System

HHFI =
µ0

4π
γeγn~2

[
8π

3
δ(rI)(I · S) +

3(I · r)(S · r)

r5
− I · S

r3

]
.

(2.9)

Here, µ0 is the vacuum permeability, and γe and γn are the electron4

and nuclear gyromagnetic ratios, respectively. Furthermore, δ(rI) =
|ψ(0)|2 is the electron probability density at the position of the
nucleus. For s-type orbitals, like conduction band electrons bound
to shallow donors, the first term of Eq. 2.9 yields the strongest
interaction. The dipolar interaction between electron and nucleus
is described by the two other terms.

Considering just the first term and taking the average of the or-
bital coordinates, one can rewrite Eq. 2.9:

HHFI = AHF

[
IzSz +

1

2
(I+S− + I−S+)

]
. (2.10)

The hyperfine coupling constants, AHF =
µ0
4π

8π
3 γeγn~

2|ψ(0)|2 have
a value of around 100µeV for GaAs, and are summarized in Tab. 2.1
for the three stable GaAs isotopes. The nuclear and electron spin
raising and lowering operators are written as I± = Ix±iIy and S± =
Sx±iSy where x, y, z are the three axis directions. Interestingly, the
large value of AHF in GaAs compared to other semiconductors like
Si shows the considerable importance of HFI in GaAs. Generally,
the effects from HFI can be divided into two groups: static and
dynamic effects, which are addressed in the following.

2.3.1. Static Effect: Knight Field & Overhauser Field

In general, the static part of HFI related to the first term of Eq. 2.10
is connected to the fields experienced by electrons and nuclei due to
their polarization. The magnetic field from polarized electrons on
nuclei, KF, was first observed in 1949 by Knight as a shift of the

4γe =
g0µB
~ ; the free electron g-factor is g0 = 2.0023.
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2. Fundamental Concepts

expected NMR frequency in metals [28]. If the electrons are free,
this field is weak, otherwise, the magnetic field felt by a nucleus
from localized electrons in a lattice with unit cell volume v0 is [48]:

Be = −16π

3
µ0neη

2 = beS, (2.11)

where ne is the electron concentration and η is the electronic density
at the nucleus5. This field changes when an electron comes (goes)
to (from) the localization center.

An electron localized at a shallow donor interacts with almost
105 nuclei within its Bohr radius aB . Consequently, the net internal
field from the polarized nuclei BN (Overhauser field) changes the
Zeeman energy of the electrons. This field (as the result of HFI over
all nuclei) is proportional to the nuclear polarization [31]:

BN = Σ3
α=1

16πN

3ge
µN,αη

2 〈Iα〉 , (2.12)

= ΣαbN,α
〈Iα〉
I
.

Here, the sum is taken over all three isotopes, 〈Iα〉 is the mean spin
of the nuclei, and N is the number of nuclei. Each species of nuclei
has a field6 bN and its sign is defined by ge which is negative in
GaAs. The related values for bN and η of different GaAs isotopes
are listed in Tab. 2.1. If in GaAs all nuclei are polarized, the total
average nuclear field amounts to several Tesla [34].

2.3.2. Dynamic Nuclear Polarization

Based on the second term in Eq. 2.10, including raising and low-
ering operators, there is a flip-flop interaction between the electron
and the nuclear spin system. In this process, the total spin and the
total energy are both conserved and leads to phenomena like DNP

5In the case of homogeneity, η = 1.
6bN = 0.1 mT for homogeneous electronic densities.
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2.3. Hyperfine Coupling of Electron-Nuclear Spin System

and NSR. This happens when the system is out of thermodynamic
equilibrium. In this situation, electrons with higher energy do a
flip-flop transition and transfer their energy to nuclei within their
neighborhood. Therefore, DNP is the process of transferring angular
momentum from electrons to nuclei via HFI resulting from any de-
viation in the electron spin system. This process was first proposed
by Overhauser [33] and was the first method to measure the change
of nuclear frequency due to the nonequilibrium electrons. Later,
DNP as a result of photoelectrons was observed by Lampel [14] for
29Si.
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3. Experimental Procedure

In this work, the Hanle method is used to measure both electron
and nuclear spin relaxation times. In section 3.1 of this chapter,
the structure of the GaAs samples used in the experiments of this
thesis is explained. In section 3.2, a summary of the Hanle method
including the experimental setup and the procedure for measuring
the ESR rate is provided. Section 3.3 is devoted to the oblique
Hanle technique where the effect of the nuclear spin polarization on
the electron spin polarization is also considered. The details of the
setup and the procedure of the experiments to measure the NSR
rate are explained as well.

3.1. Samples

All measurements are performed on specially designed GaAs sam-
ples with varying doping concentrations grown by molecular beam
epitaxy. The thickness of the relevant GaAs epilayer is about 2
µm enclosed by specially adapted n-doped top and bottom capping
layers in order to reduce the surface and interface effects from the
depletion zone at the edge of the sample. In App. A, a detailed
description of the sample structure is provided. In these samples,
Si donors located at the position of Ga lattice sites are the most
abundant impurities yielding n-doped GaAs. The doping regime
covers the whole regime from strongly localized carriers up to the
fully degenerate case. The nominal doping densities ranging from
nd = 1.2× 1015 cm−3 to nd = 1.03× 1017 cm−3 are summarized in
Tab. 3.1. These doping density values are determined from elec-
trical transport measurements from Ref. [27]. Detailed parameters
from the transport measurement of the same samples are accurately
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3. Experimental Procedure

Sample S1 S3 S4
nd
(
1016cm−3

)
0.120(3) 0.658(9) 0.895(6)

Sample S5 S6 S7
nd
(
1016cm−3

)
1.732(7) 1.65(6) 4.02(9)

Sample S8 S9 S10

nd
(
1016cm−3

)
6.02(8) 8.20(5) 10.31(5)

Table 3.1.: Experimentally determined doping densities
nd
(
1016cm−3

)
for the investigated GaAs samples (see Ref. [27] for

further details on the equally named samples and the respective
parameters from the temperature dependent Hall measurements).

described in Refs. [10, 27]. Several of these parameters are used in
this thesis to explain the results quantitatively (see chapter 4).

3.2. Hanle Effect

The depolarization of the PL in an external transverse magnetic field
(Bext) - known as the Hanle effect - was first described by Wilhelm
Hanle in 1924 [20] in the fluorescence of gases and later was applied
in optical orientation experiments of semiconductors by Parson [15].
Here, partially spin-polarized electrons in the conduction band and
holes in the valence band are generated via the absorption of circu-
larly polarized light based upon angular momentum conservation.
In bulk materials, the holes typically lose their spin orientation quasi
immediately [6]. As a consequence, the projection of the electron
spin average onto the direction of the excitation light beam, Sz, is
proportional to the measured circular PL, ρ.

A transverse magnetic field Bext applies a torque to such a spin
polarized system. The spin rotates around Bext with the Larmor
precession frequency ωL =

geµBBext

~ [31, 58]. As a result of this
precession, polarization of the time averaged PL decreases as Bext

increases. Additional information on the calculations of the Hanle
signal is described in App. B.
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3.2. Hanle Effect

Figure 3.1.: The black squares depict a typical Hanle curve mea-
sured with 50 kHz modulation of the excitation polarization, i.e.,
without relevant optical pumping of the nuclear spin system, and
the solid red line is the corresponding Lorentzian fit. The green
triangles depict, in contrast, the measured Hanle curve for exci-
tation with right circularly polarized light where dynamic nuclear
spin pumping changes the shape of the Hanle curve drastically. Both
Hanle curves are normalized to their respective maxima. The mea-
surements are performed at 6.5 K for sample S7.
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3. Experimental Procedure

The black squares in Fig. 3.1 show a measured continuous-wave
(CW) Hanle depolarization curve for sample S7. The spin’s pro-
jection onto the observation direction clearly decreases as Bext in-
creases and can be described very accurately by the Lorentz curve:

ρ(B) =
ρ0

1 + (ωLTs)
2 . (3.1)

Here, ρ0 is the Hanle polarization signal at zero magnetic field. The
solid red line in Fig. 3.1 shows a Lorentzian fit to the measured
black squares according to Eq. 3.1. The electron spin lifetime Ts
can be determined by the half-width at half maximum (HWHM) of
the Lorentzian curve.

3.2.1. Relaxation Time Measured by the Hanle
Effect

In general, the interaction of the magnetic moment µ with a mag-
netic field B applies a torque τ on the system and changes the
angular momentum L of the system:

τ =
dL

dt
= M×B, (3.2)

where the total magnetic moment of the sample is known as mag-

netization M = γL with γ =
gµB
~

as the gyromagnetic ratio. The

dynamics of the magnetization in a magnetic field was first calcu-
lated by Felix Bloch [59] in a set of equations called Bloch equations.
Considering three components of the magnetization (Mx,My,Mz),
the equilibrium magnetization Mz,0, and a longitudinal magnetic
field Bz, Bloch equations in terms of individual components and
relaxation terms are [6]:

dMx,y

dt
= γ(BzMy,x)− Mx,y

T2
, (3.3)

dMz

dt
=
Mz −Mz,0

T1
.
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φ

θ ψ

B

Figure 3.2.: A representation of the Bloch sphere with θ and ϕ as
polar and azimuthal angles. Any pure state is defined as |ψ〉 =
cos θ2 |↑〉 + eiϕ sin θ

2 |↓〉 based on spin up |↑〉 and down |↓〉. The
magnetic field is along the Z direction.

Here, two decay times T2 and T1 represent the spin-spin and the
spin-lattice relaxations, respectively. As shown in Fig. 3.2, each
electron spin at a specific state on the Bloch sphere has a transverse
component in the XY plane specified by the angle ϕ and a longitudi-
nal component with the angle θ. The transverse component rotates
with the Larmor frequency ωL around B while the longitudinal com-
ponent is constant. The transverse decoherence time T2 indicates
how long individual spins are in phase. In other words, it is the time
that the ensemble of electron spins loses the phase because of fluc-
tuations of the frequencies. The longitudinal decay time T1 is the
spin-lattice relaxation time in solids during which an electron spin
loses energy equal to the Zeeman energy ∆E = (~ωL = γeµBBz)
and relaxes to a ground state. Therefore, after this time, thermo-
dynamic equilibrium is established between the lattice and the spin
system. Indeed, it is also called thermal relaxation. Each factor that
results in T1 can also change the phase coherence and thus results
in the limit T2 ≤ 2T1 [60, 61]. In anisotropic environments, inho-
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3. Experimental Procedure

mogeneities affect the T2 time. In these systems, the value and/or
the direction of the magnetic field changes, and/or different electron
g-factors ge leads to different ωL. Therefore, the Larmor precession
frequency of each spin is different from the other. It implies an inho-
mogeneous spin dephasing time known as T2

∗ which is often smaller
than T2.

An important factor affecting the spin dephasing time is the cor-
relation time τc based on a model defined by Pines and Slichter [60].
During this time, the spin ensemble interacts with the environment
causing a change δω in the precession frequency and a phase change
δφ = δωτc. Based on this model, the T2 dephasing time equals
the time of having 〈∆φ〉 = 1 after n interactions. In this case,
1

T2
= (δω)2τc. When the magnetic field is small γB � 1

τc , the

Zeeman splitting is also small, and the spin dephasing in the sur-
rounding environment is the same in all directions. Accordingly,
measuring in either transversal or longitudinal direction does not
make any difference, and thus T1 = T2.

The Hanle method measures the transverse spin dephasing time
[6, 62, 63]. In the experiments presented in this thesis, the applied
magnetic field is less than 20 mT resulting in a Larmor period which
is almost 70 ns. The correlation time is much smaller τc � 1 ns [10],
such that T1 = T2 holds throughout and is rather denoted by τs. The
inhomogeneity of the g-factors can in principle also play a role [64]
but are too small to influence the Hanle measurements of this thesis
significantly.

3.2.2. Hanle Setup

Figure 3.3 shows the experimental setup for the measurements in
this work using the Hanle-type PL depolarization scheme. The ex-
citation source is a CW laser with an oval-shaped output light mode
which is corrected by an anamorphic prism pair. The wavelength
of the laser is 785 nm corresponding to a photon energy of 1.58 eV.
The excitation intensity is always kept so low that the fraction of the
optically injected carriers remains at least a factor of a hundred be-
low the doping density. In the experiments presented in this thesis,
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Figure 3.3.: Schematic representation of the experimental setup for
measuring the ESR rates in n-type GaAs samples via a Hanle-type
depolarization scheme. (inset): The propagation direction of the
laser at the sample is perpendicular to the external magnetic field
and parallel to the growth direction of the samples.
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the light intensity is as low as 0.2 Wcm−2 at the sample surface. In
this way, there is no significant disturbance of the electron ensemble
from thermal equilibrium. Furthermore, the low energy states are
unpolarized due to Pauli blocking, and no spin polarization is pos-
sible. Consequently, spectrally resolved PL measurements confirm
in a control experiment [10] that this degree of circular polarization
results from carrier recombination at the Fermi energy.

An 800 nm short pass filter ensures that no residual light emission
from the laser diode compromises the PL detection. The intensity
control of the optical excitation is performed by a rotatable half-
wave plate (λ/2) in combination with a linear polarizer (LP). The
LP also guaranties a very well defined linear polarization.

A 50 kHz photoelastic modulator (PEM), set to λ/4 retardance,
alternates the linear polarization of the laser light between left (σ+)
and right (σ−) circularly polarized light. The reason to choose
50 kHz goes back to frequency-dependent measurements of the DNP
[10]. Nuclear polarization is negligible in these Hanle experiments
for modulation frequencies above 2 kHz. Other publications con-
firm the observation e.g., Ref. [65]. In Fig. 3.1, the black squares
correspond to the standard Hanle curve (no nuclear field). In this
situation, the excitation was rapidly modulated between left (σ+)
and right (σ−) circularly polarized light, which efficiently suppresses
the build-up of nuclear spin polarization. The green triangles rep-
resent the depolarization of the electron spins in the oblique Hanle
measurement where a strong BN is induced.

For the experiments performed in this thesis, the samples are
placed in a microcryostat, which can be cooled down to 4 K. Two
pairs of magnetic coils are placed around the cryostat. The first
pair shields in Helmholz configuration the earth’s magnetic field at
the sample position, along the direction of the PL detection. The
second pair consists of electromagnets creating a magnetic field Bext

perpendicular to the direction of the excitation light. The inset of
Fig. 3.3 illustrates the relative orientation of Bext, excitation light,
and PL. The degree of circular polarization of the emitted PL is
detected in reflection geometry by a Si photodetector and a lock-in
amplifier. In this path, the PL is transmitted through a λ/4, a LP
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3.2. Hanle Effect

and a high-quality longpass filter and focused on the photodetector
with a lens. The longpass filter is used to efficiently block laser
reflections.

3.2.3. Experimental Procedure to Measure the ESR
Rate

(a) (b)

Figure 3.4.: (a) Hanle depolarization measurements for different
laser intensities for sample S3 at 5K. (b) Linear dependence of the
HWHM of the Hanle curve on intensity.

The HWHM of the Lorentzian shaped Hanle curve is the most
important parameter derived from a Lorentz fit to the experimental
data. Based on Eq. 3.1, the HWHM is a direct measure of the
effective ESR rate 1

TS
which is the sum over the recombination rate1

1
τr

and the spin relaxation rate 1
τS

[66]:

1

TS
=

1

τS
+

1

τr
. (3.4)

If the condition τs � τr is met, τS and TS are in good approxi-
mation equal. This is possible when the laser intensity approaches

1τr equals the electron lifetime.
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zero. To this end, the width of the Hanle curve is measured at dif-
ferent intensities and the data is extrapolated to zero with a linear
fit. The intercept of the fit is used to determine the ESR rate for
each sample. Figure 3.4 (a) and (b) illustrate an example of the
procedure to measure τS . The width of the Hanle curve has in good
approximation the expected linear dependence on intensity.

3.3. Oblique Hanle

The optical pumping of electrons by circularly polarized light in-
duces a macroscopic nuclear magnetic field (BN 6= 0) according to
the DNP effect which strongly modifies the effective magnetic field
and thereby the shape of the Hanle curve [31]. The effective nu-
clear magnetic field influences the electron spin orientation in the
same way as an external magnetic field, and the footprint of this
nuclear magnetic field is directly imprinted on the ESR rate. In
other words, the nuclear magnetic field impacts the electron spin
dynamics by either enhancing or weakening the external magnetic
field’s effect, i.e., the electron spin rotates around the total effective
magnetic field Bext +BN ,

Ω = (geµB/~) (Bext +BN ) . (3.5)

In the situation where the angle between the exciting light and
the magnetic field differs from 90◦, measuring of the nuclear field
via the Hanle effect becomes easily possible. This Hanle effect in
the oblique field is named as “oblique Hanle” in this thesis. In Fig.
3.5, the respective angle α is schematically illustrated together with
the relative orientation of the laser, external magnetic field, and PL.
The nuclear polarization is in general in the direction of the elec-
tron spin polarization. Selecting a small angle α (≈ 10◦ deviation
from the Voigt axis) gives rise to both transverse and longitudinal
components of the nuclear spins in respect to Bext whereat the lon-
gitudinal component of the nuclear field is directed either parallel
or antiparallel to the external field. This longitudinal component
impacts the depolarization of the electrons in the oblique Hanle
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α

Figure 3.5.: Orientation of the laser, the external magnetic field, and
the PL relative to each other: (a) In the standard Hanle technique,
Bext is perpendicular to the excitation laser light. (b) In the oblique
Hanle technique, a small angle α between the excitation laser and
the magnetic field gives rise to a significant nuclear spin polarization.

experiment [67]. The transverse component precesses around Bext

such that the time-averaged transverse component is zero in the case
of CW excitation, i.e., the transverse nuclear spin component does
not play a role in this experiment.

Figure 3.1 illustrates the result of the oblique Hanle setup as green
triangles together with the result of the standard Hanle setup as
black squares. Both are measured by slowly sweeping the amplitude
of the external magnetic field and measuring at the same time the
degree of PL polarization.

3.3.1. Changes to Hanle Setup to Measure the NSR
Rate

In order to measure the nuclear spin’s effect, some changes are ap-
plied to the Hanle setup in Fig. 3.3.

• The positions of the PEM and the λ/4 plate are exchanged.
In this way, the polarization of the laser light is kept fixed, and
an efficient build-up of nuclear spin polarization is possible.
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• The sample inside the cryostat is rotated by about 10◦ in order
to enable both nuclear spin polarization and the detection of
the nuclear polarization via the Hanle effect in a nearly Voigt
geometry setup.

• A computer controlled shutter switches the laser excitation
after DNP off, in order to study the evaluation of the nuclear
spin dynamics while no electrons and holes are excited.

In this situation, the detection path includes: a 50 kHz PEM,
a linear polarizer, an 800 nm longpass filter, a photodiode, and a
lock-in amplifier.

3.3.2. Experimental Procedure to Measure the NSR
Rate

The NSR rate is measured following a well-established three-stage
temporal scheme: (I) optical nuclear spin initialization, (II) nuclear
spin relaxation in the dark, i.e., without optical excitation, and (III)
measurement of the remaining nuclear spin polarization by a Hanle-
like polarization measurement of the PL. Figure 3.6 schematically
depicts the respective measurement protocol. This protocol has
been first proposed and realized by Kalevich et al. [68], and is an
indirect method based on the cooling of the nuclear spin system.

After the dynamic polarization of the nuclear spins by 300 s of
optical pumping, the laser excitation is switched off by an electri-
cally controlled mechanical shutter for a variable dark time tdark.
During this dark time, the optically induced nuclear spin polariza-
tion, which is directly related to an effective nuclear magnetic field
BN , decays towards its equilibrium state.

The technique utilizes the shift of the Hanle curve due to nu-
clear spin polarization. For each sample, two preparatory Hanle
and oblique Hanle measurements were carried out as the first step
to identify the optimal magnetic field Bpump for the detection of the
nuclear spin polarization (see Fig. 3.1). These measurements are
necessary in order to choose an external magnetic field for the actual

44



3.3. Oblique Hanle

B p u m p

B d a r k

B

O f f

O n

las
er

t d a r k
∆ d a r k

Ha
nle

 de
pol

ari
zat

ion
 (ar

b. u
.)

t i m e  ( s )

( I ) ( I I ) ( I I I ) ( V )( I V )

Figure 3.6.: Illustration of the Hanle depolarization protocol (I):
Initial dynamic polarization of the nuclei with laser light. (II): The
laser is switched off (dark time) and the nuclei relax in the dark.
(III) Repolarization stage where the laser is switched on again and
the temporal change of the Hanle signal is measured while the nuclei
are dynamically polarized again. The procedure is repeated with
longer dark times and the fixed bright time (shown with (IV) and
(V)). During the laser light-on stage, the external magnetic field
is set to Bpump, and when the laser is off, Bdark is applied. The
magnetic field Bpump is set to a point where the electron spins are
the most sensitive to the nuclear Overhauser field. The height of
Hanle depolarization of each bright section defines ρdark.
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measurement (Bpump) where the change of the PL polarization by
change of BN is largest and yields an optimal signal to noise ratio.
After tdark, the shutter is opened again and the external magnetic
field is switched to Bpump. Here, the degree of circular polarization
of the PL is measured time-resolved in reflection geometry. In prin-
ciple, the degree of circular polarization directly after opening the
shutter, ρdark, is already a good measure of BN after tdark. How-
ever, measuring the temporal change of the PL polarization during
optical excitation and extrapolating this transient to the time where
the shutter is opened increases the measurement accuracy of ρdark,
and accordingly, of the effective BN . In practice, the nearly Voigt
geometry allows combining the optical pumping of the nuclear spin
ensemble and the measurement of the remaining nuclear spin polar-
ization from the previous pump process into one step.

All of the measurement procedures explained above are used to
investigate the BN in the samples listed in Tab. 3.1. The measure-
ment results are explained extensively in part II of chapter 4.
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In this thesis, the electron and nuclear spin relaxation rates in a
set of n-GaAs samples are investigated employing the Hanle and
oblique Hanle techniques, respectively. The experimental results
of this thesis are distinguished into two parts within the following
chapter. In part I, the experimental results of the temperature de-
pendence of the ESR rate for three samples (S3, S6, and S10) is
presented. A quantitative calculation of the mechanisms, including
a short discussion of the underlying spin relaxation mechanisms, is
presented in this part as well. Part II is devoted to the NSR re-
sults in dependence of magnetic field (section 4.8), doping (section
4.9), and temperature (section 4.10). The relevant mechanisms in-
volved in the NSR dynamics include the Korringa mechanism, spin
diffusion, and the effect of phonons.
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Part I.

Results for the Electron
Spin Relaxation Rate
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4.1. Electron Spin Relaxation

4.1. Electron Spin Relaxation

In the field of spintronics the quest for the longest spin relaxation
time in GaAs stands representative for the desire of a complete
quantitative understanding of the ESR [22, 24, 25, 69–73]. In 1997,
Kikkawa et al. reported the longest up to then measured ESR time
(100 ns) in a bulk n-GaAs sample with a doping concentration of
nd = 1016 cm−3 [22]. Later, an even longer relaxation time (300 ns)
for n-GaAs samples was reported [74]. Dzhioev et al. provided a de-
tailed study of a set of n-GaAs in order to explain the relevant ESR
mechanisms. Their doping dependence result showed that different
mechanisms are involved below and above the MIT [25].

Recently, Lonnemann et al. [27] gave a more comprehensive pic-
ture of the doping dependence of the ESR at a fixed temperature
of 6.5 K in a contiguous set of bulk n-GaAs samples, combining
optically detected spin dynamics with magneto-transport measure-
ments. The way the spin interacts with its environment depends
primarily on its spatial dynamics, which in turn can be directly
extracted from the experimental magneto-transport measurements
from Ref. [27]. The acquired information on the spatial correlation
time affects the impact of local hyperfine fields and momentum-
dependent magnetic fields. The correlation time is an important
parameter that depends on the type of interaction. For localized
carriers, the VRH mechanism, and for free carriers, the momentum
scattering time determines the value of this correlation time. These
transport experiments pave the way for quantitatively explaining
the mechanisms involved in spin relaxation. Below the MIT, as
the doping rises, the decrease of the HFI and the increase of the
VRH leads to an increase of the relaxation time with a maximum
relaxation time of 800 ns just below the MIT. The DP mechanism
resulting from the motional narrowing regime is valid at and above
the MIT.

This particular non-monotonical dependence of the ESR rate on
doping at a fixed temperature was the main motivation to investi-
gate the corresponding temperature dependence of the ESR rate in
three specially selected n-GaAs samples studied in Ref. [27]. The
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first sample has a doping density of just below the MIT (sample S3
with the doping nd = 6.58(9)× 1015 cm−3). This sample showed
the longest ESR time in Ref. [27] indicating a transition point from
HFI and VRH mechanisms to the DP mechanism. The second sam-
ple (sample S6 with the doping nd = 1.65(6)× 1016 cm−3) has a
doping density directly at the MIT where Ref. [27] has shown a
strong change of the momentum scattering angle. The third sam-
ple (sample S10 with the doping nd = 1.031(5)× 1017 cm−3) has a
doping density clearly above the MIT. Reference [27] has shown for
this sample the dominance of the degenerate DP (deg-DP) mech-
anism at 6.5 K and temperature dependent measurement for this
sample is expected to show a transition to the non-degenerate DP
(nondeg-DP) mechanism.

4.2. Experimental Results

The measured temperature dependence of the ESR rate for sample
S3 is shown as orange dots in Fig. 4.1. With increasing tempera-
ture, the ESR rate decreases between 4 K and 7 K and increases
afterwards above 7 K. This non-monotonous behavior of the ESR
rate with temperature reflects the impact of the different ESR mech-
anisms which are plotted in Fig. 4.1 as well. At low temperatures,
the HFI between atomic nuclei and electrons dominates the spin
relaxation. This mechanism is depicted as an orange dotted line in
Fig. 4.1. With increasing temperature, the VRH mechanism ac-
celerates the spin relaxation (shown as a green dotted line in Fig.
4.1). For the high-temperature range, the charge carriers are en-
tirely delocalized into the conduction band, and the DP mechanism
dominates the spin relaxation.

The fully numerical calculated DP contribution is shown as a
red dotted line, whereas the Boltzmann approximation valid in the
non-degenerate regime is shown as a purple dotted line, respectively.
The sum over HFI, VRH, and deg-DP mechanisms is shown as a
blue line, demonstrating a perfect coincidence with the measured
data. The relative impact of these mechanisms is accounted for by
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4.2. Experimental Results
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Figure 4.1.: Measured ESR rate for sample S3 as a function of tem-
perature (orange dots with error bars). Here, the HFI and the
VRH relaxation mechanisms are plotted as orange and green lines,
respectively. The DP mechanism is depicted as a red dotted line
assuming a temperature dependent scattering weight γ3(T ). The
purple dotted line shows the effect of nondeg-DP with γ3 = 6. The
sum over these three mechanisms as the total relaxation rate (τ−1

s, t)
is plotted as a solid blue curve for the whole measured temperature
range. The blue shaded and the red hashed areas indicate the un-
certainty on the weighting arising from the imponderability of the
exact conduction band carrier density at low temperatures and low
dopings.
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weighting with the respective occupancy of the affected states, i.e.,
localized and conduction band states. However, an uncertainty con-
cerning the exact weighting for this low-doped sample remains, since
the available transport data naturally bear a relatively high uncer-
tainty on the exact conduction band carrier density at low tempera-
tures. The blue shaded (and red hashed) area in Fig. 4.1 reflects this
uncertainty by either using the density related to the conductivity
(upper limit) or Hall density measurements (lower limit). Further-
more, the proportionality factor γ3

−1 connecting the momentum
relaxation and the correlation time, is assumed to change with tem-
perature and thus affects the ESR rate. The reasoning behind this
assumption is equivalent to the findings on the doping dependence of
γ3 between the MIT and the degenerate limit. At low temperatures
(low doping) the spatial dynamics of the carriers in the conduction
band is strongly affected by the local potential corrugations arising
from the donor distribution, thus leading to a large angle scatter-
ing behavoir which corresponds to γ3 = 1. In the other extreme of
high temperatures (high doping) this effect is diminished leading to
the classical value of γ3 = 6 for small angle scattering [31]. The
range in-between is interpolated using the same weighting as for
the relative impact of the spin relaxation mechanisms. The com-
plete calculation is explained in detail in Sec. 4.3.

Figure 4.2 illustrates the ESR rate for the sample at the MIT
(S6) in dependence on temperature. For this sample, the ESR rate
increases steadily with increasing temperature in the whole mea-
sured range. For such doping densities (directly above the MIT)
and low temperatures, the conductivity is a mixture of metallic and
hopping contributions. Therefore, in principle all three mechanisms
(HFI, VRH, and deg-DP) could contribute to the ESR with the
relevant weighting factors. However, the HFI mechanism has a neg-
ligible contribution (� 1 MHz) to the ESR process and is thus not
shown in Fig. 4.2. The result for the sum over the three mechanisms
is plotted in Fig. 4.2 as a solid blue line. At high temperatures, the
nondeg-DP mechanism is also plotted as a purple dotted line.

The ESR rate for sample S10, depicted in Fig. 4.3, is nearly con-
stant at low temperatures. In the density regime above the second
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4.2. Experimental Results
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Figure 4.2.: Orange points with error bars show the measured ESR
rate for sample S6. The effect of the VRH is plotted as a green
dotted line. For this sample, deg- and nondeg-DP are plotted with
red and purple dotted lines, respectively. The total ESR rate for
the whole measured temperature is plotted as a solid blue line.
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Figure 4.3.: The orange points with error bars are the measured
relaxation rate for sample S10. The calculated total relaxation rate
is plotted as blue line and equals in extremely good approximation
the calculated DP relaxation rate (shown as red dotted line) over the
whole range of temperature. For high-temperatures, the nondeg-DP
is plotted as a purple line.
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4.2. Experimental Results

critical transition - which applies to this sample S10 - the Fermi
energy lies fully in the conduction band. Thus, the primary mecha-
nism in this sample is the DP mechanism (the red dotted line) which
is at such high electron densities much more efficient compared a)
to the contributions of the other mechanisms and b) to the other
two samples due to the higher spin dependent splitting at the Fermi
level. For higher temperatures, the ESR rate increases and gradu-
ally approaches the non-degenerate limit shown as a purple dotted
line in Fig. 4.3.

In the following, we will present a quantitative model which is
an extension of the model presented in Ref. [27] and describes the
temperature and density dependence of Γs with very high accuracy
especially in the regime of the MIT. The model combines all rel-
evant spin relaxation mechanisms and takes as input parameters
temperature dependent magneto-transport data measured on the
same samples. These electrical transport data are detrimental for
a quantitative calculation of Γs since they provide for example the
doping densities and the localization potentials within an unpre-
tentious transport model (see Table 4.1 for a list of the extracted
transport parameters for S3, S6, and S10). Reference [27] presents
the relevant transport data for a set of ten high quality n-GaAs
samples such that the whole carrier density regime from strongly
localized over the MIT up to significant conduction band filling is
covered. Interpolation of these parameters allows extraction of the
relevant parameters for any high quality n-GaAs:Si sample and fi-
nally a realistic, quantitative calculation of Γs for any reasonable
doping concentration and any temperature below room tempera-
ture. Oertel et al. [70] present ESR measurements in GaAs at and
above room temperature where a significant number of electrons in
the high energy tail of the Fermi distribution are not within the
limit of motional narrowing.

The following theoretical description is based on the three relevant
ESR mechanisms HFI, VRH, and DP at which the impact of HFI
and VRH are weighted by the degree of electrons localized in the
impurity band, Wdi, and the contribution of DP is weighted by the
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Table 4.1.: Experimentally determined doping densities nexp
d , and

the relevant parameters from transport measurements for the three
investigated n-GaAs samples.

Sample No. S3 S6 S10

nd
exp

(
1× 1016cm−3

)
0.658(9) 1.65 (6) 10.31 (5)

AEloc (eV) 0.0001 0.00105 0.00245

nloc

(
1015 m−3

)
5.86263 3.45401 -

EE (meV) 1.84 1.0 -

NEF
(
1025 m−3

)
2.27268 8.7576 -

σm (1/Ωcm) 0.0 1.29 44.0

A0
II

(
1023 (mVs)−1

)
1.24 1.26 1.33

µ0
P

(
m2(Vs)−1

)
0.68 0.505 0.32

T0

(
102K

)
89.7 23.3 -

σ0 (1/Ωcm) 7.25 14.2 -

degree of free electrons in the conduction band, Wcb.

Wdi =
ndi(T )

ndi(T ) + nm(T )
, (4.1)

Wcb = 1−Wdi.

Here, ndi(T ) and nm(T ) are the temperature dependent densities
of the impurity band electrons and free electrons in the conduc-
tion band, respectively. Note, that for the lowest doped sample
no impurity band exists and the free carrier density is directly cal-
culated by thermal activation into the conduction band with the
corresponding activation energy EE taken from the temperature
dependent conductivity measurements. For samples S6 and S10 the
respective densities are obtained from temperature dependent Hall
density measurements within the two band model (see [27] for de-
tails). Note, that for S10 there exists effectively only carriers in the
conduction band.
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4.3. Dyakonov-Perel Mechanism

4.3. Dyakonov-Perel Mechanism

In atoms and solids, the spin-orbit interaction (SOI) couples the spin
of the carriers to the spatial movement. Indeed, this inevitable cou-
pling can be the result of structural inversion1 asymmetry (Rashba)
or bulk inversion asymmetry (Dresselhaus). This SOI can be seen
as an effective magnetic field in which the spins precesses. The di-
rection (and the amount) of this effective magnetic field depends on
the momentum of the electrons k. Spin relaxation of electrons in
this effective magnetic field is described by the DP spin relaxation
mechanism [6, 48, 50, 75–79]. The foundation of DP is explained in
App. D in more details.

For conduction band electrons with momentum k and energy Ek,
the DP spin relaxation rate follows [6, 31,70,78,80]

τ−1
s, DP(Ek) =

32

105
α2 τp
γ3

E3
k

~2Eg
. (4.2)

Here, Eg is the energy gap2 and α is a dimensionless parameter
based on the Dresselhaus constant γD = 19.0(5) eVÅ3 and defines
the strength of the SOI

α =
γD
~3

√
8m∗e Eg. (4.3)

The ratio between correlation time τc and momentum scattering

time τp is described by a factor γ3 =
τp
τc . The value of γ3 depends

on both doping and temperature. If either of these two factors in-
creases, more delocalized electrons can be found in the conduction
band. Therefore, since γ3 increases the momentum scattering of free
electrons in the conduction band results from small-angle Ruther-
ford scattering. However, near the MIT the momentum scattering
is isotropic due to the local conductivity from random-positioned

1In inversion symmetry each point at (x, y, z) to the inversion symmetry center
has a corresponding point at (-x, -y, -z).

2Eg=1.59 for T = 0 K
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donors occurs. The doping dependence of γ3 from S6 to S10 follows
at 6.5 K a linear dependence3,4

γ3(nd) = 6.67× 10−17 cm−3(nd − nc1) + 1, (4.4)

and changes from γ3 = 1 for the MIT sample to γ3 = 6 for S10 [27].
The temperature dependence of γ3 for S3, S6, and S10 is accordingly
modeled by:

γ3(T ) =

{
γ3(nd) + (ζ − 1)× (6− γ3(nd)), for S6 and S10;

γ3(nd) +Wcb × (6− γ3(nd)), for S3.

(4.5)

4.3.1. Numerical calculating the DP Mechanism

In order to obtain a thermal average of the DP spin relaxation rate,
Eq. 4.2 has to be averaged over all available energies with the
corresponding density of states and level occupation:

τ−1
s, DP =

∫∞
0
τ−1

s,DP(Ek) fFD(Ek) [1− fFD(Ek)] ρ(Ek) dEk∫∞
0
fFD(Ek) [1− fFD(Ek)] ρ(Ek) dEk

, (4.6)

where the Fermi-Dirac distribution fFD is [81]

fFD(Ek) =

(
1 + exp(

Ek − EF
kBT

)

)−1

. (4.7)

In Eq. 4.6, the quasi-equilibrium spin polarization is approximated
by fFD(Ek) [1− fFD(Ek)] for small spin polarization, i.e., a small
difference between the Fermi energies of spin up and spin down
electrons. The density of states ρ(Ek) starting from the conduction
band in a volume of V is

3For more information of the doping dependence of γ3, please see Ref. [27].
4Here, nc1 = 1.6 × 1016 cm−3 is the first critical density marking the MIT

transition.
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4.3. Dyakonov-Perel Mechanism

ρ(Ek) =
V

2π2

(2m∗e
~2

) 3
2
√
Ek. (4.8)

In order to define the momentum scattering time τp in Eq. 4.2, the
Hall conductivity from the transport measurement is calculated as
follows [27]

τp =
σm∗e

1.04e2nm
, (4.9)

with the conductivity

σ = σcb (T ) + σm,0 + σVRH (T ) . (4.10)

The conductivity is assumed to be a sum of two contributions: con-
duction band conductivity σcb and a conductivity of delocalized
carriers in the impurity band via VRH (σVRH )(see Sec. 4.4). If the
doping is high enough, a metallic conductivity σm,0 contributes as
well. The two-channel conductivity in the conduction band is

σcb(T ) =
e nd

1
µII(T ) + 1

µPO(T )

exp(− EE
kBT

). (4.11)

The mobility due to scattering on ionized impurities µII and scat-
tering on polar optical phonons µPO are

µII (T ) =
ART
II

nd

(
T

300K

)3/2

, (4.12)

µPO (T ) = µRT
PO

(
T

300K

)−2.3

, (4.13)

where µRT
PO and

ART
II

nd are mobilities at room temperature. A sum-
mary of the conductivity measurement and more details on the for-
mulas are provided in App. C.
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4.3.2. Non-degenerate DP Mechanism

At sufficiently high temperatures, the system is non-degenerate and
the electron spins follow the non-degenerate DP mechanism. In
this case, the thermal averaging of Eq. 4.2 is over the Boltzmann

distribution 〈fMB(Ek)〉 = 2√
π

(kBT )−3/2 exp(− Ek

kBT
)E

1/2
k [6,31] and

follows

τ−1
s,nondeg-DP = Q

α2 (kBT )
3
τp

~2Eg
, (4.14)

where

τp = 〈τp(Ek)Ek〉/〈Ek〉 (4.15)

is the average momentum relaxation time and

Q =
16

35
γ3
−1 〈τpE3

k〉
〈τpEk〉

(4.16)

is a scaling factor which depends on the effective scattering process.

For ionized impurity scattering with τp ∝ E
3/2
k one obtains Q =

64
7 × γ3

−1 where γ3 = 1 is the limit for large and γ3 = 6 for small
angle scattering.

4.3.3. Limiting Cases of the DP Mechanism

In the limit of non-degeneracy at high temperature, Eq. 4.6 can be
approximated by the averaging over the Maxwell-Boltzmann dis-
tribution fMB instead of Fermi-Dirac distribution fFD. However,
the difficulty lies in calculating the transition between the low and
the high temperature regime with only τp being available from the
transport measurements. At low temperatures τp(E) approaches
τp(E) since a Fermi distribution in Eq. 4.15 acts like a Dirac delta
function at low temperatures at the Fermi energy.

In order to elucidate this problem analytically all constants are
set to unity and the extreme cases for the high temperature is con-
sidered. The average momentum scattering time can be calculated
in two ways:
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4.4. Variable Range Hopping

1. τp =
∫ ∞
0
Ek τp(Ek) fB(Ek) dEk∫ ∞
0
Ek fB(Ek) dEk

= 128
√

2πT 3/2.

2. τ̃p =
∫ ∞
0
τp(Ek) fB(Ek)dEk∫ ∞
0
fB(Ek) dEk

= 64
√

2πT 3/2.

Using τp by either of these two cases makes a difference of two
for the relaxation rate. For the first case, the Conwell-Weisskopf
formula [82] is used to give the energy dependence of the momentum
relaxation time

1

τp(Ek)
=

niiZ
2e4

16
√

2πε2 (m∗e)
1/2

E
−3/2
k ln

(
1 +

16π2ε2E2
k

Z2e4n
2/3
ii

)
. (4.17)

where ε = εrε0 is the dielectric constant and nii is the ionized impu-
rity doping at energy Ek and Z = 1. However, for the second case,
the experimentally extracted τp is used.

The factor ζ

The Fermi-Boltzmann factor ζ is approximated by the ratio of car-
riers obeying the Fermi-Dirac Boltzmann statistics plus unity.

ζ = 1 +
nd

Neff(T ) exp(EF−Ec

kBT
)
. (4.18)

Here, EF and Ec are Fermi and conduction band energies5, respec-
tively. This weighting factor ζ is used in order to bring the numerical
calculation in accordance with the analytical one regarding the ex-
cess of the average momentum relaxation time. Please note that ζ
is set to two for S3 throughout.

4.4. Variable Range Hopping

The corresponding formula for the ESR rate via VRH between two
donors with distance Rij is:

5In the calculation of this thesis, Ec = 0.
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τ−1
s,VRH =

2

3

〈
θ2(Rij)

〉
/τhop. (4.19)

Here, θ(Rij) is the rotation angle that an electron spin undergoes
during each hop. This angle derived by Gorkov and Krotkov [83] is

θ(Rij) =
2γD
~3

√
8

35
(m∗e

3Ed)
Ropt

aB
, (4.20)

where Ed = 5.8 meV and aB = 10 nm are binding energy and the
Bohr radius, respectively. Moreover, γD = 19 eVÅ3 is the Dres-
selhaus constant. The transport hopping time from transport mea-
surement equals the correlation time τc in the case of hopping:

τc =
(Ropt)

2

6Dhop
, (4.21)

where Ropt = [9aB/(8πNEFkBT )]
1/4

is the optimal hopping dis-
tance and the density of states at the Fermi energy EF is NEF

. To
calculate the specific diffusion constant

Dhop =
σhop(T )kBT

enH
, (4.22)

the temperature dependent conductivity σhop(T ) resulting from the
hopping process is used

σhop(T ) = σ0(NEF
)T−1/2e−[T0(NEF

)/T ]1/4 , (4.23)

where

T0(NEF
) = 512/

(
9πkBa

3
BNEF

)
, (4.24)

σ0(NEF) = νHe
2NEFR

2
opt/6,

with the phonon frequency νH = 8.8 THz. More information about
this mechanism is provided in App. E. The doping density nH par-
ticipating in hopping is
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4.5. Hyperfine Mechanism

nH = ndi − ncb (4.25)

where ndi is the delocalized carrier density from the impurity states.
In App. C, the process of the Hall measurements is explained.

4.5. Hyperfine Mechanism

Below the MIT, the number of donors is low, the distance between
donors is large, and the donor-bound electrons are considered local-
ized. Each localized electron feels the effect of almost 105 atomic
nuclei within its Bohr radius aB . Here HFI is effective and can be
expressed by the effective nuclear magnetic field, BN [26]. There-
fore, in the case of localized electrons, their spin precession around
BN is independent of each other, and the interaction between elec-
trons can be ignored. The impurity and the conduction band do
not overlap.

This also results in a phase angle: δφ = ±δωτc [60]. In case
of a short correlation time, δωτc � 1, motional-averaging formula
should be used for the time of ESR rate in BN :

τ−1
s,HFI = (

µBg
∗

~
)2B2

Nτc (4.26)

where the g∗ = (0.484−6.3 eV−1E) is the energy dependent effective
electron g-factor [84,85].
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Part II.

Results for the Nuclear
Spin Relaxation Rate
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4.6. Nuclear Spin Relaxation

4.6. Nuclear Spin Relaxation

The coupling of the nuclear magnetic moments and the lattice de-
termines to a large extend the relaxation dynamics of solid-state nu-
clear spins. This section presents the measurements of the NSR rate
in a set of n-GaAs samples. The measurements are performed by
using the three-stage experimental procedure explained in chapter
3. The dependence of NSR on doping and temperature for magnetic
fields higher than the local field as two main external factors affect-
ing the NSR are included in this section. The experimental results
are explained with the involved theoretical mechanisms. Parts of
the results are published in Ref. [86].

4.7. Nuclear Magnetic Field

The NSR rate is measured by repetitive application of the mea-
surement protocol explained in section 3.3, i.e., (I) optical nuclear
spin initialization, (II) nuclear spin relaxation in the dark, and (III)
measured of the remaining nuclear spin polarization in dependence
on the dark time tdark.

Figure 4.4 illustrates exemplarily the respective change of the
Hanle depolarization measured for different tdark for sample S8. The
amplitude of the Hanle polarization signal at t = 0 s, ρdark, is a mea-
sure of the remaining nuclear polarization which clearly depends on
tdark. In fact, ρdark increases with increasing tdark since the nuclear
spin polarization decreases. On the other hand, the transient Hanle
polarization decays exponentially during the PL measurement due
to the re-pumping of the nuclear spin polarization to its initializa-
tion value. Each Hanle transient is measured for 300 s for all of the
measurements. In Fig. 4.4, just a few numbers of tdark are plotted
to have a better overview of the procedure.

The precise amplitude at t = 0 s, ρdark, is extracted by an expo-
nential fit to these transients and used to calculate the remaining
nuclear magnetic fields after tdark by [31]
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Figure 4.4.: Hanle depolarization transients recorded after different
dark times for sample S8. In this example, the magnetic field during
dark time is set to Bdark = 1.17 mT. The measurement temperature
is T = 6.5 K.
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4.7. Nuclear Magnetic Field

BN = B1/2

√
ρ0 − ρdark

ρdark
−Bpump. (4.27)

The corresponding value for BN is plotted in Fig. 4.5. This fig-
ure shows exemplarily the measured BN in dependence on tdark for
sample S5 with nd = 1.73× 1016 cm−3 and Bdark = 2.344(44) mT.
The resulting BN can be well fitted by a single exponential decay
which yields the NSR rate Γ. The solid blue line in Fig. 4.5 is an
exponential fit which yields an NSR rate Γ = 0.005 50(21) Hz.

Figure 4.5.: The black squares are the measured nuclear magnetic
field BN in dependence on tdark for sample S5 at one specific Bdark

and T . The blue line depicts a single exponential fit yielding a NSR
rate of Γ = 0.005 50(21) Hz.
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4.8. Magnetic Field Dependence of the
NSR Rate

The magnetic field dependence of the NSR rate can be derived via
a density matrix formalism which is explained in Refs. [51,53,87,88]
and yields

Γ(Bext) = ΓZ
B2

ext + ξ BL
2

B2
ext +BL2

. (4.28)

Here, ξ = Γss/ΓZ is a fitting parameter, Γss and ΓZ are the spin
relaxation rates originating from the spin-spin and the Zeeman in-
teraction, respectively. In other words, ξ shows the relative impact
of the local field BL and the external field Bext, respectively.

Figure 4.6.: Measured NSR rate Γ (black squares) as a function of
Bdark at T = 6.5 K for sample S5 with nd = 1.73× 1016 cm−3.
The red solid line is a fit to the data according to Eq. 4.28 with
ξ = 8.79(74) and BL = 0.39(4) mT.
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4.8. Magnetic Field Dependence of the NSR Rate

Sample ξ

S1 16.21352± 10.28189
S3 16.21352± 10.28189
S4 7.10311± 1.38645
S5 8.79059± 0.7449
S7 7.43216± 0.41099
S8 10.56694± 2.78872
S9 6.38481± 0.41375
S10 11.62513± 2.85221

Table 4.2.: The values for ξ derived as a free parameter from the
magnetic field dependence of Γ.

The magnetic field dependence of Γ for different Bdark is depicted
in Fig. 4.6 as an example for sample S5 with nd = 1.73×1016 cm−3.
The NSR rate follows the Lorentzian like function of Eq. 4.28.

The value for ξ in my measurements is a free parameter in the fit
function in Fig. 4.6. These values are provided in Tab. 4.2 for all
of our measured samples. Interestingly, these values are on average
larger than the maximal theoretical estimated limit of 2 to 3 given
in Ref. [53] for low magnetic fields which might be surprising at first.
However, not only our measurements but also other measurements
in the literature yield values much higher than 3 [44,87]. This could
be attributed to additional relaxation mechanisms contributing to
Γss at zero external fields, as pointed out also in Ref. [89].

The local magnetic field is directly extracted from Eq. 4.28. The
resulting BL are depicted as blue squares with error bars in compar-
ison to literature values in Fig. 4.7. This doping dependence of BL
shows on the whole a comparable increase with doping from 0.35
mT at nd = 1.2 × 1015 cm−3 to 0.9 mT at nd = 1.03 × 1017 cm−3

which lies well within previously determined values. Please note
that the literature values are not measured on a contiguous set of
samples like in this thesis but with different optical methods on dif-
ferent GaAs bulk and microstructure samples with varying strain
leading to significant scattering of these values [90–92].
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Figure 4.7.: Local field BL in dependence on doping density. The
measured values of our work are shown as blue squares, while the
other symbols are from literature. The black vertical lines denote
the so-called critical densities nc1 and nc2.
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4.9. Doping Dependence of the NSR Rate

4.9. Doping Dependence of the NSR Rate

Figure 4.8 shows the measured high field NSR rate Γ as orange dots
with error bars in dependence on doping concentration for a lattice
temperature of 6.5 K. The error bars of Γ are in turn extracted
from exponential fits of BN versus tdark which is exemplarily shown
for nd = 1.73× 1016 cm−3 in Fig. 4.6. The error bars of BN are
extracted from the exponential fits of the PL polarization versus
laboratory time. The two vertical lines in Fig. 4.8 denote the critical
densities nc1 = 1.6 × 1016 cm−3 and nc2 = 8 × 1016 cm−3, i.e.,
the point of finite conductivity in the limit of zero temperature at
the Mott MIT and the onset of impurity band hybridization with
the conduction band, respectively. At low doping concentrations
nd < nc1, Γ increases monotonically with increasing nd reaching
a maximum around nc1. For nd > nc1, Γ decreases in turn with
increasing nd and becomes in good approximation independent of
nd around nc2.

As figure 4.8 depicts, two relaxation mechanisms explain the be-
havior of the doping dependence of Γ. These are plotted as green
dashed line (diffusion related NSR ΓD) and as blue dashed-dotted
line (Korringa NSR ΓK). Both mechanisms are explained in detail
in the following two chapters. The total NSR rate Γ = ΓD + ΓK
is shown as a red solid line. For nd < nc1, nuclear spin diffusion
to localized electrons acting as nuclear spin killing centers results in
relaxation of the nuclear spin polarization. As the doping increases,
the number of localized electrons increases and subsequently the
NSR rate due to spin diffusion rises. For nd > nc1, not only the
relative but even the total number of fully localized donor electrons
starts to decrease with increasing nd. As a consequence, ΓD de-
creases and becomes negligible for doping densities above the nc2.
At the same time, the number of delocalized electrons increases
with increasing doping concentration, and consequently, the NSR
rate increases according to the Korringa mechanism.
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Figure 4.8.: Measured doping dependence of the high field NSR rate
Γ in n-type bulk GaAs at T = 6.5 K (orange dots). The NSR rate
due to diffusion to localized electrons ΓD, is shown as green dashed
line. The fully delocalized fraction of nd enters the Korringa rate
ΓK according to Eq. 4.35, which is shown as blue dashed-dotted
line. The values nc1 and nc2 denote the critical densities.

4.9.1. Spin Diffusion Effect

NSR in n-doped GaAs is strongly influenced by the presence of
donor electrons [31, 36, 37, 42, 48, 50, 87, 93–95]. Localized donor
electrons interact at low temperatures very efficiently via hyper-
fine contact interaction with the nuclear spin system. The resulting
NSR times are only fractions of a second for nuclei, which are lo-
cated within the Bohr radius aB of a localized donor electron [46].
The spin relaxation of remote nuclei is at finite external magnetic
fields typically orders of magnitude slower since the spin diffusion
towards these relaxation centers is rather slow. In Fig. 4.9, the
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4.9. Doping Dependence of the NSR Rate

diffusion process is illustrated schematically.

ΓD

Figure 4.9.: A schematic illustration of the nuclear spin diffusion.
The grey arrows represent the nuclear spins. The shaded black areas
show the wavefunction of the donor-bound electrons. The warm-up
of all other nuclei is via spin diffusion towards the donor sites, which
is shown with the arrows below.

The NSR rate due to diffusion, ΓD, can be approximated for low
donor densities, nd, and zero temperature by [96]:

ΓD ≈ 4πDavndaB . (4.29)

Here, Dav is an average nuclear spin diffusion coefficient for the
three isotopes of GaAs. Equation 4.29 describes the typical bulk
NSR rate Γ only for nd well below the MIT, nd

−1/3 � aB , and
for temperatures where ionization of the localized donor electrons
can be neglected. However, the density of localized donors acting
as effective drains for the nuclear spin polarization differs signifi-
cantly for conditions deviating from these constraints. The relative
number of fully localized donor electrons decreases with increasing
nd due to the increasing overlap of the donor wavefunctions. As a
consequence, the at first linear increase of ΓD with increasing nd in
Eq. 4.29 becomes sub-linear.

In order to calculate ΓD quantitatively, the total number of donors
nd in Eq. 4.29 is replaced by the number of localized electrons
nd, loc = η · nd. The fraction of localized electrons η acting as
efficient drains for the nuclear polarization is
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Figure 4.10.: Dependence of the localization fraction η on doping
density. The red line shows a fit according to Eq. 4.31.

η = 1− n6.5 K
H

nd
, (4.30)

where n6.5 K
H is the Hall carrier density at 6.5 K and nd is the doping

density extrapolated from the high temperature Hall measurements.
The experimental transport data include already the ionization of
the localized donors due to the finite temperature. A summary of
these Hall measurements are provided in App. C of this thesis. The
extracted η can be fitted by

η = e−nd/αn , (4.31)

which is shown as red line in Fig. 4.10 for all of the measured
samples. A finite deviation of η calculated from the measured n6.5 K

H
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4.9. Doping Dependence of the NSR Rate

with Eq. 4.30 is not surprising for nd > nc1. Here, not only the
localization of single donor electrons but also the localization of
ensembles of donor electrons start to play a role. In contrast to
single localized electrons, such localized ensembles of interacting
electrons are not as efficient nuclear spin “killing centers”. From
the fit in Fig. 4.10, αn = 1.43(20)× 1016 cm−3.

Such an exponential relation between the number of isolated sin-
gle donors and nd follows directly from Poisson statistics which
also allows for a theoretical estimation of the constant αn. With
µ = nd/n`, where n` is the lattice site density of the host crystal, the
probability that a donor does not occupy a site is e−µ. The exclusive
volume, where no other donor overlap exists is Vno = 4π

3 (2 · aB)3.
The probability p(nd) of finding a single donor which wavefunction
- extending over its Bohr radius aB - is non-overlapping with other
donors, is given with Nno = Vno · n` as

p(nd) =

Nno∏
i=1

e−µ = e−
32
3 πaB

3nd . (4.32)

The prefactor in the exponent in Eq. 4.32 equals the experimentally
determined αn for an effective Bohr radius of aeff

B ≈ 12.8 nm which is
only slightly larger than the typical donor Bohr radius for Si dopants
in GaAs. Such a slightly larger radius is not unexpected since the
donor electron wavefunction extends beyond aB . Also, screening
and any other interaction effects have not been considered in this
basic estimate.

In Fig. 4.8, ΓD (Eq. 4.29) is plotted as a green line where the
number of localized electrons is used for the calculation. The only
adjustable parameter for this fit is the average nuclear spin diffusion
constant which lies with Dav = 0.63 ± 0.06 × 10−13 cm2/s in the
same range as previously measured values [35,36,41].

The donor electron HFI is not a simple hard sphere drain center
for nuclear spins. Furthermore, the values for Dav differ for the
three different isotopes for B � BL. Therefore, the result of this
measurement is rather precise concerning Γ but not concerning a
general value for Dav.
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4.9.2. Korringa Mechanism

In metallic systems, where a free electron model can be assumed,
HFI with the delocalized electrons is the dominant mechanism for
the relaxation of nuclear spins. However, this relaxation by conduc-
tion electron spins is not just limited to metals, and also exists in
semiconductors, like for the case of high doping densities above the
MIT in n-GaAs. Instead of very efficient local relaxation centers,
the nuclear spins interact at high doping densities with spin fluctu-
ations of the electron gas. The NSR in the region of the MIT at
finite temperatures is slightly more complex since the localization
of the donor electrons changes with increasing nd due to the over-
lap of the electron wavefunctions and the resulting coexistence of
strongly localized electrons, weakly interacting donor electrons, the
occurrence of impurity bands, and the occupancy of the conduction
band.

A simultaneous electron spin-flip and nuclear spin-flop in the op-
posite direction is induced via this interaction. For this, an energy
of ~(ωe−ωn) is provided6 by an equal change in the electron kinetic
energy of only a fraction (kBT/EF ) of conduction electrons located
around the Fermi energy EF . Therefore, the average kinetic energy
of the relevant electrons is of the same order of magnitude as the
Fermi energy but much larger than the thermal energy kBT . With
the assumption of having one electron per atomic volume, the fluc-
tuating local field of this electron affects nuclei during τc = ~/EF .
In order to find out the transition probability of an electron from
state E to E′, a random perturbation ~H(t) with a short correlation
time τc is considered [87],

1

T1
∼ |H2

HFI|τckBT/EF . (4.33)

Here, the HFI Hamiltonian HHFI is given by Eq. 2.9. A weight-
ing factor of f(E)(1− f(E′)) shows the simultaneous probability of
having an initial occupied state E and a final empty state E′. Here,

6Here, ωe and ωn are the electron and nuclear Larmor frequencies, respectively.
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4.9. Doping Dependence of the NSR Rate

f is the Fermi distribution function based on Eq. 4.7. If the tran-
sition involves a simultaneous electron-nuclear spin flip, the change
in kinetic energy between two energy states is small E = E′, and in
the neighbourhood of Fermi energy f(E)(1− f(E′)) is replaced by

f(E)(1− f(E′)) ∼ kBT . (4.34)

Considering also the density of states at Fermi energy ρ(EF ), and
integrating over all of the energies, the total probability is described
via the Korringa mechanism [38,39,42,87,97] by

ΓK =
π

~
AHF

2v2
0ρ

2(EF )kBT , (4.35)

where AHF is the hyperfine constant from Eq. 2.10. As is clear
from Eq. 4.35, the Korringa mechanism does not depend on the
magnetic field. The salient feature of this relaxation is the linear
dependence of the relaxation rate with temperature. ΓK is plotted
in Fig. 4.8 with a blue dashed-dotted line by using n6.5 K

H as the
effective number of delocalized electrons.

The Korringa mechanism was not only observed in many met-
als [87], but was also detected in different highly doped semicon-
ductors for high magnetic fields (> 1 T), including Si [98], Ge
[99], GaAs [36], and InP [97]. For a higher doped GaAs sample
(9 × 1016 cm−3) at low temperatures (< 30 K) and low magnetic
fields (< 0.2 mT), the dominant NSR rate indeed is mediated by
the Fermi-edge electrons and the NSR rate has a linear relation with
the temperature [42].

Although the Korringa mechanism has been observed in many
publications [87,97,98,100,101], other results show deviations from
this mechanism. For weak magnetic fields (15 G) and low tem-
perature (< 1 K), a breakdown of the Korringa mechanism and a
nonlinear temperature dependence of NSR for temperatures range
(0.1 K ≤ T ≤ 10 K) for GaAs was reported [39]. Moreover,
there was for example no trace of Korringa in a MIT GaAs sample
(2 × 1016 cm−3) at low magnetic fields (< 0.2 mT) using a cavity
enhanced Faraday rotation method.
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In Fig. 4.11, the measured NSR rate due to diffusion is plotted.
This rate is determined by subtracting the Korringa mechanism
from the measured NSR rate. As the doping increases above the
MIT, the density of localized donors decreases, and according to
Eq. 4.29 the NSR rate due to diffusion ΓD decreases.
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Figure 4.11.: The NSR due to diffusion extracted by subtracting the
Korringa rate from the measured relaxation rate (Γm) for T = 6.5 K
and high magnetic field. Above the MIT, the error bars increase
significantly since ΓK becomes much larger than ΓD.

4.10. Temperature Dependence of the NSR
Rate

Figure 4.8 shows an excellent agreement between experiment and
theory for all doping densities but the very lowest one, i.e., nd =
1.2× 1015 cm−3. In order to bring light into this problem, the
temperature dependence of Γ is measured additionally for this low
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Figure 4.12.: Temperature dependence of Γ for a doping density
of nd = 1.2× 1015 cm−3 measured at high magnetic field. The
diffusion mechanism ΓD is shown as green dashed line. The effect
of ΓESR is shown as pink dashed line. The NSR due to quadrupolar
two-phonon process ΓP is shown with respect to the right axis.
Please note that two different scales are used left and right.
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doped sample.
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Figure 4.13.: The Korringa mechanism calculated for sample nd =
1.2× 1015 cm−3 for a temperature range up to 36 K.

The orange dots with error bars in Fig. 4.12 depicts the respective
Γ in dependence on temperature. The measured Γ first decreases
with increasing temperature but starts to increase at higher tem-
peratures. The error bars are the measured statistical errors only
and do not include potential systematic errors. The Korringa mech-
anism is negligible at such a low doping concentration, as is shown
in Fig. 4.13.

As Fig. 4.14 shows, the number of localized electrons is in the
low doping sample nearly constant up to 10 K and decreases after-
ward with increasing temperature. The NSR diffusion mechanism
also has the same behavior and decreases continuously with tem-
perature due to thermal ionization of the localized electrons [102].
The green dashed line in Fig. 4.12 depicts the calculated ΓD, which
is significantly too small to explain the experimental data.
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Figure 4.14.: The calculated number of localized carriers in sample
S1 is in good approximation constant up to almost 10 K. At higher
temperatures, nloc decreases steadily.

One might think that the relatively fast NSR at low tempera-
tures could result from the omnipresent continuous alteration of the
local charge environment inducing fluctuating quadrupolar fields.
These fields would effectively lead to a relaxation of the nuclear
spin system into its equilibrium state [93,103]. However, firstly the
p-type background doping is too small to yield a significant density
of charged defects. Secondly, the NSR rate is extracted under dark
conditions, i.e., no charge fluctuations due to the above bandgap ex-
citation can take place. All contributions via spin interaction with
delocalized electrons type mechanisms do not play a role here since
their magnitude is too small in this doping regime. Phonon-induced
NSR is another possible involved mechanism in the NSR. However,
in the following in subsection 4.10.1, this mechanism is shown to
have no effect on the measured temperature dependence of the NSR
rate. Basically, the only fluctuating source left radiating into the
nuclear spin bath results from the spin relaxation of the localized
donor electrons which is explained in subsection 4.10.2.
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4.10.1. Phonon-Induced NSR

The coupling between lattice vibrations and the nuclear spins is
essential for NSR. The quantum mechanical vibrations are called
phonons and generate time-dependent effective magnetic fields or
electric-field gradients at the nuclei. These fields induce in turn
transitions between energy levels of the nuclear spin system until the
nuclear spin polarization reaches thermal equilibrium [87]. Abragam
extensively explains the mathematical calculations related to the
phonon-induced NSR rate in Ref. [87]. In the following, a short
summary of these calculations is provided (see also Ref. [104]).

The effect of phonons on NSR is directly linked to the time-
dependent displacement of the nuclei p from its Bravais lattice pa
at which the position of the nuclei becomes

R = pa+ up, (4.36)

where, “a” is the lattice spacing. The displacement vector up can be
described in the harmonic approximation that includes absorption
and emission of phonons. The total number of phonons “n” present
in the crystal at temperature T and frequency ωp is

n =

[
exp

(
~ωp
kBT

)
− 1

]−1

. (4.37)

In order to calculate the transition probabilities induced by the spin-
phonon coupling, a coupling Hamiltonian is used:

~H1 = ~FA, (4.38)

where H1 is in frequency units, “A” is the dimensionless spin op-
erator and “F” is the lattice operator with the dimensions of “Hz”
and equals

F = F0 + F1W + F2W2 + ..., (4.39)

where W = δu
δx is the stress. Overall, for the NSR via phonons, two

processes are involved:
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4.10. Temperature Dependence of the NSR Rate

1. The Direct process is related to the emission or absorption of
a single phonon while

2. the Raman process involves two phonons. One of these two
phonons is absorbed, and the other one is emitted.

Based on Eq. 4.39, the direct process is related to the term F1W
and the Raman process is determined by F2W

2. Higher-order terms
in Eq. 4.39 have smaller contributions on the relaxation and can be
ignored in good approximation.

The relaxation rate between two nuclear spins is7 for the low
temperature case ~ω0 � kBT and magnetic dipolar coupling

P1 ∼ 9πΩ

(
F1

Ω

)2 (ω0

Ω

)2
(
kBθD
mv2

)(
T

θD

)
∼ 1

T1
, (4.40)

and shows a linear dependence on temperature. Here, m = (69.723+
74.921595) u is the atomic mass8 of two atom basis in GaAs and
v = 4.73× 103 m/s is the velocity of sound. On the other hand, the
relaxation via the Raman process is for a magnetic dipolar coupling

P2 ∼
81π

2
(
F2~
mv2

)2

∫ Ω

0

e
~ω

kBT(
e
~ω

kBT − 1

)2

ω6

Ω6
dω. (4.41)

There are two possible situations:

P2
∼=


81π
2 ( F2~

mv2 )2( T

θD
)7Ω( 16π6

21 ), if kBT � ~Ω

81π
10

(
F2

Ω

)2 (kBθD
mv2

)2

( T

θD
)2Ω, if kBT � ~Ω

(4.42)

7~ω0 is the energy of the emitted or absorbed phonon equals the energy dif-
ference between two states.

81 u = 1.660 540 199 × 10−27 kg
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In the low temperature limit, the NSR rate is proportional to T 7

while for high temperatures, the dependence is proportional to T 2.
The same trend for P1 and P2 is correct for the quadrupole re-
laxation by spin-phonon coupling, just the value for F1 ∼ F2 is
different:

F1 ∼ F2 =

{
µ0γeγn~

4πr3 , for magnetic relaxation
e2

~
Q

4πε0εra3 , for quadrupole relaxation

where Q is the quadrupole moment, εr is the relative dielectric con-
stant9, ε0 is the vacuum dielectric constant, and γe and γn are the
electron and nuclear gyromagnetic ratios, respectively. The free
space permeability is µ0. Figure 4.15 shows the result for Direct
process and Raman process for sample S1.
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Figure 4.15.: a) P1 from Eq. 4.40 and b) P2 from Eq. 4.42 for both
magnetic (Mag) and quadrupolar effect (QP). Note the different
scales on the ordinates.

According to the calculations, the experimentally observed in-
crease for T > 12 K can not be attributed to the onset of phonon-
induced NSR since the impact of dipolar and quadrupolar one-and
two-photon contributions is orders of magnitude too small [87]. The

9In GaAs, εr = 12.35.
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4.10. Temperature Dependence of the NSR Rate

highest NSR rate due to phonons ΓP relies on quadrupolar two-
phonon processes and is shown for the right axis in Fig. 4.12, which
differs by five orders of magnitude in comparison to the left axis.
Even if these calculations might underestimate ΓP , comparative
measurements from Lu et al. [36] on semi-insulating and n-doped
GaAs confirm that phonon induced NSR can be neglected at low
temperatures in n-doped GaAs.

Phonon-induced relaxation is also observed for T > 10 K and
nd = 5× 1016 cm−3 in Ref. [39]. The temperature dependent of
the NSR rate is also measured in Ref. [36] which shows the effect
of phonon-induced relaxation for high magnetic field (1 − 13 T)
and T > 30 K. In Ref. [105], phonon mediated QP relaxation is
the dominant process above 30 K and the rate is proportional to
T 2. They measured the temperature dependency for some III-V
semiconductors and found out that like in the first measurement
on InSb Ref. [106], optical phonons are coupling stronger to III
nuclei than to the V nuclei. In Ref. [107], the NSR rate for two
isotopes 71Ga and 69Ga are measured. The result shows a linear
relation with T up to 250 K. However, for higher temperature the
NSR rate is ∝ T 3. If the sample is doped with magnesium, the
two phonon process is observed for T > 150 K. In Ref. [97] for
T > 20 K, the NSR is via two phonon QP effect for 69Ga in samples
with nd = 2.5× 1016 cm−3 and nd = 2.1× 1018 cm−3. The role of
phonon relaxation is also measured by others Ref. [108,109].

4.10.2. Electron Effect on the NSR Rate

The only fluctuating source left radiating into the nuclear spin bath
results from the spin relaxation of the localized donor electrons,
which has a distinct temperature dependence due to the joint con-
tribution of spin rotation via HFI and VRH. In the simplest case,
these fluctuations should contribute to an additional NSR rate:

ΓESR = AESR(τ−1
s,HFI + τ−1

s,VRH), (4.43)

where AESR is a dimensionless coupling constant. The process de-
scribes the heat contribution of the localized electron spin dynamics
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to the nuclear spin system. The ESR rate in Eq. 4.43 includes VRH
and HFI relaxation rates, τ−1

s,VRH +τ−1
s,HFI. The VRH relaxation rate

is deduced from Eq. 4.19. The relaxation rate from the HFI is cal-
culated via Eq. 4.26. The sum of two calculated rates of ΓESR+ΓD
yields a good agreement with the measured NSR.

Figure 4.12 shows ΓESR as a dashed magenta line with AESR
∼=

6.7× 10−10 being the only fitting parameter. The magnitude of the
phenomenological coupling constant is mainly given by the consider-
able difference between the nuclear and the electron spin dephasing
rate. The corresponding ESR rate has been calculated according to
the values and equations given in Ref. [27]. Please note that ΓESR
has thereby implicitly a dependence on the doping density via the
ESR rate’s doping density dependence. This context has not been
included in the calculated density dependence shown in Fig. 4.8
since (a) the ESR rate and especially the effect of HFI and (b) the
fraction of localized electrons decreases significantly with increasing
doping concentrations.

Molecular beam epitaxy samples with carrier densities of nd =
1.2× 1015 cm−3 and lower have not only a finite unintentional car-
bon background doping concentration but they might also have
other unintentional side effects like, for example, electric fields, elec-
tron depletion or free electrons from under- or overcompensation of
the surface Fermi level pinning. A quantitative study of this pro-
cess is beyond this thesis’s scope. In fact, the observed correlation
between Γ and ESR rate might also be coincidental.
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5. Conclusion & Outlook

This dissertation presents the electron and the nuclear spin relax-
ation rates in a contiguous set of accurately characterized n-type
GaAs samples, which covers a broad regime of nominal doping den-
sities from quasi-insulating over the Mott metal-to-insulator transi-
tion (MIT) up to the degenerate regime. The rates were measured
by Hanle depolarization of photoluminescence (PL) in a transverse
magnetic field. First, the width of the Lorentzian Hanle curve was
used to measure the electron spin relaxation (ESR) rate. The mea-
surements in combination with a theoretical analysis yield a precise
insight into the microscopic mechanisms which contribute to the
temperature and doping dependences of the ESR rate. The tem-
perature dependence of the ESR rate in the sample with a doping
density just below the MIT even shows a non-monotonic depen-
dence, such that the lowest ESR rate was found to be at ∼ 7 K
in this sample. This minimal rate does not occur at zero but at a
finite temperature since the dominating ESR mechanisms based on
variable range hopping (VRH) and hyperfine interaction (HFI) have
opposite temperature dependencies. For the samples at and above
the MIT, the effect of the VRH and the HFI was either small or even
negligible, and the Dyakonov Perel (DP) mechanism dominated at
all temperatures at which the DP mechanism shows in the highest
doped sample a clear transition from degenerate to non-degenerate
DP with increasing temperature. At high temperatures, the DP
mechanism dominates in all samples, as expected.

The electron and the nuclear spin systems are coupled via HFI.
Therefore, the electron spin polarization affects the nuclear spins
and results under appropriate conditions in a nuclear spin polar-
ization. This nuclear spin polarization induces a shift and a shape
change of the ordinary Hanle curve which enables the measurement
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5. Conclusion & Outlook

of the nuclear spin relaxation (NSR) dynamics. The NSR rate was
measured with a special three-stage protocol. In this method, the
system is first optically pumped. Subsequently, the difference of the
nuclear spin polarization before and after a dark interval was deter-
mined, which enabled measuring the NSR without perturbation by
excitation light. The NSR rate decreased in all measured samples
with increasing magnetic field. For fields stronger than the local
field BL, the main relaxation mechanism is the nuclear spin dif-
fusion towards donor centers. On the contrary, for lower magnetic
fields, the relaxation rate was enhanced due to spin-spin interaction.
The increase of the local magnetic field with doping density, is in
good approximation within the range of previously published values
from the literature. The doping dependence of the NSR rate was
measured in the strong field limit at a temperature of 6.5 K. The
extracted data shows that the NSR rate increases monotonically
with increasing doping density and reaches a maximum at the MIT.
The available high precision transport data, including the effective
number of localized electrons in each sample at 6.5 K, allowed the
quantitative calculation of the NSR rate. The calculation yields an
excellent agreement between experiment and theory and provided a
clear understanding of the involved NSR mechanisms, considering
only nuclear spin diffusion to the donor electrons as efficient killing
centers and Korringa spin relaxation from HFI with free electrons.
In fact, the spin diffusion constant was the sole, adjustable param-
eter in these calculations.

Only the measured NSR rate of the very lowest doped sample
shows a significant deviation from this quantitative model. Tem-
perature dependent measurements of this sample supported that
the effect of the Korringa mechanism was negligible. In addition,
the p-type background doping was much too small in this lowest
doped sample in order to a) yield a significant density of charged
defects and b) affect the NSR rate. In other words, fluctuating
quadrupolar fields played no significant role in NSR rate of this
sample. The probable cause was a nuclear spin heating process
by localized electrons with fast HF-induced ESR. Remarkably, the
effect of this channel on NSR rate was negligible at high doping

92



densities. Further experiments and theory are necessary to validate
this picture which was not within the scope of this thesis and should
be addressed in future experiments.

In general, the thesis provides inter alia a quantitative under-
standing of the ESR rate and the NSR rate in n-doped bulk GaAs.
This understanding could be the basics for future experiments on
other doped bulk GaAs samples.

On the one hand, the doping type of the sample should be con-
sidered. Some co-doping is unavoidable in molecular beam epitaxy
grown GaAs due to the presence of p-type carbon impurities. It
should be noted that, the co-doping was so small in the measured
high-quality samples in this thesis that it didn’t play any role in
either spin polarization or relaxation dynamics. However, samples
with higher co-doping densities are expected to affect both electron
and nuclear spin relaxation dynamics. In this case, more ionized im-
purities are in the system, and momentum scattering time increases.
Therefore, motional narrowing is more effective. The DP mechanism
will be the dominant relaxation mechanism and as a result, the ESR
rate increases. At the same time, the charged impurities result in an
electric field and affect the ESR rate. The quadrupole interaction is
zero in zinc blend structures in general. However, if the GaAs sam-
ple is co-doped, there could be quadrupolar effects from a fluctuating
electric field that affects the spins. Much faster ESR is also expected
in p-GaAs due to the exchange interaction with holes bound to the
acceptors, is more effective. Furthermore, a higher value for the
local field and a longer NSR are expected. Interestingly, the effect
of quadrupole could be as well strongly strain-dependent inherent
to microstructures. Therefore, the strain-induced quadrupole split-
ting between nuclear spin states could affect the NSR rate. This
effect has already been measured in microstructure GaAs samples
and semiconductor quantum dots [52] which emphasizes that cru-
cial attention should be paid to the structure of the samples while
measuring the NSR rate.

On the other hand, in this thesis, all of the measured GaAs sam-
ples were doped with Si with a binding energy of 5.8 meV. In these
samples, more ionized impurities can be found for higher tempera-
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5. Conclusion & Outlook

ture and/or higher doping. However, if the GaAs sample is doped
with higher binding energy impurities, the effective Bohr radius is
lower. The impurities are more localized, less free electrons are in
the valence band, and a higher excitation energy is needed. The
result would be lower electron spin polarization, and in turn, the
nuclear spin polarization will be also affected via the HFI. Besides,
the maximum ESR time for samples below the MIT. This might
result in a higher temperature of the minimum ESR compared to
the result of this thesis which was at ∼ 7 K for the sample just
below the MIT.
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A. Additional Information on
the Samples

The structure of the set of n-type GaAs samples measured in this
thesis is shown schematically in Fig. A.1, which is besides the doping
density in principle the same for all of them. The GaAs substrate
is followed by a 500 nm buffer layer and a thick superlattice of
alternately layered GaAs and Al0.3Ga0.7As in order to reduce the
number of defects and unintentional impurities. The latter has no
effect on the optical measurements due to the larger bandgap of
the superlattice relative to bulk GaAs. The samples also have two
capping layers with 10nm thickness and high doping concentration
of nd = 4× 1018 cm−3 and nd = 5× 1016 cm−3, respectively on top
and bottom of the epilayer of interest. The high doping of these
two layers avoids depletion. For the low doped samples (S1-S5),
an extra (AlGa)As capping layer of nd = 1× 1017 cm−3 reduces
any effect from the surface. The epilayer has a 2 µm thickness and
different nominal doping densities as nd = X × 1016 cm−3 where
X = 2, 4, 6, 8, 10, i.e., the doping ranges from the insulating to the
metallic regime including the MIT of GaAs (nd = 2× 1016 cm−3).
The doping densities are quantified by precise high temperature
Hall measurements [27] for all studied samples and are summarized
in Tab. 3.1.
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A. Additional Information on the Samples

450µm GaAs substrate 

500 nm GaAs buffer layer

superlattice 100×
(3 nm GaAs + 7 nm Al Ga As) 0.3 0.7 

10 nm GaAs, n  = 5 × d

16  -310 cm

2 µm GaAs, n  = X × d

16  -310 cm

capping layer,

500 nm Al Ga As, n  = 1 × 0.3 0.7 d

17  -310 cm

capping layer,

10 nm GaAlAs, n  = 4 × d

18   -3
10 cm

z

Figure A.1.: Schematic structure of the samples. The red arrow in-
dicates the growth direction “z”. The doping density of the epilayer
is a factor (X × 1016 cm−3) and ranges from the insulating into the
metallic regime (see Tab. 3.1).
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B. Additional Information on
the Hanle Calculations

The Hanle effect is based on the degree of circular polarization of the
light emitted by the recombining electrons and holes. The degree of
circular polarization of the luminescence equals the average electron
spin S along the observation direction n:

ρ = −S · n. (B.1)

The equation of motion for spins in an external magnetic field B
including the electron spin lifetime is in steady state [31,48,50]

dS

dt
= Ω× S − S

τs
− S

τr
+
S0

τr
. (B.2)

Here, S is the time-dependent spin orientation, Ω× S the spin pre-
cession, Ω the precession frequency, τs the spin relaxation time, S

τr
the spin relaxation due to radiative recombination of the conduction
and the impurity band electrons, and S0

τr
the spin generation rate.

The stationary case (dSdt = 0) yields for zero external magnetic field

S = Sz(0) =
S0

1 + τr
τs

. (B.3)

In the case where the external magnetic field is perpendicular to the
excitation direction (Voigt geometry), the component of the spin in
the z-direction for a given magnetic field and time is

Sz(B, t) = S0e
−t/τs cos(Ωt). (B.4)

The average measured value of Sz(B) is hence given by
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B. Additional Information on the Hanle Calculations

Sz(B) = S0

∫ ∞
0

1

τr
e−t/τr cos(Ωt)e−t/τsdt, (B.5)

Sz(B) =
Sz(0)

1 + (ΩTs)2
=

Sz(0)

1 + (geµBBextTs/~)2
,

where the electron spin lifetime is given as

1

TS
=

1

τS
+

1

τr
. (B.6)

The HWHM of the corresponding Lorentz curve (as shown in Fig.
3.1) is

BHWHM = ~/geµBTs, (B.7)

and allows measuring the intrinsic spin relaxation time by extrap-
olating intensity dependent measurement to zero excitation where
the effective τr is infinity and 1

τr
is zero, as explained in subsection

3.2.3.
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C. Summary of the Hall
Measurements

In order to explain the optical measurement regarding the ESR and
the NSR quantitatively, the results from the Hall transport measure-
ment are used. The Hall measurements have been carried out in
Ref. [10] on the same samples used in this thesis. With these mea-
surements, parameters such as the number of localized electrons,
the charge carrier concentration nH, and the number of electrons in
the conduction band ncb, are obtained. In addition, the measured
temperature-dependent conductivity helps to find the correlation
time τc, thereby explaining the involved spin relaxation mechanisms.
In the following, a summary of the Hall measurements is provided.
More details and results are explained in Ref. [10].

For each sample, an excitation current of I = 500 nA is sent
through a Hall bar of width W , length L, and depth d = 2 µm,
so that L

W = 1.5. Two voltages for transverse and longitudinal
components can be measured. The transverse (Hall) voltage is

Vxy = RH
I ·Bz
d

, (C.1)

with the Hall constant RH . The Hall carrier density is the inverse of
the measured Hall resistance nH = 1

eRH
. The longitudinal voltage

is:

Vxx =
I

σ

L

W · d
, (C.2)

where σ is the Hall conductivity and is used to derive the Hall
mobility µ = σ

ne . The momentum relaxation rate is 1
τp

= e
µm∗e

.
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C. Summary of the Hall Measurements

Figure C.1 shows the temperature dependent of the charge car-
rier concentration determined from the Hall resistance for sample
S1, S3, S6, and S10. The higher temperature part of conductivity
(red fit) gives the Hall densities at room temperature, which yields
the doping density in the high-temperature limit. In fact, at room
temperature, all curves approximate the donor concentration. The
doping from the high temperature fit is considered as a fixed pa-
rameter to fit the low temperature part of Fig. C.1 (green fit) and
find out the relevant parameters which are summarized in Tab. 4.1.
For more information on the fit functions, please see Ref. [10].

102



(a) (b)

(c) (d)

Figure C.1.: Measured doping density for samples a) S1, b) S3, c)
S6, and d) S10 in dependence of temperature. These measurements
were performed in Ref. [10].
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C. Summary of the Hall Measurements

(a) (b)

(c) (d)

Figure C.2.: Conductivity for samples a) S1, b) S3, c) S6, and d) S10
in dependence of temperature. These measurements were performed
in Ref. [10].
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D. Additional Information on
the DP Mechanism

The bulk inversion asymmetry is important for free electrons in
zinc-blende semiconductors like GaAs. The inversion asymmetry of
GaAs results from the presence of two different atoms in the Bravais
lattice giving rise to a spin splitting, which is proportional to the
projection of the spin on the angular momentum: ∆E ∝ S · L.
The SOI is responsible for optical spin orientation, detection, and
relaxation. This spin splitting can be described by a k-dependent1

magnetic field B(k) which applies a torque on the electron spin
magnetic dipole moment with Larmor frequency2

Ω(k) = (e/m)B(k). (D.1)

The corresponding Hamiltonian for electron precession in the con-
duction band and the related energy are [6]:

H(k) =
~
2
σ ·Ω(k), (D.2)

∆E = 2γDk3,

where σ is the spin Pauli operator and γD is the Dresselhaus con-
stant.

An important consequence of this k-dependent electron precession
in the intrinsic k-dependent magnetic field is the well-known DP
spin relaxation mechanism (Eq. 4.2) [78,79]. An illustration of this

1k is the crystal momentum.
2The Larmor frequency follows time-reversal symmetry (Ω(k) = −Ω(k)).
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k1

B(k )2

k2

Scattering event

B(k )1

B(k )2
B(k )1

Figure D.1.: Schematic illustration of the DP spin relaxation: A mo-
mentum dependent magnetic field (blue arrows) is induced by the
SOI around which the electron spin (black arrows) precesses. After
each scattering event, the direction of the magnetic field changes ac-
cordingly. In this way, the spin relaxation is suppressed by frequent
momentum scattering processes.

mechanism is shown in Fig. D.1. As far as the electron moves with
k1, the direction of the effective magnetic field is fixed. After a
scattering process, an electron moves with a k2 which is unequal
to k1 and therefore linked to a different effective magnetic field.
Each single scattering event does not make a significant change of
the spin orientation if the momentum scattering time is short in
comparison to the Larmor precession period. This regime of fast τp
is called motional narrowing. In fact, the spin dephasing is slow in
the motional narrowing regime if the momentum relaxation is fast.
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E. Additional Information on
the VRH Mechanism

The conductivity in low doped semiconductors and/or at low tem-
peratures mainly depends on different factors: (a) available free
states, (b) the distance Rij between donors, and (c) the energy
difference between the first and final state. This conductivity is
actually due to hopping from an impurity located at cite “i” to
another at cite “j”. The shorter the distance between these two
impurities, the more likely this hopping will occur, i.e., electrons
are no longer bound to just one donor. The interaction between
the donors increases with doping density and broadens the density
of states. However, for tunneling the energy difference between two
cites has to be Eij ≤ kBT . This second factor is opposite to the first
factor and indicates an increase in hopping probability by decreas-
ing the distance. Competition between these two factors causes an
optimal distance. The resulting optimal hopping distance depends
on the temperature and the thermal energy available. During this
hopping, VRH spin relaxation mechanism happens. For further de-
tails, see Ref. [10].
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Hübner. Whenever I had any questions, he was always available
and explained me. Even during the Corona pandemic, his virtual
office was always free to enter. Many thanks for all your patience
and kindness. Moreover, special thanks for all your valuable com-
ments on my thesis. By the way, I will never forget the birthday
congratulation I got from your children.

I would like to thank Prof. Dr. Ding for being the second exam-
iner, and I thank Prof. Dr. Korn for being the external reviewer
of this thesis. Moreover, I thank Prof. Dr. Frahm for heading the
examination committee of my defense.

I thank Dr. Jan Gerrit Lonnemann, who supervised me with
the first experiments on the NSR and the ESR measurements. I
learned a lot from you. Moreover, thanks for your accurate transport
measurements on the same samples of my PhD project which was
very helpful for the quantitative explanation of my results.

Many thanks to Pavel Sterin, who always helped me in the lab
with many helpful experimental tips and in the office with all python
errors. I really enjoyed working together on some parts of the ESR

131



data.
I also thank Dr. Julia Wiegand for teaching me experimental

techniques in the LNQE. Thank you very much for being always
supportive and encouraging me.

The time that I spent in office 131 with Dr. Hendrik Kuhn, Mag-
nus Neumann, Dr. Julia Wiegand, Dr. Michael Beck, Pavel Sterin,
and Tianjiao Sun, I never felt homesick. Thank you guys for all your
help, your suggestions on experimental issues, and all the enjoyable
moments. I thank Eduard Sauter, Kai Hühn, Andrè Frauendorf,
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