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Abstract

The calculation of prediction intervals based on historical control data obtained from bioassays is of inter-
est in many fields of biological research. In pharmaceutical and pre-clinical applications, such as immono-
genicity assays, the calculation of prediction intervals (or upper prediction limits) that distinguish between
anti-drug antibody positive responders and anti-drug antibody negative non-responders are of interest. In
(eco)toxicology several bioassays are run in order to study the toxicological properties of a given chemical
compound on model organisms (eg. its carcinogenicity or its impact on aquatic food chains). In this field of
research it is of interest to validate if the outcome of the actual untreated control (or the whole actual trial)
is in line with the historical information. For that purpose, prediction intervals can be computed based on
the historical control data. If the actual observations are covered by the interval, they are treated to be in
line with the historical information.
The first chapter of this thesis provides a detailed overview about the use of historical control data in the
context of biological trials. Furthermore, it reviews the data structure (dichotomous data, count data, con-
tinuous data) and the models on which the proposed prediction intervals ground. In the context of dichoto-
mous or count data, special attention is given to overdispersion which is commonly present in data that has
a biological background, but is usually not considered in literature regarding prediction intervals.
Hence, prediction intervals for one future observation that are based on overdispersed binomial data were
proposed. The coverage probabilities of this intervals were assessed based on Monte-Carlo simulations and
were substantially closer to the nominal level than prediction intervals found in literature that do not con-
sider overdispersion (see sections 2.1 and 2.2).
In several applications the response is a continuous variable that can be assumed to be normal distributed.
Anyhow, the data can be influenced by several random factors such as different laboratories that analyze
probes of several patients. In this case the data can be modeled by linear random effects models and pa-
rameter estimates can be obtained based on the restricted maximum likelihood approach. For this scenario,
two prediction intervals are proposed in section 2.3. One of this proposed intervals grounds on a bootstrap
calibration procedure that makes it applicable even in cases where a prediction interval for more than one
future observation is needed.
Section 2.4 describes the R-package ’predint’ that provides the bootstrap calibrated prediction interval (as
well as lower and upper prediction limits) described in section 2.3. Furthermore it provides prediction inter-
vals for at least one future observation for overdispersed binomial or count data that make use of a similar
calibration bootstrap as the prediction interval that is based on random effects models.
The key feature of this thesis is the derivation of prediction intervals for one or more future observations
that are based on overdispersed binomial data, overdispersed count data or linear random effects models.
To the authors knowledge, this is the first time that prediction intervals that reflect overdispersion are pro-
posed. Furthermore, ’predint’ is the first R-package available from the comprehensive R archive network
that provides functions for the application of prediction intervals for the mentioned models. Hence, the
methodology proposed in this thesis is publicly available and easy to apply by other researchers.

Keywords:
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Zusammenfassung

Die Berechnung von Vorhersageintervallen auf der Grundlage von historischen Kontrolldaten aus Bioassays
ist in vielen Bereichen der biologischen Forschung von Interesse. Bei pharmazeutischen und präklinischen
Anwendungen, wie z. B. Immonogenitätstests, ist die Berechnung von Vorhersageintervallen (oder oberen
Vorhersagegrenzen), die zwischen anti-drug Antikörper positiven Patienten und anti-drug Antikörper neg-
ativen Patienten unterscheiden, von Interesse. In der (Öko-)Toxikologie werden verschiedene Bioassays
angewendet, um die toxikologischen Eigenschaften einer bestimmten chemischen Verbindung an Modell-
organismen zu untersuchen (z. B. ihre Karzinogenität oder ihre Auswirkungen auf aquatische Nahrungs-
ketten). In diesem Forschungsbereich ist es von Interesse zu überprüfen, ob das Ergebnis der aktuellen
unbehandelten Kontrolle (oder der gesamten aktuellen Studie) mit den historischen Informationen über-
einstimmt. Zu diesem Zweck können Vorhersageintervalle auf der Grundlage von historischen Kontroll-
daten berechnet werden. Wenn die aktuellen Beobachtungen im Vorhersageintervall liegen, kann davon
ausgegangen werden, dass sie mit den historischen Informationen übereinstimmen.
Das erste Kapitel dieser Arbeit gibt einen detaillierten Überblick über die Verwendung von historischen
Kontrolldaten im Rahmen von biologischen Versuchen. Darüber hinaus wird ein Überblick über die Daten-
struktur (dichotome Daten, Zähldaten, kontinuierliche Daten) und die Modelle, auf denen die vorgeschla-
genen Vorhersageintervalle basieren, gegeben. Im Zusammenhang mit dichotomen Daten oder Zähldaten
wird besonderes Augenmerk auf Überdispersion gelegt, die in Daten mit biologischem Hintergrund häufig
vorkommt, in der Literatur zu Vorhersageintervallen jedoch meist nicht berücksichtigt wird.
Daher wurden Vorhersageintervalle für eine zukünftige Beobachtung vorgeschlagen, die auf überdispersen
Binomialdaten beruhen. Die Überdeckungswahrscheinlichkeiten dieser Intervalle wurden auf der Grund-
lage von Monte-Carlo-Simulationen bewertet und lagen wesentlich näher am nominellen Level als die in
der Literatur gefundenen Vorhersageintervalle, die keine Überdispersion berücksichtigen (siehe Abschnitte
2.1 und 2.2).
In mehreren Anwendungen ist die abhängige Variable kontinuierlich und wird als normalverteilt angenom-
men. Dennoch können die Daten durch verschiedene Zufallsfaktoren (zum Beispiel unterschiedliche La-
bore die Proben von mehreren Patienten analysieren) beeinflusst werden. In diesem Fall können die Daten
durch lineare Modelle mit zufälligen Effekten modelliert werden, bei denen Parameterschätzer mittels Res-
tricted-Maximum-Likelihood Verfahren geschätzt werden. Für dieses Szenario werden in Abschnitt 2.3 zwei
Vorhersageintervalle vorgeschlagen. Eines dieser vorgeschlagenen Intervalle basiert auf einem Bootstrap-
Kalibrierungsverfahren, das es auch in Fällen anwendbar macht, in denen ein Vorhersageintervall für mehr
als eine zukünftige Beobachtung benötigt wird.
Abschnitt 2.4 beschreibt das R-Paket predint, in dem das in Abschnitt 2.3 beschriebene bootstrap-kalibrierte
Vorhersageintervall (sowie untere und obere Vorhersagegrenzen) implementiert ist. Darüber hinaus sind
Vorhersageintervalle für mindestens eine zukünftige Beobachtung für überdisperse Binomial- oder Zähl-
daten implementiert.
Der Kern dieser Arbeit besteht in der Berechnung von Vorhersageintervallen für eine oder mehrere zukün-
ftige Beobachtungen, die auf überdispersen Binomialdaten, überdispersen Zähldaten oder linearen Mod-
ellen mit zufälligen Effekten basieren. Nach Kenntnis des Autors ist dies das erste Mal, dass Vorhersagein-
tervalle, die Überdispersion berücksichtigen, vorgeschlagen werden. Darüber hinaus ist "predint" das er-
ste über CRAN verfügbare R-Paket, das Funktionen für die Anwendung von Vorhersageintervallen für die
genannten Modelle bereitstellt. Somit ist die in dieser Arbeit vorgeschlagene Methodik öffentlich zugänglich
und kann von anderen Forschenden leicht angewendet werden.

Schlagworte:

Bioassay, Überdispersion, Zufällige Effekte, Quasi-Likelihood, Restricted Maximum Likelihood
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Abbreviations

ADA Anti-drug antibodies
CEBS Chemical Effects in Biological Systems
CRAN Comprehensive R archive network
GM Genetically modified
HCD Historical control data
NTP National Toxicology Program
PI Prediction interval
REML Restricted maximum likelihood
RITA Registry of Industrial Toxicology Animal-data
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Chapter 1

Introduction

In many fields of biological research such as toxicology, highly standardized trials are run following prede-
fined protocols or guidelines. Commonly, all of these trials use a certain experimental design (untreated
control group vs. several groups that received a treatment), a particular model organism (e.g. a given strain
of rats) and are run under standardized conditions. If the same type of trial is run several times, the knowl-
edge about the behavior of historical control groups rises with each trial that was run. Hence, the historical
control data can be used in order to verify the outcome of the actual control group or if needed the whole
actual trial. This is the aim of the following sections in this thesis.

1.1 Motivating example

In 2012 Seralini et al. released their study about the long term toxicity of a Roundup herbicide and a
Roundup-tolerant genetically modified maize (GM). This paper induced a medial echo far beyond the reach
of a usual scientific article. Furthermore, it induced a broad discussion among researchers that culminated
in several letters to the editor, comments and other forms of communication in which the study was crit-
icized. This huge amount of critique lead the Journal to retract the original paper [Seralini et al. 2014a].
Anyhow, the study was republished again in 2014 [Seralini et al. 2014b] in order to enable further scientific
discussions.
Seralini et al. 2012 performed a long term study (24 month) in which 100 virgin albino Spraque-Dawley
rats per sex were randomly assigned to one of ten cohorts. For each sex, one cohort served as an untreated
control that did not receive the Roundup herbicide or the genetically modified maize. The remaining nine
cohorts were treated either with the GM-maize, with the Roundup herbicide or with both. Hence, in each
sex, all cohorts were comprised of ten individual rats.
After 24 month (the end of the study), three out of ten female rats in the untreated control had developed
tumors, whereas fife to eight out of the ten female rats of the treatment groups developed at least one tumor
(p.4224 of Seralini et al. 2012).
Although Seralini et al. 2012 did not perform any statistical comparisons between the control group and
the treatment groups, the reported tumor rates and figures suggest an increase of the tumor incidence in
the treatment groups compared to the untreated control. This suggestion was criticized to be only random
variation [Seralini et al. 2014c].
One way to clarify such a suggestion, is the application of a statistical test in which the tumor rate of the
untreated control is compared to the rates of the treatment groups. Unfortunately, Seralini et al. 2012 did
not perform any statistical test nor provide the tumor rates for all of the nine treatment groups such that
a test on the complete data can be applied by others. Another possibility for the evaluation of the actual
tumor rates is to use historical information about the background tumor rate of female Spraque-Dawley
rats. For this purpose, historical control data (HCD) obtained from the untreated control groups of similar
trials can be used.
A graphical overview about tumor rates obtained from HCD together with the tumor rates reported by Ser-
alini et al. 2012 is given in figure 1.1. The historical control data about female Spraque-Dawley rats was
drawn from the Historical Controls Report 2020 of the National Toxicology Program (NTP). This report pro-
vides tumor rates of untreated control groups of long term studies (24 month) started between 2007 and
2012 [NTP 2021]. Since it is unclear if the tumor rates reported by Seralini et al. 2012 referred to the female
rats that developed a tumor regardless of its kind (total tumor rate) or to mammary tumors only, HCD for
both types is given.
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At first glance, it seems to be obvious that the tumor rate of the untreated control of Seralini et al. 2012 is
unusually low, compared to the historical control data (regardless if compared to the rates of total or mam-
mary tumors). Furthermore, if one follows the first visual impression, one might think that the reported
tumor rates of the treatment groups fit perfectly to the historical rates of mammary tumors and hence, Ser-
alini et al. 2012 interpreted only the random variation that has to be expected for female Spraque-Dawley
rats. However, this is a rather naive interpretation that neither considers the uncertainty of the observed
tumor rates nor the number of rats (10, 50, 90) on which the observed rates are based on.
Anyhow, this approach tries to answer the simple question: "Which of the actual tumor rates are in line with
the ones obtained in the historical data and which are not". From a statistical point of view, this question
can be answered by the application of a prediction interval that defines in which range one or more future
observations can be expected based on the historical data with a given error probability. Hence the applica-
tion of prediction intervals aims to provide cut points in order to distinguish if future tumor rates are in line
with the observations from the historical control data or not (which is the case if they are above the upper
cut point or below the lower cut point).

Figure 1.1: Historical control data for female Spraque Dawley rats obtained from the NTP Historical Con-
trols Database [NTP 2021] together with the tumor rates reported by Seralini et al. 2012. HCD total: Total
numbers of tumors; HCD mammary: Mammary gland (Fibroma, Fibroadenoma, Carcinoma, or Adenoma);
Seralini: Tumor rates reported by Seralini et al. 2012; Treat. max: Maximum tumor rate of the treatment
groups reported by Seralini et al. 2012; Treat. min: Minimum tumor rate of the treatment groups reported
by Seralini et al. 2012; Control: Tumor rate of the untreated control group reported by Seralini et al. 2012;
Cluster size: Number of rats (n) inside each treatment or control group; Tumor rate: Number of rats with
tumor (y) divided by its corresponding cluster size (n).
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1.2 Definition of HCD

According to Brooks et al. 2019, HCD can be defined as follows: "Historical control data are control data
compiled from similar studies, performed either before or after the concurrent study. The basic assump-
tion for using historical control data is that the past performance of test subjects under a particular set of
conditions is a good predictor of future or previous performance. They can therefore be used, together with
a concurrent control, to understand what a normal response is for a particular type of test subject under a
particular set of conditions, and therefore to help determine when a treatment response may be outside the
norm".
This definition implies, that theoretically, HCD can be obtained for almost all kinds of trials as long as histor-
ical control groups are comparable to the actual control group(s) with regard to experimental design, model
organism, living conditions etc. Hence, HCD is used in several fields of research such as clinical trials [Viele
et al. 2014], engineering [Young et al. 2016] or in mammalian toxicology [Deschl et al. 2002]. Recently, the
use of HCD is discussed in ecotoxicology as well [Brooks et al. 2019, Rotolo et al. 2021]. Anyhow, the fol-
lowing sections will focus on the use of HCD for trials with a biological background, especially on bioassays.

1.3 Definition of bioassays

The idea that adverse effects of a chemical compound on target organisms, such as humans or species of
a food chain in a given ecosystem, can be studied by its application to model organisms is more than a
hundred years old: One of the first trials one can call a bioassay was reported in 1918 and was carried out in
order to study if coal tar is carcinogenic for humans [Yamagiwa and Ichikawa 1918]. For this purpose coal
tar was applied on the ears of domestic rabbits since no case of spontaneous tumor growth on that organ
was known by the authors. Tumor rates were recorded after 70 and 150 days and it turned out, that 10 % to
100 % of the rabbit ears developed at least one tumor when treated with coal tar.
Although Yamagiwa and Ichikawa did not include an untreated control group in their study nor did any
statistical comparisons, their findings led them to the conclusion that the coal tar treatment induced the
observed tumors in the rabbits ears. The reason that, also nowadays, this conclusion seems to be plausible
is the fact that the reported tumor rates are much higher (up to 100 %) than the ones provided by the histor-
ical knowledge available in 1918 (0 %). In this context it is noteworthy, that even one century ago, historical
knowledge was used in order to verify the outcome of the actual trial.
Anyway, in the last century, many different kinds of bioassays for several purposes and scientific questions
were established. Even if the scientific question that should be answered by running a certain type of bioas-
say can be highly different between the fields of application, all bioassays have several things in common:

1. A certain type of model organism is used for a certain type of bioassay.

2. An untreated control group is compared to at least one (usually several) treatment groups.

3. The experimental design is highly standardized.

4. The amount of information regarding the (historical) control groups rises with each run.

1.4 Fields of application

One field of research in which HCD is routinely used is toxicology where carcinogenicity studies with rats
and mice are carried out routinely. Hence, the features by which HCD should be characterized to be a mean-
ingful source of information are discussed in that field [Brooks et al. 2019]. According to Hasemann 1995,
the recorded tumor rates of rats and mice can be influenced by several factors such as housing condition,
body weight or inconsistencies in histopathological diagnosis. Another factor that can influence the out-
come of the untreated control is genetic drift. Hence it is recommended not to use HCD regarding rats and
mice that is older than fife to seven years [Hasemann 1995, Elmore and Peddada 2009]. Anyhow, wider time
intervals might be appropriate if the tumor rates are stable over a longer time span [Keenan et al. 2009].
Furthermore, several sources for historical information are treated differently with regard to their origin:
HCD from the same laboratory that conducted the actual study is treated to be more comparable than HCD
compiled from the records of several laboratories. Furthermore, HCD that undergone a toxicological peer-
review process is favored over HCD that is not. The least favorable source of HCD is data that is published
elsewhere [Keenan et al. 2009].
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For many laboratories HCD is available inhouse. For example, the Evans Analytical Group LLC avian
toxicology laboratory maintains a data base with data for avian reproduction studies for the past 40 years
[Valverde-Garcia et al. 2018]. Igl et al. 2019 used HCD regarding the rat bone marrow micronucleus test that
was comprised of data obtained by four collaborating laboratories between 2001 and 2016. Nevertheless,
in some cases HCD might not be available inhouse and hence has to be obtained from elsewhere (e.g. if a
laboratory starts its work with a certain type of bioassay).
Tumor rates of rats and mice of the untreated control groups of long term carcinogenicity studies are pub-
licly available from the NTP Historical Controls Database [NTP 2021]. Another source for HCD of rats and
mice (and hamsters as well) is the Registry of Industrial Toxicology Animal database (RITA) which is main-
tained by the Fraunhofer Institute in Hannover, Germany [Deschl et al. 2002]. But, contrary to the NTP
reports, this database is freely accessible for members of the RITA project as well as for members of certain
research societies of toxicological pathology only [RITA 2021]. Anyhow, both data bases check their data for
plausibility prior to publication by using an internal peer review [Keenan et al. 2009].
Contrary to toxicology studies on mammals, HCD is not frequently used in ecotoxicology where a verifica-
tion of the impact of chemicals from antropogenic sources on wildlife is of interest (e.g. pesticides, biocides,
veterinary medicines and pharmaceuticals). Anyhow, in this field of research, the use of HCD is the objec-
tive of an ongoing discussion. Several fields of application of HCD in ecotoxicology such as avian repro-
duction studies which are a regulatory requirement for pesticides [Valverde-Garcia et al. 2018], fish full life
cycle studies or studies with non-target terrestrial plants are reviewed in Brooks et al. 2019. Furthermore,
the application of HCD to study egg hatching success and larval immobilization of the calanoid copepod
Acartia tonsa are reported by Rotolo et al. 2021.
Another field of research where HCD plays a role is pre-clinical safety assessment such as the detection
of anti-drug antibody (ADA) cut points in immunogenicity assays [Hoffmann and Berger 2011]. The cut
points are calculated based on a (historical) set of non-responders in order to classify future specimens into
ADA positive responders or negative non-responders [Schaarschmidt et al. 2015]. Please note, that further
information about the application of HCD with regard to bioassays can be found in Kluxen et al. 2021.

1.5 Statistical methods for the use of HCD reported in literature

Despite the fact that there seems to be broad agreement about the kind of historical data that has to be
collected to be valid enough for verification of actual trials, there is little guidance about the methods and
applications of HCD [Brooks et al. 2019]. Hence, several different approaches can be found in literature.

1.5.1 Inclusion of HCD to the statistical test procedure

The inclusion of HCD in statistical tests dates back to the early 1980ies [Tarone 1982] and was adopted by
several authors such as Kitsche et al. 2012. Anyhow, comparable procedures are frequently applied in the
context of clinical trials [Viele et al. 2014], but seem to play a minor role in the context of (eco)toxicological
bioassays and hence, are beyond the scope of this thesis.

1.5.2 Informal graphical comparison between HCD and the actual data

The informal comparison between HCD and the observations obtained from the actual trial (figure 1.2A)
as done in the motivating example (see 1.1) is in line with recommendations found in literature regarding
carcinogenicity studies [Keenan et al. 2009]. Anyhow, other authors recommend the depiction of historical
control data as a boxplot in order to give an overview about the properties of its empirical distribution [El-
more and Peddada 2009]. Another form of graphical comparison was proposed for ecotoxicological studies
with aquatic mesocosms [Brooks et al. 2019]. This kind of studies are used to evaluate the impact of plant
protection products on aquatic ecosystems. Since several model organisms are studied simultaneously
over a longer period (e.g. one year) the results of the untreated control group can be highly variable. Hence,
Brooks et al. 2019 used plots of model based predictions (mean curves) and their confidence intervals that
represent historical control data and compared them to the observed growth curves of an actual trial. Based
on this visual comparison, they concluded that the abundance of Daphnia was unusually low in their ac-
tual trial and hence, comparisons between the actual Daphnia control and their corresponding treatment
groups might be misleading.
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1.5.3 Calculation of intervals that define the level of "normal" background variation

Generally, three types of different statistical intervals [l,u] are reviewed in literature [Hahn et al. 2017] and
are commonly used in practical applications:

1. Confidence intervals

2. Tolerance intervals

3. Prediction intervals

Confidence intervals are computed based on an observed sample y in order to contain a parameter
or other property θ of the unknown population Y with a predefined coverage probability 1−α such that
P (l ≤ θ ≤ u) = 1−α. Since the estimation of the parameter estimate θ̂ gets more precise and its standard
error decreases with increasing amount of information (sample size) also the width of the confidence inter-
val decreases with an increase of information. Consequently, also the probability that a confidence interval
covers a future observation, instead of the desired population parameter, decreases with an increase of his-
torical observations.
Based on an observed sample, tolerance intervals are computed in order to contain a proportion of the units
from the unknown populations with coverage probability P (l ≤ γ(Y ) ≤ u) = 1−α. In this notation γ(·) is the
proportion of units from the unknown population Y . The use of tolerance intervals based on (historical)
control data is discussed for special applications like the definition of ADA cut points [Hoffmann and Berger
2011]. Nevertheless, tolerance intervals are beyond the scope of this thesis and hence, are not considered
below.
Prediction intervals (PI) are computed based on an observed sample y in order to contain one or more fu-
ture observations y∗ (or some function of them) with coverage probability P (l ≤ y∗ ≤ u) = 1−α. Prediction
intervals can either contain M = 1 future observation, M > 1 future observations, K out of M future ob-
servations or the mean of M future observations. Since, in the context of HCD, prediction is usually made
on the level of future observations rather than on their functions, only PI for M ≥ 1 future observations are
considered in the following sections.
Most of the literature about the application of HCD in toxicology provides simple methods to calculate in-
tervals (or cut points) that define the level of "normal" background variation such as the historical range, the
mean ± one or two times the standard deviation or simple confidence intervals for the historical mean [El-
more and Peddada 2009, Greim et al. 2003]. Furthermore, the use of boxplots as described above implicitly
provides cut points such as the lower and the upper empirical quartiles of the HCD. It is noteworthy, that all
these methods are proposed in order to define the "normal" background variation but what "normal" really
means in terms of statistical properties is usually not defined explicitly. Hence, the following paragraphs
provide a short review about these methods and their statistical properties (see figure 1.2).
Since the range reflects simply the minimum and the maximum of the historical control data, it is highly
influenced by extreme values. Due to this fact, the range will broaden with a rising amount of historical
data, resulting in an interval that will always cover the observations of the actual control, if the number of
historical observations is high enough (figure 1.2B). Hence, the coverage probability P (l ≤ y∗ ≤ u) = 1−α

is not defined in this approach. Therefore, several authors dissuaded from its use [Elmore and Peddada
2009, Keenan et al. 2009, Greim et al. 2003].
If the box of a boxplot is used as an interval (figure 1.2C), only the central 50 % of the observations of the
underlying distribution are considered as "normal" background variation. Hence, such a quartile based in-
terval should treat an actual observation as "abnormal" in 50 % of the cases where it is in line with the HCD,
given that the number of historical observations is high enough to properly estimate the quartiles. There-
fore, the coverage probability of this method is unclear, especially if the amount of historical observations
is low.
The use of confidence intervals in order to define the cut points for comparison between HCD and the ac-
tual trial was proposed in the context of long term carcinogenicity studies [Greim et al. 2003]. Anyhow,
a confidence interval should encompass a true parameter of the population, rather than additional ob-
servations, as is done when HCD is compared with actual data. With rising amount of observations, the
estimation of the parameter estimate gets more precise and its estimated standard error decreases. Conse-
quently, the width of a confidence interval decreases with an increase of observations (see figure 1.2D) as
well as the chance that a future observation is covered by the confidence interval.
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Figure 1.2: Methods for the validation of future data based on HCD. h: Number of historical observations;
Grey dots: Sampled historical data; Green dot: Future observation (sampled from the same distribution as
the HCD); Red vertical lines: Intervals defined by the respective method; Blue horizontal lines: Parameters
of the underlying distribution used for sampling (mean, Q25, Q75). The data was sampled from a binomial
distribution with cluster size 50 and probability of success set to 0.5.

Additionally to the assumption that both, the historical and the actual observations, descend from the
same data generating process, intervals calculated as mean ± one or two times the standard deviation (fig-
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ure 1.2E) assume that the data is normal distributed. If cut points are calculated as historical mean ± his-
torical standard deviation, the actual observation should be covered in roughly 68 % of the cases. If the
cut points are given as historical mean ± two times the historical standard deviation, the cut points will
cover the actual control in roughly 95 % of the cases. This kind of interval was proposed in the context of
long term carcinogenicity studies for the evaluation of tumor rates [Elmore and Peddada 2009, Keenan et
al. 2009]. But, rates descend from a binomial process (see section 1.6.1) and are usually not normal dis-
tributed. Anyhow, according to the central limit theorem, these intervals should cover the actual tumor rate
with the desired probability, if computed based on a high number of historical observations and if the rates
are close to 0.5, the midpoint of their parameter space. The closer the rates get to 0 or 1, the more skewed
the underlying distribution gets and hence, the coverage probability of this interval decreases. Hence its
application to real life data can not be recommended.
The only statistical interval that covers future observations with a predefined probability (usually 95 %)
is a prediction interval (figure 1.2F). It seems that prediction intervals are barely used in toxicology since
many authors are not aware of that method [Greim et al. 2003, Elmore and Peddada 2009, Keenan et al.
2009, Rotolo et al. 2021]. Nevertheless, the use of prediction intervals for the validation of actual trials as
well as reference values from guidelines was recently proposed for avian reproduction studies [Valverde-
Garcia et al. 2018]. Contrary to (eco)toxicology where the application of PI seem to play a minor role, the
use of prediction limits is discussed in the context of immunogenicity assays as one possible method to
define anti-drug antibody cut points that distinguish between ADA responders and non-responders [Hoff-
mann and Berger 2011, Schaarschmidt et al. 2015]. For this purpose, the ADA reaction of non-responders
is measured simultaneously together with samples of unknown status. Then an upper prediction limit is
computed based on the observations from the non responders. If the observed ADA reaction of a sample
with unclear status exceeds this limit it is treated to descend from a responder. Anyhow, the prediction
limits found in literature are only available for several special cases but are not applicable in a general way.

1.6 Data types and model assumptions

The mayor assumption that is made for the comparison of HCD with actual data using prediction intervals
is, that both kinds of observations descend from the same data generating process. Depending on the type
of study, the scale of the observations of interest can differ from each other.

1.6.1 Dichotomous data

If the endpoints are dichotomous such as numbers of rats with tumors vs. number of rats without tumors,
one can assume that this kind of data is binomial distributed such that

yh ∼ bi n(π,nh)

var (yh) = nhπ(1−πh). (1.1)

with and E(yh) = nhπ. In this notation π is the binomial proportion, nh is the size of h = 1. . . H clusters
(e.g. number of individuals in the hth historical study) and yh are the number of successes obtained from
the individuals of the hth cluster (e.g. rats with tumors).
Anyhow, most of the biological data that is assumed to be binomial has higher variability than possible
under binomial distribution and hence exhibits extra binomial variation which is also called overdisper-
sion [McCullagh and Nelder 1989, Demetrio et al. 2014]. Overdispersion can be caused by several reasons
such as positive correlations between the individual experimental units (e.g. if the average body weight dif-
fers between treatment groups and the chance of tumor induction rises with body weight). The opposite
effect that the variance of the data is smaller than binomial variance is called underdispersion. Anyhow
underdispersion is thought to be implausible in biological data since it would be caused by negative cor-
relation between experimental units (e.g. if one animal dies, the remaining animals live unusually long).
Further details on that topic are given in Demetrio et al. 2014. There are two approaches to model overdis-
persion: The quasi-likelihood approach (which is also called quasi-binomial) and the beta-binomial as-
sumption.

The first assumes a dispersion parameter that constantly inflates the variance for all observations such
that

var (yh)QB =φQB nhπ(1−π)

with E(πh) = π and E(yh) = nhπ and φQB > 1. For the latter, the data is assumed to be beta-binomial
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distributed such that

πh ∼ bet a(a,b)

yh ∼ bi n(πh ,nh)

var (yh)BB = nhπ(1−π)[1+ (nh −1)ρ] (1.2)

with E(πh) = π = a/(a + b), E(yh) = nhπ and ρ = 1/(1+ a + b). In this case the dispersion parameter
φBB

h = [1+ (nh −1)ρ] depends on the cluster size nh . Please note that φBB
h becomes constant if all of the H

clusters have the same size such that nh = nh′ = n. In this special case the quasi-likelihood approach and
the beta-binomial assumption can not be distinguished from each other.

1.6.2 Count data

In several bioassays the variable of interest is comprised of count data such as eggs per hen in avian repro-
duction studies [Valverde-Garcia et al. 2018]. A natural approach for modeling counts is to assume them to
be Poisson distributed

yh ∼ Poi s(λ)

E(yh) = var (yh) =λ

Here, yh are the counts in several historical studies e.g. yh eggs, counted in h = 1. . . H historical studies
and λ is the Poisson mean. Similar to binomial distributed data overdispersion is usually present in such
data and can be modeled as follows [Gsteiger et al. 2013, Demetrio et al. 2014]: The quasi-likelihood ap-
proach (also called quasi-Poisson) assumes that a constant dispersion parameter inflates the variance, such
that

var (yh)QP =φQPλ

withφQP > 1 and E(yh) =λ. Another approach for modeling overdispersed Poisson data is the negative-
binomial distribution where the means of the historical studies follow a gamma distribution with parame-
ters a and b, such that

λh ∼ g amma(a,b)

yh ∼ Poi s(λh)

var (yh)N B =λ+κλ2 =λ(1+κλ)

with E(yh) = λ = a/b and κ = 1/a. Here, the dispersion parameter is φN B = (1+κλ). Please note that
in the case in which several counted observations yh only vary around their expected value λ, both, the
quasi-Poisson and the negative-binomial assumption are not in contradiction with each other because the
dispersion parameters φQP and φN B are constant.

1.6.3 Continuous data

Several continuous measurements such as eggshell thickness or the ADA reaction can be assumed to be
(log-)normal, such that

yh ∼ N (µ,σ)

with yh as the observations in h = 1, . . . H historical studies, µ as the mean and σ as the standard de-
viation. This model is frequently considered in literature regarding statistical intervals [Hahn et al. 2017,
Hothorn et al. 2009, Igl et al. 2019]. But, for applications (eg. assays regarding ADA reaction) where the data
is influenced by several random factors, this model is far to simple.
If, for example, two samples from different patients were taken and the different patients were treated in dif-
ferent hospitals, the observations (samples) are systematically influenced by the random factors "patients"
and "hospital" such that the corresponding model is given by

yi j k = ai +b j (i ) +ek(i j )
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In this case the data should be modeled by using random effects models where the total variance of
the data is split into several variance components that correspond to the random factors such that ai ∼
N (0,σ2

a) are the random effects obtained for the hospotals, b j (i ) ∼ N (0,σ2
b) are the random effects for the

patients and ek(i j ) ∼ N (0,σ2
e ) are the residuals. A detailed description of random effects models, as well the

application of PI to data that is based on such models, is given in section 2.3.

1.7 The use of prediction intervals

The idea of the application of prediction intervals dates back to 1941 where Satterthwaite proposed "con-
fidence limits within which we may expect an additional item" as one of the motivating examples for his
widely used approximation of degrees of freedom. Since then, several prediction intervals were proposed
for dichotomous data, count data and for normal distributed data as well [Hahn et al. 2017]. Anyhow, these
prediction intervals need further adaptions, since they do not consider several sources of variability that
frequently occur in real life data.

1.7.1 Dichotomous data

Several methods for the calculation of prediction intervals for dichotomous data that ground on the bino-
mial distribution (see eq. 1.1) were proposed in literature and are reviewed in Hahn et al. 2017 as well as in
the supplementary materials of Menssen and Schaarschmidt 2019. Anyhow, none of these methods reflect
the fact that HCD is usually comprised of more than one historical study. Furthermore, they do not consider
overdispersion and hence, yield coverage probabilities below the nominal level, if overdispersion is present
in the data (see section 2.2).
According to Hahn et al. 2017, an asymptotic prediction interval for one future binomial distributed obser-
vation y∗ is based on the assumption that

ŷ −Y√
v̂ar (ŷ −Y )

= n∗π̂−Yp
v̂ar (n∗π̂−Y )

= n∗π̂−Yp
v̂ar (n∗π̂)+ v̂ar (Y )

(1.3)

can be approximated by a standard normal distribution. In this notation π̂ is the binomial proportion
estimated from the historical observations, n is the historical cluster size and n∗ is the size of the future
cluster. The corresponding prediction interval for one future binomial observation is given by

[l ,u] = n∗π̂± z1−α/2

√
n∗π̂(1− π̂)

(
1+ n∗

n

)
(1.4)

with v̂ar (Y ) = n∗π̂(1− π̂) and v̂ar (n∗π̂) = n∗2v̂ar (π̂) = n∗2[π̂(1− π̂)/n]. Please note, that this interval
was proposed for the application to one single historical study, rather than to HCD that is comprised of
several studies. Therefore, this PI neglects the effect of overdispersion that might occur in the data (e.g. due
to positive correlations between the individuals inside each historical study). Hence, the interval given in
eq. 1.4 needs further adaptions.
An asymptotic prediction interval for one future observation based on the quasi-binomial assumption and
observations from h = 1, . . . H historical clusters is given by

[l ,u] = n∗π̂± z1−α/2

√
φQB n∗π̂(1− π̂)

(
1+ n∗∑H

h=1 nh

)
(1.5)

with φQB > 1 if v̂ar (Y ) in eq. 1.3 is substituted by v̂ar (Y )QB =φQB n∗π̂(1− π̂).

If v̂ar (Y )BB = n∗π̂(1− π̂)[1+ (n∗−1)ρ̂] is substituted into eq. 1.3, an asymptotic PI based on the beta-
binomial assumption can be given by

[l ,u] = n∗π̂± z1−α/2

√(
n∗π̂(1− π̂)

[
1+ (n∗−1)ρ̂

])(
1+ n∗∑H

h=1 nh

)
(1.6)

in which v̂ar (π̂) = π̂(1−π̂)
N + N−1

N π̂(1− π̂)ρ̂ with N = ∑H
h=1 nh [Moore 1987]. Another prediction interval

that is based on the beta-binomial assumption can be given by an approach in which the parameters of the
beta-binomial distribution are estimated from the historical data. Then the PI is given by the quantiles of
the estimated beta-binomial distribution, such that

[l ,u] = [qα/2(â, b̂,n∗), q1−α/2(â, b̂,n∗)] (1.7)

with qα/2(·) as the α/2-quantile of the beta-binomial distribution with parameters â, b̂ and n∗.
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1.7.2 Count data

Several methods for the calculation of prediction intervals for Poisson distributed count data are reviewed
in Hahn et al. 2017. An asymptotic PI for one Poisson distributed future observation y∗ is based on the
assumption that

ŷ −Y√
v̂ar (ŷ −Y )

= n∗λ̂−Y√
v̂ar

(
n∗λ̂−Y

) = n∗λ̂−Y√
v̂ar (n∗λ̂)+ v̂ar (Y )

(1.8)

is approximately standard normal [Hahn et al. 2017] and the corresponding asymptotic prediction in-
terval is given by

[l ,u] = n∗λ̂± z1−α/2

√
n∗λ̂

(
1+ n∗

n

)
. (1.9)

Please note, that in this notation n is the number of units (eg. n = 5 hens) the historical observations y
(eg. eggs) are based on. The Poisson mean is estimated using n as an offset such that λ̂= y/n and n∗ is the
future number of units (e.g. n∗ = 3 hens). The adaption to historical data comprised of h = 1, . . . , H studies
in which overdispersion is caused by correlations of the units between the studies is given by

[l ,u] = n∗λ̂± z1−α/2

√
φ̂QB n∗λ̂

(
1+ n∗∑H

h=1 nh

)
(1.10)

with φ̂QB > 1.

1.7.3 Continuous data

Several prediction intervals are published in the context of normal distributed continuous data. According
to Hahn et al. 2017, a PI for one future observation y∗ that is based on one normal distributed historical
sample is given by

[l ,u] = µ̂± t1−α/2,d f =n−1

√
σ̂2

(
1+ 1

n

)
(1.11)

with µ̂ as the mean of the historical observations, n as the historical sample size and σ̂2 as the historical
variance and t1−α/2,d f =n−1 as the 1−α/2 quantile of the t-distribution with n −1 degrees of freedom.
Anyhow, this interval is far to simple in most of the practical applications where the observations are influ-
enced by several random factors (e.g. different laboratories testing different patients). Hence, such data is
usually modeled based on random effects models as described in section 2.3.
Prediction intervals based on random effects models can be calculated based on three different methods.
The oldest method is the calculation of a PI that grounds on parameter estimates that are estimated based
on mean squares and approximate degrees of freedom following Satterthwaite 1941. Other possibilities for
the calculation of PI based on random effect models are generalized prediction intervals that ground on
generalized pivotal quantities [Lin and Liao 2008, Al-Sarraj et al. 2019] or prediction intervals based on re-
stricted maximum likelihood (REML) estimation as proposed by Francq et al. 2019. Anyhow, all of these
methods have some drawbacks that limit their use in practical applications: The first two methods are pub-
lished only for special cases and are not available in a general way that is easy to apply by a user who is not
trained in programming and statistics. The third method is easy to apply in a general way, but lacks a proper
approximation of the degrees of freedom that are associated with the estimation of the prediction variance.

1.8 Bootstrap calibration

Generally, a statistical interval that should encompass the variable of interest θ with nominal coverage prob-
ability

Ψ= P
(
l (α) ≤ θ ≤ u(α)

)= 1−α (1.12)

can be expressed as

[
l (α),u(α)

]= θ̂±q1−α/2

√
v̂ar (θ̂). (1.13)
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In this notation θ̂ is the estimate for θ that was estimated based on the sample y and q1−α/2 is the
1−α/2 quantile of a certain distribution the interval grounds on (usually standard normal, t or χ2). If θ is a
parameter of the unknown population, eq. 1.13 represents a confidence interval. If θ is a proportion of the
unknown population, eq. 1.13 represents a tolerance interval. A prediction interval is given if θ is a future
observation.
Anyhow, in certain situations such as the application of asymptotic intervals (as described in sections 1.7.1
and 1.7.2) based on small sample sizes, the true coverage probability of the interval might not match the
nominal level 1−α. A remedy for this problem can be the application of bootstrap calibration.

1.8.1 Alpha calibration

Usually bootstrap calibration focuses on theαwith which the interval is computed and aims to find a coeffi-
cient δ that minimizes the difference between the the empirical coverage probability Ψ̂= P

(
l (δ) ≤ θ ≤ u(δ)

)
and the nominal coverage probabilityΨ= 1−α.

The corresponding algorithm is

1. Generate b = 1, . . . ,B parametric bootstrap samples based on θ̂ and v̂ar (θ̂), the parameter estimates
of the original sample.

2. For each of the bootstrap samples estimate θ̂b and v̂ar (θ̂)b .

3. Calculate B intervals of interest
[
l (δ),u(δ)

]
b = θ̂b ±q1− δ

2

√
v̂ar (θ̂)b

4. Calculate the empirical coverage probability Ψ̂=
∑

b Ib
B with

I = 1 if θ̂ ∈ [
l (δ),u(δ)

]
b

I = 0 if θ̂ ∉ [
l (δ),u(δ)

]
b

5. Alternate δ until Ψ̂ is satisfactory close to the nominal level ofΨ= 1−α
6. Calculate the calibrated interval based on the initial sample estimates θ̂ and v̂ar (θ̂) and the value of

δ for which Ψ̂−Ψ is minimal.

This kind of bootstrap calibration is usually referred to as alpha calibration and was proposed by Loh
1987 and reviewed in Efron and Tibshirani 1994. Please note, that a similar algorithm can be applied to
intervals that are directly based on quantiles of a certain distribution (such as the PI given in eq. 1.7). Since
then it was used by many authors for several fields of application such as multiple testing [Fan et al. 2007]
or the calibration of confidence intervals for conformance proportions [Lee and Liao 2012]. Anyhow, the
calibration algorithm given above, can be adapted to other problems.

1.8.2 Other forms of bootstrap calibration

In the context of tolerance intervals, the parameter γ(·) that defines the proportion of the unknown popu-
lation that should be covered by the interval, can be calibrated in a similar fashion as α. Schuetzenmeister
and Piepho 2012 provide an algorithm in which γ(·) is calibrated in order to yield simultaneous tolerance
bounds for studentized residuals.
If an interval should be computed based on random effects models, it usually grounds on a quantile of the
t-distribution for which the degrees of freedom are approximated following Satterthwaite 1941. Alterna-
tively, the algorithm given above can be adapted in order to approximate the degrees of freedom associated
with the standard error used for interval calculation such that

[
l (δ),u(δ)

]= θ̂± t1−α/2,d f =δ
√

v̂ar (θ̂). (1.14)

Finally, bootstrap calibration can be applied in order to calibrate the whole quantile the interval is based
on, such that

[
l (δ),u(δ)

]= θ̂±δ
√

v̂ar (θ̂). (1.15)

11



1.9 Software for the calculation of prediction intervals in R

R-code for the implementation of statistical methodology can be provided in several ways such as

1. Code snippets in the text of scientific publications

2. R-files or packages on GitHub

3. R-packages from the Comprehensive R Archive Network (CRAN)

Since the majority of R users only use packages that are provided via CRAN but do not download code
or packages from GitHub (or elsewhere) [Wickham and Bryan 2021] and each package on CRAN has passed
several quality checks, the following three sections distinguish between the source of R code that provides
functions for the calculation of prediction intervals.
It has to be noted that most of the methodology described below is not mentioned in the manuscripts
provided in section 2 because most methods do not match the experimental designs on which this thesis is
based on. Anyhow, the following sections give a short overview about the methodology regarding prediction
intervals that is implemented in R at the moment.

1.9.1 Code snippets from scientific publications

Code snippets for the calculation of several statistical intervals based on different methods or distributional
assumptions are provided in the textbook of Hahn et al. 2017. R code for the calculation of the simple pre-
diction intervals for M = 1 future observation based on one binomial or Poisson distributed sample (see eq.
1.4 and 1.8) can be found there. Anyhow, some of the code that is provided by Hahn et al. 2017 depends on
functions of an R package that is neither available from CRAN nor from Github, but only as a zip-file from
the homepage of their textbook (wiley.com/go/meeker). Since the package is not listed in CRAN it is de
facto unavailable for many potential applicants such as toxicologists who are not trained in programming.
Furthermore, the methodology provided by this package can not be easily used as a dependency for pack-
ages written by other programmers.
Francq et al. 2019 provide R code for the calculation of prediction intervals for M = 1 future observation
based on balanced and unbalanced random effects models in the supplementary material of their paper.
Anyhow, the code is not applicable anymore, since it depends on an R package (varComp) that was removed
from CRAN December 2017 [CRAN 2021]. Further details about this method and its current implementation
are given in section 2.3.

1.9.2 Developmental versions of R packages on Github

Prediction intervals for all of M or K out of M future observations, that are based on one historical sample
were proposed by Hothorn et al 2009. Implementations of their methodology are available in the package
predIntervals that can be downloaded from Github using the following code

devtools::install_github("daniel-gerhard/predIntervals")

Please note that this package also provides a generalization of the methods described by Hothorn et al
2009 to linear models fitted with stats::lm() that works for both, fixed effects models as well as regression
models.
The use of prediction intervals that are based on linear random effects models were proposed in the context
of ADA cut-point estimation [Schaarschmidt et al. 2015]. A corresponding package, called mixADA, can be
downloaded from Github with

devtools::install_github("schaarschmidt/mixADA")

This package provides mean square based prediction intervals for M = 1 future observation, following
the methodology of Satterthwaite 1941. At the moment the application is restricted to five experimental
layouts that are commonly used in the context of ADA cut-point estimation (one-way, two-way hierarchical,
two-way cross classified with and without interaction and a three-way layout with two factors crossed and
one nested). It has to be noted, that the methodology provided by mixADA is only applicable to balanced
data.
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1.9.3 R packages on CRAN

Methodology for the calculation of prediction intervals that are based on one unstructured sample of ran-
dom size was proposed by Barakat et al. 2014 for several continuous distributions and was recently imple-
mented in the package PredictionR [Barakat et al. 2020]. Since the package is available from CRAN it can be
downloaded with

install.packages("PredictionR")

Unfortunately, this package is barely documented, because it lacks any vigniette or readme file that
provide detailed examples for its application (also the description in the reference manual is rather short).
Anyhow, since the prediction intervals proposed by Barakat et al. 2014 depend on one unstructured sample,
rather than on a complex experimental design in which the historical data is influenced by several random
factors, it is not considered below.
The package predint (see section 2.4) provides prediction intervals as well as upper or lower prediction
limits for M ≥ 1 future observations that are based on linear random effects models or on overdispersed
binomial or count data. It can be loaded from CRAN by running the following code:

install.packages("predint")

The prediction interval that is based on linear random effects models is a direct implementation of the
bootstrap calibrated prediction interval that is proposed in 2.3. Therefore it is applicable to balanced and
unbalanced experimental layouts as well.
The functions that provide prediction intervals for overdispersed binomial data, are based on the asymp-
totic PI that were derived in equations 1.5 and 1.6. In order to enable prediction for M > 1, also these
intervals were bootstrap calibrated in the same way as the one for random effects models. Currently, boot-
strap calibrated prediction intervals for M ≥ 1 future observations based on overdispersed Poisson data are
implemented. But, contrary to the interval given in eq. 1.10, the implementation does not consider offsets
in its current form. An overview about the functionality of the predint package is given in table 1.1.

Table 1.1: Functions provided by the predint package

Function Description

lmer_pi()
Prediction intervals or limits for M ≥ 1 future
observations based on random effects models

beta_bin_pi()

Asymptotic prediction intervals or limits for M ≥ 1
future observations based on the beta-binomial
distribution

quasi_bin_pi()

Asymptotic prediction intervals or limits for M ≥ 1
future observations based on the quasi-binomial
assumption

quasi_pois_pi()

Asymptotic prediction intervals or limits for M ≥ 1
future observations based on the quasi-poisson
assumption

rbbinom() Sampling of beta-binomial data
rqbinom() Sampling of quasi-binomial data
rqpois() Sampling of quasi-poisson data
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1.10 Prediction intervals for the motivating example

Figure 1.3A shows exactly the same data as the graphic used as a motivating example (figure 1.1). Further-
more, prediction intervals for future proportions (tumor rates) that are based on the HCD indicate the plau-
sible background variation for M = 10 future control groups that are comprized of n = 10 female Spraque
Dawley rats, each. This approach reflects the experimental design that was used by Seralini et al. 2012 (ten
cohorts, each comprised of ten rats). Prediction intervals that are based on the beta-binomial distribution
(solid lines) were computed using the predint::beta_bin_pi() function. PI using the quasi binomial as-
sumption (dashed lines) were calculated based on predint::quasi_bin_pi(). Since it was unclear if the
tumor rates reported by Seralini et al. 2012 correspond to the total number of rats that developed a tumor
(HCD total) or to the number of rats that developed mammary tumors only (HCD mammary), PI for both
data sources were computed.
If the rates reported by Seralini et al. 2012 reflect the total number of rats with tumors (HCD total), the con-
clusion regarding the tumor rate of the untreated control depends on the distributional assumption: Based
on the beta-binomial PI it has to be treated as unusually low. Based on the quasi-binomial assumption it
is in line with the rate that can be expected for a cluster size of 10 rats. It is noteworthy that the quasi-
binomial PI for M = 10 future observations, each based on cluster size 10, comprises the whole parameter
space [l ,u]QB = [0,1].
If the rate of mammary tumors is considered, the control falls into the prediction intervals regardles of the
distributional assumption. Or, in other words: The tumor rates reported by Seralini et al. 2012 are in line
with the range that can be expected for 10 clusters, each of size 10, and hence, are simply caused by random
variation. Anyhow, also here the beta-binomial prediction interval is slightly shorter than the one that is
based on the quasi-binomial assumption.
The main problem that occurs if one wants to interpret the tumor rates of female Spraque Dawley rats given
by Seralini et al. 2012 is caused by the low number of rats per treatment group (cluster size of 10): The esti-
mation of tumor rates based on such a small amount of information is heavily imprecise which is reflected
by the extraordinary wide prediction intervals. This leads to the conclusion, that the differences between
the tumor rates reported by Seralini et al. 2012. are caused by random variation only.
In order to demonstrate the effect of the cluster size, prediction intervals for 10 future clusters comprised of
50 rats each, are given in figure 1.3B. The higher cluster size has lead to prediction intervals that are consid-
erably shorter than the ones computed based on a cluster size of 10. Anyhow, another factor that influences
the width of the prediction intervals, is the number of future clusters. If a prediction interval for M = 5
instead of M = 10 future clusters (each of size 50) is computed based on the HCD for the total tumor rate
(HCD total), the lower interval border increases to 0.546. If the PI is calculated for only one future obser-
vation, the lower border is 0.665 (and the upper border remains to be 1). This two effects show, that the
experimental design of Seralini et al. 2012 (high number of clusters, low cluster size) was unsuitable for any
profound statement regarding the tumor incidence caused by Roundup or Roundup-tolerant GM-maize.
The R-code used for this analysis is available on GitHub https://github.com/MaxMenssen/menssen_

2021_dissertation.
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Figure 1.3: A: Prediction intervals for 10 future observations each of cluster size 10, based on historical
control data for female Spraque Dawley rats obtained from the NTP Historical Controls Database [NTP
2021]. B: Prediction intervals for 10 future observations each of cluster size 50 using the same HCD as
in A. HCD total: Total numbers of tumors; HCD mammary: Mammary gland (Fibroma, Fibroadenoma,
Carcinoma, or Adenoma); Seralini: Tumor rates reported by Seralini et al. 2012; Treat. max: Maximum
tumor rate of the treatment groups reported by Seralini et al. 2012; Treat. min: Minimum tumor rate of
the treatment groups reported by Seralini et al. 2012; Control: Tumor rate of the untreated control group
reported by Seralini et al. 2012; Cluster size: Number of rats (n) inside each treatment or control group;
Tumor rate: Number of rats with tumor (y) divided by its corresponding cluster size (n); Solid vertical lines:
Prediction intervals based on the beta-binomial assumption; Dashed vertical lines: Prediction intervals
based on the quasi-binomial assumption.
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1.11 Contributions to the field

Prediction intervals for one future observation based on overdispersed binomial data are proposed in sec-
tion 2.1. For that purpose the asymptotic prediction interval for binomial data given in eq.1.3 was adapted
to overdispersion using the quasi-likelihood assumption (see eq. 1.5). Another PI that was proposed is
based on quantiles of the beta-binomial distribution (see eq. 1.7). Furthermore, both intervals were alpha-
calibrated using an approach in which δ was alternated based on a bisection algorithm (see step 5 of the
calibration process described in section 1.8.1). The coverage probability of the proposed PI was assessed
based on Monte-Carlo simulations. The simulated coverage probabilities of the proposed PI were substan-
tially closer to the nominal 1−α= 0.95 than the ones for prediction intervals that do not consider overdis-
persion (for a review of PI for binomial distributed data that neglect overdispersion see section 2.2).
Two prediction intervals based on linear random effects models and the estimation of variance components
via REML are proposed in section 2.3. The first PI grounds on generalized Satterthwaite approximation of
degrees of freedom and is only applicable to balanced data and usable for the prediction of one future ob-
servation. The second PI is based on a quantile calibration bootstrap and hence, is applicable to balanced
and unbalanced data as well. Furthermore the calibration bootstrap enables its application also for cases
where more than one future observation should be predicted (M ≥ 1). The coverage probability of the two
proposed prediction intervals as well as for four existing PI found in literature was assessed via Monte-
Carlo simulation. It could be shown that the simulated coverage probabilities of the quantile calibrated PI
approached the nominal 1−α= 0.95 in most of the cases or was at least comparable to the PI proposed by
other researchers.
Up to 2021 there was no R-package available from CRAN, that provides user friendly implementations of
prediction intervals for M ≥ 1 future observations based on overdispersed binomial or count data as well
as on linear random effects models. This gap was filled with the upload of the predint package for which
the reference manual is given in section 2.4. By now, methodology for the reevaluation of bioassays on the
base of prediction intervals is available and is easy to apply for other researchers (as demonstrated in the
motivating example).

1.12 Conclusions and future research

The present work was focused on prediction intervals that are either based on linear random effects mod-
els or on overdispersed binomial and count data. Prediction intervals for one future observation based on
overdispersed binomial data were proposed in section 2.1. Furthermore, an alpha-calibration bootstrap
procedure, which was later adapted for the purpose of quantile-calibration, is described in that section.
This quantile-calibration bootstrap was proposed in order to yield prediction intervals for M ≥ 1 future ob-
servations based on linear random effects models. Monte-Carlo simulations regarding the coverage proba-
bility of the proposed PI are given in section 2.3.
The quantile calibration bootstrap was also applied to yield the prediction intervals for overdispersed bino-
mial and count data that are provided by the R-package predint. As far as I know, these are the only publicly
available prediction intervals that are applicable to that kind of data. Anyhow, Monte-Carlo simulations
regarding their coverage probabilities are not available yet and are the concern of future work.
Several sources of historical control data such as the NTP reports or the HCD regarding avian reproduc-
tion described by Valverde-Garcia 2018 are based on summary statistics such as the mean and standard
deviation of the historical control groups, rather than on the original raw data. This approach might in-
crease the amount of residual variance that can not be explained, because several random factors such as
cages or pens by which a certain amount of variation could be explained are not present in the historical
data anymore (due to the averaging). Anyhow, in several laboratories or research institutes, the raw data of
historical trials might be available inhouse. Hence, prediction intervals that ground on generalized random
effects models, in which a predictor that is comprised of binomial or count data is modeled based on several
random factors, are the matter of the ongoing research.
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Bioassays are highly standardized trials for assessing the impact of a chemi-
cal compound on a model organism. In that context, it is standard to compare
several treatment groups with an untreated control. If the same type of bioas-
say is carried out several times, the amount of information about the historical
controls rises with every new study. This information can be applied to pre-
dict the outcome of one future control using a prediction interval. Since the
observations are counts of success out of a given sample size, like mortality or
histopathological findings, the data can be assumed to be binomial but may
exhibit overdispersion caused by the variability between historical studies. We
describe two approaches that account for overdispersion: asymptotic prediction
intervals using the quasi-binomial assumption and prediction intervals based
on the quantiles of the beta-binomial distribution. Both interval types were
𝛼-calibrated using bootstrap methods. For an assessment of the intervals cov-
erage probabilities, a simulation study based on various numbers of historical
studies and sample sizes as well as different binomial proportions and vary-
ing levels of overdispersion was run. It could be shown that 𝛼-calibration can
improve the coverage probabilities of both interval types. The coverage probabil-
ity of the calibrated intervals, calculated based on at least 10 historical studies,
was satisfactory close to the nominal 95%. In a last step, the intervals were com-
puted based on a real data set from the NTP homepage, using historical controls
from bioassays with the mice strain B6C3F1.

KEYWORDS

alpha-calibration bootstrap, beta-binomial, bioassay, extra binomial variation, quasi-binomial

1 INTRODUCTION

Bioassays are standard procedures for the assessment of the toxicological properties of chemical compounds. Such trials
are carried out under standardized conditions, using well-known model organisms that are exposed to increasing dosages
of a certain compound. Potential hazardous effects can be assessed by comparing dosage groups vs an untreated control.
In many cases, the treatment effect on the model organism is quantified like “rats with and without tumors” or “presence
and absence” of disease symptoms or histopathological findings. Hence, we assume the outcome of such studies to be
counts of two categories and therefore a dichotomous variable.

2652 © 2019 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2019;38:2652–2663.
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Due to restricted sample size, the inference drawn from these comparisons may have high rates of type-2 error. Because
the observed outcome of the study is a random variable, it may occur that the mean of the control group is extraordinarily
low, resulting in a test statistic that supports significant differences to the treatment groups although the substance under
control is not hazardous (type-1 error). In other words, this would mean that a safe substance is treated falsely to be
harmful. On the other hand, it could be possible that the outcome of the control is such high, and that the test statistic could
not state any significant differences to the treatment group, although in reality there are differences and the compound is
hazardous (type-2 error), meaning that a harmful compound is considered to be safe. Because the aim of most bioassays is
to show that a chemical substance is not hazardous, high rates of type-2 error have to be avoided. However, the conclusion
drawn from such studies depends strongly on the outcome of the control group, leading to a considerable lack of power,
especially if the baseline proportion and the effect size is small (see figure (1) of the supplementary material).

If the same type of bioassay is carried out several times using the same model organism, the amount of historical
information regarding the untreated control groups rises. This pool of information can be used to be compared with the
outcome of the actual control.

Simple strategies of summarizing historical control data are the computation of the range, the mean plus-minus the
standard deviation or a 95% confidence interval for the historical mean.1 However, these approaches have several dis-
advantages: Since the range is sensitive for extreme values, one single historical control with an extremely high or low
outcome can change the inference drawn from this method dramatically. An example for this is given by Keenan et al.2

Due to the robustness against extreme values, Elmore and Peddada3 proposed an informal comparison of the actual con-
trol group against the quantiles and the interquartile range (IQR) of the historical control groups. Neither the inference
drawn from the comparison of the actual control to the historical range (or IQR) nor the conclusion using the historical
mean plus-minus the standard deviation or quantiles considers any statistical error. Moreover, if the number of historical
studies is rather limited, the sampling error of quantiles leading to the IQR will be high. In addition, confidence intervals
for the expected mean of the historical data are inappropriate for comparisons with actual or future observations. Since
a confidence interval reflects only the variability of the mean and not the variability of the data itself, it becomes more
narrow if the number of historical studies is rising. Therefore, it will be more likely that a confidence interval excludes
the future observation than defined by the nominal 1 − 𝛼.

One appropriate way for taking historical information into account are Bayesian methods. Tarone4 provided a Bayesian
procedure to test for a trend in proportions that incorporates historical control data. This approach was adapted by
Kitsche et al5 to yield simultaneous confidence intervals for multiple contrasts between the actual proportions of the treat-
ment groups and the control. For this approach, the proportions were modeled with a beta-prior of which the parameters
were estimated from historical control data. Another approach that incorporates historical control data in a trend test is
given by Peddada et al.6 Furthermore, Leon-Novelo et al7 proposed a Bayesian procedure, incorporating historical con-
trol data as prior information, to determine whether an association between the exposure to the chemical compound and
tumor incidence exists or not.

An alternative method to account for historical information is the computation of prediction intervals that provide
lower and upper limits to encompass a single future observation with a prespecified probability. Several approaches for
prediction of one future binomial random variable based on one historical sample are given in the literature. An exact
procedure for interval calculation was proposed by Faulkenberry8 and was applied by Bain and Patel9 to binomial random
variables. This approach yields a hypergeometric distribution, for which they gave a normal approximation. A widely used
large sample approximation interval was given by Hahn and Nelson.10 This interval was reviewed by Nelson11 and Hahn
and Meeker.12 Wang13 developed a method to calculate the coverage probability of the Nelson interval for a given set of
parameters. Based on this calculation, he proposed an 𝛼-calibration method for the Nelson interval. Furthermore, Wang14

published a prediction interval that was constructed similar to the score confidence interval for the binomial proportion
given by Wilson.15 Another prediction interval that is based on the joint sampling distribution of both, the actual and the
historical observation, was proposed by Krishnamoorthy and Peng.16

The prediction intervals mentioned above may be disadvantageous for application in bioassays because they are based
on the assumption that only one historical sample is available, which is assumed to follow the binomial distribution.
However, experimental conditions may differ between historical studies, such that variability of historical control counts
may exceed the variability assumed in the binomial distribution (overdispersion or extrabinomial variability17). Several
different causes for overdispersion, like positive correlation between individual responses or variability between experi-
mental units, are reviewed in the literature.18,19 A simplistic attempt to deal with historical controls from several studies
might be to pool several historical studies treating them as one sample and construct the prediction interval based on this
pooled sample using the binomial methods above. If the data is indeed overdispersed, the resulting intervals will tend to
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be too narrow, resulting in coverage probabilities lower than the nominal level (1 − 𝛼). In other words, for the intervals
that are supposed to exclude a future value in only 5% of the cases, such an exclusion may occur considerably more often
if substantial overdispersion is ignored. Section 3 of the supplementary material illustrates this problem. Thus, prediction
interval methods are needed that account for possibly overdispersed binomial data.

More general approaches for the calculation of prediction intervals are based on predictive likelihood methods or on
quantiles derived from the predictive distribution for which Beran20 applied the idea of 𝛼-calibration, described, eg, in the
works of Efron and Tibshirani21 or Loh.22 This idea was used by Hall et al23 to yield improved prediction intervals resulting
in comparable coverage probabilities for both approaches. A bootstrap-based approach for 𝛼-calibration of quantile-based
prediction intervals for discrete observations was described by Fonseca et al.24 Although several general approaches for the
calculation of prediction intervals are given, none of them has been explicitly described and validated for the application
to overdispersed binomial data and sample sizes that are typical for toxicological applications.

In the following, we describe and compare methods for the computation of prediction limits that are based on historical
control data which is composed of several studies possibly exhibiting overdispersion. We start with a computation-
ally simple extension of the interval given by Hahn and Nelson10 to overdispersed binomial data. We will use the
approach of 𝛼-calibration via bootstrap to improve the coverage probability of this interval. Furthermore, we will show a
bootstrap-based approach that is based on 𝛼-calibrated quantiles of a beta-binomial distribution. The coverage probability
of these prediction intervals is assessed by a simulation study for a broad range of parameter settings, reflecting realis-
tic scenarios in toxicological applications. Finally, the methods are applied to real data sets containing historical controls
from bioassays using the mice strain B6C3F1. R-code to compute the proposed intervals as well as the data set regarding
our simulation results is available on github: https://github.com/MaxMenssen/Prediction-intervals.

2 MATERIAL AND METHODS

2.1 Notation
Let xk be the number of successes out of the historical samples of size nk with k = 1, …K as the index of the particular
study and K as the total number of studies available. Furthermore, let y denote the number of successes out of the future
sample of size m. We assume that xk and y are derived from the same distribution with the unknown proportion 𝜋. Our
objective is to determine prediction interval limits [l,u] such that P(l ≤ y ≤ u) = 1 − 𝛼. Computing the limits [l,u] on
the scale of a future count y is in line with the literature concerning prediction intervals for binomials. However, because
the future sample size m is assumed to be a known quantity, one may divide the limits [l,u] by m to yield limits [l∕m,u∕m]
of a prediction interval for a future observed proportion, y∕m, for all methods described in the following.

2.2 Overdispersed binomial data
Two different approaches are known to model overdispersed binomial data: The quasi-binomial approach assumes the
variance to be varQB(xk) = 𝜙QBnk𝜋(1− 𝜋) with 𝜙QB as a constant dispersion parameter that inflates the binomial variance
independently of the sample size. In this parametrization, the binomial assumption is fulfilled, if 𝜙QB = 1.

On the other hand, it is possible to model overdispersed count data by sampling from the beta-binomial distribution.
In this approach, the binomial proportions 𝜋k descend from the Beta(a, b) distribution resulting in different proportions
for each of the K historical studies such that

xk ∼ Bin(nk, 𝜋k) with 𝜋k ∼ Beta(a, b),

where E(𝜋k) = 𝜋 = a∕(a + b) and E(xk) = nka∕(a + b). Then, the beta-binomial variance of the counts is expressed by

varBB(xk) = 𝜙BB
k nk𝜋(1 − 𝜋) with

𝜙BB
k = 1 + (nk − 1)𝜌 and

𝜌 = 1
1 + a + b

,

with 𝜌 being the intra class correlation.25

If all nk are equal, 𝜙BB
k is a common factor for all observations xk, meaning that the quasi-binomial assumption is not in

contradiction with the mean-variance relation of the beta-binomial distribution.26 Or, in other words, in this special case,
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𝜙BB
k = 𝜙BB = 𝜙QB = 𝜙. To achieve data with a predefined amount of dispersion, given all nk are equal, we set nk = n

resulting in

a + b = (𝜙 − n)
(1 − 𝜙)

, (1)

a = 𝜋(a + b). (2)

2.3 The Nelson interval for binomial data (Nelson)
Assuming the absence of overdispersion, the prediction interval given by Nelson11 is based on the assumption that the
distribution of the prediction error is approximately normal

�̂� − 𝑦√
var(�̂� − 𝑦)

∼ N(0, 1),

with �̂� = m�̂� being the predicted number of successes out of m future observations. Assuming binomial distribution
(𝜙 = 1), one might pool

�̂� =
∑K

k=1 xk∑K
k=1 nk

. (3)

The prediction interval is given by �̂�± z1−𝛼
√

var(�̂� − 𝑦) with var(�̂� − 𝑦) = var(𝑦) + var(�̂�). In the binomial assumption
that does not incorporate overdispersion, the variance of y is var(y) = m𝜋(1 − 𝜋) and var(�̂�) = m2𝜋(1−𝜋)∑K

k=1 nk
. Hence, the

Nelson prediction interval, applicable to data sets with more than one historical study, is given by

�̂�± z1−𝛼∕2

√√√√m�̂�(1 − �̂�)

(
1 + m∑K

k=1 nk

)
.

2.3.1 Adaption of the Nelson interval to overdispersed data (Nelsonphi, Nelsonphi1)
If overdispersion is taken into account to calculate an improved Nelson interval, based on the quasi-binomial assumption,
the variance terms change to var(y) = 𝜙QBm𝜋(1 − 𝜋) and var(�̂�) = 𝜙QBm2𝜋(1−𝜋)∑K

k=1 nk
. Therefore, the variance for �̂�− 𝑦 becomes

var(�̂� − 𝑦) = 𝜙QB

[
m𝜋(1 − 𝜋) + m2𝜋(1 − 𝜋)∑K

k=1 nk

]
.

For the calculation of the interval, the unknown parameters are substituted by their estimates �̂� and �̂�QB. Following
McCullagh and Nelder,27 �̂�QB was estimated from the data set as follows:

�̂�QB = 1
K − 1

K∑
k=1

(xk − nk�̂�)2

nk�̂�(1 − �̂�)
. (4)

Therefore, the interval is given by

�̂�± z1−𝛼∕2

√√√√�̂�QB

[
m�̂�(1 − �̂�) + m2�̂�(1 − �̂�) 1∑K

k=1 nk

]
.

In the following sections of this paper, this interval is mentioned as the Nelsonphi-interval.
If all xk = nk or all xk = 0, �̂�(1 − �̂�) becomes 0, consequently, �̂�QB = 0. Thus, the Nelson intervals are not defined in

such cases. To overcome this problem heuristically, we used the following correction: If all xk = nk, we replaced x1 by
n1 − 0.5 and (n1 − x1) by (n1 − x1) + 0.5. If all xk = 0, we replaced x1 by 0.5 and n1 by (n1 − 0.5).

Underdispersion (𝜙 < 1) is thought to be implausible in the toxicological setting we consider because underdispersion
would be evoked by negatively correlated events within studies. That is, the death or presence of histopathological findings
in one animal would decrease the risk of death or histopathological findings for the remaining animals in the group.
Furthermore, the lower limit of variance in the beta-binomial distribution is the binomial variance, meaning that the
beta-binomial distribution does not allow to assume or simulate underdispersed data. Additionally, both estimates �̂�QB
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and �̂�BB are known to be biased.25,27 A simulation for the bias of both estimates is given in section 2 of the supplementary
material.

For those reasons, we investigated a modified version of the Nelsonphi-interval denoted as Nelsonphi1, setting �̂� = 1 if
underdispersion was observed in the historical data set. The Nelsonphi1-interval is given by

[l,u] = �̂�± z1−𝛼∕2

√√√√max(1, �̂�QB)

[
m�̂�(1 − �̂�) + m2�̂�(1 − �̂�) 1∑K

k=1 nk

]
. (5)

2.3.2 The 𝜶-calibrated Nelsonphi1-interval (Nelsonphi1_bisec)
We applied the idea of 𝛼-calibration to develop a bootstrap calibrated version of the Nelsonphi1-interval. The idea of this
approach is the bootstrap estimation of the coverage probabilities of intervals, which are calculated based on 𝛼-calibration
values 𝜆 instead of using the nominal 𝛼. Therefore, we replaced z1− 𝛼/2 by z1− 𝜆/2 in Equation (5) and searched for the
value of 𝜆 that brings the estimate for P(l < y < u) as close as possible to the nominal 1 − 𝛼 coverage probability. In the
following section, the estimated 𝜆 will be referred to as 𝛼calib.

Firstly, we draw b = 1, … ,B parametric bootstrap samples. For that purpose, �̂� and �̂�QB were estimated from the
historical data set 𝜏 = {xk,nk} according to Equation (3) and Equation (4) and the bootstrap samples 𝜏∗b = {x∗kb,nk} were
drawn from the beta-binomial distribution as follows: The beta parameters â and b̂ were estimated by plugging �̂�QB into
Equation (1) and �̂� into Equation (2). Subsequently, â and b̂ were applied to the beta-distribution to sample 𝜋∗

kb. Then, the
numbers of success x∗kb were drawn from the binomial distribution using nk and 𝜋∗

kb. Simultaneously, a validation sample
𝑦∗b for each of 𝜏∗b that contained only one beta-binomial observation was drawn with the same mechanism, such that

x∗kb ∼ Bin
(

nk, 𝜋∗
kb
)

with 𝜋∗
kb ∼ Beta(â, b̂)

𝑦∗b ∼ Bin
(

m, 𝜋∗
b
)

with 𝜋∗
b ∼ Beta(â, b̂).

Then, for each 𝜏∗b , �̂�∗
b and �̂�QB∗

b were estimated according to Equation (3) and Equation (4) and �̂�∗b was calculated as
�̂�∗b = m�̂�∗

b .
The second step is the calibration of the interval, conditional on the bootstrap samples. For that purpose, we used a

bisection algorithm that evaluates c = 1, … ,C calibration values (𝜆c) in order to minimize the positive distance between
the observed coverage probability Ψ̂c of the corresponding 𝜆c-interval and the nominal coverage probability Ψ, until this
distance is smaller than or equal to a given tolerance t such that 0 ≤ (Ψ̂c − Ψ) ≤ t.

In each of the c bisection steps, the Nelsonphi1-interval was calculated for each of the B bootstrap samples based on the
respective 𝜆c, such that

[lbc,ubc] = �̂�∗b ± z1−𝜆c∕2

√√√√max
(

1, �̂�QB∗
b

)[
m�̂�∗

b

(
1 − �̂�∗

b

)
+ m2𝜋∗

b

(
1 − 𝜋∗

b

) 1∑K
k=1 nkb

]
. (6)

The coverage probability of the 𝜆c 𝛼-calibrated interval Ψ̂c for covering 𝑦∗b across the B bootstrap samples was
calculated as

Ψ̂c =
∑B

b=1 Ibc

B
, with

Ibc = 1 i𝑓
(

lbc ≤ 𝑦∗b ≤ ubc
)

Ibc = 0 i𝑓
(

lbc > 𝑦∗b ∪ ubc < 𝑦∗b
)
.

The bisection started by defining an initial search interval for 𝜆c, such that 𝜆l < 𝛼 < 𝜆u. In each step of the algorithm,
the midpoint of the search interval was calculated as follows:

𝜆c =
𝜆l + 𝜆u

2
.

By updating either 𝜆l or 𝜆u with the 𝜆c calculated in the previous iteration, the search interval was bisected until (Ψ̂c−Ψ)
was minimized to a satisfactory level.
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Firstly, start values 𝜆1 = 𝜆l and 𝜆2 = 𝜆u were chosen for which the coverage probabilities Ψ̂1 and Ψ̂2 were estimated
as mentioned before. In the next step, 𝜆3 was calculated as the midpoint of the interval, like

𝜆3 = 𝜆1 + 𝜆2

2
, (7)

and Ψ̂3 was estimated. If Ψ̂3 − Ψ was positive, 𝜆4 was calculated by replacing 𝜆1 in Equation (7) by 𝜆3, such that

𝜆4 = 𝜆2 + 𝜆3

2
.

If Ψ̂3 − Ψ was negative, 𝜆4 was calculated by replacing 𝜆2 in Equation (7) by 𝜆3, such that

𝜆4 = 𝜆1 + 𝜆3

2
.

This iteration process was repeated until Ψ̂c − Ψ was minimized to a sufficient level and the corresponding 𝜆c was set to
be 𝛼calib. Due to the discreteness of the function of Ψ̂c − Ψ, we had to distinguish between six different cases for getting
the correct 𝜆c for setting 𝜆c = 𝛼calib:

1. It is possible that both Ψ̂1 and Ψ̂2 are smaller than 𝛼. In this case, Ψ̂1 − Ψ is the smallest value that can be detected
with the bisection approach and 𝜆1 is the calibration value with the coverage probability closest to the nominal 𝛼.
Therefore, we set

𝜆1 = 𝛼calib if (Ψ̂1 − Ψ) < 0, (Ψ̂2 − Ψ) < 0.
2. This is the opposite of case 1 with Ψ̂1 and Ψ̂2 bigger than 𝛼. Since 𝜆2 is the calibration value with the coverage

probability closest to the nominal 𝛼, we set

𝜆2 = 𝛼calib if (Ψ̂1 − Ψ) > 0, (Ψ̂2 − Ψ) > 0.

3. If the difference Ψ̂c − Ψ is minimized to an adequate level, such that (Ψ̂c − Ψ) ∈ [0, t], with t as the given tolerance,
stop the iteration process and take the corresponding 𝜆c to become

𝜆c = 𝛼calib if (Ψ̂c − Ψ) ∈ [0, t].

4. The given maximum of iteration steps C is reached and none of the three options mentioned above came true, leading
to three different cases.

4.1 If there are one or more 𝜆c for which the corresponding (Ψ̂c −Ψ) ∈ [0,−t], take the smallest 𝜆c for which this
condition is true.

4.2 If (Ψ̂c>1 − Ψ) < −t but (Ψ̂1 − Ψ) > t set 𝜆1 = 𝛼calib.
4.3 If some (Ψ̂c − Ψ) < −t and some (Ψ̂c − Ψ) > t but none of the (Ψ̂c − Ψ) ∈ [−t, t], take the biggest 𝜆c with

[(Ψ̂c − Ψ) − t] > 0.

The last step is the calculation of the calibrated Nelsonphi1-interval by using �̂� and �̂�QB estimated from the original
sample 𝜏 and 𝛼calib in stead of the nominal 𝛼.

[lcalib,ucalib] = �̂�± z1−𝛼calib∕2

√√√√�̂�QB

[
m�̂�(1 − �̂�) + m2�̂�(1 − �̂�) 1∑K

k=1 nk

]

This interval will be referred to as the Nelsonphi1_bisec-interval in the following sections.

2.4 Quantile-based prediction intervals (qBB, qBB_bisec)
Since the assumption was made that the future observation y descend from the same distribution as the historical obser-
vations xk, simple prediction intervals [l,u] can be given by the quantiles of the corresponding beta-binomial distribution,
such that l = q(𝛼∕2) and u = q(1 − 𝛼∕2). In this case, the overall proportion is given by 𝜋 = E(𝜋k) = a

a+b
and

𝜙BB
k = 1 + (nk − 1)𝜌, which depends on nk and the intra class correlation 𝜌. Since all nk are equal, such that nk = n, the

dispersion parameter 𝜙BB
k is a common factor for all K observations, resulting in 𝜙BB

k = 𝜙BB. Therefore, we can calculate
the interval depending on the estimates for the parameters 𝜋 and 𝜙BB such that

[l,u] =
[

q(𝛼∕2,m, �̂�, �̂�BB), q(1 − 𝛼∕2,m, �̂�, �̂�BB)
]
. (8)
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The proportion �̂� can be computed according to Equation (3) and �̂�BB can be estimated as follows:

�̂�BB = max[1.001, 1 + (n − 1)�̂�],

with �̂� as an estimator for the intraclass correlation that is calculated according to Lui et al.28 The calculation of �̂� is
given in the supplementary material. In the following sections, this simple quantile-based interval is referred to as the
qBB-interval.

We used the same 𝛼-calibration approach as described in Section 2.3.2 for increasing the coverage accuracy of the
qBB-interval, except that [lbc,ubc] were computed based on Equation (8) instead of Equation (6). The calibrated interval
will be called qBB_bisec-interval in the further sections of this paper.

We used the qBB() function from the gamlss R-package29 for the calculation of quantiles from the beta-binomial dis-
tribution. Since Rigby and Stasinopoulos29 worked with a slightly different parametrization, depending on the parameter
𝜎 and not on 𝜙BB, we used the following equation to convert �̂�BB into �̂�:

�̂� = �̂�BB − 1
n − �̂�BB

.

This reparametrization based on the estimator of Lui28 was necessary because the estimator for 𝜎 implemented in the
gamlss package showed convergence problems in a nonnegligible proportion of cases in the simulation study.

2.5 Simulation study
To assess the coverage probabilities of the different prediction intervals under various conditions, a simulation study was
carried out for R different parameter settings. For that purpose, historical data sets 𝜏rs = {xrsk,nrsk} were drawn from the
beta-binomial distribution with r = 1…R as the index for the parameter setting, s = 1… S as the index for the number
of replications, and k = 1…K as the index for the historical studies in each 𝜏rs.

The beta parameters ar and br were calculated according to Equation (1) and Equation (2) using predefined values for
𝜙r, 𝜋r, and nr = mr. Subsequently, the proportions 𝜋rsk were drawn from the beta distribution. Finally, the numbers of
success xrsk were taken from the Bin(nrsk, 𝜋rsk) distribution. A validation sample yrs containing only one beta-binomial
number of success was drawn from the same sampling process simultaneously with 𝜏rs, such that

xrsk ∼ Bin(nrsk, 𝜋rsk) with 𝜋rsk ∼ Beta(ar, br)
𝑦rsk ∼ Bin(mrs, 𝜋rsk) with 𝜋rsk ∼ Beta(ar, br) and

nrsk = nrs = mrs.

Then, for each of the historical data sets 𝜏rs, one prediction interval [lrs,urs] was computed and the coverage probability
Ψ̂r was calculated as

Ψ̂r =
∑S

s=1 Irs

S
with (9)

Irs = 1 if 𝑦rs ∈ [lrs,urs]
Irs = 0 if 𝑦rs ∉ [lrs,urs].

The calculation of the coverage probabilities Ψ̂r of the different intervals was based on S = 5000 independent observa-
tions for each of the R = 256 combinations of 𝜙 = (1.01, 1.5, 2.0, 3), 𝜋 = (0.01, 0.05, 0.1, 0.2), n = (30, 50, 100, 150), and
k = (5, 10, 20, 100).

The start values of the bisection were set to 𝜆1 = 0.00001 and 𝜆2 = 0.3 and the tolerance was given with t = 0.003.
The maximum number of iteration steps was C = 15. The 𝛼-calibration was done based on B = 1000 bootstraps. We are
aware that B = 1000 is a relatively small number of bootstraps, but we chose it with respect for computing time. For an
improvement of bootstrap accuracy in practical applications, where computing time is of less importance, we recommend
an increased number of bootstraps.
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3 RESULTS

If overdispersion is absent and, hence, the historical data can be assumed to be binomial, the simple Nelson interval
works reasonably well, except for 𝜋 ≤ 0.05, as depicted in figure 3 in the supplementary material. However, as far as 𝜙
increases, the observed coverage probabilities decrease rapidly.

The simulated coverage probabilities of the intervals that consider for overdispersion are depicted in Figure 1. The
coverage probability itself can be assumed to be a binomial proportion because it is drawn from a dichotomous process
(see Equation 9). Hence, the standard error of the nominal coverage probability Ψ = 0.95 can be computed as se(Ψ) =√

0.95·0.05
5000

= 0.00308, which is depicted by the dashed lines in the graphic.
If the dispersion parameter was taken into account, the coverage probabilities came closer to the nominal 1 − 𝛼 = 0.95.

The coverage probabilities of the Nelsonphi-interval raised with the increase of K but tend to be too liberal for almost
all settings we draw simulations from, except for K = 100 (overall median coverage probability of 0.950). The lowest
coverage probabilities were observed for K = 5 and ranged between 0.867 and 0.917. For K = 10, the range was found
to be 0.904 to 0.937. The coverage probabilities for K = 20 lay between 0.932 and 0.960 with a median of 0.937.

Restricting the estimated dispersion parameter to �̂� ≥ 1 (Nelsonphi1-interval) improved the coverage probabilities
for almost all given proportions, compared to the Nelsonphi-interval. The Nelsonphi1-interval tends to be slightly too
conservative, if the historical data was de facto binomial distributed (𝜙 = 1.01) since the coverage probabilities varied
around 0.96 in this setting. As far as overdispersion plays a role in the historical data, the interval became far too liberal,
but this effect was reduced with an increasing number of historical studies. If the number of historical studies was high
(K = 100), the observed overall median coverage probability (0.951) approached the nominal 0.95 coverage probability.

The 𝛼-calibration of the Nelsonphi1-interval (Nelsonphi1_bisec) results in coverage probabilities, closest to the nominal
0.95. However, if the number of historical studies is low (K = 5), the interval remains to be too liberal for higher values
of 𝜙. If the historical data can be assumed to be practically binomial (𝜙 = 1.01), the interval is slightly too conservative

FIGURE 1 Simulated coverage probabilities for the different prediction intervals. Panels: representation of the calculation method on the
x-axis and the given amount of overdispersion (𝜙) on the y-axis; colors: different binomial proportions (𝜋); solid line: nominal 0.95 coverage
probability (Ψ); black dashed lines: 0.95± se(Ψ); gray dashed lines: 0.95± 2se(Ψ)
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for lower numbers of historical studies. With an increasing number of historical studies, this effect reduces, such that for
k = 20, the nominal coverage probability is almost achieved (overall median coverage of 0.949) and most of the observed
coverage probabilities lay in the interval 0.95± 2se (gray lines in Figure 1).

If the number of historical studies k is small, the simple quantile-based approach (qBB-interval) results in coverage
probabilities that are far smaller or larger than the nominal 95%. For increasing k, the interval becomes too conservative
in the settings considered here: For more than k = 20 historical studies, the coverage probability is mainly affected by the
sample size (n) and the binomial proportion (𝜋) in a way that the coverage probability approaches 0.95 with rising sample
size and less extreme proportions. This effect was also present in a simulation using k = (500, 1000, 5000) historical
studies (data not shown) and can be explained as follows: As long as 𝜋 and nk are small, the lower prediction limit will be
0 with very high probability, such that only the upper prediction limit can actually exclude future counts y. Consequently,
the coverage probability will become close to 0.975 for nominal 0.95 intervals. This effect only decreases if either nk is
substantially increased or 𝜋 is not close to zero but is unaffected by an increasing number of historical controls, k.

The effect of 𝛼-calibration on the qBB-interval (qBB_bisec) is comparable to the effect on the Nelsonphi1-interval, except
that the coverage probabilities for historical data, in which overdispersion is practically absent (𝜙 = 1.01), are closer
to 0.95. On the other hand, for higher dispersion parameters, the qBB_bisec-interval is a little bit more liberal than the
calibrated Nelsonphi1-interval.

It has to be noted that the qBB_bisec-interval could not be computed in all 5000 simulation steps of eight parameter
settings. Six of these settings were combinations of N = 30, K = 5, 𝜙 = {2, 3}, and 𝜋 = {0.1, 0.5, 0.1}. The remaining
two settings were N = 30, 𝜋 = 0.1, and 𝜙 = 3 combined with K = {10, 20}. In these settings, the computation failed
between 2 and 22 times out of the 5000 simulation steps. If the computation of an interval failed, the interval was treated
as noncovering and therefore as Irs = 0 in Equation (9).

3.1 Real data example
For the application of the different intervals to real data, the NTP Historical Control Reports from 2013 to 2016 about
the mice strain B6C3F1 were downloaded from the NTP homepage.30 The reports contained long-term studies, started
between 2003 and 2011. If a study was present in more than one report, it was considered only once. To get information
about rarely, moderately, and frequently occurring events, we analyzed the data about hemangioma, malignant tumors
and mortality.

The data were given for different laboratories, sex, and pathways of exposure (gavage-corn oil, gavage-methyl,
inoculation-air, oral water, skin-acetone, and skin-ethanol). Each of the studies was conducted using 50 mice per sex in
the control group. The animals in the control group were treated similarly to those in the dose groups (same application
pathway), except that they were not exposed to the substance under study. To summarize the data, subsets for each com-
bination of pathway and sex, containing studies from different laboratories, were built (Figure 2). For each of the subsets,
the binomial proportion �̂� and the dispersion parameter �̂�QB were estimated according to Equation (3) and Equation (4).
Because only one study was available for the pathways skin-acetone and gavage-methyl, it was impossible to calculate the
dispersion parameter for both of the pathways. Therefore, both studies were excluded from further analysis.

Prediction intervals were calculated for the mortality of male mice that were exposed to the inoculation-air pathway.
The data set is given in table 1 of the supplemental material. For this data set, the binomial proportion was estimated to
be �̂� = 0.276 and the estimate for the dispersion parameter was �̂� = 1.308.

The calculation of the 𝛼-calibrated intervals was done using the same start values, maximum number of iteration steps,
and tolerance that were used in the simulation study. The only change was an increased number of bootstraps from
B = 1000 to B = 10000 to increase the bootstrap accuracy.

The intervals are given in Table 1. Because the simple Nelson method does not consider overdispersion, it results in
the most narrow interval [7.30, 20.29]. Due to the fact that the estimated dispersion parameter is higher than one, the
Nelsonphi- and Nelsonphi1-intervals are exactly the same [6.37, 21.23]. The alpha calibration of the Nelsonphi1-interval
(Nelsonpi1_bisec) yields the widest interval [6.09, 21.50] using 𝛼calib = 0.03985 instead of 𝛼 = 0.05.

4 DISCUSSION

In literature regarding practical applications, it is common sense that the best approach to assess the toxicity of a chemical
compound is the comparison of exposed animals with a concurrent control group.3 Nevertheless, historical data is seen
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FIGURE 2 Estimated binomial proportion �̂� and dispersion parameter �̂� for the mice control data. gc, gavage cornoil; gw; gavage water;
ia, inhalation air; ow, oral water; se, skin ethanol

TABLE 1 Prediction intervals for the
mortality of male B6C3F1-mice exposed to
the inoculation air pathway (m = 50)

Names Lower Upper 𝜶

Nelson 7.30 20.29 0.05
Nelsonphi 6.37 21.23 0.05
Nelsonphi1 6.37 21.23 0.05
Nelson_bisec 6.09 21.50 0.0399
qBB 7 21 0.05
qBB_bisec 7 21 0.0516

Note that the solution of the two calibrated inter-
vals depend on a bootstrap procedure. Hence, the
results of a second run can be slightly different for
both intervals.

as an additional source of information, but no consistent way of usage is formulated in guidelines yet.1 A procedure for
using historical control data in a standardized way is the calculation of a prediction interval since it is a method with
well-defined statistical properties that reflects both the variability of the mean and the variability of the complete data.
In literature, different prediction intervals for dichotomous data can be found. If several historical studies are available,
one might pool these studies and apply methods assuming binomial distribution. However, this approach neglects the
extravariability that can be noticed between the studies (overdispersion), resulting in prediction intervals with coverage
probabilities far less than the nominal 1 − 𝛼 = 0.95 (see figure 3 in the supplementary materials). It was possible to show
that overdispersion is an important factor that has to be considered because the intervals coverage probabilities came
closer to the nominal 1 − 𝛼 = 0.95 (Figure 1) or reached that level, if the amount of historical studies was high.

For modeling overdispersion, we used two different approaches: The prediction interval of Hahn and Nelson10 was
extended, assuming an overdispersion parameter that is equal for all observations using the quasi-binomial assumption.
In a second approach, prediction intervals are based on the quantiles of the beta-binomial distribution for which the
dispersion is assumed to depend also on the sample sizes. The 𝛼-calibration of both interval types results in coverage
probabilities notably closer to the nominal level of 95% than for the uncalibrated intervals. The coverage probabilities of
the proposed intervals depend on the binomial proportion of the events, on the extent of extravariability (overdispersion)
and on the number and sample size of available historical control groups. If overdispersion was practically absent, the
𝛼-calibrated quantile-based interval yields prediction bounds that reach the nominal coverage probability or that are
slightly too conservative. In all other settings, the coverage probabilities of the 𝛼-calibrated Nelsonphi1-interval are closer
to the nominal level than for the interval that was based on calibrated quantiles. With an increasing number of historical
studies, the coverage probabilities of the intervals depicted in Figure 1 converge to the nominal level (except for the
simple qBB-interval). The coverage probabilities of the 𝛼-calibrated intervals approached the nominal 1 − 𝛼 = 0.95
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to a satisfactory level. If the intervals were based on 10 historical studies, the coverage probability was at least 93% and
higher than 94% if 20 historical controls were considered. If the intervals are computed based on five studies, the nominal
level is not reached by any of the methods. Based on the simulation results, we recommend to always use one of the
two 𝛼-calibrated methods. If less than 10 studies are available, the 𝛼-calibrated methods still are the best. However, the
coverage probability may be considerably lower than the nominal 95%.

It may seem useful to calculate prediction intervals based on the maximum number of historical studies available,
following the simple principle “the more the better.” However, improvidently increasing the number of historical studies
may lead to the inclusion of studies with genetically different strains, handling or feeding. In consequence, the actual
dispersion in the data will increase and cause unnecessarily wide and less precise intervals. Although there is a demand
for a high number of historical studies, this amount of historical information should be chosen with regard to biological
reasons in a way that the impact of biological variation, such as changing population genetics of the model organism over
time,1 is not increased.

Following the research of Keenan et al,2 the maximum age of historical studies, which should be used for analysis,
varies between two and five years, depending on the guideline or the field of research. Hence, the maximum age of the
studies used for the calculation of prediction intervals should be a compromise that, on the one hand, reflects the statistical
demand for a large number of historical control groups and that, on the other hand, carefully consults the given biological
restrictions.

In our simulation, we sampled data with equal sample size across historical studies. In highly standardized bioassays,
equal sample sizes are the most relevant case. Furthermore, this setting allows to jointly consider prediction intervals that
either rely on the quasi-binomial or the beta-binomial assumption. In consequence, our recommendations and our esti-
mation of the coverage probability are restricted to the case of equal sample sizes. However, it should be noted that the
uncalibrated overdispersed Nelson-type intervals as well as methods based on raw and calibrated beta-binomial quantiles
can be applied in situations with varying sample size nk between historical studies. Only the calibrated Nelson interval
would need some adjustment for variable sample sizes because, in the current definition, the sampling step in the boot-
strap calibration relies on different assumptions that are used for the computation of the uncalibrated prediction limits
and �̂�QB.

Due to the fact that most model organisms are assigned to subgroups (for example, cages or origin from the same litter),
the randomization structure can be more complex than assumed in the present study. Therefore, an extension of the given
prediction intervals or intervals drawn from generalized linear mixed models, reflecting more complicated randomization
structure of the experiments will be an issue for future development.
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Prediction intervals for overdispersed binomial data with application to historical controls

1 Power to detect difference to concurrent control

Bretz and Hothorn (2002) provide methods to compute power of a Dunnett test for binomial

proportion. Figure 1 shows the any-pair-power of a one-sided Dunnett test for increasing

proportion in three treatments compared to a control, with proportions πi, i = 1, ..., 4,

and sample sizes ni, i = 1, ...., 4. The proportion in the control π1 is set to small values:

π1 = 0.01, 0.02, 0.05 or 0.1 while in one treatment (e.g. highest dose, π4) or two treatments

( e.g. mid and high doses, π3, π4) the proportion is assumed to be increeased by factor 2, 3,

or 4 compared to the control proportion.

Figure 1: Anypair power of one-sided Dunnett-type test for comparing three treatment

proportions to a control proportion.

1
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2 Bias of φ̂

To assess the bias of φ̂, data sets were drawn from the beta binomial distribution as described

in section 2.5 of the paper. The data τττ = τ11...τRS was generated with r = 1, ..., R as the index

of all possible combinations of φ = (1.01, 1.5, 2.0, 2.5, 3), π = (0.01, 0.05, 0.1, 0, 2, 0.3, 0.4, 0.6, 0.8),

n = (30, 50, 100, 150) and k = (5, 10, 20, 100) and s = 1, ..., S as the number of simulations

with S = 5000. For each data set the dispersion parameter φ̂rs was computed. Then, the

estimated mean dispersion was computed over all simulations as
¯̂
φr =

∑S
s=1 φ̂rs
S

. Subsequently,

the relative bias was calculated as
¯̂
φr/φr.

The estimate, based on the quasi-binomial assumption φ̂QB was calculated according to

equation (11) of the paper and was restricted to φ̂QBAdj = max(1, φ̂QB). Based on the

assumption of beta-binomial distributed observations the estimate φ̂BB was calculated as

φ̂BB = 1 + (n− 1)ρ̂ and was set to φ̂BBAdj = max(1.001, φ̂BB). The relative bias of all four

estimates is depicted in figure (2).

Except for the case, that the amount of historical information is considerably high (K=100)

all four estimates are negatively biased for small π. If overdispersion plays no role in the

historical data, both estimates that do not account for underdispersion (φ̂ < 1) are positively

biased. This effect decrease if the amount of historical studies is increasing.

2
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Figure 2: Relative bias of φ̂.

Columns of the subfigures represent different sample sizes (n). The number of historical

studies (k) is given by the rows of the sub-figures. Different binomial proportions are

indicated by colors. The different amount of overdispersion is given by the shapes.

3
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3 Coverage probabilities of simple prediction intervals

The simulation for getting the coverage probabilities of the simple intervals was carried

out as described in section 2.5 of the paper. The interval mentioned as the baipat-interval

was calculated according to eq. (11, 12) in Bain & Patel (1993). The Wang-interval

was computed according to Wang (2010) eq. (6, 8). The krishpeng-interval was given

by Krishnamoorthy & Peng (2011) eq. (12) and the Nelson-interval was calculated

according to eq. (9) in section 2.3 of this paper. Since the intervals were developed for

one binomial sample, the historical information was pooled such that n =
∑K

k=1 nk and

π =
∑K

k=1 yk∑K
k=1 nk

. Since the approach of pooling the historical information to one sample does not

account for overdispersion, the coverage probabilities decrease with an increasing dispersion

parameter. The estimated coverage probabilities are depicted in fig (3).

Figure 3: Coverage probabilities of the simple prediction intervals.

For each amount of overdispersion one subfigure is given. Different binomial proportions are

indicated by colors.

4
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4 Historical data

The data set that was used for the example (section 3.1) is given in table 1. The data was

downloaded from the NTP-homepage and was processed as described in section 3.1.

Table 1: Mortality of male B6C3F1-mice exposed to the inoculation air pathway

Report Start Lab Dead Total

2016 2009 bn 15 50

2016 2011 bn 10 50

2015 2008 bn 12 50

2015 2009 bn 12 50

2013 2003 bn 13 50

2013 2006 bn 11 50

2013 2003 bn 19 50

2013 2008 bn 11 50

2013 2003 bn 14 50

2013 2005 bn 21 50

5
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5 The calculation of ρ̂

The estimated intra class correlation Lui et al. (2000) can be calculated as

ρ̂ =
BMS −WMS

BMS +WMS(ω − 1)
with (1)

BMS =

∑K
k=1(x

2
k/nk) − (

∑K
k=1 xk)

2/(
∑K

k=1 nk)

k − 1
, (2)

WMS =

∑K
k=1 xk −

∑K
k=1(x

2
k/nk)∑K

k=1 nk − 1
and (3)

ω =
(
∑K

k=1 nk)
2 −∑K

k=1 n
2
k

(k − 1)
∑K

k=1 nk
(4)
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Summary
Inmany pharmaceutical and biomedical applications such as assay validation, assess-
ment of historical control data or the detection of anti-drug antibodies, the calculation
and interpretation of prediction intervals (PI) is of interest. The present study pro-
vides two novel methods for the calculation of prediction intervals based on linear
random effects models and REML estimation. Unlike other REML based PI found in
literature, both intervals reflect the uncertainty related with the estimation of the pre-
diction variance. The first PI is based on Satterthwaite approximation. For the other
PI, a bootstrap calibration approach that we will call quantile-calibration was used.
Due to the calibration process this PI can be easily computed for more than one future
observation and based on balanced and unbalanced data as well. In order to com-
pare the coverage probabilities of the proposed PI with those of four intervals found
in literature, Monte Carlo simulations were run for two relatively complex random
effects models and a broad range of parameter settings. The quantile-calibrated PI
was implemented in the statistical software R and is available in the predint package.
KEYWORDS:
Satterthwaite approximation, bootstrap calibration, historical control data, anti-drug antibody, assay
qualification

1 INTRODUCTION

Prediction intervals (PI) are statistical intervals that are computed based on an observed sample in order to contain one ore more
future observations with a given degree of confidence. Usually, it is assumed that the observed sample as well as the future
observation(s) descent from the same data generating process. Hahn & Meeker1 and Hahn et al.2 give a detailed review about
methods for the computation of different PI based on one sample in which the observations vary around the mean. These dif-
ferent prediction intervals should contain either one future observation, the future mean, all ofM ≥ 1 future observations or K
out ofM future observations.
Prediction intervals can be applied to several statistical problems and are of use in many scientific fields. In the context of
pharmaceutical applications, Francq et al.3 used prediction intervals for assay qualification. More examples for the usage of
prediction intervals for process validation are given by Hahn &Meeker1 or in the context of gauge repeatability and reproduca-
bility experiments4. Also in preclenical statistics and toxicology, PI can be useful. In this field of research, the verification of an
actual control group by the use of historical control data (HCD) is heavily discussed5,6. Nevertheless, the methods proposed for
that purpose (e.g. historical range or historical mean plus minus standard deviation) are rather naive and many authors are not
aware, that prediction intervals for one or more future observations (depending on the purpose) can be applied to that problem.
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Another field of application occurs in early phases of drug development such as the detection of anti-drug antibodies (ADA)8,9.
In such a bioassay, the antibody reaction is evaluated for a set of non-responders as well as for patients with unclear status.
Following Schaarschmidt et al.10 upper prediction limits can be computed for a sample of putative non-responders in order to
compare this limit with the outcome of the patients with unclear status. If the ADA-reaction for such a patient falls above the
limit, the patient might have developed anti-drug antibodies8.
For all the applications mentioned above, the sampling is usually done based on several factors that may influence the outcome
of the study (e.g.many patients are analyzed by different experimenters in different hospitals). Since, in such applications infer-
ence is made on the level of the observations, rather than for the factors influencing them, a natural approach is the calculation
of prediction intervals based on random effects models3,8,10. The idea of the computation of prediction intervals based on ran-
dom effects models dates back to 1941. In that year Satterthwaithe11 gave an example how to calculate "confidence limits within
which we may expect an additional item" based on a one-way random effects model.
Since then, several authors worked on PI based on random effects models, but mainly focused on special cases or balanced mod-
els that are too simple for many practical applications4,12,13. A research area in which the use of PI based on complex random
effects models is proposed is plant breeding. Anyhow, in this area random effects predicted by the best linear unbiased predic-
tions (BLUP) are of interest14,15, rather than the prediction of one or more future observations.
In the context of random effects models, prediction intervals can be computed based on mean squares (MSQ), based on gener-
alized pivotal quantities (GPQ) or based on parameter estimates that are estimated via restricted maximum likelihood (REML).
Since the estimation of variance components based on mean squares was already utilized by Satterthwaite11, it is the standard
method to which almost all intervals that are based on more advanced methods are compared with. GPQ based methods for the
calculation of prediction intervals forM ≥ 1 future observations were proposed by Lin & Liao4 for balanced data. Up to now,
REML based PI got less attention. Al-Sarraj et al.15 used a PI for which the variance components were estimated via REML but
treated as known, following the approach of Pawitan16 by using a standard normal quantile. Francq et al.17 proposed a REML
based prediction interval for one future observation (M = 1) that is applicable to balanced and unbalanced data as well. How-
ever, this interval accounts only for the uncertainty of the estimated variance of the historical data but not for the prediction
variance (variance of the historical data plus variance for the mean) that is used for the calculation of the corresponding PI
(details are given below).
In the following sections, a REML based approach that takes the uncertainty of the prediction into account is proposed and used
for the calculation for prediction intervals for one future observation (M = 1). For this purpose, the degrees of freedom were
approximated using the Generalized Satterthwaite method following van den Heuvel18. Furthermore, a bootstrap calibrated pre-
diction interval for all ofM ≥ 1 future observations is proposed. This interval can be applied to balanced and unbalanced data
as well. The coverage probabilities for the two proposed intervals, as well as for the PI of Satterthwaite11, Lin and Liao4 and
Francq et al.17 are simulated based on two relatively complex random effects models (two-way cross-classified with interaction
and two-way hierarchical) compared to the simple one-way model other simulations are based on4 . Furthermore, a detailed
overview about the experimental designs that occur in the research areas mentioned above is given and the PI were applied to
real life data. A user friendly implementation of the bootstrap calibrated PI is provided by the R-package predint19.

2 REAL LIFE DATA

Random effects models can be applied to a wide range of experimental designs. Hence, many different designs are reported in
literature regarding assay qualification, early phase drug development such as ADA detection or the usage of historical control
data. For validation, a bioassay might be carried out by several experimenters on different days using samples obtained from
different individuals resulting in cross-classified or hierarchical designs3. For ADA cut point estimation, samples of several
individuals may be processed by different experimenters on different plates on several days, resulting in designs that range from
a simple one-way layout to complex designs with some random factors crossed and some nested8,9,20,21. Data about historical
controls regarding rats and mice obtained from long time carcinogenicity studies are provided on the homepage of the National
Toxicology Program22. Since the compound of interest can be applied by using several different pathways and studies are carried
out by several laboratories, historical control data can be either cross-classified or hierarchical. Contrary to data obtained from
assay qualification or used for ADA cut point estimation, HCD data can be heavily unbalanced, since different studies in which
different pathways might be used are carried out over the years by different laboratories.
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2.1 Motivating examples
2.1.1 ADA cut point estimation
In the context of ADA cut point estimation, Hoffman and Berger8 published a data set resulting from an electroluminescence
assay in which blood plasma of twenty drug-naive mice were analyzed in three different experimental runs. In each run each
plasma sample was duplicated. Hence a natural approach for modeling would be a cross-classified random effects model with
an interaction term between the runs and the mice. However, since the duplicates are averaged in the reported data set, only a
cross-classified model without an interaction term can be fit to the data. Since this data set is balanced, it will be used in order
to demonstrate the calculation of prediction intervals using all six methods described below.

2.1.2 Historical control data Maximum mean weekly body weight of female mice
A data set containing historical control data about the maximum mean weekly body weight (mmwbw) of female mice (strain
B6C3F1) is given in Table 1. It contains the reported mmwbw from NTP Historical Controls Reports between 2016 and 202122
for two laboratories (Battelle Northwest and Battelle Columbus) and six pathways. Since the pathway inhalation air was used by
the Battelle Northwest laboratory only and the five remaining pathways were utilized by Battelle Columbus, prediction intervals
have to be calculated based on a model with pathways nested in the laboratories. Two more studies using the same strain of mice
were carried out by the IIT and the Southern Research Institute for which the maximum mean weekly body weight of females
is given in Table 2. The outcome of these two further control groups should be validated simultaneously by the data obtained
from Battele Northwest and Batelle Columbus.

TABLE 1 Historical control data for female B6C3F1 mice
Study number Laboratory Pathway mmwbw
52060104 Battelle Northwest inhalation_air 54.10
52072504 Battelle Northwest inhalation_air 51.00
52051504 Battelle Northwest inhalation_air 59.20
52052304 Battelle Northwest inhalation_air 57.90
51047204 Battelle Northwest inhalation_air 55.90
56031106 Battelle Northwest inhalation_air 54.30
52000604 Battelle Columbus gavage_corn oil 66.60
52032004 Battelle Columbus gavage_corn oil 66.50
51098702 Battelle Columbus oral_feed 51.50
51026002 Battelle Columbus oral_feed 54.70
52071204 Battelle Columbus oral_feed 51.90
50005804 Battelle Columbus gavage_methylcellulose 58.80
52032306 Battelle Columbus gavage_methylcellulose 58.80
52020304 Battelle Columbus gavage_water 62.90
50303804 Battelle Columbus oral_water 61.60
59601406 Battelle Columbus oral_water 63.50

TABLE 2 Actual control data for female B6C3F1 mice
Study_number Laboratory Pathway mmwbw
52010578 IIT Research Institute wbe_air 62.60
52020904 Southern Research Institute gavage_corn oil 57.70
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3 METHODS

3.1 Random effects models and PI
A general linear random effects model is given by

Y = 1� +ZU + �

where Y = (Y1,… , YN )T is the vector of random variables that represents N individual observations. The overall mean
is represented by �. U is a stacked vector containing random effects sub-vectors U c . In this notation, each U c consists of all
levels of a single random factor occurring in the data. Hence, the index c = 1,… , C indicates the random factors by which the
observations should be modeled (e.g. a main effects factor, an interaction term or a nested factor). The number of elements of a
given random effects vector Uc is denoted by qc . Hence, the total length of U is qtotal = ∑C

c=1 qc . Z is a design matrix and has
the dimensionsNxqtotal. The vector � represents the random errors associated with theN observations. The individual random
effects can be represented as ZcU c such that

ZU =
(
Z1 … ZC

) ⎛⎜⎜⎝

U 1
⋮

UC

⎞⎟⎟⎠
=

C∑
c=1
ZcU c

with each

U c =
⎛⎜⎜⎝

Uc,1
⋮

Uc,qc

⎞⎟⎟⎠
.

Each of the U c random effects is considered to be normal distributed with U c ∼ N(0qc , Iqc�
2
c ) as well as the error term

� ∼ N(0N , IN�2C+1) with I as an identity matrix of order qc orN , respectively. Furthermore it is assumed that

cov(�,U c,qc ) = 0 ∀ c = 1,… , C + 1 (1)
cov(U c,qc ,U c′,qc′ ) = 0 ∀ c = 1,… , C + 1, c′ = 1,…C + 1 ∶ c ≠ c′

and the variance-covariance matrix of the observations is given by

var(Y ) =
C∑
c=1
ZcZT

c �
2
c + IN�

2
C+1

with IN as an identity matrix of orderN . Further information on the model described above can be found in McCullogh and
Searle23 (pp. 156-160 ) or in Searle et al.24 (pp. 233-257).

For prediction, it is assumed that the future random variable Y ∗ which is comprised ofM ≥ 1 observations and its historical
counterpart Y are independent from each other, but descend from the same random process. Hence, the error margin of the
prediction is

D = Y ∗ − 1� ∼ N(0, var(D)) (2)
which implies that

var(D) = var(Y ∗ − 1�) = var(Y ∗) (3)
with

var(Y ∗) =
C∑
c=1
Z∗
cZ

∗T
c �

2
c + IM�

2
C+1. (4)

Please note that in the univariate case ofM = 1, eq. 4 simplifies to var(Y ∗) = ∑C+1
c=1 �

2
c .
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Based on observed historical data y and the fitted model

y = 1�̂ +Zû + �̂

the estimate for the prediction variance becomes

v̂ar(D) = v̂ar(Y ∗ − 1�̂) = v̂ar(Y ∗) + v̂ar(1�̂) (5)
with v̂ar(D) being a square matrix of orderM . Please note that eq. 5 does not consider the covariance between the mean and

the variance components since eq. 1 implies that

cov(�̂, �̂2c ) = 0 ∀ c = 1,… , C + 1. (6)
Anyhow, this is the standard assumption on which all methods given below rely.

A prediction interval forM ≥ 1 future observations y∗M with coverage probability Ψ = P (L ≤ y∗M ≤ U ) = 1 − � is given by

[L,U ] = �̂ ± t1− �
2 , df , v̂ar(D)

. (7)
where t1− �

2 , df , v̂ar(D)
is a quantile of the multivariate t-distribution with df degrees of freedom and v̂ar(D) as the estimated

variance-covariance matrix for the prediction error. Please note that eq. 7 represents a general form for the calculation of a
prediction interval forM ≥ 1 future observations, which in the univariate caseM = 1 simplifies to

[L,U ] = �̂ ± t1− �
2 ,df

√√√√v̂ar(�̂) +
C+1∑
c=1

�̂2c .

with v̂ar(�̂)+∑C+1
c=1 �̂

2
c = v̂ar(D). Hence v̂ar(D) denotes the variance-covariance matrix that is associated withM > 1 future

observations and v̂ar(D) represents the prediction variance if a PI forM = 1 future observation is calculated.

3.2 Calculation of prediction intervals
3.2.1 PI forM = 1 future observation based on mean squares
The estimation of prediction intervals forM = 1 one future observation based on mean squares was firstly described 1941 by
Satterthwaite11. Assuming a balanced design, var(D) is estimated by v̂ar(D)Sat = ∑C+1

c=1 !
Sat
c MSSatc and the prediction interval

is given by

[L,U ]Sat = ȳ ± t1− �
2 ,df

Sat

√
v̂ar(D)Sat

with ȳ as the arithmetic mean of y. In this approach t1− �
2 ,df

Sat is the 1 − �
2
quantile from the t dristribution with approximate

degrees of freedom

dfSat =
(
∑C+1
c=1 !

Sat
c MSSatc )2

∑C+1
c=1

(!Satc MSSatc )2

dfc
and dfc as the individual degrees of freedom according to the c = 1,… , C + 1 random effects.

Formulas for the calculation of weights !Satc , mean squaresMSSatc and individual degrees of freedom dfc are given in Tables
3 and 4 for a hierarchical as well as for a cross-classified design. In the following sections, especially in Figures 1 and 2 this
interval will be referred to as Satterthwaite 1941.

3.2.2 PI forM = 1 future observation based on REML
This method is based on parameter estimates that are estimated using the restricted maximum likelihood (REML) approach.
Generally, the degrees of freedom associated with variance components estimated via REML can be approximated by using
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the Generalized Satterthwaite method18,28 which is based on the estimated variance component �̂2c as well as on its estimated
standard error ŜE(�̂2c ). The individual degrees of freedom can be approximated as

df �̂2c = 2
( �̂2c
ŜE(�̂2c )

)2 = 2 �̂4c
v̂ar(�̂2c )

. (8)

For linear mixed models as well as for random effects models the estimates used in eq. 8 can be obtained by using the R
package VCA28. This package provides degrees of freedom and standard errors for the individual variance components �̂2c andits sum.
Recently, Francq et al.17 proposed a REML based PI forM = 1 future observation, that was applied in an assay qualification
study3. For this interval, the degrees of freedom are approximated based on the Generalized Satterthwaite method and hence,
it is applicable to balanced and unbalanced data as well as . In the following sections, especially in Figures 1 and 2 this PI will
be referred to as Francq et al. 2019. However, for this interval, Francq et al.17 approximated the degrees of freedom based on
v̂ar(Y ∗) =

∑C+1
c=1 �̂

2
c , rather than on the prediction variance v̂ar(D) = v̂ar(�) + v̂ar(Y ∗). Hence, the degrees of freedom used

for interval calculation are
df v̂ar(Y ∗) = 2

(
∑C+1
c=1 �̂

2
c )
2

v̂ar(
∑C+1
c=1 �̂2c )

.

Consequently, the interval of Francq et al.17 is given by

[L,U ]Franq = �̂ ± t1− �
2 ,df

v̂ar(Y ∗)

√
v̂ar(�̂) + v̂ar(Y ∗). (9)

In order to account for the degrees of freedom associated with the whole prediction variance, the approximation given in eq.
18 of van den Heuvel18 can be utilized and therefore, the corresponding PI will be called van den Heuvel 2010 in the results
section. The approximation was originally published for the calculation of confidence intervals but can be easily applied for
other purposes. For balanced designs the variance of the prediction can be calculated by

v̂ar(D) = v̂ar(�̂) + v̂ar(Y ∗) =
C+1∑
c=1

!REML
c �̂2c

and the variance of the prediction variance can be estimated by

v̂ar[v̂ar(D)] =
C+1∑
c=1
(!REML

c )2v̂ar(�̂2c ).

Then, the approximated degrees of freedom are
dfPred = 2 v̂ar(D)2

v̂ar[v̂ar(D)]

df v̂ar(D) = max[1, min(N − 1, dfPred)]

withN as the total number of historical observations. The prediction interval is given by

[L,U ]vdH = �̂ ± t1− �
2 ,df

v̂ar(D)

√
v̂ar(D). (10)

Formulas for the weights !REML
c are given in Tables 3 and 4 for a hierarchical as well as for a cross-classified design.

The main difference between the two REML based intervals mentioned above are the variance terms for which the df-
approximation is done. Because the approximation used by Francq et al.17 is based on v̂ar(Y ∗) rather than on thewhole prediction
variance v̂ar(D) = v̂ar(�) + v̂ar(Y ∗), the degrees of freedom used for the calculation of [L,U ]Franq are on average higher than
the degrees of freedom on which [L,U ]vdH is based on (see Figure A1). Consequently the PI of Francq et al.17 is expected to
be less wide than the PI given in eq. 10 in most of the cases and hence, should yield lower coverage probabilities. This effect
is strongest if a relatively large variance component has few replications for estimation and is therefore associated with small
dfc , but decreases with an increase of the number of observations (and higher df ) due to the convergence of the t-distribution
against the standard normal distribution (see Figures 1 and 2).
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3.2.3 PI forM ≥ 1 future observations based on generalized pivotal quantities
The theoretical background on which this interval is based on, is given by Lin and Liao4. Following Lin and Liao, the interval
can be calculated forM ≥ 1 future observations y∗ based on balanced designs. Their approach grounds on the finding of a gen-
eralized pivotal quantity (GPQ) for the expected mean squares. Hence, the algorithm given below, makes use of the relationship
between expected mean squares EMSc and variance components �2c which is described in many textbooks regarding ANOVA
methods such as Sahai and Ageel27.
Following Lin and Liao, a GPQ for the expected mean squares EMSc is given by

GPQ(EMSc) =
s2c
Rc

with s2c as the observed sum of squares and Rc ∼ �2dfc . A GPQ-based prediction interval can be obtained using the following
algorithm:

1. For each of the C + 1 random factors, sample H = 10000 mutually independent realizations Rc,1,… , Rc,H from the
�2-distribution with degrees of freedom dfc .

2. Calculate GPQ(EMSc)ℎ =
s2c
Rc,ℎ

.
3. Calculate GPQ(�2c )ℎ based on GPQ(EMSc)ℎ. The formulas used for this step depend on the experimental design.

Examples are given in sections 3.3.1 and 3.3.2.
4. Calculate GPQs for the variance-covariance matrix GPQ(var(D))ℎ by substituting GPQ(�2c )ℎ into v̂ar(D). Please notethat further formulas for the calculation of v̂ar(D) are given below in sections 3.3.1 and 3.3.2.
5. Based on GPQ(var(D))ℎ, compute H qunatiles from the corresponding multivariate normal distributions, such that
qℎ = z1−�∕2, 0, GPQ(var(D))ℎ .

6. Calculate GPQ(D) = median(qℎ)
7. The corresponding prediction interval is given by [L,U ]GPQ_M1 = ȳ ± GPQ(D)

For both, a two-way-hierarchical and a two-way cross-classified model with interaction, GPQ(�2c )ℎ can be obtained if the
EMSc used in equations 16 to 18 and 21 to 24 are substituted by GPQ(EMSc)ℎ. GPQ(var(D))ℎ can be obtained if �2c is sub-stituted by GPQ(�2c )ℎ in eq. 15 and eq. 20.
This approach, which Lin and Liao called Method 1, is based on the the calculation of H = 10000 quantiles from the
multivariate-normal distribution z1−�∕2, 0, GPQ(var(D))ℎ . Since the calculation of a multivariate-normal quantile is computationally
intensive25, this approach will take too much computing time to be useful in practical applications or Monte Carlo simulations
(it took around 13 minutes on a MacBook Pro to calculate a PI for eight future observations based on a cross-classified model).
Hence Lin and Liao gave an alternative approach which was called Method 3 in their paper: Calculate step 1-4 as described
above. Then, calculate the means for the elements of GPQ(var(D))ℎ, such that

GPQ(var(D)) =
∑K
ℎ=1GPQ(var(D))ℎ

H
. (11)

The corresponding prediction interval is given by

[L,U ]GPQ_M3 = ȳ ± z1−�∕2, 0, GPQ(var(D))
treating GPQ(var(D)) as known. Since the quantile of the multivariate-normal distribution has to be calculated only once,

this approach reduces the computing time down to a manageable level. Anyhow, if a prediction interval for onlyM = 1 future
observation is needed var(D) reduces to var(�)+var(Y ∗). Hence, the corresponding quantile is drawn from a univariate normal
distribution. This approach is far less computational intensive, such that in this special case both methods are applicable in
Monte Carlo simulations.
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3.2.4 Quantile calibrated PI forM ≥ 1 future observations
This method is also based on REML estimates, but the quantile used for the calculation of the PI is approximated by a boot-
strap procedure. This idea is related to the idea of �-calibration33, but, instead of calibrating the � with which the interval is
calculated, the whole quantile that is used for the calculation of the prediction interval is approximated. Hence, no assumption
regarding a multivariate distribution or the variance-covariance matrix of the future observations is needed. Therefore, the
quantile-calibrated PI can be easily calculated for more than one future observation and based on many different experimental
layouts as well as for balanced and unbalanced data.
The first step of the quantile-calibration is to fit a random effects model to the initial data set y. Then, based on the estimated
model parameters b = 1,…B new bootstrap data sets y∗b of same sample size and structure as the original data set are drawn.
Then, m = 1,… ,M observations per bootstrap data set are randomly sampled from y∗b without replacement, resulting in a
reduced set y∗bm. From thisM sampled future observations the minimum and the maximum

min∗b = min(y
∗
bm)

max∗b = max(y
∗
bm)

will serve for the calibration in the further steps.
Then, drawB further bootstrap samples y∗∗b . Fit the initial model to y∗∗b in order to obtain estimates for the variance components
�̂2bc as well as for the variance of the estimated mean v̂ar(�̂b).
The second step is the calibration conditionally on min∗b and max∗b in order to find the coefficient �calib that results in an interval
with coverage probability as close as possible to the nominal Ψ = 1 − �. For that purpose, a bisection algorithm is used, that
minimizes the distance between the observed coverage probability Ψ̂g and Ψ based on g = 1,… , G calibration values �g . The
bisection is stopped if the observed coverage probability falls into a tolerable area around the nominal coverage probabilityΨ±s
such that |Ψ − Ψ̂g| ≤ s and the corresponding �g is set to be �calib and hence used for the calculation of the interval.
In each of the G bisection steps, the PI is calculated for each of the B bootstrap samples such that

[
lbg , ubg

]
= �̂g ± �g

√
v̂ar(�̂b) + v̂ar(y∗∗b ).

The coverage probability of the particular �g based intervals is estimated to be

 ̂g =
∑B
b=1 Ibg
B

, with
Ibg = 1 if (lbg ≤ min∗b and max∗b ≤ ubg)
Ibg = 0 if (lbg > min∗b or max∗b > ubg).

The algorithm starts by defining the start values �1 and �2 in a way that the corresponding Ψ̂1 is smaller than the nominal
Ψ = (1 − �) (due to a small �1) and the corresponding Ψ̂2 is greater than Ψ (due to a high �2). Then the midpoint of the search
interval is

�3 =
�1 + �2
2

. (12)
and the coverage probability Ψ̂3 is calculated based on �3. If Ψ− Ψ̂3 is positive, �4 is calculated by replacing �1 in eq. 12 by

�3 such that

�4 =
�2 + �3
2

.

If Ψ − Ψ3 is negative, �4 is calculated by replacing �2 in eq. 12 by �3 such that

�4 =
�1 + �3
2

.

This iteration process is run until |Ψ − Ψg| ≤ s and the corresponding �g is set to be �calib.
The last step is the calculation of the quantile-calibrated interval based on the estimates of the initial model together with �calib
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[
l, u

]
= �̂ ± �calib

√√√√v̂ar(�̂) +
C+1∑
c=1

�̂2.

3.3 Simulation study
The coverage probabilities of the six different prediction intervals described above, were assessed by Monte Carlo simulations
based on two different random effects models: A two-way hierarchical design (h2) and a two-way cross-classified layout with
interaction (c2). This two models were chosen since they are applied in real life situations (as mentioned above) and they reflect
a certain degree of complexity. On the other hand they are not too complex and hence, the computing time for the simulations
were kept to a manageable level. In the following sections these models are explained in the context of patients that are analyzed
in different laboratories, but of course the models can be applied to any experimental setup that fits into the scheme.

3.3.1 Two-way hierarchical model (h2)
The h2 random effects model is given by

yijk = � + ai + bj(i) + ek(ij) (13)
ai ∼ N(0, �2a), i = 1,… , I

bj(i) ∼ N(0, �2b ), j(i) = 1,… , nj(i)
ek(ij) ∼ N(0, �2e ), k(ij) = 1,… , nk(ij)

in which a random sample of ∑I
i=1 nj(i) patients is analyzed in i = 1,… , I laboratories, such that in an unbalanced design

different subsets of nj(i) patients are analyzed per laboratory with n(ij) observations for each of the j(i) patients, e.g. due to
obtaining n(ij) technical replicates from each patient j(i). In the balanced case, the total number of patients is IJ with J =
nj(i) ∀ j(i) = 1(i),… , nj(i) and the total number of observations isN = IJK with K = nk(ij) ∀ k(ji) = 1(ji),… , nk(ij).
In the model given above � is the overall mean, ai are the random effects for the laboratories, bj(i) are the random effects for
the patients within the laboratories and ek(ij) are the residuals. Please note that ai, bj(i), and ek(ij) are assumed to be independent
from each other.
Mean squares and weights for the calculation of the prediction intervals based on the h2 model are given in Table 3. In analogy to
Lin and Liao, the variance-covariance matrix used for the calculation of the GPQ-based PI forM = I∗J ∗K∗ future observations
obtained from a balanced design is given by

v̂ar(Y ∗) = �̂2a(II∗ ⊗ J J ∗ ⊗ JK∗) + �̂2b (II∗ ⊗ IJ ∗ ⊗ JK∗) + �̂2e (II∗ ⊗ II∗ ⊗ IK∗) (14)
v̂ar(D) = v̂ar(Y ∗) + v̂ar(�)(II∗ ⊗ J J ∗ ⊗ JK∗) (15)

with v̂ar(�) = 1
IJK

(JK�̂2a +K�̂
2
b + �̂

2
e ), II∗ as the identity matrix of order I∗ and J J ∗ as a square matrix of order J ∗ with all

entries set to one and⊗ as the Kronecker product. According to Sahai and Ageel27 the variance components can be expressed as

�2a =
1
JK

(EMSa − EMSb(a)) (16)
�2b(a) =

1
K
(EMSb(a) − EMSe) (17)
�2e = EMSe. (18)
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TABLE 3Model h2 (balanced): Formulas for the calculation of prediction intervals

Effect c dfc MSSatc !Satc !REML
c

ai 1 I − 1
∑
i(ȳi..−ȳ...)2

I−1
1 + 1∕I 1 + 1∕I

bj(i) 2 IJ − I
∑
i
∑
j (ȳij.−ȳi..)2

IJ−I
1 − 1∕J 1 + 1∕IJ

ek(ij) 3 IJK − IJ
∑
i
∑
j
∑
k(yijk−ȳij.)2

IJK−IJ
1 − 1∕K 1 + 1∕IJK

3.3.2 Two-way cross-classified model with replication (c2)
The model for the two-way cross-classified layout with replication is given by

yijk = � + ai + bj + abij + ek(ij)
ai ∼ N(0, �2a), i = 1,… , I
bj ∼ N(0, �2b ), j = 1,… , J

abij ∼ N(0, �2ab), ij = (11,… , IJ )
ek(ij) ∼ N(0, �2e ), k(ij) = 1,… , nk(ij)

Usually this setup is balanced such that I patients are analyzed in J laboratories exactly K = nk(ij) ∀ k(ij) = 1(ij),… , nk(ij)
times. Unbalancedness occurs if some of the possible IJ combinations of patient and laboratory are missing in the data such
that n(ij) = 0 for that particular interaction term or some of the K repetitions per combination are missing (K ≠ nk(ij) ∃ k(ij) ≠
1(ij),… , nk(ij)). The total number of observations isN =

∑
i
∑
j
∑
k nk(ij).

In the model given above � is the overall mean, ai are the random effects for the patients, bj are the random effects for the
laboratories, abij is the interaction term and ek(ij) are the residuals. Please note that ai, bj , abij and ek(ij) are assumed to be
independent from each other.
Mean squares and weights for the calculation of prediction intervals based on the c2 model are given in Table 4. The variance-
covariance matrix used for the calculation of the GPQ-based PI forM = I∗J ∗K∗ future observations obtained from a balanced
design is given by Lin and Liao

v̂ar(Y ∗) = �̂2a(II∗ ⊗ J J ∗ ⊗ JK∗) + �̂2b (J I∗ ⊗ IJ ∗ ⊗ JK∗) + �̂2ab(II∗ ⊗ IJ ∗ ⊗ JK∗) + �̂2e (II∗ ⊗ II∗ ⊗ IK∗) (19)
v̂ar(D) = v̂ar(Y ∗) + v̂ar(�)JM (20)

with v̂ar(�) = 1
IJK

(JK�̂2a + IK�̂
2
b +K�̂

2
ab + �̂

2
e ), II∗ as the identity matrix of order I∗ and J J ∗ as a square matrix of order

J ∗ with all entries set to one. Following Lin and Liao4, the variance components are given by

�2a =
1
JK

(EMSa − EMSab) (21)
�2b =

1
IK

(EMSb − EMSab) (22)
�2ab =

1
K
(EMSab − EMSe) (23)
�2e =MSe (24)

using the weights given in Table (4)
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TABLE 4Model c2 (balanced): Formulas for the calculation of prediction intervals

Effect c dfc MSSatc !Satc !REML
c

ai 1 I − 1
∑
i(ȳi..−ȳ...)2

I−1
1 + 1∕I 1 + 1∕I

bj 2 J − 1
∑
j (ȳ.j.−ȳ...)2

J−1
1 − 1∕J 1 + 1∕J

abij 3 (I − 1)(J − 1)
∑
i
∑
j (ȳij.−(ȳi..+ȳ.j.−ȳ...))2

(I−1)(J−1)
1 − 1∕I − 1∕J − 1∕IJ 1 + 1∕IJ

e(ij) 4 IJ (K − 1)
∑
i
∑
j
∑
k(yijk−ȳij.)2

IJ (K−1)
1 − 1∕K 1 + 1∕IJK

3.3.3 Simulation settings
In order to assess the coverage probabilities of the six different prediction intervals, Monte Carlo simulations were run. For that
purpose, the two models described above (h2, c2) were utilized. All simulations were run independently from each other.
For the h2 model simulations were run for the ℎ = 1,… , 162 different combinations of I = {5, 10, 15}, J = {2, 5, 10},
K = {2, 10}, �2a = {20, 2, 0.2}, �2b = {20, 2, 0.2} and �2e = 2 for all three methods.
The simulation setting for the c2 model was comprised of ℎ = 1,… , 486 combinations of I = {5, 10, 15}, J = {2, 5, 10},
K = {2, 10}, �2a = {20, 2, 0.2}, �2b = {20, 2, 0.2} �2ab = {20, 2, 0.2} and �2e = 2 for the two simple prediction intervals. But,
due to the extensive computing time, this setting was reduced for the df-calibrated PI. The parameters I, J ,K and �e were the
same as before, but the simulations were run either with �2a = {20, 2}, �2b = {20, 2} �2ab = {20, 2} or with �2a = {20, 0.2},
�2b = {20, 0.2} �

2
ab = {20, 0.2}.In the simulations regarding the quantile-calibrated PI, the number of bootstraps was set to B = 1000, �1 = 1 �2 = 20, the

maximum number of bisection-steps was D = 30 and the tolerance was set to s = 0.001. If after 30 bisection steps | −  d|
was higher than the tolerance, �30 was used for the calculation of that particular PI. The relatively low number of B = 1000
bootstrap samples was chosen to keep the computing time of the simulation on a manageable level.
The performance of prediction intervals for one future observation (M = 1) was assessed for all six methods based on balanced
data as well as for M = 8 (with I∗ = 2, J ∗ = 2, K∗ = 2) using the GPQ-based (Method 3) and the bootstrap-calibrated
PI. Furthermore, coverage probabilities of the bootstrap calibrated interval were also simulated forM = 5 future observations
based on unbalanced data. In this setting, the sampling of the simulation data sets was done as described before, but single
observations on the lowest hierarchical level (ek(ij)) were dropped out following a Bernoulli distribution with proportion set
to 0.3. In a next step observations were dropped out on the level of the interaction terms (bj(i), abij) following a Bernoulli
distribution with proportion set to 0.1. This approach was done in order to generate data that is heavily unbalanced on both of
the possible hierarchical levels.
For each of the simulation settings r = 1,… , 5000 historical data sets were drawn. Similarly another data set was sampled
from whichM observations were randomly chosen to be the actual observations y∗ℎr. For each of the historical data sets one
prediction interval [l, u]ℎr was computed and the coverage probability  ℎ was estimated to be

 ̂ℎ =
∑R
s=1 Iℎr
R

with
Iℎr = 1 if y∗ℎr ∈ [l, u]ℎr
Iℎr = 0 if y∗ℎr ∉ [l, u]ℎr

It has to be noted that the lmer() function threw warning messages regarding the convergence of the model for up to almost
50% of the sampled data sets (using R 3.6.2 and lme4 1.1.23 on Windows 10). Hence, the data sets on which lmer() threw a
warning were tracked and the coverage probability was also computed based on the simulated data sets that did not result in a
warning. But, since the coverage probability did not change depending on inclusion or exclusion of cases with warnings the
results given below depend on all simulated data sets rather than on the data sets that do not result in a warning only.
However, due to the sampling process of unbalanced data, it was possible that in rare cases the sampled data was such small,
that the model failed to converge if I = 5 (less than 1% per setting). In this case the coverage probabilities were computed
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based on the reduced set of the simulated data.

4 RESULTS

The simulated coverage probabilities  ̂ℎ are given in Figures 1 to 4 which depend on the number of replications (I, J ) for the
random effects. Two additional quantities are displayed to focus on settings with extreme ratios between variance components
and total variance as well as between variance components and their corresponding degrees of freedom. These quantities are
denoted as

Ωℎ = max(
�2cℎ∑
c �

2
cℎ

) and

�ℎ = max[
�2a,ℎ
�2ab,ℎ

∕
dfa,ℎ
dfab,ℎ

,
�2b,ℎ
�2ab,ℎ

∕
dfb,ℎ
dfab,ℎ

,
�2ab,ℎ
�2e,ℎ

∕
dfab,ℎ
dfe,ℎ

]

Please note, that in the h2 model �ℎ contains only the ratios �2a,ℎ
�2ab,ℎ

∕ dfa,ℎ
dfab,ℎ

and �2ab,ℎ
�2e,ℎ
∕ dfab,ℎ
dfe,ℎ

due to the given hierarchical order of
the observations. In the simulation, the minimum �ℎ was 0.01 and the maximum �ℎ was 900 for the h2 model and 0.04 and
1400 for the c2 model, respectively.
In this setting, Ωℎ represents the maximum ratio of the variance components to the total variance, meaning that the higher Ωℎ
becomes, the more one single variance component plays a dominant role in the data and vice versa (size of the dots in Figures
1 to 4). As described above, �ℎ indicates the maximum ratio of the variance-components of higher hierarchical order to the
variance-component one hierarchical level below compared to the ratio of their corresponding degrees of freedom. Hence,
�ℎ = 1 means that the ratio between variance components equals the ratio of their corresponding degrees of freedom. If the
variance components of higher hierarchical order are estimated to be high compared to the components one level below, but are
estimated with relatively small degrees of freedom, �ℎ will be > 1, resulting in coverage probabilities below the nominal 95%
(red dots in the figures). Contrary, �ℎ will be < 1 if the variance components of higher hierarchical order are small compared to
the components one level below, but are estimated with relatively high degrees of freedom. This results in coverage probabili-
ties above the nominal 95% (blue dots in Figures 1 to 4).
The nominal coverage probability of  = 0.95 is given by the black horizontal lines. The grey area represents  ± 2se( ) with
se( ) =

√
(0.95 ⋅ 0.05)∕5000. Therefore an estimated coverage probability that falls into the grey area can not be treated to be

different from the nominal 0.95.

4.1 Coverage probabilities of prediction intervals for one future observation
The simulated coverage probabilities of prediction intervals for one future observation based on balanced h2 models are given
in Figure 1. For all six methods, the coverage probabilities depend mainly on the numbers of observations for each random
effect. For the MSQ- and REML-based intervals, the simulated coverage probabilities approach the nominal 0.95 up to a
satisfactory level for almost all combinations of Ωℎ and �ℎ, if I > 5 and J (I) > 2. Furthermore, if the number of observations
for the random effect of highest hierarchical order is high (I is at least 10), the bootstrap-calibrated PI and the PI of Francq et
al.17 approach the nominal level even for J (I) = 2.
The GPQ-based interval following Method 1 remains liberal if �ℎ is high, even for higher I and J . The GPQ-based prediction
interval following Method 3 is the only interval that approaches the coverage probabilities from above. Anyhow, especially for
small �ℎ, the interval remains slightly too conservative even if I > 5 and J (I) > 2.
For I = 5 the coverage probabilities of the MSQ based PI following Satterthwaite11 are too low if the variance component �2ais relatively high, but estimated based on a low number of observations (high �ℎ, red dots) and too high if �2a is relatively low,
but estimated based on a high number of observations (low �ℎ, blue dots).

The coverage probabilities of the prediction intervals for one future observation based on balanced c2 models are given in
Figure 2. Regardless of the number of observations per random effect (I and J ), both GPQ-based methods do not approach the
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nominal coverage probability of 0.95 to a satisfactory level for most of the simulated settings. The PI based of GPQ-Method 1
remains liberal if �ℎ is high, even for high I and J . Contrary, the PI calculated with GPQ-Method 3 remains conservative J = 2
the simulated coverage probabilities are close to one and even for high numbers of observations per random effect (I = 15 and
J = 10) many observed coverage probabilities remain above the nominal level.
If both I and J are at least 5, most of the coverage probabilities all three REML based intervals are close to 0.95 and hence
approach the nominal coverage probability up to a satisfactory level. The MSQ based PI of Satterthwaite11 approaches the
nominal level only if I and J are at least 10, since for high �ℎ the coverage probability remains liberal for smaller numbers of
observations for the random effects.

4.2 Coverage probabilities of prediction intervals for several future observations
Coverage probabilities of PI forM = 8 future observations were computed for the GPQ-based PI following Method 3 of Lin
and Liao4 as well as for the bootstrap-calibrated PI. The coverage probabilities of the GPQ-based PI are slightly higher than for
the PI forM = 1, if �ℎ is small (blue dots in the left panel of figures 3 and 4) or slightly lower if �ℎ is high (red dots). In the
settings were the the PI for one future observation approaches the nominal 0.95 (I > 5 and J > 2 for the h2-model or I ≥ 5 and
J ≥ 2 in thec2-model) the coverage probabilities of the bootstrap-calibrated PI approach the nominal level or remain slightly
above (middle panel of figures 3 and 4). Contrary, the coverage probabilities reach the nominal level or remain slightly below if
the bootstrap-calibrated PI is calculated based on unbalanced data (right panel of figures 3 and 4).

5 COMPUTATIONAL DETAILS

Except for the quantile calibrated interval, none of the methods described above are publicly available in R30 in a user friendly
form, neither as a code script that works without adaption nor as an add on package. Hence, the existing methods were imple-
mented by hand. ANOVA-based statistics such as sum of squares or degrees of freedom used for the calculation of the intervals
given by Satterthwaite11 and Lin and Liao4 were calculated using the aov() function from the stats package30. The estimates
v̂ar(�̂2c ) and v̂ar(v̂ar(y)) used for the calculation of the uncalibrated REML-based intervals were obtained from the remlMM()
function of the VCA package28. The bootstrap-calibrated PI can be applied using the lmer_pi() function from the predint
package19.

5.1 Quantile-calibrated prediction intervals with the predint package
As mentioned before, the predint::lmer_pi() function provides a user friendly implementation of the bootstrap-calibrated
prediction interval given in section 3.2.4. Its arguments and the variables that are described by them are given in Table 5. Predic-
tion intervals as well as upper or lower prediction limits (argument alternative) can be computed based on a random effects
model (argument model) fit to the historical data using lme4::lmer()29. If a data set containing actual data is provided via
newdat, predint::lmer_pi() automatically marks the observations that are not covered by the interval. Alternatively, only
the number of future observations for which the PI should be computed can be specified using the argument m.
The start values for the bisection process are given by lambda_min and lambda_max. In rare cases it might happen, that the
default values (0.01, 10) for lambda_min and lambda_max result in bootstrapped coverage probabilities lower or higher than
the nominal level for both start values. If the coverage is too low, the PI will be computed based on lambda_max. Contrary, the
PI will be computed based on lambda_min, if the coverage is too high. Anyhow, in this cases predint::lmer_pi() gives a
warning such that the user can define the start values by hand.
Since predint::lmer_pi() relies on random effects models fit with lme4::lmer() and lme4::bootMer() for boot-
strapping, it can be applied to all data formats, regardless if they are balanced or unbalanced. Another feature that makes
predint::lmer_pi() easy to apply is the fact that no variance-covariance matrix for the future observations have to be
provided. The application of predint::lmer_pi() to real life data is demonstrated in the following section. For a detailed
description of the predint package and its other functions and fields of application, see https://cran.r-project.org/web/packages/
predint/readme/README.html.
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TABLE 5 Arguments of the lmer_pi() function and their description

Argument Variable Description
model Random effects model fit with lme4::lmer()
newdat y∗ Data set with new observations
m M Number of future observations
alternative Prediction interval, lower prediction limit or upper prediction limit
alpha � Defines the nominel coverage probability 1 − �
nboot B Number of bootstraps
lambda_min �1 Lower start value for bisection
lambda_max �2 Upper start value for bisection
traceplot Graphical overview about the bisection process
n_bisec D Maximum number of bisection steps

6 APPLICATION OF PREDICTION INTERVALS TO REAL LIFE DATA

As already described above, all methods were implemented by hand (except for the bootstrap calibrated PI for which the predint
package was used). In order to make the application of all six PI as reproducible as possible, the R-code used for the calculation
of the prediction intervals given in Tables 6 and 7 is available on GitHub under https://github.com/MaxMenssen/menssen_
schaarschmidt_2021.

6.0.1 ADA cut point estimation
For all six methods, predcition intervals for one future observation were calculated for the data set given by Hoffman and Berger8
which is comprised of data from a bioassay in which electroluminescence signals (normalized mean RU) of 20 drug-naive
mice were analyzed in three experimental runs. Since the normalized mean RU values are skewed, they were ln-transformed
(following Hoffmann and Berger) such that

ln(yij) = � + ai + bj + eij
ai ∼ N(0, �2a), i = 1,… , I
bj ∼ N(0, �2b ), j = 1,… , J

eij ∼ N(0, �2e )

with ln(yij) as the ln-transformed normalized mean RUs, ai as the random effects associated with the runs, bj as the random
effects associated with the mice and eij as the residuals. The resulting prediction intervals for all six methods are given in Table
6. Please note that these intervals are already back transformed to the response scale (normalized mean RU).

TABLE 6 Prediction intervals based on the data set of Hoffmann and Berger (2011)

Method L U comp. time
Satterthwaite 1941 0.7556553 1.5512672 0.002 sec
Lin and Liao 2008, M1 0.7637171 1.5348919 0.034 sec
Lin and Liao 2008, M3 0.3139889 3.7333264 0.030 sec
Franq et al. 2019 0.749874 1.563227 0.049 sec
van den Heuvel 2010 0.7359454 1.5928128 0.049 sec
bs-calibrated 0.7562869 1.549972 248.7 sec
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Except for the GPQ-based interval calculated with Method 3 of Lin and Liao which is the widest PI by far, all prediction
intervals are relatively close to each other. These findings are in line with the results obtained from the simulation studies
(figures 1 and 2) where the GPQ-based PI following Method 3 appears to be conservative.
This behavior can be explained by the fact, that the GPQ(var(D)k) are averaged to yield one single estimate for the prediction
variance GPQ(var(D)) (see eq. 11), but the distribution of GPQ(�2ck) used for the calculation of GPQ(var(D)) is heavily
right skewed. Hence the estimate GPQ(var(D)) has a positive bias. Because the estimate for the variance-covariance matrix of
the error margin GPQ(var(D)) is treated as known, naturally one would assume that this interval shows coverage probabilities
below the nominal level. Anyhow, the bias of GPQ(var(D)) is strong enough to contradict this effect.

6.0.2 Historical control data Maximum mean weekly body weight of female mice
Since the data set containing historical controls regarding the maximummean weekly body weight of mice is heavily unbalanced
(Table 1), a prediction interval was calculated based on the quantile-calibrated PI only. For this purpose the lmer_pi() function
from the predint package was used. A random effects model in which the pathways were nested in the two different laboratories
(see eq. 13) was fitted to the data using the lmer() function from the lme4 package. Then, this model was handed over to
lmer_pi() using the model argument. The two actual control groups given in Table 2 were provided by the newdat argument,
such that a prediction interval for M = 2 future observations was calculated. The resulting output of lmer_pi() is given in
Table 7. Since the prediction interval [L,U ] = [43.91, 75.46] covers the two actual observations, it can be assumed that they
are in line with the historical maximum mean weekly body weights.

TABLE 7 Prediction interval for the historical control data
mmwbw Laboratory Pathway Lower Upper Cover
62.60 IIT Research Institute wbe_air 43.91 75.46 TRUE
57.70 Southern Research Institute gavage_corn oil 43.91 75.46 TRUE

7 DISCUSSION

In the sections above, two methods for the calculation of prediction intervals based on random effects models were proposed
and compared to four prediction intervals that are already published. Due to the fact that mean square based prediction intervals
occur in literature since almost 80 years11 most of the previous research was done on that topic. Anyhow, only a few studies that
use other methods than Mean Squares, obtained from the classical ANOVA tables, are available. Two GPQ-based methods for
prediction intervals forM ≥ 1 future observations were proposed by Lin and Liao4. Despite the fact, that the estimation of model
parameters in random and mixed effects models via REML is available since the 1970ies32 and has become a standard method
for estimation since then, only a few studies about PI that are based on REML estimates could be found in literature: Al-Sarraj et
al.15 used a REML based PI originally published by Pawitan16 and Francq et al.17 published a PI that is applicable to balanced
or unbalanced mixed and random effects models. Anyhow, both approaches do not consider the uncertainty of the estimated
prediction variance: Pawitan16 treats the estimated prediction variance as known and uses a standard normal quantile for the
interval calculation. The interval of Francq et al.17 is based on a t-quantile for which the degrees of freedom are approximated
based on the variance of the historical data and not on the prediction variance itself and hence neglecting a source of uncertainty
(the estimated variance of the mean). Furthermore the literature lacks REML based PI for more than one future observation.
The two proposed methods for the calculation of prediction intervals address the shortcomings mentioned above: A PI that
takes the whole uncertainty that is associated with the prediction variance into account was computed by applying the df-
approximation given by van den Heuvel18. But, with the weights presented here, this PI is only applicable to balanced data.
Furthermore, a bootstrap calibrated PI was proposed for which the whole quantile used for interval calculationwas approximated.
Classically, bootstrap calibration is based on the � by which the quantile used for interval calculation is defined (usually t1−�∕2,df
or �21−�∕2,df ). In this approach, the � that is used for interval calculation is alternated by a bootstrap procedure until a value �calib
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is found, such that the calibrated interval calculated with t1−�calib∕2,df (or �21−�calib∕2,df ) has coverage close to the nominal level
1 − �. This approach was developed in the early 1990ies and was described by Efron and Tibshirani33 in detail. Therefore, �-
calibrationwas applied by several authors for different purposes, such as tolerance limits34, confidence intervals35,36 or prediction
intervals for overdispersed binomial data7. Anyhow, the idea of calibration can be also applied for other purposes such as the
approximation of quantiles. Due to the approximation of the whole quantile (rather than a calibration of �), no assumption
regarding its corresponding distribution has to be made. This circumstance makes the quantile-calibrated prediction interval
easy to apply, especially if an interval for more than one future observation is needed because the formulation of the variance-
covariance matrix for future observations is unnecessary. Since the bootstrap is drawn from a model fitted based on the REML
approach, it does not matter if the data is balanced or unbalanced which makes the interval usable for a broad range of practical
applications.
Furthermore, it has to be noted, that none of the existing methods is implemented in R (except for the quantile-calibrated PI).
Hence, their application needs implementation by hand which is far beyond the scope of most applicants who are not trained in
advanced programming. As far as the authors know, the quantile-calibrated PI is the only method, that is implemented in R and
available in a general way. It could be shown, that the empirical coverage probabilities of the quantile-calibrated PI are slightly
closer to the nominal level than that of the existing methods in most of the simulation settings. Anyhow, the simulated coverage
probabilities do not approach the nominal level if the numbers of observations per random effect is lower than five.
Since the bootstrap calibration does not make any assumption regarding the distribution fromwhich the quantile used for interval
calculation is drawn, it can be applied to many other problems and models as long as the variance used for interval calculation
can be computed. Therefore, the calibration process given above is also applicable for PI based on overdispersed binomial and
count data. Further details regarding the implementation of this models can be found in the vignette of the predint package. A
topic for future research that remains, is the application of the quantile calibration bootstrap to (generalized) linear mixedmodels.
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FIGURE 1Coverage probabilities of PI for one future observation for the balanced h2 design. The nominal coverage probability
 = 0.95 is indicated by the black line. The grey area indicates  ±2se( ). The six different prediction intervals are represented
by the panels.
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FIGURE 2Coverage probabilities of PI for one future observation for the balanced c2 design. The nominal coverage probability
 = 0.95 is indicated by the black line. The grey area indicates  ±2se( ). The six different prediction intervals are represented
by the panels.
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FIGURE 3 Coverage probabilities of PI for more than one future observation for the balanced h2 design. The nominal coverage
probability  = 0.95 is indicated by the black line. The grey area indicates  ± 2se( ). The six different prediction intervals
are represented by the panels.

FIGURE 4 Coverage probabilities of PI for more than one future observation for the balanced h2 design. The nominal coverage
probability  = 0.95 is indicated by the black line. The grey area indicates  ± 2se( ). The six different prediction intervals
are represented by the panels.
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APPENDIX

A COMPARISONS BETWEEN THE DEGREES OF FREEDOM ESTIMATEDWITH THE TWO
VERSIONS OF THE GENERALIZED SATTERTHWAITE METHOD

In Figure A1, the average of the approximated degrees of freedom associated with the total variance of the historical data
(approach of Francq et al. 2019) is compared to the degrees of freedom approximated for the prediction variance following van
den Heuvel 2010. The errorbars indicate the observed minimum and maximum degrees of freedom for both methods. For each
of the simulation settings the average degrees of freedom are higher for the approach of Francq et al. 2010. If the approximated
degrees of freedom are low (squares in Figure A1), the difference between the two methods has an influence on the width of
the corresponding prediction intervals. With rising degrees of freedom (bigger data sets) this effect becomes smaller and can be
neglected for degrees of freedom higher than lets say 30, due to the convergence of the t-distribution against the standard normal.

FIGURE A1 Simulated average degrees of freedom: dfFrancq vs. df vdH . The black line indicates a 1:1 relationship. The grey
errorbars represent the corresponding minimum and maximum obtained in the simulation. Squares indicate observations were
df vdH < 30.A
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1. Institut für Zellbiologie und Biophysik, Abteilung Biostatistik, Leinbiz Universität Hannover, Herren-
häuser Str. 2, 30419 Hannover

Type of authorship: First author
Type of article: Reference manual for the predint R package
Available on CRAN: https://cran.r-project.org/web/packages/predint/index.html

Number of citations: 0
Contribution: 100 %

Contributions

Max Menssen

1. Derivation and implementation of prediction intervals for beta-binomial and quasi-binomial

2. Derivation and implementation of a prediction interval for quasi-poisson data

3. Implementation of the bootstrap-calibrated prediction interval of Menssen and Schaarschmidt 2021
(as described in section 2.3)
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bb_dat1 Beta-binomial data (example 1)

Description

This data set contains sampled beta-binomial data from 10 clusters each of size 50. The data set
was sampled with rbbinom(n=10,size=50,prob=0.1,rho=0.06).

Usage

bb_dat1

Format

A data.frame with 10 rows and 2 columns:

succ number of successes

fail number of failures

Examples

# Upper prediction limit for m=3 future number of successes
# that are based on cluster sizes 40, 50, 60 respectively
beta_bin_pi(histdat=bb_dat1, newsize=c(40, 50, 60), alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.
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bb_dat2 Beta-binomial data (example 2)

Description

This data set contains sampled beta-binomial data from 3 clusters with different size, each. The
data set was sampled with rbbinom(n=3,size=c(40,50,60),prob=0.1,rho=0.06).

Usage

bb_dat2

Format

A data.frame with 3 rows and 2 columns:

succ number of successes

fail number of failures

Examples

# Prediction interval using bb_dat2 as future data
beta_bin_pi(histdat=bb_dat1, newdat=bb_dat2, nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

beta_bin_pi Prediction intervals for beta-binomial data

Description

beta_bin_pi calculates bootstrap calibrated prediction intervals for beta-binomial data

Usage

beta_bin_pi(
histdat,
newdat = NULL,
newsize = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
lambda_min = 0.01,
lambda_max = 10,
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traceplot = TRUE,
n_bisec = 30

)

Arguments

histdat a data.frame with two columns (number of successes and number of failures)
containing the historical data

newdat a data.frame with two columns (number of successes and number of failures)
containing the future data

newsize a vector containing the future cluster sizes
alternative either "both", "upper" or "lower". alternative specifies if a prediction interval

or an upper or a lower prediction limit should be computed
alpha defines the level of confidence (1-alpha)
nboot number of bootstraps
lambda_min lower start value for bisection
lambda_max upper start value for bisection
traceplot plot for visualization of the bisection process
n_bisec maximal number of bisection steps

Details

This function returns bootstrap calibrated prediction intervals

[l, u]m = ŷm ± q
√

ˆvar(ŷm − ym)

with ŷm as the predicted future number of successes for m = 1, ...,M future clusters, ym as the
observed future number of successes,

√
ˆvar(ŷm − ym) as the prediction standard error and q as the

bootstrap calibrated coefficient that approximates a quantile from a multivariate normal distribution.
Please note that the predicted future number of successes is based on the future cluster size nm and
the success probability estimated from the historical data πhist such that ŷm = πhistnm. Hence,
the prediction intervals [l, u]m are different for each of the m future clusters, if their size is not the
same.
If traceplot=TRUE, a graphical overview about the bisection process is given.

Value

If newdat is specified: A data.frame that contains the future data, the historical proportion (hist_prob),
the calibrated coefficient (quant_calib), the prediction standard error (pred_se), the prediction in-
terval (lower and upper) and a statement if the prediction interval covers the future observation
(cover).

If newsize is specified: A data.frame that contains the future cluster sizes (total) the historical pro-
portion (hist_prob), the calibrated coefficient (quant_calib), the prediction standard error (pred_se)
and the prediction interval (lower and upper).

If alternative is set to "lower": Lower prediction bounds are computed instead of a prediction
interval.

If alternative is set to "upper": Upper prediction bounds are computed instead of a prediction
interval.
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Examples

# Historical data
bb_dat1

# Future data
bb_dat2

# Prediction interval using bb_dat2 as future data
beta_bin_pi(histdat=bb_dat1, newdat=bb_dat2, nboot=100)

# Upper prediction bound for m=3 future number of successes
# that are based on cluster sizes 40, 50, 60 respectively
beta_bin_pi(histdat=bb_dat1, newsize=c(40, 50, 60), alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

c2_dat1 Cross-classified data (example 1)

Description

c2_dat1 contains data that is sampled from a balanced cross-classified design.

Usage

c2_dat1

Format

A data.frame with 27 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat_1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

# Prediction interval using c2_dat2 as future data
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6 c2_dat2

lmer_pi(model=fit, newdat=c2_dat2, alternative="both", nboot=100)

# Upper prediction limit for m=3 future observations
lmer_pi(model=fit, m=3, alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

c2_dat2 Cross-classified data (example 2)

Description

c2_dat2 contains data that was sampled from an unbalanced cross-classified design.

Usage

c2_dat2

Format

A data.frame with 21 rows and 3 columns:

y_ijk observations

a treatment a

b treatment b

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat_1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

# Prediction interval using c2_dat2 as future data
lmer_pi(model=fit, newdat=c2_dat2, alternative="both", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

70



lmer_pi 7

lmer_pi Prediction intervals for future observations based on linear random
effects models

Description

lmer_pi calculates a bootstrap calibrated prediction interval for one or more future observation(s)
based on linear random effects models

Usage

lmer_pi(
model,
newdat = NULL,
m = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
lambda_min = 0.01,
lambda_max = 10,
traceplot = TRUE,
n_bisec = 30

)

Arguments

model a random effects model of class lmerMod

newdat a data.frame with the same column names as the historical data on which the
model depends

m number of future observations

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

lambda_min lower start value for bisection

lambda_max upper start value for bisection

traceplot plot for visualization of the bisection process

n_bisec maximal number of bisection steps

Details

This function returns a bootstrap calibrated prediction interval

[l, u] = ŷ ± q
√

ˆvar(ŷ − y)
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with ŷ as the predicted future observation, y as the observed future observations,
√

ˆvar(ŷ − y)
as the prediction standard error and q as the bootstrap calibrated coefficient that approximates a
multivariate t-distribution.
Please note that this function relies on linear random effects models that are fitted with lmer() from
the lme4 package.Random effects have to be specified as (1|random_effect).
If traceplot=TRUE, a graphical overview about the bisection process is given.

Value

If newdat is specified: A data.frame that contains the future data, the historical mean (hist_mean),
the calibrated coefficient (quant_calib), the prediction standard error (pred_se), the prediction in-
terval (lower and upper) and a statement if the prediction interval covers the future observation
(cover).

If m is specified: A data.frame that contains the number of future observations (m) the historical
mean (hist_mean), the calibrated coefficient (quant_calib), the prediction standard error (pred_se)
and the prediction interval (lower and upper).

If alternative is set to "lower": Lower prediction limits are computed instead of a prediction
interval.

If alternative is set to "upper": Upper prediction limits are computed instead of a prediction
interval.

Examples

# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat_1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

# Prediction interval using c2_dat2 as future data
lmer_pi(model=fit, newdat=c2_dat2, alternative="both", nboot=100)

# Upper prediction limit for m=3 future observations
lmer_pi(model=fit, m=3, alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

pi_rho_est Estimation of the binomial proportion and the intra class correlation.

Description

pi_rho_est estimates the overall binomial proportion π̂ and the intra class correlation ρ̂ of data that
is assumed to follow the beta-binomial distribution. The estimation of π̂ and ρ̂ is done following
the approach of Lui et al. 2000.

72



qb_dat1 9

Usage

pi_rho_est(dat)

Arguments

dat a data.frame with two columns (successes and failures)

Value

a vector containing estimates for π and ρ

References

Lui, K.-J., Mayer, J.A. and Eckhardt, L: Confidence intervals for the risk ratio under cluster sam-
pling based on the beta-binomial model. Statistics in Medicine.2000;19:2933-2942. https://doi.org/10.1002/1097-
0258(20001115)19:21<2933::AID-SIM591>3.0.CO;2-Q

Examples

# Estimates for bb_dat1
pi_rho_est(bb_dat1)

qb_dat1 Quasi-binomial data (example 1)

Description

This data set contains sampled quasi-binomial data from from 10 clusters each of size 50. The data
set was sampled with rqbinom(n=10,size=50,prob=0.1,phi=3).

Usage

qb_dat1

Format

A data.frame with 3 rows and 2 columns:

succ number of successes

fail number of failures
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Examples

# Upper prediction limit for m=3 future observations
# that are based on cluster sizes 40, 50, 60 respectively
quasi_bin_pi(histdat=qb_dat1, newsize=c(40, 50, 60), alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

qb_dat2 Quasi-binomial data (example 2)

Description

This data set contains sampled quasi binomial data from 3 clusters with different size.The data set
was sampled with rqbinom(n=3,size=c(40,50,60),prob=0.1,phi=3).

Usage

qb_dat2

Format

A data.frame with 3 rows and 2 columns:

succ number of successes

fail number of failures

Examples

# Prediction interval using qb_dat2 as future data
quasi_bin_pi(histdat=qb_dat1, newdat=qb_dat2, nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.
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qp_dat1 Quasi-poisson data (example 1)

Description

This data set contains sampled quasi-poisson data for 10 clusters. The data set was sampled with
rqpois(n=10,lambda=50,phi=3).

Usage

qp_dat1

Format

An integer vector with ten entries containing quasi poisson data

Examples

# Upper prediction limit for m=3 future observations
quasi_pois_pi(histdat=data.frame(qp_dat1), m=3, alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

qp_dat2 Quasi-poisson data (example 2)

Description

This data set contains sampled quasi-poisson data for 3 clusters. The data set was sampled with
rqpois(n=3,lambda=50,phi=3).

Usage

qp_dat2

Format

An integer vector with three entries containing quasi poisson data

Examples

# Prediction interval using qp_dat2 as future data
quasi_pois_pi(histdat=data.frame(qp_dat1), newdat=data.frame(qp_dat2), nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.
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quasi_bin_pi Prediction intervals for quasi-binomial data

Description

quasi_bin_pi calculates bootstrap calibrated prediction intervals for binomial data with constant
overdispersion (quasi-binomial assumption).

Usage

quasi_bin_pi(
histdat,
newdat = NULL,
newsize = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
lambda_min = 0.01,
lambda_max = 10,
traceplot = TRUE,
n_bisec = 30

)

Arguments

histdat a data.frame with two columns (success and failures) containing the historical
data

newdat a data.frame with two columns (success and failures) containing the future
data

newsize a vector containing the future cluster sizes

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

lambda_min lower start value for bisection

lambda_max upper start value for bisection

traceplot plot for visualization of the bisection process

n_bisec maximal number of bisection steps

Details

This function returns bootstrap calibrated prediction intervals

[l, u]m = ŷm ± q
√

ˆvar(ŷm − ym)
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with ŷm as the predicted future number of successes for m = 1, ...,M future clusters, ym as the
observed future number of successes,

√
ˆvar(ŷm − ym) as the prediction standard error and q as the

bootstrap calibrated coefficient that approximates a quantile from a multivariate normal.
Please note that the predicted future number of successes is based on the future cluster size nm and
the success probability estimated from the historical data πhist such that ŷm = πhistnm. Hence,
the prediction intervals are different for each of the m future clusters, if their size is not the same.
If traceplot=TRUE, a graphical overview about the bisection process is given.

Value

If newdat is specified: A data.frame that contains the future data, the the historical proportion
(hist_prob), the calibrated coefficient (quant_calib), the prediction standard error (pred_se), the
prediction interval (lower and upper) and a statement if the prediction interval covers the future
observation (cover).

If newsize is specified: A data.frame that contains the future cluster sizes (total) the the histor-
ical proportion (hist_prob), the calibrated coefficient (quant_calib), the prediction standard error
(pred_se) and the prediction interval (lower and upper).

If alternative is set to "lower": Lower prediction bounds are computed instead of a prediction
interval.

If alternative is set to "upper": Upper prediction bounds are computed instead of a prediction
interval.

Examples

#' # Historical data
qb_dat1

# Future data
qb_dat2

# Prediction interval using qb_dat2 as future data
quasi_bin_pi(histdat=qb_dat1, newdat=qb_dat1, nboot=100)

# Upper prediction bound for m=3 future observations
# that are based on cluster sizes 40, 50, 60 respectively
quasi_bin_pi(histdat=qb_dat1, newsize=c(40, 50, 60), alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

quasi_pois_pi Prediction intervals for quasi-poisson data

Description

quasi_pois_pi calculates bootstrap calibrated prediction intervals for poisson data with constant
overdispersion (quasi-poisson).
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Usage

quasi_pois_pi(
histdat,
newdat = NULL,
m = NULL,
alternative = "both",
alpha = 0.05,
nboot = 10000,
lambda_min = 0.01,
lambda_max = 10,
traceplot = TRUE,
n_bisec = 30

)

Arguments

histdat a data.frame with one column containing the historical data

newdat a data.frame with one column containing the future data

m number of future clusters

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

lambda_min lower start value for bisection

lambda_max upper start value for bisection

traceplot plot for visualization of the bisection process

n_bisec maximal number of bisection steps

Details

This function returns a bootstrap calibrated prediction interval

[l, u] = ŷ ± q
√

ˆvar(ŷ − y)

with ŷ as the predicted future observation, y as the observed future observations,
√

ˆvar(ŷ − y) as
the prediction error and q as the bootstrap calibrated coefficient that approximates a quantile of a
multivariate normal distribution.
If traceplot=TRUE, a graphical overview about the bisection process is given.

Value

If newdat is specified: A data.frame that contains the future data, the historical mean (hist_mean),
the calibrated coefficient (quant_calib), the prediction error (pred_se), the prediction interval (lower
and upper) and a statement if the prediction interval covers the future observation (cover).

If m is specified: A data.frame that contains the number of future observations (m) the historical
mean (hist_mean), the calibrated coefficient (quant_calib), the prediction error (pred_se) and the
prediction interval (lower and upper).
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If alternative is set to "lower": Lower prediction bounds are computed instead of a prediction
interval.

If alternative is set to "upper": Upper prediction bounds are computed instead of a prediction
interval.

Examples

#' # Historical data
qp_dat1

# Future data
qp_dat2

# Prediction interval using bb_dat2 as future data
quasi_pois_pi(histdat=data.frame(qp_dat1), newdat=data.frame(qp_dat2), nboot=100)

# Upper prediction bound for m=3 future observations
quasi_pois_pi(histdat=data.frame(qp_dat1), m=3, alternative="upper", nboot=100)

# Please note that nboot was set to 100 in order to increase computing time
# of the example. For a valid analysis set nboot=10000.

rbbinom Sampling of beta-binomial data

Description

rbbinom samples beta-binomial data according to Menssen and Schaarschmidt (2019).

Usage

rbbinom(n, size, prob, rho)

Arguments

n defines the number of clusters (i)

size integer vector defining the number of trials per cluster (ni)

prob probability of success on each trial (π)

rho intra class correlation (ρ)

Details

For beta binomial data with i = 1, ...I clusters, the variance is

var(yi) = niπ(1 − π)(1 + (ni − 1)ρ)
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with ρ as the intra class correlation coefficient

ρ = 1/(1 + a+ b).

For the sampling (a+ b) is defined as

(a+ b) = (1 − ρ)/(ρ)

where a = π(a + b) and b = (a + b) − a. Then, the binomial proportions for each cluster are
sampled from the beta distribution

πi ∼ Beta(a, b)

and the number of successes for each cluster are sampled to be

yi ∼ Bin(ni, πi).

In this parametrization E(πi) = π = a/(a+ b) and E(yi) = niπ. Please note, that 1 + (ni − 1)ρ
is a constant if all cluster sizes are the same and hence, in this special case, also the quasi binomial
assumption is fulfilled.

Value

a data.frame with two columns (succ, fail)

References

Menssen M, Schaarschmidt F.: Prediction intervals for overdispersed binomial data with application
to historical controls. Statistics in Medicine. 2019;38:2652-2663. https://doi.org/10.1002/sim.8124

Examples

# Sampling of example data
set.seed(234)
bb_dat1 <- rbbinom(n=10, size=50, prob=0.1, rho=0.06)
bb_dat1

set.seed(234)
bb_dat2 <- rbbinom(n=3, size=c(40, 50, 60), prob=0.1, rho=0.06)
bb_dat2

rqbinom Sampling of overdispersed binomial data with constant overdispersion

Description

rqbinom samples overdispersed binomial data with constant overdispersion from the beta-binomial
distribution such that the quasi-binomial assumption is fulfilled.
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Usage

rqbinom(n, size, prob, phi)

Arguments

n defines the number of clusters (i)

size integer vector defining the number of trials per cluster (ni)

prob probability of success on each trial (π)

phi dispersion parameter (Φ)

Details

It is assumed that the dispersion parameter (Φ) is constant for all i = 1, ...I clusters, such that the
variance becomes

var(yi) = Φniπ(1 − π).

For the sampling (a+ b)i is defined as

(a+ b)i = (Φ − ni)/(1 − Φ)

where ai = π(a + b)i and bi = (a + b)i − ai. Then, the binomial proportions for each cluster are
sampled from the beta distribution

πi ∼ Beta(ai, bi)

and the numbers of succes for each cluster are sampled to be

yi ∼ Bin(ni, πi).

In this parametrization E(πi) = π and E(yi) = niπ. Please note, the quasi-binomial assumption
is not in contradiction with the beta-binomial distribution if all cluster sizes are the same.

Value

a data.frame with two columns (succ, fail)

Examples

# Sampling of example data
set.seed(456)
qb_dat1 <- rqbinom(n=10, size=50, prob=0.1, phi=3)
qb_dat1

set.seed(456)
qb_dat2 <- rqbinom(n=3, size=c(40, 50, 60), prob=0.1, phi=3)
qb_dat2
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rqpois Sampling of overdispersed poisson data with constant overdispersion

Description

rqpois samples overdispersed poisson data with constant overdispersion from the negative-binomial
distribution such that the quasi-poisson assumption is fulfilled. The following description of the
sampling process is based on the parametrization used by Gsteiger et al. 2013.

Usage

rqpois(n, lambda, phi)

Arguments

n defines the number of clusters (i)

lambda defines the overall poisson mean (λ)

phi dispersion parameter (Φ)

Details

It is assumed that the dispersion parameter (Φ) is constant for all i = 1, ...I clusters, such that the
variance becomes

var(yi) = λ(1 + λκ) = Φλ.

For the sampling κ is defined as
κ = (Φ − 1)/(λ)

where a = 1/κ and b = 1/(κλ). Then, the poisson means for each cluster are sampled from the
gamma distribution

λi ∼ Gamma(a, b)

and the observations per cluster are sampled to be

yi ∼ Pois(λi).

Please note, that the quasi-poisson assumption is not in contradiction with the negative-binomial
distribution if the data structure is defined by the number of clusters only (which is the case here),
rather than by a complex randomization structure.

Value

a vector containing the sampled observations (one per cluster)

References

Gsteiger, S., Neuenschwander, B., Mercier, F. and Schmidli, H. (2013): Using historical control
information for the design and analysis of clinical trials with overdispersed count data. Statist.
Med., 32: 3609-3622. https://doi.org/10.1002/sim.5851
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Examples

set.seed(123)
qp_dat1 <- rqpois(n=10, lambda=50, phi=3)
qp_dat1

set.seed(123)
qp_dat2 <- rqpois(n=3, lambda=50, phi=3)
qp_dat2
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