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Abstract

We present a consistent derivation of the pressure transfer function for small amplitude
waves within the framework of linear wave theory and discuss some nonlinear aspects.

1 Introduction

Wave measurements are extremely difficult [12, 13, 16] and a widely used approach to
gather information about waves is by recording pressure data [22]. Among the reasons
for relying on underwater pressure transducers for wave measurements are the fact that
they are simple and less expensive than other devices, and their deployment under water
minimizes their exposure to damage by sea traffic and fishing activities. The main thrust
of this approach relies on the ability to convert the measured pressure data to surface
wave information [1, 2, 3, 18, 22]. Linear wave theory provides a realistic framework for
small amplitude waves and in this case a simple formula, involving the so-called “pressure
transfer function” relates the exact shape of the free surface to the exact formula for the
dynamic pressure. Various ways to obtain this pressure transfer function are available (see
[22] and the comments therein) so that a consistent derivation starting with the governing
equations for water waves seems timely. A considerable difficulty in dealing with the
governing equations for the water wave problem lies in the fact that the free surface is
not known a priori. A detailed analysis of the governing equations can be pursued in the
case of waves that travel at constant speed and without change of shape at the surface
of water with a flat bed (see [4, 6, 11, 21]) but for our specific purpose, which requires
an understanding of the coupling between the free surface and the pressure within the
fluid, the governing equations for water waves are too complicated and one has to simplify
them by passing to certain regimes where certain approximations are possible. After
presenting the governing equations for the water wave problem in Section 2, we pursue a
detailed analysis of waves of small amplitude (within the linear approximation framework)
in Section 3 and we conclude in Section 4 with some considerations about the nonlinear
problem.
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2 Preliminaries

In our analysis the water waves propagating at sea are two-dimensional i.e. parallel the
crest of the wave the motion is identical. So using Caresian coordinates (x, y) we will look
at a cross section of the wave form perpendicular to the crest line with the y-axis pointing
vertically upward, the x-axis pointing in the direction of motion of the wave and the origin
at the sea bed.

Let (u(t, x, y), v(t, x, y)) be the velocity field of the water flow, take the sea bed to be
flat (and positioned at y = 0) and let y = h0 + η(t, x) be the water’s free surface, where
h0 > 0 is the average height of the water above the flat bed. Denoting by P the pressure
within the fluid and letting g to be the constant acceleration of gravity, the governing
equations for water waves are [17]

1. Euler’s equation:
{

ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g.

2. Equation for mass conservation:

ux + vy = 0.

3. Dynamic boundary condition:

P = Pa on y = h0 + η(t, x),

where Pa is the (constant) atmospheric pressure at the water’s free surface.

4. Kinematic boundary condition at the free surface:

v = ηt + uηx on y = h0 + η(t, x)

5. Kinematic boundary boundary condition on the flat bed:

v = 0 on y = 0.

In our treatment of water waves we will assume that at t = 0 the flat surface of still
water is disturbed and we set out to analyze the result of this disturbance over time.
We assume the flow has zero vorticity ω = 0. The vorticity of a flow is defined at the
measurement of local spin of a fluid element and is given by ω = uy − vx, so zero vorticity
implies

uy = vx. (2.1)

This assumption is physically correct as there is experimental evidence to show that waves
entering a region of still water can be taken to have zero vorticity. Also water waves which
are initially irrotational will remain irrotational at later times [17, 19].
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3 Linear theory

The governing equations can be nondimensionalised (see [17]) using the following trans-
formations involving the typical wave amplitude a and the typical wavelength λ,

x→ λx, y → h0y, t→ λ√
gh0

t, u 7→ u
√

gh0, v 7→ v
h0

√
gh0

λ
, η → aη, (3.1)

in the sense that x is replaced by λx so that the new symbol x stands for a nondimensional
variable. Introducing the nondimensional pressure variable p as a measure of the deviation
of the pressure within the fluid from the hydrostatic pressure distribution,

P = Pa + gh0(1 − y) + gh0p, (3.2)

and applying these transformations to the governing equations for irrotational flow, we
get the equivalent system



















































ut + uux + vuy = −px for x ∈ R, 0 < y < 1 + ǫ η(t, x),

δ2(vt + uvx + vvy) = −py for x ∈ R, 0 < y < 1 + ǫ η(t, x),

ux + vy = 0 for x ∈ R, 0 < y < 1 + ǫ η(t, x),

uy − δ2 vx = 0 for x ∈ R, 0 < y < 1 + ǫ η(t, x),

p = ǫ η on y = 1 + ǫ η(t, x) with x ∈ R,

v = ǫ (ηt + uηx) on y = 1 + ǫ η(t, x) with x ∈ R,

v = 0 on y = 0 with x ∈ R,

(3.3)

where

ǫ =
a

h0

(3.4)

is the amplitude parameter and

δ =
h0

λ
(3.5)

is the shallowness parameter. The fifth and sixth equation in (3.3) show that the evalu-
ations of both v and p to the free surface are proportional to ǫ. This is consistent with
the fact that as ǫ → 0 we expect v = p = 0 on the free surface z = 1 as in this limit no
disturbance means still water with a flat free surface. This leads us to the scaling

(u, v) 7→ ǫ (u, v), p 7→ ǫ p. (3.6)

The problem (3.3) is transformed after performing the non-dimensionalisation (3.1) and
the scaling (3.6) to the equivalent problem



















































ut + ǫ (uux + vuy) = −px for x ∈ R, 0 < y < 1 + ǫ η(t, x),

δ2(vt + ǫ (uvx + vvy)) = −py for x ∈ R, 0 < y < 1 + ǫ η(t, x),

ux + vy = 0 for x ∈ R, 0 < y < 1 + ǫ η(t, x),

uy − δ2 vx = 0 for x ∈ R, 0 < y < 1 + ǫ η(t, x),

p = η on y = 1 + ǫ η(t, x) with x ∈ R,

v = ηt + ǫ uηx on y = 1 + ǫ η(t, x) with x ∈ R,

v = 0 on y = 0 with x ∈ R.

(3.7)
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The linear approximation, suitable for waves of small amplitude, is obtained by letting
ǫ→ 0 in (3.7):



















ut = −px and δ2 vt = −py for x ∈ R, 0 < y < 1,

ux + vy = 0 and uy − δ2 vx = 0 for x ∈ R, 0 < y < 1,

p = η and v = ηt on y = 1 with x ∈ R,

v = 0 on y = 0 with x ∈ R.

(3.8)

The fundamental Fourier mode Ansatz

η(t, x) = cos [2π(x− c0t)]

arises in the context of looking for solutions of (3.8) representing periodic waves (of unit
period) traveling without change of shape at constant speed c0, setting in which all func-
tions u, v, p, η exhibit an (x, t)-dependence as a periodic function of x − c0t. For this
specific η the linearised problem (3.8) has the explicit solution



































u(t, x, y) = 2πc0δ
cosh(2πδy)

sinh(2πδ)
cos [2π(x − c0t)],

v(t, x, y) = 2πc0
sinh(2πδy)

sinh(2πδ)
sin [2π(x− c0t)],

p(t, x, y) =
cosh(2πδy)

cosh(2πδ)
cos [2π(x − c0t)],

(3.9)

provided

c2
0

=
tanh(2πδ)

2πδ
. (3.10)

In the original physical variables the solution (3.9) takes the form















































η(t, x) = ǫh0 cos (kx− ωt),

u(t, x, y) = ǫωh0

cosh(ky)

sinh(kh0)
cos (kx− ωt),

v(t, x, y) = ǫωh0

sinh(ky)

sinh(kh0)
sin (kx− ωt),

P (t, x, y) = Pa + g(h0 − y) + ǫgh0

cosh(ky)

cosh(kh0)
cos (kx− ωt),

(3.11)

where

k =
2π

λ
, ω =

√

gk tanh(kh0), (3.12)

are the wave number, respectively the frequency of the linear wave propagating at speed

c =
ω

k
=

√

g
tanh(kh0)

k
(3.13)
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and of period

T =
2π

ω
=

2π
√

gk tanh(kh0)
(3.14)

over the flat bed y = 0, with mean water level h0 and wavelength λ > 0.
Defining the dynamic pressure Pd as the difference between the pressure P and the

hydrostatic pressure
Ph = Pa + g(h0 − y),

from the first and last expressions in (3.11) we see that

Pd(x, y, t) = g
cosh(ky)

cosh(kh0)
η(t, x). (3.15)

so that in linear theory the pressure transfer function is given by

K(y) = g
cosh(ky)

cosh(kh0)
. (3.16)

This function allows the reconstruction of the free surface from measurements of the
pressure along the flat bed by means of the simple formula (3.15).

4 Towards a nonlinear theory

The lack of explicit general solutions for the governing equations makes it impossible
to expect a formula of type (3.15) to be valid for waves of large amplitude - a setting
where the linear theory presented in the previous section is not appropriate. Therefore
one has to expect incremental results relating various properties of the pressure in the
fluid with features of the shape of the free surface. The reconstruction of the free surface
from pressure measurements on the bed is also relevant in relation to tsunami waves (see
[9, 10] for recent discussions of this type of water waves) and should also be pursued in
the context of solitary waves.

At present very little is known about qualitative properties of the pressure below a
periodic wave of permanent form traveling at constant speed at the free surface of water
with a flat bed. For irrotational flows (Stokes waves), however, some basic results about the
shape of the free surface are available: the profile is strictly monotonic between crests and
troughs [21] and has to be symmetric about the wave crest, with the symmetry persisting
even in the presence of vorticity [7, 8, 5]. As for the pressure, recall [4, 11] that in a frame
moving at the constant wave speed c > 0, the governing equations for periodic waves of
permanent form traveling at constant speed in irrotational flow can be expressed in terms
of the stream function ψ defined up to a constant by

ψx = −v, ψy = u− c, (4.1)

in the form of the system






























∆ψ = 0 in 0 < y < h0 + η(x),

|∇ψ|2
2

+ gy = Q on y = h0 + η(x),

ψ = 0 on y = h0 + η(x),

ψ = m on y = 0.

(4.2)
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Here m > 0 and Q > 0 are physical constants (relative mass flux, hydraulic head). We
recover the pressure P via Bernoulli’s theorem which ensures that

|∇ψ|2
2

+ gy + P = Q+ Pa

throughout the fluid so that

P = Q+ Pa − |∇ψ|2
2

− gy. (4.3)

A direct calculation now shows that the function P is superharmonic in the fluid domain
as

∆P = −ψ2

xx − 2ψ2

xy − ψ2

yy ≤ 0.

Since Py = −g < 0 on y = 0, taking into account both the second component of Euler’s
equation in the form

(u− c)vx + vvy = −Py − g,

and the kinematic boundary condition v = 0 on the flat bed y = 0, Hopf’s maximum
principle [15] yields that the minimum of P is attained only along the free surface {y =
h0 + η(t, x)}, where P = Pa in view of the dynamic boundary condition. As for the
behaviour of the pressure P on the flat bed, notice that the first component of Euler’s
equation,

(u− c)ux + vuy = −Px,

coupled with the kinematic boundary condition v = 0 on the flat bed y = 0, yields

Px = (c− u)ux along the flat bed y = 0.

But for Stokes waves we know (see [21]) that u < c except perhaps at the wave crest where
equality holds for the extreme waves (the “waves of greatest height”). Also, assuming that
the point (0, 0) lies on the bed straight below the wave crest (in the moving frame), while
(±π, 0) is straight below the wave troughs, we know (see [4] that the function u(x, 0) is
even in the x-variable with ux(x, 0) < 0 for x ∈ (0, π). This means that along the flat
bed the pressure is maximal below the wave crest and minimal below the wave trough
(as well as strictly monotone in-between). These properties parallel those established for
small amplitude waves within the framework of linear theory and allow us to predict from
measurements of the pressure on the flat bed the passage at the free surface of a wave
crest or of a wave trough.

The above considerations show that it is possible to obtain relevant information about
the pressure within the fluid. Advances of the state-of-the-art depend on a fruitful inter-
action between theoretical studies (building upon recent insights obtained in [4, 6, 11]),
numerical simulations (as in [14]) and experimental evidence gathered in the laboratory
(see e.g. [20]) or by collection of field data. This is work in progress.
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