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Abstract

We investigate weakly coupled semilinear parabolic systems in unbounded domains in
R

2 or R
3 with polynomial nonlinearities. Three sufficient conditions are presented to

ensure the stability of the zero solution with respect to non-negativeH2-perturbations.

1 Introduction

In this paper, we study the following parabolic system

ut −∆u = f(u, v), in (0,∞)× Ω,
vt −∆v = g(u, v), in (0,∞)× Ω,
u(t, x) = v(t, x) = 0, on [0,∞)× ∂Ω,

(1.1)

where Ω is an unbounded domain in R
2 or in R

3 with a sufficiently smooth boundary and
where f and g are polynomials in u, v such that f(u, v) = g(u, v) = 0.
System (1.1) is a widely used mathematical model for many chemical, physical, biolog-

ical, or ecological phenomena. A simple situation arising in population dynamics will be
discussed as Example 1 in Section 4. For details on physical and chemical models involving
more general reaction-diffusion systems we refer to [4, 22, 25].
Many papers are devoted to the study of system (1.1) either in bounded domains or as

a Cauchy problem in the whole of Rn (see [3, 5, 11, 12, 14, 16, 17, 18, 19, 20, 22, 25, 27] and
the citations therein). They mainly discuss existence and uniqueness of local solutions,
positivity of solutions, global existence, and blow-up behavior of solutions.
On unbounded domains with an unbounded inradius ρ(Ω) := supx∈Ω dist(x, ∂Ω), Poin-

caré’s inequality does not hold, cf. [27, Theorem 2.1]. Hence the spectrum of the linear
part of (1.1) contains in general 0 as a cluster point so that in these situations the principle
of linearized stability is not applicable. In fact, to the best of our knowledge, it seems
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that the stability properties of the trivial solution to system (1.1) in the case of general
unbounded domains have so far not yet been investigated.
The purpose of this paper is to present several results ensuring the stability of the zero

solution to the system (1.1). Our methods do not only rely on maximum principles and
comparison principles for parabolic systems as presented in [13, 19] but also on recent
abstract stability results for equilibria of parabolic evolution equations, cf. [8, 9, 10].
These methods permit us to obtain several new results on the stability of equilibria of the
system (1.1) in unbounded domains under quite general assumptions on the nonlinearities.
Notation. Throughout this paper we assume that Ω is an unbounded domain in R

2 or
in R

3. If the boundary ∂Ω of Ω is not empty it assumed to be uniformly C4-regular, see
[1] page 67 or [6] page 28 for a precise definition. Let f and g be polynomials of the form

f(u, v) =
∑

3≤j+k≤df

ajku
jvk, (1.2)

g(u, v) =
∑

3≤j+k≤dg

bjku
jvk, (1.3)

where df , dg ≥ 3 denote the degrees and ajk, bjk ∈ R for (j, k) ∈ N
2 with 3 ≤ j + k ≤

max{df , dg} the coefficients of f and g, respectively.
In the following we identify L2(Ω;R2) with L2(Ω) × L2(Ω). Similarly we denote by

Hm(Ω;R2) ∼= Hm(Ω) × Hm(Ω) and Hm
0 (Ω;R

2) ∼= Hm
0 (Ω) × Hm

0 (Ω) the usual Sobolev
spaces based on L2(Ω;R2) so that H0(Ω;R2) = L2(Ω;R2). The scalar product (·, ·)m in
Hm(Ω;R2) is given by

(w, z)m :=
∑

|µ|≤m

(Dµw,Dµz)0 with (w, z)0 :=
∫

Ω
(w, z)R2 dx.

As usual let C0(Ω;R2) denote the Banach space of all bounded and uniformly contin-
uous vector functions w = (u, v) : Ω→ R

2 with the norm

‖ w ‖C0 := sup
x∈Ω

| w(x) |= sup
x∈Ω
(| u(x) | + | v(x) |).

Let also Cm(Ω;R2) with m ∈ N denote the Banach space of all w ∈ C0(Ω;R2) having
derivatives up to order m all belonging to C0(Ω;R2). The norm in Cm(Ω;R2) is given by
‖ w ‖Cm=

∑
|µ|≤m ‖ Dµw(x) ‖C0 . Moreover, given α ∈ (0, 1) and m ∈ N, let Cm+α(Ω;R2)

denote the Banach space of all w ∈ Cm(Ω;R2) such that Dµw with | µ |= m are uniformly
α-Hölder continuous on Ω. The norm in Cm+α(Ω;R2) is given by

‖ u ‖Cm+α :=‖ w ‖Cm +
∑

|µ|≤m

(
sup
x �=y

| Dµw(x)−Dµw(y) |
| x− y |α

)
.

For brevity we write ‖ · ‖Hm for the Hilbert norm in Hm(Ω;R2) induced by (·, ·)m.
Given two Banach spaces X and Y , let L(X,Y ) denote the Banach space of all bounded
linear operators from X to Y with the usual operator norm ‖ · ‖L(X,Y ). For convenience
we let L(X) := L(X,X) and ‖ · ‖L(X):=‖ · ‖L(X,Y ) if X = Y . We write X ↪→ Y if X is
continuously injected in Y , i.e. X ⊂ Y and idX ∈ L(X,Y ). The Laplace operator in the
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distributional sense is denoted by ∆ =
∑n

j=1 ∂
2
xj
. Finally, given (ξ1, ξ2) and (η1, η2) ∈ R

2,
we write (ξ1, ξ2) ≤ (η1, η2) if ξ1 ≤ η1 and ξ2 ≤ η2.
The remaining part of this paper is organized as follows. In Section 2 we introduce the

functional analytic frame and state the main result. Section 3 is devoted to the proof of
the main result. We present some applications of our main result in the last section.

2 The analytic frame and main result

In this section we firstly introduce the functional analytic frame in which we treat system
(1.1). Then we present main result of the paper.
Our starting point is the following unbounded operator A0 in E0 = L2(Ω;R2) defined

by

dom(A0) := H2(Ω;R2)∩H1
0 (Ω;R

2), A0w = (∆u,∆v) , w = (u, v) ∈ dom(A0). (2.1)

Then A0 is a non-positive selfadjoint operator on E0, cf. [6]. However, since (f(u, v),
g(u, v)) is not a mapping from E0 into itself, the space E0 is not suited to deal with the
system (1.1). In order to overcome this difficulty, we follow the method in [10] to take as
underlying space the Hilbert space E1 = H2(Ω;R2) ∩H1

0 (Ω;R
2) endowed with the scalar

product

(w, z)E1 = ((A0 − 1)w, (A0 − 1)z)E0 . (2.2)

By the open mapping theorem we obtain that the norm on E1 induced by the above scalar
product is equivalent to the norm ‖ · ‖H2 , i.e. there are positive constants C0 and C1 such
that

C0 ‖ w ‖H2≤‖ (A0 − 1)w ‖L2≤ C1 ‖ w ‖H2 , w ∈ E1. (2.3)

It follows that the restriction of A0 to E1 induces an unbounded operator A1 in E1 ac-
cording to

dom(A1) := dom(A2
0), A1w := A0w = (∆u,∆v) , w = (u, v) ∈ dom(A1). (2.4)

As was shown in Section 2.2 in [26], we have

dom(A1) = {w = (u, v) ∈ H4(Ω;R2) ∩H1
0 (Ω;R

2) ; (∆u,∆v) ∈ H1
0 (Ω;R

2)}. (2.5)

Similarly the graph norm of A1 is an equivalent norm on dom(A1), i.e.

C2 ‖ w ‖H4≤‖ (A1 − 1)w ‖H2≤ C3 ‖ w ‖H4 , w ∈ dom(A1), (2.6)

where C2 and C3 are positive constants.
It also follows that A1 is a non-positive selfadjoint operator in E1. Hence both A0

and A1 generate analytic C0-semigroups {W0(t), t ≥ 0} on E0 and {W1(t), t ≥ 0} on E1,
respectively. Moreover, representing W0 and W1 by means of the spectral resolution of A0

and A1, respectively, it is not too difficult to see that

W1(t)z =W0(t)z for t ≥ 0, z ∈ E1. (2.7)
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Note that H2(Ω) ∩H1
0 (Ω) is a Banach algebra and that (f(0, 0), g(0, 0)) = (0, 0). Hence

the mapping E1 −→ E1, (u, v) �→ (f(u, v), g(u, v)) is analytic cf. Lemma 3 in [26]. This
allows us to regard the system (1.1) as the following abstract evolution equation in E1:

wt = A1w + F (w), w(0) = w0 = (u0, v0) ∈ E1, (2.8)

where F (w) := (f(u, v), g(u, v)). Then standard theorems for abstract evolution equations,
see Chapter 6 in [23], yield the existence of a unique strong solution to the above equation
in E1. In fact, the abstract Cauchy problem in E1 provides the basic frame in which we
prove our stability result.
However, in order to derive suitable a priori estimates for solutions to (2.8), we also need

to formulate system (1.1) in a different functional analytic setting. This was introduced
earlier in [20, 21, 26]. Given α ∈ (0, 1), we define the spaces

Ĉm+α(Ω;R2) :=

{ {w ∈ Cm+α(Ω;R2); w = 0 on ∂Ω} if m = 0, 1,

{w ∈ Cm+α(Ω;R2); w = (∆u,∆v) = 0 on ∂Ω} if m = 2, 3.
(2.9)

Obviously Ĉm+α(Ω;R2) ⊂ Cm+α(Ω;R2) is a Banach space. Let(
∆2+α 0
0 ∆2+α

)
: Ĉ2+α(Ω;R2) ⊂ Ĉ0(Ω;R2) −→ Ĉ0(Ω;R2),

w �→ (∆u,∆v) be the Laplacian on Ĉ0(Ω;R2) restricted to Ĉ2+α(Ω;R2). It follows that

the operator
(
∆2+α 0
0 ∆2+α

)
is closable and its closure AC generates a holomorphic

semigroup {WC(t); t ≥ 0} on Ĉ0(Ω;R2), see Theorem 2.4 in [21]. Moreover the domain
of AC can be characterized as

dom(AC) = {w ∈ ∩p≥1W
2
p,loc(Ω;R

2); w,
(
∆ 0
0 ∆

)
w ∈ Ĉ0(Ω;R2)},

see Lemma 4.2 in [9]. Since (f, g) : Ĉ0(Ω;R2) → Ĉ0(Ω;R2) is smooth, we can regard the
system (1.1) as the following evolution equation in Ĉ0(Ω;R2):

wt = ACw + F (w), w(0) = w0 = (u0, v0). (2.10)

Then well-known results for abstract evolution equation, see Chapter 6 in [23], ensure
the existence of a unique strong solution z of (2.10) on the maximal interval of existence
[0, t+C). Moreover, a standard continuation argument yields the following result:

t+C <∞ implies lim
t↑t+C

‖ z(t) ‖C0=∞. (2.11)

By Sobolev’s embedding theorem we have

dom(A0) ↪→ Ĉα(Ω;R2) and dom(A1) ↪→ Ĉ2+α(Ω;R2), (2.12)

provided α ∈ (0, 1
2), cf. [1]. Hence it follows that dom(A1) ⊂ dom(AC). Therefore, given

w0 ∈ dom(A1), we can solve (2.8) and (2.10) with the same initial data w0. Our next
result clarifies the relation of the corresponding solutions of (2.8) and (2.10), respectively.
For simplicity we write in the following X := Ĉ0(Ω,R2).
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Lemma 2.1. Given w0 ∈ dom(A1), let w ∈ C1([0, t+1 ), E1) be the strong solution of
(2.8) on the maximal interval of existence [0, t+1 ). Moreover, let z ∈ C1([0, t+C), X) be the
strong solution of (2.10) on the maximal interval of existence [0, t+C). Then t

+
1 = t

+
C and

w(t) = z(t) for t ∈ [0, t+1 ).
Proof: The proof of Lemma 2.1 is similar to that of Theorem 1 in [9] and so we omit

it here. �

In the following, given w0 ∈ dom(A1), we denote the maximal existence time of (2.8)
(or of (2.10)) by t+(w0). Moreover, we say that the equilibrium w = (u, v) = 0 of (2.8)
is positively Ljapunov stable if it is Ljapunov stable under non-negative perturbations in
H2(Ω;R2) ∩H1

0 (Ω;R
2), i.e. if there is a τ > 0 such that for every ε > 0 there is a δ > 0

with the following property: Given w0 ∈ H2(Ω;R2) ∩ H1
0 (Ω;R

2) with ‖ w0 ‖H2≤ δ and
w0 ≥ 0, the solution w of (2.8) with initial data w(0) = w0 exists globally and satisfies
‖ w ‖H2≤ ε for all t ≥ τ .
We now present the main result of this paper:

Theorem 2.2. Let f and g be polynomials of the form (1.2) and (1.3) and assume that
one of the following conditions holds true:

(i) Given u ∈ R+, f(u, v) is increasing in v on R+, given v ∈ R+, g(u, v) is increasing in
u on R+, and there exist ξ1 > 0, ξ2 > 0 such that

f(ξ1, ξ2) = g(ξ1, ξ2) = 0.

(ii) Given u ∈ R+, f(u, v) is decreasing in v on R+, given v ∈ R+, g(u, v) is increasing
in u on R+, and there exist ξ1 > 0, ξ2 > 0 such that

f(ξ1, 0) = f(0, ξ2) = g(ξ1, ξ2) = 0.

(iii) Given u ∈ R+, f(u, v) is decreasing in v on R+, given v ∈ R+, g(u, v) is decreasing
in u on R+, and there exist ξ1 > 0, ξ2 > 0 such that

f(ξ1, 0) = f(0, ξ2) = g(ξ1, 0) = g(0, ξ2) = 0.

Then the trivial solution w = (0, 0) of (1.1) is positively Ljapunov stable.

Remarks: (a) If f(u, v) is independent of v and g(u, v) is independent of u (this means
that the system (1.1) is decoupled), then the result of Theorem 2.2 covers recent results
of Theorem 3 presented in [9] and in Theorem 2.2 in [10]. Moreover Theorem 2.1 in [10]
shows that the zero solution of (1.1) is in general unstable if the degree of the polynomials
f and g is two. If f and g contain linear terms then the stability of the trivial solution is
decidable by means of spectral methods.
(b) We do not know whether or not the assumptions on the quasi-monotonicity of f and
g in Theorem 2.2 can be relaxed.
(c) The assumptions on the existence of positive roots of the polynomials f and g in
Theorem 2.2 may be relaxed, using an approach similar to the one devised in [7]. We will
investigate this in a forthcoming paper.
(d) The result of Theorem 2.2 is also true for more general uniformly strongly elliptic
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operators in divergence form, div(a(x)∇u) and div(b(x)∇v), with bounded smooth coef-
ficients instead of ∆u and ∆v in (1.1), respectively.
(e) Finally, we mention that Theorem 2.2 can easily be generalized to systems of N equa-
tions with quasi-monotonic polynomials.

3 Proof of the main result

In this section we prove Theorem 2.2. To do so we firstly introduce the following abstract
stability result.

Theorem 3.1. Given w0 ∈ E1, let t+(w0) be the maximal existence time of the corre-
sponding solution w to (2.8) with the initial data w0. Assume that:
(i) There exists a δ0 > 0 such that t+(w0) =∞, if ‖ w0 ‖E1≤ δ0.
(ii) There exists a k0 > 0 such that

‖ w(t+ 2) ‖E1≤ k0 ‖ w(t) ‖E0 , ∀t ≥ 0.
(iii) There exists ε0 > 0 such that

(w̃, F (w̃)−A0w̃)0 ≤ 0, if ‖ w̃ ‖E1≤ ε0.
Then (0, 0) is E1-Ljapunov stable.

Proof: Let Ik = [2k, 2k + 2], k ∈ N. Given ε ∈ (0, ε0), choose δ > 0 such that k0δ ≤ ε.
By (i) it suffices to show that there is a δ0 ∈ (0, ε) such that for every k ∈ N

(Sk) ‖ w(t) ‖E1≤ ε and ‖ w(t) ‖E0≤ δ, ∀t ∈ Ik,
provided ‖ w0 ‖E1≤ δ0.
We prove the above assertion by induction.

Note that F (0, 0) = (0, 0). Hence the continuous dependence of the corresponding solution
to (2.8) with respect to the initial data implies that (S0) is true.
Assume that (Sk) is true. We prove that (Sk+1) holds true as well.

Pick t ∈ Ik+1. Then s := t− 2 ∈ Ik and, by (ii) and the hypothesis (Sk), we have

‖ w(t) ‖E1=‖ w(s+ 2) ‖E1≤ k0 ‖ w(s) ‖E0≤ k0δ ≤ ε.
Furthermore, using (2.8) we get, in view of (iii), the fact that ε < ε0, and the hypothesis
(Sk):

d

dt
‖ w(t) ‖2

E0
= 2(w(t), w′(t))E0

= 2(w(t), F (w(t))−A0(w(t)))E0 ≤ 0.
Thus ‖ w(t) ‖E0 is non-increasing on Ik+1 = [2k + 2, 2k + 4], and we obtain

‖ w(t) ‖E0≤‖ w(2k + 2) ‖E0≤ δ.
This shows that (Sk+1) is true and completes the proof of Theorem 3.1. �

In order to prove Theorem 2.2, in view of Theorem 3.1, we have to verify the three
assumptions (i)-(iii) of Theorem 3.1. We firstly need the following important comparison
principle for the system (1.1).
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Lemma 3.2. [19] Let ΩT = [0, T ) × Ω ⊂ R × R
n and suppose that there is a 6-tuple

U = {u, v, u, v, u, v} of functions on ΩT such that U,Ut, Uxjxk
, 1 ≤ j, k ≤ n are bounded

and continuous on ΩT and such that

(u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)), ∀x ∈ Ω,
(u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)), ∀(t, x) ∈ ΩT .

Moreover let

α := inf
(t,x)∈ΩT

u(t, x), α := sup
(t,x)∈ΩT

u(t, x),

β := inf
(t,x)∈ΩT

v(t, x), β := sup
(t,x)∈ΩT

v(t, x)

and assume that one of the following conditions holds true:
(i) f̃(u, v) is increasing in v on (β, β) for all u ∈ (α, α), g̃(u, v) is increasing in u on (α, α)
for all v ∈ (β, β), and

ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v),
vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v)

for all (t, x) ∈ ΩT .
(ii) f̃(u, v) is decreasing in v on (β, β) for all u ∈ (α, α), g̃(u, v) is increasing in u on
(α, α) for all v ∈ (β, β), and

ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v),
vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v)

for all (t, x) ∈ ΩT .
(iii) f̃(u, v) is decreasing in v on (β, β) for all u ∈ (α, α), g(u, v) is decreasing in u on
(α, α) for all v ∈ (β, β), and

ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v) ≤ ut −∆u− f̃(u, v),
vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v) ≤ vt −∆v − g̃(u, v)

for all (t, x) ∈ ΩT .
Then (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) in ΩT .

For the proof of Lemma 3.2 we refer to the main results in [19]. �

Remark: Note that Lemma 3.2 is a slightly modified version of Theorem 4.5, Theorem
5.3, and Theorem 6.3 in [19]. However, scrutinizing the proofs of Theorem 2.9, Theorem
3.5, and Theorem 4.1 in [19], we find that the assertion of Lemma 3.2 holds true.

Lemma 3.3. Assume that the conditions of Theorem 2.2 are satisfied. Let w(t) be the
strong solution to (2.8) with the initial data w0. Then there exist δ0 > 0 and M ≥ 0 such
that t+(w0) =∞ and supt≥0 ‖ w(t) ‖X≤M , provided ‖ w0 ‖E1≤ δ0 and w0 ≥ (0, 0).
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Proof: Note that E1 ↪→ C0(Ω;R2) by Sobolev’s embedding theorem. Hence there is a
positive constant C such that

‖ w̃ ‖C0≤ C ‖ w̃ ‖E1 for all w̃ ∈ E1.

Set δ0 := 1
C min{ξ1, ξ2} and pick w0 ∈ dom(A1) with ‖ w0 ‖E1< δ0 and w0 ≥ (0, 0). Then

(0, 0) ≤ w(0) ≤ (ξ1, ξ2) and Lemma 3.2 and the boundary conditions in (1.1) imply that
(0, 0) ≤ w(t, x) ≤ (ξ1, ξ2) for all (t, x) ∈ [0, t+(w0))× Ω.

Invoking (2.11) and Lemma 2.1 we get the assertion. �

We now prove that the assumption (ii) of Theorem 3.1 is true, provided the solution
to (2.8) is bounded a priori in X.

Lemma 3.4. Assume that w is a global strong solution to (2.8) and that

sup
t≥0

‖ w(t) ‖X≤M, (3.1)

for some M > 0. Then there exists a k0 > 0 such that

‖ w(t+ 2) ‖E1≤ k0 ‖ w(t) ‖E0 , ∀t ≥ 0.
Proof: Note that f and g are polynomials satisfying (1.2) and (1.3), respectively. Thus

there are polynomials, q1, q2, q3, and q4, such that

F (w̃) = (f(ũ, ṽ), g(ũ, ṽ)) =
(
q1(ũ) q2(ũ, ṽ)
q3(ũ, ṽ) q4(ṽ)

) (
ũ
ṽ

)

for all w̃ = (ũ, ṽ) ∈ E1. Let w = (u, v) ∈ C1(R+, E1) be a global solution to (2.8) and set

Q(t) :=
(
q1(u(t)) q2(u(t), v(t))
q3(u(t), v(t)) q4(v(t))

)
, t ∈ R+. (3.2)

Using the fact that pointwise multiplication maps L∞(Ω) × L2(Ω) bilinearly into L2(Ω),
it is not difficult to see that (3.1) implies that Q ∈ C1(R+;L(E0)) and that there is a
M0 > 0 such that

‖ Q(t) ‖L(E0)≤M0 for t ≥ 0. (3.3)

Clearly the Fréchet derivative of F ∈ C∞(X,X) is bounded on bounded subsets of X.
Therefore assumption (3.1) and Proposition 4.1 in [10] imply that there is C > 0 such that

‖ d

dt
w(t) ‖X≤ C for t ≥ 0. (3.4)

Note further that

d

dt
Q(t) =




∂q1(u(t))u′(t)
(
∂uq2(u(t), v(t))u′(t)

+∂vq2(u(t), v(t))v′(t)
)

(
∂uq3(u(t), v(t))u′(t) ∂q4(v(t))v′(t)

+∂vq3(u(t), v(t))v′(t)
)



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for t ≥ 0. Thus we conclude from (3.1) and (3.4) that there is a M1 > 0 such that∥∥∥∥ ddtQ(t)
∥∥∥∥

L(E0)

≤M1 for t ≥ 0. (3.5)

Combining this with (3.3), we find

‖ Q(t) ‖L(E0) + ‖ d

dt
Q(t) ‖L(E0)≤ C(M) for t ≥ 0. (3.6)

Since w is the unique strong to (2.8) with the initial data w0 and F (w(t)) = Q(t)w(t) for
t ≥ 0, it follows that w is also a mild solution to

dz

dt
= (A0 +Q(t))z, t ∈ R+. (3.7)

Let {U(t, τ); 0 ≤ τ ≤ t ≤ s ≤ τ + 2} be the evolution operator generated by the family
{A0 +Q(t); t ∈ [τ, τ + 2]}. Then (3.6) and Theorem II.5.1.1 in [2] yield

max
t∈[τ,τ+2]

‖ U(τ, t) ‖L(E0)≤ C,

where the constant C > 0 is independent of τ . Since w(t) = U(τ, t)w(τ) for t ∈ [τ, τ + 2],
it follows that

‖ w(t) ‖E0≤ C ‖ w(τ) ‖E0 , t ∈ [τ, τ + 2]. (3.8)

Moreover, (3.6) and the estimate (A.8) in [9] imply that there exists a constant C(M0) > 0
such that

‖ A0w(τ + 2) ‖E0≤ C(M0) max
t∈[τ,τ+2]

‖ w(t) ‖E0≤ C. (3.9)

By (3.8), (3.9) and (2.3) we obtain the statement of the Lemma. �

We now prove that the assumption (iii) in Theorem 3.1 is true.

Lemma 3.5. There exists ε0 > 0 such that

(w, F (w)−A0w)0 ≤ 0, provided ‖ w ‖E1≤ ε0.

Proof: By (2.8) we have

(w, F (w)−A0w)0
= (∆u, u)0 + (∆v, v)0 + (f(u, v), u)0 + (g(u, v), v)0
= − ‖ ∇u ‖2

L2 − ‖ ∇v ‖2
L2 +(f(u, v), u)0 + (g(u, v), v)0.

(3.10)

Using Young’s inequality in the form

ab ≤ j

j + k
a

j+k
j +

k

j + k
b

j+k
k , a, b ≥ 0, j, k > 0, (3.11)



252 J Escher and Z Yin

we conclude from (1.2) that

| u f(u, v) |≤ d0 | u |4 +d1 | u |5 +d2 | u |6 + · · ·
+ e0 | v |4 +e1 | v |5 +e2 | v |6 · · · , (3.12)

where di ≥ 0 and ei ≥ 0, i = 0, 1, · · · , are constants which depend only on the coefficients
ajk of f . Similarly we have

| v g(u, v) |≤ l0 | u |4 +l1 | u |5 +l2 | u |6 + · · ·
+m0 | v |4 +m1 | v |5 +m2 | v |6 + · · · , (3.13)

where li ≥ 0 and mi ≥ 0, i = 0, 1, · · · , are constants which depend only on coefficients bjk
of g.
(i) We firstly consider the case n = 3. By the Nirenberg-Gagliardo inequality in [15]

we have∫
Ω
| u |4 dx ≤ C ‖ ∇u ‖3

L2 · ‖ u ‖L2 ,∫
Ω
| v |4 dx ≤ C ‖ ∇v ‖3

L2 · ‖ v ‖L2 ,

(3.14)

where C > 0 is a constant. Choose now ε0 > 0 such that

‖ u ‖C0≤ min{ξ1, ξ2, 1}, provided ‖ u ‖H2≤ ε0,
‖ v ‖C0≤ min{ξ1, ξ2, 1}, provided ‖ v ‖H2≤ ε0.

(3.15)

Hence there exists a constant K > 0, depending only on the coefficients of f and g, such
that for ‖ w ‖H2≤ ε0 we have that∫

Ω
| uf(u, v) | dx ≤ K(

∫
Ω
| u |4 dx+

∫
Ω
| v |4 dx),∫

Ω
| vg(u, v) | dx ≤ K(

∫
Ω
| u |4 dx+

∫
Ω
| v |4 dx).

(3.16)

Thus by (3.10), (3.14) and (3.16) we obtain

(w, F (w)−A0w)0 ≤ − ‖ ∇u ‖2
L2 (1− 2K ‖ ∇u ‖L2‖ u ‖L2)

− ‖ ∇v ‖2
L2 (1− 2K ‖ ∇v ‖L2‖ v ‖L2).

(3.17)

Shrinking ε0 > 0, we have

2K ‖ ∇u ‖L2‖ u ‖L2< 1 and 2K ‖ ∇v ‖L2‖ v ‖L2< 1, (3.18)

provided ‖ w ‖H2≤ ε0. Combining (3.17) and (3.18) we get the assertion for the case
n = 3.
(ii) Assume now that n = 2. By the Nirenberg-Gagliardo inequality in [15] we have∫

Ω
| u |4 dx ≤ C ‖ ∇u ‖2

L2 · ‖ u ‖2
L2 ,∫

Ω
| v |4 dx ≤ C ‖ ∇v ‖2

L2 · ‖ v ‖2
L2 ,

(3.19)
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where C > 0 is a constant. Following arguments similar to those in (i) we get

(w, F (w)−A0w)0 ≤ − ‖ ∇u ‖2
L2 (1− 2K ‖ u ‖2

L2)

− ‖ ∇v ‖2
L2 (1− 2K ‖ v ‖2

L2).
(3.20)

Again, by shrinking ε0 > 0, we may assume that

2K ‖ u ‖2
L2< 1 and 2K ‖ v ‖2

L2< 1, (3.21)

for w = (u, v) ∈ E1 with ‖ w ‖H2≤ ε0. It remains to combine (3.20) and (3.21) to complete
the proof. �

Proof of Theorem 2.2: The assertions of Theorem 2.2 follow immediately by com-
bining Theorem 3.1, Lemma 3.3, Lemma 3.4, and Lemma 3.5. �

4 Applications

In this section we apply our main results to three concrete examples and show that their
trivial solutions (0, 0) are positively Ljapunov stable.
Throughout this section we assume that Ω is an unbounded domain in R

2 or in R
3 with

a uniformly C4-regular boundary.

Example 1 Consider the following weakly coupled reaction-diffusion system



ut −∆u = −up + vr, in (0,∞)× Ω,
vt −∆v = −vq + us, in (0,∞)× Ω,
u(t, x) = v(t, x) = 0, on [ 0,∞)× ∂Ω,

(4.1)

with p, q, r, s ≥ 3. System (4.1) provides a simple model to describe e.g. the cooperative
interaction of two diffusing biological species. Here it is assumed that each species finds its
subsistance from the activity of the other one by the reaction terms vr and us, respectively,
and disappears by a destruction mechanism, represented by the absorbtion terms −up and
−vq, respectively.
Applying Theorem 2.2 with (ξ1, ξ2) = (1, 1), f(u, v) = −up + vr and g(u, v) = −vq + us,
we get that the trivial solution w = (0, 0) to (4.1) is positively Ljapunov stable. �

Example 2 Consider the following weakly coupled reaction-diffusion system



ut −∆u = up − ur − umvl, in (0,∞)× Ω,
vt −∆v = −vq + us, in (0,∞)× Ω,
u(t, x) = v(t, x) = 0, on [ 0,∞)× ∂Ω,

(4.2)

where p, q, r, s ≥ 3 and m, l ≥ 1 with m + l ≥ 3. Applying Theorem 2.2 with (ξ1, ξ2) =
(1, 1), f(u, v) = up − ur − umvl and g(u, v) = −vq + us, we get that the trivial solution
w = (0, 0) to (4.2) is positively Ljapunov stable. �
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Example 3 Consider the following weakly coupled reaction-diffusion system

ut −∆u = up − ur − umvl, in (0,∞)× Ω,
vt −∆v = vq − vs − vnuk, in (0,∞)× Ω,
u(t, x) = v(t, x) = 0, on [ 0,∞)× ∂Ω,

(4.3)

where p, q, r, s ≥ 3 and m, l, n, k ≥ 1 with m+ l ≥ 3 and n+ k ≥ 3. Applying Theorem
2.2 with (ξ1, ξ2) = (1, 1), f(u, v) = up − ur − umvl and g(u, v) = vq − vs − vnuk, we get
that the trivial solution w = (0, 0) to (4.3) is positively Ljapunov stable. �
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1995.

[3] Amann H, Dynamic theory of quasilinear parabolic systems, Math. Z. 202 (1989), 219–250.

[4] Bebernes J and Eberly D, Mathematical Problems from Combustion Theory, Applied Math-
ematical Science, Springer-Verlag, Berlin, 1989.

[5] Bedjaoui N and Souplet Ph, Critical blowup exponents for a system of reaction-diffusion
equations with absorbtion, Z. Angew. Math. Phys. 53 (2002), 197–210.

[6] Browder F, On the spectral theory of elliptic operators, Math. Ann. 142 (1961), 22–130.

[7] Constantin A and Escher J, Global solutions for quasilinear parabolic problems, J. Evolution
Equations 2 (2002), 97–111.

[8] Escher J, Stable equilibra to elliptic equations in unbounded domains with nonlinear dynamic
boundary condations, Analysis 20 (2000), 325–351.

[9] Escher J and Scarpellini B, On the asymptotics of solutions of parabolic equations on un-
bounded domains, Nonlinear Analysis 33 (1998), 483–507.

[10] Escher J and Scarpellini B, Stability properties of parabolic equations in unbounded domains,
Archiv der Mathematik 71 (1998), 31–45.

[11] Escobedo M and Herrero M A, Boundedness and blow up for a semilinear reaction diffusion
system, J. Diff. Eqs. 89 (1991), 176–202.

[12] Escobedo M and Herrero M A, A semilinear reaction diffusion system in a bounded domain,
Ann. Mat. Pura Appl. CLXV (1993), 315–336.



Stable Equilibria to Parabolic Systems in Unbounded Domains 255

[13] Gilbarg D and Trudinger N S, Elliptic Partial Differential Equations of Seconder Order,
Springer-Verlag, Berlin, 1977.

[14] Henry D, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics
840, Springer-Verlag, Berlin, 1981.

[15] Ladyzhenskaya O, Mathematical Problems in the Dynamic of Viscous Incompressible Flow,
Berlin, 1965.

[16] Ladyzhenskaya O, Uralceva N N, Solonnikov V A, Linear and Quasilinear Equations of
Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc. Vol. 23, 1988.

[17] Li C and Wright E, Global existence of solutions to a reaction-diffusion system based upon
carbonate kinetics, Comm. Pure Appl. Anal. 1 (2002), 77–84.

[18] Lu G, Global existence and blow up for a class of semilinear systems: a Cauchy problem,
Nonlinear Anal. T. M. A. 24 (1995), 1193–1206.

[19] Lu G and Sleeman B D, Maximum principles and comparison theorems for semilinear
parabolic systems and their applications, Proceedings of the Royal Society of Edinburgh 123A
(1993), 857–885.

[20] Lunardi A, Analytic Semigroups and Optimal Regularity in Parabolic Equations, Birkhäuser
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