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ABSTRACT

In the context of the Solvency II directive, the operation of an internal risk
model is a possible way for risk assessment and for the determination of the
solvency capital requirement of an insurance company in the European Union.
A Monte Carlo procedure is customary to generate a model output. To be
compliant with the directive, validation of the internal risk model is conducted
on the basis of the model output. For this purpose, we suggest a new test for
checking whether there is a significant change in the modeled solvency cap-
ital requirement. Asymptotic properties of the test statistic are investigated
and a bootstrap approximation is justified. A simulation study investigates the
performance of the test in the finite sample case and confirms the theoretical
results. The internal risk model and the application of the test is illustrated
in a simplified example. The method has more general usage for inference of a
broad class of law-invariant and coherent risk measures on the basis of a paired
sample.
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1. INTRODUCTION

Solvency II directive intends the unification of the regulation of insurance
companies in the European Union. Acts like the German VaG (2016) put
the directive into national law. For the determination of the solvency capi-
tal requirement, §27 VaG (2016) intends the application of an internal risk
model or a (so-called) standard formula in an insurance company. Major
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market players, in particular large joint-stock companies, decided to use an
internal risk model. Requests on the internal risk model are not limited to the
modeling of the solvency capital requirement, but provide the modeling of a
whole forecast distribution of the own funds of the insurance company, see
§116 VaG (2016). According to §97 VaG (2016), the modeled solvency capital
requirement based on the Value-at-Risk at level 99.5% of the modeled fore-
cast distribution of the own funds, where the time horizon is one year. In
this regard, suitable definitions of the solvency capital requirement are given
in Christiansen and Niemeyer (2014).

The process of risk assessment with an internal risk model can be seen as the
application of a company specific deterministic function, which models the cur-
rent asset and liability portfolio of the corporate, to certain risk factors, which
model the framework conditions for the insurance company with a forecast
horizon of one year. Due to the complexity of the process of risk assessment
with an internal risk model, the modeled forecast distribution is unknown.
Consequently, the modeled solvency capital requirement is not available. A
Monte Carlo approach is customary to solve this problem. Here, samples from
the distributional model of the risk factors, calibrated on historical data or
expert judgments, work as input of the model and yield an output sample, and
finally an empirical forecast distribution of the own funds. A related empirical
solvency capital requirement is derived.

The risk management has to deal with two sources of uncertainty. The
first one is the model uncertainty, which amounts for the modeling of a sin-
gle IBM stock already approximately 100%, see Danielsson et al. (2016). For
a discussion on model uncertainties and their management, see Stahl (2016).
The second one is the Monte Carlo noise. Although the Monte Carlo noise
is probably small compared with the general model uncertainty, the number
of simulations is crucial to get stable numerical results, especially in insurance
context where the distributions exhibit usually fat tails and the high level of
99.5% in the quantile leads to noticeable statistical fluctuations in the empirical
solvency capital requirement. In principle, it is possible to eliminate the Monte
Carlo noise more and more by increasing the number of Monte Carlo replica-
tions. In practice, the number of Monte Carlo replications is often limited by
the capacities of the company in terms of computing time or operation pro-
cesses, see Casarano et al. (2017). Here, specific approximation techniques for
the forecast of the own funds in the field of life insurance, such as the replicating
portfolio approach, require very computing time-intensive valuation methods.
In addition, the manageability of the output of the simulation is very important
for the smooth course of the operation processes in the company.

To be compliant with §120 VaG (2016), the internal risk model has to be val-
idated with the aim of verification and checking the adequacy. See Dacorogna
(2017) for an overview over approaches and techniques to validate internal
risk model results. An important validation tool is statistical variation analy-
sis of the output of different model runs, at least on the occasion of the yearly
required reporting obligations in accordance with §251 VaG (2016), but also
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in the course of model changes for instance. Here, the effect of calibration
updates, changes in the asset or liability portfolio, methodological changes, or
economic shocks can be detected and compared with the expectations. Because
the empirical solvency capital requirement depends substantially on the seed
as the source of the randomness in the Monte Carlo approach, see Culver
Heitmann, and Weil} (2018), it is useful to save the seed for all model runs
and to use the same seed for different model runs for validation purposes. For
this purpose, an appropriate implementation of the Monte Carlo simulation
is requested to obtain corresponding results for the empirical own funds for
different model runs.

In the course of the model validation, it is evident to check whether there is
a significant change in the modeled solvency capital requirement, for example,
for the categorization of the materiality of a model change or an adjustment
of the solvency capital requirement. For this purpose, we suggest a test for
checking whether there is a significant change in the modeled solvency capital
requirement in Section 2. In the examples mentioned, the test’s level controls
the probability that the model change is falsely categorized as nonmaterial or
the probability that the solvency capital requirement won’t be adjusted when
it is necessary. The requested implementation of the Monte Carlo approach
with a fixed seed for all model runs serves as a paired sample of empirical own
funds from two model runs as data. If the implementation of the Monte Carlo
procedure is inappropriate in the sense that it does not serve a paired sample
as data, additional deliberations are necessary to clarify whether our testing
approach is suitable.

In mathematical terms, we treat the testing problem whether or not the
absolute value of the relative deviation between two quantiles exceeds a given
level on the basis of a paired sample as data. There is a lot of literature about
inference for two quantiles, where usually the two-sample case is considered
and two independent samples from the underlying distributions are used as
data. Often, normal distributions appear in the limits of the statistics under
consideration. The testing problem of the equality of quantiles is treated in
Kosorok (1999), Malekzadeh and Jafari (2018), Li et al. (2012), and Cox
and Jaber (1985). Inference for the distance of two quantiles is the topic in
Guo and Krishnamoorthy (2005), Ozturk and Balakrishnan (2009), Baklizi
(2018), Bristol (1990), Albers and Loéhnberg (1984), Kang, Kim, and Lee
(2007), Chakraborti and Desu (2008), and Malekzadeh and Kharrati-Kopaei
(2020). The ratios of quantiles are considered in Malekzadeh and Mahmoudi
(2020), Huang and Johnson (2006), Huang (2016), and Huang (2016). A gen-
eral approach to the two-sample problem on the basis of the quantiles is given
in Prihoda (1981). Our inference based on a paired sample as data. Because the
paired-samples case can be seen as a generalization of the two-sample case if
the sample sizes for both samples coincide, our approach can be regarded as an
extension in this sense.

In Section 2, we investigate asymptotic properties of the suggested test
statistic and obtain a normal distribution in the limit. Here, empirical process
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theory in Dudley (1984), van der Vaart & Wellner (1996), and Ziegler (1997)
is combined with the concept of Hadamard differentiability and the functional
Delta method in van der Vaart (1998) to obtain the asymptotic results. The
results motivate a bootstrap procedure for the approximation of the standard
deviation of the test statistic and finally for the determination of critical values.
Using that the theory is available in a general setting of triangular arrays of
random variables and a Glivenko—Cantelli result in GanBler & Ziegler (1994),
we obtain that the bootstrap procedure is suitable. In Section 3, a simulation
study investigates the performance of the test for a finite number of Monte
Carlo replications. It is seen that the test performs quite well. In addition, the
outcome of the simulation study confirms the theoretical findings. An example
for a simplified portfolio illustrates the internal risk model and the application
of the test. Finally, Section 4 summarizes the results of the paper and outlines
an extension of the method for inference of a broad class of law-invariant and
coherent risk measures on the basis of a paired sample. Here, concepts of quasi
Hadamard differentiability and a related functional Delta method such as in
Beutner and Zahle (2010), Kratschmer, Schied, and Zahle (2015), and Beutner
and Zihle (2016) apply. In addition, related research questions of interest are
discussed.

2. TEST

At first, we introduce the model and state the testing problem. Then, we give
the details for the Monte Carlo procedure under a fixed seed and suggest as
well as investigate a reasonable test statistic. Finally, we justify a bootstrap
procedure to obtain critical values.

2.1. Model and testing problem

Let us consider two model runs named with the numbers k = 1, 2. The source
of the internal risk model in run k=1, 2 is an input (X; (k), R Xfik)), where
X l(k), oL X :,k) are d € Nrisk factors, given by real-valued random variables. The
joint distributions of these risk factors model the framework conditions for the
insurance company with a forecast horizon of one year and are assumed to be
known. The modeled forecast of the own funds of the insurance company in
model run £ =1, 2 is obtained by the application of a company specific deter-
ministic and measurable function % : RY — R, which models the current asset
and liability portfolio of the corporate. In principle this function is known, but
it is not generally given in explicit form. Due to the complexity of the internal
risk model, it is too cumbersome to work with this function in practice. In what
follows, we deal with this function as unknown. The forecast of the own funds
in model run k£ =1, 2 is modeled by the real-valued random variable

YO =0, x D).
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Reminding that the Value-at-Risk at level (1 —y)e€(0,1) of a real-valued
random variable Y is defined as

VaR,_,(Y)=inf{xeR; P(Y <x)>1—-y},

we suppose that the distributions F® of Y®, k=1, 2, are absolutely continu-
ous, where the related densities f® satisfy f®(VaR,(Y®)) > 0. We define the
modeled solvency capital requirement at level y in model run k=1,2 as the
Value-at-Risk at level 1 — y of the difference of the (known) current own funds
of the corporate y¥ € R and the modeled forecast of the own funds Y® in 1
year, that is

SCR® =VaR,_,(()® — Y®) =® —vaR (Y®),

see, for example, Christiansen and Niemeyer (2014). For y = 0.5% we obtain
the modeled solvency capital requirement of the insurance company accord-
ing to the Solvency II directive. We suppose that the modeled solvency capital
requirement at level y in model run k = 1, 2 does not vanish, and that the mod-
eled solvency capital requirements at level y for model runs 1 and 2 do not
coincide.

We are interested in the relative change of the modeled solvency capital
requirement from model run 1 to model run 2, defined by

SCR® — SCRY"
SCRY

Our previous assumptions on the solvency capital requirements in model runs
1 and 2 ensure that A € (0, c0). We aim to check whether there is a significant
change in the modeled solvency capital requirement in the sense that the rela-
tive change of the modeled solvency capital requirement from model run 1 to
model run 2 exceeds a given level § € (0, 00), that is the testing problem

Hy:A>6§versus H;: A <.

It is Hy the null hypothesis, H; the alternative hypothesis.

2.2. Monte Carlo approach and test statistic

As it is explained in the introduction, the modeled forecast distribution in
model run k=1, 2 is unknown, and therefore the modeled solvency capital
requirement SCR® is unknown as well, and the same applies to the rela-
tive change of the modeled solvency capital requirement A. This problem is
solved by a Monte Carlo simulation with n € N replications. As it is explained
in the introduction, it is useful to apply the same seed for the implemen-
tation of the Monte Carlo approach for both model runs. In this regard,
an appropriate implementation of the Monte Carlo procedure is requested
to obtain corresponding results for the empirical own funds in each of the
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n Monte Carlo replications. A possible implementation of the Monte Carlo
simulation starts with a set of independent random variables U;;, i=1,...,d,
j=1,...,n, each with the same uniform distribution on the unit interval (0, 1),
which is the same for both model runs. Denoting by C® : [0, 1]Y — R the cop-
ula related to the joint distribution of the random vector (X; l(k), L X f,k)), the
(inverse) Rosenblatt transformation serves a random vector (Vl(/;), e Vc(,f‘/.))
depending only on (U, . .., Uy;) and with the joint distribution C® for each
j=1,...,nand k=1, 2. Denoting by (F,»(k) )~! the quantile function of the dis-
tribution of X,-(k) and setting Xi(f) = (E(k))’l(Viz,-) fori=1,...,d,j=1,...,n,
and k=1, 2, the random vectors (Xl(l;) - X[(,];)), j=1,...,n, obtained in this
way are independent and each with the same distribution as (X ® ., X((,k)).
Moreover, (Xf,l,') R Xfij].), Xl(i.) cel, thj)),jz 1,...,n,areindependent and iden-
tically distributed random vectors. Defining the empirical own funds in model
runk=1,2 by

W _ (o y® (k)
Y; :r()(XIJ,...,XdJ),
j=1,...,n, we have that

1 2
(YD Y@y,

n Yn(Z))
is a paired sample of independent bivariate random vectors, each with the same
bivariate distribution function F, which will be used as data for the treatment of
the testing problem. In particular, it is not assumed that the bivariate distribu-
tion F is the product measure of the related marginal distributions F @ F©@,
Because r® is unknown, k=1, 2, the underlying bivariate distribution F is
unknown as well. To circumvent technical problems, we suppose that F is
uniformly continuous. We point out that the presented implementation of the
Monte Carlo approach serves independent and identically distributed bivariate
random vectors as data and ensures the validity of our theoretical results stated
below. If the implementation of the Monte Carlo procedure is inappropriate in
the sense that it does not serve independent and identically distributed bivari-
ate random vectors as data, additional deliberations are necessary to clarify
whether our testing approach is suitable.

We obtain the empirical solvency capital requirement at level y of the own
funds in model run k=1, 2 by

SCR(k) — y(k) _ Y(k)

[yn]:n>
where Y]El;zﬂ:n is the sample quantile at level y of the Y, ..., Y® Fory =0.5%
we obtain the empirical solvency capital requirement of the insurance company
according to the Solvency II directive. The relative change of the empirical
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solvency capital requirement from model run 1 to model run 2 is defined by

SCR® — SCRYW
- SCRD

n

Note that, from our previous assumptions, A, takes almost surely values in
(0, 00). We suggest the test statistic

Tn = \/E(An - 5)
for the implementation of the test. We state the following result for our test
statistic.
Theorem 1. The following statements are valid.

(a) In the interior of the null hypothesis A > 8, the divergence of the test statistic
holds almost surely

T,—> 400 asn— oo.

(b) On the boundary of the null hypothesis A =6, the convergence in distribution
of the test statistic holds

d
T,— Nasn— o0,

where N is a real-valued random variable with a centered normal distribution
and variance

(SCRVfM(VaR, (YM))? + (SCRP) f@(VaR, (Y?))?
SO(VaR, (YD)Rf@(VaR, (Y@)XSCR)
+2(F(VaR,(Y"), VaR,(Y?)) — y?)
SCR"WSCR?
" FO(VaR, (YD) (VaR,, (Y)(SCRT)

ol=y(1-y)

(c¢) Under the alternative hypothesis A < §, the divergence of the test statistic
holds almost surely

T,—> —ocoasn— oo.

2.3. Bootstrap and testing procedure

Following the testing concept of Neyman and Pearson, the test has to be cho-
sen such that the probability to reject the null hypothesis H, that there is a
significant change in the solvency capital requirement falsely does not exceed
the statistical significance level. Motivated by Theorem 1, small values of the
test statistic should be statistically significant in the sense that we reject the null
hypothesis Hy if and only if the test statistic 7;, does not exceed a critical value
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820 D. GAIGALL

¢ne Which depends on the given statistical significance level « € (0, 1). Because
we deal with a one-sided testing problem, where small values of the test statistic
are statistically significant, it is reasonable to choose the critical value ¢,, as a
quantile of order « of the distribution of the test statistic 7, on the boundary
of the null hypothesis A =§.

Unfortunately, the distribution of the test statistic 7, depends on the
unknown underlying bivariate distribution of the output of the first and second
model run F, even in the case that we are on the boundary of the null hypothe-
sis A = §. The same applies to the standard deviation of the distribution of the
test statistic 7}, likewise asymptotically for o. For that reason, related quantiles
are not available as critical values. Motivated by Theorem 1, we use

ean,oz = &n(b_l(a)

as critical value, where ®~! denotes the quantile function of the standard nor-
mal distribution N[0, 1], and 6, is a suitable approximation for o, the standard
deviation of the distribution of the test statistic 7, on the boundary of the null
hypothesis A =34.
We suggest a bootstrap technique to obtain such an approximation. Under
the premise that A =4, the test statistic can be rewritten as
T, =~/n(A, — A).
Now, let (¥{), ¥).....(Y(, ¥?) be a bootstrap sample obtained
by n-times sampling with replacement from the original observations
(Y, Y®), ..., (YD, Y@). The bootstrap solvency capital requirement at level
y of the own funds in model run k=1, 2 is
A (B) ok
SCR, =y® — ¥ .
il ..., Y®. The relative
change of the bootstrap solvency capital requirement capital from model run 1
to model run 2 is defined by

where Y% is the sample quantile at level y of the ¥y

. |SCRY —s¢r
A, =

SCR,

n

Note that, from our previous assumptions, A, takes almost surely values
in (0, 00). Regarding the latter expression of the test statistic, the bootstrap
version of the test statistic is given by

Tn = \/ﬁ(An - An)-

We state the following result for the bootstrap version of the test statistic.

Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek (TIB Hannover), on 20 Dec 2021 at 13:25:37, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.20


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.20
https://www.cambridge.org/core

TEST FOR CHANGES IN THE MODELED SOLVENCY CAPITAL REQUIREMENT 821

Theorem 2. In all cases A >35, A=35, or A <8 we have the conditionally
convergence in distribution of the bootstrap version of the test statistic

A

d
T,— N asn— o0

given the original observations in probability, where N is a random variable with
a centered normal distribution and variance

(SCRV)M(VaR, (YM))? + (SCRP) /P (VaR, (Y?))?
f(l)(VaRy (YD)R2f® (VaRV ( Y(Z)))Z(SCR“))“
+2(F(VaR,(Y"), VaR, (Y?)) — y?)
5 SCR"SCR®
SO(VaR, (YO)fA(VaR, (Y*))(SCRV)*

o’ =y(l-y)

In particular, the distribution of N is the same distribution as in the limit in
Theorem 1 (b) if A =6 is valid.

The stated conditionally convergence in distribution given the original
observations in probability is in the sense of the the following convergence in
probability:

sup |E(RT)IYD, YD), ... (YD, Y?)) — E(h(N))| = 0 as n — oo,
heBL; (R)

where BL; (R) denotes the set of all Lipschitz continuous functions /#:R —
[— 1, +1] with |a(x) — h(y)| <|x — y| for all x, y € R, compare with Chapter 23
in van der Vaart (1998). It is important to note that the conditional distribution
of the bootstrap version of the test statistic T, given the original observations is
known. Motivated by Theorem 2, we use the standard deviation of the condi-
tional distribution of the bootstrap version of the test statistic Tn given the
original observations (Y, Y?), ..., (Y, Y?)), denoted by 6,, as approxi-
mation for o, the standard deviation of the distribution of the test statistic
T, on the boundary of the null hypothesis A =§. In practice, values for &,
are obtained by Monte Carlo simulation. Specifically, we suggest to reject the
null hypothesis H, that there is a significant change in the solvency capital
requirement if and only if 7}, < ¢, 4.

3. SIMULATION AND EXAMPLE

At first, we present a simulation study and discuss the expectations as well as
the numerical results. Finally, an example for a simplified portfolio illustrates
the internal risk model and the application of the test.
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822 D. GAIGALL

3.1. Simulation

The simulations are implemented with the statistical software R and serve
empirical rejection rates as well as empirical distributions of the p-values of the
test. The scope of the simulation study includes the investigation of the per-
formance of the test for a finite number of Monte Carlo replications beyond
the theoretical limit results stated in Section 2 and in a setting which reflects
the situation in insurance practice in an appropriate way. For this purpose, we
consider different situations under the null hypothesis and under the alternative
hypothesis, where the distance to the null hypothesis, measured in terms of the
relative deviation between § and A, is —20%, —10%, 0%, +10%, and +20%.
Moreover, the confirmation of the theoretical findings in Theorem 1 and in
Theorem 2 is also in the scope of the simulation study. Therefor, we consider
an increasing number of Monte Carlo replications of the internal model from
n=2000 to n = 200,000 as well.

Let us describe the choice of the distributions in the simulation study.
In insurance practice the underlying distributions exhibit probably fat tails.
We consider fat tailed distributions to represent insurance risks in an appro-
priate way. Specifically, for the distributions F) and F@® of the forecast of
the own funds Yi(l) and Yl-(z), i=1,...,n, we consider two different combi-
nations. In the first combination, we choose F as the Fréchet distribution
Fre(1, 1.5) with scale parameter 1 and shape parameter 1.5 as well as F® as the
Fréchet distribution Fre(1.5, 1.5) with scale parameter 1.5 and shape parame-
ter 1.5. In this combination, we choose the current own funds as yV =T'(3) and
y? = 3I'(3), that are the expectations of the distributions F) and F@. In the
second combination, we choose F") as the Pareto distribution Par(1, 1.5) with
scale parameter 1 and shape parameter 1.5 as well as F® as the Pareto distribu-
tion Par(1.5, 1.5) with scale parameter 1.5 and shape parameter 1.5. Here, we
choose the current own funds also as the expectations of the distributions F
and F@, that are y\V =3 and y® = 4.5. The dependency structure of the bivari-
ate distribution F of (Yi(l), Yl-(z)), i=1,...,n, is modeled by a copula C(u, v),
u,v €0, 1]. For the implementation, we use the R package copula, see The
Comprehensive R Archive Network (2018). Consequently, the bivariate distri-
bution function F is given by F(x, y) = C(FV(x), F?(y)) for x, y € R. Precisely,
we consider two different classes of copulas. For the first class of copulas, we
use the bivariate Gaussian copula C(u, v) = Cpomal (4, v) = @2 2(® (1), @1(v)),
u, v €0, 1], where @,z denotes the distribution function of the bivariate nor-
mal distribution with mean 0 and covariance matrix R = ( }) 1), the correlation
o 1s either 0.25 or 0.75, and @ denotes the distribution function of the univari-
ate standard normal distribution. For the second class of copulas, we use the
bivariate ¢ copula C(u, v) = C/(u, v) = t2 (1 (u), 171(v)), u, v €[0, 1], where 1, z
denotes the distribution function of the bivariate ¢ distribution with location
parameter 0 and shape matrix R defined as above, and ¢ is the distribution func-
tion of the univariate standard ¢ distribution. For details about the bivariate ¢
distribution, see Devroye (1990).

Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek (TIB Hannover), on 20 Dec 2021 at 13:25:37, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.20


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.20
https://www.cambridge.org/core

TEST FOR CHANGES IN THE MODELED SOLVENCY CAPITAL REQUIREMENT 823

Now, we explain the choice of the model parameters in the simulation
study. To obtain the solvency capital requirement according to the Solvency
II directive we choose the level y = 0.5%. As it is explained above, the behav-
ior of the test in different situations under the null hypothesis and under the
alternative hypothesis is of interest. For the investigation of this aspect, we
choose the level § subject to the relative change of the modeled solvency cap-
ital requirement A which arises with the bivariate distribution F of the own
funds in model runs 1 and 2 and the current own funds »" and y® under con-
sideration. Specifically, we choose different levels § € {80% - A, 90% - A, 100% -
A, 110% - A, 120% - A}. Moreover, for the study of the behavior of the test for
an increasing number of Monte Carlo replications of the internal model, we
consider n=2000, n=20,000, as well as n=200,000, and note that the usual
order of magnitude of the number of Monte Carlo replications of an internal
model is four over even larger.

Let us describe how the empirical results of the the simulation study are
obtained. During the implementation of the simulations, several quantities are
approximated by Monte Carlo simulation. At first, we choose the bivariate dis-
tribution F of the own funds in model runs 1 and 2, the current own funds y™"
and y@, and the number of Monte Carlo replications of the internal model n
as it is explained above. Then, we determine the value of the relative change
of the modeled solvency capital requirement A on the basis of 200,000,000
Monte Carlo replications and define the level § as it is explained above. Now,
we simulate 2000 replications of the testing procedure, where in each of the
2000 simulation runs the bootstrap estimator for the standard deviation &, is
also approximated by 2000 Monte Carlo replications according to the sampling
procedure described in Section 2. The empirical rejection rates at the statisti-
cal significance level o = 10% of the 2000 replications of the testing procedure
are displayed in Table 1. In addition, Figure 1 presents plots of the empiri-
cal distribution functions of the p-values of the 2000 replications of the testing
procedure.

Now, we formulate our expectations on the simulation results. At first,
we point out that the test statistic is strictly decreasing in §. For that rea-
son, the rejection rates of the test are increasing in § and the p-values of the
test are increasing in § with respect to the usual stochastic order. For the level
8 =100% - A, we are on the boundary of the null hypothesis. Here, Theorem
1 (b) combined with Theorem 2 applies. For that reason, we expect that the
empirical rejection rates are close to the significance level of 10%. Moreover,
it is expected that the empirical distribution functions of the p-values of the
test are close to the identity function, that is the distribution function of
the uniform distribution on the unit interval. For the levels § = 80% - A and
8 =90% - A, we are in the interior of the null hypothesis. Now, Theorem 1 (a)
combined with Theorem 2 applies. Consequently, we expect that the empirical
rejection rates are less than the significance level of 10% and tend to zero as the
number of Monte Carlo replications n increases. Furthermore, it is expected
that the empirical distribution functions of the p-values of the test proceed
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TABLE 1

EMPIRICAL REJECTION RATES FOR THE STATISTICAL SIGNIFICANCE LEVEL « = 10%.

F NSO“/(»A 90%-A 100%-A 110%-A 120%- A

C = Coommat, p =0.25 2000 0.0870 0.1140  0.1405  0.1675  0.1980
FO =Fre(1, 1.5), y0 =T (}) 20,000 0.0170 0.0515 0.1150 02015  0.3110
FO =Fre(1.5,1.5), y® = 30(}) 200,000 0.0000 0.0045 0.1140  0.5065  0.8800
C = Coommat, p =0.75 2000 0.0705 0.0935 0.1205  0.1450  0.1795
FO =Par(1, 1.5), ) = 3 20,000 0.0155 0.0430 0.1165 02135  0.3495
FO =Par(1.5,1.5), y» =4.5 200,000 0.0000 0.0015  0.0915  0.5355  0.9275
C=C,p=075 2000 0.0585 0.0835 0.100  0.1425  0.1795
FO =Fre(1, 1.5), y =T'(}) 20,000 0.0095 0.0335 0.0975 02235  0.4045
F® —Fre(1.5,1.5), y2 = 3r(!) 200,000 0.0000 0.0030 0.1155  0.6570  0.9755
C=C,p=025 2000 0.0810 0.100  0.1380  0.1695  0.1950
FO =Par(1, 1.5), y =3 20,000 0.0150 0.0370  0.1020  0.1985  0.3330
FO =Par(1.5,1.5), ¥ = 4.5 200,000 0.0000 0.0035 0.0810  0.5025  0.9000

below the identity function and fall as the number of Monte Carlo replications
of the internal model n increases. For the levels § = 110% - A and § =120% - A,
we are under the alternative hypothesis. In this situation, Theorem 1 (c) com-
bined with Theorem 2 applies. In this regard, we expect that the empirical
rejection rates are greater than the significance level of 10% and tend to one
as the number of Monte Carlo replications of the internal model » increases. In
addition, it is expected that the empirical distribution functions of the p-values
of the test proceed above the identity function and rise as the number of Monte
Carlo replications » increases. Beyond that general expectations, the question
how good the test really performs has to be investigated empirically.

Finally, we discuss the results of the simulation study. We point out that
the outcome of the simulation study confirms all our expectations formulated
above. The results for an increasing number of Monte Carlo replications of
the internal model are in line with Theorem 1 and Theorem 2. Moreover, we
find that the test performs quite well in a setting which reflects the situation
in insurance practice in an appropriate way. At first, we consider the empiri-
cal rejection rates displayed in Table 1. Under the null hypothesis, the results
obtained indicate that the test keeps the significance level quite well. Precisely,
on the boundary of the null hypothesis § =100% - A the empirical rejection
rates are close to the statistical significance level of 10%, where the absolute
deviations lie in a range between 0.2% and 4.05%. In the interior of the null
hypothesis for levels § <90% - A the empirical rejection rates are less than the
statistical significance level of 10%, except in two cases for the lowest number
of Monte Carlo replications n =2000 where the excess is 1% and 1.4%, and tend
strictly decreasing to zero as the number of Monte Carlo replications increases
from n=2000 to n=200,000. It is also seen that the test has power under
alternatives for levels 6§ > 110% - A. Precisely, the empirical rejection rates are
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Empirical distribution functions of p-values for levels § = 80% - A (blue), § =90% - A (red),

8 =100% - A (black), § =110% - A (yellow), and § = 120% - A (green).
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clearly greater than the statistical significance level of 10%, or even close to one
for n =200,000 and § = 120% - A, and increase strictly as the number of Monte
Carlo replications increases from n =2000 to n =200,000. Now, we consider the
empirical distribution functions of the p-values of the test presented in Figure
1. The observation that the empirical distribution functions of the p-values of
the test are close to the identity function for the level § = 100% - A shows that
the bootstrap procedure serves a suitable approximation of the variance of the
test statistic. In addition, the proceed of the empirical distribution functions of
the p-values of the test for the other levels § <90%- A or § > 110% - A shows
that the test clearly distinguishes between situations where the null hypothesis
or the alternative hypothesis is valid if the distance to the null hypothesis, mea-
sured in terms of the relative deviation between § and A, is less that —10% or
greater that +10%.

3.2. Example

We consider a simplified portfolio consisting of an asset side and a liability
side. The asset side is given by a single European put option on a stock, where
the related market value is determined by the Black—Scholes pricing formula.
The input of the asset side are economic scenarios of the risk categories equity
and interest rate. The risk factor equity describes the evolution of the stock
price and is modeled by a geometric Brownian motion. The risk factor interest
rate follows the Cox—Ingersoll-Ross model. The risk factor of the liability side
is given by the total amount of claims corresponding to a portfolio of simple
policies. Here, we use the collective risk model, precisely a compound Poisson
model, with a fat tailed distribution for the individual claims.

Specifically, for the evolution of the risk factors equity and interest rate, we
consider the stochastic differential equations

dS[ - I.LS[d[ + USS[dm
and
dr, = a(b — r))dt + o, /T dW,,

which corresponds to a geometric Brownian motion and the Cox—Ingersoll-
Ross model, respectively. Here, W, and W, denote independent Brownian
motions. We set =1 for the stock drift, og=1 for the stock volatility,
a=10.01 for the speed of mean reversion parameter, b = 0.02 for the long term
mean level, o, =1 for the interest rate volatility, Sy =1 as start value for the
stock, and ry = 0.01 as start value for the interest rate. The risk factor for the
total amount of claims is given by

N,
X=) 2z,
i=1
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where N, is a Poisson process with intensity A =1, Z;, Z,, ... are independent
random variables each with the same Frechet distribution Fre(0.1, 1.5) with
scale parameter 0.1 and shape parameter 1.5, and W,, W,,N,, Z,, Z,, ... are
independent. The portfolio, consisting of a single European put option and the
total amount of claims, has the value C(S,, r,, 1) — X, , where

CS,r,t)=d(—dr))Kexp(—rT — 1)) — ®(—d))S

is the value of the option, with

1 S Oc
d = ———| log — — (T —t dy=d|—oNT —1t
1 a\/T——t(0gK+(r+2)( )>, 2=d|—0 ,

where T =2 is the maturity and K = 1.5 is the strike price. Here, we denote
by @ the distribution function of the standard normal distribution A0, 1].
The current own funds and the related forecast distribution is obtained by
evaluation of the portfolio value in t=0 and ¢ =1. We consider the under-
lying volatility of the contract o = 1. The example is also implemented with
the statistical software R. Thereby, we fix the seed to 1 for both model runs.
For the number of Monte Carlo replications of the internal model we choose
n=20,000. During the implementation of the example, several quantities are
approximated by Monte Carlo simulation. We determine the value of the (rel-
ative change of the) modeled solvency capital requirement A on the basis of
2,000,000 Monte Carlo replications. Moreover, the bootstrap estimator for the
standard deviation 6, is approximated by 200,000 replications according to the
sampling procedure described in Section 2. We choose the level y = 0.5% for
the solvency capital requirement according to the Solvency II directive. We
treat parameter updates on the interest rate volatility o, € {5, 10, 15, 20} and on
the volatility of the contract o¢ € {5, 10, 15, 20} in the second model run.

In what follows we discuss the results. Modeled and empirical solvency cap-
ital requirements and related relative changes are given in Table 2. We find
noticeable deviations between the modeled and the related empirical quantities.
The relative changes in the modeled and empirical solvency capital requirement
lie in the range between 10% and 70%. Realized p-values of the test for levels
§=x-A, x€(0%,200%), are presented in Figure 2. Because the test statistic is
strictly decreasing in §, the realizations of the p-values are strictly decreasing
in x. It is seen that the test starts to indicate a significant change in the mod-
eled solvency capital requirement in terms of realized p-values less than 10%
for &’s which lie in the range between § = 100% - A and § =120% - A for the
volatilities o, and o¢ under consideration. Noticing that the power values of
the test, obtained by simulation for o = 10% and n =20,000 in Subsection 3.1,
lie in the range between 19.85% and 22.35% for the level § =110% - A and in
the range between 31.10% and 40.45% for the level § = 120% - A, this result was
not necessarily expected, but is not surprising.

Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek (TIB Hannover), on 20 Dec 2021 at 13:25:37, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.20


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.20
https://www.cambridge.org/core

828 D. GAIGALL

TABLE 2

MODELED AND EMPIRICAL SOLVENCY CAPITAL REQUIREMENTS AND RELATED RELATIVE
CHANGES.

SCR - ger® SCR® A SCRY  SCRY A,

0, =0¢C

5 4.022875  4.647840  0.1553528 4.03318 4.583863  0.1365382
10 4.022875  5.977039  0.4857630 4.03318  5.855014  0.4517116
15 4.022875  6.526211  0.6222754  4.03318  6.317268  0.5663244
20 4.022875  6.803241 0.6911391 4.03318  6.512470  0.6147235
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FIGURE 2: Plots x versus p-value of the test for level § = x - A, x € (0%, 200%), (black), and the statistical
significance level & = 10% (red).

4. CONCLUSION AND OUTLOOK

Finally, we summarize the main findings of the work in a conclusion, outline a
possible extension of the idea, and discuss related research questions of interest.

4.1. Conclusion

The paper considers two model runs of and internal risk model and discuss
the question of a significant change in the modeled solvency capital require-
ment. The problem is treated on the basis of a paired sample from the related
distributions, served as the output of a Monte Carlo procedure under a fixed
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seed for both model runs. A reasonable test statistic is suggested and the limit
behavior of the test in different situations under the null hypothesis and under
the alternative hypothesis is obtained. Due to the demand for critical values, a
bootstrap procedure is suggested and justified. A simulation study investigates
the performance of the test for a finite number of Monte Carlo replications
beyond the theoretical results. The outcome of the simulation study confirms
the expectations and the theoretical findings. In addition, we find that the test
performs quite well in a setting which reflects the situation in insurance practice
in an appropriate way. An example for a simplified portfolio consisting of an
asset side and a liability side illustrates the internal risk model and how the test
is applied.

4.2. Outlook

The method has more general usage for inference of general risk measures
beyond the Value-at-Risk on the basis of a paired sample if the underlying
risk measure is suitable. Here we define A and A, with a more general risk
measure p in the place of the Value-at-Risk. If o is Hadamard differentiable,
our testing approach and our asymptotic results for the test statistic and the
bootstrap procedure still apply in this situation. In the context of the Solvency
11, the relevant risk measure is the Value-at-Risk and empirical process theory
(for triangular arrays) is combined with the Hadamard differentiability of the
quantile functional and the functional Delta method (for bootstrap) to obtain
the asymptotic results. In fact, the request of Hadamard differentiability on
the risk measure is a fairly strong condition. Nevertheless, Hadamard differen-
tiability can be weakened to the so-called quasi Hadamard differentiability, see
Kritschmer, Schied, and Zahle (2015), such that the concept applies to a broad
class of law-invariant and coherent risk measures. In addition, the functional
Delta method can be extended to functionals which satisfy this weaker assump-
tion, see Beutner and Zahle (2010) and Beutner and Zéhle (2016) for details. In
all, it should be possible to adopt our argumentation to ensure the asymptotic
properties of the test statistic on the basis of a broad class of law-invariant and
coherent risk measures. Furthermore, the works Beutner and Zahle (2010) and
Beutner and Zahle (2016) serve an extension of the functional Delta method for
quasi Hadamard differentiable functionals such that the adoption of our argu-
mentation for the bootstrap procedure should be possible for a broad class of
law-invariant and coherent risk measures.

A related topic of interest, in particular on the side of the regulatory author-
ity, is the detection of “model drift”, see Bank of England (2016). Regulators
are concerned whether a change in the solvency capital requirement is driven
by changes in the exposure or changes in the statistical assumptions. Thinking
of an update in the drift parameter of the interest rate forecast, for instance,
the parameters of the joint distribution of the risk factors (X, ..., X) are
determined on the basis of the statistical assumptions. Therefore, it is of interest
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whether the reason for the change in the solvency capital requirement SCR;’”
from model run £ =1 to k =2 observed is a change in the joint distribution of
the risk factors (X l(k), e, Xg‘) ) given some information about the functions r®.
This is an important and interesting topic for a further research work.
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APPENDIX A. PROOFS

At first, we prove Theorem 1. For the proof we use empirical process theory in Dudley
(1984), van der Vaart & Wellner (1996), and Ziegler (1997) combined with the concept of
Hadamard differentiability and the functional Delta method in van der Vaart (1998).

Proof. Proof of Theorem 1. At first, we prove (a) and (c) with standard arguments. From
our assumptions on the distributions of the outcome of the model runs 1 and 2, we obtain
the (joint) strong consistency for the sample quantiles the almost surely convergence

D y® M 2

)
[ynl:n® * [yn] :n) - (qV >y ) as n— oo,

where ¢\ =VaR,(Y®), k=1,2. Setting V={(x,y)eR%D —x£0,)® —y0,
¥ — x £y — 3}, we define the map ¢ : RZ — (0, o) by

M —y-0V-x
D x

d(x,y) = , (. » e,

and ¢(x, y) =0, (x, y) € R?\ Y. It follows the almost surely convergence
An=¢(Y1) 0 Yoo ) — d(q)). ) = Aasn— co.
Finally, under the premise that A < § is valid, it follows the almost surely convergence
Ap—8=A,—A+A—-§—A—-86<0asn— o0
and so almost surely
Ty = /n(A, —8) — —00 as n — o0,

that is, (a). Under the premise that A > § is true, we have analogously the almost surely
convergence

Ap—8=AN,—A+A—-§—>A—-5>0asn—> o0
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and so the almost surely convergence
T = /n(A, — 8) — +00 as n — oo,

that is, (c).
For the proof of (b), we use empirical process theory and apply the (functional) Delta
method. For this purpose, it is useful to regard distribution functions defined on R or R2

. = —2 =2 .
also as functions on R =[ — 00, 0o] or R™ =[ — 00, o0]?. In fact, R~ can be endowed with the
metric

=2
d(x,y,u,v)=max (| arctan x — arctan u|, | arctan y — arctan v|), (x, ), (u,v) e R",

—2 . . .. e .
such that (R, d) is a compact metric space. The empirical forecast distribution function of
the own funds in model run k =1, 2 is given by

n
k 1 k =
FP@= -3 11 <), xeR,
j=1
that is an estimator for the related modeled forecast distribution function of the own funds
FOx)=P(Y® <), xeR.
The bivariate empirical forecast distribution function of the own funds of model runs 1 and
21is
Fol(x )—1Xn:1(y(l)<x Y? <)), (x,y) R
n ’y - n / — / _y > ’y >
j=1

that is an estimator for the bivariate forecast distribution function of the own funds of model
runs 1 and 2

Flro) =B(YD < x, YO <), (x) e .
The related empirical process is given by
VAE(x, ) = Fx, ), (5,7) € R
Note that
Fy(x,00)= F,(,I)(x), x€eR, Fy(o0,x)= F,gz)(x), xeR,
and
F(x,00)= F(l)(x), xeR, F(oo,x)= F(z)(x), xeR.

Denote by U, a stochastic process on a probability space (€2, 2, P) with sample paths in

@) =(f B > Rillf Iz < oo},
2 If G, f: @2 — R, is the uniform norm. The map (f1,/>) —

P y)eR
W = fall2s (f1./2) € Z‘X’(ﬁz) x Zw(ﬁz), defines a metric on Z"o(ﬁz). Denote by %(ZOO(RZ))

where =
=
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the Borel o-field on (6"0(@2), [l - ”EZ)' Let U be another stochastic process, for simplicity

defined on the same probability space, with sample paths in E"O(ﬁz). Itis
Ub(Rz, d)y={fe E”(@z); f is uniformly d-continuous}

a separable subspace of Koo(ﬁz). If the process U has sample paths in Ub(ﬁz, d), the process
Uis (A, ‘B(é"o(ﬁz)))-measurable. We say that U, converges in distribution to U, in notation

Uy 25 Uasn— oo,if Uis (A, %(Z"O(ﬁz)))-measurable and
vf Zoo(ﬁz) — R continuous and bounded : lim_ E*(f(Up)=E(f(V)),

where E* is the outer expectation, see, for example, van der Vaart & Wellner (1996) for
details. Combining the results of Dudley (1984) with Lemma 2.6.17 (i) and (ii) in van der
Vaart & Wellner (1996), we have that

C={{wy) eRru<x,v<ph(xy) e E)
is a Vapnik—Chervonenkis class. Then, the set
V={fif 1R = R, f(,v) = () € C), (1, 1) € B, C<C)

is a Vapnik—Chervonenkis graph class. The empirical process +/n(F, — F) has sample paths
in ew(ﬁz) and is indexed by the Vapnik—Chervonenkis graph class. We apply the general
convergence result 4.2 in Ziegler (1997) to our empirical process. It is clear that V can
equipped with a metric corresponding to d such that the related space is totally bounded.
From Lemma 2.4 in Ziegler (1997), it follows that V has uniformly integrable entropy. From
Lindeberg’s condition combined with the Cramér—Wold device the convergence in distribu-
tion of the finite dimensional projections of our empirical process to centered multivariate
normal distributions follows. With the envelope g(u, v) =1, (u, v) € R2, the conditions (8)
and (10) in 4.2 in Ziegler (1997) are directly satisfied. From our assumption that F is uni-
formly continuous we deduce that condition (9) in 4.2 in Ziegler (1997) holds. In all, we
obtain from 4.2 in Ziegler (1997) the convergence in distribution

ﬁ(Fn—F)—d>Gasn—>oo,

. . . . —2 .
where G is a centered Gaussian process with sample paths in Up(R", d) and covariance
function

cx,y,u,vVy=F(x Au,y Av) — F(x, »)F(u,v), (x,),(u,v)e @2‘

Noticing that in a finite-dimensional space Hadamard differentiability is just the classical

total differentiability, the map ¢ : RZ — (0, oo) introduced above is Hadamard differentiable

in (qg,l) s q§/2)) tangentially to RZ with derivative

x-SCR@ +y.SCRM /SCR® — SCRD
(SCR(D)2 < SCR(M )
x-SCR® +3.SCRM /SCRP — SCRV

B (SCRMy2 ( SCRM

¢’ (x,y)=
(q(yl),q;z)) J

< 0), (x,y) e R%.
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Denoting by F the space of all functions H : @2 — R, where for H € F the functions H) =
H(-,00) and H® = H(co, -) are cadlag, which can be endowed with the usual supremum
metric, we deduce from the results for the Hadamard differentiability of the quantile func-
tional, see Theorem 21.3. in van der Vaart & Wellner (1996), that the functional ¢ : F — R2,
defined by

o) = ((HO @), (HD) (), HeF,

is Hadamard differentiable in F tangentially to H, where H C F is the subspace of F of
functions continuous in (qg/l), qg/z)), with Hadamard derivative

eH.

, 2Oy  HOEGD)
R =~ 10 o) )

Defining the functional ¢ : ¥ — ) by

¥ = (HO) ) = 0 = HO) )
W0 = HD) ()

W(H)=‘

, HeF,

it follows from the chain rule, see Theorem 20.9 in van der Vaart (1998), that ¥ =¢ o ¢ is
Hadamard differentiable in F tangentially to # with Hadamard derivative ¥, = ¢(’ o) o
qy 4y

@, where

HOGV) @ _ HOG) 1

— .SCR® _ 2%y ) gcr(®

V) = S0y 1O J((SCR® —SCR®)
P (SCRM)2 SCRM
_ 1Y) op@ _ H2G)  oor()
1) 1O SCR®@ —scrRM
SCROY I SR <0), He?.

Under A =34, it follows from the (functional) Delta method, see Theorem 20.8 in van der
Vaart (1998), that

Ty = Vi(Ay — A) = i (Fy) — ¥(F)) ~> y(G) = N as n — oo.

Because the Hadamard derivative ¥, is a linear and continuous functional and G is a cen-
tered Gaussian process with continuous paths, N has a centered normal distribution. By
simple calculation we obtain the variance of the distribution of NV as it is stated. In all, b) is
proved. d

Finally, we prove of Theorem 2. Now, we use the fact that the empirical process the-
ory in Ziegler (1997) is developed in a general setting for triangular arrays of random
variables. In addition, a general Glivenko—Cantelli result in GanBler & Ziegler (1994) is
applied. Finally, the concept of Hadamard differentiability and the functional Delta method
for bootstrap in van der Vaart (1998) yields the statement.
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Proof. Proof of Theorem 2. To prove the statement we argue analogously to the Poof of
Theorem 1 (b). In the bootstrap situation, we consider the empirical distribution functions

n
A (k 1 ~(k —
EP@ =3 1) <0, xeR.
J=1

k=1,2, and
1 & 1 2 —2
By = 3 UF) < x T <), (o) e R
j=1

as well as the empirical process

Va(Fu(x. ) = Fa(x. ), (x.y) €R,

based on triangular arrays of row-wise independent and identically distributed random vari-

ables with underlying distributions F,(,k) and Fy,. From our assumptions on F, the regularity
conditions of the general convergence result in GanBler & Ziegler (1994) can also be easily
verified. At first, we obtain from Corollary 4.1 (ii) in GanBler & Ziegler (1994) almost surely

F,— Fasn— oo,

where the convergence holds in the uniformly sense. Noticing that 4.2 in Ziegler (1997) is
valid for triangular arrays of random variables as well, the latter convergence result implies
that the conditions in 4.2 in Ziegler (1997) hold almost surely analogous to the Proof of
Theorem 1 (b). Therefore, it follows the conditionally convergence in distribution

\/ﬁ(l:"n—Fn)—d> Gasn— oo

given the original observations almost surely analogous to the Proof of Theorem 1 (b), where

G is a centered Gaussian process with sample paths in Ub(ﬁz, d). In particular, the distri-
bution of G is the same distribution as in the limit in the Proof of Theorem 1 (b) if A =4

is valid. Noticing that the convergence in distribution of a process with values in £>°(R") to

another tight process with values in E“(@z) can be expressed with the help of Lipschitz con-
tinuous functions, compare with Chapter 23 in van der Vaart (1998), the stated conditionally
convergence in distribution given the original observations almost surely can be formulated
as the following almost surely convergence:

sup  |E(h(n(E, — E)ICYD, ¥P), vV, vP)) — E(h(G))| — 0asn— oo,
heBL (€2 (R%))

where BL; (600(@2)) denotes the set of all Lipschitz continuous functions h:ew(ﬁz)e
[— 1, +1] with |A(f) — h(g)| < |U‘—g||ﬁ2 for all f,geﬁoo(@z). Note that the process G is
tight because G has sample paths in Ub(@z, d). Because almost surely convergence implies
convergence in probability, it follows the conditionally convergence in distribution

\/ﬁ(l:“,,—F,,)—d> Gasn— oo
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given the original observations in probability, where the stated conditionally convergence
in distribution given the original observations in probability is in the sense of the following
convergence in probability:

~ 4
sup  |E(W(/n(Fy — EDI(Y, YD) (D, ¥P)) = E(W(G))| —> 0as n— oo,
=2
heBL| ((*(R7))

see Chapter 23 in van der Vaart (1998). Because G is tight, and from the (functional) Delta
method for bootstrap, see Theorem 23.9 in van der Vaart (1998), we obtain the conditionally
convergence in distribution

T = V(A — Ag) = V(W (E) = p(Fn) ~5 Yp(G) = N asn— oo

given the original observations in probability, where N has a centered normal distribution,
and the stated conditionally convergence in distribution given the original observations in
probability is in the sense as it is stated below Theorem 2. In particular, the distribution of
N is the same distribution as in the limit in Theorem 1 (b) if A =4 is valid. a
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