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Abstract

The use of medical imaging has revolutionized modern medicine over the last century. It has
helped provide insight into human anatomy and physiology. Many diseases and pathologies
can only be diagnosed with the use of imaging techniques. Due to increasing availability and
the reduction of costs, the number of medical imaging examinations is continuously growing,
resulting in a huge amount of data that has to be assessed by medical experts.

Computers can be used to assist in and automate the process of medical image analysis.
Recent advances in deep learning allow this to be done with reasonable accuracy and on a
large scale. The biggest disadvantage of these methods in practice is their black-box nature.
Although they achieve the highest accuracy, their acceptance in clinical practice may be
limited by their lack of interpretability and transparency. These concerns are reinforced
by the core problem that this dissertation addresses: the overconfidence of deep models in
incorrect predictions. How do we know if we do not know?

This thesis deals with Bayesian methods for estimation of predictive uncertainty in medical
imaging with deep learning. We show that the uncertainty from variational Bayesian inference
is miscalibrated and does not represent the predictive error well. To quantify miscalibration,
we propose the uncertainty calibration error, which alleviates disadvantages of existing
calibration metrics. Moreover, we introduce logit scaling for deep Bayesian Monte Carlo
methods to calibrate uncertainty after training. Calibrated deep Bayesian models better detect
false predictions and out-of-distribution data.

Bayesian uncertainty is further leveraged to reduce the economic burden of large data
labeling, which is needed to train deep models. We propose BatchPL, a sample acquisition
scheme that selects highly informative samples for pseudo-labeling in self- and unsupervised
learning scenarios. The approach achieves state-of-the-art performance on both medical and
non-medical classification data sets.

Many medical imaging problems exceed classification. Therefore, we extended estimation
and calibration of predictive uncertainty to deep regression (σ scaling) and evaluated it on
different medical imaging regression tasks. To mitigate the problem of hallucinations in deep
generative models, we provide a Bayesian approach to deep image prior (MCDIP), which is
not affected by hallucinations as the model only ever has access to one single image.

Keywords: machine learning, deep learning, medical imaging, uncertainty, variational
inference, Bayesian inference, computer-aided diagnosis, instrument tracking, reconstruction
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Kurzfassung

Die moderne Medizin wurde durch den Einsatz der medizinischen Bildgebung im letzten
Jahrhundert revolutioniert. Viele Krankheiten können nur mit Hilfe von bildgebenden Ver-
fahren diagnostiziert werden. Aufgrund der zunehmenden Verfügbarkeit und der sinkenden
Kosten nimmt die Zahl der Untersuchungen mit medizinischer Bildgebung stetig zu, was zu
einer riesigen Datenmenge führt, die durch medizinische Experten ausgewertet werden muss.

Computer können zur Unterstützung und Automatisierung der medizinischen Bildanalyse
eingesetzt werden. Die Fortschritte im Bereich des Deep Learning ermöglichen dies mit
angemessener Genauigkeit und bei hoher Datenmenge. Der größte Nachteil dieser Metho-
den ist ihr Blackbox-Charakter. Obwohl sie die höchste Genauigkeit erreichen, kann ihre
Akzeptanz in der klinischen Praxis durch ihre mangelnde Interpretierbarkeit und Transparenz
eingeschränkt sein. Diese Bedenken werden durch das Kernproblem verstärkt, mit dem
sich diese Dissertation befasst: die übermäßige Konfidenz der tiefen Modelle in falsche
Prädiktionen. Wie können wir wissen, wenn wenn die Modelle etwas nicht wissen?

Diese Arbeit befasst sich mit Bayesschen Methoden zur Schätzung der Unsicherheit in der
medizinischen Bildgebung mit Deep Learning. Wir zeigen, dass die Unsicherheit aus Bayes-
scher Variationsinferenz falsch kalibriert ist und den Vorhersagefehler nicht gut repräsentiert.
Um die Miskalibrierung zu quantifizieren, schlagen wir den Uncertainty Calibration Error
vor, der Nachteile bestehender Kalibrierungsmetriken vermeidet. Außerdem führen wir eine
Logit-Skalierung für tiefe Bayessche Monte-Carlo-Methoden ein, um die Unsicherheit nach
dem Training zu kalibrieren. Kalibrierte Bayessche Modelle erkennen falsche Vorhersagen
und Daten, die nicht der Trainingsverteilung entsprechen, besser.

Die Bayessche Unsicherheit wird außerdem genutzt, um den Aufwand der Annotierung
großer Datenmengen zu verringern. Wir präsentieren BatchPL, ein Schema, das hochinfor-
mative Stichproben für eine Pseudoannotierung für selbstüberwachtes Lernen auswählt. Der
Ansatz erreicht sowohl bei medizinischen als auch bei nicht-medizinischen Klassifizierungs-
datensätzen eine Spitzenleistung.

Viele Probleme der medizinischen Bildgebung gehen über Klassifizierung hinaus. Da-
her haben wir die Schätzung und Kalibrierung der Unsicherheit auf die tiefe Regression
(σ-Skalierung) ausgedehnt und sie an verschiedenen medizinischen Regressionsaufgaben
evaluiert. Um das Problem der Halluzinationen in tiefen generativen Modellen zu entschär-
fen, präsentieren wir einen Bayesschen Ansatz (MCDIP), der nicht durch Halluzinationen
beeinträchtigt wird, da das Modell immer nur Zugang zu einem einzigen Bild hat.

Stichworte: maschinelles Lernen, Deep Learning, medizinische Bildgebung, Unsicherheit,
Variationsinferenz, Bayessche Inferenz, computerassistierte Diagnose, Instrumententracking,
Rekonstruktion
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1 Introduction

Your overconfidence is your weakness.

Luke Skywalker, to the Emperor
Return of the Jedi

1.1 The Importance of Uncertainty in Medical Decision Making

In their daily routine, clinicians have to make crucial decisions that determine the health of
patients. They often ask themselves “What are the possible causes of my patient’s problem?”.
Features of the problem are gathered through different approaches, such as the medical
interview, physical examination, or medical imaging. This information is usually indicative
of different diagnoses. Clinicians can express their assumptions about various possible
diagnoses with a degree of uncertainty. More specifically, their assumptions about the causes
of the patient’s problems are not based solely on the information from diagnostic tools. They
usually have a prior assumption based on their personal experience, even before seeing any
test results. The test results themselves can be ambiguous and, therefore, have their own
degree of uncertainty (expressed via test sensitivity and specificity), which contributes to the
uncertainty in the final diagnosis.

Formally, clinicians express their prior belief with a probability distribution (Roberts 2020)

p(disease) .

The prior assigns a non-zero probability to possible diseases and zero probability to impossi-
ble diseases (e.g., it is unlikely that chest pain is caused by a broken toe). In the worst case,
we cannot make any prior assumption and use a noninformative prior p(diagnosis) = const,
making all diagnoses equally probable a priori. After observing a test result, clinicians
update their assumptions using Bayes’ theorem (Roberts 2020)

p(disease | result) =
p(result | disease)p(disease)

p(result)
. (1.1)

This is called the posterior probability and it allows us to express the uncertainty in a
diagnosis after observing a test result. The conditional distribution on the right-hand side
is called likelihood and describes the probability of the observed test result for different
diagnoses. In the medical context the prior is also referred to as prevalence. The denominator
ensures that the posterior is a valid probability density and is called evidence. We will later
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see that the evidence plays an important role in approximate Bayesian inference (see § 1.4).
Let us consider the following example of how Bayes’ theorem can be used to update the

diagnostic uncertainty of clinicians (Held and Sabanés Bové 2014). A diagnostic test for a
certain disease D has a sensitivity of 90 %. That is, given that the patient has the disease,
the probability of a positive test result T is Pr(T |D) = 0.9. Further, the test has a 90 %
specificity (receiving a negative test result ¬T given a disease-free patient), which we denote
by Pr(¬T | ¬D) = 0.9. Assuming a prevalence Pr(D) = 0.01 for this disease (that is, one
out of hundred people in a population has this disease), the posterior probability is given by

Pr(D |T ) =
Pr(T |D) Pr(D)

Pr(T )
.

In this simple example, we can use the law of total probability to compute the test evidence

Pr(T ) = Pr(T |D) Pr(D) + Pr(T | ¬D) Pr(¬D) ,

with Pr(T | ¬D) = 1 − Pr(¬T | ¬D) and Pr(¬D) = 1 − Pr(D). Hence, the posterior
probability is Pr(D |T ) ≈ 0.083; i.e., the clinician’s confidence for this disease increases
from 1.0 % to 8.3 % (Held and Sabanés Bové 2014). This example illustrates the importance
of priors in medical decision making. Without the use of Bayesian inference, a clinician may
spuriously come to an over-confident conclusion and assume that the probability of having
the disease after observing a positive test result would be 90 %.

This example may seem artificial, but on 9th November 2020, Pfizer and BioNTech
published a press release in which the overwhelming efficacy of their COVID-19 vaccine was
shown using Bayesian analysis with a weakly informative Beta(0.700102, 1.0) prior (Polack
et al. 2020).

In the above example we have computed the posterior probability for certain realizations of
simple discrete random variables, which we denoted by Pr(·). Bayesian inference generally
aims at computing the posterior distribution

p(θ |x) =
p(x | θ)p(θ)∫
p(x | θ)p(θ) dθ

(1.2)

that captures all the information about an unknown parameter θ given observed data x. In
this case, p(θ |x) denotes a probability density function and obtaining the evidence requires
integration with respect to θ, which usually cannot be done analytically. From the integral
in Eq. (1.2) we can see why the evidence is also called marginal likelihood. Analytical
marginalization is possible for simple linear models and carefully crafted priors that are
conjugate to the likelihood (cf. (Bishop 2006; Held and Sabanés Bové 2014) for more
information about conjugate priors). For more complex models, e.g., neural networks with
non-linear activations, the true posterior distribution is intractable; i.e., the integral has no
closed-form solution (Blei et al. 2017). Thus, we cannot reason about the uncertainty of θ
after observing data (e.g., a test result). Instead, it is tempting to reject the Bayesian treatment
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Figure 1.1: Samples from a linearly separable toy data set and the classification results for
c = 0 from frequentist likelihood and Bayesian approximation with stochastic
variational inference and Markov chain Monte Carlo (MCMC). The frequentist
treatment leads to over-confident classification.

and try to estimate a single “best” point estimate for the unknown parameter. Clinicians
would use the diagnosis that most likely led to the observed test results, which is referred to
as the maximum likelihood solution:

θ̂ = arg max
θ

p(x | θ) .

This not only prevents the determination of uncertainty, but can also lead to an excessive
valuation of the test results, as the following example shows.

Given an artificial data set1 D = {X , C} of N linearly separable samples (see Fig. 1.1),
where every sample xi ∈ X contains two continuous disease features (e.g., body temperature
and diastolic blood pressure) xi = [xi, yi]

T, x, y ∈ R and a corresponding binary disease
label Ci ∈ C, where Ci = ci, c ∈ {0, 1}. We aim at finding a linear model

fθ(xi) = wxi + b , (1.3)

with parameters θ = {w, b} consisting of a weight matrix w and a bias vector b. The model
produces logits (unnormalized log-odds) for every input xi. Class probabilities are given by
a softmax likelihood (cf. § 1.3)

p(c = d |x,θ) =
exp{fθ(x)d}∑
j exp{fθ(x)j}

. (1.4)

We implement the model using a single linear layer neural network and find the parameters θ
using three different approaches. First, a frequentist approach is taken and a point estimate θ̂

1The code for this example can be found at gist.github.com/mlaves.

https://gist.github.com/mlaves/607d5252325d44fcea02d42179811d2e
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is found via maximum likelihood estimation (MLE) using stochastic gradient descent w.r.t.
θ on the data set. The point estimate θ̂ is then plugged into Eq. (1.4) to obtain the softmax
likelihood for a new input x∗. When evaluating the frequentist likelihood over the input
space, we observe severe over-fitting of the training data (see Fig. 1.1 left). The softmax
output degenerates to a step function assigning a probability p(c = 0 |x, θ̂) = 1 to every
training sample of class 0 and p(c = 0 |x, θ̂) = 0 for samples of class 1. Frequentists often
interpret the softmax probability as a measure of confidence (Guo et al. 2017). This example
illustrates why this is a misnomer and we will show in the remainder of this thesis that this is
also true for deep models on real-world data sets (see chapter 2).

In the next step, we move towards a full Bayesian treatment and introduce a prior distribu-
tion p(θ) over the parameters of the linear model. We opt for a Gaussian distribution

p(θ) = N (θ |0, I) (1.5)

and a categorical likelihood

p(C |X ,θ) =
N∏
i=1

Categorical(ci | fθ(xi)) , (1.6)

where Categorical(x) denotes the categorical or multinoulli distribution. A categorical
distribution is a discrete probability distribution that assigns a non-zero probability to each
possible outcome of a random variable x.

The posterior of the parameters θ after observing the data set D is given by Eq. (1.2):

p(θ | X , C) ∝ p(C |X ,θ)p(θ) . (1.7)

Maximizing Eq. (1.7) w.r.t. θ represents an intermediate step towards a fully Bayesian treat-
ment and is referred to as maximum posterior (MAP) estimation. In case of a Gaussian prior,
MAP estimation is equivalent to performing MLE with added weight decay regularization
(see § 1.4). However, in a complete Bayesian setting, we are interested in inferencing the
disease label c∗ for a new, unseen input x∗ after observing the training data:

p(c∗ |x∗,X , C) =

∫
p(c∗ |x∗,θ)p(θ | X , C) dθ , (1.8)

which is referred to as the posterior predictive distribution. Here, the posterior distribution
over θ requires computation of the marginal likelihood, which cannot be done analytically.

To conclude this example, we discuss the results of two different approaches to approximate
the posterior p(θ | X , C). Variational inference (VI) is a common technique, where the true
posterior is approximated by a simpler variational distribution qφ(θ), parameterized by φ.
Without going into details at this point, we can use standard nonlinear optimization w.r.t. the
variational parameters φ to bring qφ close to the true posterior (see § 1.4). One way to restrict
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Figure 1.2: Posterior samples for weight matrix w from SVI and NUTS MCMC. The over-
confidence from SVI with a factorized Gaussian as variational distribution is
obvious. This results in overconfident predictions, e.g., for OoD data.

the family of variational distributions is to assume that qφ factorizes, such that

qφ(θ) =
∏
i

qφ,i(θi) . (1.9)

Variational inference yields a tractable solution to the posterior. However, it must be con-
sidered that the approximation may be of unknown quality. The classification results for
stochastic variational inference (SVI) with a factorized Gaussian approximation to the true
posterior is shown in Fig. 1.1 (center). This approach does not overfit the training data and
thus does not yield overconfident predictions for new samples (especially for those that might
lie between the two point sets).

Finally, Markov chain Monte Carlo (MCMC) is a very powerful framework, which allows
us to sample from any probability distribution, given a function that is proportional to the
density and that the function can be evaluated; i.e., the right-hand side of Eq (1.7) (Bishop
2006). This allows us to find the posterior distribution without directly computing the
intractable marginal likelihood. In contrast to other methods, MCMC makes no assumptions
about the form of the distribution (Neal 1994).

Let f(x,θ) be some unnormalized function that is easy to evaluate for any given θ and that
is proportional to the desired probability distribution p(θ | D); for example the product of a
prior distribution and a likelihood function. Directly sampling from p(θ | D) is infeasible and
thus, MCMC is performed by using a simpler proposal distribution q(θi+1 |θi), from which
we can easily draw samples θ∗ ∼ q. The proposal distribution only depends on the current
state θi and, therefore, a sequence θ1,θ2, . . . forms a Markov chain. A key requirement
of this chain is ergodicity: The distribution over the states of the Markov chain does not
change once it has reached a stationary point (invariance) and that q(θM) converges to the
desired distribution p(θ | D) as M → ∞. It can be shown that MCMC allows us to draw
unbiased samples from the true distribution of interest (Neal 1993). A common MCMC



6 1 Introduction

implementation is the Metropolis-Hastings algorithm2 (Hastings 1970).
In this example, we use the recent No U-Turn Sampler (NUTS), which is slower than

variational inference, but provides an exact estimate of the posterior distribution (Hoffman
and Gelman 2014). Relative wall-times were 1.0 for the frequentist approach, 6.5 for SVI
and 37.0 for NUTS (100 burn-in iterations and 1,000 posterior samples). At first glance, the
posterior predictive distribution in Fig. 1.1 looks very similar. However, if we compare the
posterior distribution of the parameters θ, a clear difference becomes apparent (see Fig. 1.2):
The approximate posterior p(θ | X , C) from SVI is too narrow and therefore overconfident.
The reason for this is, that our variational family has diagonal covariance and cannot express
correlations between the parameters. We will see later, however, that this restriction allows
the application of SVI to deep convolutional networks (cf. § 1.4). The consequence of this
phenomenon is particularly noticeable in the case of out-of-distribution (OoD) data (test data
that is far away from the training data). Here we consider a test sample to be an OoD sample
if (Hein et al. 2019)

x∗OoD = δx∗ , (1.10)

with sufficiently large δ. For demonstration purposes, we compute the empirical variance
s2 (which we, for now, interpret as measure of uncertainty) from 1,000 posterior samples
of the logits for x∗OoD = δ[1, 1]T with δ = 10. The results s2

SVI = [6.9, 7.5]T and s2
MCMC =

[101.5, 101.6]T reveal: The posterior from SVI is too narrow and thus overconfident.

Interim Conclusion

Unfortunately, the computational demands of MCMC methods prevent scaling to more
complex models or larger data sets, as required for deep learning in medical imaging. Thus,
the goal of this thesis is to use Bayesian deep learning with variational inference to obtain
an approximate predictive posterior distribution and tackle overconfident predictions (with
underestimated uncertainty) by post-hoc calibration. This allows practical estimation of
well-calibrated uncertainty which we will demonstrate on a variety of medical imaging tasks
that are approached with deep learning.

1.2 Deep Learning in Medical Imaging

This section provides a brief overview of the history and state-of-the-art concepts of medical
imaging with deep learning. In many areas of medical imaging, deep learning has recently
become the preferred method (Litjens et al. 2017). Several possibilities exist to categorize
the prior work, e.g., by medical discipline, anatomical region or applied algorithm. Here, and
throughout this thesis, we use the machine learning problems of classification and regression
as distinction. In the context of medical image analysis, the first is often referred to as
computer-aided diagnosis (CAD), but is not limited to it. The latter is further subdivided into

2A simple implementation of Metropolis-Hastings MCMC can be found at gist.github.com/mlaves.

https://gist.github.com/mlaves/752ae71a852753b69cb7e8e2f66f0997
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regression of scalar or lower-dimensional vector-valued output and generative models, where
the task is to reconstruct the input under certain constraints.

1.2.1 Classification

Due to the rapid progress in deep classification models (e.g., VGG, ResNet, Inception (He,
X. Zhang, et al. 2016; Simonyan and Zisserman 2014; Szegedy et al. 2016)), computer-aided
diagnosis was one of the first domains to benefit from deep learning. The goal is to assign
an input image x to one of K discrete classes Ck ∈ {C1, . . . , CK}. There are various works
for most medical imaging modalities, including classification of breast lesions in ultrasound
(US) images, pulmonary nodules in computed tomography (CT) scans (J.-Z. Cheng et al.
2016), macular degeneration in optical coherence tomography (OCT) scans (C. S. Lee et al.
2017), cardiac assessment from magnetic resonance imaging (MRI) (Bernard et al. 2018),
cardiovascular risk factors or anaemia from retinal fundus images (Mitani et al. 2020; Poplin
et al. 2018), or melanoma from dermoscopy images (Haenssle et al. 2018).

Most noteworthy are those works in which the performance of the deep learning algorithm
is compared with the outcome of medical experts. Esteva et al. (2017) trained a convolutional
neural network on 129,450 clinical photographs consisting of 2,032 different skin diseases
and compared the performance of classification to 21 certified dermatologists using biopsy-
labelled test images. The CNN achieved performance that was on par with the medical experts.
An unmodified Inception v3 architecture with pre-trained weights from the ImageNet data
set was used. Kermany et al. (2018) presented classification of retinal OCT images, again
with on par performance to trained ophthalmologists. The same Inception v3 architecture
was trained on a data set of 108,312 retinal OCT scans showing four different conditions.
The data set itself was made available to the public. Most studies used pre-training on large
non-medical data sets such as ImageNet to increase the classification performance. Medical
data sets with expert labels are usually difficult to obtain and thus pre-training is standard
protocol to achieve the desired accuracy.

If classification is performed for each pixel of an input image, this can be used for
image segmentation. Segmentation is a common task in medial image analysis and aims
at delineation of anatomical regions of interest such as organs, brain structures or tumors.
The U-Net was one of the first CNNs used for binary segmentation in biomedical images
(Ronneberger et al. 2015). They proposed a U-shaped autoencoder (hence the name) that
produces binary masks of the structures of interest from grayscale input images. U-Net
was extraordinarily influential on the field of medical segmentation and counts over 31,000
citations to date. Since then, segmentation was applied to all medical imaging modalities,
including CT scans, nuclei segmentation in microscopy images, polyp segmentation in
colonoscopy videos (Z. Zhou et al. 2018) and volumetric 3D images in general (Çiçek
et al. 2016; Milletari et al. 2016). During this thesis, Bayesian segmentation was applied
to laryngeal scenes (Laves, Bicker, et al. 2019). In accordance with our expectations, we
have observed that predictions with a high degree of uncertainty occur particularly at object
boundaries (see § 1.4).
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Computer-aided diagnosis with deep learning has proven to perform well on a variety
of tasks. This can help in clinical routine to quickly obtain a second opinion for medical
decision making, reduce costs by freeing physicians from the time-consuming examination of
large amounts of medical images, or bring cost-effective tools for early diagnosis to regions
with a shortage of medical experts. In Chapter 2 we will propose to calibrate Bayesian neural
networks to obtain predictive uncertainty in classification tasks. This allows detection and
rejection of uncertain predictions, which is of utmost importance in medical decision making
based on computer-aided diagnosis.

1.2.2 Regression

Compared to classification, regression is less studied in medical imaging. To date, the
renowned journal Medical Image Analysis lists 817 articles with the keyword “classification”,
but only 498 articles with the keyword “regression”. However, there is a broad field of
applications, making it worth investigating. For the task of regression, a continuous scalar
or vector-valued target y ∈ Rd is estimated given an input image x. This has been used for
forensic age estimation, where the age of children in months is estimated from CT scans
(Halabi et al. 2019) or MRI (Štern et al. 2016) of the hand. With recent CNN architectures,
age estimation is possible with a mean absolute error of 0.37 ± 0.51 years. Regression
can further be used in histopathology to detect the position of cells (Xie et al. 2018) or
estimate the amount of tumor cells (Martel et al. 2019). The examination of biopsies and
histological sections is a tedious task and requires a trained pathologist. Deep learning can
help to accelerate this process and reduce cost. Segmentation can also be performed as
a regression task by predicting the coordinates of object boundaries. This was performed
for the segmentation of pulmonary nodules in CT scans (Messay et al. 2015), kidneys in
ultrasound images (Yin et al. 2020), or left ventricles in MRI (L. K. Tan et al. 2017). In
robot-assisted surgery, convolutional networks have recently been applied to regression of
instrument poses from endoscopic images (Laves, Ihler, Fast, et al. 2020) and OCT scans
(Gessert et al. 2018) or the localization of natural landmarks (Payer et al. 2019).

1.2.3 Generative Tasks

If the output dimensions of a regression model f : RC×H×W → RC×H×W are increased to be
in the range of the input image with number of channels C, and pixel height H and width W ,
we refer to this as a generative model. Generative tasks in the form of image enhancement
and denoising have a long history in medical image analysis (Salinas and Fernandez 2007).
Naturally, deep learning has recently been applied to this task. In (Laves, Ihler, Kahrs, et al.
2019b), we used an autoencoder CNN regularized by a pre-trained classifier network to
denoise OCT scans without smoothing subtle anatomical details. Autoencoders usually have
a data bottleneck between the encoding part and the decoding part, which forces the encoding
part to extract a meaningful low-dimensional latent representation from a corrupted input
image x̃. This is then fed into the decoding part and mapped back to a reconstructed image
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x̂ in input space. Denoising can help to enhance, e.g., low-dose CT scans that are of poor
quality, thus reducing radiation exposure.

Moreover, generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie, et al.
2014) have been applied to denoising of 2D and 3D medical images (Ran et al. 2019). GANs
have further been used to synthesize new realistic-looking medical images together with
annotations (e.g., segmentation maps) (Zhao et al. 2018). This can be applied in surgical
simulations or to generate training data for other data-driven algorithms. GANs can also be
used to solve the task of super-resolution, where an upsampled image is generated with more
detail and sharpness than, for example, with bilinear upsampling (Yi et al. 2019).

Finally, we consider whole-image deformable registration to be a generative task, which
still is a major challenge in medical image processing. The result is a dense mapping showing
pixel-wise non-linear correspondences between a pair of images that best aligns an input
image onto a target image by means of some similarity definition. Deformable registration
with deep learning is applied in analysis of patient-specific temporal or anatomical changes,
e.g., from pre- to post-operative state, or to show inter-patient variances (Dalca et al. 2019).

However, there is a cardinal problem with learning-based generative models in medical
imaging. Trained deep networks reconstruct the output from non-linear combinations of
learned features. This can lead to a pathological phenomenon called hallucination (Yi et al.
2019), where the network embeds anatomical structures (e.g., retinal layers in OCT scans
or small blood vessels in fundus imaging) that are not present in the input image. Worse
still, images with hallucinated features appear to be valid even to the expert eye, due to the
excellent performance of CNNs in generative tasks. In chapter 4, we will propose a novel
Bayesian extension to the framework of deep image prior (Ulyanov et al. 2018) that produces
hallucination-free images despite using the tools of deep learning.

1.3 Supervised Learning and Maximum Likelihood

This section gives a short introduction into supervised learning with maximum likelihood
estimation and introduces the notation used throughout this thesis. For a more detailed insight
into the principles of machine learning, we suggest the interested reader to consult textbooks
from Bishop (2006), Goodfellow, Bengio, et al. (2016), and Held and Sabanés Bové (2014).

Most introductions to machine learning start with the simplest task of linear regression.
Here, we shall skip a few steps and directly introduce the concept of supervised deep learning.
The goal of a deep model fθ, parameterized by θ, is to predict a target value y given some
new, unseen input x and a training set D of N independent inputs X = {x1, . . . ,xN}
and their corresponding (observed) target values Y = {y1, . . . ,yN}. This employs full
supervision, as pairs of input data and ground truth outcome are presented to the model
during training. Inputs and target values may be affected by noise, for example acquisition
noise from a digital camera or X-ray sensor. To account for this, we assume that data points
are drawn independently from a Gaussian distribution with unknown mean and unknown, but
constant variance σ2. We now let the deep model predict the mean fθ(x) = ŷ for a given



10 1 Introduction

input. Thus, the deep model estimates a conditional distribution

p(y |x,θ) = N (y | ŷ, σ2) (1.11)

to predict y given x. Since we have assumed that our data is independent and identically
distributed (i.i.d.), the probability of all targets given all inputs is given by (Bishop 2006)

p(Y |X ,θ) =
N∏
n=1

N (yn | ŷn, σ2) . (1.12)

This probability distribution is a function of the unknown parameters θ and is referred
to as the likelihood function L(θ). It describes how likely it is to observe our data pairs
{Y |X}, given the parameters θ of the deep model. A model’s parameter set that describes
the observed data best can be found by maximizing L(θ) w.r.t. the model parameters

θ̂ = arg max
θ

L(θ) . (1.13)

Here, we do not follow a Bayesian treatment and assume that a single best point estimate θ̂
for the parameter set exists. The factors of Eq. (1.12) are ∈ [0, 1] and for large data sets, the
likelihood can become very small. For later numerical optimization of θ, it is useful to take
the logarithm and to perform minimization instead of maximization

θ̂ = arg min
θ

[
−

N∑
n=1

logN (yn | ŷn, σ2)

]
. (1.14)

With the probability density function of the Gaussian distribution follows

− logL(θ) =−
N∑
n=1

log

(
1√
2πσ

exp

{
−
∥∥yn − ŷn∥∥2

2σ2

})
(1.15)

=N log (σ) +
N

2
log (2π) +

N∑
n=1

1

2σ2

∥∥yn − ŷn∥∥2
. (1.16)

Ignoring constants and dividing by N leads to the following optimization criterion

LMSE(θ) =
1

N

N∑
n=1

∥∥yn − ŷn∥∥2
. (1.17)

Thus, maximizing a Gaussian log-likelihood in Eq. (1.12) w.r.t. the model parameters θ is
equivalent to minimizing the mean squared error (MSE). Any real-valued mean is a valid
parameter for a Gaussian distribution, which makes this approach suitable for regression.



1.4 Bayesian Deep Learning and Variational Inference 11

For the task of classification, we model the observations as generalized Bernoulli dis-
tributed (also referred to as categorical distribution). For the parameters of a categorical
distribution, we need to specify the class probability

p(y |x,θ) = Categorical (y | ŷ) (1.18)

of class y = c ∈ {1, . . . , C} given x. This probability must lie between 0 and 1 and the
probabilities over all classes must sum up to

∑C
c=1 p(y = c |x,θ) = 1. A common way to

achieve this is to “squash” the output of the deep model using the softmax function

σSM(ŷ)c =
exp(ŷc)∑C
i=1 exp(ŷi)

, (1.19)

where fθ(x) = ŷ = [ŷ1, . . . , ŷC ]T. The softmax function σSM has several properties that
makes it suitable for gradient-based optimization of θ. It is a smooth and differentiable
approximation to the arg max function and numerically stable if implemented as log (σSM).
We now perform maximum likelihood estimation using the following optimization criterion

LCE(θ) = −
N∑
n=1

log σSM(ŷn)yn , (1.20)

where yn denotes the ground truth class label corresponding to input image xn. This
optimization criterion is often referred to as cross entropy (CE), which combines the log-
softmax with the negative log-likelihood function.

Maximum likelihood estimation is the bread-and-butter tool of machine learning. However,
it only yields a single-best point estimate θ̂ and does not allow quantification of parameter
uncertainty. Moreover, MLE is prone to severely overfitting the training data: MLE fails in
the simplest scenarios if the number of parameters is chosen inappropriately (Bishop 2006).

1.4 Bayesian Deep Learning and Variational Inference

In § 1.1 and the previous section, we have already outlined the disadvantages of maximum
likelihood estimation: overfitting and the inability to express uncertainty in model parameters.
We shall now move towards a Bayesian approach, which allows us to estimate distributions
over all possible parameters. First, we introduce a prior distribution p(θ |λ) over the parame-
ters θ of our deep model fθ. Following Bishop (2006), we consider a Gaussian distribution
governed by a precision hyperparameter λ = σ−2 (reciprocal of variance)

p(θ |λ) = N
(
θ |0, λ−1I

)
=

(
λ

2π

)N/2
exp

{
−λ

2
θTθ

}
, (1.21)
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where N is the number of parameters in the parameter set θ. The posterior distribution is
given by applying Bayes’ theorem

p(θ | X ,Y , λ) ∝ p(Y |X ,θ)p(θ |λ) . (1.22)

We can now find θ by employing maximum posterior (MAP) estimation

θ̂ = arg max
θ

p(θ | X ,Y , λ) , (1.23)

which—using a Gaussian likelihood—leads to the following optimization criterion

LMAP(θ) =
1

N

N∑
n=1

∥∥yn − ŷn∥∥2

︸ ︷︷ ︸
(1.17)

+
λ

2
θTθ . (1.24)

The right term in Eq. (1.24) penalizes large values of θ and is referred to as weight decay or L2

regularization. Using a Laplacian prior results in performing L1 regularization. Comparing
this with Eq. (1.17), we see that maximizing the posterior is equivalent to minimizing the
MSE with added weight decay. The prior in Bayesian neural networks is usually implemented
as weight decay (Kendall and Gal 2017) and it is an effective technique to prevent overfitting
of over-parameterized models, which is especially important in deep learning, where models
tend to have millions of parameters.

Variational Inference MAP estimation still yields a point estimate θ̂ and does not
consider parameter uncertainty. However, the true posterior p(θ | X ,Y) is intractable, even
for the simplest neural network with nonlinear activations (Bishop 2006; Gal 2016), and
consequently the posterior predictive distribution is intractable as well. In § 1.1, we already
discussed the two most polular methods for Bayesian posterior approximation. Markov chain
Monte Carlo is nonparametric and asymptotically exact; it allows us to sample from the true
posterior (Salimans et al. 2015). On the other hand, MCMC is computationally expensive
and does not scale to deep models and large data sets (Blei et al. 2017; Cornish et al. 2019).
In general, medical imaging data sets are comparatively small considering the number of
independent samples, e.g., number of patients (Laves, Bicker, et al. 2019). However, a
single sample is a high dimensional data point as medical images usually have a high pixel
resolution and are often volumetric (e.g., CT, MRI, 3D OCT, 3D US). This makes MCMC
impracticable and leads us to variational inference (VI).

In variational inference, we aim at finding a simpler, variational approximation to the
Bayesian posterior distribution over the parameters θ. VI uses optimization instead of
sampling to find the member qφ(θ) of a family of distributions Q (e.g., a multivariate
Gaussian) that is close to the exact posterior, defined by the variational parameters φ. More
formally, we optimize qφ w.r.t. φ, such that the Kullback-Leibler divergence (KL), which is
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a measure of similarity between two distributions, is minimized with regard to the true but
unknown posterior (Blei et al. 2017; Kullback and Leibler 1951):

φ∗ = arg min
φ

KL [qφ(θ) ‖ p(θ | X ,Y)] . (1.25)

KL [qφ(θ) ‖ p(θ | X ,Y)] is defined as (all expectations are taken w.r.t. qφ)∫
qφ(θ) log

qφ(θ)

p(θ | X ,Y)
dθ (1.26)

= E [log qφ(θ)]− E [log p(θ | X ,Y)] (1.27)
= E [log qφ(θ)]− E [log p(θ,Y |X )] + log p(Y |X ) , (1.28)

which contains the intractable marginal likelihood (or evidence)

p(Y |X ) =

∫
p(Y |X ,θ)p(θ) dθ . (1.29)

We can rewrite Eq. (1.28) with

ELBO(qφ) = E [log p(θ,Y |X )]− E [log qφ(θ)] (1.30)
= E [log p(θ)] + E [p(Y |X ,θ)]− E [log qφ(θ)] (1.31)
= E [log p(Y |X ,θ)]−KL [qφ(θ) ‖ p(θ)] , (1.32)

such that
log p(Y |X ) = KL [qφ(θ) ‖ p(θ | X ,Y)] + ELBO(qφ) . (1.33)

Since the KL is non-negative, we see that log p(Y |X ) ≥ ELBO(qφ). Thus, ELBO(qφ)
is a lower bound on the (log) evidence, giving it it’s name evidence lower-bound (Jordan
et al. 1999). Maximizing the ELBO w.r.t. φ is equivalent to minimizing the KL between our
variational distribution qφ(θ) and the true but unknown posterior p(θ | X ,Y) (cf. Fig. 1.3).
Examining Eq. (1.32), we see that the ELBO consists of the expected likelihood and the
negative KL between the variational distribution and the prior. The first encourages the model
to explain the observed data well and the latter makes sure, that the approximate posterior is
close to the prior. This corresponds to the desired Bayesian treatment. The question remains
to which variational family Q we restrict the approximate distribution qφ.

Mean-Field Variational Inference We have discussed the principles of variational
inference and we will now focus on the selection of the variational family Q. As variational
inference constitutes an optimization problem, the complexity of the optimization depends on
the complexity of Q (Blei et al. 2017). A common and well-accepted restriction of Q is the
mean-field variational family, where each entry i of the parameter vector θ is assumed to be
independent and defined by a separate variational density qi(θi). In this case, the variational
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Figure 1.3: ELBO(qφ) is a lower bound on the (log) marginal likelihood log p(Y |X ). Maxi-
mizing the ELBO results in minimizing the KL divergence between the variational
distribution qφ(θ) and the true parameter posterior p(θ | X ,Y).

distribution is factorized as
q(θ) =

∏
i

qi(θi) . (1.34)

When performing mean-field variational inference (MFVI), the factors are optimized to
maximize the ELBO in Eq. (1.32). More specifically, we utilize a fully factorized Gaussian
distribution (with diagonal covariance) to model the variational posterior (Graves 2011):

q(θ) =
∏
i

N (θi |µi,σ2
i ) , (1.35)

log q(θ) =
∑
i

logN (θi |µi,σ2
i ) . (1.36)

The use of a Gaussian is justified under the Bayesian central limit theorem (CLT, also known
as Bernstein-von Mises theorem), which states that the posterior approaches a Gaussian
distribution in the limit of large data (C. Zhang et al. 2018). Practical implementations of
MFVI are variational autoencoder (D. Kingma and Welling 2014), variational dropout
(D. P. Kingma and Ba 2014), Bayes by Backprop (Blundell et al. 2015) and SWAG-diagonal
(Maddox et al. 2019).

Monte Carlo Dropout A recent method for practical variational inference that scales to
very deep models and large data sets is Monte Carlo dropout (Gal and Ghahramani 2016b).
In Monte Carlo dropout, dropout is used before every weight layer of a neural network
(Srivastava et al. 2014). Dropout is a stochastic regularization technique, where entries of the
input x to a weight layer w are randomly set to zero by elementwise multiplication � with

d where dj ∼ Bernoulli(1− p) , (1.37)

y = wT(d� (x/(1− p))) , (1.38)
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with dropout rate p. This introduces Bernoulli noise during optimization and reduces
overfitting of the training data.

Training a neural network with dropout is equivalent to minimizing the KL divergence
between an approximate distribution and the true Bayesian posterior. We skip the derivation
of MC dropout here and refer the interested reader to § 3.1 in (Gal and Ghahramani 2016a).
Using dropout at test time, we can now sample from the approximate posterior θ̃ ∼ qφ(θ),
which allows us to compute the likelihood p(y∗ |x∗, θ̃). Further, we can use Monte Carlo
integration with T samples to approximate the posterior predictive distribution (Gal 2016)

qφ(y∗ |x∗) :=
1

T

T∑
t=1

p(y∗ |x∗, θ̃t) −−−→
T→∞

∫
p(y∗ |x∗,θ)qφ(θ) dθ (1.39)

≈
∫
p(y∗ |x∗,θ)p(θ | X , C) dθ (1.40)

= p(y∗ |x∗,X ,Y) . (1.41)

Following Gal (2016), we perform moment-matching to estimate the first two moments of the
posterior predictive distribution. Given p(y∗ |x∗,θ) = N (y∗ |θ(x), β−1I) with precision
β > 0, the first raw moment can be estimated with

Ê[y∗] :=
1

T

T∑
t=1

fθ̃(x
∗) −−−→

T→∞
Eqφ(y∗|x∗)[y

∗] , (1.42)

and the second raw moment can be estimated by

Ê
[
(y∗)T(y∗)

]
:= β−1I +

1

T

T∑
t=1

fθ̃(x
∗)Tfθ̃(x

∗) −−−→
T→∞

Eqφ(y∗|x∗)[(y
∗)T(y∗)] . (1.43)

Proofs of Eq. (1.42) & (1.43) can be found in (Gal 2016, § 3.3). This allows us to estimate
the predictive variance

V̂ar[y∗] = β−1I +
1

T

T∑
t=1

fθ̃(x
∗)Tfθ̃(x

∗)− Ê[y∗]TÊ[y∗] −−−→
T→∞

Varqφ(y∗|x∗)[y
∗] . (1.44)

MC dropout will be used throughout this thesis as it is a practical variational Bayesian
method for very deep models. It allows us to obtain model uncertainty, also referred to as
epistemic uncertainty (from Greek epistēmikós (knowledge)), which is caused by uncertainty
in the model parameters (i.e., the width of the parameter posterior distribution). However,
we will show later that its uncertainty is miscalibrated and, therefore, cannot be used out-
of-the-box for medical imaging tasks. In fact, the uncertainty is underestimated, which
leads to overconfident predictions. We will propose a recalibration method to obtain well-
calibrated uncertainty estimates, which can be used to increase robustness of predictions in
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both classification and regression tasks. Further, we will use calibrated uncertainty to create
good pseudo-labels in an unsupervised training scenario.

1.5 Hypotheses and Contributions

In the following, we formulate the hypotheses of this thesis and present our main contributions.
The main goal is to use “good” Bayesian uncertainty to make medical imaging with deep
learning more robust and more accurate, which leads us to our first research hypothesis:

Hypothesis 1. Well-calibrated predictive uncertainty in medical imaging with Bayesian
deep learning can be obtained by recalibration.

In Chapter 2 and (Laves, Ihler, Kortmann, et al. 2019) we propose a simple, yet effective
calibration method for predictive uncertainty in classification and computer-aided diagno-
sis. The method uses a simple learnable scalar parameter to scale the posterior predictive
distribution. Well-calibrated uncertainty is used to identify unreliable predictions and out-of-
distribution samples, which is essential in medical imaging with deep learning. We present
the Uncertainty Calibration Error (UCE), a new error metric to quantify miscalibration of
uncertainty. With well-calibrated uncertainty, we can identify predictions that are likely to be
correct, which leads us to the next research hypothesis:

Hypothesis 2. Computer-aided diagnosis with deep learning is possible with limited or
without any labeled training data when considering well-calibrated predictive uncertainty.

Furthermore, we will use well-calibrated uncertainty in Chapter 2.2 to create good pseudo-
labels in an unsupervised learning scenario. We build upon recent advances in self-supervised
and unsupervised learning and utilize the estimated uncertainty to identify highly confident
predictions that are probably correct. From this, we produce pseudo-labels and use them
for supervised training. This approach is especially interesting for medical imaging with
deep learning, because labeling of the data requires medical expertise and is therefore very
expensive. Obtaining unlabeled data in clinical routine is usually much easier. Moreover, we
do not restrict calibration of uncertainty to classification tasks, which brings us to our last
research hypothesis:

Hypothesis 3. Regressive and generative tasks in medical imaging with deep learning
benefit from well-calibrated predictive uncertainty.

In Chapter 3 and (Laves, Ihler, Fast, et al. 2020), we extend calibration of Bayesian
uncertainty to regression. Besides CAD and segmentation, many medical imaging tasks can
be approached as a regression problem (cf. § 1.2.2). We analyze and provide theoretical
background why deep models for regression are miscalibrated. The UCE is extended to
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regression and we propose to use credible intervals of the approximate posterior predictive
distribution to further assess the calibration of uncertainty.

If the output of a regression model has the same spatial dimensions as the input, we define
this as a generative model. In Chapter 4 and (Laves, Tölle, et al. 2020), we extend variational
Bayesian inference to medical image denoising and obtain pixel-wise uncertainty. We use a
randomly initialized convolutional network as parameterization of the denoised image and
perform gradient descent to match the noisy observation, which is known as deep image
prior. In this case, the reconstruction does not suffer from hallucinations, which is a mayor
issue in inverse medical imaging problems. This approach is further extended to deformable
registration (Laves, Ihler, and Ortmaier 2019).

The main contributions of this work are outlined as follows:

1. We propose Uncertainty Calibration Error (UCE), a new metric for perfect calibration
of uncertainty, derivation of logit scaling for Gaussian dropout, apply logit scaling
calibration to a Bayesian classifier obtained from MC dropout, and provide empirical
evidence that logit scaling leads to well-calibrated uncertainty which allows robust
OoD detection (Laves, Ihler, Kortmann, et al. 2019, 2020).

2. We advance the state-of-the-art in unsupervised learning by combining mutual infor-
mation maximization and consistency learning with probably good pseudo-labels from
well-calibrated uncertainty. We present BatchPL, a novel sample acquisition function
for efficient pseudo-labeling.

3. We are the first to address calibration of predictive uncertainty for regression tasks in
medical imaging, analyze and provide theoretical background why deep models for
regression are miscalibrated, propose σ scaling to tackle underestimation of uncertainty,
propose the uncertainty calibration error for regression and usage of prediction intervals
to assess the quality of the estimated uncertainty (Laves, Ihler, Fast, et al. 2020).

4. We propose to use deep image prior to cope with hallucinations in medical image
denoising and provide a novel Bayesian approach with Monte Carlo dropout that
yields well-calibrated reconstruction uncertainty and avoids the need for early stopping
(Laves, Tölle, et al. 2020).

1.6 Thesis Structure

This thesis is organized in three main chapters, of which each chapter addresses an important
sub-field of medical imaging with deep learning, and two accompanying chapters that
introduce the general topic and conclude the work.

Chapter 1 gives an introduction to the importance of uncertainty in medical decision
making and outlines the main problem that is the subject of this thesis: the miscalibration of
uncertainty derived from practical approximate Bayesian methods. In addition, the increasing
relevance of deep learning in medical image analysis is underlined by a small literature
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review. The chapter briefly revisits the mathematical foundations used in this thesis and
outlines our main contributions.

In Chapter 2, we focus on computer-aided diagnosis and approach calibration of uncertainty
in classification tasks. First, we deal with calibration of deep classifiers itself and show, why
current metrics fail to measure miscalibration properly. We define the Uncertainty Calibration
Error that avoids pathologies of existing metrics. UCE can further be used as a regularization
during training to get better calibrated models. The second part of Chapter 2 uses Bayesian
uncertainty to obtain good pseudo-labels in a self-supervised scenario.

Chapter 3 addresses calibration of uncertainty for regression tasks in medical imaging.
We first analyze and provide theoretical background why deep models for regression are
miscalibrated. Next, we suggest to use σ scaling to tackle underestimation of regression
uncertainty. Two new metrics to quantify quality of calibration are presented: the uncertainty
calibration error for regression and prediction interval diagrams. Extensive experiments
on four different medical regression data sets are conducted with four recent convolutional
network architectures to show the effectiveness of the proposed method.

In Chapter 4, we extend uncertainty estimation in regression to generative tasks and address
the problem of hallucinations in medical imaging with deep learning. Additionally, we study
deformable registration and improve supervised denoising by semantic regularization with a
pretrained medical image classifier.

In Chapter 5, this thesis as a whole is summarized and critically concluded. We discuss
caveats of the proposed methods, show open questions and possible future work.
Programming code for all experiments of this thesis is available at https://github.com/mlaves.

https://github.com/mlaves
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2 Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) based on deep learning has been demonstrated to achieve
a performance similar to that of human experts in classification tasks in medical imaging
(Esteva et al. 2017; Kermany et al. 2018). Equipped with deep neural networks, mobile
assistance systems can extend the reaching of medical experts in the field and increase access
to medical care. However, common tools in deep learning do not provide uncertainty for
predictions of disease conditions. When an ambiguous or unknown case is presented to a
deep learning model, it lacks the ability to say “I don’t know”. Therefore, especially in
medical imaging and CAD, measuring the uncertainty of predictions is needed for profound
decision making. Bayesian neural networks allow us to reason about predictive uncertainty.
However, the question arises of what level of quality and reliability this uncertainty is.

The first part of this chapter (§ 2.1) answers this question and deals with the calibration
of supervisely trained deep models for multi-class classification. It proposes a new metric
for measuring miscalibration and is based on a peer-reviewed publication accepted at the
4th “Bayesian Deep Learning Workshop” at the 33rd “Conference on Neural Information
Processing Systems” (NeurIPS) 2019 (Laves, Ihler, Kortmann, et al. 2019). Source code for
the first section is available at github.com/mlaves/bayesian-temperature-scaling.

The second part of this chapter (§ 2.2) introduces a novel framework for unsupervised
training of multi-class classification models with uncertainty-aware pseudo-labels. We
combine consistency learning and mutual information maximization with self-supervised
training using good pseudo-labels from predictions with low uncertainty. Our method
achieves strong results with state-of-the-art classification accuracy without using any labeled
data.

2.1 Calibration of Uncertainty for Variational Inference

The uncertainty obtained by variational Bayesian inference is prone to miscalibration and
does not represent the model error well. In this section, different logit scaling methods
are extended to variational inference to recalibrate Bayesian uncertainty. The effectiveness
of recalibration is evaluated on the public data sets CIFAR-10/100 (Krizhevsky 2009) and
SVHN (Netzer et al. 2011) for recent CNN architectures. Various metrics have recently been
proposed to measure uncertainty calibration of deep models for classification. However,
these metrics either fail to capture miscalibration correctly or lack interpretability. We
propose to use the normalized entropy as a measure of uncertainty and derive the Uncertainty
Calibration Error (UCE), a comprehensible calibration metric for multi-class classification.
UCE avoids several pathologies of other metrics, but does not sacrifice interpretability. It
can be used for regularization to improve calibration during training without penalizing

https://github.com/mlaves/bayesian-temperature-scaling
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Figure 2.1: Calibration of uncertainty: (Left) reliability diagrams with uncertainty calibration
error (UCE) and (right) detection of out-of-distribution (OoD) data. Uncalibrated
uncertainty does not correspond well with the top-1 error. Logit scaling is able to
recalibrate deep Bayesian neural networks, which enables robust OoD detection.
The dashed line in the left figure denotes perfect calibration.

predictions with justified high confidence. Experimental results show that logit scaling
considerably reduces miscalibration by means of UCE. Well-calibrated uncertainty enables
reliable rejection of uncertain predictions and robust detection of out-of-distribution data
(see Fig. 2.1).

2.1.1 Introduction

Advances in deep learning have led to high accuracy predictions for classification tasks,
making deep-learning classifiers an attractive choice for safety-critical applications like
autonomous driving (C. Chen et al. 2015) or computer-aided diagnosis (Esteva et al. 2017).
However, the high accuracy of recent deep learning models is not sufficient for such applica-
tions. In cases, where serious decisions are made upon a model’s predictions, it is essential
to also consider the uncertainty of these predictions. We need to know if the prediction of
a model is likely to be incorrect or if invalid input data is presented to a deep model, e.g.,
data that is far away from the training domain or obtained from a defective sensor. The
consequences of a false decision based on an uncertain prediction can be fatal.

A natural expectation is that the certainty of a prediction should be directly correlated
with the quality of the prediction. In other words, a prediction with a high certainty is more
likely to be accurate than an uncertain prediction which is likely to be incorrect. A common
misconception is the assumption that the estimated class likelihood (of a softmax activation)
can be directly used as a confidence measure for the predicted class. This expectation is
dangerous in the context of critical decision-making. The estimated likelihood of a model
trained by minimizing the negative log-likelihood (i.e., cross entropy) is highly overconfident
(cf. § 1.1). That is, the estimated likelihood is considerably higher than the observed
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frequency of accurate predictions with that likelihood (Guo et al. 2017).
Guo et al. (2017) proposed calibration of the likelihood estimation by scaling the logit

output of a neural network to achieve a correlation between the predicted likelihood and
the expected likelihood. However, they follow a frequentist approach, where they assume a
single best point estimate of the parameters (or weights) of a neural network. In frequentist
inference, the weights of a deep model are obtained by maximum likelihood estimation
(Bishop 2006), and the normalized output likelihood for an unseen test input does not consider
uncertainty in the weights (Kendall and Gal 2017). Weight uncertainty (also referred to as
model or epistemic uncertainty) is a considerable source of predictive uncertainty for models
trained on data sets of limited size (Bishop 2006; Kendall and Gal 2017). Bayesian neural
networks and recent advances in their approximation provide valuable mathematical tools
for quantification of model uncertainty (Gal and Ghahramani 2016b; D. Kingma and Welling
2014). Instead of assuming the existence of a single best parameter set, we place distributions
over the parameters and want to consider all possible parameter configurations, weighted by
their posterior. More formally, given a training data set D of labeled images and an unseen
test image x with class label y, we are interested in evaluating the predictive distribution

p(y|x,D) =

∫
p(y|x,θ)p(θ|D) dθ . (2.1)

This integral requires to evaluate the posterior p(θ|D), involvoing the intractable marginal
likelihood (Gal 2016). The posterior can be approximated using variational inference. It
is commonly used to obtain epistemic uncertainty, which is caused by uncertainty in the
model weights. However, epistemic uncertainty from VI still tends to be miscalibrated, i.e.,
the uncertainty does not correspond well with the model error (Gal, Hron, et al. 2017). The
quality of uncertainty highly depends on the approximate posterior (Louizos and Welling
2017). Lakshminarayanan et al. (2017) state that VI uncertainty does not allow to robustly
detect out-of-distribution data. However, calibrated uncertainty is essential as miscalibration
can lead to decisions with catastrophic consequences in the aforementioned task domains.

Therefore, we propose a novel notion for perfect calibration of uncertainty and propose a
definition of expected uncertainty calibration error (UCE), derived from expected calibration
error (ECE) (Naeini et al. 2015). We then show how current calibration techniques (for
confidence) based on logit scaling can be extended to calibrate model uncertainty (§ 2.1.3).
We compare calibration results for temperature scaling, vector scaling and auxiliary scaling
(Guo et al. 2017; Kuleshov et al. 2018) using our metric UCE as well as established ECE
(§ 2.1.4). We finally show how calibrated model uncertainty improves out-of-distribution
(OoD) detection, as well as predictive accuracy by rejecting high-uncertainty predictions.

In summary the main contributions of this section are

1. a new metric for perfect calibration of uncertainty,

2. derivation of logit scaling for Monte Carlo integration, and

3. empirical evidence that logit scaling leads to well-calibrated model uncertainty which
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allows robust OoD detection (in contrast to what is stated in (Lakshminarayanan et al.
2017); shown for different network architectures on CIFAR-10/100 and SVHN.

2.1.2 Related Work

Overconfident predictions of neural networks have been addressed by entropy regularization
techniques. Szegedy et al. (2016) presented label smoothing as regularization of models
during supervised training for classification. They state that a model trained with one-hot
encoded labels is prone to becoming overconfident about its predictions, which causes
overfitting and poor generalization. Pereyra et al. (2017) link label smoothing to confidence
penalty and propose a simple way to prevent overconfident networks. Low entropy output
distributions are penalized by adding the negative entropy to the training objective. However,
the referred works do not apply entropy regularization to the calibration of confidence or
uncertainty. In the last decades, several non-parametric and parametric calibration approaches
such as isotonic regression (Zadrozny and Elkan 2002) or Platt scaling (Platt 1999) have been
presented. Recently, temperature scaling has been demonstrated to lead to well-calibrated
model likelihood in non-Bayesian deep neural networks (Guo et al. 2017). It uses a single
scalar τ to scale the logits and smoothen (τ > 1) or sharpen (τ < 1) the softmax output
and thus regularize the entropy. Logit scaling has also been introduced to approximate
categorical distributions by the Gumbel-Softmax or Concrete distribution (Jang et al. 2016;
Maddison et al. 2016). Recently, (Kull et al. 2019) stated that temperature scaling does not
lead to classwise-calibrated models because the single parameter τ cannot calibrate each
class individually. They proposed Dirichlet calibration to address this problem. To verify
this statement, we will investigate classwise logit scaling in addition to temperature scaling.
We will show later that temperature scaling for calibrating our definition of uncertainty in
Bayesian deep learning, which takes into account all classes, does not have this shortcoming.
More complex methods, such as a neural network as auxiliary recalibration model, have been
used in calibrated regression (Kuleshov et al. 2018).

2.1.3 Methods

In this section, we discuss how model uncertainty is obtained by different approximate
Bayesian inference techniques and how it can be calibrated with logit scaling. We define the
expected uncertainty calibration error as a new metric to quantify miscalibration and describe
confidence penalty as an alternative to logit scaling.

Uncertainty Estimation

In this work, we focus on uncertainty from approximately Bayesian methods. We assume
a general multi-class classification task with C classes. Let input x ∈ X be a random
variable with corresponding label y ∈ Y = {1, . . . , C}. Let fθ(x) be the output (logits) of
a neural network with parameters θ, and with model likelihood p(y=c |fθ(x)) for class c,
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which is sampled from a probability vector p = σSM(fθ(x)), obtained by passing the model
output through the softmax function σSM(·). From a frequentist perspective, the softmax
likelihood is often interpreted as confidence of prediction. Throughout this thesis, we follow
this definition.

The frequentist approach assumes a single best point estimate of the parameters (or
weights) of a neural network. In frequentist inference, the weights of a deep model are
obtained by maximum likelihood estimation (Bishop 2006), and the normalized output
likelihood for an unseen test input does not consider uncertainty in the weights (Kendall
and Gal 2017). Weight uncertainty (also referred to as model or epistemic uncertainty) is
a considerable source of predictive uncertainty for models trained on data sets of limited
size (Bishop 2006; Kendall and Gal 2017). Bayesian neural networks and recent advances
in their approximation provide valuable mathematical tools for quantification of model
uncertainty (Gal and Ghahramani 2016b; D. Kingma and Welling 2014). Instead of assuming
the existence of a single best parameter set, we place distributions over the parameters and
want to consider all possible parameter configurations, weighted by their posterior. More
specifically, given a training data set D and an unseen test sample x with class label y, we
are interested in evaluating the predictive distribution from Eq. (2.1). This integral requires to
evaluate the posterior p(θ|D), which involves the intractable marginal likelihood. A possible
solution to this is to approximate the posterior with a more simple, tractable distribution q(θ)
by optimization.

In the following, we briefly describe common approximately Bayesian methods which we
use in our experiments to obtain weight uncertainty.

Monte Carlo Dropout One practical approximation of the posterior is variational infer-
ence with Monte Carlo (MC) dropout (Gal and Ghahramani 2016b). To determine model
uncertainty, dropout variational inference is performed by training a model fθ with dropout
(Srivastava et al. 2014) and using dropout at test time to sample from the approximate
posterior distribution by performing N stochastic forward passes per test sample (Gal and
Ghahramani 2016b; Kendall and Gal 2017). This is also referred to as MC dropout. In
MC dropout, the final probability vector of the predictive distribution is computed by MC
integration:

p(x) =
1

N

N∑
i=1

σSM (fθi(x)) . (2.2)

Gaussian Dropout Gaussian dropout was first proposed by S. Wang and Manning (2013)
and linked to variational inference by D. Kingma, Salimans, et al. (2015). Dropout introduces
Bernoulli noise during optimization and reduces overfitting of the training data. The resulting
output yk of layer k with dropout is a weighted sum of Bernoulli random variables. Then,
the central limit theorem states, that yk is approximately normally distributed. Instead of
sampling from the weights and computing the resulting output, we can directly sample from
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the implicit Gaussian distribution of dropout

yk ∼ N (µy,k, σ
2
y,k) (2.3)

with

µy,k = E[yk] =
∑
j

wj,kxj , (2.4)

σ2
y,k = Var[yk] = p/(1− p)

∑
j

w2
j,kx

2
j , (2.5)

using the reparameterization trick (D. Kingma, Salimans, et al. 2015)

yj,k = µj,k + σj,kεj with εj ∼ N (0, 1) . (2.6)

Gaussian dropout is a continuous approximation to Bernoulli dropout, and in comparison it
will better approximate the true posterior distribution and is expected to provide improved
uncertainty estimates (Louizos and Welling 2017). To obtain the final probability vector
p(x), we again use MC integration with N stochastic forward passes.

The dropout rate p is now a learnable parameter and does not need to be chosen carefully
by hand. In fact, p could be optimized w.r.t. uncertainty calibration, scaling the variance
of the implicit Gaussian of dropout. A similar approach was presented by Gal, Hron, et al.
(2017) using the Concrete distribution (Jang et al. 2017; Maddison et al. 2016). However, we
focus on metrics for measuring calibration and, therefore, fix p in our subsequent experiments
(§ 2.1.4). Gaussian dropout has been used in the context of uncertainty estimation in prior
work. In (Louizos and Welling 2017), it is used together with multiplicative normalizing
flows to improve the approximate posterior. A similar Gaussian approximation of Batch
Normalization was presented in (Teye et al. 2018), where Monte Carlo Batch Normalization
is proposed as approximate Bayesian inference.

Bayes by Backprop Blundell et al. (2015) assume a Gaussian distribution with diagonal
covariance matrix as variational posterior q(θ|φ), parameterized by mean µ and standard
deviation σ, where φ = {µ,σ}. A sample of the weights can be obtained by sampling a
multivariate unit Gaussian and shift it by µ and scale it by σ. Then, the network is trained by
minimizing

L(φ) = KL[q(θ|φ)‖p(θ)]− Eq[log p(D|φ)] . (2.7)

In case of a zero mean Gaussian prior, the first term can be implemented by weight decay. In
contrast to Gaussian dropout, which operates on the implicit distribution of the activations,
Bayes by Backprop (BBB) directly operates on the weights. This doubles the number of
trainable parameters in practice. MC integration is used to obtain the final probability vector
p(x).
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SWA-Gaussian Stochastic weight averaging (SWA) uses stochastic gradient descent steps
around a local loss optimum of a trained network and averages the weights θSWA = 1

T

∑T
i=1 θi

of the model from each step i (Izmailov et al. 2018). This explores the loss landscape and
averaging helps to find a better weight estimate than converging to a single local optimum.
SWA-Gaussian (SWAG) is closely related to Bayes by Backprop (Maddox et al. 2019). It
assumes a Gaussian distribution with diagonal covariance matrix as approximate variational
posterior. Instead of using backpropagation to directly optimize µ and σ, it fits a Gaussian
by using µ = θSWA and

Σdiag = diag(θ2 − θ2
SWA), θ2 =

1

T

T∑
i=1

θ2
i . (2.8)

This doubles the number of parameters at test time. The approximate Gaussian posterior
results toN (θSWA,Σdiag) and MC integration with samples θi ∼ N (θSWA,Σdiag) is used to
compute the final probability vector p(x).

Deep Ensembles Training multiple randomly initialized copies of a deep network by
performing maximum posterior estimation and ensembling them to get multiple predictions
for a single input is not a variational inference method per definition. However, they have
been reported to produce surprisingly useful uncertainty estimates in practice that are better
calibrated (Lakshminarayanan et al. 2017). Deep ensembles considerably increase the number
of parameters at train and test time. We use deep ensembles as non Bayesian baseline for
uncertainty estimation.

Related Calibration Metrics

In this subsection, we review related and commonly accepted calibration error metrics.

Expected Calibration Error The expected calibration error (ECE) is one of the most
popular calibration error metrics and estimates model calibration by binning the predicted
confidences p̂ = maxc p(y = c |x) into M bins from equidistant intervals and comparing
them to average accuracies per bin (Guo et al. 2017; Naeini et al. 2015):

ECE =
M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ , (2.9)

with number of test samples n and acc(B) and conf(B) denoting the accuracy and confidence
of bin B, respectively. Several recent works have described severe pathologies of the ECE
metric (Ashukha et al. 2020; Ananya Kumar et al. 2019; Nixon et al. 2019). Most notably,
the ECE metric is minimized by a model constantly predicting the marginal distribution
of the majority class which makes it impossible to directly optimize it (Aviral Kumar et al.
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2018). Additionally, the ECE only considers the maximum class probability and ignores the
remaining entries of the probability vector p(x).

Adaptive Calibration Error Nixon et al. (2019) proposed the adaptive calibration error
(ACE) to address the issue of fixed bin widths of ECE-like metrics. For models with high
accuracy or overconfidence, most of the predictions fall into the rightmost bins, whereas only
very few predictions fall into the rest of the bins. ACE spaces the bins such that an equal
number of predictions contribute to each bin. The final ACE is computed by averaging over
per-class ACE values to address the issue raised by Kull et al. (2019). However, this makes
the metric more sensitive to the manually selected number of bins M as the number of bins
effectively becomes C ·M , with number of classes C. Using fixed bin widths, the numbers
of samples in the sparsely populated bins is further reduced, which increases the variance
of each measurement per bin. Using adaptive bins, this results in the lower confidence bins
spanning a wide range of values, which increases the bias of the bin’s measurement.

Negative Log-Likelihood Deep models for classification are usually trained by mini-
mizing the average negative log-likelihood (NLL):

NLL =
1

N

N∑
i=1

− log p(y = yi |xi) . (2.10)

The NLL is also commonly used as a metric for measuring the calibration of uncertainty.
However, the NLL is minimized by increasing the confidence maxc p(y = c |x), which favors
over-confident models and models with higher accuracy (Ashukha et al. 2020). Therefore,
this metric is unable to compare the calibration of models with different accuracies and
training a model by minimizing NLL does not necessarily lead to good calibration.

Brier Score The average Brier score is another popular metric for assessing the quality of
predictive uncertainty and is defined as (Brier 1950; Lakshminarayanan et al. 2017)

BS =
1

N

N∑
i=1

C∑
c=1

(1(yi = c)− p(y = c |xi))2 . (2.11)

Similarly to the NLL, the Brier score favors high probabilities for correct predictions and
low probabilities for incorrect predictions. Thus, models with higher accuracy tend to show a
better Brier score, which makes the metric unsuitable for comparing the quality of uncertainty
for models with different accuracies.

Maximum Mean Calibration Error Common recalibration methods are applied post-
hoc, e.g., temperature scaling on a separate calibration set. Aviral Kumar et al. (2018)
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proposed the maximum mean calibration error (MMCE), a trainable calibration surrogate for
the calibration error. It is defined as

MMCE2(D) =
∑
i,j∈D

(1(ŷi = yi)− p̂i) (1(ŷj = yj)− p̂j) k(p̂i, p̂j)

m2
(2.12)

over mini-batch D ⊂ D with batch size m, matrix-valued universal kernel k and ŷ =
arg max c p(y = c |x). Trainable calibration metrics are used in joint optimization with the
negative log-likelihood

arg min
θ

∑
D

NLL(D,θ) + λMMCE(D,θ) . (2.13)

Aviral Kumar et al. (2018) claim to have addressed the issue that the ECE is unsuitable for
direct optimization due to its high discontinuity in θ. However, MMCE is also minimized by
a model constantly predicting the marginal distribution of the classes (i.e., the probability
mass function over the data set). This leads to subpar logit temperature when training with
MMCE and temperature scaling can further reduce miscalibration (Aviral Kumar et al. 2018).

Interim Conclusion All of the aforementioned calibration metrics have considerable
shortcomings and failure modes that prevent reliable measurement of miscalibration. They
are either minimized by a random model, are more sensitive to hyperparameters (number of
bins), or are influenced by the accuracy of the model. This prevents the practical use of the
metrics to assess the uncertainty of deep models in the context of medical image analysis and
other safety-critical tasks. In the following, we present a new calibration metric that attempts
to avoid these pitfalls.

Uncertainty Calibration Error

To give an insight into our general approach to measuring the calibration of uncertainty, we
will first revisit the definition of perfect calibration of confidence (Guo et al. 2017) and show
how this concept can be extended to calibration of our definition of uncertainty.

Let ŷ = arg max p be the most likely class prediction of input x with confidence p̂ =
maxp and true label y. Then, following Guo et al. (2017), perfect calibration of confidence
is defined as

Pr [ŷ = y | p̂ = α] = α, ∀α ∈ [0, 1] . (2.14)

That is, the probability of a correct prediction ŷ = y given the prediction confidence p̂ should
exactly correspond to the prediction confidence. Instead of using only the probability of the
predicted class, we use the entropy of p to express prediction uncertainty:

H(p) = −
C∑
c=1

p(c) log p(c) . (2.15)
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Let

q(k) := (P[y = 1| arg max p(x) = k], . . . ,P[y = C| arg max p(x) = k]) (2.16)

be a probability vector of true marginal class probabilities for all inputs x predicted with
class k. Consider the following example: Three i.i.d. inputs x1:3 in a binary classification
task with ground truth labels {1, 1, 2} have all been predicted with arg max p(x1:3) = 1.
Then, q(1) =

(
2
3
, 1

3

)
. With this, we define a model to be perfectly calibrated if

H(q(k)) = H(p | arg max p = k) ∀ k ∈ {1, . . . , C} . (2.17)

From this, we derive an error metric for calibration of uncertainty:

Ep
[
|H(q)−H(p)|

]
. (2.18)

However, this metric and the use of the entropy as measure of uncertainty lacks interpretability,
as the entropy scales with the number of classes C. This does not allow to compare the
uncertainty or the calibration of models trained on different data sets. Therefore, we propose
to use the normalized entropy to scale the values to a range between 0 and 1:

H̃(p) := − 1

logC

C∑
c=1

p(c) log p(c) , H̃ ∈ [0, 1] . (2.19)

We further increase interpretability and argue, that the normalized entropy should correlate
with the model error. From Eq. (2.14) and Eq. (2.19), we define perfect calibration of
uncertainty as

Pr
[
ŷ 6= y | H̃(p) = α

]
= α, ∀α ∈ [0, 1] . (2.20)

That is, in a batch of inputs that are all predicted with uncertainty of e. g. 0.2, a top-1 error of
20 % is expected (the top-1 error is computed considering the class with highest probability
only). The confidence is interpreted as the probability of belonging to a particular class,
which should naturally correlate with the model error of that class. This characteristic does
not generally apply to entropy, and thus the question arises why entropy should correspond
with the model error.

Theorem 1. The normalized entropy (uncertainty) H̃(p) approaches the top-1 error in the
limit of number of classes C if the model p is well-calibrated.

Proof. With Lemma 1 and p̂ = maxp we rewrite the normalized entropy as

H̃(p) = − p̂ log p̂

logC
−

(1− p̂) log 1−p̂
C−1

logC
. (2.21)
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Now, in the limit of number of classes C

lim
C→∞

H̃(p) = lim
C→∞

−
(1− p̂) log 1−p̂

C−1

logC
(2.22)

= lim
C→∞

−(1− p̂)
(

log(1− p̂)
logC

− log(C − 1)

logC

)
(2.23)

= (1− p̂) (2.24)

The top-1 error equals (1−p̂) if the model is perfectly calibrated in the sense of Eq. (2.14).

Lemma 1. Given a softmax output p with C entries and the most likely prediction ŷ =
arg max p with likelihood p̂ = maxp. Then, the remaining entries pi,i 6=ŷ are approximately
uniformly distributed with probability 1−p̂

C−1
.

Proof. This assumption is approximately correct (1) if p̂ → 1 or (2) if C → ∞. Let
p̃j = pi ∀i 6= ŷ and q̃j = (1−p̂)

C−1
. Note that p̃ and q̃ are not proper probability distributions as∑

p̃j =
∑
q̃j = (1− p̂).

(1) Consider KL[p̃‖q̃] as p̂ approaches 1:

lim
p̂→1

KL [p̃ ‖ q̃] = lim
p̂→1

C−1∑
j=1

p̃j log
p̃j
q̃j

(2.25)

= lim
p̂→1

C−1∑
j=1

p̃j log p̃j −
C−1∑
j=1

p̃j log q̃j (2.26)

= lim
p̂→1

C−1∑
j=1

p̃j log p̃j − (1− p̂) log
(1− p̂)
C − 1

(2.27)

= 0 (2.28)

(2) Let zi be the logits of a model trained with L2 regularization. The magnitude of the
logits |zi| cannot become arbitrary large and due to the normalizing nature of softmax

lim
C→∞

exp zi∑C
j=1 exp zj

= lim
C→∞

1

C
. (2.29)

Alternatively, let z ∈ AC and z′ ∈ BK be two logit vectors with C < K. If
both models have been trained with L2 regularization, the magnitude of the logits
|zi|, |z′i| cannot become arbitrary large. More specifically, A = B ⊂ R. Due to the
normalizing nature of softmax, z′ corresponds to a lower softmax temperature and as
the temperature decreases with increasing number of classes, softmax approaches a
uniform distribution (Jang et al. 2017).
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Figure 2.2: Calibration diagrams for a toy experiment with a degenerated model constantly
predicting the marginal probabilities p = (0.6, 0.4) in a binary classification task.
ECE and MMCE only consider maxp and fail at capturing the miscalibration
of class 2 with p(c = 2) = 0.4, but acc(c = 2) = 0. The red bars show the
measured miscalibration. Uncertainty is given as normalized entropy. The left
diagram is computed using ECE as MMCE does not involve binning.

Thus, the normalized entropy gives us an intuitive and interpretable measure of uncertainty.
If a model is perfectly calibrated, H̃ corresponds to the top-1 error. We propose the following
notion to quantify miscalibration of uncertainty:

EH̃
[ ∣∣Pr

[
ŷ 6= y | H̃(p) = α

]
− α

∣∣ ], ∀α ∈ [0, 1] . (2.30)

We refer to this as Expected Uncertainty Calibration Error (UCE) and approximate with

UCE :=
M∑
m=1

|Bm|
n

∣∣err(Bm)− uncert(Bm)
∣∣ , (2.31)

using the same binning scheme as in ECE estimation. The error per bin is defined as

err(Bm) :=
1

|Bm|
∑
i∈Bm

1(ŷi 6= y) , (2.32)

where 1(ŷi 6= y) = 1 and 1(ŷi = y) = 0. Uncertainty per bin is defined as

uncert(Bm) :=
1

|Bm|
∑
i∈Bm

H̃(pi) . (2.33)

Properties of UCE The proposed UCE metric solves several problems of other metrics.
First, the UCE is not zero for a model constantly predicting the marginal class distribution.
Estimators of metrics with this pathology (e.g., ECE, MMCE, see Fig. 2.2) suffer from
varying bias and, therefore, do not allow comparing miscalibration of different models
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Figure 2.3: Toy experiment with two random models A and B in a binary classification task.
UCE is less sensitive to number of bins used in the estimator and provides a
consistent ranking of the models. For results from multi-class experiments, see
Fig. 2.2.

(Ashukha et al. 2020; Vaicenavicius et al. 2019). In contrast to ACE, UCE is not highly
sensitive to the numbers of bins and provides a consistent ranking of different models for
the same classification task (see Fig. 2.3 and 2.5). Additionally, UCE can be used as a
trainable regularizer in similar manner to MMCE. During training, we compute the UCE
over mini-batches D ⊂ D and add it to the NLL training objective

arg min
θ

∑
D

NLL(D,θ) + λUCE(D,θ) , (2.34)

weighted by a factor λ. UCE is zero for an optimal model and thus does not penalize high
confident predictions for models with high accuracy, which is a major disadvantage of plain
entropy regularization (Pereyra et al. 2017). Predictions with low uncertainty, but high top-1
error are penalized whereas predictions with high accuracy are encouraged to have low
uncertainty.

Temperature Scaling for Variational Inference

State-of-the-art deep neural networks are generally miscalibrated with regard to softmax
likelihood (Guo et al. 2017). However, when obtaining model uncertainty with variational
inference, this also tends to be not well-calibrated (Gal, Hron, et al. 2017; Lakshminarayanan
et al. 2017; Louizos and Welling 2017). Fig. 2.1 (left) shows reliability diagrams (Niculescu-
Mizil and Caruana 2005) for ResNet-101 trained on CIFAR-100. The divergence from the
identity function reveals miscalibration. Furthermore, it is not possible to robustly detect
OoD data from uncalibrated uncertainty (see Fig. 2.1 (right)). If the fraction of OoD data
in a batch of test images is > 50 %, there is almost no increase in mean uncertainty. We
first address the problem using temperature scaling, which is the most straightforward logit
scaling method for recalibration.

Temperature scaling for variational inference is derived by closely following the derivation
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of frequentist temperature scaling in (Guo et al. 2017). Let {z1,j, . . . ,zN,j} be a set of
logit vectors obtained by MC integration with N stochastic forward passes for each input
xj ∈ {x1, . . . ,xM} with true labels {y1, . . . , yM}. Temperature scaling is the solution p̂ to
entropy maximization

max
p̂
− 1

N

N∑
i=1

M∑
j=1

C∑
c=1

p̂ (zi,j)
(c) log p̂ (zi,j)

(c) , (2.35)

subject to
p̂(zi,j)

(c) ≥ 0 ∀i, j, c , (2.36)
C∑
c=1

p̂(zj)
(c) = 1 ∀j , (2.37)

1

N

N∑
i=1

M∑
j=1

z
(yj)
i,j =

1

N

N∑
i=1

M∑
j=1

C∑
c=1

z
(c)
i,j p̂(zi,j)

(c). (2.38)

Proof. Guo et al. (2017) solve this constrained optimization problem with the method of
Lagrange multipliers. We skip reviewing their proof as one can see that the solution to p̂ in
the case of MC integration provides

1

N

N∑
i=1

p̂i (zj)
(c) =

1

N

N∑
i=1

eλz
(c)
i,j∑C

`=1 e
λz

(`)
i,j

(2.39)

=
1

N

N∑
i=1

σSM (λfθi(xj))
(c) , (2.40)

which yields temperature scaling for λ = τ−1 (Guo et al. 2017).

A scalar parameter cannot rescale the class logits individually. Thus, more complex logit
scaling can be derived by using any function at this point to smoothen or sharpen the softmax
output (see next section). In this work temperature scaling with τ > 0 is inserted before final
softmax activation and before MC integration:

p̂(x) =
1

N

N∑
i=1

σSM

(
τ−1fθi(x)

)
. (2.41)

First, fθ is trained until convergence on the training set. Next, we fix the parameters θ and
optimize τ with respect to the negative log-likelihood on a separate calibration set using
variational inference. This is equivalent to maximizing the entropy of p̂ (Guo et al. 2017).
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Classwise Logit Scaling

It is stated by Kull et al. (2019) that temperature scaling would be inferior to more com-
plex calibration methods when compared by means of classwise calibration. In (Guo et al.
2017), temperature scaling is used to calibrate the confidence that takes into account only
one class probability. In contrast, we use temperature scaling to calibrate the model uncer-
tainty, expressed via normalized entropy. This considers all class probabilities and thus, we
hypothesize that temperature scaling implicitly leads to well-calibrated classwise uncertainty.

To demonstrate this experimentally, we implement vector scaling and auxiliary scaling and
compare them using classwise UCE. Vector scaling is a multi-class extension of temperature
scaling, where an individual scaling factor for each class is used to scale the final softmax
output:

p̂i(x) = σSM (Tfθi(x)) , (2.42)

with T = diag(τ1, . . . , τC). Auxiliary scaling makes use of a more powerful auxiliary
recalibration model Rφ consisting of a two-layer fully-connected network with C hidden
units and leaky ReLU activations after the hidden layer:

p̂i(x) = σSM (Rφ(fθi(x))) , (2.43)

which is inspired by (Kuleshov et al. 2018). The intuition behind this is that recalibration
may require a more complex function than simple scaling. Both T and the parameters φ
of the auxiliary model are optimized w.r.t. negative log-likelihood in a separate calibration
phase by gradient descent. We initialize with τj ← 1 and φ1,2 ← IC , respectively. Thus,
recalibration is started form the identity function.

It must be emphasized that in contrast to temperature scaling, both vector and aux scaling
can change the maximum of the softmax and thus affect model accuracy.

Confidence Penalty

Additionally, we compare temperature scaling to entropy regularization, where low entropy
output distributions are penalized by adding the negative entropyH of the softmax output to
the negative log-likelihood training objective, weighted by an additional hyperparameter λ.
This leads to the following optimization function:

LCP(θ) = −
∑
X ,Y

logpθ(y|x)− λH (pθ(y|x)) . (2.44)

We reproduce the experiment of Pereyra et al. (2017) on supervised image classification and
compare the quality of calibration of confidence and uncertainty to logit scaling calibration
methods. Calibration by confidence penalty must be performed during the training and
cannot be done afterwards. Thus, a separate calibration phase is omitted.
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2.1.4 Experiments

The experimental results are presented twofold: First, we evaluate the proposed uncertainty
calibration error metric and second, we evaluate the proposed logit scaling methods.

Evaluation of Uncertainty Calibration Error Metric

The uncertainty calibration error is evaluated on multi-class image classification on CIFAR-10
with ResNet-34 and on CIFAR-100 with ResNet-50 (He, X. Zhang, et al. 2016; Krizhevsky
and Hinton 2009). We opt not to use medical data sets here as there are no large open access
medical data sets with a high number of classes available and because the CIFAR data sets
are well accepted in the machine learning community. However, all experiments and results
can directly be translated to the medical domain.

The feature extractor of ResNet is used as implemented in PyTorch 1.6 (Paszke et al. 2019)
and the last linear layer is implemented using the different Bayesian approximations from
§ 2.1.3. All models were trained from random initialization. We employed early stopping at
highest validation set accuracy. Additional details on the training procedure can be found in
the chapter appendix.

First, we compute the accuracies and all calibration error metrics from § 2.1.3 and the
UCE on the test sets of CIFAR-10/100 (Krizhevsky and Hinton 2009) for all models. We
investigate the effect of the number of bins in the estimators of the metrics involving binning
and analyze the ranking of different models under varying softmax temperature τ . Next,
we train a ResNet on the data sets CIFAR-10/100, SVHN (Netzer et al. 2011) and Fashion-
MNIST (H. Xiao et al. 2017) with added calibration error regularization as in Eq. (2.13) and
(2.34). We compare UCE regularization (λ = 10) to regularization with MMCE (λ = 10)
and to confidence penalty with λ = 0.1, which penalizes the entropy of the probability vector
p (Pereyra et al. 2017). The values for λ have been selected following Aviral Kumar et al.
(2018) and Pereyra et al. (2017). We combine the regularization experiments with post-hoc
calibration using temperature scaling (Guo et al. 2017).

Additionally, we analyze the utility of the normalized entropy as a measure of uncertainty
and perform rejection and out-of-distribution (OoD) detection experiments using H̃. We
define an uncertainty threshold Hmax and reject all predictions from the test set where
H̃(p) > Hmax. A decrease in false predictions of the remaining test set is expected. To
demonstrate the OoD detection ability, we provide images from CIFAR-100 to a deep model
trained on CIFAR-10 (note that both CIFAR data sets have no mutual classes). In this
experiment, we compose a batch of 100 random samples from the test set of the training
domain and stepwise replace images with out-of-distribution data. In practice, it is expected
that models are applied to a mix of known and unknown classes. After each step, we evaluate
the mean batch uncertainty and expect, that the mean uncertainty monotonically increases as
a function of the fraction of OoD data.
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Evaluation of Logit Scaling

The experimental evaluation of logit scaling for variational inference is presented threefold:
First, the proposed logit scaling methods are used to calibrate confidence and uncertainty and
are compared with entropy regulation; second, predictions with high uncertainty are rejected;
and third, the effect of out-of-distribution data on uncertainty is analyzed. All models were
trained from random initialization. In the logit scaling experiments we focus on the use of
Gaussian dropout as Bayesian approximation.

Uncertainty Calibration To show the effectiveness of uncertainty calibration, we train
ResNet-34 (He, X. Zhang, et al. 2016) and DenseNet-121 (Huang et al. 2017) on the data
sets CIFAR-10 and SVHN, as well as ResNet-101 and DenseNet-169 on CIFAR-100 with
Gaussian dropout until convergence. Additionally, we reproduce the experiments of (Guo et
al. 2017) and analyze calibration of frequentist confidence p̂ = maxp along with likelihood
values p̂ = maxN−1

∑N
i=1 pi from MC integration. Subsequently, the models are calibrated

using the previously mentioned logit scaling methods. The validation set with 5,000 images
is used as calibration set. We additionally train all networks in the exact same manner
with confidence penalty loss with fixed λ = 0.1. The proposed UCE and classwise UCE
metrics are used to quantify calibration of uncertainty. Reliability diagrams (top-1 error vs.
uncertainty) are used to visualize miscalibration. Classwise UCE values are given in Tab. 2.3
and the reliability diagrams show the corresponding UCE.

Rejection of Uncertain Predictions An example application of well-calibrated un-
certainty is the rejection of uncertain predictions. In a medical imaging scenario, a critical
decision should only be made on the basis of reliable predictions. We define an uncertainty
thresholdHmax and reject all predictions from the test set where H̃(p) > Hmax. A decrease
in false predictions of the remaining test set is expected.

Out-of-Distribution Detection Deep neural networks only provide reliable predictions
for data on which they have been trained. In practice, however, the trained network will
encounter samples that lie outside the distribution of the training data. Problematically, a
miscalibrated model will still produce highly confident estimates for such out-of-distribution
(OoD) data (S. Lee et al. 2018).

Bayesian neural networks have not been extensively studied for out-of-distribution detec-
tion. Epistemic uncertainty from MC dropout was successfully used to detect OoD samples
in neural machine translation (T. Z. Xiao et al. 2019). We reproduce the experiments pre-
sented by Lakshminarayanan et al. (2017), where predictive uncertainty obtained from deep
ensembles is used to detect if data from CIFAR-10 is provided to a network trained on SVHN.
They state that uncertainty produced by VI is overconfident and cannot robustly detect OoD
data. We expect that well-calibrated uncertainty from Bayesian methods allows us to detect
if data from CIFAR-10 is presented to a deep model trained on SVHN. However, the SVHN
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data set shows house numbers and the CIFAR data set contains everyday objects and animals;
the data domains are overly disjoint. To demonstrate the OoD detection ability under more
difficult conditions, we additionally provide images from CIFAR-100 to a deep model trained
on CIFAR-10. These experiments are similarly conducted as the previous OoD detection
experiment.

Training Settings

For the experiments, the model implementations from PyTorch 1.6 (Paszke et al. 2019) are
used and trained with following settings:

• batch size of 256

• AdamW optimizer (Loshchilov and Hutter 2019) with initial learn rate of 0.01 and
β1 = 0.9, β2 = 0.999

• weight decay of 1e-4

• negative log-likelihood (cross entropy) loss

• reduce-on-plateau learn rate scheduler (patience of 20 epochs) with factor of 0.1

• additional validation set is randomly extracted from the training set (5, 000 samples)

• only the last linear layer is implemented in a Bayesian manner for MC dropout,
Gaussian dropout, BayesByBackprop and SWAG

• the deep ensemble comprises 3 fully individually trained networks

• N = 25 forward passes were used Monte Carlo integration

• in MC dropout and Gaussian dropout, a dropout rate of p = 0.2 was used

• in SWAG, a learn rate of 3e-6 was used during weight averaging

2.1.5 Results

The results in this section are presented twofold. We first confer results for the evaluation of
UCE as calibration metric and subsequently for logit scaling as recalibration method.

Results for Evaluation of Uncertainty Calibration Error

This section evaluates the uncertainty calibration error as suitable metric to measure miscali-
bration of Bayesian uncertainty. We start by comparing UCE to other metrics, investigate
the use of UCE as uncertainty regularization and explain, why UCE regularization works.
Further, we provide results for the rejection and OoD detection experiments.
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Table 2.1: Classification accuracy and calibration error results for different models on CIFAR-
10/100. We used M = 15 bins where necessary. Here, all metrics provide the
same ranking of models.

Bayes Dataset Accuracy ECE ACE UCE MMCE Brier NLL

MC Drop CIFAR-10 93.6 % 4.3 % 4.3 % 4.0 % 3.8 % 0.11 0.31
Gauss Drop CIFAR-10 93.2 % 4.4 % 4.4 % 4.1 % 3.8 % 0.11 0.31

BBB CIFAR-10 93.3 % 4.6 % 4.6 % 4.4 % 4.1 % 0.11 0.34
SWAG CIFAR-10 94.4 % 3.7 % 3.7 % 3.5 % 3.5 % 0.09 0.28

Ensemble CIFAR-10 95.0 % 3.2 % 3.2 % 3.0 % 2.8 % 0.08 0.22

MC Drop CIFAR-100 66.9 % 24.4 % 24.5 % 27.9 % 20.6 % 0.55 2.55
Gauss Drop CIFAR-100 66.5 % 24.5 % 24.7 % 28.2 % 20.7 % 0.56 2.64

BBB CIFAR-100 65.1 % 24.9 % 25.1 % 28.9 % 20.9 % 0.57 2.51
SWAG CIFAR-100 68.3 % 21.8 % 22.1 % 25.7 % 18.3 % 0.52 2.26

Ensemble CIFAR-100 72.5 % 19.2 % 19.4 % 22.5 % 16.1 % 0.45 1.82
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Figure 2.4: Calibration error vs. softmax temperature on CIFAR-100 (also see Fig. A.1 in
the appendix).
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Figure 2.5: (Left) Calibration error values for two individually trained ResNet models A and
B on CIFAR-10 test set. (Right) ACE and UCE values for different Bayesian
methods on CIFAR-100 test set. ECE and ACE are very sensitive to the number
of bins used in the estimator, not yielding a consistent ranking of the models.
UCE is less sensitive to the bin number and ranks models consistently, allowing
comparison of different models.

Comparison of Calibration Error Metrics Table 2.1 shows test set accuracy and
all calibration error results for all model/data set configurations. Without any post-hoc
calibration, such as temperature scaling, all metrics provide the same ranking of the models.
The deep ensemble and SWAG perform best in terms of test set accuracy and calibration
of uncertainty. Brier score and NLL are both highly sensitive to the model accuracy, which
is especially apparent on CIFAR-10. For the first three models with similar accuracy, the
Brier scores differ only marginally. Thus, both the Brier score and the NLL are unsuitable
for comparing the calibration of different models. Ashukha et al. (2020) propose to use the
calibrated NLL at optimal temperature for model comparison. However, Fig. 2.4 (and Fig. A.1
in the appendix) plot the metrics over varying softmax temperature and show, that the models
with highest accuracy have lowest Brier and NLL, regardless of the temperature. From
this we deduce that both Brier and NLL should not be used for comparison of multi-class
calibration, even at optimal temperature. The remaining metrics show consistent ranking
before and after the point of optimal temperature. The metrics ECE, UCE and MMCE have a
narrow region in which the optimal temperature for all models can be found. This allows
comparison of calibration of models if they are all over- or underconfident. However, all
metrics fail at comparing underconfident models to overconfident models (see model ranking
left and right of optimal temperature in Fig. 2.4).

Fig. 2.5 shows the effect of the number of bins M in the estimators of ECE, ACE and
UCE. Both ECE and ACE are more sensitive to the number of bins and do not provide a
consistent ranking of models under varying bin count. This is due to the fact that fewer
bins are populated using H̃ as uncertainty (cf. Fig. A.4 in the chapter appendix). This can
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Table 2.2: Results from SWAG trained with entropy, MMCE and UCE regularization at
optimal temperature (+T). All regularization methods considerably reduce mis-
calibration. We used the weighted MMCE implementation as proposed by Aviral
Kumar et al. (2018).

Regularization Dataset Accuracy ECE ACE UCE MMCE Brier NLL

unregularized CIFAR-10 94.3 % 3.8 % 3.8 % 3.6 % 3.3 % 0.10 0.28
Entropy+T CIFAR-10 94.1 % 2.1 % 4.2 % 2.3 % 1.1 % 0.10 0.25
MMCE+T CIFAR-10 92.0 % 0.4 % 1.6 % 0.8 % 0.1 % 0.12 0.24

UCE+T (ours) CIFAR-10 92.6 % 0.5 % 1.6 % 0.7 % 0.2 % 0.10 0.21

unregularized CIFAR-100 68.3 % 21.8 % 22.0 % 25.7 % 18.3 % 0.52 2.26
Entropy+T CIFAR-100 68.1 % 2.9 % 12.3 % 3.7 % 2.1 % 0.44 1.41
MMCE+T CIFAR-100 67.7 % 1.3 % 11.0 % 2.1 % 0.5 % 0.43 1.20

UCE+T (ours) CIFAR-100 70.9 % 2.4 % 10.4 % 1.1 % 1.2 % 0.40 1.10

unregularized SVHN 96.8 % 2.10 % 2.16 % 1.89 % 1.82 % 0.05 0.19
Entropy+T SVHN 96.9 % 1.15 % 2.31 % 0.86 % 0.74 % 0.05 0.15
MMCE+T SVHN 97.1 % 0.27 % 0.85 % 0.35 % 0.17 % 0.05 0.12

UCE+T (ours) SVHN 97.1 % 0.38 % 0.92 % 0.38 % 0.14 % 0.05 0.12

unregularized F-MNIST 94.7 % 3.97 % 3.96 % 3.85 % 3.60 % 0.09 0.29
Entropy+T F-MNIST 94.7 % 1.86 % 4.28 % 2.13 % 0.96 % 0.09 0.24
MMCE+T F-MNIST 94.7 % 0.54 % 1.40 % 0.64 % 0.17 % 0.08 0.15

UCE+T (ours) F-MNIST 94.8 % 0.52 % 1.75 % 0.63 % 0.11 % 0.08 0.16

be interpreted as possible downside of the UCE metric as the adaptive binning scheme of
ACE explicitly addresses that. However, we argue that consistent ranking due to robustness
against bin count results in a metric that is more useful in practice.

Uncertainty Regularization Tab. 2.2 shows results from SWAG trained with entropy,
MMCE and UCE regularization. All regularization methods considerably reduce miscali-
bration compared to unregularized models, as shown by all calibration metrics. At optimal
temperature (as suggested by Ashukha et al. (2020)), UCE and MMCE regularization con-
siderably reduce miscalibration for all employed calibration metric outperforming entropy
regularization, with UCE achieving highest accuracy on CIFAR-100, SVHN and Fashion-
MNIST. We want to stress out that UCE, in contrast to MMCE, was not specifically designed
for the use as a calibration regularizer (Aviral Kumar et al. 2018). UCE regularization can be
interpreted as entropy penalization for predictions with low accuracy. As UCE is zero for an
optimal model, it encourages a model to reach high accuracy.

Why UCE Regularization Works UCE regularization works best when computed class-
wise (in similar manner to ACE): cUCE = 1

C

∑C
c=1 UCE(c), where UCE(c) is computed
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Figure 2.6: (Left) Rejection results on CIFAR-10 for decreasing uncertainty threshold com-
paring H̃(p) and maxp as uncertainty metric. In both cases, the top-1 error
decreases strictly monotonically with decreasing threshold. (Right) Out-of-
distribution detection for CIFAR-10→CIFAR-100. The normalized entropy
H̃(p) as measure of uncertainty can be used to robustly detect OoD data.

for predictions of class c. Consider the following binary classification example: A batch
with mainly samples from class 1 and few samples from class 2 are all predicted as class 1
with high confidence. NLL further pushes the confidence of the predictions to 1.0, favoring
overconfidence, whereas UCE is only reduced if the confidence of the overconfidently false
predictions is reduced.

Rejection and OoD Detection Fig. 2.6 (left) shows the top-1 error as a function of
decreasing uncertainty threshold Hmax and (right) shows the mean batch uncertainty at
increasing OoD data. Robust rejection of uncertain predictions and detection of OoD data
based on the normalized entropy H̃(p) is possible and is generally more sensitive to OoD
data than the confidence maxp.

Results for Evaluation of Logit Scaling

In the second part of this section, we present results for logit scaling as post-hoc calibration
method by measuring uncertainty calibration, rejection experiments, and OoD detection.

Uncertainty Calibration Tab. 2.3 reports classwise UCE test set results and Fig. 2.7
shows reliability diagrams for the experimental setup described in the previous section. All
logit scaling methods considerably reduce miscalibration on CIFAR-10/100 by means of
cECE and cUCE. For the smaller networks on CIFAR-10 and SVHN, the more powerful aux
scaling yields lowest cUCE. On CIFAR-100, however, aux scaling increases miscalibration.
In this case, the auxiliary modelR has C = 100 units in the hidden layer and easily overfits
the calibration set (we observe calibration set accuracy of 100 %). This results in worse
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Figure 2.7: Reliability diagrams (M = 15 bins) on CIFAR-100 for ResNet-101. Top row:
Uncalibrated frequentist confidence, and likelihood and uncertainty obtained by
MC Gaussian dropout. The following rows show the results of the logit scaling
methods. The dotted lines illustrates perfect calibration. Additional diagrams can
be found in the chapter appendix.
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Figure 2.8: Reliability diagrams (M = 15 bins) on CIFAR-100 DenseNet-169. Top row:
Uncalibrated frequentist confidence, and likelihood and uncertainty obtained by
MC Gaussian dropout. The following rows show the results of the logit scaling
methods. The dotted lines illustrates perfect calibration. Additional diagrams can
be found in the supplemental material.
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Figure 2.9: (Left) The effect of the uncertainty threshold Hmax on the test set error for the
rejection of uncertain predictions. (Right) Test set results of out-of-distribution
detection.
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Table 2.3: Classwise ECE and UCE test set results in % (M = 15 bins). 0 % means perfect
calibration. RN and DN denote ResNet and DenseNet, respectively.

uncalibrated conf. penalty temp. scaling vector scaling aux. scaling

Data Set Model cECE cUCE cECE cUCE cECE cUCE cECE cUCE cECE cUCE

CIFAR-10 RN34 4.46 4.03 8.29 19.8 1.95 3.68 2.09 3.73 2.10 2.38
CIFAR-10 DN121 10.1 9.52 8.49 18.5 3.05 5.72 3.15 6.09 2.98 4.55

CIFAR-100 RN101 20.5 23.2 14.6 19.4 10.8 11.5 10.7 11.4 32.9 35.3
CIFAR-100 DN169 32.4 37.1 15.6 20.6 12.9 13.9 12.8 13.8 48.9 52.6

SVHN RN34 2.37 2.07 9.11 22.3 1.47 3.47 1.44 3.43 1.34 1.85
SVHN DN121 2.91 2.47 7.53 19.7 2.06 5.08 1.96 4.88 1.51 2.46

calibration on the test set than the uncalibrated model. A possible solution to this is adding
regularization (e.g., early stopping or weight decay) during optimization ofR. If the model is
already well-calibrated (e.g., for SVHN in our experiments), temperature scaling and vector
scaling can slightly worsen calibration. In this case, a larger calibration set is preferred or
recalibration can be omitted at all. Confidence penalty only slightly reduces miscalibration
for larger models on CIFAR-100. On all other configurations, it leads to worse calibration.
As hypothesized in § 2.1.2, temperature scaling results in classwise calibrated uncertainty
and is only marginally outperformed by the classwise logit scaling methods. The reliability
diagrams in Fig. 2.7 give additional insight and show, that calibrated uncertainty corresponds
well with the model error. It is worth noting that the likelihood in the Bayesian approach is
generally better calibrated than the frequentist confidence.

Rejection of Uncertain Predictions Fig. 2.9 (left) shows the top-1 error as a function of
decreasingHmax. For both uncalibrated and calibrated uncertainty, decreasingHmax reduces
the top-1 error. Again, we can observe the underestimation of uncalibrated uncertainty: Hmax

has little effect at first and few uncertain predictions are rejected. Using calibrated uncertainty
with temperature or vector scaling, the relationship is almost linear, allowing robust rejection
of uncertain predictions. Except for aux scaling on CIFAR-100, logit scaling is capable of
reducing the top-1 error below 1 %. Further, we observe that confidence penalty can lead to
over-estimation of uncertainty.

Out-of-Distribution Detection Fig. 2.9 (right) shows the effect of calibrated uncertainty
to OoD detection. All calibration approaches are able to improve the detection of OoD
data. The benefit of calibration is most noticeable on ResNet (C10→C100) and DenseNet
(SVHN→C10, C10→ SVHN), where the mean uncertainty stays almost constant for OoD
data > 50 % and thus, robust OoD detection is only possible after calibration. As in Fig. 2.9
(left), we can observe overestimation of uncertainty for confidence penalty. In some cases
(e. g. DenseNet SVHN→C10), this causes a more robust OoD detection. This is in contrast
to the results presented by Lakshminarayanan et al. (2017), where MC dropout uncertainty
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was not able to capture OoD data sufficiently.

2.1.6 Conclusion

In this section, calibration of Bayesian uncertainty is discussed. We have proposed to
measure uncertainty based on the normalized entropy. From this, we derived the uncertainty
calibration error; a new metric that avoids several pathologies of existing calibration errors.
The UCE does not only consider the class with the highest probability and is not minimized
by a constant model predicting the marginal class distribution. In contrast to the Brier score
and NLL, it allows comparison of models with different accuracy. It is not sensitive to a
varying number of bins and provides a consistent ranking of models. However, we follow
the suggestion of Ashukha et al. 2020 and state that comparison of calibration for different
models should only be done at optimal softmax temperature. Regularization with UCE
during training reduces miscalibration and does not penalize high accuracy and predictions
with justified high confidence. UCE regularization with temperature scaling often performed
best in our experiments in terms of calibration. The normalized entropy itself is a useful
measure of uncertainty and allows for robust rejection of uncertain predictions and detection
of OoD data.

Moreover, we derived logit scaling as entropy maximization technique to recalibrate the
uncertainty from variational inference with deep models. Logit scaling calibrates uncertainty
with high effectiveness. The experimental results show that better calibrated uncertainty
allows more robust predictions and detection of out-of-distribution data; a key feature that is
particularly important in safety-critical applications. Logit scaling is easy to implement and
more effective than confidence penalty during training. Simple scaling methods are preferred
over more complex methods, as they provide similar results and do not tend to overfit the
calibration set. Temperature scaling improves uncertainty estimation without affecting the
accuracy of the model. Vector and auxiliary scaling also improve calibration of uncertainty,
but can have (positive or negative) influence on predictive accuracy. By using entropy, the
classwise uncertainty calibrated by vector and auxiliary scaling is not substantially better
than that calibrated by temperature scaling. Logit scaling calibrates not only the frequentist
confidence but also the Bayesian uncertainty.

With this work, we hope to have provided a new useful metric for reliable evaluation of
uncertainty estimation. The UCE is easy to implement and interpretable as it expresses the
discrepancy of the uncertainty from the model error, which increases the chance of being
accepted by deep learning practitioners.

Outlook

Throughout this work, we used a fixed dropout rate p for MC and Gaussian dropout. In
(Gal, Hron, et al. 2017), the Concrete distribution was used as a continuous approximation
to the discrete Bernoulli distribution in dropout, which allows optimizing p w.r.t. calibrated
uncertainty. Using Gaussian dropout as described above, we can also recalibrate models by
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optimizing p w.r.t. NLL on the calibration set, which scales σ to reduce underestimation of
uncertainty.

In Bayesian active learning we want to train a model with the minimal number of expert
queries from a pool of unlabeled data. Calibrated uncertainty can further be useful to
acquire the most uncertain samples from pool data to increase information efficiency (Gal,
Islam, et al. 2017). Additionally, pseudo-labels can be generated from the least uncertain
predictions in semi-supervised learning. Combined with consistency learning and deep
clustering approaches, such as entropy maximization (Ji et al. 2019), this can leverage semi-
supervised learning and lead to fully self-supervised learning, which we address in the next
section.
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2.2 BatchPL: An Efficient Sample Acquisition Scheme for
Pseudo-Labeling in Self-Supervised Learning

Creating large labeled data sets for supervised learning is costly, especially in medical imaging
where labeling can only be performed with expert domain knowledge. Self-supervised
learning (SSL) has recently gained attraction and aims at training a deep model without
any labels. In this work, we present an SSL framework that uses an uncertainty-aware
pseudo-labeling approach, which is bootstrapped by mutual information maximization with
consistency learning. We present BatchPL, a novel sample acquisition function for pseudo-
labeling based on relative entropy between a sample prediction and its batch. The acquisition
function selects highly informative samples with low uncertainty and leverages SSL with
pseudo-labeling. Our framework outperforms recent SSL approaches and achieves an
accuracy of 64.5 % on CIFAR-10 and 99.3 % on both MNIST and Medical MNIST without
using any labels.

2.2.1 Introduction

Supervised learning requires large amounts of labeled data. Even more problematic, machine
learning tasks in safety-critical areas, such as autonomous driving or medical imaging, need
domain experts to label the data, which is costly and often not feasible. However, unlabeled
data is usually easy to obtain, e.g., in clinical routine, making semi- and self-supervised
learning approaches interesting in these domains. They aim at extracting useful information
out of the unlabeled data and can be separated into generative or discriminative approaches.
Generative approaches usually use an auto-encoding structure and try to reconstruct the
input from a latent representation (Creswell et al. 2018; D. Kingma and Welling 2014).
The representation implicitly provides a clustering of the data in the latent space. However,
the clustering arises only implicitly and the required reconstruction adds computational
burden. Discriminative approaches are closer related to supervised learning, but use labels
that are directly derived from the input data. One method that has recently gained attraction is
consistency learning (CL), which maximizes the agreement between two nearby data samples
(Verma et al. 2019). Current self-supervised pre-training methods considerably outperform
fully supervised training (T. Chen et al. 2020; He, Fan, et al. 2020); they use unlabeled data
with CL to extract meaningful representations (known as pretext task) and subsequently
train a linear classifier on the representations with limited labeled data (i.e., 1 % labels on
ImageNet or CIFAR-10/100). A different approach to discriminative self-supervised learning
is pseudo-labeling (PL), where labels are generated from predictions with high confidence
and treated as ground truth in a supervised manner (Grandvalet and Bengio 2005; D.-H. Lee
2013). However, pseudo-labeling often performs worse as many predictions are incorrect
due to highly overconfident models (Guo et al. 2017). Recently, Rizve et al. (2021) proposed
uncertainty-aware pseudo-labeling as an equally effective alternative to CL, where Bayesian
methods are used to obtain better uncertainty estimates and thus more accurate pseudo-
labels. Gupta et al. (2020) proposed a similar approach using deep ensembles, but used
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Figure 2.10: Unsupervised toy experiment on the “Two Moons” data set with class imbalance:
(Left) Consistency learning with IIC (Ji et al. 2019) separates the data into two
clusters violating the cluster assumption; the decision boundary traverses a high-
density region with overconfidence. (Center) Pseudo-labeling based on high
confidence helps to push the decision boundary into low-density regions but
overfocuses on the upper moon with more frequent samples. (Right) BatchPL
acquires pseudo-labels for highly informative samples and correctly clusters
the data. A three layer fully-connected ReLU network with 32 neurons, MC
dropout and 4,000 training iterations was used for all three methods.1

purely unsupervised clustering methods to create a small labeled data set for bootstrapping
pseudo-label generation.

In this work, we combine consistency learning and self-supervised learning with pseudo-
labels for classification obtained from Bayesian uncertainty, which to the best of our knowl-
edge has not yet been done. We propose BatchPL, a sample acquisition scheme for pseudo-
labeling that selects highly informative samples (see Fig. 2.10). Our approach outperforms
recent self-supervised approaches in multi-class classification without using any labeled data
and can be used with any deep learning architecture. We do not focus on pretext tasks, but
fully train a deep classifier end-to-end without supervision. Labeled data is only used at test
time to compute the final accuracy metrics.

2.2.2 Related Work

Consistency Learning The current state-of-the-art in self-supervised learning is based
on the consistency learning framework, which dates back to D. Zhou et al. (2003) and is
based on the cluster assumption: Two similar data samples are likely to have the same label.
A simple way to create two samples with the same label is to use different augmentations of
the same data sample (T. Chen et al. 2020). A consistency loss then aims at maximizing the
consistency of the paired predictions on the augmentations (Ji et al. 2019). Two augmentations
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of the same image are considered a positive pair. Consistency learning can further be extended
by using two different images as negative pair and minimize the agreement, which is referred
to as contrastive learning (T. Chen et al. 2020). However, in this section, we focus on positive
pairs only and do not perform negative learning. A key component in this framework is
the consistency loss function. It must be chosen in such way that degenerate solutions are
avoided; i.e., all samples are assigned to the same class. Consistency learning has been used
in unsupervised pre-training in multi-class classification (T. Chen et al. 2020; He, Fan, et al.
2020), image-to-image translation (Zhu et al. 2017), person re-identification (Wu et al. 2019)
and unsupervised image clustering (Bachman et al. 2019; Ji et al. 2019).

Pseudo-Labeling A straightforward method to perform self-supervised learning is to
use a supervised objective function (i.e., cross-entropy) with self-generated pseudo-labels.
This approach usually needs a minimal amount of labeled data to bootstrap itself (D.-H. Lee
2013). The quality of the pseudo-labels greatly depends on the sample acquisition scheme.
Simply using the predictions that are above a certain confidence threshold usually results in
pseudo-labels with low accuracy due to poor calibration and high overconfidence of deep
models (Guo et al. 2017; Rizve et al. 2021). Rizve et al. (2021) argue that PL performs
on par to CL when using temperature scaled deep Bayesian models with better calibrated
uncertainty. Pseudo-labeling has been used in semi-supervised image classification (D.-H.
Lee 2013; Rizve et al. 2021) and unsupervised image clustering (Caron et al. 2018; Gupta
et al. 2020). An implicit combination of PL and CL was recently proposed by Sohn et al.
(2020) as FixMatch: Weakly augmented images are used to create pseudo-labels, which
are subsequently used to minimize a supervised training objective on heavily augmented
versions of the images.

2.2.3 Methods

In this section, we propose to use consistency learning with mutual information maximization
to bootstrap pseudo-label generation with FixMatch using uncertainty from deep Bayesian
models. We introduce a novel sample acquisition function based on the relative entropy
between a data point and its batch that selects highly informative samples.

Bootstrapping with Mutual Information Maximization

Invariant information clustering (IIC) is a recent method that enables unsupervised training
of deep image classifiers by maximizing the mutual information between two differently
augmented data samples (Ji et al. 2019). Maximizing the mutual information effectively
minimizes the conditional entropy of the paired predictions, which favors a deterministic
one-hot output. This encourages the model to become overconfident and leads to violation of
the cluster assumption, creating decision boundaries that traverse through regions with high

1The code for this example can be found at gist.github.com/mlaves.

https://gist.github.com/mlaves/77efca31e4fc76aed725cae3eb67c4cf
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data density (see Fig. 2.10 (left) and (Oliver et al. 2018)). However, it suffices to get at least
some correct labels per class, which can be used to bootstrap our pseudo-labeling framework.
We will briefly review IIC and subsequently describe our bootstrapping procedure.

Let t ∼ T be a random sample from a set of augmentation operations (e.g., random
cropping, flipping, color jitter, and rotations, all with different magnitudes) and let {x,x′}
be a paired data sample of input image x ∈ X and its augmented version x′ = t(x). The
goal of IIC is to maximize the mutual information I[y, y′] w.r.t. the model parameters

arg max
θ

I [fθ(x),fθ(x
′)] . (2.45)

Following Ji et al. (2019), I[y, y′] is computed by

I[P ] =
C∑
c=1

C∑
c′=1

Pcc′ log
Pcc′

PcPc′
, (2.46)

with the joint probability distribution given by the C × C matrix

P =
1

n

n∑
i=1

fθ(xi)fθ(x
′
i)
T . (2.47)

with entries Pcc′ = P (y = c, y′ = c′). Marginalization in Eq. (2.47) is performed over the
mini-batch with size n. The joint probability distribution is symmetrized using (P + P T)/2.
The marginals Pc = P (yi = c) and Pc′ = P (y = c′) are computed by summing over the
rows or columns of P . We use sole IIC training in the very first iterations as a warm-up
phase to subsequently be able to generate pseudo-labels as described in § 2.2.3.

BatchPL: Pseudo-Label Selection Based on Relative Entropy

The violation of the cluster assumption from IIC training can be mitigated by employing
consistency learning with pseudo-labels (cf. Fig. 2.10). The question arises how to acquire
well-predicted samples to compute pseudo-labels from after bootstrapping with IIC. A naive
way would be to simply select predictions that are below a predefined uncertainty threshold.
However, in the early stages of IIC training, only a few prediction classes are populated,
while some classes are ignored at all (e.g., 1’s and 7’s from MNIST are first grouped into
the same cluster, cf. Fig. 3 from Ji et al. (2019)). Pseudo-labeling reinforces the attention
to the classes that are already predicted with high confidence, which leads to ignorance and
underpopulation of the other classes and the training can get stuck. We name this failure
phenomenon overfocusing. Obtaining pseudo-labels for samples from classes of which the
model is already very confident about would add little to no new information to the pseudo-
labeled set. It is more effective to select samples that are predicted with low uncertainty, but
are underrepresented in the current prediction set (i.e., current batch).

To address this issue, we present BatchPL, a sample acquisition function for efficient
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Figure 2.11: Overview of BatchPL sample acquisition on an example batch. Using confi-
dence (i.e., highest softmax probability) for sample acquisition would results in
overfocusing on samples with high similarity. BatchPL increases pseudo-label
efficiency by penalizing classes that are predicted with overconfidence. Figure
inspired by Kirsch et al. (2019).

selection of pseudo-labels. BatchPL balances the entropy of a single prediction and the
relative entropy (or Kullback-Leibler divergence) between the single prediction and the
marginalized predictions of its data batch. It is defined as

BatchPL [y∗ ‖ y] = H[p(y∗ |x∗)]−KL [p(y) ‖ p(y∗ |x∗)] , (2.48)

with current prediction p(y∗ |x∗) and prediction p(y) from marginalization over the cur-
rent batch (or data set in general). Predictions with low BatchPL value are selected for
pseudo-labeling. The use of this KL divergence as a measure of dissimilarity between two
distributions dampens the selection of samples that are already frequently predicted with high
confidence. The direction of the KL divergence is of no particular importance here, as we do
not optimize Eq. (2.48) directly. Nevertheless, we opt for KL divergence from p(y |x∗) to
p(y) (see next section). Note that we omitted the conditioning on the network parameters θ
here and will cover that later when moving towards a Bayesian treatment.

Why BatchPL Works A low BatchPL value indicates that a sample is predicted with low
uncertainty and thus is suited for pseudo-label generation, but is from an underrepresented
class within its batch predictions (see Fig. 2.11). BatchPL has several favorable properties:
It trades off the entropyH[y∗] of the current prediction and the relative entropy KL [y ‖ y∗]
between the marginal distribution p(y) of the batch and the current prediction. The entropy
describes the level of uncertainty about y∗ and the relative entropy is a measure of dissimilarity
between the marginal distribution and the distribution of current prediction. The first term
is low when the model is confident about y∗ and the second term is high when the batch
marginal distribution considerably differs from the distribution of the current prediction. This
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results in a sample selection that is more spread across all classes. More specifically, the
KL divergence expands toH[y, y∗]−H[y], comprising of the cross entropy between y and
y∗, and the negative entropy of y. When p(y) approaches a uniform distribution (i.e., all
classes are well-represented by the current model), the penalizing effect of the KL divergence
in BatchPL is mitigated and it behaves more like sample selection based on entropy (i.e.,
uncertainty) .

Using BatchPL to select samples for pseudo-labeling avoids that the model overfocuses
on what is already well-known. Consider the following example: A batch of four binary
samples with ground truth class labels {1, 1, 2, 2} was predicted with the softmax outputs
{( 9

10
, 1

10
), ( 9

10
, 1

10
), ( 6

10
, 4

10
), ( 2

10
, 8

10
)}. An uncertainty or confidence based acquisition scheme

would select the first two predictions in this batch for pseudo-labeling and manifest the
model’s focus on class 1. BatchPL on the other hand results to {0.1, 0.1, 0.7, 0.02}. This
favors the selection of the last sample, as pseudo-labeling this is more effective as the first
two samples.

Computing BatchPL

Let x∗ ∈ B be a data point from the current mini-batch B ⊆ D with size n of a data set D
of unlabeled images X with unknown ground truth class y ∈ Y . Let fθ : X → Y be a deep
variational Bayesian classification model with variational distribution q(θ) using MC dropout
(Gal and Ghahramani 2016b) and softmax output obtained by Monte Carlo integration

p(y∗ |x∗,D) = Eθ∼p(θ |D)[p(y
∗ |x∗,θ)] ≈ 1

T

T∑
t=1

fθ̃t(x
∗) (2.49)

with samples θ̃t ∼ q(θ) and T stochastic forward passes. In the following, we omit the
conditioning on D for brevity. The goal of BatchPL is to compute the entropyH[y∗] of the
distribution p(y∗ |x∗) for a current sample x∗ and the KL divergence between the batch
marginal distribution

p(y) = Ex Eθ[p(y |x,θ)] ≈ 1

nT

n∑
j=1

T∑
t=1

fθ̃t(xj) (2.50)

and the distribution for the current sample. Finally, BatchPL is computed by

−
C∑
c=1

p(y∗ = c |x∗) log p(y∗ = c |x∗)−
C∑
c=1

p(y = c) log
p(y∗ = c |x∗)
p(y = c)

. (2.51)

We compute BatchPL[y∗ ‖ y] for all predictions y∗ in the current batch and select the samples
for pseudo-labeling where BatchPL is below a predefined threshold β.
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Bounds on BatchPL If p(y∗ |x∗) = p(y) = U(1, C) with uniform distribution U(1, C)
over C classes, BatchPL reaches its upper bound

sup BatchPL[y∗ ‖ y] = logC . (2.52)

However, there is no lower bound on BatchPL, as there is no general upper bound on the KL
divergence:

inf BatchPL[y∗ ‖ y] = −∞ . (2.53)

This can make empirical selection of a threshold value β difficult. However, we received
good results using pseudo-labels from sample predictions with BatchPL[y∗ ‖ y] < 0.

2.2.4 Experiments

We evaluate pseudo-labeling with BatchPL in the following self-supervised scenario. A
convolutional network is trained on a classification task without using any labels during
optimization. We use an imbalanced version of the Two Moons (upper moon:lower moon =
500:400) as toy data set, Medical MNIST as a medical data set, and MNIST and CIFAR-10 in
order to compare our results to results from related works. Sole IIC training is used in the first
n epochs to bootstrap pseudo-label generation following the training procedure described by
Ji et al. (2019). In all experiments, we use m classification heads in parallel with additional
overclustering. Overclustering produces an auxiliary clustering with a greater number of
clusters than actually present and has empirically been proven to improve overall accuracy
(Ji et al. 2019). It is implemented using a linear classification layer with more units k · C
than the number of classes C. After some sole iterations of IIC as warm-up, we perform the
following consecutive steps in each epoch:

1. IIC training,

2. pseudo-label generation with BatchPL,

3. supervised training with pseudo-labels.

For consistency learning in the IIC step, we maximize Eq. (2.45) using a weakly augmented
and a strongly augmented version of the input image. We train the overclustering heads
and the actual classification heads in alternating epochs. During test time, the Hungarian
algorithm is used to find a mapping between the predicted classes and the ground truth
to estimate classification accuracy. We use a BatchPL threshold of β = 0 and the Adam
optimizer (D. P. Kingma and Ba 2014) with a fixed learning rate of 10−4 in all subsequent
experiments.

MNIST A VGG-like network is used (Simonyan and Zisserman 2014) with n = 10 IIC
warm-up epochs, a batch size of 750, overclustering with k = 5, and m = 5 classification
heads. Weak augmentation consists of random random cropping with squared size of 24 pixels
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Table 2.4: Accuracy from best out of 3 runs with different random initialization. Self-
supervised training with BatchPL outperforms IIC on Two Moons, Medical
MNIST, and CIFAR-10. The results for IIC on MNIST and CIFAR-10 are reported
by Ji et al. (2019). Results from fully supervised training are given as comparison.

Data set Random Network IIC BatchPL (ours) Fully Supervised

Two Moons 51.3 % 86.4 % 93.7 % 99.8 %
MNIST 26.1 % 99.3 % 99.3 % 99.7 %

MedicalMNIST 38.2 % 98.1 % 99.3 % 99.9 %
CIFAR-10 13.1 % 61.7 % 64.5 % 93.5 %

and strong augmentation consists of random cropping with random sizes of {16, 20, 24}
pixels, random rotation in the range [−25, 25] degree, and random color jitter.

Medical MNIST This data set aims at being a drop-in replacement for MNIST with
medical imaging modalities (Maranhão 2020). However, in contrast to MNIST it comprises
of 58,954 single channel images with size 64×64 from the 6 classes AbdomenCT, BreastMRI,
CXR, ChestCT, Hand, HeadCT. We normalize the images and scale them to 28× 28 pixels.
The training procedure is similar to that of MNIST, but with added random horizontal flipping
and without random rotations. Additionally, all images are Sobel filtered in a preprocessing
step, which helps to suppress focusing on simple features such as background patterns and
color and emphasizes shape.

CIFAR-10 ResNet-34 is used (He, X. Zhang, et al. 2016) with n = 50 IIC warm-up epochs,
a batch size of 660, overclustering with k = 7, and m = 5 classification heads. We use the
same augmentation strategy as for Medical MNIST.

Results

The experimental results are summarized in Tab. 2.4. IIC violates the cluster assumption on
the imbalanced Two Moons toy data set and is not able to correctly separate the data (see
Fig. 2.10). Pseudo-labeling with BatchPL pushes the decision boundary into low-density
regions and does not overfocus on the majority class, as confidence based pseudo-labeling
does (cf. Fig. 2.10 center). On MNIST, IIC and BatchPL perform on par and almost reach
the accuracy of fully supervised training. BatchPL considerably outperforms IIC on Medical
MNIST and CIFAR-10. Especially on the former, the benefit of BatchPL becomes apparent.
We observe that IIC mixes up two very similar classes in the beginning of the training.
The IIC training objective makes the model becoming overconfident about these wrong
predictions and getting stuck in this local minimum. This reliably happens on Medical
MNIST, but also sometimes on MNIST (e.g., mixing up 1’s and 7’s or 5’s and 6’s), depending
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on the random initialization. BatchPL addresses this by explicitly avoiding to overfocus on
the overconfident predictions.

On the more challenging CIFAR-10 data set, we observe that BatchPL mixes up classes
that are closely related, such as ‘deer’ and ‘horse’ or ‘automobile’ and ‘truck’, as it relies
on self-extracted visual features. However, to the best of our knowledge, BatchPL provides
state-of-the-art performance in fully unsupervised CIFAR-10 and replaces IIC as the former
state-of-the art (as of writing this thesis).

2.2.5 Conclusion

In this section, we presented an efficient framework for uncertainty-aware pseudo-labeling in
self-supervised learning with application to medical images. The core of the framework is
BatchPL, a novel sample acquisition function for pseudo-labeling that is based on the relative
entropy between a sample prediction and the predictions of its batch. Our experiments
have shown that BatchPL is advantageous in cases where other self-supervised methods
fail. When dealing with class imbalances, BatchPL does not overfocus on the majority class.
Additionally, our framework achieved state-of-the-art performance on common multi-class
classification tasks.

BatchPL can easily be extended to negative samples. If a class can be clearly rejected for
a given sample, BatchPL can be redefined to efficiently select negative samples for the use
with negative cross-entropy employing negative pseudo-labels. Moreover, BatchPL can be
used in semi-supervised training with some labeled data. In future experiments, we also plan
to use BatchPL on segmentation tasks.

2.3 Chapter Conclusion

In this chapter, we have addressed the calibration of predictive uncertainty in the context of
classification and computer-aided diagnosis. The first part (§ 2.1) presented the uncertainty
calibration error, a new method for measuring miscalibration and to regularize neural net-
works during training for improved calibration. In our experiments, it outperformed other
commonly used regularization methods.

Subsequently, the second part of this chapter (§ 2.2) introduced a novel framework for
unsupervised training of multi-class classification models using uncertainty-aware self-
labeling. The presented approach achieved state-of-the-art performance on both medical and
non-medical classfication data sets. These findings confirm hypothesis 1 and 2 (cf. § 1.5).
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3 Regression in Medical Imaging

In this chapter, we apply estimation of predictive uncertainty by variational Bayesian in-
ference with Monte Carlo dropout to regression tasks and show why predictive uncertainty
is systematically underestimated. We suggest using σ scaling with a single scalar value; a
simple, yet effective calibration method for both aleatoric and epistemic uncertainty. The
performance of our approach is evaluated on a variety of common medical regression data
sets using different state-of-the-art convolutional network architectures. In our experiments,
σ scaling is able to reliably recalibrate predictive uncertainty. It is easy to implement and
maintains the accuracy. Well-calibrated uncertainty in regression allows robust rejection of
unreliable predictions or detection of out-of-distribution samples.

The work in this chapter was partly published at the peer-reviewed “Medical Imaging with
Deep Learning” (MIDL) 2020 conference and presented as long oral (best 12 % of submitted
papers) (Laves, Ihler, Fast, et al. 2020). An extended version of our work was submitted to the
peer-reviewed Journal of Machine Learning for Biomedical Imaging (MELBA) and published
in April 2021 (Laves, Ihler, Fast, et al. 2021). Besides the co-authors of the published work,
we thank Vincent Modes and Mark Wielitzka for their insightful comments. The source code
for all experiments in this chapter is publicly available at: github.com/mlaves/well-calibrated-
regression-uncertainty

3.1 Introduction

Predictive uncertainty should be considered in any medical imaging task that is approached
with deep learning. Well-calibrated uncertainty is of great importance for decision-making
and is anticipated to increase patient safety. It allows to robustly reject unreliable predictions
or out-of-distribution samples. In this chapter, we address the problem of miscalibration of
regression uncertainty with application to medical image analysis.

For the task of regression, we aim to estimate a continuous target value y ∈ Rd given
an input image x. Regression in medical imaging with deep learning has been applied to
forensic age estimation from hand CT/MRI (Halabi et al. 2019; Štern et al. 2016), natural
landmark localization (Payer et al. 2019), cell detection in histology (Xie et al. 2018), or
instrument pose estimation (Gessert et al. 2018). By predicting the coordinates of object
boundaries, segmentation can also be performed as a regression task. This has been done
for segmentation of pulmonary nodules in CT (Messay et al. 2015), kidneys in ultrasound
(Yin et al. 2020), or left ventricles in MRI (L. K. Tan et al. 2017). In registration of medical
images, a continuous displacement field is predicted for each coordinate of x, which has also
recently been addressed by CNNs for regression (Dalca et al. 2019).

https://github.com/mlaves/well-calibrated-regression-uncertainty
https://github.com/mlaves/well-calibrated-regression-uncertainty


58 3 Regression in Medical Imaging

0.000 0.015 0.030

expected uncertainty

0.000

0.015

0.030
ob

se
rv

ed
u

n
ce

rt
ai

n
ty

UCE = 0.46

B
re

as
tP

at
h

Q
/E

ffi
ci

en
tN

et
-B

4 uncalibrated

0.00 0.03 0.06

expected uncertainty

0.00

0.03

0.06

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.47

aux scaling

0.000 0.012 0.024

expected uncertainty

0.000

0.012

0.024

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.17

σ scaling

Figure 3.1: Calibration plots (expected uncertainty vs. observed uncertainty) and uncertainty
calibration error (UCE) for EfficientNet-B4 on BreastPathQ test set. Dashed lines
denote perfect calibration. The discrepancy to the identity function reveals mis-
calibration. Uncalibrated uncertainty is underestimated and does not correspond
well with the model error (left). Uncertainty can be calibrated most effectively
with σ scaling (right). Solid lines show the mean and shaded areas show standard
deviation from 5 repeated runs.

In medical imaging, it is crucial to consider the predictive uncertainty of deep learning
models. Bayesian neural networks (BNN) and their approximation provide mathematical
tools for reasoning the uncertainty (Bishop 2006; D. Kingma and Welling 2014). In general,
predictive uncertainty can be split into two types: aleatoric and epistemic uncertainty (Kendall
and Gal 2017; Tanno, Worrall, et al. 2017). This distinction was first made in the context of
risk management (Hora 1996). Aleatoric uncertainty arises from the data directly; e.g. sensor
noise or motion artifacts. In regression, it is derived from the conditional log-likelihood
under the maximum likelihood framework and can be captured by a deep model directly
(see § 3.2.1). Epistemic uncertainty is caused by uncertainty in the model parameters due
to a limited amount of training data (Bishop 2006). A well-accepted approach to quantify
epistemic uncertainty is variational inference with Monte Carlo (MC) dropout, where dropout
is used at test time to sample from the approximate posterior (Gal and Ghahramani 2016b).

Uncertainty quantification in regression problems in medical imaging has been addressed
by prior work. Medical image enhancement with image quality transfer (IQT) has been
extended to a Bayesian approach to obtain pixel-wise uncertainty (Tanno, Ghosh, et al. 2016).
Additionally, CNN-based IQT was used to estimate both aleatoric and epistemic uncertainty in
MRI super-resolution (Tanno, Worrall, et al. 2017). Dalca et al. (2019) estimated uncertainty
for a deformation field in medical image registration using a probabilistic CNN. Registration
uncertainty has also been addressed outside the deep learning community (Luo et al. 2019).
Schlemper et al. (2018) used sub-network ensembles to obtain uncertainty estimates in
cardiac MRI reconstruction. Aleatoric and epistemic uncertainty was also used in multitask
learning for MRI-based radiotherapy planning (Bragman et al. 2018).

Uncertainty obtained by deep BNNs tends to be miscalibrated, i.e. it does not correlate well
with the model error (Laves, Ihler, Kortmann, et al. 2019). Fig. 3.1 shows calibration plots
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(observed uncertainty vs. expected uncertainty) for uncalibrated and calibrated uncertainty.
The predicted uncertainty (taking into account both epistemic and aleatoric uncertainty) is
underestimated and does not allow robust detection of uncertain predictions at test time.

Calibration of uncertainty in regression has been addressed in prior work outside medical
imaging. In (Kuleshov et al. 2018), inaccurate uncertainties from Bayesian models for
regression are recalibrated using a technique inspired by Platt scaling. Given a pre-trained,
miscalibrated model H , an auxiliary model R : [0, 1]d → [0, 1]d is trained, that yields a
calibrated regressor R ◦H . In (Phan et al. 2018), this method was applied to bounding
box regression. However, an auxiliary model with enough capacity will always be able
to recalibrate, even if the predicted uncertainty is completely uncorrelated with the real
uncertainty. Furthermore, Kuleshov et al. (2018) state that calibration via R is possible if
enough independent and identically distributed (i.i.d.) data is available. In medical imaging,
large data sets are usually hard to obtain, which can cause R to overfit the calibration
set. This downside was addressed in (Levi et al. 2019), which is most related to our work.
They proposed to scale the standard deviation of a Gaussian model to recalibrate aleatoric
uncertainty. In contrast to our work, they do not take into account epistemic uncertainty,
which is an important source of uncertainty, especially when dealing with small data sets in
medical imaging.

This chapter extends a preliminary version of this work presented at the Medical Imaging
with Deep Learning (MIDL) 2020 conference (Laves, Ihler, Fast, et al. 2020). We continue
this work by providing a new derivation of our definition of perfect calibrtaion, new experi-
mental results, analysis and discussion. Additionally, prediction intervals are computed to
further assess the quality of the estimated uncertainty. We find that prediction intervals are
estimated too narrow and that recalibration can mitigate this problem.

To the best of our knowledge, calibration of predictive uncertainty for regression tasks in
medical imaging has not been addressed. Our main contributions are:

(1) We suggest to use σ scaling in a separate calibration phase to tackle underestimation
of aleatoric and epistemic uncertainty (§ 3.2.5),

(2) we propose to use the uncertainty calibration error and prediction intervals to assess
the quality of the estimated uncertainty (§ 3.2.7), and

(3) we perform extensive experiments on four different data sets to show the effectiveness
of the proposed method (§ 3.3).

3.2 Methods

In this section, we discuss estimation of aleatoric and epistemic uncertainty for regression
and show why uncertainty is systematically miscalibrated. We propose to use σ scaling to
jointly calibrate aleatoric and epistemic uncertainty.
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3.2.1 Conditional Log-Likelihood for Regression

We revisit regression under the maximum posterior (MAP) framework to derive direct
estimation of heteroscedastic aleatoric uncertainty. That is, the aleatoric uncertainty varies
with the input and is not assumed to be constant. The goal of our regression model is to predict
a target value y given some new input x and a training setD of m inputsX = {x1, . . . ,xm}
and their corresponding (observed) target values Y = {y1, . . . ,ym}. We assume that y has
a Gaussian distribution N (y; ŷ(x), σ̂2(x)) with mean equal to ŷ(x) and variance σ̂2(x). A
neural network with parameters θ

fθ (x) =
[
ŷ(x), σ̂2(x)

]
, ŷ ∈ Rd, σ̂2 ∈ R, σ̂2 ≥ 0 (3.1)

outputs these values for a given input (Nix and Weigend 1994). We use a Gaussian to model
the likelihood and define

p (y|x) = N
(
y; ŷ(x), σ̂2(x)

)
. (3.2)

By assuming a Gaussian prior over the parameters θ ∼ N (θ; 0, λ−1I), MAP estimation
becomes maximum-likelihood estimation with added weight decay (Bishop 2006). With m
i.i.d. random samples, the conditional log-likelihood log p(Y |X,θ) is given by

log p(Y |X,θ) =
m∑
i=1

log p
(
y(i)|x(i); ŷ

(i)
θ ,
(
σ̂

(i)
θ

)2
)

(3.3)

m∑
i=1

log

(
1√

2πσ̂
(i)
θ

exp

{
−
∥∥y(i) − ŷ(i)

θ

∥∥2

2
(
σ̂

(i)
θ

)2

})
(3.4)

=− m

2
log (2π)−

m∑
i=1

log
(
σ̂

(i)
θ

)
+

1

2
(
σ̂

(i)
θ

)2

∥∥y(i) − ŷ(i)
θ

∥∥2
. (3.5)

The dependency on x has been omitted to simplify the notation. Maximizing the log-
likelihood in Eq. (3.5) w.r.t. θ is equivalent to minimizing the negative log-likelihood (NLL),
which leads to the following optimization criterion (with weight decay)

LG(θ) =
m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
+ log

(
(σ̂

(i)
θ )2

)
. (3.6)

Here, ŷθ and σ̂θ are estimated jointly by finding θ that minimizes Eq. (3.6). This can be
achieved using gradient descent in a standard training procedure. In this case, σ̂θ captures the
uncertainty that is inherent in the data (aleatoric uncertainty). To avoid numerical instability
due to potential division by zero, we directly estimate log σ̂2(x) and implement Eq. (3.6) in
similar practice to Kendall and Gal (2017).
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Figure 3.2: Biased estimation of aleatoric uncertainty σ2. The deep model overfits estimation
of y on the training set. On unseen test data, the MSE of predictive mean is
higher and σ2 is underestimated. Early stopping (e.g. at epoch 50) would result
in an unbiased estimator, but this would not be optimal in terms of test MSE.

3.2.2 Biased estimation of σ

Ignoring their dependence through θ, the solution to Eq. (3.6) decouples estimation of ŷ and
σ̂. In case of a Gaussian likelihood, minimizing Eq. (3.6) w.r.t. ŷ(i) yields

ŷ(i) = arg min
ŷ(i)

LG = y(i) ∀ i . (3.7)

Minimizing (3.6) w.r.t. (σ̂(i))2 yields(
σ̂(i)
)2

= arg min
(σ̂(i))2

LG = ‖y(i) − ŷ(i)‖2 ∀ i . (3.8)

That is, estimation of σ2 should perfectly reflect the squared error. However, in Eq. (3.8) σ2

is estimated relative to the estimated mean ŷ and, therefore, biased. In fact, the maximum
likelihood solution systematically underestimates σ2, which is a phenomenon of overfitting
the training set (Bishop 2006). The squared error ‖y − ŷ‖2 will be lower on the training
set and σ̂2 on new samples will be systematically too low (see Fig. 3.2). This is a problem
especially in deep learning, where large models have millions of parameters and tend to
overfit. To solve this issue, we introduce a simple learnable scalar parameter s to rescale the
biased estimation of σ2.
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3.2.3 σ Scaling for Aleatoric Uncertainty

We first derive σ scaling for aleatoric uncertainty. Using a Gaussian model, we scale the
standard deviation σ with a scalar value s to recalibrate the probability density function

p
(
y|x; ŷ(x), σ̂2(x)

)
= N

(
y; ŷ(x), (s · σ̂(x))2

)
. (3.9)

This results in the following minimization objective:

LG(s) = m log(s) + 1
2
s−2

m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
. (3.10)

Eq. (3.10) is optimized w.r.t. s with fixed θ using gradient descent in a separate calibration
phase after training to calibrate aleatoric uncertainty measured by σ̂2

θ. In case of a single
scalar, the solution to Eq. (3.10) can also be written in closed form as

s = ±

√√√√ 1

m

m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
. (3.11)

We apply σ scaling to jointly calibrate aleatoric and epistemic uncertainty in § 3.2.5.

3.2.4 Laplacian Model

Using Laplace(ŷ(x), σ̂(x)) as model, the conditional log-likelihood is given by

log p(Y |X,θ) =
m∑
i=1

log

(
1

2σ̂
(i)
θ

exp

{
−
∣∣y(i) − ŷ(i)

θ

∣∣
σ̂

(i)
θ

})
(3.12)

=−
m∑
i=1

log
(
2σ̂

(i)
θ

)
+ (σ̂

(i)
θ )−1

∣∣y(i) − ŷ(i)
θ

∣∣ , (3.13)

which results in the following minimization criterion:

LL(θ) =
m∑
i=1

1

σ̂
(i)
θ

∣∣y(i) − ŷ(i)
θ

∣∣+ log
(
σ̂

(i)
θ

)
. (3.14)

Using LL(θ) instead of LG(θ) results in applying an L1 metric on the predictive mean. In
some cases, this led to better results. However, we have not conducted extensive experiments
with it and leave it to future work.
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3.2.5 Well-Calibrated Estimation of Predictive Uncertainty

So far we have assumed a MAP point estimate for θ which does not consider uncertainty in
the parameters. To quantify both aleatoric and epistemic uncertainty, we extend fθ into a fully
Bayesian model under the variational inference framework with Monte Carlo dropout (Gal
and Ghahramani 2016b). In MC dropout, the model fθ̃ is trained with dropout (Srivastava
et al. 2014) and dropout is applied at test time by performing N stochastic forward passes
to sample from the approximate Bayesian posterior θ̃ ∼ q(θ). Following (Kendall and Gal
2017), we use MC integration to approximate the predictive variance

Σ̂2 =
1

N

N∑
n=1

(
ŷn −

1

N

N∑
n=1

ŷn

)2

︸ ︷︷ ︸
epistemic

+
1

N

N∑
n=1

σ̂2
n︸ ︷︷ ︸

aleatoric

(3.15)

and use Σ̂2 as a measure of predictive uncertainty. If the neural network has multiple outputs
(d > 1), the predictive variance is calculated per output and the mean across d forms the final
uncertainty value. Eq. (3.15) is an unbiased estimator of the approximate predictive variance
(see proof in Appendix 3.2.6). From Eq. (3.24) of our proof follows, that Σ̂2 is expected to
equal the true variance Σ = E[(ŷ − y)2]. Thus, we define perfect calibration of regression
uncertainty as

Ex,y
[
E[(ŷ − y)2]

∣∣ Σ̂2 = α2
]

= α2 ∀
{
α2 ∈ R |α2 ≥ 0

}
, (3.16)

which extends the definition of (Levi et al. 2019) to both aleatoric and epistemic uncertainty.
We expect that additionally accounting for epistemic uncertainty is particularly beneficial for
smaller data sets. However, even in deep learning with Bayesian principles, the approximate
posterior predictive distribution can overfit on small data sets. In practice, this leads to
underestimation of the predictive uncertainty.

One could regularize overfitting by early stopping that prevents large differences between
training and test loss, which would circumvent underestimation of σ2. However, our experi-
ments show that early stopping is not optimal with regard to accuracy, i.e. the squared error
of ŷ on both training and testing data (see Fig. 3.2). In contrast, the model with lowest mean
error on the validation set underestimates predictive uncertainty considerably. Therefore, we
apply σ scaling to recalibrate the predictive uncertainty Σ̂2. This allows a lower squared error
while reducing underestimation of uncertainty as shown experimentally in the following
section.

3.2.6 Unbiased Estimator of the Approximate Predictive Variance

We show that the expectation of the predictive sample variance from MC dropout, as given
in (Kendall and Gal 2017), equals the true variance of the approximate posterior predictive
distribution.
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Proposition 1. Given N MC dropout samples fθn = [ŷn, σ̂
2
n] from our approximate predic-

tive distribution p(y∗|x∗,D) = N (y∗;y,Σ2), the predictive sample variance

Σ̂2 =
1

N

N∑
n=1

(
ŷn −

1

N

N∑
n=1

ŷn

)2

+
1

N

N∑
n=1

σ̂2
n (3.17)

is an unbiased estimator of the approximate predictive variance.

Proof.

E
[
Σ̂2
]

= E

 1

N

N∑
n=1

(
ŷn −

1
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N∑
n=1

ŷn

)2
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σ̂2
n

 (3.18)

= E

 1
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ŷn −

1
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N∑
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ŷn

)2
+ E

[
1

N

N∑
n=1

σ̂2
n

]
(3.19)

with
1

N

N∑
n=1

ŷn = ȳ follows (3.20)

= E

[
1

N

N∑
n=1

(ŷn − ȳ)2

]
+ σ̂2 (3.21)

= E

[
1

N

N∑
n=1

(ŷn − ȳ)2 + ȳ2 − ȳ2 + y2 − y2 + 2ȳy − 2ȳy

]
+ σ̂2 (3.22)

= E

[
1

N

N∑
n=1

(ŷn − y)2 − (ȳ − y)2

]
+ σ̂2 (3.23)

= E
[
(ŷ − y)2]− E

[
(ȳ − y)2]+ σ̂2 (3.24)

= Σ2 − σ̂2 + σ̂2 (3.25)

E
[
Σ̂2
]

= Σ2 (3.26)

Note that the predicted heteroscedastic aleatoric uncertainty σ̂2 equals the bias E[(ȳ−y)2] in
Eq. (3.24) when the aleatoric uncertainty is perfectly calibrated, thus E[(ȳ − y)2] = σ̂2.

3.2.7 Expected Uncertainty Calibration Error for Regression

We extend the definition of the uncertainty calibration error for classification (cf. § 2.1) to
quantify miscalibration of uncertainty in regression

EΣ̂2

[∣∣(E[(ŷ − y)2]
∣∣ Σ̂2 = α2

)
− α2

∣∣] ∀
{
α2 ∈ R |α2 ≥ 0

}
, (3.27)
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using the second moment of the error. On finite data sets, this can be approximated with the
expected uncertainty calibration error (UCE) for regression. Following (Guo et al. 2017),
the uncertainty output Σ̂2 of a deep model is partitioned into K bins with equal width. A
weighted average of the difference between the variance and predictive uncertainty is used:

UCE :=
K∑
k=1

|Bk|
m

∣∣var(Bk)− uncert(Bk)
∣∣ , (3.28)

with number of inputs m and set of indices Bk of inputs, for which the uncertainty falls into
the bin k. The variance per bin is defined as

var(Bk) :=
1

|Bk|
∑
i∈Bm

1

N

N∑
n=1

(ŷi,n − yi)2 , (3.29)

with N stochastic forward passes, and the uncertainty per bin is defined as

uncert(Bk) :=
1

|Bk|
∑
i∈Bk

Σ̂2
i . (3.30)

Note that computing the second moment from Eq. (3.27) also incorporates MC samples,
which can introduce some bias in the evaluation. The UCE considers both aleatoric and
epistemic uncertainty and is given in % throughout this work. Additionally, we plot var(Bk)
vs. uncert(Bk) to create calibration diagrams.

3.3 Experiments

We use four data sets and three common deep network architectures to evaluate recalibration
with σ scaling. The data sets were selected to represent various regression tasks in medical
imaging with different dimension d of target value y ∈ Rd:

(1) Estimation of tumor cellularity in histology whole slides of cancerous breast tissue from
the BreastPathQ SPIE challenge data set (d = 1) (Martel et al. 2019). The public data set
consists of 2579 images, from which 1379/600/600 are used for training/validation/testing.
The ground truth label is a single scalar y ∈ [0, 1] denoting the ratio of tumor cells to
non-tumor cells.

(2) Hand CT age regression from the RSNA pediatric bone age data set (d = 1) (Halabi
et al. 2019). The task is to infer a person’s age in months from CT scans of the hand.
This data set is the largest used in this chapter and has 12,811 images, from which we use
6811/2000/4000 images for training/validation/testing.

(3) Surgical instrument tracking on endoscopic images from the EndoVis endoscopic
vision challenge 20151 data set (d = 2). This data set contains 8,984 video frames from 6

1endovissub-instrument.grand-challenge.org

https://endovissub-instrument.grand-challenge.org
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different robot-assisted laparoscopic interventions showing surgical instruments with ground
truth pixel coordinates of the instrument’s center point y ∈ R2. We use 4483/2248/2253
frames for training/validation/testing. As the public data set is only sparsely annotated, we
created our own ground truth labels, which can be found in our code repository.

(4) 6DoF needle pose estimation on optical coherence tomography (OCT) scans from our
own data set2. This data set contains 5,000 3D-OCT scans with the accompanying needle
pose y ∈ R6, from which we use 3300/850/850 for training/validation/testing. Additional
details on this data set can be found in Appendix 3.3.2.

All outputs are normalized such that y ∈ [0, 1]d. The employed network architectures are
ResNet-101, DenseNet-201 and EfficientNet-B4 (He, X. Zhang, et al. 2016; Huang et al.
2017; M. Tan and Le 2019), as they represent the state-of-the-art of deep models. The last
linear layer of all networks is replaced by two linear layers predicting ŷ and σ̂2 as described
in § 3.2.1. For MC dropout, we use dropout before the last linear layers. Dropout is further
added after each of the four layers of stacked residual blocks in ResNet. In DenseNet and
EfficientNet, we use the default configuration of dropout during training and testing. The
networks are trained until no further decrease in mean squared error (MSE) on the validation
set can be observed. More details on the training procedure can be found in § 3.3.1.

Calibration is performed after training in a separate calibration phase using the validation
data set. We plug the predictive uncertainty Σ̂2 into Eq. (3.10) (instead of σ̂2) and minimize
w.r.t. s. Additionally, we compare σ scaling to a more powerful auxiliary recalibration
modelR consisting of a two-layer fully-connected network with 16 hidden units and ReLU
activations (inspired by (Kuleshov et al. 2018), see § 3.1).

3.3.1 Training Procedure

The model implementations from PyTorch 1.3 (Paszke et al. 2019) are used and trained with
the following settings:

• training for 500 epochs with batch size of 16

• Adam optimizer with initial learn rate of 3 · 10−4 and weight decay with λ = 10−7

• reduce-on-plateau learn rate scheduler (patience of 20 epochs) with factor of 0.1

• in MC dropout, N = 25 forward passes were performed with dropout with p = 0.5
used for ResNet (as described in (Gal and Ghahramani 2016b)). In DenseNet (p = 0.2)
and EfficientNet (p = 0.4) standard dropout p of the architecture is used.

• Additional validation and test sets are used if provided by the data sets; otherwise, a
train/validation/test split of approx. 50% / 25% / 25% is used

• Source code for all experiments is available at github.com/mlaves/well-calibrated-
regression-uncertainty

2Our OCT pose estimation data set is publicly available at github.com/mlaves/3doct-pose-dataset

https://github.com/mlaves/well-calibrated-regression-uncertainty
https://github.com/mlaves/well-calibrated-regression-uncertainty
https://github.com/mlaves/3doct-pose-dataset


3.3 Experiments 67

0.000 0.011 0.022

expected uncertainty

0.000

0.011

0.022

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.49

B
re

as
tP

at
h

Q
/R

es
N

et
-1

01

uncalibrated

0.000 0.015 0.030

expected uncertainty

0.000

0.015

0.030

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.31

aux scaling

0.000 0.012 0.024

expected uncertainty

0.000

0.012

0.024

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.20

σ scaling

0.000 0.006 0.012

expected uncertainty

0.000

0.006

0.012

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.06

E
n

d
oV

is
/E

ffi
ci

en
tN

et
-B

4 uncalibrated

0.000 0.006 0.012

expected uncertainty

0.000

0.006

0.012

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.04

aux scaling

0.000 0.006 0.012

expected uncertainty

0.000

0.006

0.012

ob
se

rv
ed

u
n

ce
rt

ai
n

ty

UCE = 0.04

σ scaling

Figure 3.3: Calibration plots for ResNet-101 on BreastPathQ (top row) and EfficientNet-B4
on EndoVis (bottom row). Aux scaling tends to overfit the calibration set, which
results in higher UCE compared to simple σ scaling. Dashed lines denote perfect
calibration.

3.3.2 3D OCT Needle Pose Data Set

Our data set was created by attaching a surgical needle to a high-precision six-axis hexapod
robot (H-826, Physik Instrumente GmbH & Co. KG, Germany) and observing the needle
tip with 3D optical coherence tomography (OCS1300SS, Thorlabs Inc., USA). The data
set consists of 5,000 OCT acquisitions with (64× 64× 512) voxels, covering a volume of
approx. (3 × 3 × 3) mm3. Each acquisition is taken at a different robot configuration and
labeled with the corresponding 6DoF pose y ∈ R6. To process the volumetric data with
CNNs for planar images, we calculate 3 planar projections along the spatial dimensions using
the arg max operator, scale them to equal size and stack them together as three-channel
image (see Fig. 3.4). A similar approach was presented in (Laves, Schoob, et al. 2017) and
(Gessert et al. 2018). The data are characterized by a high amount of speckle noise, which is
a typical phenomenon in optical coherence tomography. The data set is publicly available at
github.com/mlaves/3doct-pose-dataset.

https://github.com/mlaves/3doct-pose-dataset
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Figure 3.4: Example image from OCT data set showing arg max projections of a surgical
needle tip acquired by optical coherence tomography.

3.4 Results

To quantify miscalibration, we use the proposed expected uncertainty calibration error for
regression (§ 3.2.7). We visualize (mis-)calibration in Fig. 3.1 and Fig. 3.3 using calibration
diagrams, which show expected uncertainty vs. observed uncertainty. The discrepancy to
the identity function reveals miscalibration. The calibration diagrams clearly show the
underestimation of uncertainty for the uncalibrated models. After calibration with both aux
and σ scaling, the estimated uncertainty better reflects the actual uncertainty. Figures for all
configurations are listed in Appendix A.2.1.

Table 3.1 reports UCE values of all data set/model combinations on the respective test
sets. The negative log-likelihood also measures miscalibration; the values on the test set
can be found in Tab. A.1 in the appendix. In general, recalibration considerably reduces
miscalibration. On the data sets BoneAge, EndoVis and OCT, both scaling methods perform
similarly well. However, on the BreastPathQ data set, σ scaling clearly outperforms aux
scaling in terms of UCE. BreastPathQ is the smallest data set and thus has the smallest
calibration set size. We hypothesize that the more powerful auxiliary modelR overfits the
calibration set (see BreastPathQ/DenseNet-201 in Tab. 3.1), which leads to an increase of
UCE on the test set. An ablation study on BreastPathQ for the auxiliary model can be found
in § 3.4.3.

We also compare our approach to Levi et al. (2019) in Tab. 3.1, which only considers
aleatoric uncertainty. The aleatoric uncertainty is well-calibrated if it reflects the bias
(E [ŷn]− y)2, which is given by the squared error between the expectation of the stochastic
predictions ŷn and the ground truth. Therefore, the UCE for aleatoric-only is computed
by UCE =

∑K
k=1

|Bk|
m

∣∣err(Bk)− uncert(Bk)
∣∣ , where err(·) is the mean squared error and

uncert(·) is the mean aleatoric uncertainty per bin. Consideration of epistemic uncertainty is
beneficial on smaller data sets (BreastPathQ), where our approach outperforms Levi et al.
(2019). On larger data sets, the benefit diminishes and both approaches are equally calibrated.
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Figure 3.5: (Left) Intra-training calibration of aleatoric uncertainty with σ scaling. The deep
model no longer underestimates σ̂2 on unseen test data. (Right) The MSE of
predictive mean is higher and σ2 is underestimated. Note: Calibration is only
applied at test time.

Additionally, we report UCE values from a DenseNet ensemble for comparison. In
contrast to what is reported by Lakshminarayanan et al. (2017), the deep ensemble tends to be
calibrated worse. Only on BoneAge, the ensemble is better calibrated prior to recalibration
of the other methods. After recalibration, both approaches outperform the deep ensemble.

Fig. 3.5 shows the result of intra-training calibration of aleatoric uncertainty. It indi-
cates that the gap between training and test loss is successfully closed. For the remaining
experiments, however, the calibration is performed after the training.

3.4.1 Posterior Prediction Intervals

In addition to the calibration diagrams, we compute prediction intervals from the uncalibrated
and calibrated posterior predictive distribution. Well-calibrated prediction intervals provide a
reliable measure of precision of the estimated target value. In Bayesian inference, prediction
intervals define an interval within which the true target value y∗ of a new, unobserved input
x∗ is expected to fall with a specific probability (Held and Sabanés Bové 2014; Heskes 1997).
This is also referred to as the credible interval of the posterior predictive distribution. For
γ ∈ (0, 1), a γ · 100 % prediction interval is defined through zl and zu such that∫ zu

zl

p(y∗ |x∗,D) dy∗ = γ , (3.31)

with posterior predictive distribution p(y∗ |x∗,D). We compute the 50 %, 90 %, 95 %, and
99 % prediction interval using the root of the predictive variance from Eq. (3.15); that is,
the ŷ ± zΣ̂ intervals with z ∈ {Φ(0.5),Φ(0.9),Φ(0.95),Φ(0.99)} (estimated interval), with
probit function Φ(p) =

√
2erf−1(p) and erf(p) is the Gaussian error function. This assumes
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Figure 3.6: Example result from EndoVis test set. The task is to predict pixel coordinates of
the forceps shaft center. Before calibration, the uncertainty is underestimated and
the true instrument position y does not fall into the prediction region ŷ± Σ̂. After
calibration with σ scaling, the uncertainty better reflects the predictive error.

Table 3.1: Uncertainty calibration error test set results for different datasets and model
architectures (averaged over 5 runs). High UCE values indicate miscalibration. In
addition, the resulting s for σ scaling is given. We also report UCE values for an
ensemble of DenseNets. Bold font indicates lowest values in each experiment.

Levi et al. ours

Data Set Model MSE none aux σ s none aux σ s ensemble

ResNet-101 6.4e-3 0.51 0.35 0.28 2.91 0.49 0.31 0.20 2.37
BreastPathQ DenseNet-201 7.0e-3 0.21 0.38 0.15 1.62 0.11 0.36 0.15 1.33 0.51

EfficientNet-B4 6.4e-3 0.49 0.65 0.10 2.30 0.46 0.47 0.17 1.77

ResNet-101 5.3e-3 0.28 0.07 0.06 1.46 0.28 0.02 0.06 1.40
BoneAge DenseNet-201 3.5e-3 0.31 0.05 0.05 2.98 0.31 0.05 0.05 2.54 0.09

EfficientNet-B4 3.5e-3 0.30 0.05 0.10 4.83 0.30 0.03 0.12 3.98

ResNet-101 4.0e-4 0.04 0.10 0.09 6.07 0.04 0.04 0.04 3.50
EndoVis DenseNet-201 1.1e-3 0.09 0.05 0.05 3.24 0.04 0.04 0.04 2.57 0.08

EfficientNet-B4 8.9e-4 0.06 0.05 0.06 2.25 0.06 0.04 0.04 1.79

ResNet-101 2.0e-3 0.17 0.02 0.02 2.74 0.17 0.01 0.02 2.14
OCT DenseNet-201 1.3e-3 0.08 0.01 0.02 1.60 0.04 0.03 0.02 1.26 0.67

EfficientNet-B4 1.4e-3 0.12 0.01 0.01 2.65 0.12 0.01 0.01 1.94
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that the posterior predictive distribution is Gaussian, which is not generally the case. To
assess the calibration of the posterior prediction interval, we compute the percentage of how
many of the ground truth values of the test set actually fall within the respective intervals
(observed interval). In Fig. 3.7, selected plots of observed vs. estimated prediction intervals
are shown. A complete list of prediction intervals can be found in Appendix A.2.2.

In general, the uncalibrated prediction intervals are estimated to be too narrow, which is a
direct consequence of the underestimated predictive variance. For example, the uncalibrated
90 % interval on DenseNet-201/BoneAge actually only contains approx. 50 % of the ground
truth values. On this data set, the prediction intervals are considerably improved after
recalibration (Fig. 3.7 left). If a network is already well-calibrated, recalibration can lead
to overestimation of the lower prediction intervals (Fig. 3.7 right). However, in all cases,
the 99 % prediction interval contains approx. 99 % of the ground truth test set values after
recalibration. This is not the case without the proposed calibration methods. Fig. 3.6 shows a
practical example of the ŷ ± Σ̂ prediction region from the EndoVis test set. Even though
the posterior predictive distribution is not necessarily Gaussian, the calibrated results fit the
prediction intervals well. This is especially the case for BoneAge, which is the largest data
set used in this chapter.

3.4.2 Detection of Out-of-Distribution Data and Unreliable Predictions

Deep neural networks only yield reliable predictions for data which follow the same distri-
bution as the training data. A shift in distribution could occur when a model trained on CT
data from a specific CT device is applied to data from another manufacturer’s CT device, for
example. This could potentially lead to wrong predictions with low uncertainty, which we
tackle with recalibration. To create a moderate distribution shift, we preprocess images from
the BoneAge data set using Contrast Limited Adapative Histogram Equalization (CLAHE)
(Pizer et al. 1987) with a clip-limit of 0.03 and report histograms of the uncertainties (see
Fig. 3.8). Additionally, a severe distribution shift is created by presenting images from the
BreastPathQ data set to the models trained on BoneAge. Lakshminarayanan et al. (2017) state
that deep ensembles provide better-calibrated uncertainty than Bayesian neural networks with
MC dropout variational inference. Therefore, we train an ensemble of 5 randomly initialized
DenseNet-201 and compare Bayesian uncertainty with σ scaling to ensemble uncertainty
under distribution shift. The results with σ scaling are comparable to those from a deep
ensemble for a moderate shift, but without the need to train multiple models on the same
data set. A severe shift leads to only slightly increased uncertainties from the calibrated MC
dropout model, while the deep ensemble is more sensitive.

Additionally, we apply the well-calibrated models to detect and reject uncertain predic-
tions, as crucial decisions in medical practice should only be made on the basis of reliable
predictions. An uncertainty threshold Σ2

max is defined and all predictions from the test set are
rejected where Σ̂2 > Σ2

max (see Fig. 3.9). From this, a decrease in overall MSE is expected.
We additionally compare rejection on the basis of σ scaled uncertainty to uncertainty from
the aforementioned ensemble. In case of σ scaling, the test set MSE decreases monotonically
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as a function of the uncertainty threshold, whereas the ensemble initially shows an increasing
MSE (see Fig.3.9).

3.4.3 Ablation Study on Auxiliary Model Scaling

We investigate the overfitting behavior of aux scaling by reducing the number of hidden
layer units h of the two-layer auxiliary model with ReLU activations. Aux scaling is
more powerful than σ scaling, which can lead to overfitting the calibration set. Fig. 3.10
shows calibration diagrams for the auxiliary model ablations. Reducing h leads to a minor
calibration improvement, but at h = 2, the model outputs a constant uncertainty, which
is close to the overall mean of the observed uncertainty. A single-layer single-unit model
without bias would be equivalent to σ scaling.

3.5 Chapter Conclusion

In this chapter, well-calibrated predictive uncertainty in medical imaging obtained by varia-
tional inference with deep Bayesian models is discussed. Both aux and σ scaling calibration
methods considerably reduce miscalibration of predictive uncertainty in terms of UCE. If the
deep model is already well-calibrated, σ scaling does not negatively affect the calibration,
which results in s→ 1. More complex calibration methods such as aux scaling have to be
used with caution, as they can overfit the data set used for calibration. If the calibration set
is sufficiently large, they can outperform simple scaling. However, models trained on large
data sets are generally better calibrated and the benefit diminishes. Compared to the work of
Levi et al. (2019), accounting for epistemic uncertainty is particularly beneficial for smaller
data sets, which is helpful in medical practice where access to large labeled data sets is less
common and is associated with great costs.

Posterior prediction intervals provide another insight into the calibration of deep models.
After recalibration, the 99 % posterior prediction intervals correctly contain approx. 99 % of
the ground truth test set values. In some cases, lower prediction intervals are estimated to be
too wide after calibration. This is especially the case for smaller data sets and we conjecture
that small calibration sets may not contain enough i.i.d. data for calibrating lower prediction
intervals and that the assumption of a Gaussian predictive distribution is too strong in this
case. On the smallest data set BreastPathQ, aux scaling seems to perform better in terms of
prediction intervals, but not in terms of UCE.

Well-calibrated uncertainties from MC dropout are able to detect a moderate shift in
the data distribution. However, deep ensembles perform better under a severe distribution
shift. BNNs with calibrated uncertainty by σ scaling outperform ensemble uncertainty in
the rejection task, which we attribute to the generally poorer calibration of ensembles on
in-distribution data.
σ scaling is simple to implement, does not change the predictive mean ŷ, and therefore

guarantees to conserve the model’s accuracy. It is preferable to regularization (e.g., early
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Figure 3.7: Observed vs. estimated posterior prediction intervals on the test sets. (Left &
center) The uncalibrated prediction interval is too narrow due to underestimation
of uncertainty. (Right) Calibration can lead to overestimation of predictive
intervals, if the network is already well-calibrated. Dashed lines denote 1:1
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Figure 3.10: Calibration diagrams for aux scaling with different number of hidden layer units
h on BreastPathQ/DenseNet-201.

stopping) or more complex recalibration methods in calibrated uncertainty estimation with
Bayesian deep learning. The disconnection between training and test NLL can successfully
be closed, which creates highly accurate models with reliable uncertainty estimates. How-
ever, there are many factors (e.g., network capacity, weight decay, dropout configuration)
influencing the uncertainty that have not been discussed here and will be addressed in future
work.
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4 Generative Models in Medical Imaging

The first part of this chapter was partly published at the peer-reviewed “Uncertainty for
Safe Utilization of Machine Learning in Medical Imaging” (UNSURE) 2020 workshop at
MICCAI and presented as long oral; it was also selected as best paper (Laves, Tölle, et al.
2020). In § 4.2, a non Bayesian approach to deformable registration with deep image prior
is presented, which was published as a poster at the peer-reviewed “Medical Imaging with
Deep Learning” (MIDL) 2019 conference (Laves, Ihler, and Ortmaier 2019). Subsequently,
a submission that emerged from and extends the contents of this chapter was accepted
as long oral (best 7.2 % of all submissions) at the peer-reviewed MIDL 2021 conference
and invited to be published in the international journal “Medical Image Analysis” (Tölle1

et al. 2021). The source code for all experiments in this chapter is publicly available at:
github.com/mlaves/uncertainty-deep-image-prior

4.1 Medical Image Denoising with Bayesian Deep Image Prior

Noise in medical imaging affects all modalities, including X-ray, magnetic resonance imaging
(MRI), computed tomography (CT), ultrasound (US) or optical coherence tomography (OCT)
and can obstruct important details for medical diagnosis (Agostinelli et al. 2013; Gondara
2016; Laves, Ihler, Kahrs, et al. 2019b). Besides “classical” approaches with linear and
non-linear filters, such as the Wiener or wavelet filter (Chang et al. 2000; Rabbani et al.
2009), convolutional neural networks have proven to yield superior performance in denoising
of natural and medical images (Laves, Ihler, Kahrs, et al. 2019b; K. Zhang et al. 2017).

Image denoising involves solving an inverse problem. However, uncertainty quantification
in inverse medical imaging tasks with deep learning has received little attention. Deep models
trained on large data sets tend to hallucinate and create artifacts in the reconstructed output
that are not anatomically present. We use a randomly initialized convolutional network
as parameterization of the reconstructed image and perform gradient descent to match the
observation, which is known as deep image prior. In this case, the reconstruction does not
suffer from hallucinations as no prior training is performed. In this chapter, we extend this
to a Bayesian approach with Monte Carlo dropout to quantify both aleatoric and epistemic
uncertainty. The presented method is evaluated on the task of denoising different medical
imaging modalities. The experimental results show that our approach yields well-calibrated
uncertainty. That is, the predictive uncertainty correlates with the predictive error. This
allows for reliable uncertainty estimates and can tackle the problem of hallucinations and
artifacts in inverse medical imaging tasks.

1Shared first authorship

https://github.com/mlaves/uncertainty-deep-image-prior
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4.1.1 Introduction

The task of denoising is an inverse image problem and aims at reconstructing a clean image
x̂ from a noisy observation x̃ = c ◦ x. A common assumption of the noise model c of the
image x̃ is additive white Gaussian noise with zero mean and standard deviation σ (Salinas
and Fernandez 2007; K. Zhang et al. 2017). Given a noisy image x̃, the denoising can be
expressed as optimization problem of the form

x̂ = arg min
x̂

{
L(x̃, x̂) + λR(x̂)

}
. (4.1)

The reconstruction x̂ should be close to x̃ by means of a similarity metric L, but with
substantially less noise. The regularizer R expresses a prior on the reconstructed images,
which leads to x̂ having less noise than x̃. One usually imposes a smoothness constraint
by penalizing first or higher order spatial derivatives of the image (Sotiras et al. 2013).
More recently, denoising autoencoders have successfully been used to implicitly learn a
regularization prior from a data set with corrupted and uncorrupted data samples (Jain and
Seung 2009). Autoencoders are usually composed of an encoding and decoding part with a
data bottleneck in between. The encoder extracts important visual features from the noisy
input image and the decoder reconstructs the input from the extracted features using learned
image statistics.

This, however, creates the root problem of medical image denoising with deep learning
that is addressed in this paper. The reconstruction is in accordance with the expectation of the
denoising autoencoder based on previously learned information. At worst, the reconstruction
can contain false image features, that look like valid features, but are not actually present in
the input image. Due to the excellent denoising performance of autoencoders, those false
features can be indistinguishable from valid features to a layperson and are embedded in an
otherwise visually appealing image. This phenomenon is known as hallucination and, while
acceptable in the reconstruction of natural images (N. Wang et al. 2014), must be avoided at
all costs in medical imaging (see Fig. 4.1). Hallucinations can lead to false diagnoses and
thus severely compromise patient safety.

To further increase the reliability in the denoised medical images, the reconstruction
uncertainty has to be considered. Bayesian autoencoders provide the mathematical framework
to quantify a per-pixel reconstruction uncertainty (Bishop 2006; Z. Cheng et al. 2019; D.
Kingma and Welling 2014). This allows the detection of hallucinations and other artifacts,
given that the uncertainty is well-calibrated; i. e. the uncertainty corresponds well with the
reconstruction error (Laves, Ihler, Fast, et al. 2020).

In this work, we employ deep image prior (Lempitsky et al. 2018) to cope with hallucina-
tions in medical image denoising and provide a Bayesian approach with Monte Carlo (MC)
dropout (Gal and Ghahramani 2016b) that yields well-calibrated reconstruction uncertainty.
We present experimental results on denoising images from low-dose X-ray, ultrasound and
OCT. Compared to previous work, our approach leads to better uncertainty estimates and is
less prone to overfitting of the noisy image.
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ground truth reconstruction

Figure 4.1: Hallucinations in reconstructed retinal OCT scan from supervisely trained CNN.
(Left) Ground truth OCT scan. (Right) The white arrow denotes a hallucinated
retinal layer that is anatomically incorrect. Hallucinations are the result of
reconstructing an unseen noisy input using previously learned image statistics.

4.1.2 Related Work

Image priors Besides manually crafted priors such as 3D collaborative filtering (Dabov et
al. 2007), convolutional denoising autoencoders have been used to implicitly learn an image
prior from data (Gondara 2016; Jain and Seung 2009). Lempitsky et al. have recently shown
that the excellent performance of deep networks for inverse image tasks, such as denoising,
is based not only on their ability to learn image priors from data, but also on the structure of
a convolutional image generator itself (Lempitsky et al. 2018). An image generator network
x̂ = fθ(z) with randomly-initialized parameters θ is interpreted as parameterization of the
image. The parameters θ of the network are found by minimizing the pixel-wise squared
error ‖x̃ − fθ(z)‖ with stochastic gradient descent (SGD). The input z is sampled from
a uniform distribution with additional perturbations by normally distributed noise in every
iteration. This is referred to as deep image prior (DIP). They provided empirical evidence that
the structure of a CNN alone is sufficient to capture enough image statistics to provide state-
of-the-art performance in inverse imaging tasks. During the process of SGD, low-frequency
image features are reconstructed first, followed by higher frequencies, which makes human
supervision necessary to retrieve the optimal denoised image. Therefore, this approach
heavily relies on early stopping in order to not overfit the noise. However, a key advantage of
deep image prior is the absence of hallucinations, since there is no prior learning. A Bayesian
approach could alleviate overfitting and additionally provide reconstruction uncertainty.

Bayesian deep learning Bayesian neural networks allow estimation of predictive
uncertainty (Bishop 2006) and we generally differentiate between aleatoric and epistemic
uncertainty (Kendall and Gal 2017). Aleatoric uncertainty results from noise in the data
(e. g. speckle noise in US or OCT). It is derived from the conditional log-likelihood under
the maximum likelihood estimation (MLE) or maximum posterior (MAP) framework and
can be captured directly by a deep network (i. e. by subdividing the last layer of an image
generator network). Epistemic uncertainty is caused by uncertainty in the model parameters.
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In deep learning, we usually perform MLE or MAP inference to find a single best estimate θ̂
for the network parameters. This does not allow estimation of epistemic uncertainty and we
therefore place distributions over the parameters. In Bayesian inference, we want to consider
all possible parameter configurations, weighted by their posterior. Computing the posterior
predictive distribution involves marginalization of the parameters θ, which is intractable.
A common approximation of the posterior distribution is variational inference with Monte
Carlo dropout (Gal and Ghahramani 2016b). It allows estimation of epistemic uncertainty by
Monte Carlo sampling from the posterior of a network, that has been trained with dropout.

Bayesian deep image prior Cheng et al. recently provided a Bayesian perspective on
the deep image prior in the context of natural images, which is most related to our work
(Z. Cheng et al. 2019). They interpret the convolutional network as spatial random process
over the image coordinate space and use stochastic gradient Langevin dynamics (SGLD) as
Bayesian approximation (Welling and Teh 2011) to sample from the posterior. In SGLD, an
MC sampler is derived from SGD by injecting Gaussian noise into the gradients after each
backward pass. The authors claim to have solved the overfitting issue with DIP and to be
able to provide uncertainty estimates. In the following, we will show that this is not the case
for medical image denoising, even when using the code provided by the authors. Further,
the uncertainty estimates from SGLD do not reflect the predictive error with respect to the
noise-free ground truth image.

4.1.3 Methods

Aleatoric Uncertainty with Deep Image Prior

We first revisit the concept of deep image prior for denoising and subsequently extend it
to a Bayesian approach with Monte Carlo dropout to estimate both aleatoric and epistemic
uncertainty. Let x̃ be a noisy image, x the true but generally unknown noise-free image and
fθ an image generator network with parameter set θ, that outputs the denoised image x̂. In
deep image prior, the optimal parameter point estimate θ̂ is found by maximum likelihood
estimation with gradient descent, which results in minimizing the squared error

θ̂ = arg min ‖x̃− fθ(z)‖2 (4.2)

between the generated image fθ and the noisy image x̃. The input z ∼ U(0, 0.1I) of
the neural network has the same spatial dimensions as x̃ and is sampled from a uniform
distribution. To ensure that x̂ has less noise, carefully chosen early stopping must be applied
(see § 4.1.5).

To quantify aleatoric uncertainty, we assume that the image signal x̃ is sampled from a
spatial random process and that each pixel i follows a Gaussian distribution N (x̃i; x̂i, σ̂

2
i )

with mean x̂i and variance σ̂2
i . We split the last layer such that the network outputs these



4.1 Medical Image Denoising with Bayesian Deep Image Prior 79

values for each pixel
fθ =

[
x̂, σ̂2

]
. (4.3)

Now, MLE is performed by minimizing the full negative log-likelihood, which leads to the
following optimization criterion (Kendall and Gal 2017; Laves, Ihler, Fast, et al. 2020)

L(θ) =
1

N

N∑
i=1

σ̂−2
i

∥∥x̃i − x̂i∥∥2
+ log σ̂2

i , (4.4)

where N is the number of pixels per image. Here, σ̂2 captures the pixel-wise aleatoric
uncertainty and is jointly estimated with x̂ by finding θ that minimizes Eq. (4.4) with SGD.
For numerical stability, Eq. (4.4) is implemented such that the network directly outputs
− log σ̂2.

Epistemic Uncertainty with Bayesian Deep Image Prior

Next, we move towards a Bayesian view to additionally quantify the epistemic uncertainty.
The image generator fθ is extended into a Bayesian neural network under the variational
inference framework with MC dropout (Gal and Ghahramani 2016b). A prior distribution
p(θ) ∼ N (0, λ−1I) is placed over the parameters and the network fθ̃ is trained with dropout
by minimizing Eq. (4.4) with added weight decay. For inference, T stochastic forward passes
with applied dropout are performed to sample from the approximate Bayesian posterior
θ̃ ∼ q(θ). This allows us to approximate the posterior predictive distribution

p(x̂|x̃) =

∫
p(x̂|θ, x̃)p(θ|x̃) dθ , (4.5)

which is wider than the distribution from MLE or MAP, as it accounts for uncertainty in θ.
We use Monte Carlo integration to estimate the predictive mean

x̂ =
1

T

T∑
t=1

x̂t (4.6)

and predictive variance (Kendall and Gal 2017; Laves, Ihler, Fast, et al. 2020)

σ̂2 =
1

T

T∑
t=1

(
x̂t −

1

T

T∑
t=1

x̂t

)2

︸ ︷︷ ︸
epistemic

+
1

T

T∑
t=1

σ̂2
t︸ ︷︷ ︸

aleatoric

(4.7)

with fθ̃t = [x̂t, σ̂
2
t ]. In this work, we use T = 25 MC samples with dropout probability of

p = 0.3. The resulting x̂ is used as estimation of the noise-free image and σ̂2 is used as
uncertainty map. We use the mean over the pixel coordinates as scalar uncertainty value U .
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xOCT x̃OCT xUS x̃US xxray x̃xray

Figure 4.2: Images used to evaluate the denoising performance. The task is to reconstruct
a noise-free image from x̃ without having access to x. OCT and US images
are characterized by speckle noise which can be simulated by additive Gaussian
noise. Low-dose X-ray shows uneven photon density that can be simulated by
Poisson noise.

Calibration of Uncertainty

Following recent literature, we define predictive uncertainty to be well-calibrated if it corre-
lates linearly with the predictive error (Guo et al. 2017; Laves, Ihler, Fast, et al. 2020; Levi
et al. 2019). More formally, miscalibration is quantified with

Eσ̂2

[∣∣(‖x̃− x̂‖2
∣∣ σ̂2 = σ2

)
− σ2

∣∣] ∀
{
σ2 ∈ R |σ2 ≥ 0

}
. (4.8)

That is, if all pixels in a batch were estimated with uncertainty of 0.2, we expect the predictive
error (MSE) to also equal 0.2. To approximate Eq. (4.8) on an image with finite pixels, we
use the uncertainty calibration error (UCE) metric presented in (Laves, Ihler, Fast, et al.
2020), which involves binning the uncertainty values and computing a weighted average of
absolute differences between MSE and uncertainty per bin.

4.1.4 Experiments

We refer to the presented Bayesian approach to deep image prior with Monte Carlo dropout
as MCDIP and evaluate its denoising performance and the calibration of uncertainty on three
different medical imaging modalities (see Fig. 4.2). The first test image xOCT shows an OCT
scan of a retina affected by choroidal neovascularization. Next, xUS shows an ultrasound of
a fetal head for gestational age estimation. The third test image xxray shows a chest x-ray for
pneumonia assessment. All test images are arbitrarily sampled from public data sets (Heuvel
et al. 2018; Kermany et al. 2018) and have a resolution of 512× 512 pixel.

Images from optical coherence tomography and ultrasound are prone to speckle noise
due to interference phenomena (Michailovich and Tannenbaum 2006). Speckle noise can
obscure small anatomical details and reduce image contrast. It is worth mentioning that
speckle patterns also contain information about the microstructure of the tissue. However,
this information is not perceptible to a human observer, therefore, the denoising of such
images is desirable. Noise in low-dose X-ray originates from an uneven photon density and
can be modeled with Poisson noise (S. Lee et al. 2018; Žabić et al. 2013). In this work, we
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approximate the Poisson noise with Gaussian noise since Poisson(λ) approaches a Normal
distribution as λ→∞ (see § 4.1.4). We first create a low-noise image x by smoothing and
downsampling the original image from public data sets using the ANTIALIAS filter from
the Python Imaging Library (PIL) to 256× 256 pixel. Downsampling involves averaging
over highly correlated neighboring pixels affected by uncorrelated noise. This decreases the
observation noise by sacrificing image resolution (see next subsection). The downsampled
image acts as ground truth to which we compute the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) of the denoised image x̂. Further, we compute the UCE
and provide calibration diagrams (MSE vs. uncertainty) to show the (mis-)calibration of the
uncertainty estimates.

We compare the results from MCDIP to standard DIP and to DIP with SGLD from Cheng
et al. (Z. Cheng et al. 2019). SGLD posterior inference is performed by averaging over T
posterior samples x̂ = 1

T

∑T
t=1 x̂t after a Monte Carlo burn-in phase. The posterior variance

is used as an estimator of the epistemic uncertainty 1
T

∑T
t=1 (x̂− x̂t)2. Cheng et al. claim

that their approach does not require early stopping and yields better denoising performance.
Additionally, we train the SGLD approach with the loss function from Eq. (4.7) to consider
aleatoric uncertainty and denote this with SGLD+NLL. We implement SGLD using the
Adam optimizer, which works better in practice and is more related to preconditioned SGLD
(Li et al. 2016).

Downsampling

Here, we provide justification why downsampling of an image by averaging neighboring
pixels reduces the noise level and can be used as an approximation to a ground truth noise-free
image (by sacrificing image resolution).

Proposition 2. Downsampling of an image reduces the observation noise.

Proof. LetX = µx+εx and Y = µy+εy be two neighboring pixels affected by additive i.i.d.
noise εx, εy ∼ N (0, σ2). The pixels are assumed to be uncorrelated to noise. Pixels in a local
neighborhood are highly correlated and assumed to be of high similarity µx ≈ µy = µ. Let
Z = 1

2
(X + Y ) be the average of two neighboring pixels (i.e. the result of downsampling).

The expectation is given by

E[Z] =
1

2
(E[X] + E[Y ]) (4.9)

=
1

2
2E[X] (4.10)

= µ (4.11)
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and the variance is given by

Var [Z] = Var

[
1

2
(X + Y )

]
(4.12)

=
1

22
(Var [X] + Var [Y ]) (4.13)

=
1

22
2Var [X] (4.14)

=
1

2
σ2 . (4.15)

Thus, if the similarity of neighboring pixels is sufficiently high, downsampling reduces the
variance of average pixel Z by a factor of 2.

Naturally, two neighboring pixels are not exactly equal. However, downsampling can also
be viewed as superposing two signals, each with a highly correlated and an uncorrelated
part. Without providing proof, the amplitude of the addition of two signals can be viewed
as vector addition. In the uncorrelated case, the two signals are perpendicular to each other
and in the correlated case, the angle between the two signals is acute. Thus, the correlated
parts of the two signals have a higher impact on the resulting addition than the uncorrelated
(noise) parts. In the ideal case, where the noise is uncorrelated and the signals are in parallel,
the same noise reduction as above follows.

Link Between Poisson Distribution and Normal Distribution

We approximate the Poisson noise to simulate a low-dose X-ray image with a Normal
distribution. It is well-known that the limiting distribution of Poisson(λ) is Normal as
λ→∞ (Hogg et al. 2018). For completeness, we list a common proof using the moment
generating function of a standardized Poisson random variable:

Theorem 2. The Poisson(λ) distribution can be approximated with a Normal distribution as
λ→∞.

Proof. Let Xλ ∼ Poisson(λ), λ ∈ {1, 2, . . .}. The probability mass function of Xλ is given
by

fXλ(x) =
λxe−λ

x!
x ∈ {0, 1, 2, . . .} . (4.16)

The moment generating function is given by (Hogg et al. 2018)

MXλ(t) = E[etXλ ] = eλ(et−1) . (4.17)

The standardized Poisson random variable

Z =
Xλ − λ√

λ
(4.18)
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has the limiting moment generating function

lim
λ→∞

MZ(t) = lim
λ→∞

E
[
exp

(
t · Xλ − λ√

λ

)]
(4.19)

= lim
λ→∞

exp
(
−t
√
λ
)
E
[
exp

(
tXλ√
λ

)]
(4.20)

= lim
λ→∞

exp
(
−t
√
λ
)

exp
(
λ
(
et/
√
λ − 1

))
(4.21)

= lim
λ→∞

exp
(
−t
√
λ+ λ

(
tλ−1/2 + t2λ−1/2 + t3λ−3/2/6 + . . .

))
(4.22)

= lim
λ→∞

exp
(
t2/2 + t3λ−1/2/6 + . . .

)
(4.23)

= exp
(
t2/2

)
(4.24)

which is the moment generating function of a standard normal random variable.

4.1.5 Results

The results are presented threefold: We show (1) possible overfitting in Fig. 4.3 by plotting the
PSNR between the reconstruction x̂ and the ground truth image x; (2) denoising performance
by providing the denoised images in Fig. 4.4 and PSNR in Tab. 4.1 after convergence (i. e.
after 50k optimizer steps); and (3) goodness of uncertainty in Fig. 4.5 by providing calibration
diagrams and uncertainty maps.

Our experiments confirm what is already known: The non-Bayesian DIP quickly overfits
the noisy image. The narrow peaks in PSNR values during optimization show that manually
performed early stopping is essential to obtain a reconstructed image with less noise (see
Fig. 4.3). The PSNR between x̂ and the ground truth x approaches the value of the PSNR be-
tween the noisy image x̃ and the ground truth, thus reconstructing the noise as well. However,
the SGLD approach shows almost identical overfitting behavior in our experiments. This is
in contrast to what is stated by Chen et al., even when using the original implementation of
SGLD provided by the authors (Z. Cheng et al. 2019). SGLD+NLL additionally considers
aleatoric uncertainty and converges to a higher PSNR level. This indicates that SGLD+NLL
does not overfit the noisy image completely. MCDIP on the other hand does not show a
sharp peak in Fig. 4.3 and safely converges to its highest PSNR value. This requires no
manual early stopping to obtain a denoised image. The reconstructed X-ray images after
convergence in Fig. 4.4 underline this: MCDIP does not reconstruct the noise. The PSNR
values in Tab. 4.1 confirm these observations. Although it was not the intention of this work
to reach highest-possible PSNR values, MCDIP even outperforms the other methods with
early-stopping applied (see Tab 4.2).

The calibration diagrams and corresponding UCE in Fig. 4.5 suggest that SGLD+NLL
is better calibrated than MCDIP. However, due to overfitting the noisy image without early
stopping, the MSE from SGLD+NLL concentrates around 0.0, which results in low UCE
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Figure 4.3: Peak signal-to-noise ratio between denoised image x̂ and ground truth x vs.
number of optimizer iterations. DIP and SGLD(+NLL) quickly overfit the noisy
image. MCDIP converges to its highest PSNR value and does not overfit x̃. The
plots show means from 3 runs with different random initialization.

ground truth DIP SGLD SGLD+NLL MCDIP

Figure 4.4: Denoised X-ray images after convergence. Only MCDIP does not show overfitted
noise. Additional reconstructions can be found in Appendix A.3.1.

values. On the US and OCT image, the uncertainty from SGLD+NLL collapses to a single
bin in the calibration diagram and does not allow to reason about the validness of the
reconstructed image (see Fig. 4.5). The uncertainty map from MCDIP shows high uncertainty
at edges in the image and the mean uncertainty value (denoted by U) is close to the noise
level in all three test images.

SGLD With Step Size Decay

Additionally, we implement SGLD with step size decay as described by Welling and Teh
(2011). The step size ε is used to scale the parameter update in the SGD step (i.e. the learning
rate) and defines the variance of the noise injected into the gradients. Here, we reduce the step
size at each step t exponentially with εt = 0.999tε0. To satisfy the step size property (Eq. (2)
in (Welling and Teh 2011)), we fix the step size once it decreases below 1e-8. We observe no
overfitting of the noisy image with step size decay (see Fig. 4.6). However, the quality of
the resulting denoised image is very sensitive to the decay scheme. A decrease that is too
low (i.e. εt = 0.9999tε0) results in overfitting; a decrease that is too high (i.e. εt = 0.99tε0)
results in convergence to a subpar reconstruction. This is equivalent to carefully applied early
stopping and therefore nullifies the advantage of SGLD for denoising of medical images.
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Figure 4.5: Calibration diagrams and uncertainty maps for SGLD+NLL after early stopping
and MCDIP after convergence (best viewed with digital zoom). (Left) The
calibration diagrams show MSE vs. uncertainty and provide mean uncertainty
(U) and UCE values. (Right) Uncertainty maps show per-pixel uncertainty.
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Table 4.1: PSNR values after convergence (at least 50k iterations). Note that our goal was
not to reach highest possible PSNR, but to show overfitting in convergence.

PSNR DIP SGLD SGLD+NLL MCDIP (ours)

OCT 23.64± 0.19 23.58± 0.12 24.82± 0.12 29.88± 0.03
US 23.55± 0.11 23.81± 0.15 24.55± 0.08 29.67± 0.07

X-ray 23.28± 0.08 23.50± 0.12 24.60± 0.04 31.19± 0.10

Table 4.2: PSNR with early-stopping.

PSNR DIP SGLD SGLD+NLL MCDIP (ours)

OCT 29.88± 0.02 29.89± 0.05 29.77± 0.07 29.92± 0.03
US 29.74± 0.05 29.78± 0.02 29.54± 0.03 29.70± 0.07

X-ray 30.91± 0.05 30.98± 0.09 30.74± 0.03 31.22± 0.1

4.1.6 Conclusion

In this paper, we provided a new Bayesian approach to the deep image prior. We used
variational inference with Monte Carlo dropout and the full negative log-likelihood to both
quantify epistemic and aleatoric uncertainty. The presented approach is applied to medical
image denoising of three different modalities and provides state-of-the-art performance in
denoising with deep image prior. Hallucinations in denoising are made impossible compared
to other deep learning methods, as the neural network only has access to one single image at
all time. Our Bayesian treatment does not need carefully applied early stopping and yields
well-calibrated uncertainty. We observe the estimated mean uncertainty value to be close to
the noise level of the images.

The question remains why Bayesian deep image prior with SGLD does not work as well
as expected and is outperformed by MC dropout. First, SGLD as described by Welling et
al. requires a strong decay of the step size to ensure convergence to a mode of the posterior
(Welling and Teh 2011). Cheng et al. did not implement this and we followed their approach
(Z. Cheng et al. 2019). After implementing the described step size decay, SGLD did not
overfit the noisy image (see § 4.1.5). However, this requires a carefully chosen step size
decay which is equivalent to early stopping.

The deep image prior framework is especially interesting in medical imaging as it does not
require supervised training and thus does not suffer from hallucinations and other artifacts.
The presented approach can further be applied to deformable registration or other inverse
image tasks in the medical domain.
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4.2 Deformable Medical Image Registration Using a
Randomly-Initialized CNN as Regularization Prior

In this section, we present deformable unsupervised medical image registration using a
randomly-initialized deep convolutional neural network (CNN) as regularization prior. Con-
ventional registration methods predict a transformation by minimizing dissimilarities between
an image pair. The minimization is usually regularized with manually engineered priors,
which limits the potential of the registration. By learning transformation priors from a large
dataset, CNNs have achieved great success in deformable registration. However, learned
methods are restricted to domain-specific data and the required amounts of medical data are
difficult to obtain. Our approach uses the idea of deep image priors to combine convolutional
networks with conventional registration methods based on manually engineered priors. The
proposed method is applied to brain MRI scans. We show that our approach registers image
pairs with state-of-the-art accuracy by providing dense, pixel-wise correspondence maps. It
does not rely on prior training and is therefore not limited to a specific image domain.

4.2.1 Introduction

Deformable registration is a major challenge in medical image processing. The result is a
dense mapping showing pixel-wise non-linear correspondences between a pair of images
that best aligns the input image I onto the target image T by means of some similarity
definition L. Deformable registration is applied in the analysis of patient-specific temporal or
anatomical changes, e.g., from pre-operative to post-operative state, or to show inter-patient
variances (Sotiras et al. 2013). Deformable registration is also performed in atlas-based
segmentation, where an input image is matched onto a target image with known segmentation
(Cabezas et al. 2011).

Existing registration methods can be separated into two categories. The first category is
based on non-learning methods which estimate a registrationw by optimizing a cost function
of the form

arg min
w

{
L(T ,w ◦ I) + λR(w)

}
, (4.25)

where w ◦ I denotes I warped by w. As registration is an inverse problem, Eq. (4.25) is
closely related to Eq. (4.1) from the previous section. A common assumption of w is a
displacement or velocity vector field u(x). The final deformation results inφ(x) = x+u(x)
which maps every pixel coordinate x to other pixel coordinates. The first term in (4.25)
is referred to as data term, which is typically chosen to be a pixel intensity error measure.
Optimization of the data term alone is considered ill-posed. The second termR, weighted by
trade-off factor λ, is a regularizer that shapes the registration by any chosen prior, which helps
solving the ill-posed problem. Common regularization is done by enforcing smoothness
onto the displacement vector field by penalizing first or higher order spatial derivatives of u
(Werlberger et al. 2010). The result of the registration algorithm heavily depends on the cost
function and therefore on the chosen prior ofR.
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Figure 4.7: Overview of our method. The randomly-initialized generator network fθ acts as
parameterization of the registration field φ. The parameters θ are optimized for
every image pair individually by gradient descent.

The second category implicitly learns the regularization prior by training a convolutional
network on a large database of domain-specific images. Early approaches rely on ground
truth registrations (Sokooti et al. 2017), which are hard to obtain especially in medical
imaging. More recent methods (Balakrishnan et al. 2019) propose unsupervised registration
using the spatial transformer function (Jaderberg et al. 2015). However, these methods either
only support small displacements or require segmentation maps of the image pairs during
training to assist the convergence (Hu et al. 2018). Additionally, the trained networks are
limited to register images from the training domain (e.g., CT or MRI).

Inspired by the idea of deep image priors (Lempitsky et al. 2018), we subsequently propose
our learning-free method for deformable medical image registration using the structure of an
untrained convolutional network as regularization prior.

4.2.2 Methods

Lempitsky et al. have recently shown that excellent performance of CNNs for inverse image
problems, such as denoising, is not only based on their ability to learn image priors from
data, but is also based on the structure of a convolutional image generator itself Lempitsky
et al. 2018. They gave evidence that the structure of a network alone is sufficient to capture
enough image statistics to provide state-of-the-art performance in inverse image tasks.

Leveraged by this idea, we reformulate the task of deformable image registration by
using the structure of a convolutional network as regularizer (see Fig. 4.7). An image
generator network u = fθ(z) with randomly-initialized parameters θ is interpreted as
parameterization of the dense displacement field u ∈ R2×H×W from which the deformation
φ = x+ u between an input image I ∈ RC×H×W and a target image T ∈ RC×H×W can be
obtained by adding to the identity warp x. The input z ∈ RC′×H×W ∼ N (0, 0.1I) has the
same spatial dimensions as φ and is sampled from a random normal distribution in every
iteration. This leads to the following optimization problem

arg min
θ

{
L (T , (x+ fθ(z)) ◦ I)

}
, (4.26)
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Figure 4.8: Results of our approach compared to a state-of-the-art method from the Insight
ToolKit (ITK). Left: Two example MRI pairs from the data set. Right: Boxplots
of the means of det(Jφ) and SSIM between T and φ ◦ I .

where (x+ fθ(z))◦I denotes the differentiable spatial transformer function (Jaderberg et al.
2015). Eq. (4.26) is optimized for every image pair {I,T } using the Adam gradient descent
optimizer (D. P. Kingma and Ba 2014). As data term, we chose pixel-wise mean absolute
error L(T ,φ ◦ I) = |(φ ◦ I)− T |. The architecture of the image generator network fθ is
chosen according to (Lempitsky et al. 2018). It has an encoder-decoder structure with skip
connections between the encoding and decoding part. To begin the optimization from close
to an identity warp, we initialize the parameters with θi ∼ N (0, 0.01).

4.3 Results & Conclusion

We demonstrate our approach on the task of 2D brain magnetic resonance imaging (MRI)
registration. The data used in this work contain 109 pairs of MRI scans from The Cancer
Genome Atlas (TCGA 2019) showing lower-grade gliomas. The resulting displacement
field is used to warp the pathological images onto the healthy images. We use the structural
similarity index (SSIM) Z. Wang et al. 2004 between φ ◦ I and T and the mean of the
determinants of Jacobians det(Jφ) (Ashburner 2007) of the deformation as evaluation
metrics. The latter metric shows regularity of φ. We compare our method to state-of-the-art
methods from the Insight ToolKit (ITK) registration framework by combining an initial affine
registration and a subsequent deformable displacement field registration (Avants et al. 2012).
Results for exemplary image pairs and boxplots of results for all image pairs are shown in
Fig. 4.8. Additional results including registration fields are shown in Figure 4.9.

The results reveal that the structure of a convolutional network can act as regularization
in deformable medical image registration with state-of-the-art performance. This connects
traditional non-learning methods and learning-based methods by using randomly-initialized
convolutional networks as prior.
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Figure 4.9: Additional results showing image pairs {I,T }, warped input φ ◦ I , estimated
deformation grid φ and map of determinants of the Jacobian matrix Jφ = ∇φ
for every entry of φ. Jφ shows local regularity of the deformation field. The
deformation is diffeomorphic, where det(Jφ) > 0.
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4.3.1 Semantically Regularized Denoising Autoencoders

In this section, a supervised denoising approach that preserves disease characteristics on
retinal optical coherence tomography images is presented. We propose semantic denoising
autoencoders, which combine a convolutional denoising autoencoder with a priorly trained
ResNet image classifier as regularizer during training. This promotes the perceptibility of
delicate details in the denoised images that are important for diagnosis and filters out only
informationless background noise. With our approach, higher peak signal-to-noise ratios
with PSNR = 31.0 dB and higher classification performance of F1 = 0.92 can be achieved
for denoised images compared to state-of-the-art denoising. We show that semantically
regularized autoencoders are capable of denoising retinal OCT images without blurring
details of diseases. Here, “semantically” means that the denoising network is regularized
considering the medical content of the image. The third part of this chapter was published at
the “European Conference on Biomedical Optics” 2019 and presented as oral (Laves, Ihler,
Kahrs, et al. 2019b).

4.3.2 Purpose

Optical coherence tomography is the most common imaging technique for diagnosis in
ophthalmology. However, due to image acquisition based on interference of coherent
light, OCT suffers from speckle noise. This results in grainy images with low contrast and
obscured features where the diagnosis of medical conditions requires trained expert observers.
Denoising of OCT has been addressed in the literature already and can be separated into
two categories (Salinas and Fernandez 2007). The first one employs denoising during
OCT acquisition by e.g. averaging multiple frames of the same object. This prolongs the
acquisition process and is therefore not applicable for dynamic objects. The second category
comprises post-processing methods as inverse image problems, which try to reconstruct a
clean image x̂ from a noisy observation x̃ = x + c. A common assumption of the noise
model c of the observation x̃ in OCT imaging is additive white Gaussian noise with zero
mean and standard deviation σ (Salinas and Fernandez 2007; K. Zhang et al. 2017).

Given a noisy OCT observation x̃, the denoising can be expressed as optimization problem
of the form (cf. Eq. (4.1), (4.25))

x̂ = arg min
x̂

{
L(x̃, x̂) + λR(x̂)

}
, (4.27)

which tries to find a reconstruction x̂ that is close to x̃ by means of some similarity measure
L, but has considerably less noise. The termR, weighted by a trade-off factor λ, regularizes
the optimization of (4.27) in order to impose the condition of x̂ having less noise than x̃. The
regularizerR generally expresses a chosen prior on the denoised images, such as the total
variation (TV) (Chambolle 2004), or first and higher order derivatives of the image. In recent
years, autoencoders (AE) have been applied to denoising tasks, in which the regularization
prior is learned from corrupted and uncorrupted data samples {x, x̃} (Bengio et al. 2013;
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Figure 4.10: Overview of sDAE training procedure. The autoencoder fθ tries to reconstruct a
clean image x̂ from a noisy observation x̃ while being regulated by a pretrained
classifier Cφ.

K. Zhang et al. 2017). The performance of AEs for denoising is not only due to their ability
to learn priors from data, but also due to the structure of the image generator itself (Lempitsky
et al. 2018). Denoising autoencoders (DAE) usually have a data bottleneck between the
encoding part and the decoding part, which forces the encoding part to extract a meaningful
low-dimensional latent representation from a corrupted input image x̃. This is then fed into
the decoding part and mapped back to a reconstructed image x̂ in input space. Although
DAEs provide excellent performance in denoising, they suffer from smoothing out subtle
details that are important for medical diagnosis.

AEs have recently been used to regularize the training of diagnostic classifiers in medical
imaging (Creswell et al. 2018; Laves, Ihler, Kahrs, et al. 2019a). However, the opposing
approach where a diagnostic classifier regularizes the process of DAE has not been addressed
so far. Therefore, this paper describes a domain-specific post-processing method for denoising
medical images with preservation of delicate disease characteristics by proposing semantic
denoising autoencoders (sDAE).

4.3.3 Methods

In this section, the sDAE approach is presented in detail. First, a ResNet-34 image classifier
(He, X. Zhang, et al. 2016) Cφ pretrained on ImageNet is fine-tuned on a dataset of OCT
images described below. This acts as medical expert as it has been shown that the performance
of convolutional neural networks (CNNs) in classifying retinal conditions is on par to that
of trained ophthalmologists (Kermany et al. 2018). Second, the ErfNet CNN autoencoder
(Romera et al. 2018) fθ is trained to reconstruct input images x corrupted by additive gaussian
white noise resulting in x̃ = x + c with c ∼ N (0, 0.1 I). The parameters θ of the AE are
optimized by minimizing the pixel-wise mean squared reconstruction error Lr(fθ(x̃),x).
Essentially, an autoencoder learns a low-dimensional representation similar to principal
component analysis (PCA). When training with a large dataset, noise tends to “average out”
and the AE reconstructs distinct and relevant (noise-free) image features. In order to promote
enhancement of these features, the trained ResNet with fixed weights φ is used as additional
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original corrupted TV wavelet AD DAE sDAE (ours)

PSNR ∞ 20.9 ± 0.24 29.3 ± 1.2 28.0 ± 1.0 28.2 ± 1.3 31.4 ± 1.78 31.1 ± 1.65
SSIM 1.0 0.44 ± 0.03 0.85 ± 0.05 0.81 ± 0.05 0.83 ± 0.05 0.89 ± 0.04 0.89 ± 0.04
F1 0.94 0.89 0.79 0.83 0.55 0.86 0.92

Table 4.3: Mean results of denoising reported for the test set with mean peak signal-to-noise
ratio (PSNR) in dB, structural similarity index (SSIM) and mean classification F1

scores. Values for uncorrupted x and corrupted images x̃ are given for comparison.
Bold values denote best results.

optimization criterion Lc. It is applied to the reconstructed, denoised image and tries to
predict the retinal disease class (see Fig. 4.10). This regularizes the AE during training and
enhances disease characteristics in denoised images. The proposed approach is therefore
optimized using the weighted loss function

arg min
θ

{
Lr(fθ(x̃),x) + λLc(Cφ(fθ(x̃)),y)

}
(4.28)

with true disease label y of image x and cross entropy loss for Lc. The denoised reconstruc-
tion x̂ = fθ(x̃) can be obtained after convergence of the training. Regularization factor for
Lc was empirically set to λ = 0.01.

The dataset used to train the sDAE consists of 84,484 retinal OCT images from 4,657
patients showing the disease states drusen, diabetic macular edema (DME), choroidal neo-
vascularization (CNV) and normal and is publicly available (Kermany et al. 2018). We split
the dataset using 4,000 OCT scans (1,000 from each class) for validation during training and
another 4,000 scans for reporting final results (test set). The images for validation and testing
were extracted patient by patient in order to prevent that data from one patient is included in
more than one of the partial datasets.

The aforementioned method is implemented with PyTorch 1.5 and trained for 100 epochs
using the Adam optimizer with an initial learning rate of η = 10−4 (D. P. Kingma and Ba
2014). A reduce-on-plateau learning rate scheduling is realized to reduce η with a factor of
10−1 when observing saturation of the training loss. The weight configuration with lowest
loss value on the validation set is chosen for testing (early stopping).

4.3.4 Results

To assess denoising performance, the proposed method is compared to total variation
(TV) minimization (Chambolle 2004), BayesShrink wavelet denoising (Chang et al. 2000),
anisotropic diffusion (AD) denoising (Perona and Malik 1990) and an unregularized DAE
regarding peak signal-to-noise ratio (PSNR), structural similarity index (Z. Wang et al. 2004)
and classification performance of ResNet using the F1 score. The DAE can be seen as a
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Figure 4.11: Results of our approach compared to state-of-the-art denoising for retinal OCT
disease conditions from the test set. Digital zoom is recommended for optimal
comparison.

special case of our approach, where λ = 0, such that it is only trained for reconstruction.
The results are summarized in Tab. 4.3. We additionally provide the results of uncorrupted
x and corrupted images x̃ as baseline. Our approach not only provides the highest disease
classification accuracy with F1 = 0.92 after denoising, but also has a peak signal-to-noise
ration with PSNR = 31.1 dB, which is only exceeded by the DAE. However, the SSIM
suggests that sDAE and DAE have similar reconstruction performance.

Fig. 4.11 visualizes qualitative results for example OCT scans from the test set showing
different disease conditions. The methods are used to restore the input image x from the
corrupted image x̃ (first column). In contrast to state-of-the-art denoising, our approach is
able to distinctively preserve the retinal layers while removing speckle noise. Pathological
alterations of the retina are clearly visible and the explanatory power for diagnosis is not
reduced. Mean processing time of sDAE for one image is 13.1 ms on an NVIDIA GeForce
GTX 1080 Ti.
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4.3.5 Conclusion

It has been shown that the proposed semantic denoising autoencoder is capable of denoising
retinal OCT images without suppressing characteristics of diseases. This was achieved
by regularizing the denoising autoencoder during training with another CNN, which was
previously trained for disease classification. The denoising performance of sDAE is similar to
that of an unregularized autoencoder, but sDAE preserves details important for diagnosis. The
trained decoder can also be used to generate new images by sampling the latent space. Future
work therefore aims on variational autoencoder and generative adversarial networks for
OCT denoising. It should be noted, however, that speckle noise can also contain significant
information as it creates a unique fingerprint of tissue. This information is hard to be
interpreted by humans, and CNNs can be valuable tools to acquire and utilize this information
in the future. The presented approach can also be translated to other inverse image problems
such as single image super-resolution or compression artifacts removal or other medical
imaging modalities such as computed tomography or magnetic resonance imaging.

4.4 Chapter Conclusion

In this chapter, we first presented MCDIP, a novel Bayesian approach to the concept of deep
image prior with Monte Carlo dropout (§ 4.1). MCDIP alleviates the overfitting disadvantages
of deep image prior, but keeps its robustness to hallucinations; a failure of deep generative
models that must be avoided at all costs in the context of medical imaging. In our experiments,
the denoising performance was on par to state-of-the-art methods and yielded well-calibrated
pixel-wise uncertainty estimates.

Moreover, we applied deep image prior in a non-Bayesian fashion to deformable reg-
istration. This approach provides an implicit regularization of the deformation field and
outperformed other non-learning based methods in terms of registration accuracy and smooth-
ness of deformation. In future work, we plan to extend this to a Bayesian approach, which is
expected to further provide diffeomorphic deformations and exhibit high uncertainty, where
the deformation happens to be non-diffeomorphic.

Finally, we investigated a different approach to medical image denoising and presented se-
mantically regularized autoencoders. A pre-trained image classifier was used as a regularizer
during training of a denoising autoencoder. We hypothesized that this would preserve disease-
related image features in the denoised image, which was confirmed by the considerably
higher classification accuracy on the denoised images compared to other methods.
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Medical imaging has revolutionized medicine
in the last century. It has helped to literally give
insight into the human anatomy and physiol-
ogy. Many diseases and pathologies can only be
diagnosed with the use of some imaging tech-
nique. In 2017, almost 18 million CT and MRI
scans were expectedly performed in Germany
(see Fig. 5.1). Due to increasing availability
and the reduction of costs, the number of medi-
cal imaging examinations is continuously grow-
ing, resulting in a huge amount of data that has
to be assessed by medical experts. Computer-
aided diagnosis aims at automating the process
of image-based diagnosis with the use of digi-
tal image analysis; its beginning dates back to
the early 1980s (Doi 2007). However, only the
recent advancement of deep learning has made
CAD feasible at large scale (Esteva et al. 2017; Kermany et al. 2018). The biggest disadvan-
tage of deep learning methods in practice is their black-box nature. Even though they achieve
the highest levels of accuracy in diagnosis, their acceptance may be limited by their lack of
interpretability and transparency. These concerns are reinforced by the core problem that is
addressed in this thesis: the overconfidence of deep models when making false predictions.
How do we know when we do not know?

This thesis deals with Bayesian methods for estimation of predictive uncertainty in medical
imaging with deep learning. We have shown that predictive uncertainty from variational
Bayesian inference is prone to miscalibration and does not represent the model error. The
uncertainty calibration error was proposed to alleviate disadvantages of existing metrics to
measure miscalibration. We defined perfect calibration of uncertainty using the normalized
entropy and proved that the normalized entropy approaches the top-1 error for perfectly
calibrated models in multi-class classification. Logit scaling for Monte Carlo dropout was
derived and used for post-hoc calibration. UCE can additionally be used as regularization
during training to improve calibration. In our experiments, it outperformed the commonly
used entropy regularization. We have shown empirically that well-calibrated models are
capable of rejecting unreliable predictions and detecting out-of-distribution data; an adversary
that is likely to be encountered in clinical practice. This confirmed hypothesis 1.

The creation of large labeled medical data sets for machine learning is associated with
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high costs. To reduce the economic burden of data labeling, we have shown that well-
calibrated uncertainty can leverage self-supervised learning by generating good pseudo-labels.
Confidence based label generation can create an overfocus to certain classes and results in
ignoring the other classes. We tackled this issue with BatchPL, a sample acquisition scheme
that selects highly informative samples for pseudo-labeling. Combined with consistency
learning, our approach achieved state-of-the-art performance on both medical and non-
medical classification data sets. This confirmed hypothesis 2.

Medical imaging with deep learning can also be applied to other tasks than classification.
Regression tasks cover many areas of application, including forensic age estimation, natural
landmark localization, instrument pose estimation and tracking, cell detection in histology,
and deformable registration. We extended estimation and calibration of predictive uncertainty
(σ scaling) to deep regression and evaluated it on different medical imaging regression tasks.
In addition to UCE, we computed posterior prediction intervals to evaluate the quality of the
estimated uncertainty, which showed that the calibrated 99 % prediction interval correctly
contains 99 % of the ground truth values. Calibrated uncertainty in regression was also able
to detect a shift in the data distribution, with calibrated Bayesian models outperforming deep
ensembles. This confirmed the first part of hypothesis 3.

If the output of a regression model is itself an image, the model can be trained to solve
generative tasks such as image enhancement or denoising. However, an unsolved problem
in supervised learning for generative tasks are hallucinations, where a deep model embeds
features of training set images into outputs of images at test time. Hallucinations can remove
or include pathological structures, which prevents the actual use of deep generative models in
medical imaging. To mitigate this problem, we provided a Bayesian approach to deep image
prior for denoising different medical modalities (MCDIP). The method of deep image prior
is not affected by hallucinations (Ulyanov et al. 2018), as the model only ever has access
to one single image. Our Bayesian treatment not only solved the problem of overfitting of
deep image prior, but also yielded well-calibrated uncertainty maps. MCDIP outperformed
standard DIP and recent state-of-the-art MCMC approaches to DIP. This confirmed the
second part of hypothesis 3. Additionally, we presented semantically regularized denoising
autoencoders and showed that regularizing an autoencoder with a classification model is
beneficial in denoising OCT scans.

We hope that with this thesis we have made a valuable contribution to increasing the
acceptance of deep learning methods for medical imaging by physicians and bringing them
closer to the clinical routine. We argue that predictive uncertainty has to be considered in any
medical imaging problem that is approached with deep learning.

5.1 Outlook

Even though Bayesian statistics dates back to the late 18th century, only very recent ad-
vancements in approximate and variational Bayesian methods have enabled to reason about
uncertainty in high dimensional data such as medical images. The medical imaging com-
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munity slowly starts to adopt these methods and we are happy to see the emergence of
conferences dedicated to uncertainty estimation such as the “Uncertainty for Safe Utilization
of Machine Learning in Medical Imaging” (UNSURE) workshop1 or the “Quantification
of Uncertainties in Biomedical Image Quantification” (Qubiq) challenge2 at the renowned
MICCAI conference. The applications of Bayesian methods to medical imaging shown in
this thesis only cover a very limited set of problems.

In the future, we expect to see new methods for uncertainty quantification. The methods
used in our works involve some sort of Monte Carlo sampling, increasing the computational
complexity. Sampling-free approaches could remove the additional effort and reduce the
costs required for Bayesian analysis. Besides uncertainty estimation itself, we expect to see
practical applications of uncertainty in, e.g., clinical risk management or medical decision
making. Uncertainty estimation is needed to translate machine learning techniques into
clinical practice and to ensure its safe application under real-world conditions.

1https://unsuremiccai.github.io
2https://qubiq21.grand-challenge.org

https://unsuremiccai.github.io
https://qubiq21.grand-challenge.org
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A Appendix

A.1 Calibration of Uncertainty for Variational Inference

A.1.1 Additional Results & Figures

Here, we list additional results for the experiments from § 2.1.4.
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Figure A.1: Calibration error vs. softmax temperature on CIFAR-10. All metrics provide
inconsistent ranking of models over τ . The metrics ECE, UCE and MMCE
have a narrow region in which the optimal temperature for all models can be
found. They show more a consistent ranking before and after the point of optimal
temperature. This allows comparison of calibration of models if they are all
over- or under-confident. However, all metrics fail at comparing underconfident
models to overconfident models. Even at optimal temperature, Brier score and
NLL fail at comparing calibration of models with different accuracy, as the
metrics are always lower for models with better accuracy.
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Figure A.2: Calibration error vs. softmax temperature from SWAG trained with different
regularization on CIFAR-10. Both MMCE and UCE regularization lead to less
overconfident models and reduce miscalibration (optimal temperature is closer
to τ = 1). Entropy regularization leads to underconfident models and is not
as effective as MMCE and UCE regularization on CIFAR-10. MMCE and
UCE regularization at optimal temperature outperform entropy regularization at
optimal temperature for all metrics except Brier score.
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Figure A.3: Calibration error vs. softmax temperature from SWAG trained with different
regularization on CIFAR-100. In this experiment, entropy regularization without
temperature scaling (τ = 1) was surprisingly effective and outperforms MMCE
and UCE regularization. At optimal temperature both MMCE and UCE regular-
ization outperform entropy regularization for all metrics.
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CIFAR-10/ResNet-34 CIFAR-100/ResNet-50
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Figure A.4: Binning estimator sample distribution for ResNet-34 on CIFAR-10 (left) and for
ResNet-50 on CIFAR-100 (right) with M = 15 bins. ECE and UCE use fixed
bin widths and ACE uses an adaptive binning scheme. On CIFAR-100, UCE
favors fewer bins, which makes UCE more insensitive to the total number of
bins. Due to the adaptive binning, ACE is highly sensitive to the bin count.
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Figure A.5: Reliability diagrams (M = 15 bins) for ResNet-34 on CIFAR-10.
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Figure A.6: Reliability diagrams (M = 15 bins) for DenseNet-121 on CIFAR-10.
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Figure A.7: Reliability diagrams (M = 15 bins) for ResNet-101 on CIFAR-100.
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Figure A.8: Reliability diagrams (M = 15 bins) for DenseNet-169 on CIFAR-100.
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Figure A.9: Reliability diagrams (M = 15 bins) for ResNet-134 on SVHN.
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Figure A.10: Reliability diagrams (M = 15 bins) for DenseNet-121 on SVHN.
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A.2 Regression

A.2.1 Additional Results and Calibration Diagrams

Here, we list additional results for the experiments from § 3.3. All test set runs have been
repeated 5 times. Solid lines denote mean and shaded areas denote standard deviation
calculated from the repeated runs.

Table A.1: Negative log-likelihood test set results for different datasets and model architec-
tures (averaged over 5 runs). High NLL values indicate miscalibration. We also
report NLL values for an ensemble of DenseNets. Bold font indicates lowest
values in each experiment.

Levi et al. ours

Data Set Model MSE none aux σ none aux σ ensemble

ResNet-101 6.4e-3 -0.78 -5.06 -5.06 -2.89 -5.17 -5.16
BreastPathQ DenseNet-201 7.0e-3 -5.16 -5.84 -5.70 -5.67 -6.03 -5.78 0.11

EfficientNet-B4 6.4e-3 -3.11 -5.99 -5.53 -4.73 -6.16 -5.62

ResNet-101 5.3e-3 -3.90 -4.34 -4.34 -3.99 -4.34 -4.34
BoneAge DenseNet-201 3.5e-3 1.74 -4.70 -4.69 -0.75 -4.70 -4.69 0.07

EfficientNet-B4 3.5e-3 13.61 -4.74 -4.67 6.40 -4.75 -4.64

ResNet-101 4.0e-4 -0.53 -6.32 -6.33 -3.85 -6.76 -6.72
EndoVis DenseNet-201 1.1e-3 -0.72 -6.10 -5.99 -4.94 -6.05 -6.04 0.04

EfficientNet-B4 8.9e-4 -5.10 -6.06 -6.07 -5.94 -6.17 -6.17

ResNet-101 2.0e-3 -1.08 -5.24 -5.24 -3.38 -5.24 -5.24
OCT DenseNet-201 1.3e-3 -5.05 -5.61 -5.61 -5.51 -5.62 -5.61 0.10

EfficientNet-B4 1.4e-3 -1.72 -5.58 -5.57 -4.25 -5.58 -5.57
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Figure A.11: BreastPathQ test set.
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Figure A.12: BoneAge test set.
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Figure A.13: EndoVis test set.
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Figure A.14: OCT test set.
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A.2.2 Additional Prediction Intervals
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Figure A.15: Observed vs. estimated posterior prediction intervals for all networks.
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A.3 Medical Image Denoising with Bayesian Deep Image Prior

A.3.1 Additional Figures

Here, we list additional results for the experiments from § 4.1.4.

ground truth DIP SGLD SGLD NLL MCDIP

Figure A.16: Denoised images after convergence.

ground truth DIP SGLD SGLD NLL MCDIP

Figure A.17: Denoised images with early-stopping applied.
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Figure A.18: MSE (top row) between denoised x̂ image and noisy image x̃ and SSIM
(bottom row) between denoised x̂ image and ground truth x vs. iteration. Only
MCDIP does not overfit the noisy image and converges with highest similarity
to the ground truth. Despite the claim of the authors, SGLD suffers from
overfitting and creates the need for carefully applied early stopping (Z. Cheng
et al. 2019). Note: We compared both our own implementation of SGLD and
the original code provided by the authors Z. Cheng et al. (2019). The plots
show means from 3 runs with different random initialization.
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Figure A.19: Calibration diagrams and uncertainty maps for SGLD+NLL and MCDIP after
convergence (best viewed with digital zoom). (Left) The calibration diagrams
show MSE vs. uncertainty and provide mean uncertainty (U) and UCE values.
(Right) Uncertainty maps show per-pixel uncertainty. Due to overfitting, the
MSE and uncertainty from SGLD+NLL concentrates around 0.0.
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A.3.2 Additional Tables

Table A.2: SSIM after convergence.

SSIM DIP SGLD SGLD+NLL MCDIP

OCT 0.582± 0.0 0.574± 0.0 0.66± 0.0 0.872± 0.0
US 0.687± 0.0 0.703± 0.0 0.723± 0.0 0.902± 0.0

X-ray 0.625± 0.0 0.631± 0.0 0.686± 0.0 0.922± 0.0

Table A.3: SSIM with early-stopping.

SSIM DIP SGLD SGLD+NLL MCDIP

OCT 0.872± 0.0 0.872± 0.0 0.872± 0.0 0.872± 0.0
US 0.902± 0.0 0.903± 0.0 0.899± 0.0 0.903± 0.0

X-ray 0.915± 0.0 0.917± 0.0 0.912± 0.0 0.923± 0.0
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