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The present results of this thesis were obtained since March 2018 during my Ph.D. study at 

Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Stuttgart. The 

thesis was supervised by Prof. Dr. Jürgen Caro from the Gottfried Wilhelm Leibniz Universität 

Hannover. In this period, I worked on the project PiCK (Plasma induzierte CO2 Konversion, 

project number: 03SFK2S3). 

Four research papers in which I am the first author are included in this work. The following 

statement will clarify my contribution to the articles used in this thesis. For all articles, I would 

like to express my attitude for the comments and fruitful discussion from the co-authors and the 

referees, particularly from Prof. Dr. J. Caro, Prof. Dr. A. Feldhoff and Dr. T. Schiestel.  

The first article “Use of Perovskite Hollow Fiber Membranes in a Microwave Plasma” was 

written by me. I got support on the manuscript preparation from all the co-authors, especially 

from Dr. T. Schiestel. The manufacturing and the permeation tests were done by myself. The 

experiments in the air plasma were done by Irina Kistner (Institute of Interfacial Process 

Engineering and Plasma Technology (IGVP), Universität Stuttgart) and me. The SEM images 

were done by Monika Riedl (IGB). 

The first draft of the second article “Permeation improvement of LCCF hollow fiber membranes 

by spinning and sintering optimization” was written by me. Dr. T. Schiestel, Prof. Dr. A. 

Feldhoff and Prof. Dr. J. Caro spent much time on correcting and improving the article. The 

manufacturing of the hollow fibers and the permeation tests were done by me. The 

characterization of the hollow fibers with SEM, EDXS, TEM and XRD was done by Prof. Dr. 

A. Feldhoff (Institute of Physical Chemistry and Electrochemistry, Leibniz Universität 

Hannover).  

The third article “High flux CO2 stable oxygen transport hollow fiber membranes through 

surface engineering” was written by me, optimized and modified by Prof. Dr. J. Caro and Dr. 

T. Schiestel. The manufacturing and coating of the asymmetric hollow fibers were done by 

Osman Bunjaku (IGB) together with me. The etching of the fibers and the permeation 

measurements were done by myself. The EDX and SEM measurements were done by Monika 

Riedl (IGB). 

The fourth article “Effect of plasma atmosphere on the oxygen transport of mixed ionic and 

electronic conducting hollow fiber membranes” was written by me. I got support on the 

manuscript from all the co-authors, especially by Thomas Schiestel. The manufacturing of the 

hollow fibers and the permeation test in the oven were done by me. The temperature 
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measurements and the permeation measurements in the plasma were done by Katharina 

Wiegers (IGVP) and me together. The measurements of the plasma composition were done by 

Katharina Wiegers. The SEM images were done by Monika Riedl (IGB).  
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Abstract  

The present work deals with the perovskite (La0.6Ca0.4)(Co0.8Fe0.2)O3- (LCCF) in the form of 

dense hollow fiber membranes for the oxygen separation from CO2 containing gas mixtures. A 

potential application is the in situ extraction of oxygen from a CO2 plasma. In such a plasma, 

the CO2 can be split into CO and oxygen by microwave energy. The goal of this work was the 

development of LCCF hollow fiber membranes, the optimization of the oxygen transport 

through these membranes and to confirm the applicability of the extraction of oxygen from a 

CO2 plasma. Prerequisite for the material and the membrane was a good CO2 stability and a 

good thermal shock resistance. In a long-term test (>200 h) at 900 °C a good CO2 stability could 

be verified. 

To optimize the oxygen permeation flux through the membrane, the bulk diffusion and the 

surface exchange reactions were affected. To optimize the bulk diffusion, hollow fiber 

membranes with different wall thicknesses and different sintering temperatures were 

manufactured. With a wall thickness of 81 µm and a sintering temperature of 1220 °C the 

highest oxygen permeation flux (6.2 ml min-1 cm-2 at 1000 °C) in a CO2 containing atmosphere 

could be achieved.  

The surface exchange reactions were affected by the surface etching method. The goal was to 

increase the roughness of the surfaces, what could be obtained, by H2SO4 treatment. The best 

results could be achieved by treating the inner and outer surface with H2SO4 for 180 min. The 

permeation flux could be increased by 86 % compared to the pristine hollow fiber.  

Furthermore, both permeation limiting steps were addressed by developing asymmetric hollow 

fibers with a porous support of LCCF and a thin dense layer of LCCF. A gastight dense layer 

of 22 µm could be achieved. The oxygen permeation flux compared to a dense hollow fiber 

membrane (wall thickness 179 µm) could be improved by 68.6 %. 

Finally, the applicability of the plasma induced CO2 conversion was analysed. The oxygen 

permeation flux of LCCF hollow fiber membranes in different plasmas (air and CO2) were 

compared with the permeation in an oven heated system. The permeation in an air plasma was 

60.6 % higher at a similar temperature, which is caused by the special plasma atmosphere. In 

the CO2 plasma, the feasibility of the conversion of CO2 in oxygen and CO could be proven 

and the generated oxygen can be extracted through the LCCF hollow fiber membranes. At a 

microwave power of 1 kW an oxygen permeation flux of 4.96 ml min-1 cm-2 in a CO2 plasma 

could be achieved.    

Keywords: Plasma, CO2 conversion, MIEC hollow fiber membranes, oxygen permeation 
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Kurzfassung  

Die vorliegende Arbeit beschäftigt sich mit dem Perowskit (La0.6Ca0.4)(Co0.8Fe0.2)O3- (LCCF) 

in Form von dichten Hohlfasermembranen zur Sauerstoffabtrennung aus CO2-haltigen 

Gasgemischen. Eine mögliche Anwendung ist die in-situ-Extraktion von Sauerstoff aus einem 

CO2-Plasma. Im thermischen Plasma dissoziiert CO2 zu CO und Sauerstoff. Ziel dieser Arbeit 

war es, Hohlfasern aus LCCF herzustellen, den Sauerstofftransport durch die Membran zu 

optimieren und die Anwendbarkeit der O2-Gewinnung aus einem CO2-Plasma nachzuweisen. 

Voraussetzung für das Material ist eine gute CO2-Stabilität und eine gute 

Temperaturwechselbeständigkeit. In einem Langzeittest (>200 h) bei 900 °C konnte die gute 

CO2-Stabilität nachgewiesen werden. 

Um den O2-Fluss durch die Membran zu optimieren wurden die Volumendiffusion und die 

Oberflächenaustauschreaktionen beeinflusst. Zur Optimierung der Volumendiffusion wurden 

Hohlfasermembranen bei unterschiedlichen Sintertemperaturen und mit unterschiedlichen 

Wandstärken hergestellt. Bei einer Wandstärke von 81 µm und einer Sintertemperatur von 1220 

°C konnte der höchste Sauerstoff-Fluss (6.2 ml min-1 cm-2 bei 1000 °C) in einer CO2-haltigen 

Atmosphäre erreicht werden.  

Die Oberflächenaustauschreaktionen wurden durch das Oberflächenätzverfahren verändert. 

Ziel war es, die Rauheit der Oberflächen zu erhöhen, was durch eine Behandlung mit H2SO4 

erfolgreich durchgeführt wurde. Das beste Ergebnis konnte erzielt werden, wenn sowohl die 

Innen- als auch die Außenseite für 180 min mit H2SO4 behandelt wurden. Der Fluss stieg um 

86 % im Vergleich zu einer makellosen Hohlfaser. Darüber hinaus wurden beide 

permeationslimitierenden Schritte modifiziert, indem asymmetrische Hohlfasern mit einem 

porösen Träger aus LCCF und einer dünnen dichten Schicht aus LCCF hergestellt wurden. Es 

konnte eine dichte Schicht von 22 µm erreicht werden. Der O2-Fluss gegenüber einer dichten 

Hohlfasermembran (179 µm) wurde um 68.6 % verbessert. 

Zum Schluss wurde die Anwendbarkeit der plasmainduzierten CO2-Umwandlung analysiert. 

Der O2-Fluss von LCCF Hohlfasermembranen in verschiedenen Plasmen (Luft und CO2) wurde 

mit dem ofenbeheizten System verglichen. Das Luftplasma wies bei ähnlicher Temperatur 

einen 60.6 % höheren Sauerstoff-Fluss auf, was auf die spezielle Plasmaatmosphäre 

zurückzuführen ist. Im CO2-Plasma konnte die Machbarkeit der Umwandlung von CO2 in 

Sauerstoff und CO nachgewiesen werden und der erzeugte Sauerstoff durch die LCCF-

Hohlfasermembranen abgetrennt werden. Bei einer Mikrowellenleistung von 1 kW konnte ein 

O2-Fluss von 4.96 ml min-1 cm-2 in einem CO2-Plasma erreicht werden. 

Schlagwörter: Plasma, CO2 Konversion, MIEC Hohlfasermembran, Sauerstoffpermeation
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1. Introduction 

1.1. Motivation 

1.5 °C. This was and still is the common goal of the Paris agreement which was signed by 196 

countries in 2015 [1, 2]. The limitation of the global warming compared to the pre-industrial 

era to 1.5 °C should be achieved until 2050. To reach the target, the emissions of greenhouse 

gases need to be reduced. However, most countries are far away from fulfilling this goal.  

In the pre-industrial era the CO2 content in the atmosphere was relatively low (280 ppm) and 

the carbon cycle was in good balance [3, 4]. With the beginning of the industrial revolution, 

large reservoirs of carbon based fossil resources were utilized to reach a new age of 

technological and economic growth, productivity and quality of life. By burning fossil fuels, 

the carbon cycle is changed because carbon, which was stored for millions of years, is released 

to the atmosphere in form of CO2. Between 2009 and 2018 the total CO2 emission was                            

11 GtC yr-1 (gigatonnes of carbons per year) caused by fossil CO2 emission (9.5 GtC yr-1) and 

land use change emissions (1.5 GtC yr-1), while ocean and terrestrial sinks absorbed      

5.7 GtC yr-1 and the atmospheric CO2 amount increased by 4.9 GtC yr-1 [4]. The negative 

imbalance means the emissions are underestimated and/or the sinks are too big. The effect of 

this perturbations leads to ocean acidification and surface warming due to a higher CO2 amount 

in the atmosphere and in the ocean. In 1990 the Intergovernmental Panel on Climate Change 

predicted the negative consequences of the human made greenhouse effect, like the melting of 

the glacier, rising sea levels and the melting of the permafrost [5].  

Although the effects are well known many countries are still hesitating to tackle them 

consequently [3]. The main goal of all governments is economic growth to improve the living 

conditions for their citizens. In general, the economic growth is strongly related with energy 

demand. In 2016 the primary world energy demand was 13.8 Gtoe (gigatonnes of oil equivalent) 

with a growing tendency. The energy demand is satisfied by 27.1 % coal, 22.1 % natural gas, 

31. 9 % petroleum, 4.9 % nuclear, 9.8 % biofuel and waste, 2.5 % hydro and 1.7 % other fuels 

[6]. In 2015 the energy sector produced 74 % of the greenhouse gases (GHG). This figures the 

importance of controlling the global energy related emissions to stabilize the anthropogenic 

sources of GHG emissions. In the last few years many countries decided to phase out of nuclear 

energy due to accidents like the one at the Fukushima Daiichi plant in 2011. Furthermore, the 

European Union plans a coal exit around 2030. A precise date is not yet known. Therefore, new 

and low-emission technologies are urgently needed [7, 8]. Promising candidates are renewable 

energies, especially the electrical energy generation from wind and sun. The worldwide growth 
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of both technologies from 2009 (182 GW) to 2015 (660 GW) is remarkable [7]. The possibilities 

of the renewable energies are enormous. By far the biggest resource has the sun. The sunlight 

strikes the earth with more energy per day (10300 EJ [9]) than is currently consumed on the 

planet per year (576 EJ [10]). The integration of such energy into established infrastructures 

implicates some challenges in terms of stability, efficiency and reliability, as most renewable 

sources are intermittent by nature [11, 12]. Therefore, the boost of the renewable energies 

should be accompanied by the improvement of energy storage systems (EES) [7]. EESs convert 

energy from one form to another, depending of the storage system. The storage systems can be 

categorised by response time, storage duration and function [13, 14]. The common method to 

categories the technologies is by the form of the stored energy [7]. It can be classified in 

thermochemical, chemical, thermal, electric and mechanical storage systems [15-18]. From 

2010 to 2017 the capacity of the EESs increased by 24 % up to 171 GW [7]. The storage 

technologies are still in their infancy and many new approaches were made in the last decades.  

A very promising approach seems the utilization of CO2 as chemical energy storage as well as 

carbon source for platform chemicals and the further processing to high quality chemical base 

materials like hydrocarbons. To be sustainable the energy must be provided by renewable 

energies. Figure 1 shows an elegant solution to utilize CO2. The idea of the project is related to 

the principal of the photosynthesis. The photosynthesis converts energy from the sun to 

chemical energy to dissociate CO2 to more valuable organic substances [19].  

In the plasma induced CO2 conversion (PiCK) project a plasma process is used to dissociate the 

CO2 to oxygen and CO. The energy to operate the plasma process should be delivered by 

regenerative energy sources in the form of surplus solar or wind energy. Therefore, the process 

is cost effective and resource saving. To avoid back reaction of CO and oxygen to CO2, the idea 

is to separate oxygen by ceramic membranes. The product CO could be used in synthesis 

processes like the Fischer-Tropsch-Synthesis, by which a liquid chemical storage is possible. 
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Important for the process is a large dissociation of the CO2. Therefore, the thermodynamic of 

the CO2 splitting needs to be considered [20]. Based on enthalpy and entropy changes of the 

thermal decomposition of carbon dioxide the temperature T can be calculated according to: 

 

𝐺 =  ∆𝐻 − 𝑇∆𝑆 [1.1] 

 

with ∆𝐻 as enthalpy change, ∆𝑆 as entropy change, 𝑇 as temperature and 𝐺 as Gibbs free 

energy. If 50 % of the CO2 molecules dissociated, the physical properties are     

∆𝐻 = 530 kJ mol-1 and ∆𝑆 = 147 J mol-1. According to 

 

𝑇 =  
∆𝐻

∆𝑆
 [1.2] 

 

a temperature of 3600 K results [21, 22]. Thermal decomposition of the CO2 can only be 

measured above 2400 K, at 7000 K CO2 is almost completely dissociated. In the center of a 

CO2 microwave torch, temperatures of slightly above 6500 K are present [23, 24]. The 

calculation of the equilibrium constant K of the thermal decomposition of 𝐶𝑂2 → 𝐶𝑂 +  
1

2
𝑂2, 

according to 

 

∆𝑅𝐺 =  −𝑅𝑇 ln 𝐾 [1.3] 

 

 

Figure 1: Schematic image of the plasma induced CO2 conversion (PiCK) mechanism. © 

IGVP / Fraunhofer IGB  
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results in the CO2 conversion [%] as a function of temperature [25]. If the system                  

𝐶𝑂2 → 𝐶𝑂 +  
1

2
𝑂2 were in thermodynamic equilibrium at 1273 K, oxygen would only be 

present in trace amounts. The advantage of the plasma process compared to the pure thermal 

splitting of CO2 is that at relative low temperature a higher amount of oxygen is present [26]. 

This can be explained by the used plasma technology. For this purpose, an electrode-less 

microwave excited atmospheric plasma system (APS) is an excellent option due to the high ion, 

electron and radical densities and the reduced electric field [27-29]. Furthermore, the APS 

favours the excitation of the asymmetric mode vibrational levels of CO2 [26, 29]. In addition, 

the fast cooling (quenching) maintains a higher oxygen partial pressure in the cooled plasma 

gas compared to the thermodynamic equilibrium value at 1273 K. The condition for this is, on 

the one hand, rapid kinetics for the thermal decomposition of 𝐶𝑂2 → 𝐶𝑂 +  
1

2
𝑂2 in the plasma 

and, at the same time, quenching, so that the recombination of 𝐶𝑂 +  
1

2
𝑂2 → 𝐶𝑂2 is hindered. 

Therefore, a relative high amount of oxygen is present at lower temperature (<1473 K).  

Both, the membrane and the separation process, are important for the overall process. They 

have a high potential to reduce the effort to separate the products. The oxygen partial pressure 

between the oxygen rich and oxygen lean side is the driving force for the oxygen transport 

through the membrane [30]. Important for the process is a high selectivity towards oxygen, 

which cannot be achieved by porous ceramic or polymer membranes, because of the small size 

difference of the species present in the plasma [31]. On the other hand, a high permeability and 

a good thermal stability are necessary for the separation process. Therefore, polymeric 

membranes cannot be used because of a lack in thermal stability. 

Promising candidates are the oxygen conductive, dense ceramic membranes with high oxygen 

permeability and a high selectivity [32-34]. In the past decades oxygen separation membranes 

were intensively researched for oxygen production as an alternative for the cryogenic air 

decomposition and for the Oxyfuel process to operate power plants with pure oxygen [35, 36]. 

Current research uses these membranes for solid oxide fuel cells and for thermochemical 

conversion of water and CO2 [37, 38]. 

For this application ceramics, which crystalize in the cubic structure of the perovskite, are 

suitable. High performance materials like Ba0.5Sr0.5Co0.8Fe0.2O3−δ [39] or BaCoxFeyZrzO3-δ [40] 

are very promising perovskites for oxygen separation from air. Unfortunately the performance 

decreases in CO2 atmosphere due to the formation of carbonates [41]. In this work 

(La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) was used due to the good CO2 stability [42, 43]. The 

membranes were manufactured as hollow fibers as this geometry has a high specific separation 
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area [40, 44]. The separation mechanism of dense ceramic membranes differs fundamentally 

from the mechanism of polymeric membranes and have a higher selectivity towards oxygen. 

The membranes can be used directly in areas of high temperature due to the separation 

mechanism, which is based on temperature activated solid diffusion. 

 

1.2. Aim of the work 

The focus of this work is the manufacturing and optimization of LCCF hollow fiber membranes. 

It is part of the PiCK-Project with the overall aim to dissociate CO2 in a plasma membrane 

reactor with subsequent separation of the products (CO and oxygen). The requirements for the 

membranes are very high due to the challenging conditions. Three key requirements are pointed 

out: 

- Thermal shock resistance: 

After ignition of the plasma, the temperature not slowly increases like in the 

conventional permeation cell. The temperature increases in few seconds from room 

temperature up to 1200 °C at the fiber position. Therefore, the fiber needs to be stable 

enough to resists this stress.  

 

- CO2 stability: 

 Many perovskite materials have the tendency to form carbonates in the presence of 

CO2. As the plasma does not convert all the CO2 to CO and oxygen, a significant amount 

of CO2 can be expected in the plasma. Therefore, a good CO2 stability is needed.  

 

- Oxygen Permeation: 

To decrease the amount of fibers in a possible membrane module, the oxygen 

permeation of each fiber is important. Not only process parameters but also 

morphological parameters can influence the oxygen permeation.  

 

To satisfy the different requirements, first of all gastight LCCF hollow fiber membranes are 

manufactured due to the higher surface area compared to other geometries (Chapter 3). 

Furthermore, the integration of the hollow fiber in the plasma membrane reactor is investigated. 

Together with the project partners from the IGVP the feasibility of the plasma membrane 

reactor is examined.  

In the following chapter (Chapter 4), the influencing factors of the bulk diffusion are studied 

via different manufacturing parameters like spinneret, geometry and sintering temperature. The 
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fifth chapter focuses on further oxygen permeation improvements via two methods. On the on 

hand, the surface is modified by etching with H2SO4 to improve surface exchange reactions via 

higher surface area. On the other hand, porous hollow fibers with dense layer are developed to 

improve the surface exchange reactions as well as the bulk diffusion.  

Chapter 6 focuses on the project goal: The in situ extraction of oxygen from a CO2 plasma. 

Furthermore, different influencing parameters of the CO2 plasma like temperature, exchange 

length and the comparability to the conventional permeation mess cell are examined. 

Based on the results the potential of the in-situ separation of oxygen and CO from a CO2 plasma 

is analysed. 
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2. State of the art 

2.1. Membrane separation technology 

In recent decades membrane separation processes have proven to be a promising and attractive 

field of technological research [45, 46]. In general, membranes can be characterized as a barrier 

that separates or limits partly or totally the passage of specific components or characteristic 

species [32]. By means of the definition of membranes they can be classified in various ways, 

which are shown in Figure 2.  

 

Figure 2: Classification of membranes, derived from [46]. 

 

The different classification do not provide the area of application. It represents the variety of 

membranes [46]. The area of application of membranes is determined by the pore size and the 

level of selectivity. Depending on the size, a distinction can be made between macropores 

(> 50 nm), mesopores (2 - 50 nm) and micropores (0.2 - 2 nm). Figure 3 gives an overview of 

different membrane technologies with corresponding pore sizes and application examples. In 

today´s separation technology synthetic polymer membranes are most common because of the 

low cost and the easy handling [46, 47]. They have a wide range of application and can be found 

in many areas such as medical technology [48, 49] water treatment [50, 51] and gas separation 

[47, 52].  
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Figure 3: Field of applications of membranes, derived from [53]. 

Gas separation through porous membranes is in principle possible using three different 

mechanisms, which are presented in Figure 4. The fourth mechanism is only possible through 

dense membranes [46, 54, 55].  

If the pore size is bigger than 100 nm the gases permeate the membrane by convective flow (I) 

and no separation occurs. For pore sizes in the range of 10 - 100 nm the gas permeation is 

governed by the Knudsen diffusion (II) [46]. The rate of diffusion of different gases (r1 and r2) 

under similar conditions of pressure and temperature are inversely proportional to square root 

of their molar masses (M1 and M2) [56]. This relation is called Graham´s law of diffusion. 

 

𝑟1

𝑟2
= √

𝑀2

𝑀1
 [2.1] 

 

The selectivity of separation due to the Knudsen diffusion is in general relatively low. For 

example, the separation factor for N2/O2 is 1.07 [55]. The actual separation factors are smaller 

due to the back diffusion, concentration polarisation, non-separative diffusion and the 

occurrence of viscous flow [55]. 

With further decrease of the pore size (0.5 - 10 nm) the effect of the molecular sieve (III) occurs 

[16]. The separation is based on the size exclusion principle. Gases with larger radii than the 

pore sizes cannot pass, whereas gases with smaller radii can diffuse unhindered through the 
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pores [46]. The separation factor for the molecular sieve is higher than for the Knudsen 

diffusion. The factor could be improved for N2/O2 up to 30 [57, 58] 

The previous described mechanisms (I - III) only occur in porous membranes.  

The fourth mechanism, the solution diffusion, occurs in dense membranes [46, 55]. The 

mechanism is subjected to the Fick´s law and can be divided in three steps. The adsorption on 

the surface the bulk transport through the membrane and desorption on the opposite surface. 

Dependent on the structure and the material different diffusion processes can occur. Typical for 

solution diffusion are dense polymeric membranes or mixed matrix membranes. The big 

advantage compared to other technology like adsorption and cryogenic distillation is the easy 

handling and the low energy cost [59].  

However, in some processes the conditions are unfavourable for polymer membranes [32, 60]. 

Such conditions are for example very high temperatures or acidic environment. For these 

conditions ceramic membranes are a good alternative. While ceramic membranes with pore 

sizes above one nm are already commercially available and used in some areas, gas separation 

membranes with pore sizes below 0.4 nm and dense membranes are still in the development 

stage [46, 53, 61]. 

 

 

Figure 4: Gas separation mechanism: (I) Convective flow, (II) Knudsen diffusion, (III) 

Molecular sieving, (IV) Solution diffusion, derived from [55]. 
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2.2. Dense ceramic structures for oxygen permeation 

A Ceramic is defined as a non-metallic, inorganic solid whose structure consists of 

polycrystalline areas [62, 63]. The symmetry of the crystal lattice shows the bonding nature of 

the individual atoms. Big differences occur in the physical and chemical properties of ceramics, 

depending on whether ionic, covalent or metallic bonds dominate in the material. In oxide 

ceramics mainly ionic bonds are present. The major structures can be classified in six groups: 

 Brownmillerite-type (general formula A2B2O5) [64]  

 Fluorite-type (general formula AO2) [65] 

 Cubic perovskite-type (general formula ABO3) [66] 

 Pyrochlore-type (general formula A2B2O7) [67] 

 Double perovskite type (general formula A2B2O6) [68] 

 K2NiF4-type (general formula K2NiF4) [69] 

 

Among these oxide ceramic systems, cubic perovskites-type structures attracted attention in the 

field of gas separation [32, 66]. 

 

2.2.1. Perovskite 

Perovskites can be associated to the field of technical ceramics [63]. The magnetic properties 

vary between ferromagnetic, antiferro- and paramagnetic, while the electrical properties of 

conductive materials reach from semiconductors to insulators [70]. Therefore, perovskite 

materials have a broad operational area such as in microelectronics or mechatronics. 

The crystal structure of perovskites derives from the mineral CaTiO3 [71-73]. The spatial 

arrangement of perovskites oxides follows the empirical formula ABO3. Positions A and B are 

occupied by cations. Alkali and alkaline earth elements are usually implemented in the A 

position which are the larger cations. Transition metals with smaller ionic radii are preferably 

incorporated in the B position. The A cations are cubically surrounded by the B cations, which 

in turn are octahedral coordinated by six oxygen ions. A schematic representation of the ideal 

crystal structure of perovskites is shown in Figure 5. 
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Figure 5: Ideal cubic perovskite structure, derived from [74]. 

 

The stability of the perovskite crystal structure is determined by the relative atomic size of the 

A- and B-cations and by the electric configuration of the B-cations [33, 75]. It can be described 

by the so-called Goldschmidt´s tolerance factor [76]: 

 

𝑟𝐴 atomic radii of the A-site cations 

𝑟𝐵 atomic radii of the B-site cations 

𝑟𝑂 atomic radii of the oxygen ion 

𝑡𝐺  tolerance factor 

 

For perovskites, the tolerance factor is in the range between 0.8 and 1.0. If the tolerance factor 

is outside the range distortion of the lattice and different structures can occur. 

An ideal perovskite structure, as shown in Figure 5, is not conductive for oxygen ions. 

Therefore, defects in the crystal structures are necessary. Depending on the dimension of the 

defects, they can be divided into four categories: Point defects (zero dimensional), line defects 

(one dimensional), planar defects (two dimensional) and bulk defects (three dimensional).   

In general, three point defects occur in perovskites: Vacancies, interstitials and substitutions. 

Vacancies are lattice positions, which are not occupied in the ideal crystal. Interstitial defects 

occur if atoms (or ions) occupy irregular or not ordinarily places in the lattice structure. 

Substitutions are replaced atoms (or ions) by other atoms (or ions) and can lead to distortion of 

the lattice.   

𝑡𝐺 =
1

√2
 ∙  

𝑟𝐴 + 𝑟𝑂

𝑟𝐵 + 𝑟𝑂
 [2.2] 
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Vacancies appear in combination with other defects. The most common defects involving 

vacancies are the Schottky and Frenkel defects [77-79]. The Schottky defect is defined as an 

ion that has been substituted by the vacancy on the surface of the crystal. In contrast, the Frenkel 

defect is described as an ion, which is located in an interstitial space. Both defects are shown in 

Figure 6 and are always present in any crystal at a finite temperature in equilibrium. This can 

be explained with the Gibbs-Helmholtz equation [77]. 

 

𝐺 = 𝐻 − 𝑇 ∙ 𝑆 [2.3] 

 

with G as Gibbs-free energy, H as enthalpy, T as temperature and S as entropy. 

With increasing amount of defects the enthalpy increases but it causes disorder. Increasing 

disorder leads to an increase of the entropy. At a sufficiently high temperature, the entropy 

dominates the formation of vacancies because the enthalpy can be more than compensated by 

the decrease of −TS. 

 

 

Figure 6: Schottky defect and Frenkel defect in an ionic crystal, derived from [80]. 

 

In perovskites the amount of oxygen vacancies have a significant impact on the oxygen 

permeation [81, 82]. Therefore, materials are selected which are doped with low valence 

B-cations. With an increase of the temperature the oxidation state of the B-cations changes and 

leads to an unbalance of the charge. This in turn, leads to a removal of oxygen atoms from the 

lattice to rebalance the charge. This results in the following equation: 

 

𝐴𝐵𝑂3   →  𝐴𝐵𝑂3− +  


2
𝑂2 [2.4] 

with δ as the amount of oxygen ion vacancies. 
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Larger amounts of ion vacancies lead to a better transport of ions through the crystal lattice, 

which results in a higher ionic conductivity. But if the critical oxygen vacancy concentration is 

reached, the crystal lattice can be transformed. This leads to a reduction of the ionic conductivity 

[83]. 

By doping the A-cation side as well as the B-cation side many different perovskite materials 

can be obtained for different applications [84-86]. The resulting structure is AxA´1-xByB´1-yO3-δ. 

The ions are selected depending on which structural properties are desired. In mixed ionic and 

electronic conductor (MIEC) perovskites the defects provide a pathway for oxygen ionic 

diffusion and the transition metals (B-cations) contribute to the electronic conductivity [80, 87, 

88]. This is possible due to the different oxidation states of the transition metals. The transport 

mechanism of MIEC perovskites will be discussed in detail in the following chapter.  

 

2.3. Oxygen transport mechanism in MIEC membranes 

The characteristic of a mixed ionic electronic conductor is the ability to transport not only 

electrons but also ions through the bulk [32, 80, 87, 89]. As already mentioned in chapter 2.2.1, 

oxygen ions can diffuse through lattice vacancies. The formation of lattice vacancies at higher 

temperatures (> 700°C) is accompanied by electron transfer, which is formed by the reduction 

of the transition metals. The driving force of the oxygen transport is a potential difference 

between the feed side (µ1) and the permeate side (µ2), which can be triggered by different partial 

pressures. The oxygen transport occurs in five steps, which are shown schematically in Figure 

7. 

(1) First, oxygen molecules diffuse to the membrane surface and adsorb. This results in a 

concentration decrease at the boundary layer of the feed side (concentration polarization on the 

feed side). (2) Dissociation and reduction of the oxygen molecules according to the following 

reaction equation: 

 

𝑂2(𝑔) + 4 𝑒−  → 2 𝑂2− [2.5] 

 

The oxygen atoms are reduced to two O2- ions by consumption of four electrons. Then the 

oxygen ions are incorporated into the perovskite crystal lattice. This process is called surface 

exchange reaction on the feed side. (3) After incorporation, the oxygen ions diffuse via 

vacancies through the crystal lattice to the permeate side. At the same time, electrons are 

transported to the feed side. This process is known as bulk diffusion. (4) After the removal of 
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the oxygen ions from the crystal lattice, two oxygen ions recombine by giving up electrons to 

form an oxygen molecule according to: 

 

2 𝑂2−  →  𝑂2(𝑔) + 4 𝑒−  [2.6] 

 

This reaction corresponds to the surface exchange reaction on the permeate side. (5) After 

recombination, desorption and diffusion of the oxygen molecule away from the boundary layer 

a concentration gradient occurs. 

 

Figure 7: Oxygen transport mechanism through MIEC membrane, derived from [90]. 

 

In general, the transition resistance between the membrane and the gas phase are small and 

negligible [80, 91]. Therefore, only the bulk diffusion and the surface exchange reaction need 

to be considered for developing transport mechanism. The mechanism of the bulk diffusion as 

well as the surface exchange reaction will be discussed in the following chapters. 

 

2.3.1. Bulk diffusion 

Wagner´s transport theory in metal oxide layers can be used to describe the oxygen transport 

through the bulk [80, 91, 92]. As already mentioned, the oxygen transport proceeds in the form 

of ions under a counter flow of electrons. As a result, the oxygen permeation is dependent on 

the electronic conductivity σel and the ionic conductivity σion. Furthermore, the oxygen 

permeation depends on the gradient of the oxygen potential 𝛻µ𝑂2, whereby the following 

correlation applies:  

 

𝐽𝑂2 ∝ − 
𝑒𝑙 𝑖𝑜𝑛

𝑒𝑙 + 𝑖𝑜𝑛
 𝛻𝜇𝑂2 [2.7] 
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The electronic conductivity (σel) is usually considerably larger than the ionic conductivity (σion) 

because the mobility of electronic carriers is greater than the one of ionic carriers in MIEC 

membranes (σel » σion). Therefore, the following simplification can be made: 

 

el ion

el + ion
≈   ion [2.8] 

 

with the following assumptions [32, 90]: 

- The dissociation and recombination of the oxygen molecules are in equilibrium  

- The surface exchange reactions of the oxygen ions for incorporation and removal are in 

equilibrium 

- No influence between the electronic and ionic flow and the membrane is electrically 

neutral to the outside 

- The gradient of the oxygen potential 𝛻µ𝑂2 can be described by the gradient of oxygen 

partial pressure ratio  

- The ionic conductivity is constant along the membrane thickness 

 

The Wagner equation can be written as: 

 

𝐽𝑂2 =  −
𝑅 𝑇 𝑖𝑜𝑛

42 𝐹2 𝑑
 𝑙𝑛

𝑝1

𝑝2
 [2.9] 

 

with JO2 as the oxygen permeation, R as the gas constant, F as the Faraday constant, d as the 

membrane thickness, T as the temperature, σion as the ionic conductivity at standard conditions, 

p1 and p2 as the oxygen partial pressure at the high pressure side and the low pressure side. 
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2.3.2. Surface exchange reaction 

As already mentioned, it is necessary to dissociate the oxygen molecules at the surface to 

incorporate the oxygen ions into the crystal lattice [91]. The oxygen transfer from the gas phase 

to the oxygen vacancies can be described with the Kröger-Vink-Notation [93]. 

 

1

2
 𝑂2 +  𝑉𝑂

•• + 2𝑒−  ⇋  𝑂𝑂
𝑥 [2.10] 

1

2
 𝑂2 +  𝑉𝑂

••  ⇋  𝑂𝑂
𝑥 + 2ℎ• [2.11] 

 

with 𝑉𝑂
•• as oxygen vacancy site, 𝑂𝑂

𝑥 as oxygen inside the crystal lattice and ℎ• as electron hole.  

For a more detailed description of the exchange mechanism between the surface and the bulk 

the following equilibrium relations were formulated: 

 

𝑂2,(𝑔)  ⇋  𝑂2,𝑎𝑑𝑠 [2.12] 

𝑂2,𝑎𝑑𝑠 + 4𝑒−  ⇋  2𝑂𝑎𝑑𝑠
2−  [2.13] 

𝑂𝑎𝑑𝑠
2− +  𝑉𝑂

•• ⇋  𝑂𝑂
𝑥 +  2ℎ• [2.14] 

 

Equation [2.12] describes the adsorption of molecular oxygen at the membrane surface. 

Equation [2.13] expresses the dissociation of the oxygen molecule and equation [2.14] 

represents the incorporation of the oxygen ion into the crystal lattice. 

Considering near-equilibrium conditions, the oxygen flux through the gas/perovskite interface 

is given by the Onsager equation [94]: 

 

𝐽𝑂2 =  −𝑗𝑒𝑥
0  

∆µ𝑂2
′

𝑅𝑇
=  −𝑗𝑒𝑥

0  
∆µ𝑂2

′′

𝑅𝑇
 [2.15] 

 

with ∆µ𝑂2
′  and ∆µ𝑂2

′′  as the driving force across the two interfacial zones of the membrane and 

𝑗𝑒𝑥
0  as surface exchange rate of oxygen at equilibrium.  
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2.3.3. Rate-determining step in oxygen transport 

The different transport mechanisms at the surface and through the bulk operate in series. The 

overall rate of oxygen transport is determined by the slowest step. The rate-determining step 

can be influenced by different parameters: 

- Physical and chemical properties (ionic and electronic conductivity, diffusion and 

surface exchange coefficients, microstructure or morphology) 

- Experimental conditions (oxygen partial pressure, temperature) 

The microstructure is a big influencing factor for the oxygen transport. In the literature a 

controversial exists regarding the grain boundaries in the microstructure [32, 95-98]. On the 

one hand, the investigation of Diethelm et al. [99] regarding La0.5Sr0.5FeO3-δ shows that an 

increase of the grain size leads to an decrease of the permeation. This indicates that the grain 

boundaries act as fast diffusion paths for oxygen ions. On the other hand, Zeng et al. [100] 

investigated for La0.6Sr0.4Co0.2Fe0.8O3- δ the opposite effect. Therefore, grain boundaries can act 

as fast diffusion paths or as diffusion barrier. This in turn can influence the bulk diffusion as 

well as the surface exchange reactions. 

To estimate the rate determining step Bouwmeester et al. [84] defined a so called “critical 

thickness” Lc [84, 90]. Figure 8 shows the dependency of the oxygen permeation from the 

critical thickness. In the first section, when the wall thickness is larger than the critical thickness 

(d > Lc), the oxygen permeation is governed by the bulk diffusion. In the second section, the so 

called mixed regime, the bulk diffusion as well as the surface exchange reactions have a 

significant influence to the oxygen permeation. In this section, the wall thickness is close to the 

critical thickness. In the third section, when the wall thickness is smaller than the critical 

thickness, the surface exchange reactions governs the oxygen permeation.   
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Figure 8: Rate determining step for oxygen transport through the membrane in relation to the 

characteristic thickness, derived from [90]. 

By assuming that the electronic conductivity is much higher than the ionic conductivity, the 

dominating transport mechanism for hollow fibers can be calculated by the modified Wagner 

equation [30]: 

 

𝐽𝑂2 =  
𝜎𝑖

0𝑅𝑇

16𝐹2 𝑛 𝑑
(𝑝1

𝑛 − 𝑝2
𝑛) [2.16] 

 

with 𝑝1
𝑛 and 𝑝2

𝑛 as the oxygen partial pressure at the high pressure side and the low pressure 

side and 𝑛 as the fitting parameter, which can be derived from experimental data.  

With the value of 𝑛, the rate-limiting step of oxygen transport can be estimated. For 𝑛 < 0, bulk 

diffusion is rate limiting; for 𝑛 ≥ 0.5, the surface exchange reactions dominates the oxygen flux 

and for 0 < 𝑛 < 0.5, the oxygen permeation is influenced by a mixed regime. 

Whenever the oxygen permeation is governed by surface exchange reactions or bulk diffusion, 

this equation can model the oxygen permeation flux dependence of the oxygen partial pressure.  

In the literature different models, besides the Wagner equation, were investigated to describe 

the oxygen permeation flux through a membrane with partial or complete limitation through 

surface exchange kinetics. Since these models are not used in this work, appropriate literature 

is referred [80, 89, 90, 101]. 

 

d > Lc                    d~ Lc             d < Lc

J
O

2
 [
m

L
 m

in
-1

 c
m

-2
]

Thick membrane             Thin membrane

mixed regime

L-1
c

d: membrane thickness

d ~ Lc



2 State of the art 

19 

2.4. Basic aspects of hollow fiber membrane manufacturing 

2.4.1. Non-solvent induced phase separation 

The first publication regarding the phase inversion process was published by Loeb et al. in 1963 

[102]. Since then, the phase inversion process has been the most often used technology to 

produce porous flat and hollow fiber membranes.  

The phase inversion refers to the transformation of a thermodynamic stable liquid to a solid 

state [31, 103, 104]. The phase separation can be induced by temperature change or by contact 

with a non-solvent. In the following the non-solvent induced phase separation (NIPS) process 

will be discussed in detail. A precondition for the NIPS process is a polymer with a good 

solubility in an organic solvent but insoluble in another liquid (non-solvent). The NIPS process 

can be described by the ternary phase diagram according to Gibbs (Figure 9). 

The corner points of the diagram represent the pure components of polymer, solvent and non-

solvent. The diagram is separated into two regions, the one phase and the two phase region, by 

the binodal boundary. In the one phase region, all components are soluble and a homogeneous 

phase is present. In the two phase region a miscibility gap indicates the phase separation.   

 

Figure 9: Ternary phase diagram with the course of the phase inversion process, derived from 

[103] 

 

In Figure 9 the course of precipitation is shown by means of the blue line. Point A represents a 

homogeneous polymer solution. Through contact with the non-solvent the exchange of solvent 

and non-solvent starts until the binodal boundary is reached (B). After crossing the binodal 
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boundary the polymer solution precipitates along the konode. A solid polymer rich and a liquid 

polymer lean phase is formed. The precipitation continues until the non-solvent almost 

completely exchanged the solvent (C) which results in two separate phases. The polymer rich 

(D) and the polymer lean (E) phase.  

The morphology of the membrane is strongly dependent on the thermodynamic of the system 

[103]. The crossing to the miscibility gap can lead to different precipitation and therefore to 

different morphologies. If the pathway runs mainly through the metastable region, nucleation 

and growth dominate the membrane structure. This is called binodal demixing. If the pathway 

leads nearly direct into the two phase region the so-called spinodal decomposition takes place. 

This results in the formation of an open-celled polymer structure.  

Furthermore other factors can influence the morphology like [31, 105]: 

- Solvent 

- Non-solvent 

- Precipitation of the polymer 

- Polymer material 

- Viscosity 

- Diffusion 

- Kinetic effects 

- Composition of the polymer solution  

- Composition of the precipitation bath 

- Temperature of the polymer solution and the precipitation bath. 

 

With the NIPS process hollow fiber membranes can be manufactured in different geometries 

and wall thicknesses by using different spinnerets. As already mentioned the hollow fiber 

geometry is favoured due to the higher specific surface and the lower material consumption 

compared to other geometries [106].  

The NIPS process can also be adapted for ceramic membranes [40, 95]. For this purpose, 

ceramic particles are dispersed in the spinning solution. When the polymer precipitates, the 

particles are embedded in the polymer matrix, and a flexible green fiber is obtained.  
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2.4.2. Sintering mechanism 

The term sintering describes the solidification and continuous densification of a powder or a 

porous body by thermal treatment [107, 108]. This process can be divided into five different 

categories: liquid phase sintering, reactive sintering, viscous sintering, vitrification and solid 

state sintering. The endeavour of a system is to reach the state of the lowest free enthalpy. The 

driving force to reach the lowest free enthalpy includes the reduction of the surface free energy, 

chemical reactions of different components and pressure. 

In this work, the MIEC membranes were manufactured by the solid state sintering. For this 

process, high temperatures are necessary to enable the material transport. In the literature [108] 

a relation between the sintering temperature Tsint and the melting temperature Ts for oxidic 

materials exists: 

 

𝑇𝑠𝑖𝑛𝑡 ≈ 0.8 𝑇𝑠 [2.17] 

 

This relation can only be used as a rough orientation, since the sintering activity is strongly 

related to the properties of the material, like particle size. If the sintering temperature can be 

reached, different sintering mechanisms can occur: vapour transport, surface diffusion, lattice 

diffusion, grain boundary diffusion and dislocation motion. A distinction is made between 

densifying and non-densifying mechanisms. Figure 10 shows the different sintering 

mechanisms by the example of a two particle system.  

The different mechanisms do not operate independently [109]. The mechanisms 1 - 3 lead to 

coarsening of the particle with first neck growth and without densification. These can lead to a 

significant reduction in the densification rate. Mechanism 4 and 5 are the most important 

densifying mechanisms. Diffusion from the grain boundaries to the pores support the neck 

growth and the shrinkage. The plastic flow by dislocation motion can also cause neck growth 

and densification through deformation of the particles. Depending on the dominating 

mechanism (coarsening or densification), the sintering result can be modified to porous or dense 

membranes. 
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Figure 10: Schematic representation of the sintering mechanisms for a system of two 

particles, derived from [109]. 

 

The densification and growth process can be expressed by the following equation [107]: 

 

𝑥

𝑟
=  (

40 ∙ 𝛾 ∙ 𝑎3 ∙ 𝐷∗

𝑘 ∙ 𝑇
)

1
5

∙ 𝑟  −
3
5 ∙   𝑡 

1
5 [2.18] 

 

with x as radius of the contact area between the grains (height of the sinter neck), r as the grain 

radius, γ as surface energy, a3 as atomic volume und D* as self-diffusion coefficient, t as time, 

T as temperature and k as Boltzmann constant. 

Equation [2.18] indicates a decrease of the growth rate by an increase of the grain size and 

passing time. Furthermore, a volume change can be seen with increasing densification, which 

in turn leads to a shrinkage of the sinter. The shrinkage behaviour of the sinter material is well 

known and can be classified in three stages [32, 108, 110]: 

 

Stage 1:  Initial stage 

During this stage transition of the microstructure occur, whereby new grain 

boundaries are formed. Furthermore, the densification is accompanied by neck 

growth and the large initial differences in surface curvature are removed. There 

is no obvious change in volume, density or grain size. If the goal of the sintering 

process is to reach high density, the temperature should be increased quickly 

because the coarsening reduce the driving force of the densification.  
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Stage 2: Intermediate Stage 

With further increase of the temperature the distance between the grains 

decreases and the sintering necks become larger. Furthermore, a pore network is 

formed throughout the body by a decreasing amount of open pores so that only 

isolated pores are left. As a result, the volume decreases accompanied by the 

increase of density. The intermediate stage ends when the theoretical density 

reaches 90 %. 

 

Stage 3: Final stage 

In the final stage the isolated pores shrink continuously and may disappear 

altogether. Furthermore, some of the grains grow at the expense of other grains, 

what results in a coarse grained system. A theoretical density of 95 - 98 % can 

be reached.   

 

In the literature many different heating schedules were published in consideration of the 

different stages and for different porosities [109]. Figure 11 shows a general heating schedule 

with different temperature stages. 

On the first stage the remaining solvent and volatile components are removed. During the 

second stage the thermal decomposition of organic components takes place. At the third stage, 

the highest temperature stage, the different transport mechanisms ensure the sintering process, 

the characteristic microstructure and the desired densification. The fourth stage, the cool down, 

is included to relieve internal stresses. 
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Figure 11: Generalized heating schedule, derived from [109]. 
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3. LCCF hollow fiber manufacturing and application in a microwave air 

plasma reactor 

3.1. Summary 

Dense ceramic oxygen-separating membranes used in practical applications should not only 

possess good oxygen permeability, but also good CO2 stability. The main efforts in this chapter 

were devoted to the manufacturing of hollow fiber membranes from the perovskite LCCF and 

the first experiments regarding oxygen permeation in CO2 containing atmosphere as well as 

first experiments in an air plasma to prove the thermal shock resistance of the hollow fiber 

membranes.  

In the paper, the manufacturing of gas tight hollow fibers from LCCF by the phase inversion 

and sintering process was investigated. The study has shown the negative influence of sulphur 

containing polymer binder on the permeation. Hollow fiber membranes with a sulphur free 

binder has a good CO2 resistance, which can be seen by the long-term permeation test at 900 °C. 

The oxygen permeation is constant at 1.03 ml min-1 cm-2 after initial fluctuations for more than 

200 h.   

The measurements in the air plasma showed that the general applicability is given and that 

oxygen can be separated from an air plasma with values up to 2.26 ml min-1 cm-2. In contrast to 

the conventional oven, the thermal stress for the hollow fiber is much higher due to the fast 

heating. The temperature reaches values up to 1000 °C within seconds. This shows the good 

thermal shock resistance of the LCCF hollow fiber. 
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Use of perovskite hollow fiber membranes in a microwave plasma 
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Abstract 

For the first time the combination of a separation process with a plasma process was 

successfully tested. In this case, the oxygen is separated by a mixed-conducting perovskite 

membrane. At 1 kW a permeation of 2.24 ml min-1 cm-2 could be achieved. Corresponding 

perovskite membranes have been manufactured as hollow fibers with a very good CO2 stability. 

The hollow fibers showed a constant permeation over more than 200 h. Furthermore, a spinning 

process with a sulphur-free polymer binder has been established.  
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1. Introduction 

 

Certain perovskite ceramics are capable of highly selective separation of oxygen from gas 

mixtures in the presence of a partial pressure gradient [1, 2]. The high selectivity of the 

separation is based on the use of mixed ionic-electronic conducting materials. At elevated 

temperatures (usually at T > 700 °C), not only electrons are conducted through the membrane, 

but oxygen ions diffuse in the opposite direction via vacancies in the crystal lattice [3, 4]. 

The membranes can be used in this process in different geometries, with flat and tubular 

membranes commonly used [2]. An interesting possibility to combine the special material 

properties with an effective specific membrane surface is the use of a hollow fiber geometry 

with an outer diameter in the millimeter range [5]. Such membranes have a high specific 

separation area with a very low material consumption at the same time.  

However, no industrial application of such membranes has yet been achieved. This is due, 

among other things, to their limited chemical and thermochemical stability [6]. For example, 

high performance materials such as BaxSrxCoyFezO3-δ decompose to carbonates in the presence 

of CO2 [3, 7]. However, initial materials have been developed that exhibit good CO2 stability 

[1, 6, 8-10]. LawCaxCoyFezO3-δ (LCCF) has shown great promise in this regard, as it exhibits 

high stability to CO2 and CO, as well as good thermal shock resistance. In the literature [1, 6], 

the material has already been investigated as a flat membrane. The focus of this work is to 

develop a fabrication process for LCCF hollow fibers and to investigate permeation in a CO2 

atmosphere. In addition, attempts to use such membranes in a microwave plasma for the 

separation of oxygen are described here for the first time. 

 

2. Experimental 

 

2.1. Manufacturing of perovskite hollow fibers 

The manufacturing process of ceramic hollow fibers consists of several individual steps: 

spinning dope manufacturing, wet spinning and sintering (Figure 1) [3, 11]. In the wet spinning 

process, the production is carried out by the non-solvent induced phase inversion process (in 

short: NIPS) [3, 12]. Starting from a homogenized spinning dope, the solid hollow fiber is 

formed by contact with a non-solvent. Subsequently, an exchange of solvent and non-solvent 

takes place, which are miscible with each other and phase separation is induced. A solid 

polymer-rich phase enclosing the ceramic particles and a polymer-poor liquid phase are formed. 

After washing the hollow fibers, the sintering process at temperatures above 1000 °C follows. 
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In this process, the organic binder is first burned off and then the membrane is sintered together 

to form a gastight wall. 

Each individual sub-step has an influence on the subsequent properties of the hollow fibers. 

During wet spinning, the geometry of the hollow fiber can be influenced by varying the 

spinneret and spinning parameters. In the sintering process, the tightness and the texture of the 

material structure of the membrane are controlled.  

 

 

Figure 1: Manufacturing principle of ceramic hollow fibers. 

The used LCCF was purchased from the company Cerpotech. This powder was mixed with a 

polymeric binder and N-ethyl-2-pyrrolidone and homogenized for 34 h using a ball mill. The 

slurry was then spun into stabilized LCCF green fibers. The final green fibers were cut to 0.6 

m and sintered horizontally at 1120 °C for 16 h. During the sintering process, the fibers shrunk 

by 30% in diameter and 23% in length (Figure 2). By means of the four-point bending test, a 

high mechanical stability of 277 MPa was determined. The fibers were gas-tight up to a pressure 

of 5 bar.  
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Figure 2: Light microscopic and scanning electron microscopic images of gas-tight 

LCCF capillaries 

 

2.2. Setup of the permeation testing device 

To study the oxygen permeability of the capillary membranes, the permeation measurement 

device was used, as schematically shown in Figure 3. Special T-joints are used at the inlet and 

outlet of the reactor to allow complete sealing of the capillaries. In the laboratory setup, the feed 

gas (N2 and O2) is fed into the capillary and the sweep gas (N2), outside the capillary. The 

outgoing oxygen flows from each side are recorded using an oxygen meter (Zirox SGM7). 

Since there is a temperature drop along the length of the furnace, only a short active fiber length 

inside the furnace is used. This allows an accurate determination of the permeation data. The 

oxygen permeation JO2 in (ml cm-2 min-1) is calculated as follows [3]: 

𝐽𝑂2 =  
𝑐𝑂2 ∙ 𝑉̇𝑠

𝐴𝑀𝑒𝑚𝑏𝑟𝑎𝑛
 

(1) 

Where 𝑐𝑂2 is the oxygen concentration on the permeate side (in vol%), 𝑉̇𝑠 is the sweep flow (in 

ml/min) and 𝐴𝑀𝑒𝑚𝑏𝑟𝑎𝑛 the membrane area (in cm2). To calculate the membrane area, the 

logarithmic mean is used for hollow fibers: 

𝐴𝑀𝑒𝑚𝑏𝑟𝑎𝑛 =
𝜋 ∙ 𝐿 ∙ (𝐷𝑎 − 𝐷𝑖)

𝑙𝑛 (
𝐷𝑎

𝐷𝑖
)

 
(2) 

With 𝐷𝑎 as outer and 𝐷𝑖 as inner diameter of the hollow fiber and the effective membrane length 

L. 
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Figure 3: Schematic setup of the permeation testing device. 

 

2.3. Principle of the plasma torch 

A microwave plasma torch at atmospheric pressure is used as the plasma source [13, 14]. Figure 

4 a) shows a schematic diagram of the plasma torch setup. It mainly consists of a broadband 

cylindrical resonator and a narrowband coaxial resonator. If a microwave with a frequency of 

2.45 GHz is guided into the resonator via a waveguide and the length lKR of the coaxial resonator 

corresponds exactly to a quarter of the wavelength of the microwave, resonance occurs. This 

results in very high field strengths at the tip of the coaxial inner conductor and the plasma is 

ignited. After ignition, the plasma enters the cylinder mode and is operated there. The gas can 

be supplied via four tangential gas inlets and one axial gas inlet. The inflow via the tangential 

gas inlets leads to an enveloping rotational flow which encloses the plasma in the center of the 

quartz glass tube. Thus, the plasma torch allows self-ignition and operation with a free-standing 

plasma (see Figure 4 b), which ensures almost maintenance-free operation. 
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Figure 4: a) Schematic diagram of the plasma torch; b) Plasma torch in operation 

with a free-standing air plasma. 

3. Results 

 

3.1. Influence of the polymer binder on the permeation 

In the manufacturing of the hollow fibers, polysulfone was first used as a binder, since this is a 

commonly used material in literature [5, 7, 11]. Figure 5 shows the result of a long-term test of 

an LCCF hollow fiber made with polysulfone. The test was conducted in a 50 % CO2 

atmosphere. A significant decrease in permeation over time can be seen. From SEM images 

(Figure 6a), a layer can be seen on the outside of the hollow fiber, which was detected as a 

sulfur-containing deposit by EDX measurement (Figure 6b). Therefore, for the subsequent 

tests, the polymer binder was changed to polyetherimide, as this is sulfur-free. 

 

Figure 5: Permeation test over time in a 50% CO2-atmosphere. 
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Figure 6: a) SEM image of the cross section of a LCCF hollow fiber b) EDX image 

of a LCCF hollow fiber. 

 

Figure 7 shows the curves of two hollow fibers as a function of temperature, which were 

produced with different polymer binders. The black squares are the measurement results of the 

hollow fiber with polysulfone and the blue triangles with polyetherimide. The experimental 

conditions are summarized in Figure 7. Each measurement point in the diagram was obtained 

from seven individual measurements, and the measurement error is in the range of the symbol 

size. Measurements were made from high to low temperatures. The geometry of the individual 

fibers is also shown in Figure 7. They have a homogeneous round shape. The wall thicknesses 

of the fibers nearly identical (220 µm). Due to the same wall thicknesses, a good comparability 

is given. The oxygen permeations increase exponentially with increasing temperature for both 

hollow fibers. At a temperature of 950 °C, a permeation of 2.71 ml min-1 cm-2 is achieved with 

polyetherimide as binder. In comparison, a permeation of 1.43 ml min-1 cm-2 is achieved at 

950 °C with polysulfone as binder. This illustrates that polyetherimide as a binder is more 

suitable for the LCCF since this has no sulfur compounds, and thus has no negative effect on 

the permeation. In the literature, maximum permeation values of 0.43 ml min-1 cm-2 at 950 °C 

have been previously achieved for the LCCF material [6]. The high permeation values can be 

explained by the hollow fiber geometry, as they have a thinner wall (220 µm) and thus lower 

resistance. In the literature, only pellets have been used so far (wall thickness 1mm) [6]. Even 

at 1000 °C, the material exhibits good resistance and a high permeation (4.02 ml min-1 cm-2). 

Stability at high temperatures is very important for the capillaries to remain stable in plasma. 
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Figure 7: Comparison of two hollow fibers with different polymer binder. (blue triangles: 

with polyetherimide; black squares: with polysulfone). 

 

3.2. Long term stability in CO2 

Another important criterion for the use of the material is its resistance in a CO2 atmosphere. As 

already shown in Figure 5, problems occurred which are related to the polymer binder. 

Therefore, the long-term test (Figure 8) was repeated with polyetherimide as binder. In this test, 

a LCCF hollow fiber has been tested for more than 200 h in an O2/N2 atmosphere containing 

50 % CO2. The permeation is plotted here against time. The test was performed at 900 °C. For 

clarity, the experimental conditions are also shown in Figure 8. With the help of the dashed 

line, the median of the measured values (1.04 ml min-1 cm-2) has been plotted. This clearly 

shows that there is no significant decrease in permeation over the entire period. After a running-

in period of approx. 30 h, the permeation stabilizes and then remains constant. The strong 

deviations at approx. 75 h and 190 h are due to the feed flow, which is not constant at times. 

However, it is clear that there is a deviation of about 0.4 ml min-1 cm-2 in the comparison 

between the measurement point at 900 °C in Figure 6 and the results of Figure 7, which can be 

attributed to the presence of CO2. The deviation could be due to the fact that the CO2 inhibits 

the adsorption of the oxygen atoms on the membrane surface. 

 

2LA7c          2LA11a 
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Figure 8: Oxygen permeation of a LCCF hollow fiber in 50 % CO2 at 900 °C over 

time. 

 

3.3. Measurements in plasma 

To calculate the permeance in the plasma, knowledge of the active membrane area is required 

(see formula 2). For this purpose, a temperature profile of the plasma at the location of the 

capillary as a function of power was recorded by means of a thermos couple. Figure 9 shows 

the temperature for different microwave powers as a function of x-position. A temperature of 

T > 800°C is only given at powers of P ≥ 0.8 kW. The active permeation length of the hollow 

fibers is here about 2 cm. 

 

 



3 LCCF hollow fiber manufacturing and application in a microwave air plasma reactor 

41 

 

Figure 9: Temperature profile of an air plasma for different powers at a flow of 25 l 

min-1. 

 

The oxygen permeance of the LCCF hollow fibers were measured in an air plasma. Figure 10 

shows an example of the oxygen permeation as a function of microwave power for an air flow 

rate of 25 l min-1 and a carrier gas flow rate of 140 ml min-1. It is clear that the permeation 

increases with increasing power. A permeation of 2.24 ml min-1 cm-2 is achieved at a microwave 

power of 1kW. Which corresponds to a temperature of about 980 °C. At lower powers (0.6 

kW), no permeation can be measured, since the temperature required to activate the membrane 

is not present. However, it is clear that a combination of plasma process and separation process 

is in principle possible.  
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Abbildung 10: Oxygen permeation of a LCCF hollow fiber in an air plasma at 

different microwave powers. 

 

Comparing oxygen transport in a plasma atmosphere at 1 kW (2.24 ml min-1 cm-2) with the 

oxygen transport in a normal furnace at 950 °C (2.71 ml min-1 cm-2), only minor differences are 

observed. Since the determination of the active surface in plasma is associated with a relatively 

large error, the observed differences are not significant. 

 

 

4. Summary 

Gas-tight ceramic hollow fibers could be fabricated from the perovskite material 

LawCaxCoyFezO3-δ (LCCF) by an economically advantageous spinning process, and in addition, 

the spinning process could be established with a new sulfur-free polymer binder. After burning 

off the polymer binder and sintering, the perovskite hollow fibers can be applied to the 

separation of oxygen from various gas compositions and in a plasma. Furthermore, they possess 

nearly infinite selectivity for oxygen. Due to the hollow fiber geometry, the fibers have a small 

wall thickness (220 µm) which allows the oxygen flux to increase in orders of magnitude up to 

4 ml min-1 cm-2.  

The fabricated hollow fiber membranes of LCCF also exhibit stable oxygen permeation in a 

CO2 atmosphere at 900 °C. Over the 200 h, the oxygen permeation is stable at an average value 

of 1.04 ml min-1 cm-2.  
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In addition, it was shown that the combination of plasma and separation technology is in 

principle possible. Despite the difficult conditions in the plasma, the hollow fibers show no 

signs of degradation and permeations of up to 2.24 ml min-1 cm-2 can be achieved. 
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4. Bulk diffusion optimization of LCCF hollow fiber membrane 

4.1. Summary 

Based on the good results of the previous chapter, the optimization of the bulk diffusion of the 

LCCF hollow fiber membrane with regard to the oxygen permeation is discussed in this chapter. 

Firstly, the publication shows the possibility to manufacture hollow fiber with different 

geometries and different particle sizes. Hollow fibers with outer diameter between 0.76 mm 

and 1.60 mm were manufactured by using different spinnerets.  

The microstructure of the fibers were analysed by SEM, TEM, EDXS and XRD. The LCCF 

phase contains different amounts of brownmillerite and a spinel-type cobalt oxide phase as 

foreign phase, depending on the sintering temperatures. The different sintering temperatures 

(varying between 1070 °C and 1245 °C) result in different particle areas of the hollow fibers. 

With increasing temperatures the particle area increases from 0.41 µm2 (1070 °C) to 19.49 µm2 

(1245 °C). The oxygen permeation increases with increasing sintering temperature. Therefore, 

it can be considered that the grain boundaries act as barriers for the oxygen transport through 

the bulk. 

The reduction of the wall thickness from 244 µm to 81 µm leads to an increase of the oxygen 

permeation by 111.2 % at 1000 °C. This shows the dependency of the oxygen permeation from 

the bulk diffusion. On the other hand, the results were analysed by a Wagner plot and showed 

that the oxygen permeation is still dominated by both transport mechanisms, the surface 

exchange reactions and the bulk diffusion. 

 

 

4.2. Permeation improvement of LCCF hollow fiber membranes by spinning and 
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5. Improvement of the oxygen transport mechanism of LCCF hollow 

fiber membranes 

5.1. Summary 

After the optimization of the bulk diffusion in the previous chapter, the focus of this paper is 

on further improvement of the oxygen permeation through LCCF hollow fiber membranes. The 

paper focuses on the one hand side on the manufacturing of asymmetric hollow fibers with a 

porous support and a thin dense layer and on the other hand on a surface modification of dense 

hollow fibers via surface etching with H2SO4. 

The sintering temperature of the porous support was varied to find a good compromise between 

mechanic stability and porosity. The dip coating process, to apply the dense layer to the porous 

support, was optimized to produce a thin dense layer by varying the coating velocity. The 

microstructure was analysed by SEM images.  

Hollow fiber membranes with an outer diameter of 1.13 mm and a dense layer of 22 µm could 

be manufactured. The oxygen permeation reached up to 5.10 ml min-1 cm-2 at 1000 °C. In 

comparison to dense hollow fibers with different wall thicknesses (179 µm and 73 µm) the 

dense coated hollow fiber membrane showed an increase of oxygen permeation of 68.6 % 

(compared to 179 µm) and 4.7 % (compared to 73 µm). The relative low increase of 4.7 % can 

be explained by the 86.4 % smaller grain areas even though the fiber was sintered at the same 

temperature. The n-value of the Wagner equation increased with decreasing wall thickness, but 

is still in the mixed regime.  

For the surface modification tests, hollow fiber membranes, sintered at 1220 °C, were etched 

for different times (20 min, 60 min and 180 min) at different surfaces (inner, outer and both). 

The acidic solutions were analysed with ICP-MS and ICP-OES to investigate which 

components were favourably dissolved. The hollow fiber, etched at both surfaces for 180 min, 

showed the highest oxygen permeation flux (5.9 ml min-1 cm-2 at 1000 °C).  
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Abstract 

The influences of bulk diffusion and surface exchange on oxygen transport of 

(La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF)  hollow fiber membranes were investigated. As an outcome, 

two strategies for increasing the oxygen permeation were pursued. First, porous LCCF hollow 

fibers as support were coated with a 22 µm dense LCCF separation layer through dip coating 

and co-sintering. The oxygen permeation of the porous fiber with dense layer reached up to 

5.10 ml min-1 cm-2 at 1000 °C in a 50 % CO2 atmosphere. Second, surface etching of dense 

LCCF hollow fibers with H2SO4 was applied. The surface etching of both inner and outer 

surfaces leads to a permeation improvement up to 86.0 %. This finding implies that the surface 

exchange reaction plays a key role in oxygen transport through LCCF hollow fibers. A good 

long-term (> 250 h) stability of the asymmetric hollow fiber in a 50% CO2 atmosphere was 

found at 900 °C. 

 

Keywords 

Oxygen separation, mixed ionic electronic conductor, surface modification, asymmetric hollow 

fiber membrane 

 

1. Introduction 

Since the Paris agreement in 2015, many efforts to produce green energy from renewable 

sources were made to prevent a temperature rise larger than 1.5 °C [1]. For example, the 

installed power of solar cells increased from 23 GW (2009) to 627 GW (2019) [2]. One big 

challenge is the fluctuation of the renewable energy. Therefore, technologies to store or to 

convert this excess energy are urgently needed. A possible approach for the energy surplus is a 

combined plasma-membrane reactor, which was first mentioned by Chen et al. [3]. They 

showed that with a microwave induced plasma torch, CO2 can dissociate into oxygen and CO 

due to CO2  CO + ½ O2. During the plasma process, the oxygen can be separated in situ 
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through mixed ionic electronic conductor (MIEC) hollow fiber membranes. The remaining CO 

can be used as a platform chemical for the synthesis of high-value hydrocarbons. The 

requirements for MIEC membranes in a CO2 plasma are challenging: A high oxygen 

permeation in combination with good thermal and CO2 stability.  

In the last decade, the development of MIEC perovskite oxides have attracted much attention 

[4-8]. An interesting perovskite is (La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF), which was first 

mentioned by Teraoka et al. [9]. In different publications the long-term stability in CO2 and the 

good temperature turnover resistance was shown [10-14]. However, LCCF has relatively low 

oxygen permeability compared to membranes made from high performance materials like 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ [15] or BaCoxFeyZrzO3-δ [16]. A number of factors such as sweep gas 

flow, operating temperature and the membrane properties itself, like morphology, geometric 

form, wall thickness and chemistry of materials, can influence the oxygen permeation [17,18]. 

The transport through the membrane is dominated either by the surface exchange reactions or 

by the bulk diffusion [19]. Many publications deal with the optimization of membranes by 

surface modification to improve the surface exchange reactions or by reducing the wall 

thickness thus shortening the bulk diffusion length [20-26].  

To improve the surface exchange reactions the oxygen adsorption respectively desorption can 

be optimized by increasing the surface area [27-29]. In some cases, an extra layer of porous 

material like palladium or other perovskites was added via dip coating or electroless plating 

[27,30-32]. Another interesting method is the surface etching. Liu et al. [33] first mentioned the 

surface etching of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) hollow fibers with sulphuric and hydrochloric 

acid. The modified structure showed an oxygen flux up to 20 times higher. Wang et al. [34] 

also used the surface etching method for LSCF hollow fibers with different concentrations of 

sulphuric acid and hydrochloric acid. The dense surface of the hollow fiber is converted into a 

porous structure. This new structure not only increases the surface area for an enhanced surface 

exchange reaction but it can also reduce the thickness of the dense layer and thus the transport 

resistance for the bulk diffusion. 

Another possibility to increase the oxygen permeation is the preparation of asymmetric 

membranes, which consist of a thin dense layer on a porous support. However, the decrease of 

the membrane thickness has a negative influence on the mechanical stability and can cause 

failure during operation. Up to now, many studies have focused on the fabrication of 

asymmetric disc membranes by different coating methods such as dip coating, spray coating, 

sputtering or other techniques [5, 28, 35-39]. The thick porous support can improve the 

mechanical strength as well as the surface exchange reactions by increasing the surface area. 
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The manufacturing of asymmetric disk membranes is much easier compared to asymmetric 

hollow fiber membranes. On the other hand, for hollow fibers the scale up is easier and the edge 

leakage effect is irrelevant [40].  

In our latest publication [41], the influence of the wall thickness and the sintering temperature 

on the oxygen permeation of LCCF hollow fiber membranes was examined. Dense hollow 

fibers with a wall thickness of 81 µm could be manufactured by wet spinning and sintering. 

The decrease of the wall thickness showed an increase of the oxygen permeation but it also 

showed that the oxygen transport is still dominated by both the bulk diffusion as well as the 

surface exchange reactions. The calculation of the dominating transport mechanism was made 

by the Wagner equation [19]:         

𝐽𝑂2 =  
𝜎𝑖

0𝑅𝑇

16𝐹2 𝑛 𝐿
(𝑝1

𝑛 − 𝑝2
𝑛) (1) 

with 𝑅 as the gas constant, 𝐽𝑂2 as the oxygen permeation, 𝐿 as the membrane thickness, 𝐹 as 

the Faraday constant, 𝑇 as the temperature,  𝜎𝑖
0 the ionic conductivity at standard conditions, 

𝑝1 as the oxygen partial pressure at the high pressure side and 𝑝2 as the low pressure side and 

𝑛 as the fit parameter which can be derived from the experimental data. For 𝑛 ≥ 0.5, the surface 

exchange reaction limits the oxygen flux; for 𝑛 < 0, bulk diffusion dominates and for 0 < 𝑛 <

0.5, the oxygen permeation is influenced by a mixed regime. 

The aim of this paper is to optimize the oxygen transport through a LCCF hollow fiber 

membrane by two different methods. The first method is the preparation of a thin dense LCCF 

layer on a porous LCCF support to reduce the influence of bulk diffusion. The second method 

is the surface etching, which primarily increases the roughness of the surface and, therefore, the 

surface exchange reactions. The findings of this work can be used to further optimize the 

performance of LCCF membranes with regard to material saving and to increase the permeance, 

especially for the extraction of oxygen from a CO2 plasma gas. 

 

2. Material and methods 

2.1. Hollow fiber preparation 

The perovskite powder (La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) was prepared by Cerpotech (Tiller, 

Norway) via a spray pyrolysis process. The manufacturing of the asymmetric hollow fiber can 

be separated in five steps (Fig. 1): Preparation of the spinning solution, the wet spinning 

process, the preparation of the coating suspension, the coating, and the sintering.  

The following nomenclature is used for the LCCF hollow fibers prepared: 
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 p-LCCF: Porous LCCF hollow fibers which are prepared by the addition of a porogen 

(rice starch) to the spinning solution and are sintered at low temperature (1170 °C) to 

avoid densification. 

 c-LCCF: Coated LCCF hollow fibers are prepared by dip coating of p-LCCF green 

fibers with an LCCF suspension and are sintered at low temperature (1170 °C) to 

prepare only a thin dense layer on a porous support. 

 d-LCCF: Dense LCCF hollow fibers are prepared by wet spinning and are sintered at 

high temperature (1220 °C) to get a completely dense membrane wall. 

 e-LCCF: Etched LCCF hollow fibers are prepared by etching d-LCCF (1220 °C) with 

sulphuric acid inside and/or outside.  

The conditions for the preparation of the different fibers are summarized in Tables 1, 2 and 3. 

The spinning solution for the porous hollow fiber consists of 51.5 % LCCF, 5.8 % 

Polyetherimide (PEI, Merck KGaA, Darmstadt, Germany), 36.7 % N-Ethyl-2-Pyrrolidon (NEP, 

≥98 %, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and 6 % rice starch (Merck KGaA, 

Darmstadt, Germany) and was ball milled for 48 h at 170 U min-1. The spinning solution for 

the dense hollow fiber has the same composition except of the rice starch.  

The non-solvent induced phase inversion process was used to manufacture stable green fibers 

by phase inversion spinning which is described in details elsewhere [11]. The external coagulant 

was deionised (DI) water and a mixture of DI water/NEP (25 vol%/ 75 vol%) was used as bore 

fluid. The porous hollow fibers were spun with a spinneret of Do/Di 2.0/1.2 mm. For the dense 

hollow fibers (without rice starch) two different fibers were spun with a spinneret of Do/Di 

2.0/1.2 mm and Do/Di 1.0/0.5 mm to manufacture hollow fibers with different wall thicknesses. 

The coating suspension consists of 31 % LCCF (ball milled for 24 h at 250 U min-1), 2.6 % 

PVP (Merck KGaA, Darmstadt, Germany) and 66.4 % Ethanol (≥98 %, Th. Geyer GmbH & 

Co. KG, Renningen, Germany). The suspension was deposited by dip coating on 60 cm long 

green hollow fibers. The coated green fibers were than sintered at 1170 °C for 16 h. All 

manufacturing parameters are shown in Table 1. 
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Fig. 1. Manufacturing principle of asymmetric LCCF perovskite hollow fibers.  

 

Table 1: Parameters for the wet spinning of LCCF hollow fiber membranes. 

Name p-LCCF d-LCCF 

Spinneret: Do/Di [mm] 2.0 / 1.2 1.0 / 0.5 & 2 .0 / 1.2 

Dope composition [wt%]: 

 LCCF 

 PEI 

 NEP 

 Rice starch 

 

51.5 

5.8 

36.7 

6.0 

 

58.0 

7.6 

34.4 

0.0 

Spinning parameters: 

 Bore liquid – DI water/NEP [vol%] 

 Flow rate of the bore liquid  [ml min-1] 

 External coagulant 

 Air gap [cm] 

 

25 / 75 

7.5 

DI Water 

0 

Standard sintering parameters: 

 Temperature [°C] 

 Time [h] 

 

1170 

16 

 

1220 

16 
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Table 2: Parameters for the coating of p-LCCF hollow fibers to prepare c-LCCF membranes. 

Base hollow fiber p-LCCF (green) 

Slurry composition [wt%]: 

 LCCF 

 PVP 

 Ethanol 

 

31.0 

2.6 

66.4 

Coating parameters: 

 Velocity [cm s-1] 

 Dwelling time [s] 

 

0.5 – 5.0 

0 

Standard sintering parameters: 

 Temperature [°C] 

 Time [h] 

 

1170 

16 

 

2.2. Surface modification of compact LCCF hollow fibers through surface etching 

The preparation of e-LCCF hollow fibers was achieved through modification of the surface of 

d-LCCF fibers by chemical etching with sulphuric acid (H2SO4, ≥ 98 %, Bernd Kraft GmbH, 

Duisburg, Germany). For the etching of the outer surface, the hollow fibers with a length of 

30 cm were sealed with a polymer resin at both ends and then immersed in 25 ml H2SO4 in a 

glass tube for a prescribed time [33]. The reacted fiber was rinsed five times with DI water and 

dried at 100 °C in an oven. For the etching of the inner surface of the hollow fiber, it was 

connected to a funnel, filled with H2SO4. The acid flow rate was controlled by a valve and by 

the weight of the collected amount of H2SO4 in a beaker. To modify both surfaces, firstly the 

outer surface was etched and then the inner surface with the previously described methods. The 

modified surfaces and the etching time of the different e-LCCF hollow fibers are summarized 

in Table 3.  

Table 3: Parameters for the etching of d-LCCF hollow fibers to prepare e-LCCF membranes. 

Base hollow fiber d-LCCF 

Etching agent H2SO4, ≥ 98 % 

Etching parameters: 

 Temperature 

 Time [min] 

 

RT 

20 – 180 

Etching surfaces 1. Inside 

2. Outside 

3. Inside & Outside 
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2.3. Characterisation of the LCCF hollow fibers 

The morphological features of the prepared membranes were examined using a scanning 

electronic microscope (SEM) of the type GeminiSEM500 (Carl Zeiss Microscopy Deutschland 

GmbH, Oberkochen, Germany). The SEM was equipped with two energy dispersive X-ray 

(EDX) detectors (XFlash and FlatQuad, Fa. Bruker Nano, Berlin, Germany). The grain area 

distribution was statistically calculated by manual measurements of the area of individual 

grains, based on the SEM micrographs. For each fiber the area of 150 particles was registered. 

The mechanical stability was measured with the four point-bending test (Zwick/Roell Z0005, 

Ulm, Germany). The porosity of the uncoated hollow fiber was calculated with a porometer 

type IG-FT Porolux 1000 (Porotec GmbH, Hofheim am Taunus, Germany). Furthermore, the 

composition of the etching solutions was analysed with inductively coupled plasma mass 

spectrometry (ICP-MS), type Triple Quadrupole 8900 (Agilent Technologies, Santa Clara, 

USA) and inductively coupled plasma optical emission spectrometry (ICP-OES), type Plasma 

Quant PQ 9000 Elite (Analytik Jena GmbH, Jena, Germany). Previous to the permeation tests, 

the gas-tightness of the LCCF fibers needs to be tested. Therefore, the coated hollow fibers 

were sealed with polymer resin at one end. Then the fiber was connected to a pressure hose. 

The pressure was set up to 4 bar, then the fiber was immersed into water to check if there are 

any bubbles as indicator for leakage.  

 

2.4. Oxygen permeation tests 

A detailed description of the set up to measure the oxygen permeation of LCCF hollow fibers 

in an oven can be found in details elsewhere [42]. The feed flow, consisting of CO2, O2 and N2, 

was injected inside the lumen of the hollow fiber. The N2 sweep flow was outside of the hollow 

fiber in counter current mode. The sweep flow was kept constant at 100 Nml min-1 for all the 

measurements. In the experiments with temperature variation, the feed flow was constant at 

130 Nml min-1 with a composition of 50 % CO2, 23 % O2 and 27 % N2. In these experiments, 

the temperature was reduced in 50 K steps starting at 1000 °C until 700 °C. For the calculation 

of the dominating transport mechanism, the feed flow was constant at 100 Nml min-1 with a 

varying composition of O2 and CO2 and the temperature was kept constant at 900 °C. For all 

measurements, the pressure on the feed side was 2 bar and 1 bar on the sweep side. The oxygen 

concentration in the feed as well as in the sweep was measured with an oxygen analyser (Zirox 

SGM 7). To ensure isothermal conditions, the hollow fibers were coated three times with a gold 

paste on both ends and sintered at 950 °C for 6 h to obtain a defined 1 cm long permeation zone 
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in the middle of the oven. The oxygen permeation 𝐽𝑂2 (ml cm-2 min-1) can be calculated with 

the following equation [42]: 

 

𝐽𝑂2 =  
𝑐𝑂2 ∙ 𝑉̇𝑠

𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
 (2) 

 

with 𝑉̇𝑠 as sweep flow (ml min-1), 𝑐𝑂2 as the oxygen concentration on the sweep side (vol %), 

and 𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 as the membrane area (cm2). To calculate the membrane area, the logarithmic 

mean of the hollow fiber was used: 

 

𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 =
𝜋 ∙ 𝐿 ∙ (𝐷𝑜 − 𝐷𝑖)

𝑙𝑛 (
𝐷𝑜

𝐷𝑖
)

 
(3) 

 

with 𝐷𝑖 as inner and 𝐷𝑜 as outer diameter of the hollow fiber and the effective membrane 

length 𝐿. 

 

3. Results and discussion 

3.1. Influence of the sintering temperature on the porous LCCF support  

Uncoated green p-LCCF hollow fibers were sintered at different temperatures TS (1100 °C, 

1120 °C and 1170 °C) to study the interplay of mechanical stability, shrinkage, nitrogen 

permeance and average pore size.  

Table 4 summarizes the results for the different sintering temperatures (Ts). The temperature 

influence on the outer diameter (Do) of the fibers is negligible small. A bigger influence can be 

seen regarding the nitrogen permeance, the average pore size () and the mechanical stability. 

As expected, with increasing sintering temperature, the nitrogen permeance and the pore size 

decrease, and contrary the max. bending force (FB) and the bending strength (B) increase. In 

this study, the sintering temperature was fixed at 1170 °C as this temperature seems to be the 

best compromise between high mechanical strength and good porosity. The nitrogen permeance 

of the porous fibers sintered at 1170 °C is more than 36 times higher than the highest oxygen 

permeance of a dense LCCF fiber (6.16 ml min-1 cm-2 at 1000 °C [41]). As described in our 

previous publication [41], higher sintering temperatures have a positive influence on the oxygen 
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permeation, but a further increase of the sintering temperature is not advantageous since 

densification of the LCCF hollow fibers starts. 

Table 4: Characteristics of the porous p-LCCF fibers sintered at different temperatures.  

TS Do Shrinkage JNitrogen  FB B 

[°C] [mm] [%] [L∙m-2∙h-1∙bar-1] [µm] [N] [MPa] 

1100 1.13 ± 0.03 38.0 508,800 ± 59,900 1.23 1.0 ± 0.1 44.4 ± 2.0 

1120 1.12 ± 0.03 38.6 388,200 ± 52,700 1.15 1.7 ± 0.3 72.3 ± 6.4 

1170 1.13 ± 0.01 38.0 119,300 ± 25,100 0.92 2.7 ± 0.1 111.9± 0.1 

 

3.2. Morphology and microstructure of the LCCF hollow fiber 

3.2.1. Porous hollow fiber with a dense layer on top 

The green p-LCCF hollow fiber were cut in 60 cm lengths, dip coated for the deposition of the 

dense layer on top with different velocities, and then sintered at 1170 °C. After sintering, the c-

LCCF fibers have an outer diameter of 1.13 mm, an inner diameter of 0.72 mm and a thickness 

of the porous wall of 185 µm. The thickness of the dense layer was varied by using different 

dip coating velocities. Table 5 summarizes the used coating velocities and the resulting layer 

thicknesses. Furthermore, the gas-tightness of the hollow fibers is added. Not all coating 

velocities lead to a dense layer. The best results with the highest yield of gas-tight membranes 

(> 90 %) could be achieved for coating velocities between 1.75 and 2.00 cm s-1. With lower 

coating velocities, it was not possible to form a stable dense layer on the p-LCCF hollow fiber. 

With higher coating velocities, the surface tension was too high and cracks appeared at the 

surface after sintering with the result that the coating was not gas-tight.  
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Table 5: Summary of the different coating velocities of the p-LCCF, the resulting layer 

thicknesses of the dense layer and gas-tightness after sintering of the c-LCCF.  

Coating velocity [cm s-1] Layer thickness [µm] Gas tightness   

0.50 11.9 < 1 bar 

0.75 13.3 < 1 bar 

1.00 15.6 < 1 bar 

1.25 17.9 ≤ 2 bar 

1.50 20.6 ≤ 2 bar 

1.75 21.2 > 4 bar 

2.00 21.8 > 4 bar 

2.50 22.6 < 2 bar 

3.00 25.3 < 1 bar 

4.00 25.1 < 0.5 bar 

5.00 27.5 < 0.5 bar 

 

Fig. 2 shows SEM images of a c-LCCF membrane prepared by coating a porous LCCF hollow 

fiber with an outside dense layer and sintered at 1170 °C. The support structure (Fig. 2 b) shows 

finger-like pores along the whole cross-section, which explains the good nitrogen permeance. 

The difference between the dense layer and the porous support can be seen clearly in Fig. 2 c. 

In the dense layer only small closed pores are present. Furthermore, neck growth between the 

support structure and the dense layer can be spotted. In Fig. 2 d, the surface of the dense layer 

of c-LCCF is shown to be without any porosity.   



5 Improvement of the oxygen transport mechanism of LCCF hollow fiber membranes 

66 

 

Fig. 2: SEM image of an asymmetric c-LCCF hollow fiber spun with the Do = 2 mm 

spinneret, coated with a velocity of 2 cm s-1 and sintered at 1170 °C. (a) Support structure 

with dense layer; (b-c) cross-section and (d) dense surface of the fiber. Permeation study of 

this membrane see Fig. 7.  

In our previous publication [41] it was found, that in LCCF the grain boundaries are barriers 

for oxygen permeation. Therefore, the average grain area of the dense layers of c-LCCF was 

derived from SEM images (Fig. 3) by particle analysis. For the dense layers of c-LCCF sintered 

at 1170 °C different grain areas between 0.07 µm2 and 0.36 µm2 were found. An average grain 

area of 0.16 µm2 was calculated. For the d-LCCF, also sintered at 1170 °C an average grain 

area of 1.18 µm2 was calculated. This can be explained by a particle size reduction due to the 

ball milling. As described in section 2.1, before the coating the LCCF powder was ball milled 

for 5 h at 300 U min-1, which leads to a decrease of the particle size. The milled powder showed 

a 53 % decrease of the grain size compared to the untreated powder. The spinning solution of 

the d-LCCF fiber is also ball milled but at lower velocity and only to homogenise with the 

polymer and the solvent. 
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Fig. 3: SEM micrographs of LCCF hollow fiber outer surface sintered at 1170 °C to compare 

the particle areas of the different manufacturing methods. (a) c-LCCF and (b) d-LCCF. 

Permeation study of these membranes see Fig. 7.  

 

3.2.2. Surface etched e-LCCF hollow fibers 

The d-LCCF hollow fibers manufactured for the surface etching were spun without rice starch, 

sintered at 1220 °C having an outer diameter of 1.13 mm, an inner diameter of 0.79 mm and a 

wall thickness of 0.17 mm. The SEM micrographs of the non-etched membrane is shown in 

Fig. 4 a-c. The inner and outer surfaces (Fig. 4 b, c) show a dense surface. The cross section 

(Fig. 4 a) has some elongated non-interconnected pores, what is typical for hollow fibers 

manufactured via wet spinning. The d-LCCF hollow fibers were etched for 3 h at the outer 

surface (Fig. 4 e) and show a higher surface roughness compared to the untreated fiber. In the 

image of the cross section (Fig. 4 d), it can be seen that the acid did not soak into the fiber. The 

modification of the inner surface is shown in Fig. 4 g-i. The inner surface (Fig. 4 i) contains 

some radial aggregates (marked by arrow). The composition of the radial aggregates were 

analysed with EDX measurements in Fig. 6. The etching of both surfaces is shown in Fig. 4 j-

l. Interestingly, the inner surface (Fig. 4 l) has some lengthwise cracks and no radial aggregates. 

The outer surface is quite similar to Fig. 4 e. Furthermore, no significant decrease of the wall 

thickness can be seen and the lengthwise cracks do not reach through the cross-section. 

Therefore, the etching of the surfaces results only in a higher surface roughness and not in a 

decrease of the wall thickness.  
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Fig. 4: SEM images of a LCCF hollow fiber before and after etching. a-c Untreated d-LCCF; 

d-f e-LCCF etched for 3 h with H2SO4 at outer surface; g-i etched for 3 h with H2SO4 at inner 

surface; j-l etched for 3 h with H2SO4 at inner and outer surfaces. a, d, g and j, cross section; 

b, e, h, and k outer surface and c, f, i and l inner surface. Permeation study of these membranes 

see Fig. 11, Fig. 12 and Fig. 13.  

  



5 Improvement of the oxygen transport mechanism of LCCF hollow fiber membranes 

69 

The mechanical strength of the d- and e-LCCF hollow fibers sintered at 1220 °C and etched 

inside and/or outside for different times is shown in Fig. 5. Here, the maximum bending force 

and the bending strength are shown for the different hollow fibers. As expected, the etching of 

the hollow fiber leads to a decrease of the max. bending force as well as the bending strength. 

The etching of the outer surface of the hollow fiber has a stronger impact compared to the 

etching of the inner surface. The highest decrease in the mechanical properties was found after 

etching the inner and the outer surface for 180 min. The max. bending force decreased by 

30.5 % and the bending strength by 31.0 %.  

 

Fig. 5: Bending force and bending strength for e-LCCF fibers with different etching times 

and etching sites. All the starting d-LCCF fibers were spun with the spinneret Do= 2mm and 

sintered at 1220 °C.  

In Table 6, the composition of the cations found in the etching solution after the treatment of 

the outer surface of d-LCCF are shown. Compared to the bulk powder composition, the content 

of lanthanum is much higher. This indicates that dissolution of lanthanum from LCCF by H2SO4 

is favoured. Cobalt, on the other hand, is less favoured. This means that after etching a higher 

amount of cobalt and a smaller amount of lanthanum is present in the surface of the e-LCCF 

hollow fiber. The etching duration plays a secondary role since the percentage ratio of the 

components are nearly the same after 20, 60 and 180 min. On the other hand, the total dissolved 

amount increases with increasing time. However, this increase is not linear with increasing 

etching time.  
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Table 6: Percentage ratio of the individual elements from the acidic etching solution analysed 

with ICP-MS and ICP-OES.  

Sample  La [%] Ca [%] Co [%] Fe [%] 
Total dissolved amount 

[mg l-1]  

LCCF 

powder  
0.3 0.2 0.4 0.1 - 

20 min 0.60 0.13 0.20 0.07 407 

60 min 0.61 0.13 0.19 0.07 472 

180 min 0.59 0.13 0.22 0.07 503 

 

From the SEM image of the e-LCCF fibers etched at the inner surface (see Fig. 4 i), EDX 

measurement were made to figure out the composition of the darker spots (Fig. 6). The images 

show an enrichment of cobalt in the center of the darker spots, and around them an enrichment 

of calcium. This means lanthanum is etched out of the fiber and cobalt is enriched in some 

areas. These results are in good agreement with the ICP measurements (Table 6).     

 

Fig. 6: EDX images of the inner surface of the e-LCCF hollow fiber etched for 3 h at the 

inner surface (see Fig. 4 i). a) lanthanum, b) calcium, c) cobalt, d) iron. Permeation study of 

these membranes see Fig. 12 
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3.3. Permeation results 

3.3.1. Porous hollow fiber with dense layer 

As mentioned above, the oxygen permeation through MIEC membranes can be limited by two 

mechanisms: Bulk diffusion and surface exchange reaction. To investigate the dominating step, 

c-LCCF and d-LCCF were manufactured and compared. Fig. 7 shows the permeation in 

dependence of the temperature for different dense layer thicknesses. The d-LCCF fibers have 

dense layers of 179 µm, 73 µm, and the c-LCCF fiber has a dense coating of 22 µm. As 

expected, the oxygen permeation increases by 63.9 % with a decrease of the wall thickness 

from 179 µm to 73 µm at 1000 °C. Surprisingly, no significant increase between the d-LCCF 

fiber with a dense layer thickness of 73 µm (4.87 ml min-1 cm-2 at 1000 °C) and the c-LCCF 

fiber (5.10 ml min-1 cm-2 at 1000 °C) can be seen. We expected a higher increase of the oxygen 

permeation due to the reduced dense layer thickness. Furthermore, we suggest a higher 

permeation due to the porous support structure. The porous structure should increase the surface 

area, which leads to a better oxygen exchange. The only small difference can be explained by 

the SEM images in Fig. 3. As already mentioned, the grain size has a big influence on the 

oxygen permeation. In our previous publication [41], a rise of the oxygen permeation with 

increasing average grain size was measured. In our case, the average grain size of the c-LCCF 

is 86.4 % smaller than the grain size in the d-LCCF fiber. Furthermore, concentration 

polarization in the porous layer could also lead to a decrease of the driving force for permeation. 

Values of the activation energy of oxygen permeation through the d-LCCF and c-LCCF hollow 

fibers with different thickness of the dense layers were determined from an Arrhenius plot, as 

given in Fig. 8. The activation energy decreases with decreasing thickness of the dense layer 

from 182.5 kJ mol-1 (179 µm) to 148.4 kJ mol-1 (22 µm). 
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Fig. 7: Oxygen permeation through d-LCCF and c-LCCF hollow fibers sintered at 1170 °C 

with different dense layer thicknesses (d-LCCF: 179 µm, 73 µm; c-LCCF: 22 µm) in 

dependence of the temperature. Test conditions: Sweep flow: 100 Nml min-1 N2; Feed flow: 

35 Nml min-1 N2, 65 Nml min-1 CO2, 30 Nml min-1 O2; Pressure feed side: 2 bar, pressure 

sweep side: 1 bar. 

 

 

Fig. 8: Arrhenius plot of the oxygen flux through d-LCCF and c-LCCF fibers sintered at 1170 

°C with different dense layer thicknesses. The various symbols show the different dense layer 

thicknesses. Test conditions see Fig. 7. 
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In Fig. 9, the Wagner plot for hollow fibers with different dense layer thicknesses is presented 

at 900 °C. The n-value according to Eq. 1 increases with decreasing thickness of the dense 

layer. The n-values reach from n = 0.11 for 179 µm to n = 0.39 for 22 µm. However, the n-

values are still between 0 and 0.5, which means that both bulk diffusion and surface reaction 

are rate limiting steps controlling the oxygen transport. However, for the asymmetric c-LCCF 

hollow fiber with the dense layer of 22 µm, a higher n-value was expected. This mismatch can 

be explained by the small average grain size. A further reason might be the porous support 

structure, which offers more surface for oxygen exchange reaction and therefore reduces the n 

value.  

 

Fig. 9: Wagner plot for d-LCCF and c-LCCF hollow fibers with different dense layer 

thicknesses. The n-values are calculated for each measurement. Test conditions: Sweep flow 

100 Nml min-1 N2; Temperature: 900 °C; Total feed flow: 100 Nml min-1. Pressure feed side: 

2 bar; pressure sweep side: 1 bar.  

For the coated hollow fibers with a dense layer thickness of 22 µm, a long-term stability test in 

50 % CO2 was made (Fig. 10). The fiber was tested for more than 250 h at 900 °C. At the 

beginning, a decrease of the permeation flux can be seen, but the curve approximates to the 

value of 1.66 ml min-1 cm-2. Compared to the literature [11], it is an increase of 61 % for a long-

term test in a CO2 atmosphere at 900 °C.  
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Fig. 10: Long-term test of the asymmetric c-LCCF hollow fiber with 22 µm dense layer 

sintered at 1170 °C. Test conditions see Fig. 7. The temperature was constant at 900 °C. 

 

3.3.2. Surface etched LCCF hollow fibers  

Another possibility to increase the transport through a MIEC membrane is to optimize the 

surface exchange reactions. Therefore, dense d-LCCF hollow fiber membranes were etched 

with H2SO4 on the outer, inner and both surfaces. In Fig. 11, the influence of the etching time 

on the oxygen permeation is shown when only the outer LCCF hollow fiber surface is etched. 

At 1000 °C the oxygen permeation increases from 3.21 ml min-1 cm-2 for the untreated fiber to 

5.23 ml min-1 cm-2 for 180 min surface etching. This is an increase of 62.9 %. It can be seen 

from the curves that an etching time over 60 min does not lead to a further increase of oxygen 

permeation. The results of the etching of the inner surface (Fig. 12) and of both surfaces (Fig. 

13) show the same tendency. However, the increase of the oxygen permeation for etching of 

the inner surface (4.18 ml min-1 cm-2 at 1000 °C by an etching time of 180 min) is in general 

smaller (30.2 %) compared to the etching of the outer surface. This result is in complete 

accordance with the SEM images in Fig. 4. The etching of the outer surface leads to a higher 

roughness, what means a larger surface for desorption of oxygen from the surface. It should be 

noted that etching does not reduce the layer thickness but only increases surface roughness. The 

largest increase of oxygen transport (86.0 % at 1000 °C for an etching time of 180 min) can be 

seen for the hollow fiber etched at both surfaces (Fig. 13). This experimental finding indicates 

that desorption on the oxygen lean side is controlling the overall oxygen permeation rather than 
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the adsorption on the oxygen rich side. This finding is in good agreement with literature [43] 

suggesting that the surface microstructure of the hollow fiber membrane plays an important role 

in the oxygen permeation behaviour.  

 

 

  

Fig. 11: Oxygen permeation of e-LCCF hollow fibers sintered at 1220 °C as a function of the 

etching duration at different temperatures (900 °C, 950 °C and 1000 °C) in a 50 % CO2 

atmosphere. The hollow fiber were etched at the outer surface. Test conditions: Feed flow: 

65 Nml min-1cm-2 CO2, 35 Nml min-1 cm-2 N2, 30 Nml min-1 cm-2 O2; Sweep flow: 100 Nml 

min-1 cm-2 N2. Pressure feed side: 2 bar; pressure sweep side: 1 bar.  
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Fig. 12: Oxygen permeation of e-LCCF hollow fibers sintered at 1220 °C as a function of the 

etching duration at different temperatures (900 °C, 950 °C and 1000 °C) in a 50 % CO2 

atmosphere. The hollow fiber were etched at the inner surface. Test conditions see Fig. 11. 

 

Fig. 13: Oxygen permeation at different temperatures (900 °C, 950 °C and 1000 °C) from a 

50 % CO2 atmosphere through e-LCCF hollow fibers as a function of the etching duration. 

The LCCF hollow fibers were sintered at 1220 °C and etched at the inner and the outer 

surface. Each surface was etched for the corresponding time. Test conditions see Fig. 11. 
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Fig. 14 shows the oxygen permeation improvement factor of the hollow fibers etched on both 

surfaces with different etching times as a function of the permeation temperature. For all three 

etching times (20 min, 60 min and 180 min) the improvement factor decrease with increasing 

temperature. For the fiber etched over 180 min, the improvement factor decreases from 3.2 (at 

750 °C) to 1.9 (at 1000 °C). This phenomenon can be explained by the dependency of the 

oxygen vacancies on the temperature, which is in good agreement with previous findings [34]. 

At relative low temperatures, only a small amount of oxygen vacancies for bulk transport is 

present; therefore, the influence of the surface exchange reaction has a bigger influence on the 

overall oxygen transport. At higher temperatures, however, more oxygen vacancies are present, 

which leads to a smaller influence of the surface exchange reaction and a bigger influence of 

the bulk diffusion.  

 

 

 

Fig. 14: Oxygen permeation improvement factors of e-LCCF hollow fibers sintered at 1220 

°C and etched on their inner and outer surfaces for different times as function of temperature. 

Test conditions see Fig. 11. 

 

The activation energies of oxygen permeation through the e-LCCF hollow fiber membranes 

were determined from an Arrhenius plot similar to Fig. 8. All the fibers etched with sulphuric 

acid have a lower activation energy than the untreated hollow fibers. Surprisingly, the activation 

energies of the outer surface etched fibers (60 min and 180 min) are the lowest (145.7 kJ mol-1 

and 128.8 kJ mol-1). The surface etching of the outer surface has a strong influence on oxygen 
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permeation at lower temperatures (< 800 °C), while at higher temperatures the influence 

strongly decreases because of the increase of the oxygen vacancy concentration, which pushes 

bulk transport. For fibers etched at both surfaces, this influence is less strongly pronounced. 

Therefore, the increase of oxygen permeation with rising temperature is lower for fibers etched 

on only one side. This finding results in a lower slope in the Arrhenius plot and, consequently, 

in a lower activation energy. 

 

Fig. 15: Activation energy of oxygen permeation through e-LCCF hollow fibers sintered at 

1220 °C with different surface etching sites (inner, outer and both surfaces) and different 

surface etching times (0 min, 20 min, 60 min, 180 min). Test conditions see Fig. 11. 

 

4. Conclusions 

In this work, the oxygen permeation flux of CO2-stable LCCF hollow fibers was improved via 

two strategies. (i) Asymmetric hollow fiber membrane with a 22 µm thin dense LCCF layer on 

a macroporous LCCF support were successfully prepared by wet spinning, dip coating and co-

sintering. (ii) The surface reaction of dense LCCF hollow fiber membranes was improved by 

etching with H2SO4.  

To manufacture porous hollow fibers as support, rice starch as pore former was added to the 

LCCF spinning solution. This leads to finger-like pores perpendicular to the surface of the 

macroporous hollow fiber resulting in a high nitrogen permeance (119.3 · 103 L m-1 h-1 bar-1 at 

1170 °C) and a good mechanical stability (111.9 MPa bending strength). However, the oxygen 
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compared to the completely dense hollow fiber with a wall thickness of 73 µm was only 5 % 

higher. This unexpected small increase of oxygen permeation can be explained by the 86.4 % 

smaller average grain size of the dense LCCF layer of the asymmetric hollow fiber compared 

to the completely dense LCCF hollow fiber. The n-value of the Wagner plot showed an increase 

with decreasing wall thickness but the oxygen transport is still affected by both bulk diffusion 

and surface exchange. The long-term (>250 h) stability in a 50 % CO2 atmosphere was 

successfully tested with a permeation flux of 1.7 ml min-1 cm-2 at 900 °C.  

Dense LCCF hollow fibers sintered at 1220 °C were successfully etched with sulphuric acid at 

the inner and/or outer surfaces. By increasing the etching time, the permeation increases 

towards a limit. The highest oxygen permeation flux (5.9 ml min-1 cm-2
 at 1000 °C) could be 

achieved by etching both surfaces for 180 min. In contrast, the permeation improvement factor 

decreases with increasing temperature because of the dependency of the oxygen vacancy 

concentration on the temperature.   

With this study, applying the co-sintering technology, asymmetric hollow fibers at lower cost 

can be produced. Further, dense hollow fibers with optimized surface reaction can be prepared 

by etching. Both methods combine high oxygen permeation with high CO2-tolerance.  
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6. Effect of plasma atmosphere on the oxygen transport of mixed ionic 

and electronic conducting hollow fiber membranes  

6.1. Summary 

In this publication, the feasibility of the plasma induced CO2 dissociation to oxygen and CO 

and the in situ separation of the oxygen were tested. Furthermore, the comparability of the 

plasma membrane reactor for air and CO2 plasma to an oven heated systems was investigated. 

Firstly, hollow fiber membranes from LCCF, which have a good CO2 tolerance as well as a 

high oxygen permeation, which were investigated in the three previous chapters, were spun and 

sintered at 1220 °C.  

To improve the comparability the temperature inside the hollow fiber was measured in the 

plasma membrane reactor at different microwave powers. The gas flow for air and CO2 was 

kept constant at 6 Nl min-1 to have a similar residence time of the plasma around the membrane.  

Furthermore, the working length of the membrane in the plasma was varied to find the effective 

membrane length of the hollow fiber in the plasma. The results in the air plasma showed an 

effective membrane length of 2 cm independent from the microwave power. The highest 

oxygen permeation (17.3 ml min-1 cm-2) in an air plasma was measured at 0.5 cm membrane 

working length and a microwave power of 0.68 kW, which corresponds with a temperature of 

1200 °C. Compared to the oven heated system the permeation is 60.6 % higher at 1000 °C. This 

indicates that the special atmosphere in the plasma improves the surface exchange kinetics.  

In the CO2 plasma the dissociation of CO2 at different microwave powers could be measured 

and it is possible to separate oxygen from the plasma with LCCF hollow fiber membranes. The 

permeation reaches up to 5.0 ml min-1 cm-2. Compared to the oven system, the permeation is 

54.4 % lower because of the presence of CO.  
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7. Conclusions and outlook  

This thesis deals with the mixed ionic and electronic conducting material 

(La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) in the form of hollow fiber membranes for the oxygen 

separation from a CO2 plasma. The membrane material crystallizes in a cubic perovskite 

structure. This material has the potential to selectively transport oxygen ions through the 

membrane at high temperatures (>700 °C). Through direct integration into a CO2 plasma, the 

products (CO and O2) can be separated instantly. 

The results of the thesis are separated in four chapters. 

In chapter 3, the hollow fiber membrane manufacturing via the non-solvent induced phase 

inversion (NIPS) and sintering process is described. The negative influence of sulphur 

containing polymer binders on the oxygen permeation could be shown. The good CO2 stability 

in sulphur free LCCF hollow fibers could be investigated with a long-term oxygen permeation 

test in an oven heated system at 900 °C. Furthermore, first successful experiments in an air 

plasma were performed to investigate the thermal shock resistance. According to the good 

results from chapter 3 in relation to the CO2 stability and the thermal shock resistance, the 

optimization of the membrane with respect to oxygen permeation was investigated in the 

following chapters 4 and 5.  

In chapter 4, the bulk diffusion was optimized by reducing the wall thickness via different 

spinneret geometries and by manipulating the grain sizes of the membrane via sintering 

temperature variation. The LCCF phase contains different amounts of brownmillerite and a 

spinel-type cobalt oxide phase as foreign phase, depending on the sintering temperatures. The 

variation of the sintering temperature also showed that grain boundaries act as barriers for the 

oxygen diffusion. Therefore, higher sintering temperatures are favoured as these lead to bigger 

grains. The permeation flux could be improved by increasing sintering temperature (1220 °C) 

and reducing wall thickness (81 µm) up to 6.16 ml min-1 cm-2 at 1000 °C. However, the results 

showed that the oxygen permeation through the membrane is not only dominated by the bulk 

diffusion but also by the surface exchange kinetics. Therefore, further optimization approaches 

were made in chapter 5.  

Two promising optimization paths were investigated to further improve the oxygen permeation 

flux of the CO2 stable LCCF hollow fiber membranes. On the one hand, both limiting processes 

(bulk diffusion and surface exchange kinetics) were optimized via asymmetric hollow fibers. 

Here, a porous support of LCCF and a dense coating of LCCF were manufactured via wet 

spinning, dip coating and co-sintering. On the other hand, the surface exchange reactions were 

optimized via surface etching with H2SO4. Here, the inner, outer and both surfaces were 
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modified not only to investigate the overall surface reactions but also the surface reactions on 

each side.  

Dense layer of 22 µm thickness on a porous support could be achieved by a one-step sintering 

process. This new manufacturing process offers the potential of significant reduction of the 

costs. The mechanical stability and the porosity of the support are strongly dependent on the 

sintering temperature but contrary to each other. Therefore, a compromise was made with a 

sintering temperature of 1170 °C. The oxygen permeation of this asymmetric hollow fiber 

showed an increase by 68.6 % in comparison to a dense hollow fiber with a wall thickness of 

179 µm. The long-term stability (> 250 h) at 900 °C could also be confirmed.  

The oxygen permeation of surface modified hollow fibers showed a dependency on the etching 

time and the etching area. The etching of the inner side (oxygen rich side) leads to the smallest 

increase of the oxygen permeation (30.2 %) and the etching of both areas leads to the largest 

increase (86.0 %). Furthermore, the results showed that the improvement factor decreases with 

increasing operating temperature. This indicates that the bulk diffusion has a smaller influence 

at lower temperatures.  

In the final chapter (chapter 6) the applicability of the LCCF hollow fiber in different plasmas 

and the comparability of the oxygen transport behaviour in comparison to a conventional oven 

system were investigated. The microwave power of the air and the CO2 plasma as adjustable 

parameter of the plasma was set to establish similar working temperatures in the permeation 

experiments. Therefore, it was possible to compare the results of the oven system and the 

plasma system. The results showed that the permeation in an air plasma is 60.6 % higher than 

in the oven system at similar temperatures. This indicates that the special atmosphere, with 

oxygen ions and radicals, optimize the surface exchange kinetics. The experiments in the CO2 

plasma showed on the one hand that it is possible to dissociate the CO2 and on the other hand 

that the oxygen can be extracted from the plasma. After quenching, the CO2 plasma to 1000 °C 

the oxygen content was still 4.3 %. From the thermodynamic perspective the oxygen amount 

should be close to zero. In comparison to the oven system, the oxygen permeation in the CO2 

plasma is 54.4 % lower due to the presence of CO. 

In this work MIEC hollow fiber membranes were successfully used for the first time in a 

plasma. It could be demonstrated that such membranes can separate oxygen from a microwave 

plasma, which can split CO2 in CO and O. 

The oxygen permeation results of the LCCF hollow fibers in the oven system and in the plasma 

system can be used to develop membrane modules for a more effective oxygen separation. 

Thereby, the application could grow from the lab scale system up to an industrial process. 
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For the concrete application of such membranes in a Plasma-Membrane-Reactor (PMR), not 

only the membrane separation has to be improved, but also the plasma reaction and the 

integration of reaction and separation process. In a parallel Ph.D. at IGVP, Katharina Wiegers 

made fundamental studies to control and understand the CO2 plasma. The plasma torch enables 

independent ignition and can be operated in a freestanding modus, which ensures a 

maintenance-free operation. The biggest challenge for the PMR seems to be the integration of 

sufficient separation area. Therefore, it would be helpful if both flow rate and temperature 

gradients in the plasma could be reduced. On the one hand side, this would allow a longer 

contact time of oxygen species with the membrane surface and on the other side, the membrane 

area could be used more efficient. 

There are a couple of interesting questions to be answered in the next step: 

- How will the increasing number of membranes in the plasma influence the temperature 

gradients and the flow rate distribution in the plasma? 

- Is it possible to increase the exchange area by widening the plasma with different plasma 

nozzle geometries? And if, how does it influence the temperature distribution and the 

dissociation rate of CO2  

- Is it possible to address separation from the plasma at different levels, which means 

different temperature with membranes with various working temperatures? 

- Is it possible to add other possible reaction partners, like hydrogen or even water, 

directly to the plasma to initiate reactions with CO to high value products? 

 

This work could only be the first step in a hopefully not to long line to come to a Plasma-

Membrane-Reactor for CO2 splitting and therefore be a part of a Power-to-X economy. 
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