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“
Do you not know that in a race all the runners run, but only one gets
the prize? Run in such a way as to get the prize.
Everyone who competes in the games goes into strict training. They
do it to get a crown that will not last, but we do it to get a crown that
will last forever.
Therefore I do not run like someone running aimlessly; I do not fight
like a boxer beating the air. No, I strike a blow to my body and make
it my slave so that after I have preached to others, I myself will not
be disqualified for the prize.
”

1 Corinthians 9:24-27



Abstrakt
Der erste direkte Nachweis von Gravitationswellen durch LIGO und Virgo im Jahr
2015 markierte den Beginn der Ära der Gravitationswellenastronomie. Gravita-
tionswellen sind ein hervorragendes Werkzeug, um die allgemeine Relativitätstheorie
zu beweisen und die Dynamik kompakter Objekte im Universum zu enthüllen. Im
Laufe der Jahre beobachten wir immer mehr Signale vom Verschmelzen von Dop-
pelsystemen Schwarzer Löcher.

Die Signale der Detektoren werden durch zahlreiche Wellenformvorlagen gefiltert,
die aus theoretischen Vorhersagen stammen. Einige Modelle sind genauer, aber
langsam, und einige andere sind weniger genau, aber schnell. Die Anforderun-
gen an die Genauigkeit, Geschwindigkeit und Parameterabdeckung der Wellen-
formmodelle steigen mit zunehmender Anzahl von Detektionen. Daher unter-
suchen wir Strategien, um die Wellenformerzeugung zu beschleunigen, ohne viel
Genauigkeit für die zukünftige Signalanalyse zu verlieren. In dieser Dissertation
stellen wir unseren Ansatz wie folgt vor:

1. Entwicklung einer Methode zur dynamischen Abstimmung eines weniger
genauen (aber schnellen) Modells mit einem genaueren (aber langsamen)
Modell durch eine iterative Technik zur Dimensionalitätsreduktion.

2. Untersuchung der Leistung von Regressionsmethoden, einschließlich maschinellem
Lernen für höhere Dimensionen.

3. Hinzufügen der Exzentrizität zum quasizirkulären analytischen Modell durch
eine Anpassungstechnik.

Wir analysieren die Zuverlässigkeit unserer Ergebnisse, sowie das Potential
einer Beschleunigung der Wellenformerzeugung. Unsere Methoden können le-
icht angewendet werden, um die Komplexität und die Zeit für die Erstellung eines
neuen Wellenformmodells zu reduzieren. Zusätzlich bauen wir ein Python-Paket
pyrex, um die quasizirkuläre Berechnung welche sich in eine exzentrische wan-
delte zu übernehmen. Diese Studie ist entscheidend für die Entwicklung von Mod-
ellen, die mehr Parameter enthalten.

Stichwörter
Gravitationswelle, binäres schwarzes Loch, Wellenformmodellierung, Hauptkom-
ponentenanalyse, Regression, maschinelles Lernen, Exzentrizität
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Abstract
The first direct gravitational wave detection by LIGO and Virgo in 2015 marked
the beginning of the gravitational wave astronomy era. Gravitational waves are an
excellent tool to prove general relativity and unveil compact objects’ dynamics in
the universe. Over the years, we observe more signals from coalescing black hole
binaries.

Signals from the detectors are filtered through numerous waveform templates
coming from theoretical predictions. Some models are more accurate but slow,
and the others are less accurate but fast. We face ever-increasing demands for
accuracy, speed, and parameter coverage of waveform models with more detec-
tions. Thus, we investigate strategies to speed up waveform generation without
losing much accuracy for future signal analysis. In this dissertation, we present
our approach as follows:

1. developing a method to dynamically tune less accurate (but fast) models
with a more accurate (but slow) models through an iterative dimensionality
reduction technique,

2. investigating the performance of regression methods, including machine
learning for higher dimensions,

3. adding eccentricity to quasicircular analytical models through fitting tech-
nique.

We analyze our results’ faithfulness and prospects to speed up waveform gen-
eration. Our methods can readily be applied to reduce the complexity and time of
building a new waveform model. Additionally, we build a python package pyrex
to carry out the quasicircular turned eccentric computation. This study is crucial
for the development of models which include more parameters.

Keywords
gravitational wave, binary black-hole, waveform modeling, principal component
analysis, regression, machine learning, eccentricity
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1
Introduction

“If you ask me whether there are gravitational waves or not, I must
answer that I do not know, but it is a highly interesting problem.”

Albert Einstein

The Einstein general theory of relativity, also known as general relativity (GR)
provides a theoretical framework that describes the relationship between the dis-
tribution of matter, space, and time [1]. In GR, the spacetime curvature is strongly
related to matter and radiation, producing energy and momentum. American
physicist John Wheeler summarized the theory’s core as “matter tells spacetime
how to curve, and curved spacetime tells matter how to move” [2]. Consequently,
gravity can be interpreted as a free fall in a curved spacetime due to uneven mass
distribution.

In July 1905, Henri Poincaré proposed that gravity was transmitted through a
wave and introduced the term gravitational wave (GW) [3]. Later in 1916, Ein-
stein predicted the existence of GWs as a consequence of GR [1]. This phe-
nomenon comes from a non-stationary mass distribution that deforms the curva-
ture of spacetime and transports energy. GWs are spacetime waves oscillating
perpendicular to the direction of propagation and moving at the speed of light.
As GWs cross an observer, the observer will find spacetime distorted by GWs
strain. It stretches in one direction and compresses the other direction simulta-
neously. We explain the GW strain and its derivation from GR in more detail in
section 2.1.

Similar to electromagnetic (EM) waves, the GW spectrum range from low

1



CHAPTER 1. INTRODUCTION 2

(< 10−9Hz) to high frequencies (kHz). The frequency range covered by GWs
highly depends on the source’s type (see Fig. 1.1). Furthermore, the wave’s prop-
erties such as amplitude, phase, and duration encode vital information about the
astrophysical object behind it. We can trace the signal’s origin, such as neutron
stars (NSs) and black holes (BHs).

Figure 1.1: GW spectrum, wavelength, frequency ranges, sources, and detectors [4].

A NS is a compact remnant of a massive star that has reached the end of its
life. It has high density because of the extreme amount of matter compressed into
a small volume. Thus, it has a strong gravitational pull. Due to subatomic glue,
the behavior of matter inside the NS’s core is still unknown. Hence, a NS is a
perfect natural laboratory to study the interaction of the four fundamental forces1

in such an extreme condition. A possible hint to this problem is constraining the
mass-radius relation determined by the equation of state (EOS). GWs radiated
from a binary neutron-star (BNS) collision can be used to constraint their EOS
[5].

A BH is a dense object with extreme gravitational fields. The gravity is very
strong due to enormous mass squeezed into a tiny volume, preventing matter and
even light to escape from it. The no escape boundary is called the event horizon.
GR predicts that the presence of such a dense object would deform its surround-
ing spacetime. In astronomy, BHs are classified by their total masses, namely

1electromagnetism, gravity, weak force, and strong force.
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miniature, stellar, intermediate, and supermassive BHs. This dissertation focuses
on GW radiated by the collision of two stellar-mass BHs, where each body has a
mass between several to several tens of solar masses [6].

Proving the existence of GWs was one of the most ambitious projects in the
physics community. We can use GWs to test GR and to understand various phe-
nomena in our universe. Important applications include

• the behavior of matter in the strong-field regime,

• the nature of compact objects,

• the dynamical evolution of black-hole binaries, and

• the expansion of the Universe by constraining the Hubble constant.

Thus, detecting GWs is a key to open a new chapter in physics and astronomy.
The 1993 Nobel-winning research gave the first indirect evidence of GWs

by observing the orbital decay of two spinning NSs known as the Hulse-Taylor
binary [7]. The first direct detection of GWs was made on 14 September 2015
(see Fig. 1.2). The signal originated from a coalescing binary black-hole (BBH)
[8]. The frequency range of the signals is within the sensitivity of the ground-
based detectors2, LIGO, Virgo, and KAGRA.

These ground-based observatories adopt the Michelson interferometer exper-
iment [9] to observe GW signals. Each instrument divides a beam of light into
two perpendicular arms of the same length and joins the beams back into one. If
no GWs pass by, the beams reunited from both arms cancel each other. However,
one arm will be longer than the other with the presence of GWs. Therefore, the
combined light beams do not cancel each other, and we observe an output signal.
We explain the development and data analysis behind GW interferometers in more
detail in section 2.2.

Fig. 1.3 shows pictures of the current detectors. The two LIGO observato-
ries are located in Hanford, Washington and Livingston, Louisiana, USA. Each
site consists of an L-shaped interferometer with 4 km long arms. To date, LIGO
interferometers are the most sensitive instruments to observe GWs. GEO600 is
a 600m interferometer located in Hannover, Germany. Although it has a shorter
arm length than other interferometers, it uses advanced technology. It became the
key site for the development of GW detector technology. Technologies tested and
developed in GEO600 are used in other large-scale detectors. Virgo is located
near Pisa, Italy and started to join the observation in 2017. Additionally, KAGRA
is a 3 km underground interferometer in Japan that recently joined the observation
in 2020.

2also known as terrestrial interferometers in some literature.
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Figure 1.2: Top panels: GW signal in LIGO Hanford and Livingston on 14 September
2015, at 09:50:45 UTC. Bottom panel: the strain signal from a coalescing black-hole
binary in time-frequency plot, showing the increase of frequency over time [8]).

The first direct detection of GWs involved many scientists and students who
have been working for many years on understanding and detecting signals from
an interferometer. In 2017, this research yielded a Noble Prize in Physics. We
highlight that the first GW detection is fundamental due to the following reasons:

1. it directly proves the existence of GWs and tests of GR,

2. it directly proves the existence of BHs,

3. it proves the existence of stellar-mass BBHs,

4. it opens an opportunity to observe violent events in the universe such as
compact binary coalescences, and

5. it opens an opportunity to study unknown objects in the universe through
GWs.
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Figure 1.3: LIGO Hanford (top left), LIGO Livingston (topright), GEO600 (bottom left),
and Virgo (bottom right).

As the detectors are being developed with better sensitivity, we expect to ob-
serve more GW events. During the first three observing runs (2015-2020), we
have detected more than 50 signals (see Appendix. B and reference [10]). Each
signal is filtered with many waveform templates coming from theoretical models.
These models have been developed in the community with various parameters
such as mass components, angular momentum, and even eccentricities. The shape
and duration of the signal are affected by these parameters, as shown in the python
interactive visualization GWaviz [11].

We estimate the source parameters for each signal, where the analysis may
take days or even months. One bottleneck is the slow waveform generation.
Hence, having a fast and reliable waveforms is critical for the analysis. Some
waveform models are computationally expensive but have better accuracy. Some
others are computationally efficient but less accurate, especially when the binary
moves fast towards each other (see section 2.3). We highlight this issue and ad-
dress our approaches to build a fast and reliable model in our studies through
publications I, II, and III. A summary of our strategies is presented in section
3. Finally, we conclude our studies and discuss prospects for future research in
section 4.



2
Theoretical background

“Extraordinary claims require extraordinary evidence.”

Carl Sagan

2.1 Gravitational waves
The Universe was assumed to have a three-dimensional geometry independent of
time until the 20th century when Albert Einstein proposed the idea that space and
time are related through his theory, GR [1]. GR relies on differential geometry,
a mathematical coordinate-independent modern framework for geometries. The
derivation presented in this section summarizes the details in Refs. [12, 13, 14, 15].

A key concept in GR that describes the spacetime’s local geometry is called
the metric tensor [12], often expressed as the line element in a four-dimensional
manifold1

ds2 = gµν dxµ dxν. (2.1)

Following Ref. [12], we can sum over all the indices and write in the Cartesian
coordinates (t, x, y, z). For flat space or Minkowski with convention ηµν=(-1,1,1,1),

1A manifold is a set of points that locally looks like Rn, where n is the dimensionality of the
manifold.

6
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it satisfies

ds2 = − dt2 + dx2 + dy2 + dz2

=ηµν dxµ dxν. (2.2)

Note that we use the geometric units where c = G = 1 throughout this dissertation.
The main concept of GR describes the interaction between the distribution of

matter and spacetime. This theory is mathematically expressed in the Einstein’s
field equations

Gµν = Rµν −
1
2

gµνR = 8πTµν, (2.3)

where the Ricci tensor, Rµν is a geometric object defined by a choice of Rieman-
nian manifold that will be discussed later in this section. R is the contraction of
the Ricci tensor, known as the Ricci scalar, and Tµν is the stress-energy tensor that
describes the distribution of energy and momentum.

Let us assume that the spacetime is almost flat. There exists a coordinate
system with a small perturbation hµν such that

gµν = ηµν + hµν, ‖hµν‖ � 1. (2.4)

We will only keep terms up to linear order in the small perturbation hµν.
We follow the discussion in Ref. [12, 16], where the movement of vectors in a

manifold is expressed through the Christoffel symbol

Γδαβ =
1
2

hδσ(∂βhασ + ∂αhβσ − ∂σhαβ), (2.5)

and the curvature of spacetime is described by the Riemann tensor via

Rβ
µαν = ∂αΓ

β
µν − ∂νΓ

β
µα + ΓβασΓσµν − ΓβνσΓσµα. (2.6)

We should note that the perturbation theory around Minkowski spacetime is
known as the linearized gravity. Indices can be raised and lowered with gµν, i.e.,
h µ
α = gµνhαν. Let us express Eq. (2.6) with the definition of Christoffel symbol in

Eq. (2.5)

gσβRβ
µαν = Rσµαν (2.7)

=
1
2

(∂α∂µhσν − ∂α∂σhµν − ∂ν∂µhσα + ∂ν∂σhµα). (2.8)

We can obtain the Ricci tensor by contracting the Riemann tensor

Rµν =Rα
µαν

=
1
2

(−�hµν + ∂µ∂
αhαν + ∂ν∂

αhαµ − ∂µ∂νh), (2.9)
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and the Ricci scalar

R = Rσ
σ = ∂σ∂αhσα − �h, (2.10)

where we have introduced h = hαα and d’Alembertian operator,

� = ∂α∂α = −
∂2

∂t2 +
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (2.11)

We shall note that the stress-energy tensor vanishes in vacuum,

T = gµνTµν = T µ
µ = 0. (2.12)

By calculating the trace of the Einstein’s field equations (2.3), one finds R = −8πT
[12]. Therefore, we obtain

Rµν = 0 (vacuum). (2.13)

We want to maintain the form of Eq. (2.4) so that it satisfies the properties
of a tensor field in Minkowski space. Thus, we can only allow a small gauge or
coordinate condition that takes the form

x′µ = xµ + ξµ, (2.14)

where ξµ(xν) is an arbitrary infinitesimal vector field and |∂νξµ| � 1. This trans-
formation changes the metric via

h′µν = hµν − ∂µξν − ∂νξµ. (2.15)

Rather than working with the metric perturbation hµν, one can use the trace-
reversed perturbation,

h̄µν = hµν −
1
2
ηµνh (2.16)

and imposing harmonic gauge (also known as Hilbert or de Donder or Lorenz2

gauge),

∂νh̄µν = 0. (2.17)

Thus, the Einstein’s field equations (2.3) with a small perturbation of the flat
Minkowski (2.4) read to first order

�h̄µν = ∂δ∂δh̄µν = −16πTµν. (2.18)

2often erroneously written as Lorentz gauge in many literature.
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We should notice that the � operator forms a classic wave equation and can be
interpreted as follows. We can solve the wave equation with the perturbations
of the spacetime metric in the old coordinate system (2.4) to find a coordinate
transformation in (2.14). The general complex solutions of (2.18) reads

h̄µν = Aµνeikαxα , (2.19)

only if

kαkα = 0 = −ω2 + ‖~k‖2, (2.20)

where

ω = 2π f = ‖~k‖ =
2π
λ
, (2.21)

where λ is the wavelength. We can satisfy (2.20) and (2.21) only if kα is a null
vector. Consequently, GWs move with the speed of light.

The coordinate transformation we employed is not unique. One can freely
choose another coordinate transformation ξµ that fulfills the wave equation, �ξµ =

0 to maintain the Lorenz gauge.
We now focus on globally vacuum spacetime, Tµν = 0 everywhere and asymp-

totically flat (hµν → 0 at large distance). We can impose without violating the
Lorenz gauge, h̄ = 0. Note that if h̄ = 0, then h̄µν = hµν. Within the Lorenz gauge,
we can apply a further gauge transformation that will maintain the Lorenz gauge
so long as the additional transformation satisfies the wave equation. We use these
additional degrees of freedom to set 4 components of hµν to zero,

hti = h0i = 0, (i = 1, 2, 3),
hσσ = 0. (2.22)

In the transverse-traceless (TT) gauge, the Lorenz gauge becomes

∂σh σ
µ = 0 ⇒ 0 = ησα∂σhtα = ∂thtt = iωAtteikαxα (2.23)

⇒ 0 = ησα∂σhiα = ik jAi jeikαxα , (2.24)

where Att = 0 and k jAi j satisfy the conditions above. The gauge choices have
eliminated 8 out of 10 independent components of the symmetric perturbation
hµν. Thus, the wave tensor only left with two independent components called
polarizations. Let us orient our coordinate system such that the GW propagates
along the z axis. The wave vector reads

k = (ω, 0, 0, ω). (2.25)
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In the tensor form, it reads

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eiω(z−t). (2.26)

We can be interpret it as follows. GWs propagating in the z-direction move with
the speed of light and have two polarizations, plus and cross. These two polariza-
tions squeeze and stretch spaces between particles simultaneously and are rotated
45◦ relatives to each other (see illustrative plot in Fig. 2.1).

Figure 2.1: Illustrative plot of GW polarizations, + and ×. h+ is rotated 45◦ in from h×
simultaneously on the x − y plane where GWs propagate in the z direction [17].

Revisiting Eq. 2.18, GWs are generated by a matter of source in the linearized
Einstein’s equation. For a slow motion sources3 such as compact object coales-
cences, we want to compute the TT piece of the metric perturbation and obtain the
standard quadrupole formula of the gravitational radiation. We follow the deriva-
tions in Refs. [12, 13, 18] to obtain the general solution of equation (2.18) in terms
of the retarded integral

h̄µν(t, ~x) = 4
∫

Tµν(~x′, t − |~x − ~x′|) d3x′

|~x − ~x′|
, (2.27)

where ~x is the position vector of the first BH, and ~x′ for the second BH. For
a slow-moving source at a distant location, we can approximate |~x − ~x′| with a
constant distance R. The Fourier transform of eq. (2.27) then reads

h̃µν(ω, ~x) =
4eiωR

R

∫
T̃µν(ω, ~x′) d3x′. (2.28)

3the internal motions are far slower than the speed of light.
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The energy-momentum tensor satisfies the conservation law, ∂µT µν = 0. We can
solve by applying integration by part as explained in more detail in [13] and as-
suming a localized source,

h jk(t, ~x) =
2
R
∂2

∂t2

∫
x′ jx′kT 00(t − R, x′i) d3x

=
2
R
∂2

∂t2

∫
x′ jx′kρ(t − R, x′i) d3x, (2.29)

where ρ is the mass-energy density of the source. Note that we apply the harmonic
gauge that implies −iωh̃0ν = ∂ jh̃ jν. Thus, the spatial components determine hµν.

Defining the second moment Ii j of the mass distribution via

Ii j(t) = x′ jx′kρ(t − R, x′i), (2.30)

and combining Eq 2.27 and 2.29 gives

hTT
jk =

2
R
ÏTT

jk (t − R), (2.31)

where r is the relative distance from the binary, and I is the reduced quadrupole
moment tensor,

I jk = I jk −
1
3
δ jkδ`mI`m, (2.32)

with

I jk =

∫
ρ(t, ~x)x jxk d3x. (2.33)

The radiated power in the form of GW satisfies

dEGW

dt
=

1
5
<

...
I jk

...
I

jk
> . (2.34)

Let us focus on this dissertation’s topic, two black-holes orbiting each other.
In a circular orbit, their equation of motion in Keplerian orbit satisfies

v2 =
M
R
, ωorb =

√
M
R3 =

v
R
, (2.35)

where R � r is the binary separation. Let us assume a coordinate system origi-
nated at the center-of-mass and the two black-holes are located in the x − y plane.
The position is given by:

x1 =
µR
m1

(
cos(ωorbt)̂ı + sin(ωorbt)̂

)
, x2 = −

m1

m2
x1, (2.36)
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where µ is the reduced mass, µ = m1m2/M. We employ these relations to eq. (2.29)
and solve the integral, so that

h jk =
4µR2ω2

orb

r

− cos[2ωorb(t − r)] − sin[2ωorb(t − r)] 0
− sin[2ωorb(t − r)] cos[2ωorb(t − r)] 0

0 0 0

 . (2.37)

The amplitude factor is 4µv2/r. In terms of familiar scales, the typical strain of
GW is

h ≈
4µR2ω2

orb

r
,

≈ 10−21 1Mpc
r

µ

1M�

(
ωorb

1Hz

)2

. (2.38)

Eq. (2.38) shows that the GW strain produced from a coalescing BBH is tiny.
Hence, direct detection of GW is challenging.

2.2 Detecting gravitational waves
The detection of GWs involves collaborative work between experimental and the-
oretical physics. We divide this section into the basic principle and the develop-
ment of GW detectors 2.2.1 and data analysis of the signals 2.2.2.

2.2.1 Detectors
The direct detection of GW signals is known as an ambitious project spanning
over decades. It is due to the need to a build high sensitivity detector to measure
small distortion in spacetime. Experimental studies to detect GWs start to attract
physicist more than 40 years after GWs were predicted by Einstein.

In the late 1950s, Joseph Weber suggested an apparatus designed to detect
GWs called the Weber bars [19, 20]. He predicted that GW signals arrive at
frequencies around 1660 Hz and built a massive aluminum cylinders with resonant
frequency following his theoretical prediction. It is expected that a GW signal
would change the amplitude or phase of the bar’s oscillation. The cylinder was
expected to change its length around 10−16 meters and rang when a GW signal
passed by. Later, he claimed the Weber bar detected GWs from the center of the
Galaxy. Through careful investigation, it was proven that there was miscalculation
and that he did not detected GWs [17].

In 1967, Rainer Weiss of MIT published an analysis of an interferometer used
to detect GWs. Kip Thorne of Caltech followed up his work in 1968 by de-
veloping theoretical calculation for GW signals. In 1980, the National Science
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Foundation (NSF) funded the study of the large laser interferometer. This experi-
ment’s concept is motivated by the Michelson interferometer in 1880 with longer
arms and increased sensitivity. Over the years, this project involved thousands of
scientists and students. Finally, in 2015, the two LIGO interferometers detected
the first GW signal from a BBH collision. Because of this work, Rainer Weiss,
Kip Thorne, and Barry Barish were awarded the Nobel prize in physics in 2017.

LIGO and Virgo interferometers share a similar concept to observe GWs. Each
instrument consists of an L-shaped interferometer splitting the laser beam along
4 km arm. Lasers are split and bounced back and forth inside each arm by the
mirrors before they hit the detector. If no GW signal is observed, signals from
both arms cancel each other. When GWs pass by, one arm is shorter than the
other simultaneously. The laser beam that traveled through the shorter arm arrives
earlier than the other. Hence, the signal do not meet up nicely when recombined
at the detector, and we see fringe pattern as shown in Fig. 2.2. What we measure
is the change of length of the X arm relative to the Y arm. These interferometers
are sensitive in a 10 Hz to kHz band, where the main sources are compact binary
coalescences, such as BBH, BNS, and neutron-star black-hole (NSBH) collisions,
continuous waves from spinning NSs, and supernovae.

Figure 2.2: Schematic diagram of LIGO interferometer [17]. A laser beam is split by
the beamsplitter into two perpendicular arms and bounced many times through each test
mass (mirror). The beams are reunited and measured in a photodetector. Without GW,
laser beam from each arm cancels each other due to superposition, no signals is detected
in the photodetector. When a GW signal passes by, it shrinks one arm and stretches the
other. The reunited laser beam does not cancel each other. Hence, we measure a signal
in the photodetector.

The sensitivity of these detectors are limited by some noise background. Some
conditions and glitches can mimic astrophysical signals and contaminate the mea-
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surements. Noises are generated by many physical phenomena on Earth and the
sum leads to the familiar sensitivity curves of the instrument. We highlight main
noise sources and briefly explain as follows: [21]

i Seismic noise. This noise causes the motion of the mirrors and dominant at
low frequencies. The main sources of seismic noise are the ground vibra-
tions, caused by earthquakes, wind, ocean waves, and human activities in
the surrounding area.

ii Thermal noise. As the laser ray hits the mirrors, it increases the mirrors’
temperature. This condition is known as the suspension thermal noise,
caused by the microscopic fluctuations of the individual mirror and its sus-
pensions. One way to reduce this noise is to have increased the beam size
such that it averages over the mirror surface. Another source of the thermal
noise comes from the coating and known as the Brownian coating noise. It
arises from the mechanical dissipation of the coating and is related to the
coating material.

iii Quantum noise. This noise is mainly caused by the statistical fluctuations
of the photons that arrive in the photo detector.

iv Gravity gradients. This noise is caused by fluctuating gravitational forces
on the test masses due to seismic wave perturbations in the earth.

The design sensitivity of the advanced LIGO interferometer is shown in Fig. 2.3.
Both LIGO instruments have similar lengths and shapes, situated in Hanford and
Livingston, USA. The distance between the two observatories is 3002 km or 10ms
travel at the speed of light. When both observatories detect a similar signal within
10 ms, it is more likely that the signal is astrophysical. This time delay is also
used to pinpoint the sky position of the source. Furthermore, the x arm of the
Livingston observatory is oriented almost aligned with the y arm of the Hanford
one. One of the main reasons is to measure the orientation parameter of a GW
signal (see Ref. [22] for more detail).

To pinpoint the source’s sky location, we employ a triangulation method that is
similar to GPS. Hence, more interferometers would give higher precision. These
interferometers have or will join the science run. First, Virgo is a 3 km GW inter-
ferometer in Italy that joined the second and third science run. Second, GEO600
is a 600-meter interferometer near Hannover, Germany. Many parts of LIGO
instruments were built in Hannover. Subsequently, two detectors, KAGRA and
LIGO India are currently in the final building stage and will join the observing
run shortly. KAGRA is an underground observatory in Japan, and LIGO India is
planned to be built in the Hingoli District of Maharashtra state in western India.
They are known as the second generation or 2G and 2.5G detectors.
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Figure 2.3: aLIGO design sensitivity at different frequencies and noise curves (see more
detail in [21]).

Consecutively, higher sensitivity GW detectors are planned to begin observing
in the 2030s. These 3G detectors are as follows. First, Einstein telescope [16] is a
10 km GW observatory planned between Belgium, the Netherlands, and Germany
or in Sardinia, Italy. Second, Cosmic Explorer [23] is a 40 km L-shaped obser-
vatory that is expected to be built in the USA. Third, NEMO [24] is a detector
currently planned to be built in Australia focusing on high sensitivity for the study
of NS post-merger signals. The coordinates of the GW observatories are shown
in Table 2.1. These projects are about to begin or in the early phase. Therefore,
they may change their plan such as location, length, or timeline in the future.

2.2.2 Data analysis
The detector’s sensitivity is limited by the noise sources. We can express the
detector output s(t) as a linear superposition between the noise n(t) and the signal
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Observatory Latitude Longitude Orientation ζ

LIGO Livingston 30.560 -90.770 2430 900

LIGO Hanford 46.450 -119.410 171.80 900

Virgo 43.630 10.50 116.50 900

GEO600 52.140 9.480 94.190 900

KAGRA 36.250 137.180 00 900

LIGO India 19.090 74.050 00 900

Einstein Telescope 43.540 10.420 19.480 600

Cosmic Explorer 30.540 -90.530 162.150 900

Assumed detector in Australia -31.510 115.740 00 -

Table 2.1: The coordinates of the current and proposed GW observatories. Orientation
is the smallest angle made by any of the arms and the local north direction and ζ is the
angle between two arms (see Ref. [25]).

h0(t;~λ), where ~λ = {λk|k = 1, 2, . . . ,Ns} denotes the Ns parameters,

s(t) = n(t) + h0(t;~λ). (2.39)

Assuming the detector noise is stationary Gaussian with zero mean, we find

n(t) = 0, (2.40)

where the overline denotes the average. The one-sided power spectral density
S n(| f |) is then defined by

ñ( f )ñ∗( f ′) =
1
2

S n(| f |)δ( f − f ′), (2.41)

where ñ denotes the Fourier transform, ∗ is the complex conjugation, and δ( f − f ′)
is the δ-distribution. S n( f ) is the noise spectral density shown with the black line
in Fig. 2.3. We use the convention of the Fourier transform as follows

x̃ =

∫ ∞

−∞

x(t)e2πit f dt. (2.42)

The detector sensitivity S n(| f |) is defined such that (n|n) = 1. We shall introduce
the inner product defined by

(s|h) = 4R
∫ ∞

0

s̃( f )h̃∗( f )
S n( f )

d f . (2.43)

The determination whether a signal is present or absent is made by setting a
threshold on the likelihood ratio with template signal h that reads

Λ =
P(s|h)
P(s|0)

=
p(s|h)ds
p(s|0)ds

=
p(s|h)
p(s|0)

, (2.44)
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where P(s|h) is the probability that the signal is present in the detector output data
stream and P(s|0) is the null hypothesis (no signal in the data). Instead of using
probability, we can express the likelihood ratio with the corresponding probability
densities p(s|h) and p(s|0). In the absence of signal p(s|0), it is defined by

p(s|0) = p(s) = K exp
[
−

1
2

(s|s)
]
, (2.45)

where K is a normalization constant.
Consider a condition when a signal present, the probability density is given by

p(s|h) = p(s − h) = K

[
−

1
2

(s − h)|(s − h)
]
, (2.46)

with n(t) = s(t) − h(t). Thus, the likelihood ratio reads

Λ =
p(s|h)
p(s|0)

=
p(s − h)

p(s)

=
exp

[
− 1

2 (s − h)|(s − h)
]

exp
[
− 1

2 (s|s)
]

= exp
{
−

1
2
[
(s|s) − 2(s|h) − 2(s|h) − (h|h)

]
+

1
2

(s|s)
}

= exp
[
(s|h) −

1
2

(h|h)
]
. (2.47)

In practice, we obtain (s|h) from the detector’s data and (h|h) is constant for a
particular S n( f ) and h.

According to the Neyman-Pearson criterion, the signal is present if it surpasses
some statistical threshold Λ (or equivalently ln Λ) [26, 14]. This threshold is set
according to the tolerated false alarm probability. Now, given the norm of the
template signal ‖h‖ =

√
(h|h) and the normalized waveform ĥ = h/‖h‖, we can

maximize Eq. (2.47) if the ‖h‖ = (h0|ĥ) so that

max
‖h‖

ln Λ =
1
2

[ (h0|h)
‖h‖

]2

=
1
2

[
‖h0‖(ĥ0|ĥ)

]2

. (2.48)

The signal is present if the likelihood value is large enough over h(~λ) in the tem-
plate bank. This can be obtained with large signal-to-noise ratio (SNR) ρ = ‖h0‖

or high overlap or match between the signal and the template waveform,

O[(h0|h(~λ))] =
(h0|h(~λ)

‖h0‖‖h(~λ)‖
, (−1 ≤ O ≤ 1). (2.49)
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Since the shape and length of the waveforms depend on various parameters,
the signal is filtered over numerous templates. During the first LIGO observing
run, more than 250,000 waveforms varying in masses and spins were employed
and even more in the more recent observing runs. This method is called matched
filtering.

2.3 Modeling gravitational wave sources
Thanks to advanced developments in detector technology and data analysis, LIGO
and Virgo detected 48 BBH and 2 BNS events during the first three observing runs,
O1–O3a (see Table. B.1 [27] and Table. B.2 [28] of Appendix. B). Additionally,
2 NSBH collisions have been observed for the first time in January 2020 [10].

The detected signals vary in parameters, namely intrinsic and extrinsic pa-
rameters. These parameters govern the shape and length of waveform. While
the intrinsic parameters describe the binary’s astrophysical constraints, extrinsic
parameters depend on the binary position relative to the observer. Intrinsic pa-
rameters are mass ratio (q), the dimensionless angular velocity known as spins
(~χ1, ~χ2), and eccentricity (e). BH size and its total mass have linear relations.
Thus, we can also scale the waveform’s amplitude with the total mass M. The
extrinsic parameters are the time of coalescence (tc), the angle between the binary
and the observer (ι), azimuthal phase (φc), sky location (θ, φ), polarization angle
(ψ), and the luminosity distance (DL). Given two GW polarizations, + and ×, that
corresponds to antenna pattern F+ and F×, the arm length difference when GW
pass by is expressed by the following relation [29]:

δL
L

= h =h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ). (2.50)

The above equation is in the time domain. For the purpose of source analysis,
it is easier and faster to compute in the frequency domain. However, applying
Fourier transform for each source with different parameters is computationally
expensive. The most common approach is using the stationary-phase approxima-
tion (SPA), an approach for the signal expression in the Fourier domain. Follow-
ing ref [29], the interferometer response in the SPA is expressed by

h( f ;A,M, ψ) ≡AM(π fM)2/3 cos(Φ + ψ), (2.51)

with

f ≡
1
M

[ 5
256

M

tc − t

]3/8

, (2.52)
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where A is an amplitude function, Φ is a phase function, and ψ is a constant. M
is known as chirp mass and expresses by the following relation

M =
(m1m2)3/5

M1/5 . (2.53)

The shape of the waveform changes with the inclusion of the intrinsic param-
eters such as the mass components, spin, eccentricity or tidal deformability (λ) for
BNS coalescences. Fig. 2.4 shows how different mass ratios and spin parameters
change the waveform shape. See the interactive visualization [11] for waveforms
with different parameters.

−600 −500 −400 −300 −200 −100 0 100

t/M

−1.0

−0.5

0.0

0.5

1.0

h
+

×10−20

q=1, aligned-spin

q=4, aligned-spin

q=4, precessing

Figure 2.4: Different mass ratios (q=m1/m2) and spin parameters affect the waveform
shape. The blue and orange lines are the aligned-spin model (χ1x,y = χ2x,y = 0), the green
line is the precessing model (χ1x,y = χ2x,y , 0). We use SEOBNRv4 waveform model to
generate this plot.
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2.3.1 Post-Newtonian approximation
It is not our intention to review all of the post-Newtonian (PN) theory but to pro-
vide the necessary background information for the techniques used in this disser-
tation. A more detailed overview of PN formalism can be found in [30, 31] and
references therein.

Let us start with Eq. (2.38). The signal satisfies:

h(t) =
4Mηv2

r
e−i(2ωt+φ0), (2.54)

where v is the linear velocity. The orbital frequency ωorbit relies on the orbital
phase Φ with the following relation:

ωorbit =
dΦorbit

dt
≡ Φ̇, (2.55)

and the Newtonian energy of a circular binary is given by

E = −
Mη

2
v2. (2.56)

Eq. (2.56) shows that the binary loses its energy as it moves faster. Under the
assumption that the binary orbit shrinks merely due to GW emission, we can write
the flux of energy radiated away in the form of GW radiation at a large distance
from the source:

dE(v)
dt

= − F , (2.57)

or equivalently:

v̇ = −
F (ν)

dE(v)/dv
, (2.58)

with

F =
1
5

d3Q jk

dt3

d3Q jk

dt3 , (2.59)

and

Q jk =

∫
ρ(t, xi)

(
x jxk −

1
3
δ jkxlxl

)
d3x. (2.60)
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Here F is the energy radiated over time, also known as the luminosity, ρ is mass
distribution, and δ jk is the standard Kronecker delta symbol. If we assume a con-
dition where the fractional change in the orbital frequency for one cycle is in-
significant, known as the adiabatic inspiral, we find:

Φ̇(t) =
v3

M
. (2.61)

We shall call the commonly used notations of the parameters as follows:

q =m1/m2 ≥ 1, (2.62)
M =m1 + m2, (2.63)

η =
m1m2

M2 , (2.64)

δ =
m1 − m2

M
, (2.65)

v =Mω1/3, (2.66)

χi =
~S i · ~L

‖~L‖m2
i

, (2.67)

χa =
χ1 − χ2

2
, (2.68)

χs =
χ − 1 + χ2

2
, (2.69)

χeff =
χ1zm1 + χ2zm2

M
, (2.70)

where ~L is the binary’s orbital angular velocity in the (x, y, z) coordinates.
PN approximation expands the relationship between the energy E and the flux

F to a higher power of v/c. The order can be explicitly seen through the power of
v. The generic expression of waveform polarizations, h+,× is described by:

h+,×(n) =
2Mη

DL
v2

∞∑
n=0

vnH(n/2)
+,× , (2.71)

where n denotes the PN orders and H+,× needs to be calculated (see the generic
expression in [32] and [33]).

We start with a quasicircular BBH system with spins aligned to the orbital
angular momentum ~L (see Fig. 2.5). Although precessing systems with six indi-
vidual spin components may capture more physical phenomena, we focus on the
aligned binaries because these systems can cover a large fraction of BBH coa-
lescences. Besides, we can systematically map align spin binaries into precessing
ones through analytical computation (see Ref. [34, 35, 36] and references therein).
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Moreover, we can translate the relation between the two polarizations and the bi-
nary parameters, amplitude A, phase φorbit in the time domain as follows:

h(t) =h+(t) − ih×(t),
=A(t) exp (iΦorbit(t)), (2.72)

where amplitude A is given by Eq. (2.54). Now, we only need to obtain the ana-
lytical expression of the phase Φorbit through the derivation of energy and flux.

Following the derivation in [30], the explicit expression of energy reads:

E(v) = −
Mηv2

2

{
1 − v2

(3
4

+
η

12

)
+ v3

[8δχa

3
+

(8
3
−

4η
3

)
χs

]
+ v4

[19η
8
− 2δχαχs −

η2

24
+ (4η − 1)χ2

a − χ
2
s −

27
8

]
+ v5

[
χa

(
8δ −

31δη
9

)
+

(2η2

9
−

121η
9

+ 8
)
χs

]
− v6

[ 35η3

5184
+

155η2

96
−

(34445
576

−
205π2

96

)
η +

675
64

]
,
}

(2.73)

and the flux is given by:

F =
32
5
η2v10

{
1 − v2

(1247
336

+
35
12
η
)

+ v3
[
4π −

11δχa

4
+

(
3η −

11
4

)
χs

]
+ v4

[33δχaχs

8
+

65η2

18
+

(33
16
− 8η

)
χ2

a +

(33
16
−
η

4

)
χ2

s +
9271η
504

−
44711
9072

]
+ v5

[(701δη
36

−
59δ
16

)
χa +

(227η
9
−

157η2

9
−

59
16

)
χs −

583πη
24

−
8191π

672

−
1 − 3η

4
χs(1 + 3χ2

s + 9χ2
a) −

1 − η
4

δχa(1 + 3χ2
a + 9χ2

s)
]

+ v6
[
−

1712
105

ln(4v) −
1712γE

105
−

775η3

324
−

94403η2

3024

+

(41π2

48
−

134543
7776

)
η +

16π2

3
+

6643739519
69854400

]
+ v7π

[193385η2

3024
+

214745η
1728

−
16285
504

+ O

( 1
c8

)]}
, (2.74)

where the Euler constant γE ≈ 0.5772.
One way to solve this is to obtain the expression of t(v). One can compute

the inverse of Eq. (2.58) in v and analytically integrate as explained in [14]. After
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obtaining t(v), we can compute the analytical expression Φorbit up to 3.5 PN order
by integrating Eq. (2.61) so that:

Φorbit(v) = Φorbit
0 −

1
32ηv5

{
1 + v2

[3715
1008

+
55η
12

]
+ v3

[
− 10π +

565δχa

24
+

(565
24
−

95η
6

)
χs

]
+ v4

[15293365
1016064

+
27145η
1008

+
3085η2

144
−

405
8
δχaχs −

(405
16
−

5η
4

)
χ2

s −

(405
16
− 100η

)
χ2

a

]
+ v5 ln v

[38645π
672

−
65πη

8
−

(735505
2016

−
12265η

36
−

85η2

2

)
χs

−

(735505
2016

+
65η
4

)
δχa −

(45
4
−

45η
4

)
δχ2

sχa −
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The contribution of higher PN orders becomes more significant in the late in-
spiral. Of course, it is also more difficult to derive higher PN terms. So far, the
latest version available is the expression up to 4 PN orders. Eccentric PN expres-
sions are given in [37]. We can fuse the eccentric PN model with our eccentric late
inspiral model to build eccentric waveforms with longer inspiral (see Ref. [37, 38]
and section 3).

Collecting the above equations, one can generate waveforms in an individual
machine within seconds, making PN a promising method to model GW sources.
However, recent studies show that PN approximation diverges in some orders and
suffers from boundary conditions at infinity. The solution is to employ numer-
ical approach or perturbation theory depending on mass ratio and distance (see
Fig. 2.6).

2.3.2 Numerical relativity
The validity of PN approximation is restricted to weak gravity and small relative
velocities. Thus, the PN expansion breaks down when the binary moves faster
towards merger. Another way to solve the Einstein’s equations is by integrating
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Figure 2.5: Schematic diagram of the align spin BBH systems used in this study (see
Ref. [39]). ~S 1 and ~S 2 are the individual spin of each BH in the Cartesian coordinates
ex, ey, ez, where the orbital angular momentum ~L aligns to the total angular momentum
~J = ~L + ~S 1 + ~S 2 and the z-axis. (θ1 and θ2) are the angles between ~L and (~S 1, ~S 2)
respectively. δφ is the difference between the projection angle θ1 and θ2 along the x − y
coordinates.

it numerically. It is not our intention to discuss the development of numerical
relativity (NR) extensively in this dissertation. A more detailed overview can be
found in [41, 42, 43, 44, 45].

The fundamental principle in NR is that the dynamic evolution of BBH ac-
cording to the four-dimensional Einstein’s equations are reformulated as an initial
value problem and the four-dimensional spacetime manifold is split into three-
dimensional spatial hypersurfaces that evolve over time. Fig. 2.7 shows a schematic
plot of the concept.

The energy-momentum tensor in the Einstein’s equations is expressed in the
”3+1” form with the following projection,

S µν = Pσ
µPρ

νTσρ, (2.76)

S µ = −Pσ
µnρTσρ, (2.77)

E = nµnνTµν, (2.78)

where S µν is the spatial part of the energy-momentum tensor Tµν, Pµ
ν is the spatial
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[t]

Figure 2.6: Systematic diagram of validity range for different approximations in logarith-
mic scale [40]. The x-axis is the mass ratio and the y-axis is the distance between two BHs
r scaled with total mass M. PN expansion is promising when the separation is relatively
large, in the inspiral range. PN breaks down when BBH moves faster towards merger, the
peak amplitude in the waveform. The two are connected in the intermediate range, where
we will discuss further in the following subsections. We shall use perturbation theory for
high mass ratio. We will not discuss this approach because their GW frequency is too low
for the ground-based-interferometry. The progenitors are IMRI and EMRI, the main GW
sources for the space-based-detector of LISA.

projection operator of the normal vector into the spatial slice. S µ is the momentum
density, and E is the energy density measured by a normal observer with four-
velocity nν.

Following the derivation in [45], we can obtain two constraint equations that
need to be fulfilled for all time slices and two evolution equations. These four
equations are the backbone of modern NR simulations, known as the Arnowitt-
Deser-Misner (ADM) formulation [46].

Unfortunately, the ADM equations combined with the common slicing con-
ditions are only weakly hyperbolic [47]. Choosing the proper condition in the
particular foliation of spacetime is crucial to ensure a successful simulation. Due
to these issues, the ADM equations are not numerically stable and cannot fulfill
the requirements for long-time numerical simulations.

In 1987, Nakamura, Oohara, and Kojima recast the ADM equations that led
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Figure 2.7: Schematic foliation of the spacetime manifold with three-dimensional hyper-
surfaces Σ [45]. The four-vector ta shows the direction of evolution with the time coordi-
nate t. The lapse function α measures the proper time from hypersurface Σt to Σt+∆t along
the normal vector na. The shift vector βi measures the displacement between the observer
time line ta and the normal vector na.

to a more stable evolution code. This work is followed up by Shibata, Nakamura
[48] in 1995, and Baumgarte, Shapiro [49] in 1998, where they successfully im-
proved the formulation yielding a more well-posed, numerically stable evolution
scheme. Following Ref. [50], the three-dimensional hypersurface slice is charac-
terized by an induced metric γi j. Assuming conformal flatness (γi j = ψ4ηi j) and
extrinsic curvature (Ki

i = 0). The constraint equation is solved by rescaling the
same quantities with a conformal factor ψ to avoid BH singularities,

ψ = 1 +

2∑
i=1

mi

|r − ri|
+ u, (2.79)

where mi and ri denote the ith BH mass and location respectively, and u is a reg-
ular function. This reformulation is known as the Baumgarte-Shapiro-Shibata-
Nakamura-Oohara-Kojima (BSSNOK), often called as the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation. The BSSN formulation gains more pop-
ularity in the community because it provides a more stable numerical evolution
than ADM, especially when applied to practical problems such as merging two
BHs.
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Initially, each BH slice is represented by a wormhole geometry with the com-
pact structure leading to a single point, called the puncture. There is an issue
with the initial data, especially for sufficiently large nonspinning BBH separation.
One would expect that the spacetime surrounding each BH would be closed to
Schwarzschild or Kerr solution, but this is not the case due to the conformal flat-
ness assumption and the Bowen-York extrinsic curvature. The Cauchy surface4 of
a Kerr solution is not conformally flat. Thus, the Bowen-York initial data contains
the junk radiation. It leaves the system once the simulation starts to evolve, leav-
ing the wormhole geometry [51] to become a trumpet topology [52] as shown in
Fig. 2.8. In NR simulations, the junk radiation manifests as a burst. After the junk
radiation have taken place, the punctures move in a grid following the physical
motion of the BH. Thus, the approach is widely known as the moving puncture
gauge.

An alternative method to moving puncture is the generalized gauge decompo-
sition [53]. The essence of this method lies in the ”excision” technique, where
one can discard a small fraction inside the event horizon from the computational
domain instead of dealing with the choice of gauge to avoid BH singularity.

Figure 2.8: Visualization of the moving puncture simulation. The wormhole geometry
(left panel) of the initial time slice evolves to the stationary trumpet topology (right panel)
[52].

The GW radiation in NR simulations is commonly expressed through the
Newman Penrose scalar Ψ4 [54]. The Ψ4 measurement is less ambiguous than
measuring the small perturbation on a flat background. This quantity is a compo-
nent of a Weyl tensor in a particular complex tetrad expressed by the second time
derivative of the strain,

Ψ4 =
∂2h
∂t2 =

∂2

∂t2 (h+ − ih×). (2.80)

4Cauchy surface is a hypersurface in spacetime, i.e. a 3-dimensional region in the 4-
dimensional spacetime that can be defined as all of space at a given time.
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h is obtained by performing two numerical integrations of Ψ4. Although the inte-
gration constants can be obtained through the fitting procedure, a small numerical
error in Ψ4 may be enlarged by the integrations. These numerical errors cause
nonlinear drifts in the waveform.

To reduce the errors in Ψ4, one can extract Ψ4 to spin-weighted spherical har-
monics. Following the description in Ref. [55], the strain components are ex-
pressed by the following relation,

h`m+ (t) − ih`m× (t) =

∫ t ( ∫ t′

Ψ`m
4 (t′′)dt′′

)
dt′ + A`mt + B`m, (2.81)

where h`m+ and h`m× are the GW polarization in `m mode, will be explained later in
the text. The constants A`m and B`m need to be fixed by the positioning in some
physical condition. For example, setting the value of the strain to be small enough
near zero towards the end of the computation.

Following Eq. (2.81), we decompose the strain in Eq. (2.72) into GW modes
hlm, owing to spin-weighted-spherical harmonics with spin-weighted s = 2. Here
we introduce the basis function of the sphere −sY`m(θ, φ) as a function of sky loca-
tion defined as:

−2Y`m(θ, φ) =

√
2` + 1

4π
d`ms(θ)e

imφ, (2.82)

where d`ms is the Wigner matrix defined by:

d`ms =

k2∑
k=k1

(−1)k[(` + m)!(` − m)!(` + s)!(` − s)!]1/2

(` + m − k)!(` − s − k)!k!(k + s − m)!

(
cos

ι

2

)2`+m−s−2k(
sin

ι

2

)2k+s−m

,

(2.83)

with k1 = max(0,m − s) and k2 = min(` + m, ` − s).
For convenience, we provide explicit expressions for the leading order terms

in Eq. (2.82) [56],

−2Y22 =

√
5

64π
(1 + cos θ)2e2iφ

−2Y2−2 =

√
5

64π
(1 − cos θ)2.e−2iφ (2.84)

This format is commonly used in the numerical community. Let us make a con-
nection with the GW strain h(t) that reads,

h(t; θ, φ) =

∞∑
`=2

∑̀
m=−`

h`m(t)−2Y`m(θ, φ) = A`meiφ`m , (2.85)
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where h`m is solved numerically.
The dominant contribution of GW radiation from binaries (e � 1) is the

quadrupole modes or ` = 2,m = ±2. The relation between ±m can be exchanged
through the following relation,

h`−m = (−1)`h`m. (2.86)

This decomposition helps our analysis because we need obtain only the +m mode
and apply this transformation for the −m.

Although NR is a promising technique to solve Einstein’s equations, it is com-
putationally expensive and time-consuming. For a comparison, PN expansion
generates the waveforms within miliseconds for single waveforms, while NR may
need several weeks or months. Higher resolution, longer waveforms, the choice of
method, and the initial parameter may affect the timescale. Hence, only hundreds
of NR data are available.

NR catalogs that are known to provide publicly open BBH simulations are

1. SXS Gravitational Waveform Database [57], contains SpEC waveforms for
BBH simulations varying in mass ratios, spins, and low-eccentricities,

2. Georgia catalog [58], contains BBH simulations with different mass ratios
and spins, and

3. RIT catalog of numerical simulations [59], contains waveforms with mov-
ing puncture approach for BBH simulations varying in mass ratios and
spins.

In publication III [60], we select 20 NR simulations from the SXS catalog with
different mass ratios and eccentricities to develop an eccentric model.

2.3.3 Inspiral-merger-ringdown model
In the previous sections, we described that the PN approximation breaks down
when the binary moves towards merger. Although NR overcomes this issue, the
method is computationally expensive and time-consuming. Besides, one needs to
inspect the ongoing simulation repeatedly. In the late 1990s, strategies to build a
complete inspiral-merger-ringdown (IMR) model by hybridizing PN approxima-
tion and NR was initially developed [61, 62] and improved over the years (see
Fig. 2.9).

Two broad classes of IMR waveforms have been used widely, namely the
effective one-body (EOB) formalism [62, 64, 65, 66, 67, 68, 69] and the phe-
nomenological method [63, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78]. Additionally,
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Figure 2.9: Systematic plot of a hybrid model [63]. NR simulation from an equal mass
BBH system (black), 3.5 PN approximation (red), and hybrid model (dashed green).

there have been an intensive development of a new model trained from NR sim-
ulations, namely NRSurrogate [79, 80, 81, 82, 83, 84]. We explain NRSurrogate
in more detail in section 2.3.4. These models have been applied in the analysis of
GW data.

An essential input of the EOB formalism is the higher-order PN expansion.
Instead of using the ’Taylor-expanded’ form 5 of the PN results, it uses resummed
form. This way, some polynomial function of v is defined to incorporate some of
the unknown non-perturbative features of the PN results [85]. In the late 1990s,
this method predicted GW radiation from coalescing BBH and modeled wave-
forms with a sharp transition from inspiral to the merger. It provided an estimate of
the spin and the radiated energy of the final BH [61, 62]. Later, this waveform fam-
ily has been gradually developed and calibrated to NR. We highlight BBH mod-
els for the aligned-spin (SEOBNRv4), precessing (SEOBNRv3), and the inclusion of
higher-order modes (SEOBNR HM). The waveforms are obtained through integra-
tion of ordinary differential equations. Thus, EOB approach is relatively slow for
the direct analysis of GW data. For further details see [62, 64, 65, 66, 67, 68, 69]
and references therein. We add eccentricity on the nonspinning quasicircular
model (SEOBNRv4) in publication III.

The phenomenological family offers an alternative approach with an explicit
expression in the frequency domain. The algorithm allows to simplify and speed
up waveform generation from the fitting and interpolation procedure. IMRPhenomD
[73, 74] is an aligned-spin BBH model that surpass the previous phenom models,
IMRPhenomB [63, 70, 71] and IMRPhenomC [72] in 2016. This model has been
used in the analysis of the first GW detection, GW150914. IMRPhenomD has been
calibrated to 19 NR waveforms with q ≤ 18 and spin components χ̂{−0.95, 0.98}.
Essentially, each waveform in the training set is split into three regions, inspi-

5i.e. c0 + c1v + c2v2 + · · · + cnvn
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ral (M f ≤ 0.018), intermediate (0.018 ≤ M f ≤ fRD), and the merger-ringdown
(0.5 fRD ≤ M f ≤ 1.15 fRD) area, where fRD follows the values in Table 1 in Ref.
[74]. To summarize, IMRPhenomD is a three-dimensional waveform model (q, χ1z,
χ2z) and IMRPhenomB is a two-dimensional model (χ1z = χ2z = χeff) We utilize
IMRPhenomB and IMRPhenomD in the enriched basis study [86].
IMRPhenomPv2 is the precessing model that has been incorporated in the stan-

dard analysis of GW events [34]. When generating an aligned-spin case, the
model reduces to IMRPhenomD. Ref. [77] modifies the waveform by adding a
tidal parameter for BNS signal, known as the IMRPPhenomPv2 NRTidal model.
Later, phenomenological family is developed further with the inclusion of higher
order multiple moments [87].

Further development in the calibration and speed occurs in 2020 with a set
of new waveform models, IMRPhenomX [75, 76, 76]. IMRPhenomXPHM, a recent
phenom model that includes higher order multiple moments has been used in the
recent analysis of GWs detection [10].

Strategies to include eccentricity in both families are currently being devel-
oped. The development of an eccentric model from any nonspinning circular an-
alytical model was an important part of my work (see [60]).

2.3.4 Reduced order modeling
The reduced order technique was originally developed as a solution to speed up
SEOBNRv2 model without losing notable accuracy [88, 89, 90]. Similar meth-
ods have been proposed to interpolate inspiral part of the time-domain waveforms
through singular value decomposition (SVD) [91, 92, 93, 94], a matrix factoriza-
tion method that has been widely used in many numerical applications of linear
algebra such as principal component analysis. The reduced-order model (ROM)
approach utilizes SVD to speed up the waveform generation by a factor of thou-
sands. Thus, parameter estimation (PE) studies can be carried out within days
instead of months.

Following the description in Ref. [89], a set of n input model is generated
within the parameter space of interest and frequency range as densely as desired.
The input set is decomposed into amplitude and phase, where each component is
packed in a regular grid in the parameter space. In later studies, different placing
strategy can also be applied. The frequency grids for amplitudes and phases are
defined separately. Similarly, one needs to generate a set of sparse waveforms
within the parameter boundaries and the frequency grids of the input step above.

The amplitudes and phases of the input set is packed into an n×m matrix form,
where n is the number of waveforms, and m is the number of frequency samples.
For each matrix, one needs to compute the reduced basis via SVD to obtain two
orthonormal matrices, and a decreasing list of singular values that indicates im-
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portant contribution of the projection. We explain the theoretical background of
SVD more detail in publication I [86]. One takes the k dominant contributions
of the left singular vectors to calculate the reduced basis amplitude BA and phase
BΦ.

The projection coefficients are calculated using matrix multiplication between
the transpose of the reduced basis and the sparse waveform set. To generate wave-
forms with a desired set of parameters, one needs to interpolate the projection
coefficients in the parameter of interest and transform it back using matrix multi-
plication with the reduced basis. The amplitude and phase are combined back to
build a full waveform model.

The ROM method has been adopted in the development of NRSur7dq4, a pre-
cessing model trained from 1528 NR simulations. NRSur7dq4 has relatively nar-
row parameter boundaries (q ≤ 4, χ1, χ2 ≤ 0.8) and claimed to have an accuracy
of above 0.99 against NR computed with the Advanced LIGO design sensitivity
noise curve [82].

We modify the ROM method in our study in [86] using two different models
and iterative technique. Furthermore, we explore the dimensionality reduction
from a set of waveforms with higher dimensional parameters onto the lower ones.
The accuracy declines as we involve broader parameters. This issue is highlighted
in this study, where we propose a new method and analysis the solution to tackle
the higher-dimensional problems [95]. We explain in more detail in chapter 3 and
publications I, II.

In a similar spirit, a modification of the ROM technique has been used in
the PE studies [96, 97]. These studies adopt the reduced basis and interpolation
in the ROM techniques to approximate Bayesian probability density functions
and accelerate the analysis of the signals. Two packages are widely used in the
development of the reduced-order quadrature (ROQ) model, namely greedycpp
[98, 99], and PyROQ [100, 101]. These packages provide a framework to speed
up the source parameter analysis.
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This dissertation

“Everything should be made as simple as possible, but not simpler.”

Albert Einstein

This dissertation examines mathematical and computational techniques to im-
prove waveform models to analyze GW signals from BBH coalescences. We pro-
pose methods and analyses that lie between analytical and numerical relativity.
The main aim of these studies is to develop with as simple as possible method yet
a faster and reliable waveform model. The results have been published in three
peer-reviewed papers [86, 95, 60]. Those articles are included unmodified (for-
matting aside) in chapters publication I, II, and III. This chapter summarizes our
studies.

Publication I [86] investigates mathematical methods to tune waveform mod-
els dynamically. Analytical models such as PN or untuned EOB families are fast
to generate, but their their accuracy declines towards merger. Conversely, numeri-
cal simulations are computationally expensive but known to have better accuracy.
Calibration is needed to increase the accuracy of the analytical models without
losing the speed to build the waveform. However, manual calibration often de-
mands excessive human resources. Our research question was motivated by the
need to calibrate analytical waveform models with NR automatically. We divide
this study into two parts.

In the first part, we develop a strategy for two models with the same dimen-
sional parameter. We project a set of a more accurate (but higher computational
cost) model onto the basis of a less accurate (but lower computational cost) model.

33
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The basis was built by decomposing a set of fast-less accurate waveforms through
SVD, a standard mathematical technique for data reduction. Technical details
about SVD are explained further in the introduction section of chapter publica-
tion I. We then interpolate the projection coefficients for the desired parameters
and iterate the process to build a new model. The resulting waveforms are com-
putationally cheap, with an accuracy of up to 0.999 against all test datasets. For
comparison, the basis waveforms have an accuracy between 0.38 and 0.99 (see
Fig. I.3 and I.4 of chapter publication I). We conclude that our method is suitable
for developing a faster and reliable waveform model that spans a broad parameter
range. The primary source of error lies in the interpolation in higher dimensions,
leading us to the main research question in chapter publication II.

We explored a method to build a new set of waveforms coming from two mod-
els with different parameter-space dimensions in the second part. Our study was
inspired by the efforts to update an aligned-spin model (three dimensions) with
the precessing model (seven dimensions). The new waveforms are expected to
have seven dimensions precessing model. Besides, they can quickly build a pre-
cessing model and avoid complex calculations. We investigate a proof of concept
by projecting a set of three-dimensional models onto the basis of two-dimensional
model. We conclude that the resulting waveforms reach our expected accuracy.
The speed to build the waveforms is affected by the three-dimensional interpola-
tion and the placing of the training dataset.

When including more binary parameters, we face the curse of dimensional-
ity, a term used to express that everything becomes more complicated, lengthy,
and requires more computational power with higher dimensions. Implementing
a precessing model that includes seven-dimensional parameters (q, ~χ1, ~χ2) would
require a larger training dataset and complexity than the aligned-spin case (q, χ1z,
χ2z). We investigate various regression methods to tackle regression problems in
waveform modeling in chapter publication II [95]. This study was initiated to
answer the problem we had in the first publication and the issues highlighted by
the ROM community during a workshop in 2018 [102]. We highlight that various
waveform families employ regression, interpolation, or fitting techniques in their
pipeline. Thus, understanding regression techniques is essential in the develop-
ment of waveform modeling.

Furthermore, an ever-increasing machine-learning (ML) use in GW science
motivated us to answer whether such computational complexity is necessary. In
this study, we explore regression methods that are categorized into traditional and
ML methods. We provide the mathematical and computational background for the
traditional methods such as linear interpolation, polynomial interpolation, tensor-
product-interpolation (TPI), radial basis functions (RBF), and greedy multivari-
ate polynomial fits (GMVP). Similarly, we also explore ML techniques such as
Gaussian process regression (GPR) and simple artificial-neural-networks (ANN).
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Publication II [95] presents the theoretical background and our setup for each
regression method, including ML. We also compare the performance of these
methods, namely the maximized overlap and the time required to produce the
waveform data at a point in time for the aligned-spin and precessing model. Our
results show that the difference between traditional and ML is negligible. Thus,
we suggest that ML for building waveform models is less important, at least up to
seven dimensions. A well-known method such as polynomial interpolation may
provide reliable results with a shorter computational time. However, when we
include more parameters, such as the combination of mass, spins, and eccentricity,
machine learning may be faster and more accurate than other methods.

Publication III [60] provides a concrete implementation to develop a faithful
and straightforward model for an eccentric BBH system. The detection of such a
system would significantly help our understanding of binary evolution and pop-
ulation synthesis. At the time of this writing, no GWs from an eccentric BBH
merger have been detected. However, recent studies suggest signals from a detec-
tion event namely GW190521, is originated from an eccentric BBH [103, 104].
Eccentric models are crucial in the analysis, especially since future GW detec-
tors will observe binaries with higher SNR, making it possible to see more BBH
collisions. The study of eccentric orbits has become more demanding, especially
after the observation of GW190521, a BBH collision with high component masses
[103]. Ref [104] discusses the properties and astrophysical implications of such a
system. Possible sources of this event may include a highly eccentric binary with
e > 0.1. However, the development of an eccentric model is relatively slow com-
pared to the aligned-spin, precessing, and higher-order-modes systems. It may
be due to relatively low numbers of eccentric NR simulations available and our
knowledge of the system’s dynamical evolution.

We develop an algorithm to turn any analytical nonspinning circular model
into an eccentric one focusing on the late inspiral to the ringdown regime. We
start with 20 nonspinning, low-eccentric NR simulations from the publicly open
SXS catalog. We split these simulations into 12 training and 8 test dataset. The
amplitude and frequency of these waveforms show characteristic oscillatory be-
havior for different eccentricities and mass ratios. Our strategy is to model the
residual oscillation known as the eccentricity estimators with four fitting coeffi-
cients. These coefficients are strongly related to mass ratios and eccentricities.
We interpolate these coefficients to reconstruct the new eccentricity estimators
with the desired parameters. We then apply the new eccentricity estimators on an
analytical quasicircular model to add eccentricities. This way, we turn nonspin-
ning quasicircular models, IMRPhenomD and SEOBNRv4 into eccentric models.
Our results show that the maximized overlap of the quasicircular turned eccentric
model against eccentric NR is at least 0.98 in all test datasets. As a concrete im-
plementation, we create a publicly open Python package pyrex [105] to carry out
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the computation. Furthermore, we examine the prospect of observing eccentric
binaries with third-generation detectors.

We plan to develop further studies on building a complete IMR eccentric
model. The late inspiral results from our computation are hybridized with the
early inspiral regime from PN expansion [38].
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Enhancing gravitational waveform

models through dynamic calibration
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instr. 38, 30167 Hannover, Germany
2Leibniz Universität Hannover, 30167 Hannover, Germany

Abstract
Current gravitational wave observations made by Advanced LIGO and Advanced
Virgo use theoretical models that predict the signals generated by the coalescence
of compact binaries. Detections to date have been in regions of the parameter
space where systematic modeling biases have been shown to be small. However,
we must now prepare for a future with observations covering a wider range of
binary configurations, and ever increasing detector sensitivities placing higher ac-
curacy demands on theoretical models. Strategies to model the inspiral, merger
and ringdown of coalescing binaries are restricted in parameter space by the cover-
age of available numerical-relativity simulations, and when more numerical wave-
forms become available, substantial efforts to manually (re-)calibrate models are
required. The aim of this study is to overcome these limitations. We explore a
method to combine the information of two waveform models: an accurate, but
computationally expensive target model, and a fast but less accurate approximate

38



39

model. In an automatic process we systematically update the basis representation
of the approximate model using information from the target model. The result of
this process is a new model which we call the enriched basis. This new model
can be evaluated anywhere in the parameter space jointly covered by either the
approximate or target model, and the enriched basis model is considerably more
accurate in regions where the sparse target signals were available. Here we show a
proof-of-concept construction of signals from nonprecessing, spinning black-hole
binaries based on the phenomenological waveform family. We show that obvious
shortcomings of the previous PhenomB being the approximate model in the re-
gion of unequal masses and unequal spins can be corrected by combining its basis
with interpolated projection coefficients derived from the more recent and accurate
IMRPhenomD as the target model. Our success in building such a model consti-
tutes an major step towards dynamically combining numerical relativity data and
analytical waveform models in the computationally demanding analysis of LIGO
and Virgo data.
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I.1 Introduction
The dawn of the GW era began with the first detection of a BBH merger on
September 14, 2015 [1] by the aLIGO [2]. More BBHs [3, 4, 5, 6] and one
BNS merger on August 17, 2017 [7] have been observed by aLIGO and Virgo
[8] during their first two observing runs.

The search for GWs requires coincident signals in at least two instruments.
In order to uncover signals of astrophysical origin hidden behind the instruments’
noise, their data are filtered with a large number of waveform templates [9]. More
than one hundred thousand templates of coalescing compact binaries were em-
ployed in aLIGO GW searches during each of the first two observing runs. An or-
der of magnitude more modelled waveforms are then used to estimate the source
parameters and their uncertainties. More accurate and efficient follow ups of GW
detections and their parameters will be needed for the following aLIGO observ-
ing runs. This implies the need for waveform models covering a wide range of
parameter space that can be generated quickly.

The GW signal emitted by coalescing binaries depends upon many different
parameters that are often grouped into intrinsic and extrinsic parameters. Intrinsic
parameters are astrophysical parameters of the binary. These are two mass pa-
rameters: the chirp mass (Mc) and the symmetric mass ratio η; eccentricity; tidal
parameters for neutron stars; and the spin components of the two objects (~χ1, ~χ2)
that are often represented by the dominant, effective spin parameter (χeff) in the
case of non-precessing binaries. The exact definition of these parameters will be
introduced in section I.

In this study we focus on non-precessing BBHs for which the spins are (anti-
)aligned with the binary’s orbital angular momentum. The dimensionless tidal
parameters are set to zero. Eccentricity has also been neglected in all aLIGO GW
searches that employ modelled templates so far, mainly because for most plausi-
ble astrophysical formation scenarios, the binary is expected to have circularized
by the time its GW signal enters the aLIGO frequency range. However, future
waveform developments might include the eccentricity of the binary.

In addition to these properties, extrinsic parameters define the location and
orientation of the source relative to the observer, such as the luminosity distance
(DL), inclination angle (ι), sky position (RA, Dec), polarization angle (Ψ), time of
coalescence (tc), and phase of coalescence (φc) [10]. For non-precessing systems,
modifications in these parameters simply shift the waveform in time, phase or am-
plitude, and they are much simpler to model than changes in intrinsic parameters.

In order to predict GW signals from binaries, one needs to solve the Einstein
equation in GR. Analytical approximations have been established in form of PN
expansions. These are asymptotic expansions in a small parameter such as the
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ratio of the characteristic velocity of the binary to the speed of light [11, 12]. By
the nature of the approximation, PN expansions become increasingly inaccurate
as the two bodies move closer to each other and faster, entering the strong gravity
regime. At this stage, NR simulations provide the only viable approach to solve
the Einstein equation [13]. In general, NR waveforms can in principle be very
accurate and the accuracy can be tested through different types of convergence
tests, but they are computationally extremely expensive [14, 15, 16, 17].

Hence, many efforts in the past focused on bridging PN and NR [18, 19],
leading to a variety of EOB and phenomenological waveform models that are
used in aLIGO’s analyses. EOB is an analytical method proposed by Buonanno
and Damour [20, 21, 22, 23, 24, 25, 26, 27] which substantially reformulates PN
results into a new description of the binary coalescence beyond the inspiral phase.
A different approach was developed to build phenomenological models (see I) that
essentially model coalescing binaries using analytical fits of PN-NR hybrids.

However, both approaches depend on a number of tunable parameters and fits
whose optimal form and values are determined through complex procedures that
typically require a fair amount of human input. Therefore, updated models that
incorporate new NR data and improved analytical descriptions typically take years
to develop.

A different method to generate an accurate waveform model is based on so-
phisticated interpolation methods to create a surrogate model [28, 29, 30] of NR
waveforms. These surrogate models have a high accuracy to the original NR
waveforms, however, they are limited to the parameter space covered by the origi-
nal simulations. Although boundaries are constantly being expanded in parameter
space, this modeling strategy relies on large amounts of computational power.
At the time of writing this article, the latest precessing surrogate model [28] is
limited in mass ratio and dimensionless spin magnitude to q ≤ 2 and |χ| ≤ 0.8,
respectively.

Here we explore a complementary method of constructing a waveform model
that combines the information of an existing (computationally efficient) model
with more accurate waveforms that are only available in a limited set of points in
the parameter space. A future application of our method would be a dynamical
(i.e., fully automized) update of an analytical model with NR waveforms to pro-
duce a new waveform model that can be evaluated continuously and has a better
accuracy than the original model.

To develop our method, here we employ two analytic phenomenological mod-
els: PhenomB [31] being the approximate, less accurate model and PhenomD
[32, 33] being the target, more accurate model.

We use SVD to decompose the approximate model into an orthogonal basis
and update the basis coefficients using information from the more accurate model.
Similar ideas of using SVD to improve waveform models have been presented by
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Cannon et al [34, 35, 36] and Pürrer [37, 38].
Cannon et al explore the use of reduced-order SVD in time domain. However,

they only use one-dimensional interpolation in mass components and consider a
restricted parameter space with no spin. We use a similar technique, but con-
sider frequency-domain waveforms, and we extend the method to a much greater
parameter space including spin.

Pürrer discusses the use of SVD to build computationally more efficient ROMs
of existing spinning, non-precessing EOB models. ROMs are now a standard tool
to reduce the time taken to generate a waveform, but the resulting accuracy is that
of the original model, or slightly less in challenging points of the parameter space.

Throughout this article geometric units are used by setting G = c = 1.

I.2 Methodology

I.2.1 Waveform models
The constantly increasing sensitivity of GW interferometers demands ever more
accurate models. Updating and improving models is a major tasks entering the
era of GW astronomy, and we present a first end-to-end test of a fully automatic
tuning that in future will use NR simulations to improve analytical models. Here,
however, we start with a proof-of-concept using two phenomenological waveform
models.

The phenomenological family is a set of approximate waveform models, writ-
ten as closed-form analytical expressions in the frequency domain [39, 40, 31, 41,
42, 33]. These models have been calibrated to NR waveforms that naturally cover
a limited region of the intrinsic parameter space. However, the most recent mod-
els [42, 33] have been shown to be perfectly suited for current BBH observations
with mass ratios close to unity.

As explained in section I, we use PhenomB as the approximate, less accurate
model that we aim to update with information from PhenomD as the accurate tar-
get model. PhenomB [31] was the first (anti)-aligned spin model of this family,
released almost simultaneously with an alternative description of the same param-
eter space, called PhenomC [41]. Both models were calibrated up to mass ratios
of 4 and BH spins up to 0.75. They have known shortcomings when extrapolating
beyond the region of calibration, especially towards more extreme mass ratios.
PhenomD is the most recent and most sophisticated version of aligned-spin phe-
nomenological models. It has been calibrated to 19 NR waveforms from the SXS
collaboration [43] and the BAM code [44, 45] that span mass ratios from unity up
to 18 and dimensionless spin magnitudes up to 0.85 (0.98 for equal-mass systems)
[32, 33].
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The intrinsic parameters of relevance in the non-precessing case are the mass
ratio q, or equivalently the symmetric mass ratio η,

q =
m1

m2
≥ 1, η =

m1 m2

(m1 + m2)2 , (I.1)

as well as the dimensionless spin projections along the orbital angular momen-
tum χ1z, χ2z (non-vanishing spin components perpendicular to the orbital angular
momentum cause precession effects that we leave for future work). For vacuum
solutions of Einstein’s Equation, the total mass M = m1 + m2 is a simple scaling
factor.

We emphasize that the spin degrees of freedom in a binary are commonly
reduced in phenomenological models to the observationally relevant dominant
parameter combinations. Following the analysis in [31, 41] for aligned-spin bi-
naries, the dominant spin effect in GW phase can be expressed as the weighted
combination of individual BH spins,

χeff =
m1 χ1z + m2 χ2z

m1 + m2
. (I.2)

Apart from an overall time and phase, PhenomB exclusively depends on χeff and
η. PhenomD uses χeff for the coefficients that were tuned to NR simulations,
however, through the inspiral and the final state portion of PhenomD inherits two-
spin dynamics. In section I we will apply our method to the 3D problem (η, χ1, χ2)
and express our results in terms of the symmetric (χeff) and anti-symmetric (χa)
spin parameters where (χa) is defined as

χa =
χ1z − χ2z

2
. (I.3)

In the following sections, we present the details of how to update PhenomB
with the more accurate PhenomD waveforms in frequency domain for a given
range of η, χeff and scaled by the total mass M. The end result of this computation
is a new waveform model that is closer to its target waveforms. We call this new
family as the enriched basis (EB) waveforms.

I.2.2 Parameter ranges
This exploratory study is designed to test our method across a wide range in pa-
rameter space. Here, we essentially consider the range in mass ratio and spins
where PhenomD has been calibrated to NR waveforms (see section I),

η ∈ [0.05, 0.25], χeff ∈ [−1, 1]. (I.4)
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We stress that this region in the parameter space includes a considerable part
where PhenomB has not been calibrated, e.g., mass ratios above 4 (η < 0.16).
What we are going to show is that despite the fact that the underlying approxi-
mate model does not accurately describe signals in certain regions, using accurate
signals to update the approximate basis representation can entirely fix that prob-
lem.

In order to fully determine the signals for our test case, we fix the following
additional parameters,

M = 50M�, flow = 30 Hz,
∆ f = 0.1 Hz, M fhigh = 0.2, (I.5)

where flow and fhigh are the values of the lowest and the highest frequency we
consider, respectively, and ∆ f defines the numerical discretization of the signal.
M fhigh = 0.2 is chosen to be slightly higher than the signal with the largest ring-
down frequency in our dense grid1. For M = 50M�, fhigh corresponds to 812
Hz.

Following the above choice of parameter ranges, we create two two-dimensional
(2D) uniform grids in η and χeff. We build a dense grid of approximate PhenomB
waveforms, and a sparse grid of accurate PhenomD waveforms (see Fig. I.1 for
visual representation). Our dense grid contains N = 65 × 65 = 4225 signals,
and the sparse grid has S = 33 × 33 = 1089 signals. Thus, about 25% of the
approximate waveforms have the same η and χeff as the target waveforms.

On each point of each grid, we generate the GW polarizations, h+/×. In this
work, we only consider non-precessing signals and their (`, |m|) = (2, 2) mul-
tipoles which means that the extrinsic parameters, such as the orientation and
location of the binary, simply scale the amplitude of the signal and introduce a
constant phase shift. We can treat these trivial dependencies independently and,
at this stage, normalize all waveforms to have the same extrinsic parameters. We
then use the software library LALSuite [46] to generate the GW polarizations.

In this study, both approximate and target models are inexpensive to compute,
so we can test our method for large numbers of target-model waveforms. In the
future, we will use target waveforms that come from computationally expensive
methods such as NR simulations. In that situation we may not have access to
signals at arbitrary points in parameter space and we will have fewer waveforms.
Here we first choose a reasonably high number of target waveforms, and later
discuss how low this number can become to still produce satisfactory results.

1The system with the highest ringdown frequency will be the equal-mass, maximally spinning
case (χeff = 1) which has dimensionless ringdown frequency of ∼ 0.13.
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Figure I.1: Illustration of the two uniform grids we consider in η-χeff parameter space.
The blue crosses illustrate the dense grid of approximate signals that we use to build an
SVD basis, and the red circles are the sparse grid of accurate signals we use to update the
model.

I.2.3 Waveform matrices
In our method we will represent the waveform manifold of the approximate model
with a set of orthogonal basis functions computed using SVD. First, we prepare
our dataset in appropriate matrix form which we can factorize subsequently. The
procedure is explained by the following steps.

I.2.3.1 Waveform decomposition

The frequency-domain strain h̃( f ) is the combination of both GW polarizations ,
where f is defined for positive frequencies. Here we assume the circular polariza-
tions of GW and describe h̃( f ) as follows: 2

h̃( f ) = h̃+( f ) + i h̃×( f ) . (I.6)

We note that if we express h̃+/×( f ) in terms of their amplitudes, A+,×, and
phases, Ψ+,×, factoring out the dependency on the inclination angle, ι, we obtain

2In other literature, the strain is sometimes defined as h+ − ih×, owing to a different convention
of the Fourier transform. Here we adopt the definition used in LIGO algorithm library (LAL),
h̃( f ) =

∫
h(t) exp(−i2π f t) dt



46

the following expressions [10]:

h̃+( f ) = A+( f ) eiΨ+( f )
(1 + cos2 ι

2

)
, (I.7)

h̃×( f ) = A×( f ) eiΨ×( f ) cos ι . (I.8)

The non-precessing signals we consider further satisfy a simple relation between
the polarizations,

A+ = A×, Ψ× = Ψ+ −
π

2
. (I.9)

While (I.9) is exactly valid only in the limit of large separations, assuming it
through merger and ringdown is a commonly made approximation that does not
introduce inaccuracies relevant to today’s analyses.

By computing h̃+ and h̃× for ι = 0, we can now decompose h̃( f ) into amplitude
and phase components,

h̃( f ) = 2A+( f ) eiΨ+( f ) . (I.10)

In this form, we can focus on two real-valued functions: the strain’s amplitude and
phase (we drop the ‘+’ subscript henceforth). This decomposition is convenient
because amplitude and phase are simpler, real-valued, non-oscillatory functions
which are better suited to perform SVD than the oscillating strain.

Once we have constructed the improved EB amplitude AEB( f ) and phase
ΨEB( f ), we can combine them again into the EB strain h̃EB( f ), as well as indi-
vidual polarizations, using Eqn. (I.7)-(I.10).

I.2.3.2 Phase alignment

Time and phase shifts enter the frequency-domain waveform through the GW
phase Ψ( f ) according to

Ψ′( f ) = Ψ( f ) + 2π f t + ψ, (I.11)

where t is the amount of time shifted and ψ is the phase shift.
We use (I.11) to align the phases in our approximate waveform grid by de-

termining the time and phase shift individually for each configuration such that
the square phase difference with one fiducial case is minimized. Specifically, we
align the phases against the first case in our grid (η = 0.05, χeff = −1), although
any other choice yields comparable results. By aligning the phases before per-
forming the SVD we remove variations between the phases that are purely due to
time and phase shifts. These variations can always be re-introduced analytically
via (I.11). The shifted phase is denoted by ΨB( f ).
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Figure I.2: Illustration of N signals, each of length L, decomposed into amplitudes (left)
and phases (right) packed into two matrices.

I.2.3.3 Matrix form

We generate N signals from the approximate model PhenomB, each discretized
at L > N points in frequency domain between flow and fhigh. After computing
the strain h̃( f ) from the two polarizations as explained in the previous section, we
decompose them into amplitude and phase then align the phases. We then pack all
amplitude and phase arrays into a matrix, respectively (see Fig I.2) Specifically,
the rows of the matrices are arranged from the lowest (η, χeff) to the highest (η,
χeff).

We repeat the above procedure and generate S target waveforms, using Phe-
nomD, on the sparse grid, where S < N < L. At this point, we have four matrices:
two amplitude matrices and two phase matrices; one of each type for each approx-
imant. The matrices of the approximate model PhenomB have the dimensions
RN×L while the target PhenomD model matrices are ∈ RS×L. With this prepared,
we perform an SVD as discussed in subsection I.

I.2.4 The Singular Value Decomposition
Our goal is to generate a new waveform family that can be evaluated for arbitrary
parameters from interpolating a set of sparse target waveforms. To do this, we
project our target model onto a basis of the approximate model, generated from
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a grid that is as dense as possible and computationally feasible. As a first step,
the basis is built by an appropriate factorization of the grid of the approximate
waveforms.

There are two main strategies to factorize sets of waveforms. One uses a
Gram-Schmidt orthogonalization to obtain the basis from a first set of approximate
waveforms followed by a greedy algorithm to extend the basis until an acceptable
error limit is reached [28, 47, 48]. The second strategy uses the SVD as in Cannon
et al [34, 36, 35] and Pürrer [37, 38, 49] to factorize each matrix into two unitary
matrices and one diagonal matrix with elements sorted in descending order. The
comparison between the two strategies has been discussed in [28]. Here we use the
SVD because it produces smoother result, and because it is elegant and convenient
given that it sorts the contribution from the dominant basis vector to the least
important ones. This ensures that the error caused by SVD truncation is generally
small.

We adopt SVD to individually factorize amplitude and phase matrices (P ) of
PhenomB into two unitary matrices (U and V ) and one diagonal matrix Σ [50],

P = UΣV T . (I.12)

Here, U = [u1| . . . |up] ∈ RN×p and V = [v1| . . . |vp] ∈ RL×p are orthogonal ma-
trices and the superscript T denotes the transpose of the corresponding matrix.
The vectors ui and and vi are left and right singular vectors of P respectively.
The singular values Σ = diag(σ1, . . . , σp) ∈ Rp×p is a diagonal matrix sorted in
descending order, where p = min(N, L), which in our setup yields p = N. The
diagonal elements σ2

i are the eigenvalues of P TP .
SVD can be interpreted as matrix decomposition into a weighted sum of sepa-

rable matrices, meaning that a matrix P can be written as an outer product of two
vectors P = ū⊗vT (ū denote the u vectors weighted by the singular values). The
rank of this outer product depends on how many singular values are involved in
the sum. The index notation of the above reads

Pi j =

p∑
k=1

uik σk vT
k j. (I.13)

I.2.5 Projection coefficients and reduced order
In our study, we use Eq. (I.13) in the following way. Every row of the matrix Pi j

represents a Fourier-domain series of either amplitude or phase; the index j rep-
resents individual frequency samples. Every one of those Fourier-domain series
is expressed on the right-hand side as a linear combination of orthogonal basis
vectors (VT )k j (k is the index of the basis, j specifies the frequency) multiplied
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with coefficients cik = uik σk (k corresponds to the associated basis, i specifies the
frequency series that is reconstructed in this way). We call cik the projection coef-
ficients. The projection coefficients can be interpreted as updating the left singular
vectors uik weighted by the rank of singular value σk.

In order to build an analytical model that can be evaluated continuously across
the parameter space, the projection coefficients need to become functions that
interpolate in the parameter space between the discrete points given in the rows of
Pi j. We emphasize this below by replacing the index i with the explicit functional
dependency on η and χeff, leading to

ck(η, χeff) =

L∑
j=1

P j(η, χeff) V jk. (I.14)

The sum now describes a discretized inner product 〈·, ·〉, so that (I.14) becomes

ck(η, χeff) = 〈P(η, χeff), vk〉 . (I.15)

Again, P in this expression represents either the amplitude or phase for the pa-
rameters (η, χeff), vk are the basis vectors calculated via SVD.

Different from standard practise in SVD and ROM, we now proceed by cal-
culating coefficients from projecting the target waveforms’ amplitude and phase
onto the basis representation of the approximate waveform, respectively. In addi-
tion, we study a reduction of the basis size that is achieved by only considering the
first K coefficients. K then reduces the rank of the singular values matrices [35],
and it enters (I.13) as the upper limit of the sum instead of p. This reduced or-
der is introduced to increase computational efficiency and to decrease memory
requirements when building the EB in comparison to the full basis k = N.

By updating the approximate (less accurate) waveforms basis coefficients with
information from the (more accurate) target waveforms we have manipulated the
basis representation of approximate waveforms to be closer to target waveforms.
Hence, we name this process enriching the basis.

I.2.6 Interpolation
To construct our enriched basis model, we calculate the approximate SVD basis
and project the target amplitude and phase onto the respective basis vectors, giving
us projection coefficients according to (I.14) on the sparse grid in parameter space
(recall, the sparse grid is where we have access to accurate target signal). We
then interpolate the projection coefficients and calculate their values on all points
on the dense grid, so that we can compare with all approximate signals that we
needed to start this process.
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We stress that the dimensionality of the interpolation depends on the target
model. For equal-spin case, we use two-dimensional interpolation (η, χeff) in
parameter space, and later we consider two independent spins, where we need
three-dimensional interpolation. Here we employ cubic spline interpolation as the
most efficient and easy method for this project. However, different interpolation
methods such as Chebyshev polynomials [35], tensor product interpolation [23],
Gaussian interpolation [51] and empirical interpolation [29] have been used in
different studies. For the future, it will be beneficial to compare all these methods
systematically, evaluating computational efficiency, accuracy and generalisability
to higher dimensions.

Once the target waveform’s coefficients, that we denote by c′(η, χeff), have
been obtained, we combine them with the basis vectors to calculate the EB’s am-
plitude and phase,

PEB
j (η, χeff) =

K∑
k=1

c′k(η, χeff)vT
k j. (I.16)

Having amplitude and phase, we can build h̃EB(η, χeff) using Eq. (I.10).

I.2.7 Match and improvement evaluation

Once the EB strains h̃EB have been calculated, we evaluate their accuracy and
improvement of EB model relative to its approximate and target models. We then
test the accuracy of EB model both at points where the target model was used
to update the projection coefficients, as well as at points where no target signals
were available and we use the interpolated projection coefficients. To perform the
evaluation, we compute matches between PhenomB and PhenomD and compare
them to the matches between EB and PhenomD.

The match is defined as the normalized, noise-weighted inner product between
two waveforms h1 and h2 [10], maximised over relative time and phase shifts
between them,

O =
〈h1, h2〉

‖h1‖‖h2‖
= max

φ0,t0

4 Re
∫ f2

f1

h̃1( f ) h̃∗2( f )
S n( f )

d f
‖h1‖‖h2‖

 . (I.17)

Here, φ0 and t0 are relative phase and time shifts between the waveforms, respec-
tively, and ‖h‖2 = 〈h, h〉. S n( f ) is the noise spectral density of the detector, h̃∗

denotes the complex conjugation of h̃, and ( f1, f2) is a suitable integration range
which corresponds to flow and fhigh respectively. We use two noise spectra in
our analysis, flat noise (S n ≡ 1) and the aLIGO zero detuned high power den-
sity (AZDHP) which is the anticipated design sensitivity of aLIGO in 2020 or
later [52]. The motivation behind using a flat power spectral density (PSD) is to
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evaluate the signal agreement with equal weight on all frequencies independent of
an assumed instrument, whereas using AZDHP allows us to relate our results to
GW analysis applications.

Matches are close to unity where waveforms agree (see section I), so it is easier
to compare the difference between two models by quoting the mismatch, defined
as

M(h1, h2) = 1 − O(h1, h2). (I.18)

Finally, to quantify the accuracy improvement of the EB model over the approxi-
mate model PhenomB, we define improvement, I, as the mismatch of the approx-
imate waveform with the target model divided by the mismatch of EB model with
the target,

I(h1, h2) =
M(h1, h3)
M(h2, h3)

, (I.19)

where in this study, h1, h2 and h3 correspond to PhenomB, EB, and PhenomD
respectively.

I.3 Results
We have outlined a technique to build a more accurate waveform model in the
above section. Here we present results and analyses based on two different as-
sumptions about the spins in the target parameter space, equal-spin (χeff=χ1=χ2)
and double-spin, where χ1 and χ2 are varied independently (i.e., χa does not nec-
essary vanish).

I.3.1 Two dimensions: equal-spin systems
Following the above procedure, we evaluate the match between the EB model and
the target model under flat noise and AZDHP. We also compare the mismatch
between the approximate model against the target model to calculate the improve-
ment we gain.

Fig. I.3 shows the original match of PhenomB against PhenomD. It is evident
that PhenomB has not been calibrated to mass ratios above 4, and the agreement
between the two models deteriorates quickly, especially for high spins.

Fig. I.4 presents the matches of EB against PhenomD without invoking any
interpolation. Recall, EB here is based on basis vectors derived from PhenomB
that do not accurately represent high-mass ratio systems. However, by projecting
N = 65×65 PhenomD waveforms onto the basis derived from N PhenomB signals
on the same points in parameter space, we see that there is enough extra freedom in
the basis such that updated projection coefficients can correct for the inaccuracies
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of the approximate model. Put differently, the space spanned by the approximate
PhenomB basis vectors does contain more accurate signals, also for higher mass
ratios, if the coefficients in front of the basis vectors are adapted appropriately.
This might not be a surprising result, given the fairly large number of basis vectors
we use; it is not a trivial result either.
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Figure I.3: Matches of PhenomB against PhenomD under flat PSD.

Of course, this is not a useful application of the method we develop. If one has
access to N accurate waveforms, there is no need build an approximate basis first.
Now we reduce the number of accurate waveforms to S ≈ N/4, and interpolate the
projection coefficients to calculate EB signals on all N grid points. The mismatch
result is shown in Fig. I.5. In most parts of the parameter space, the accuracy of
EB is only very slightly lower than what was achieved in the ideal scenario shown
in Fig. I.4. Interpolation therefore does not introduce significant errors for the
grids chosen here. Only at the boundaries of the parameter space we find higher
mismatches in Fig. I.5.

We note that interpolation will likely become a major source of error when
the number of available target waveforms is decreased significantly and when the
dimensionality of the parameter space increases. We shall return to discussing
both issues later in this paper.
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Figure I.4: Matches of EB against PhenomD without interpolation and under flat PSD.
In this figure, we generated target model in the same grid as the approximate model, and
run our method in full bases (without reduced order). This plot is used as comparison to
interpolation and reduced order result as explained in the text.

We have repeated the study with the AZDHP noise curve and find qualitatively
the same behaviour. A summary of mismatches (in log10 scale) and improve-
ments are given in Table I.1. We present the minimum, maximum and median
mismatches across the dense grid, as well as the improvements defined by (I.19).

Table I.1 shows that overall the difference of mismatches using one or the other
noise spectrum is relatively small. Full histograms are shown in Fig. I.6. Because
results are so similar, we only show the figures for the flat PSD.

So far, we have generated our target model, PhenomD, on a regular grid in the
parameter space as illustrated in Fig. I.1. We also investigate how the choice of
positions of target signals affect our result. For that reason, we distribute the same
number of PhenomD waveforms randomly, drawn uniformly from the parameter
space of η and χeff. These target waveforms are then projected onto basis vectors
coming from the dense regular grid of PhenomB signals. We follow the above
procedure to build the EB coefficients and interpolate them onto the dense regular
grid to evaluate mismatches between EB and PhenomD waveforms with the same
parameters. Since the results for flat and AZDHP PSDs are relatively close, we
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Figure I.5: Matches between EB against PhenomD with interpolation and under flat PSD.
In this figure, we generated both target and approximate models in regular grid . The
number of target model is about 25% of the approximate model as explained in subsec-
tion I. We perform two dimensional interpolation (see subsection I) over the projection
coefficients. To make the comparison easier, we set the range of match equal as that on
Fig. I.4.
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Table I.1: Mismatches between PhenomB and PhenomD as well as mismatches between
EB and PhenomD in log10 scale. The improvement, I, is defined by (I.19). Here we
compare the results using two different PSDs, flat PSD (S n = 1) and AZDHP. We also
compare results that interpolate from the sparse to the dense grid with calculations en-
tirely carried out on the dense grid (no interpolation).

PSD
no interpolation interpolation

min max med min max med

Flat
PhenomB -2.67 -0.001 -0.03
EB -3.37 -1.99 -2.69 -3.38 -1.73 -2.68
I 1.42 1201 40 1.42 1195 39

AZDHP
PhenomB -2.50 -0.10 -1.14
EB -3.23 -1.95 -2.71 -3.23 -1.68 -2.71
I 1.17 1082 39 1.20 1082 39

evaluate the mismatch assuming a flat PSD. We find that log10M of random uni-
form grid ranges between −1.39 and −3.39. For direct comparison, the mismatch
of the regular grid of target waveforms is between −1.73 and −3.38 as presented
in Table. I.1. From this simple study, we argue that different positions will not
affect the result significantly, so long as the number and distribution of parameters
are similar.

I.3.1.1 Accuracy of the reduced basis

Here we examine the accuracy of EB when restricting ourselves to the first K
bases. The advantage of a reduced basis is mainly to optimize computational
power.

Fig. I.7 shows the mismatches and improvements as a function of the num-
ber of bases that are kept from the SVD of PhenomB. To obtain the result, we
projected S ≈ N/4 PhenomD signals onto the PhenomB basis and performed in-
terpolation as explained in previous section. For very small numbers of bases we
observe a rapid drop in mismatches. After the first 25 bases are included, how-
ever, the improvement of EB is much more gradual when more bases are used. We
speculate that the most important variations in PhenomB signals are already well
described with 25 basis vectors, but we do need a lot more basis vectors to accom-
modate additional features present in PhenomD that are not captured accurately
by PhenomB (most notably, the high mass ratio, high spin regime).

If our goal is that the EB signals are at least as accurate as the approximate
model, and in most points of parameter space significantly more accurate, then we
find that 3375 of 4225 bases are needed to guarantee that the improvement I ≥ 1.
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Figure I.6: Mismatches between EB and PhenomD target signals for different configura-
tions and PSDs. The histograms are normalized so that the sum of area under each line
are set equal to unity. The dashed lines represent the result using fewer target signals and
interpolation, whereas the respective solid lines show results using more target signals
and no interpolation (see text).

We might expect that higher parameter-space dimension (D + 1) require a
larger number of bases to obtain at least the same mismatch as lower dimension
(D). Naı̈ve intuition would be that the increase of dimensionality in parameter
space requires an exponential growth of the basis size. This is called “curse of di-
mensionality“. However, a study by Field et al 2012 [53] shows that one may only
need a small number of additional bases in higher dimension to obtain comparable
result as in lower dimension. Therefore, the number of reduced bases is not ex-
ponentially proportional to the number of dimensions in parameter space. Higher
parameter-space dimensions, however, affect computational time as we generate
more waveforms covering a greater space.

I.3.1.2 Minimum target waveforms

In the analysis above, we used a uniform grid for target and approximate wave-
forms with the ratio of PhenomD to PhenomB signals of about 1/4. In this section,
we explore the minimum number of target waveforms needed to obtain a compu-
tational efficient EB model that improves the approximate model significantly.

We projected various numbers of target signals given on a sparse, uniform grid
with S = r × r points onto the basis derived from the full N approximate wave-
forms. We evaluate the improvement I on the dense grid (after interpolating the
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Figure I.7: The accuracy of a reduced-order model. The top plot is the mismatch between
EB and PhenomD waveforms as a function of the number of reduced bases. The bottom
plot shows the improvement, cf. (I.19). The shaded areas are bounded by the minimum
and maximum mismatches. The red area is obtained with a flat PSD while the yellow
area uses AZDHP. Results with different PSDs overlap well. From this plot, using the
minimum of 3375 bases, we can guarantee that all the EB waveforms are more accurate
than their approximate waveforms.

projection coefficients from the sparse onto the dense grid) and show the mini-
mum in Fig. I.8. We find that 12 × 12 = 144 target waveforms guarantee that
all EB results are better than PhenomB. This number is almost 30 times smaller
than the number of PhenomB signals we use, and more than 95% of the signals
generated on the dense grid to compute mismatches are now interpolated and have
not been used as target waveforms in the construction of EB.

In fact, we find that the EB model built with S = 144 accurate PhenomD
signals performs in large parts of the parameter space comparable to the previous
case of 33 × 33 target signals. Only the problematic boundary regions that were
visible already in Fig. I.5 become more pronounced, both in size and mismatch.
Better results, even with this relatively small number of target signals, can be
achieved by the iteration procedure we will introduce below.
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Figure I.8: Only 144 (12 × 12) PhenomD signals on a uniform grid are needed to guaran-
tee that all EB waveforms perform better than PhenomB (assuming flat noise). The blue
line is the value of the minimal improvement using r × r target waveforms.

I.3.1.3 Phase and amplitude contributions

In order to identify the dominant contribution to the inaccuracies that we reported
for our EB model, we now evaluate mismatches for individual components. In
particular, we can apply the definition of the overlap (I.17) and mismatch (I.18) to
the amplitude alone, without maximizing over time and phase shifts.

We find that the PhenomB amplitude has relatively high overlap against Phe-
nomD that ranges from 90.78% to 99.98%. As we show in Fig. I.9, the EB am-
plitude also has extremely small mismatches with the target signal PhenomD. Be-
cause the strain mismatches, also included in the figure, are orders of magnitude
higher, we conclude that they are dominated by modelling inaccuracies in the
phase.

We note that one could in principle calculate mismatches of the pure phase
functions as well, but these numbers are less meaningful because they are not
invariant under the physical degrees of freedom: phase and time shifts applied to
both functions simultaneously. A geometric interpretation relates the overlap to
‘the angle’ between two functions, but because the phases appear in the complex
exponential of the strain, the relevant measure is the phase difference instead of
their angle.

I.3.1.4 Mass scaling

So far, we have fixed the total mass of the systems in consideration to M = 50M�.
This choice is almost irrelevant for the actual waveform construction as vacuum
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Figure I.9: Normalized histogram of EB amplitude and strain mismatches against Phe-
nomD in flat noise spectrum. The dashed curves are the result from interpolating fewer
target signals; the solid line did not employ interpolation (cf. Fig. I.6).

spacetimes include the system’s total mass as a simple scaling factor. As a result,
the signal models are actually a function of the dimensionless product M f . This
degeneracy between total mass and frequency is broken when we need to consider
physical, full-dimension frequencies that enter the AZDHP noise curve. We also
specified our lower cutoff frequency as 30 Hz. Hence, scaling the total mass means
appropriately setting flow and fhigh.

Binaries with higher total mass merge at lower frequencies. Therefore, as we
have constructed a signal model for M = 50M� starting at 30 Hz, we can use the
same model also for more massive systems with the same flow. The higher mass
system then has a shorter frequency range.

Assuming we have carried out the model construction for a total mass M1, we
can scale the frequency of a system with a different total mass M2, but otherwise
the same intrinsic parameters, as follows

f2 = f1

(
M1

M2

)
. (I.20)

As a consequence of the Fourier transform, the strain h̃( f ) also needs to be scaled
by the total mass. Putting it all together, the strain for M2 can be obtained through
the following relation,

h̃( f ; M2, η, χeff) =

(
M2

M1

)2

h̃
(

M2 f
M1

; M1, η, χeff

)
. (I.21)

Without reconstructing the EB model, we can evaluate the mismatch between
EB and the target model PhenomD in frequency range between flow and fhigh for
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total masses between 50 to 200 M�. We assume the AZDHP PSD. The results
are shown in Fig I.10. In this plot, we show that the change of mismatches are
relatively small for different total masses under the AZDHP noise spectrum. With
the same flow (30 Hz) and fhigh scaled by the total mass as explained above, higher
total mass systems produce shorter waveforms. Since the AZDHP noise spec-
trum is most sensitive in range of early hundred Hz and begin to drop gradually,
the agreement between different parts of the waveforms are affected by different
sensitivity ranges. Hence the matches are not perfectly uniform for various total
masses.
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Figure I.10: Mismatches of EB against PhenomD for various total masses as explained
in the text. The shaded area is the range of log10 mismatch of the respective total masses,
and the blue line is its median. This figure compares mass scaling using AZDHP PSD
from 30 Hz to fhigh of the corresponding total mass.

I.3.1.5 SVD iteration

In the previous sections, we found that our method is effective in producing a more
accurate waveform model compared to the approximate model we started with,
PhenomB. The mismatches of the resulting EB family are better than PhenomB’s
mismatches against the target model, PhenomD. This section explores a method
to iterate the above steps to produce an even more accurate version of EB, using
the same number of approximate and target waveforms.

The basic idea is that we can employ the EB model as the approximate wave-
form of the subsequent iteration and derive a basis from N EB signals interpolated
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on the dense grid. We then project the same PhenomD signals onto the new basis.
We repeat this iterative procedure until the median does not improve significantly.

We first use the minimum number of target waveforms discussed in Sec. I
and later compare the results obtained with more target waveforms. We run the
SVD iteration using 12×12 PhenomD signals projected onto 65×65 approximate
models without reducing the basis. The reported mismatches employ a flat noise
spectrum.

The first EB improves upon PhenomB in mismatch between 1.04 and 860 with
median of 23.5. This corresponds to log10 mismatches between −3.36 to −3.57.
We then use the EB signals to construct a new SVD basis and run the same pro-
cess iteratively. After 35 iteration the median log10 mismatch of EB decreases
to −4.463 while the median improvement raises to 1254. The mismatch and im-
provement results are shown in Fig. I.11. On a standard laptop, one iteration of
this process took about 10 minutes using a single node (no parallelization).

For comparison, we also used PhenomD signals on a 33 × 33 grid and ran
the same iterative process. Using more target waveforms, we achieved a median
mismatches below 10−6 and an improvement of more than 1750 over PhenomB.

In conclusion, we can reduce the mismatch of EB using an iterative process,
but of course this will not be as effective as using more target waveforms.
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Figure I.11: Mismatches and improvement between EB and PhenomD after iterations.
Left: mismatch range over iteration number shown in shaded area with median indicated
by the blue curve. Right: improvement range that corresponds to the same iteration is
shown in shaded area, where the blue curve shows the median improvement.
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I.3.2 Increased dimensionality: two spins
We have shown that our method can successfully be applied to the aligned equal-
spin case, in which both the approximate and target waveforms were varied across
an effectively two-dimensional space of intrinsic parameters. Here we expand
the dimensionality such that the new EB waveforms are built from a higher-
dimensional target model projected onto a lower-dimensional approximate model.
We therefore investigate to what extent the basis can represent a greater parameter
space than what it originated from.

Although the case we study here is not yet a practical scenario for actual ap-
plications, we argue that in principle one should be able to apply this method for
future projections of higher dimensional target models onto lower dimensional
basis models.

Specifically, here we consider the case where the target waveforms PhenomD
vary in η, χ1z and χ2z individually, so that χa [see Eq. (I.3) for its definition] does
not necessarily vanish. We remind the reader that PhenomD is indeed sensitive
to these changes, both in the inspiral and in predicting the ringdown signal of the
remnant. In contrast, the approximate model PhenomB only depends on χeff and
not χa, hence we keep generating those signals choosing χeff = χ1z = χ2z. Below
we discuss results and challenges of this method.

First, we generate the approximate PhenomB waveforms on the same grid of
N = 65 × 65 points in the η-χeff parameter space that we used before. See Sec. I
for details. Second, we give ourselves S = 33 × 33 × 33 = 35937 target wave-
forms on regular grid η, χ1z and χ2z. The parameter ranges are the same as for the
approximate signals, except that here χ1z, χ2z ∈ [−1, 1] individually. The proce-
dure we then follow is the same as before. The SVD basis is in fact unchanged
compared to what we have used in previous sections, but we now project a much
larger number of target signals onto that basis to see if we can accurately represent
variations in a parameter that was of no relevance in the approximate model.

Let us emphasize that in this study, we only analyze the errors caused by the
projection onto a (lower-dimensional) approximate SVD basis. Therefore, our
comparison does not include any interpolation. Instead, we calculate mismatches
between PhenomD and either PhenomB or EB on all S points of the parameter
space. The results are shown as histograms in Fig. I.12. The log10 mismatches of
the EB model range from −1.89 to −3.34 (which corresponds to matches between
0.987 to 0.999). Compared to the two-dimensional, equal-spin case of Sec. I,
the matches we find here are slightly lower. This is not surprising, as here we
have introduced many more PhenomD waveforms that we know are not accurately
captured by PhenomB.

For comparison, we also show the histogram of mismatches between Phe-
nomB and PhenomD in the same Fig. I.12. Evidently, EB achieves a much better
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Figure I.12: Normalized histograms of double-spin EB against PhenomD without interpo-
lation, i.e., the EB model was built from 33×33×33 PhenomD waveforms projected onto
an SVD basis of 65 × 65 PhenomB signals. For comparison, the disagreement between
PhenomB and PhenomD is also included.

accuracy than PhenomB, for which the log10 mismatches range between -2.75 to -
0.2 (matches between 0.380 to 0.998). We note that this range is similar to Fig. I.3
that is restricted to the equal-spin case.

For completeness, Fig. I.13 also illustrates the location of the highest mis-
matches of between PhenomB and PhenomD in the parameter space. In this plot,
we show the location of the 50 lowest and 50 highest mismatches. The largest
disagreement indeed occurs for high mass ratios and asymmetric spins.

From this study, we conclude that one can in principle project a set of higher-
dimensional signals onto a basis derived from a lower-dimensional model. How-
ever, interpolating across a high-dimensional parameter space becomes much more
challenging, especially if a large number of bases has to be included in the EB
model. We leave a detailed analysis and discussion of this problem to future work.

I.4 Conclusions and future perspectives
The development of accurate GW models is a crucial task to support future detec-
tions and the correct interpretation of GWs from merging compact objects. With
higher detector sensitivity in the upcoming science runs of LIGO and Virgo, more
detections are expected, increasing the chance for an unusually loud, or in other
ways special, observation that will require more accurate models than ever before.
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Previous work on the development of GW models either targeted a fairly re-
stricted part of the parameter space or required substantial computational as well
as human resources. Here we have developed a method to dynamically update an
approximate waveform model in a given parameter range. We accomplished this
by projecting a set of a more accurate signals onto a larger set of a less accurate
waveforms that can be evaluated efficiently and continuously across the parameter
space.

We worked in frequency domain and decomposed both waveform models into
amplitude and phase that are updated separately. Following earlier studies with a
similar goal [35], we employed SVD matrix factorization to split the approximate
model’s data into two unitary matrices and one diagonal matrix. We used the
appropriate unitary matrix as a basis representation of the approximate model,
the other two matrices are updated by projecting the accurate model onto that
basis. We then interpolated the projection coefficients and combined them with
the approximate basis to obtain a new waveform family that we call enriched
basis. This model has a higher accuracy than the approximate model and can be
evaluated continuously in parameter space.

In this first exploratory study, we restricted ourselves to the non-precessing
parameter space of BBHs. We showed that the EB model is considerably more
faithful to its target model (PhenomD) than the approximate model (PhenomB)
that we employed. This is true both for flat and AZDHP noise spectra. Let us
highlight that especially in regions of the parameter space that were not accurately
described by the approximate model because it had not been calibrated there, the
improvement of EB can be dramatic. This also holds if an extra physical depen-
dence is introduced by the target model that was not present in the approximate
model.

There are a number of procedural parameters that can be tuned in this approach
to achieve optimal results. Among those, we tested the following.

(A) How many basis vectors need to be kept in the EB model? As expected, we
found that very few SVD basis vectors are needed to describe the basic pa-
rameter dependence of the approximate model. However, as the success of
our updating method relies on accurately representing effects beyond what
was included in the approximate model, we also found that a wide parame-
ter space such as the one tested here may require a basis of several thousand
vectors. We expect this number to sensitively depend on the size of the
parameter space and the accuracy of the approximate model.

(B) How many target signals are required?
In the study presented here, we often used a large number of target signal
to first test the efficacy of the basic principle. In Sec. I, we reduced that
number systematically and analyzed the result. While the edges of the pa-
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rameter space suffer increasingly from interpolation issues when number of
target signals was reduced, we found that even a regular grid of 12 × 12
target signals showed overall satisfactory improvement. We note that this
number is larger than the number of NR waveforms that were used to cal-
ibrate PhenomD [32, 33] which is not surprising given that more physical
insight and intuition went into the original construction while here we test
an agnostic, fully automatic approach. We also note that we successfully
tested uniform random placement of target waveforms instead of a regular
grid, but designing more refined methods of placing target waveforms is an
active research topic that can lead to a further reduction of the number of
signals required to build an EB model.

(C) Can the process be iterated to achieve better results?
Once a fast and efficient EB model has been built, it can and should be used
as an approximate model for the next refinement. While this approach is
obvious when more (or different) target waveforms become available, we
also showed in Sec. I that such an iterative procedure can further improve
the EB when using the same set of target signals again. This might be
counter-intuitive as the same target waveforms seem to be projected onto
the same N-dimensional space of amplitude and phase functions in each
iterative step. However, it turns out that performing a second SVD on EB
data re-structures the basis vectors such that the number of irrelevant vectors
with vanishingly small σ values increases (i.e., the EB is represented with
fewer bases). It is these basis vectors that are not needed to represent the
approximate model, but there are useful in each iterative step to slightly
change the vector space toward a more faithful representation of the target.
Further studies need to show whether such a procedure also introduces more
irregularities and interpolation issues that might counter the gain we report
here.

Overall, the results we present here are very promising. One important appli-
cation that we work toward is actually using the best available analytical models
as approximate signals and NR data as the target model. In oder for this to be fea-
sible, however, we need to develop additional methods in the immediate future.
In particular, the parameter space of most interest include precessing systems, and
for those, we eventually need to deal with interpolating over a possibly seven-
dimensional parameter space (given by two three-dimensional BH spin vectors
and the mass ratio). Interpolating a sparse set of projection coefficients (given by
the available NR simulations) may require much more sophisticated interpolation
techniques than the ones we have employed here. In fact, we expect interpolation
to be the most challenging step in more realistic applications of our procedure.

In addition, a likely scenario where our method could be extremely useful



67

is when a large parameter space needs to be accessible for a signal model to be
useful, but targeted NR simulations only cover a reasonable small portion of that
space. In that case, our EB model could be updated only where new information
is available. This can be achieved by implementing a more flexible interpola-
tion approach that smoothly bridges coefficients based on the approximate model
with information from a targeted and localized set of NR data. Such a ”hybrid“3

approach would allow updating established models locally, and it would comple-
ment, for instance, parameter estimation methods that take advantage of models
that can be generated for arbitrary sets of parameters [54] and alternative methods
that use discrete NR data sets [55, 56].

We intend to develop solutions for the above-described use cases of EB in the
near future. Codes will then be fully integrated in existing analysis suites [46] to
guarantee direct impact on the analysis of GW observations. We view this as an
important step toward further fostering the integration of numerical and analytical
modeling techniques in an era of frequent GW observations.
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Abstract
Theoretical gravitational-wave models of compact-binary mergers need to be ac-
curate, but also fast in order to compare millions of signals in near real time with
experimental data. Various regression and interpolation techniques have been
employed to build efficient waveform models, but no study has systematically
compared the performance of these methods yet. Here we provide such a com-
parison. For analytical binary-black-hole waveforms, assuming either aligned or
precessing spins, we compare the accuracy as well as the computational speed of a
variety of regression methods, ranging from traditional interpolation to machine-
learning techniques. We find that most methods are reasonably accurate, but ef-
ficiency considerations favour in many cases the simpler approaches. We con-
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clude that sophisticated regression methods are not necessarily needed in standard
gravitational-wave modeling applications, although machine-learning techniques
might be more suitable for problems with higher complexity than what is tested
here.
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II.1 Introduction
The laser interferometer and GW detectors LIGO [1] and Virgo [2] have reported
observations of one BNS and ten BBH mergers in their first two observing runs
[3]. In the third observing run (O3), we expect to observe several tens of sig-
nals from compact binary coalescences [4]. The analysis of these GW data is
the motivation for our study. The data from the interferometers are filtered with
many theoretically predicted waveforms with varying binary parameters. These
waveform templates are drawn from models of the emitted GWs. The waveform
models need to fulfil accuracy and speed requirements so that the parameters of
the GW source can be estimated well in a reasonable amount of time.

We highlight two major modeling approaches: analytical and NR. The basis
of analytical models is the PN expansion [5]. Waveform models in this category
are fairly computationally efficient, but the PN approximation breaks down for
merger and ringdown part of the signal. The second category is NR. NR wave-
forms are built by numerically solving Einstein’s equations [6, 7, 8]. Although
these waveforms are known to have exceptional accuracy to model the correct
GW signals in General Relativity, they require high computational resources and
need weeks to months to generate.

Combining the two approaches above, new methods have been developed to
model full waveforms. Two major families in this group, namely the EOB [9, 10,
11, 12] and the phenomenological models [13, 14, 15, 16, 17, 18] are commonly
used in GW analyses. In general, these models start from a reformulation of PN
results and calibrate the model to a select number of NR simulations. In this study,
we employ SEOBNRv3 [11] and IMRPhenomPv2 [17, 18] as two representative
models that have been widely used to explore the full parameter space of non-
eccentric, precessing BBHs.

Over the past few years, complementary techniques have been developed to
build fast surrogates of EOB models and NR waveforms with a much higher com-
putational efficiency. Unlike the previous approaches, these models do not start
from PN expansions. They use existing EOB or NR waveforms, decompose, and
interpolate them. The NRSurrogate models [19, 20, 21, 22, 12, 23, 24] have an
exceptional accuracy against the original NR signals, but are more limited in the
parameter range and waveform length they cover. Reduced order and surrogate
models of EOB waveforms have been crucial to allow EOB models to be used for
template bank construction [25] and parameter estimation [26, 27].

In a similar spirit, unique methods have been explored to speed up the wave-
form generation without compromising accuracy [28, 29, 30, 31, 32]. They have
shown that advanced mathematical, statistical, and computational techniques are
needed to build waveform models optimized for the demands of GW analyses.
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We stress that in order to make a relatively small number of computationally
expensive waveforms usable for analysis applications that rely on the ability to
freely vary all parameters, all waveform models described above crucially rely on
some form of interpolation or fitting method as part of their construction. Phe-
nomenological and EOB models typically fit free coefficients (often representing
unknown, higher-order PN contributions) to a set of NR data. The fits or inter-
polants are then evaluated over the binary parameter space. Other approaches,
such as NR or EOB surrogate models, rely more on data-driven techniques to in-
terpolate the key quantities needed to reconstruct waveforms anywhere in a given
parameter-space region. In fact, the interpolation techniques that have recently
been employed cover standard methods such as polynomial fits [16, 12, 33], lin-
ear interpolation [34, 30], and more complex method such as GPR [21, 32]. Addi-
tionally, novel interpolation methods have been developed such as GMVP [31, 29]
and TPI [24, 23].

In this study, we investigate the importance of interpolation and fits in wave-
form models (which themselves are crucial for GW astronomy), given the accu-
racy and computational time of various regression methods. We study whether
the use of more complicated methods to model the waveforms given the same
data preparation and noise reduction is justified in practice. Finally, we compare
the performance of machine learning against various traditional methods. In par-
ticular, we explore the prospects of ANN as a regression method [35, 36] that has
not been widely employed in waveform modeling so far. We focus on BBH sys-
tems with spins either aligned with the orbital angular momentum or precessing
and provide both theoretical overviews and references to practical tools such as
ready-to-use algorithms. Our analysis is not only of relevance for current LIGO
and Virgo data and their extensions such as the Advanced LIGO A+, Voyager
[37], and KAGRA [38], but also for future analysis of GW data by LISA [39]
and the third generation instruments such as Einstein Telescope [40] and Cosmic
Explorer [41].

The testbed we use is as follows. We compare various methods on wave-
form data at a fixed point in time as a function of mass ratios and spins. We use
two models to generate waveform data: the time-domain model SEOBNRv3 [11],
and the inverse Fourier transform of IMRPhenomPv2 [17, 18] which is natively
given in the frequency domain. Both models were designed for precessing BBH
mergers which are described by seven intrinsic parameters: the mass ratio q and
the two spin vectors ~χ1 and ~χ2 with Cartesian components in the x, y, z directions.
IMRPhenomPv2 models precessing waveforms in a single spin approximation
using an effective precession spin parameter.

We consider two classes of training data:

1. Data on a regular three-dimensional grid describing nonprecessing binaries,



79

(q, χ1z, χ2z), where 1 ≤ q ≤ 10 and |χiz| ≤ 1 for i = 1, 2.

2. Random uniform data on a full seven-dimensional grid (q, ~χ1 and ~χ2), where
1 ≤ q ≤ 2 and −1/

√
3 ≤ ~χi ≤ 1/

√
3 for i = 1, 2.

For each case, the regression methods were tested over test sets made up from
random uniform test points that were drawn independently of the training set, but
covering the same physical domain.

This paper is organized as follows. We prepare the data by defining the wave-
form and its reference frame and defining waveform data pieces in a precession
adapted frame as discussed more detail in sec. II. We explain the background and
the features of traditional methods such as linear interpolation, TPI, polynomial
fit, GMVP, and RBF as well as machine learning methods, GPR and ANN in
section II. In section II we present the results of our study. Finally, a brief con-
clusion and discussion of future studies are found in section II. Throughout the
manuscript, we employ geometric units with the convention G = c = 1.

II.2 Method

II.2.1 Waveform data
We generate training and test waveform datasets for various regression methods
from two state-of-the art models of the GWs emitted by merging BBHs. We
use the phenomenological model IMRPhenomPv2 [18, 14, 16] and the effective-
one-body model SEOBNRv3 [42, 43, 11]. IMRPhenomPv2 includes an effective
treatment of precession effects, while SEOBNRv3 incorporates the full two-spin
precession dynamics. The models have been independently tuned in the aligned-
spin sector to NR simulations.

The GW strain can be written as an expansion into spin-weighted spherical
harmonic modes in the inertial frame

h(t;~λ; θ, φ) =

∞∑
`=2

∑̀
m=−`

h`,mi (t;~λ)−2Y`,m(θ, φ). (II.1)

We can choose to model the waveform modes h`,mi (t; θ) directly which depend a
collection of parameters ~λ. The spherical harmonics −2Y`,m(θ, φ) for a given (`,m)
depend on the direction of emission described by the polar and azimuthal angles θ
and φ. The two waveform models employed in this study provide approximations
to the dominant modes at ` = 2. In a precession adapted frame SEOBNRv3 in-
cludes m = ±2 and m = ±1 modes (the negative m modes by symmetry), whereas
IMRPhenomPv2 includes only the m = ±2 modes. For SEOBNRv3 we directly
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generate time-domain inertial modes h2,m
i (t), while for IMRPhenomPv2 we com-

pute the native inertial modes in the Fourier domain h̃2,m
i ( f ), and subsequently

condition and inverse Fourier transform them to obtain an approximation to the
time-domain modes.

To test interpolation methods we work in the setting of the empirical interpola-
tion (EI) method [20, 28]. In this approach we can define an empirical interpolant
of waveform data piece X(t;~λ) (such as, e.g., amplitude or phase of the gravita-
tional waveform) by

IN[X](t;~λ) =

N∑
i=1

ci(~λ)ei(t) =

N∑
j=1

X(T j;~λ)b j(t). (II.2)

The first expression is an expansion with coefficients ci of waveform data in an or-
thonormal linear basis {ei(t)}Ni=1 (e.g. obtained from computing the singular value
decomposition [44, 45] for discrete data [23, 24]). A transformation to the basis
{bi(t)} allows to have coefficients which are the waveform data piece X evaluated
at empirical node times T j. The EI basis {bi(t)} and the EI times can be obtained
by solving a linear system of equations as discussed in [28]. Here we forgo the
basis construction step and just choose EI times manually to select waveform data
for accessing regression methods.

To simulate the process of building an efficient model we want to transform
the inertial frame modes into a more appropriate form, such that data pieces are
as simple and non-oscillatory as possible in time and smooth in their parameter
dependence on ~λ. In evaluating the model, we reconstruct the full waveforms by
transforming back to the inertial frame. This transformation includes the choice of
a precession adapted frame of reference that follows the motion of the orbital plane
of the binary. In this frame the waveform modes have a simple structure and are
well approximated by non-precessing waveforms. A further simplification in the
modes can be achieved by taking out the orbital motion. In addition, we align the
waveform and frame following [20] at the same time for different configurations
and waveform models. The procedure is comprised of the following steps:1

• We define time relative to the peak of the sum of squares of the inertial
frame modes.

• We transform the inertial frame waveform modes h`,mi (t) (dropping the pa-
rameter dependence on ~λ for now) to the minimally rotating co-precessing

1We represent rotations through unit quaternions. Quaternions can be notated as a scalar plus
a vector Q = q0 + q = (q0, q1, q2, q3). A unit quaternion R = eθû/2 generates a rotation through
the angle θ about the axis û. For calculations we use the GWFrames [46, 47] package and notation
conventions from [46].



81

frame [48] and thereby obtain the co-precessing waveform modes

h2,m
copr(t) =

∑
m′

h2,m
i (t)D2

m′,m

(
Rcopr(t)

)
, (II.3)

whereD`
m′,m are Wigner matrices [49, 46] and Rcopr(t) is the time-dependent

unit quaternion which describes the motion of this frame.

• We compute the Newtonian orbital angular momentum unit vector l̂N(t) =

Rcopr(t) ẑ R∗copr(t), where Q∗ is the conjugate of the quaternion Q and ẑ =

(0, 0, 1). We interpolate l̂N(t) to the desired alignement time talign.

• We use the rotor Ra =

√
−l̂N(talign) ẑ that rotates ẑ into l̂N(talign) to align the

inertial modes at talign and then compute the aligned co-precessing frame
modes h̄2,m

copr(t) and quaternion time series R̄copr(t), where the bar indicates
alignment in time.

• Finally, we rotate around the z-axis to make the phases of the (2, 2) and
(2,−2) modes small by applying a fixed Wigner rotation with the rotor Rz =

exp(θ/2 ẑ) R̄copr to obtain ¯̄h2,m
i (t) and ¯̄h2,m

copr(t).

We choose the following quantities to test the accuracy and efficiency of in-
terpolation methods: (i) the “orbital phase” defined as one quarter the averaged
GW-phase from the (`,m) = (2, 2) and (2,−2) modes in the co-precessing frame

φ(t) :=
1
4

(
arg

[ ¯̄h2,−2
copr (t)

]
− arg

[ ¯̄h2,2
copr(t)

])
, (II.4)

(ii) a linear combination of the ` = m = 2 modes in the co-orbital frame

A(t) := Re ¯̄h2,2
+ =

1
2

Re
( ¯̄h2,2

coorb(t) + ¯̄h2,−2∗

coorb(t)
)
, (II.5)

where the co-orbital modes are defined as

h`,mcoorb(t) = h`,mcopr(t)e
imφ(t). (II.6)

The rationale for choosing these two quantities is the following: the phasing
is usually the quantity that requires the most care in GW-modeling with accuracy
requirements of a fraction of a radian over hundreds of waveform cycles. The
co-orbital frame mode combinations play the role of a generalized amplitude and
are typically smooth and non-oscillatory.

We consider the following waveform training datasets in this study: (i) Three-
dimensional datasets: Several interpolation methods we consider in this study
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Figure II.1: The key quantities of the GW signal of a precessing BBH, here illustrated for
a binary with (q, χ1x, χ1y, χ1z, χ2x, χ2y, χ2z) = (1.99, 0.51, 0.04, 0.03, 0.01, 0.6, 0.1). Left:
the dimensionless amplitude A(t). Right: the phase φ(t) (in unit radian). The black dashed
lines show the points in time-space, where we perform different interpolation methods (t=-
3500M and t=-50M).

require data on a regular grid. We prepare three-dimensional datasets (q, χ1z, χ2z)
in the mass-ratio q = m1/m2 and the aligned component spins χiz = ~S i · L̂N/m2

i
for i = 1, 2. We do not include the total mass since it can be factored out from the
waveform for GWs emitted from BBHs which are solutions of Einstein’s equa-
tions in vacuum. The grids have an equal number of points per dimension, rang-
ing from 5 to 11. We choose parameter ranges 1 ≤ q ≤ 10 and |χiz| ≤ 1. (ii)
The full intrinsic parameter space we consider is seven-dimensional: we include
the dimensionless spin vector of each black hole χi = S i/m2

i and the mass-ratio
q of the binary. Due to the curse of dimensionality regular grid methods require
a prohibitive amount of data in 7D. For instance, ten points per dimension would
require 107 waveform evaluations. Therefore, we only produce scattered wave-
form data in seven dimensions which are drawn from a random uniform distri-
bution in each parameter. Here we choose parameter ranges 1 ≤ q ≤ 2 and
−1/
√

3 ≤ ~χi ≤ 1/
√

3. For both choices of dimensionality we also generate test
data of 2500 points drawn randomly from the respective parameter space.

Waveform data in three and seven dimensions is produced at a total mass of
M = 50M� with a starting frequency of 20Hz. We align the waveform and frames
at talign = −2000M with the above procedure. We record waveform data from the
key quantities at two different times, ttarget = −3500M and −50M, where we have
performed alignment in time such that the mode sum of the waveform amplitudes
peaks at t = 0M. This choice allows us to independently probe the inspiral and
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the merger regime. We expect that the waveform data will be very smooth in
the inspiral, but more irregular close to merger due to the calibration of internal
model parameters to numerical relativity waveforms at a limited number of points
in parameter space.

II.2.2 Regression methods: a general overview
A large number of techniques have been developed to improve the speed and
accuracy of generating gravitational waveforms. A priori, one would expect that
higher speed would go hand-in-hand with less accuracy and less complexity. One
frequent question is how to select a method for a specific purpose. Depending on
the goals, a choice needs to be made between complex, highly accurate methods
with moderate efficiency versus simpler but more efficient methods, and we can
choose to trade accuracy for speed.

In this subsection, we discuss various methods and categorize them into two
groups. The first group is comprised of traditional interpolation and fitting meth-
ods which are based on mathematical techniques and algorithms that are straight-
forward to implement and easily evaluated. The second group is made up of ML
methods which may require a more advanced mathematical and computational
background. Methods from the second group are in general more complex and
require more computational resources than the first group. Here we give a basic
description of these methods, their limitation and provide some references.

II.2.2.1 Traditional interpolation and fitting methods

The traditional interpolation and fitting methods are either interpolatory, i.e., the
approximation is designed such that it exactly includes the data points, or they
produce an approximate fit, where a distance function between the data and the
model is minimized. Many of these methods rely on polynomials as building
blocks to model the data. Some models have a fixed order of approximation, while
others let the number of terms be a free parameter. These methods are relatively
straightforward to use and do not usually require much computational power.

1. Linear interpolation
Linear interpolation is a straight line approximation that predicts the value
of an unknown data point which lies between two known points [50]. Given
its simplicity, this method has been widely used as a standard method to per-
form interpolation in various fields. If we have several data points, the tran-
sition between the adjacent data points is only continuous but not smooth.
Higher order methods such as cubic interpolation can be used if a smoother
approximation is desired (see subsection 2).
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Since linear interpolation is available as a standard Python package, we
include this method to compare to other more complicated techniques. In
particular, we investigate the application of multivariate linear interpolation
on a regular grid using the regular grid interpolator (RGI) [51, 52] that is
available in scipy.

The mathematical background of linear interpolation can be explained as
follows. Assume two known points (x0, y0) and (x1, y1) and an unknown
point (x, y) with x0 ≤ x ≤ x1. This method assumes that the slope between
x0 and x is equal to the slope between x and x1. Hence, we use the following
relation to predict the data point y in one dimension.

y − y0

x − x0
=

y1 − y
x1 − x

(II.7)

⇔ y = y0 + (x − x0)
y1 − y0

x1 − x0
.

In dimensions d > 1, this method requires a regular grid of data points as a
training set.

Multivariate linear interpolation works as follows. Let yi(~x) be the data point
we want to predict, where ~x denotes the input parameters in d dimensions.
Initially, we need to obtain the parameters of the projection of yi(~x) in d − 1
dimensions, followed iteratively by d − 2 and so on until we reach one-
dimensional case d = 1. Once we obtain these projection points, we can
employ Eq (II.7) to predict the values of these points in one dimension.
Subsequently, we use the predicted values as the known points to predict the
result in higher dimensions iteratively. We then repeat the process further
to find yi(~x) in d dimensions. This algorithm involves a small number of
multiplications and additions, which are relatively fast.

Since RGI assumes a regular grid, it is affected by the curse of dimension-
ality: the number of training points grows as the power of d. Therefore, we
only investigate this method in three dimensions.

Other popular regression methods that we do not consider here are ridge
regression [53], LASSO regression [54], and Bayesian regression [55]. One
reason is that the GW training data is quite well-behaved and does not usu-
ally include outliers such that would require special treatment.

2. Tensor product interpolation
On regular or Cartesian product grids one can use the same univariate in-
terpolation method in each dimension and the grid points can be unequally
spaced. This gives rise to TPI methods. Popular choices for the univariate
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method are splines [56] and, if the data is very smooth, spectral interpola-
tion [57, 58].

Let us assume that we want to model a waveform quantity X(t;~λ) at a par-
ticular time t = ti. We define the d-dimensional TPI interpolant (where
d = dim(~λ)) as an expansion in a tensor product of one-dimensional basis
functions Ψ j(λ j),

I[X](ti;~λ) =
∑

j1,..., jd

a j1,..., jd

(
Ψ j1 ⊗ · · · ⊗ Ψ jd

)
(~λ), (II.8)

A popular choice for the basis functions are univariate splines, which are
piecewise polynomials of degree k − 1 (order k) with continuity conditions.
For instance, cubic splines have degree k = 4 and continuous first and sec-
ond derivatives. The boundaries of the domain require special attention. A
simple choice is the natural spline where the second derivative is set to zero
at the endpoints. If boundary derivatives are not known it is better to use the
so-called “not-a-knot” boundary condition [56]. This condition is defined
by demanding that even the third derivative must be continuous at the first
and last knots.

To construct splines in a general manner it is advantageous to introduce ba-
sis functions with compact support, so-called B-splines. We denote the i-th
B-spline basis function [56, 59] of order k with the knots vector ~t, a nonde-
creasing sequence of real numbers, evaluated at x by Bi,k,t(x). The knots re-
fer to the locations in the independent variable where the polynomial pieces
of B-spline basis function are connected. For distinct knots ti, . . . , ti+k+1, the
B-splines can be defined as

Bi,k,t(x) := (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ , (II.9)

where [ti, . . . , ti+k] f is the divided difference [56, 59] of order k of the func-
tion f at the sites ti, . . . , ti+k, and (x)+ := max{x, 0}. The B-splines can also
be defined in terms of recurrence relations. The definition can be extended
to partially coincident knots which are useful for the specification of bound-
ary conditions. B-splines can be shown to form a basis [56] of the spline
space for a given order and knots vector. A spline function or spline of
degree k with knots ~t can be then defined as an expansion

s =
∑

i

siBi,k,t(x), (II.10)

with real coefficients {si}
n
i=1. Given data, a fixed order and knots vector,

and a choice of boundary conditions, we can solve the linear system for the
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spline coefficients si. For efficient evaluation we only compute the parts of
the B-spline basis functions that are nonzero.

For smooth data, Chebyshev interpolation [57, 58] is a popular choice.
Chebyshev polynomials (of the first kind) are defined as the unique poly-
nomials satisfying

Tn(cos(θ)) = cos(nθ) (II.11)

on [-1,1]. In contrast to splines where the polynomial degree is usually
low, global high order polynomial interpolation requires a special choice of
nodes to be well-conditioned. A good choice are Chebyshev-Gauss-Lobatto
nodes (which are defined to be the extrema of the Tn(x) plus the endpoints
of the domain)

xk = − cos
(

kπ
m − 1

)
, k = 0, . . . ,m − 1. (II.12)

Then we can approximate a function f (x) by an expansion

f (x) ≈ I[ f (x)] :=
m−1∑
k=0

ckTk(x), (II.13)

For f ∈ C∞ the error of Chebyshev interpolation converges exponentially
with the number of polynomials Tn(x).

Tensor product interpolation is a very useful tool for constructing fast re-
duced order models (ROM) or surrogate models of time or frequency de-
pendent functions that depend on a moderate number of parameters ~λ. TPI
with splines and Chebyshev polynomials has been used to build several GW
models [21, 29, 24, 23] and [60], respectively. TPI is not available in stan-
dard Python packages. For TPI spline interpolation we use the Cython [61]
implementation in the TPI package [62].

3. Polynomial fits
A polynomial fit is a multiple linear regression model where the indepen-
dent variables form a polynomial [63].

Different settings of maximum polynomial degrees may cause underfitting
or overfitting, therefore care must be taken in choosing the ansatz.

Assume that we have N training points ({~xi, yi} ∈ R
d × R|i = 1, · · · ,N). Our

goal is to find a function or regressor such that each ~xi yields an output with
the lowest error against its function values yi. We assume that this function
f (~x) is expressed by a polynomial of degree k and parameters ~c.
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In one dimension we have:

f (~x) = c0xk + c1xk−1 + · · · + ck−1x + ck. (II.14)

If we had as many degree of freedom as data points, we could demand:

f (xi) = yi. (II.15)

In matrix form, Eq (II.15) can be written as:

X~c = ~Y
xk

1 xk−1
1 · · · x1 1

xk
2 xk−1

2 · · · x2 1
...

. . .
...

xk
N xk−1

N · · · xN 1




c0

c1
...

ck

 =


y1

y2
...

yN

 , (II.16)

where X is the N × (k + 1) Vandermonde matrix. The parameters ~c are
obtained by solving Eq (II.16) for the known input and output data, X and
~Y in the training set. In general, the linear system may be over or under
determined such that no unique solution would exist. Instead, we employ
the standard discrete least squares fit to minimize the error (see section 10
of [64] and [65]):

ΣN
j=1| f (x j) − y j|

2 (II.17)

Similar to linear interpolation, univariate polynomial interpolation is avail-
able in the scipy package.

Ref [63] discusses several methods and provide an overview of multivariate
interpolation with polynomials. We employ polynomial fits for multivariate
interpolation as in [66] and explained more detail in [67].

4. Greedy multivariate polynomial fit (GMVP)
London and Fauchon-Jones [31] recently introduced methods that build an
interpolant for a given data set by adaptively choosing a small set of analyt-
ical basis function from a certain class of functions. In our study here, we
test the GMVP procedure described in detail in Sec. II B of [31].

In this method, a scalar function, f , that is known at discrete points in the
d-dimensional parameter space, ~x j = {x1

j , x
2
j , . . . , x

d
j }, is approximated by a

linear sum of analytical basis functions, φk(~x),

f (~x) ≈
∑

k

µk φk(~x). (II.18)
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Given a set of basis functions, the coefficients µk are determined by a ‘least-
squares’ optimal fit to the known function values f (~x j). In practice, this is
calculated using the pseudoinverse (Moore-Penrose) matrix of φk(~x j) (that
is, the values of the basis functions at the given location in the parameter
space).

In GMVP, the basis functions are chosen to be multivariate polynomials of
maximal degree D. In order to prevent overfitting, however, not all possible
polynomial terms from the set

φk(~x) ∈

(x1)α1 (x2)α2 . . .
(
xn)αd ,

n∑
i=1

αi ≤ D

 (II.19)

are included in the basis. Instead, a greedy algorithm [67] iteratively adds
the basis functions to (II.18) that minimize the error

ε2 =

∑
j

[
f (~x j) −

∑
k µk φk(~x j)

]2

∑
j

[
f (~x j)

]2 . (II.20)

This process terminates when the difference in ε between two successive
iterations becomes smaller than some user-defined tolerance. In order to
improve the stability of the algorithm, the maximally allowed multinomial
degree D is successively increased, which the authors of [31] refer to as
degree tempering.

In our study, we use GMVP with a tolerance of ε = 5× 10−4 and a maximal
multinomial degree of D = 16.

5. Radial basis functions (RBF)
Radial basis functions [68] are an approximation for continuous functions,
where the predicted outputs depend on the Euclidean distance between the
points and a chosen origin. This method is applicable in arbitrary dimen-
sions and does not require a regular grid.

We include RBF in this study due to several reasons. Primarily, because this
method is simple, rapid, and has been integrated as a standard Python pack-
age in scipy. Moreover, RBFs are used in machine learning as activation
functions in radial basis functions neural networks (see section II).

The mathematical background of RBFs is explained as follows. Let N be
the number of training points, ~xi the parameters of each data point, and yi

the data defining the training set {(~xi, yi) ∈ Rd × R|i = 1, . . . ,N}.



89

The goal is to find an approximant s : Rd → R to the function y : Rd → R
such that s(~xi) = yi (s interpolates y at the chosen points) with the form:

s(~x) =

N∑
i=1

wiϕ(r), (II.21)

where ~x is the vector of independent variables, wi are the coefficients, r is
the Euclidean distance between ~x and ~xi (r = ‖~x− ~xi‖), and ϕ(r) is known as
the radial basis function.

To obtain the approximant s, we need to solve:

Φ(r)~w = ~Y , (II.22)

where Φ(r) = {‖~x − ~xi‖}x,xi∈Ξ, ~Y = {yi}
N
i=1 and ~w = {wi}

N
i=1. Ξ is a finite subset

of Rd with more than one element [68]. We can solve the linear system for
the coefficients and obtain the interpolant. Hence, the computational com-
plexity and thus the training time of RBF is dominated by the computation
of vector coefficients ~w that involves matrix inversion and goes as O(N3)
[69].

The interpolation matrix Φ(r) has to be nonsingular so that it does not vio-
late the Mairhuber-Curtis theorem [68]. The solution is to choose a kernel
function such that Φ(r) is a semi-definite matrix and therefore nonsingular.
One common choice is the multiquadric kernel function ϕ(r) expressed by:

ϕ(r) =

√
1 +

( r
ε

)2

, (II.23)

where ε is the average distance between nodes based on a bounding hyper-
cube as defined in scipy [70].

The multiquadric kernel function is commonly applied to scattered data be-
cause of its versatility due to its adjustable parameter ε which can improve
the accuracy or the stability of the approximation. Ref. [68] shows that this
kernel is also able to approximate smooth functions well so that it useful for
approximation. Hence, we employ the multiquadric kernel function in this
study.

II.2.2.2 Machine learning methods (ML)

Machine learning is the scientific study of computer algorithms and statistics
which aims to find patterns or regularities in the data sets. Systems learn from
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the training data and can predict output values for test data. ML is a branch of
artificial intelligence.

Although the distinction is a blur, one major difference between ML and tra-
ditional interpolation methods lies in their objectives. In traditional methods, the
objective is not only to provide an approximation of an underlying function from
which the training data were generated, but also to understand the mathemati-
cal process behind the relation of input and output data. In that case, we seek
interpolants or fits which often can be found analytically by solving linear sys-
tems for the coefficients in the model. Hence, the traditional methods originated
from approximation theory and numerical analysis in mathematics. Conversely,
in machine learning, the objective is to recognize patterns from the input-output
training set and to construct a model from this data. Although we know that the re-
sult follows some mathematical procedures that depend on free parameters, these
details are considered to be less important. Hence ML can be seen as a sub-field
of computer science.

1. Gaussian process regression (GPR)
GPR is a unique method that combines statistical techniques and machine
learning. It can predict function values away from training points and can
provide uncertainties of the predicted values, which will be useful for cer-
tain applications. GPR can be used with multivariate scattered data.

Compared to traditional methods, GPR requires more knowledge of ad-
vanced statistics such as covariance matrices, regression and Bayesian statis-
tics for the optimization strategy. GPR can be considered as a combination
of traditional and machine learning methods.

We provide a summary of GPR as discussed in detail in Ref. [71, 72]. We
start with the most important assumption in GPR. Any discrete set of func-
tion values yi = y(~xi) is assumed to be a realization of a Gaussian process
(GP). Assuming the data can be pre-processed to have zero mean, µ(~x) = 0,
the covariance function k(~x, ~x′) fully defines the Gaussian process:

y(~x) ∼ GP
(
µ(~x) = 0, k(~x, ~x′)

)
. (II.24)

Assume that we want to predict the value y∗ at ~x∗ ∈ Rd and that we have
N numbers of training points, where each point depends on d parameters
expressed by {(~xi, yi)|i = 1, . . . ,N}. The training and test outputs can be
written as follows:[

~y
y∗

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
, (II.25)
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where K(X, X) denotes the matrix of the covariances evaluated at all pairs
of the training points and similarly for K(X∗, X∗), K(X, X∗), and K(X∗, X),
σ2

n (also called nugget) is the variance of the Gaussian (white) noise kernel
that will be discussed later (see the hyperparameters).

Explicitly, in order to predict a single value y∗, we need to compute K(X, X)
as the covariance matrix between each point in the training set, K(X, X∗)
and its transpose that are vectors and the scalar K(X∗, X∗). In a different
form, our main goal is to find the conditional probability expressed by the
following distribution:

p(y∗|~xi, ~x∗, ~y, ~θ) = N(ȳ∗, var(y∗)), (II.26)

i.e., the probability of finding the value y∗ given the training data ~xi and
~y, the hyperparameters ~θ, and the location ~x∗ is a normal distribution with
mean ȳ∗ and variance var(y∗).

The mean and variance can be shown to be:

ȳ∗ = K(X∗, X)(K(X, X))−1
i j y j (II.27)

var(y∗) = K(X∗, X∗) − K(X∗, Xi)(K(X, X))−1
i j K(X∗, X j). (II.28)

In the equation above, the covariance K(xi, x j) is expressed by:

K(xi, x j) = σ2
f k(xi, x j) + σ2

nδi j, (II.29)

where σ f and σn are hyperparameters, δi j is the standard Kronecker delta,
k(xi, x j) = k(r), and r is the distance:

r =
√

(~x − ~x′)T M(~x − ~x′). (II.30)

In the following, we discuss the form of M as a diagonal matrix with a
tunable length scale in each physical parameter which form part of the hy-
perparameters.

The hyperparameters
We assume that our training data has some numerical noise σ2

n and a scale
factor σ f that can be estimated by optimizing the hyperparameters ~θ =

{σ f , σn,M}. For instance, the explicit form of M in the seven-dimensional
case is:

M = diag(`−2
q , `−2

χ1x
, `−2

χ1y
, `−2

χ1z
, `−2

χ2x
, `−2

χ2y
, `−2

χ2z
), (II.31)
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where the `i are length scales. Ref. [73] describes the length-scale ` as
the distance taken in the input space before the function value changes sig-
nificantly. Small values of the lengthscale ` imply that the function val-
ues change quickly and vice versa. Hence, the lengthscale ` describes the
smoothness of a function.

To determine the hyperparameters, we can maximizse the marginal log-
likelihood:

ln p(yi|~xi, ~θ) = −
1
2

(
yi(K(X, X))−1

i j y j + ln |K(X, X)| + N ln 2π
)
. (II.32)

Because the log-likelihood may have more than one local optimum, we re-
peatedly start the optimizer and we choose ten repetitions. For the first run,
we set the initial value of each length scale to unity, with bounds of 10−5

to 105. Furthermore, we set σ2
n = 10−10, where higher σ2

n value means that
the data are more irregular. The subsequent runs use the allowed values of
the hyperparameters from the previous runs until the maximum number of
iterations is achieved.

In Eq (II.32), we see that the partial derivatives of the maximum log like-
lihood can be computed using matrix multiplication. However, the time
needed for this computation grows with more data in the training set as
O(N3). Additionally, we employ Algorithm 2.1 of [71], because Cholesky
decomposition is about six time faster than the ordinary matrix inversion
to compute Eq (II.32). We highlight that although GPR becomes more ac-
curate in predicting the underlying functional form of the data given more
training points N, it has complexity O(N3) and therefore the method be-
comes ineffective for large N.

We estimate the posterior distribution of the hyperparameters using Bayes’
theorem as follows:

p(~θ|~xi, yi) ∝ p(θ)p(yi|~xi, ~θ), (II.33)

where we employ a uniform prior distribution p(θ). Additionally, we use
the sckit-learn package [72] to optimize the hyperparameters as in the
implementation of Algorithm 2.1 in [71].

This method is non-parametric because no direct model ansatz is used. Note
however that a choice for the covariance function needs to be made.

The covariance functions
In statistics, covariance expresses how likely two random variables change
together [74]. Various choices of covariance functions which are usually
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called kernels k(~x, ~x′) are discussed in more detail in Ref. [72] and [71].
In this study, we compare the two most commonly used kernel functions
in GPR: the squared exponential kernel and the Matérn kernel explained
below.

(a) The squared exponential kernel (SE) is a standard kernel for Gaussian
processes:

kS E(r) = exp
(
−r2

`2

)
, (II.34)

with r defined in Eq. II.30 and ` is the length-scale.

(b) The Matérn class of kernels is named after a Swedish statistician,
Bertil Matérn and has less smoothness than the SE kernel. The Matérn
kernel is given by:

kM(r) =
21−ν

Γ(ν)

( √2νr
`

)ν
Kν

( √2νr
`

)
, (II.35)

where Kν is a modified Bessel function [75], Γ is the gamma function
and ν is usually half-integer. Common choices of ν are kν=3/2 and
kν=5/2.

kν=3/2(r) =

(
1 +

√
3r
`

)
exp

(
−

√
3r
`

)
, (II.36)

kν=5/2(r) =

(
1 +

√
5r
`

+
5r2

3`2

)
exp

(
−

√
5r
`

)
. (II.37)

The Matérn kernel is a generalization of the radial basis function ker-
nel. For ν = 1/2, it reduces to exponential kernel and ν = ∞ reduces to
the SE kernel. We use the Matérn kernel with ν = 3/2 in our analysis.

2. Artificial neural networks
Artificial neural networks (ANNs) as computing systems are inspired by
emulating the work of brains to learn complex things and to find patterns in
biology. In machine learning algorithms, ANN has been widely used as a
framework to perform advanced tasks such as pattern recognition [76], fore-
casting [77], and many other applications in various disciplines [78]. This
framework works analogously to brains: it receives some inputs, processes
them, and yields some output [79].

In this study, we employ ANNs or feedforward networks as the simplest
neural networks architecture to perform interpolation. The feedforward net-
work with hidden layers can approximate of any function which is known
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as the universal approximation theorem [79, 80]. This class is called feed-
forward because the information flow from the input to the output and the
connection between them does not form a cycle (loop). In our case, the in-
puts are the waveform’s parameters ~λ and the output is the predicted value
of A(ti;~λ) or φ(ti;~λ). We define hidden layer as a layer between the input
and the output of ANN 2.

Four types of commonly used ANNs are:

• Single-layer perceptron
In a single-layer perceptron, the inputs are weighted and fed directly
to the output. Hence, the single-layer perceptron is the simplest neural
network system.

• Multi-layer perceptron
In multi-layer-perceptron (MLP), there is at least one hidden layer be-
tween the input and the output layer, where each neuron in each layer
is connected to another neuron in the following layer.

• Radial basis function network
This class has the same workflow and architecture as the MLP with
input, hidden layers and output, where each neuron is connected di-
rectly to the following layer. The only difference is the input, where
the radial basis function network (RBFN) uses the Euclidean distances
with respect to some origin as its input and Gaussian activation func-
tions [81].

• Convolutional neural network
The feedforward convolutional neural network is commonly used to
train neural network for visual analysis. Convolutional neural net-
works use convolution in place of general matrix multiplication in at
least one of its layers [79].

We employ MLP as one of the simplest architectures to perform function
approximation [80, 82]. Fig. II.2 shows the illustration of the network ar-
chitecture used in this study.

In Fig. II.2, each layer consists of a finite number of neurons. Each neuron in
each layer is connected to the subsequent layer and the previous layer which
are generally called links or synapses. The workflow of MLP is explained
as follows:

2In some references, the input layer is counted as the first hidden layer. Here we use the
definition of hidden layer as a layer between the input and the output layer
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Figure II.2: Diagram of ANN architecture used for three-dimensional interpolation in
this study. The circles represent the neurons and we indicate weights wi along neuron
connections and biases bi.We employ two layers in the hidden layer part of the diagram.
The same architecture is used for the seven-dimensional case, where the input contains
seven neurons that depend on the seven parameters.

(a) Define the input as xi j, where i is the index of the layers. Starting at
i = 0 at the input layer, and j indexes the neurons in a layer. Thus,
with x0 j, j = 1, 2, 3 corresponds to q, χ1z, χ2z respectively.

(b) The k-th neuron of the (i + 1)-th layer receives the value of xi j from
the i-th layer multiplied by the weight wi jk. These products are then
summed over all links from the i-th to the (i + 1)-th layer.

(c) A bias or shift bik is added to the above value and an activation function
σ is applied to the final result. In this study, we use the Rectified
Linear Unit (ReLU) [83] because it faster than other functions such as
sigmoid and tanh and it is commonly used in other studies. ReLU is
mathematically expressed by the following equation:

σ(z) = max(z, 0), (II.38)

and the MLP procedure is expressed by the following relation:

xi+1,k = σ

∑
j

wi jkxi j + bik

 (II.39)

We vary the number of neurons in the first hidden layer between 2 to 2000
for the three-dimensional data sets and 2 to 5000 for the seven-dimensional
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data sets. We then set the number of neurons in the second hidden layer
identical to the first hidden layer. For each network and training data set,
we compute mean squared error and the mean absolute error (see [84]) of
A(t) and φ(t), respectively.

To train the networks, the training data is separated into several batches,
where each batch contains the same number of data samples. Each batch is
then passed through the networks (see Eq. II.39). When each data sample
in the training set has had an opportunity to pass the networks a single time,
this is known as an epoch. The number of epochs affects the learning of the
networks, i.e., the higher the epoch, the better the learning. In this study, we
set our batch size to five and train them through one thousand epochs.

The networks compute the loss functions during each epoch. The loss func-
tions measure the errors or inconsistency between the predicted value and
the true data. In this study, we employ the mean squared error loss function
for A(t) and the absolute error for φ(t) respectively (see Ref. [84]).

Training neural networks means that we minimize the loss functions so that
our predicted values are as close as possible to the true values [85]. To min-
imize the loss functions, the networks adjust learnable parameters, i.e., the
values of the weights and biases of the model. In most cases, the minimiza-
tion cannot be solved analytically, but can be approached with optimization
algorithms.

During optimization, the network learns the values of weights and biases
of the previous epoch and calculates its loss functions. Subsequently, it
adjusts the values of weights and biases in the next epoch so that the loss
functions become smaller. One way to minimize the loss functions is to
compute the gradient values with respect to the learnable parameters. In
this study, we employ Adam [86] as the optimization algorithm. Adam is
a popular algorithm in deep learning due its robustness (see Ref. [86] for
more detail).

Following the above procedure, a model is then saved at the end of the run
and evaluated through the test data. We then compute the accuracy and
execution time of this process similar to other methods. We employ Keras
[84] and TensorFlow [87] to perform this computation.

II.3 Results
In this section, we show results for accuracy and computational time for differ-
ent regression methods. We apply methods to the three-dimensional and seven-
dimensional data sets defined in sec. II.
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II.3.1 Three-dimensional case
We investigated the results for aligned spin waveforms with parameters q, χ1z, and
χ2z. Training points were given on a regular grid. We placed the same number
of points equally spaced to each other for each parameter (see sec. II). Hence the
total number of training points is proportional to the number of training points per
dimension cubed. We then varied the number of training points in each dimension
from five to eleven which corresponds to a total number of training points of 125
to 1331. We distributed 2500 test points randomly (see section II). These test
points are located inside the same domain covered by the training points. Hence,
we do not test how well the methods perform for extrapolation.

We calculated relative errors (in percent) for the amplitude A(t):

εre =

∑N
i |A

i
pred(t) − Ai

true(t)|∑N
i |A

i
true(t)|

× 100. (II.40)

The phase error is an important diagnostic to measure the accuracy of GW wave-
form models. Therefore, we consider the absolute phase error (in radians)

εae =
1
N

N∑
i

|φi
pred(t) − φi

true(t)|. (II.41)

εre and εae are the relative error and the average of the absolute error, respectively,
Apred(t) and φpred(t) are the predicted results of the amplitude and phase regression
respectively, and Atrue(t) and φtrue(t) are their true values.

Subsequently, we investigated the computational time taken to evaluate each
interpolation method. Here we define the training time as the time to compute
the interpolant and the execution time being the time to compute the 2500 inter-
polation points following our test set. Furthermore, we define total time as the
sum between the training time and the execution time, i.e., the entire process to
perform interpolation for 2500 points. The comparison results in the early inspiral
(t = −3500M) are shown in Fig. II.3, whereas the results at t = −50M are shown
in Fig. II.4. We now discuss the results shown the results for different regression
methods.

1. Traditional interpolation and fitting methods & GPR
We expect that the key quantities for two waveform models, SEOBNRv3
and IMRPhenomPv2 agree quite well in the early inspiral. The error in
A(t) and φ(t), decreases with more training points for both models. This
result is expected as we populate our parameter space with more points
located on a regular grid.
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For both quantities, we find that errors for different methods are similar
between waveform models. GPR errors show a dependence on the ker-
nel choice. We first consider the amplitude errors. For SEOBNRv3 the
errors fall off in a similar way for either choice of kernel, whereas for
IMRPhenomPv2 the error is much higher for the SE kernel compared to
the Matérn kernel. This is likely due to the higher level of noise in the
IMRPhenomPv2 data due to the inverse Fourier transformation.

The SE kernel assumes a higher degree of smoothness in the data than the
Matérn kernel. Similarly, we find for either waveform model that the SE
kernel shows a higher phase error than the Matérn kernel.

2. Artificial neural networks
We now discuss errors for ANNs as indicated by the filled circles in Fig. II.3.
Here we compare the results of the double layer MLP with various numbers
of neurons. By design, the double layer MLP consists of one input layer,
two hidden layers, and one output layer. We set the number of inputs as
the dimensionality of the parameter space and only produce a single output.
In the aligned spin case, our inputs are the parameters q, χ1z, and χ2z and
output is either A(t) or φ(t). For the hidden layers, we varied the number
of neurons between 2 and 2000 in the first hidden layer, and set an equal
number of neurons for the second hidden layer.

Thus, we obtained a set of errors as we modified the number of neurons in
the hidden layers for a fixed number of training points N per dimension. In
Fig. II.3, we only show the results of the smallest errors for each training set.
In this plot, different colors of the circles correspond to different numbers
of neurons as indicated by the color bar. We note that the ANN with the
smallest error may not be the fastest one.

Regarding the computational time, the training time obviously grows with
the number of neurons per layer. However, we argue that there is no guar-
antee that many neurons yield smaller error than fewer neurons. In fact, too
many neurons lead to overfitting and too few neurons lead to underfitting.
We could reduce overfitting by activating the Dropout function in Keras,
Dropout removes the result from a selected number of neurons randomly.
However, we prefer to not include an additional stochastic element and do
not include Dropout in this study.

Next, we compare execution times. Execution time is relatively similar
between the GPR, RBF, TPI, and ANN methods. Other traditional methods
such as linear, polynomial fit and GMVP, and linear interpolation are faster.
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To ensure a fair comparison between all methods, we explored the perfor-
mance on the same machines (2x Intel Xeon E5-2698 v4) with 20 CPU
cores, 256 Gigabytes of RAM, and 1x HDD (1TB, 6Gbps) of storage.

Due to the limited scope of our study, we only investigate results for the
double layer ANN. This leaves tuning parameters and architectures to be
explored in future studies. A possible way to reduce training and execution
times is to use on GPUs instead of CPUs.
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Figure II.3: The three-dimensional interpolation results at t=-3500M. Top:SEOBNRv3,
bottom:IMRPhenomPv2. The x-axes show the number of training points in each dimen-
sion, N, and the y−axes show the errors, training, and indicated execution time as on
the labels of the panels. Left: errors of the amplitude and phase respectively, middle:
training time in (seconds), and right: execution time (seconds). Different colors represent
different interpolation methods as shown in the shared legend. The colored circles show
ANN results, where different colors represent the number of neurons per layer in a double
layer ANN as shown in the corresponding color bar.
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Finally, we discuss results for training times. The training time for RBF and
GPR rise proportionally with the number of training points. In RBF, this is caused
by the least-squares-fit computation that takes a longer time with more training
points. For GPR, the training time goes as O(N3) with N the number of training
points as explained in Sect. II. Polynomial fit, TPI and linear interpolation do not
depend strongly on the size of the training set and their training time is relatively
fast.

For both models, ANN yields comparable errors and execution times as other
interpolation methods, but generally with longer training time than other methods.
Several methods have execution times that are independent of the size of the train-
ing set for a fixed order of approximations. This includes TPI, linear interpolation,
polynomial fit, and ANNs.

Combining all the results at t = −3500M and at t = −50M, we found that
the errors are generally larger in noisy data. We also found that the methods with
longer training time do not always yield a better result than the methods with less
training time (see Fig. II.4).

Using too many neurons in the hidden layers may cause problems such as
overfitting. It occurs when the networks have too much capacity to process in-
formation such that the amount of information in the training set is not enough to
train the networks [88]. Hence, the number of neurons must be set such that there
are not too few or not too many. The selection however, depend on the architecture
of the networks and the hyperparameters.

II.3.2 Seven-dimensional case
In seven dimensions, we distribute the training points randomly in each dimen-
sion. The main reason for this placement is to avoid the curse of dimensionality as
explained in the previous section. Similarly to the three-dimensional case, we in-
vestigate training sets of different sizes, from 500 to 3000 points. As discussed in
Sec. II, the seven-dimensional case has a narrower range of mass ratio (1 ≤ q ≤ 2)
than the three-dimensional one (1 ≤ q ≤ 10) and full-spin range.

We construct a single test set with 2500 points distributed randomly and lo-
cated within the parameter ranges. Some of the test points may be outside the
domain covered by the training points. This means that our results may contain a
small extrapolation.

Since TPI and linear interpolation require regular grid training points, we do
not include them in our analysis. For other methods, we employed the same set-
tings (kernels, hyperparameters, degree) as in the three-dimensional case.

We built the architecture of ANN in a similar way as before. The results of
the seven-dimensional case for different interpolation methods (t = −3500M and
t = −50M) are shown in Fig. II.5.
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We observed that errors of SEOBNRv3 are not significantly different than the
corresponding three-dimensional results. Furthermore, the errors of this model at
t = −50M are higher than at t = −3500M in a similar way as in three dimensions.

Surprisingly, the relative amplitude errors for IMRPhenomPv2 (top left plots)
in the late inspiral are smaller than in the early inspiral in contrast to SEOBNRv3.
The A(t) quantity of IMRPhenomPv2 is smoother at t = −50M than at t =

−3500M. We emphasize that both models, SEOBNRv3 and IMRPhenomPv2
have comparable amplitude values at t = −50M and at t = −3500M.

In the early inspiral (t = −3500M), both waveforms agree well, similar to the
three-dimensional case. Hence, the percent errors are not significantly different as
shown in the same plot.

The phase errors were computed as absolute errors (see Eq. II.41). We find that
the phase errors for SEOBNRv3 and IMRPhenomPv2 are comparable. Further-
more, the late inspiral errors are higher than the early inspiral as the data fluctuates
more. In Fig. II.5, we observe a similar behavior for the training time as in three
dimensions, where higher training time was found for GPR, ANN, and RBF. This
is caused by the same factors as explained in the three-dimensional case. For the
execution time (right panel), we found that the more complex methods take longer
time than the simpler methods. For RBF and GPR this is due to their dependence
on the size of the training set. Interestingly, the execution time for ANNs is faster
than GPR and RBF. This is because ANN picks the optimum weights and bi-
ases during the training and its execution time does not depend on the number of
training points in the data.

We remind the reader that we set the parameter space of the seven-dimensions
analysis narrower in mass ratio than the three-dimensions. Hence, the errors
should not be compared directly to the three-dimensional case. For the same pa-
rameter ranges, the seven dimensional case yields errors up to 100 times larger for
the A(t) and 15 times larger for the φ(t). The order of accuracy does not signif-
icantly change, where the best accuracy in this range is obtained by polynomial
interpolation.

Overall, we found that in some cases, a simple method such as polynomial fit
yields lower errors and performs faster than the more complex methods.

II.4 Discussion and conclusion
Various approximation methods play important roles in building gravitational wave-
form models. Methods with high accuracy, low complexity, and fast compu-
tational time are needed for current and future applications. In this paper, we
presented a comparative study of interpolation, fitting and regression methods ap-
plied to precessing and aligned BBH systems. Precessing BBH model depends on
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seven key intrinsic parameters (q, ~χ1, ~χ2), whereas the aligned model depends on
three parameters (q, χ1z, χ2z).

We generated the data sets in the time domain using two waveform models:
SEOBNRv3 (originally built in the time domain) and the inverse Fourier transform
of IMRPhenomPv2 (originally built in frequency domain). The full waveforms
were transformed into a precession adapted frame where we extracted two quan-
tities: amplitude A(t) and phase φ(t) as explained in section II to perform a com-
parative study. For each key quantity, we picked two points in time, t = −3500M
in the inspiral for the smoother data set and t = −50M near merger for the more
irregular data. We employed this procedure on different numbers of training sets
and used different approximation methods.

We split approximation methods into two categories: traditional methods and
machine learning mehods (see Sect. II). The traditional methods consist of linear
interpolation, polynomial fits, radial basis function, GMVP, and TPI. Since linear
interpolation and TPI package require a regular grid, we do not include them in
the seven dimensional analysis. Furthermore, we investigated machine learning
methods such as GPR and ANN. For GPR, we compared two kernel functions:
the square exponential kernel and the Matérn kernel. We took the mean results of
each kernel and compared them against other methods. For ANN, we focused on
networks with two hidden layers and varied the number of their neurons.

We computed the relative errors for A(t) and the absolute errors for φ(t). To
validate the result, we generated 2500 test points distributed randomly within the
same parameter space. The comparison results of different methods in accuracy,
training time and execution time (in second) are presented in Sec.II.

We found that all methods perform better with more training data. Further-
more, we compared the performance of the same method in a set of smoother
data and a set of more irregular data. In general, we found that approximation
methods perform better in smoother data as expected. We recommend to use pre-
processing methods to improve the smoothness of the data where possible which
should increase the accuracy of regression results. This preparation is crucial as
any methods perform well with smoother data sets. Different accuracies are at-
tained by different methods in handling the irregularities in the data. We give a
brief summary of different methods in Table. II.1.

For lower dimensions, simpler methods such as linear interpolation and TPI
provide good accuracy and speed. However, these methods need a regular grid
and therefore are less useful for high dimensional data sets as explained above.
For this situation, we found that polynomial fits are one of the simplest methods
that offers a good combination between accuracy and speed. Furthermore, poly-
nomial fits have been used widely and can be coded manually making it reliable
and easy. The computational timing of polynomial fits depends on the number of
parameters and the maximum polynomial degree. Another method that can per-
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form approximation of scattered data sets is GMVP. GMVP which is based on
polynomials can perform very well by setting error tolerance on its algorithm. For
lower dimensionality, GMVP is computationally cheap. However, as the number
of parameters rise, the computational time to compute the interpolant with the
same error tolerance grows significantly higher. Therefore, we do not include this
method in our analysis for the seven-dimensional case.

RBF and GPR are promising methods for scatterred data points. RBF has
been integrated in a standard scipy package, making it easy for users. GPR
computes the uncertainty of the predicted values. This feature is useful for future
applications and cannot be found in other methods. Furthermore, GPR has been
integrated in sckit-learn package [72]. Both RBF as GPR have the freedom
to choose suitable kernel functions and hyperparameters. However, their speed
depends on the number of training points cubed O(N3). Hence, these methods
become inefficient for larger data set.

A simple ANN can be used to perform regression for scattered data points.
Similar to GPR, this method is more complex and depends on the choice of archi-
tecture and hyperparameters. We showed that the the three-dimensional result of
ANN requires a longer training time with relatively comparable accuracy to other
methods. We argue that such complexity is less needed for lower dimensional
parameter and users should use a more simpler methods that provide good accu-
racy and speed. However, ANN is highly versatile to solve problems in higher
dimensions and is promising to be explored further.

One might expect that methods with higher complexity perform better than
methods with lower complexity. We find that this is not always the case. A more
complicated method does not guarantee that the results are always better or faster.
We find that simpler methods may yield smaller errors than more complex meth-
ods and perform faster in many cases. Hence, we suggest that one should critically
evaluate the performance of approximation methods and understand the features
of the method that are necessary for the data of interest. Simpler methods that
perform better or at least equal to more complicated methods should be used as
the first choice to avoid unnecessary complexity.
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Figure II.4: The three-dimensional interpolation results at t=-50M. Top:SEOBNRv3, bot-
tom:IMRPhenomPv2. The x-axes show the number of training points in each dimension,
N, and the y−axes show the errors, training, and indicated execution time as on the labels
of the panels. Left: errors of the amplitude and phase respectively, middle: training time
in (seconds), and right: execution time (seconds). Different colors represent different in-
terpolation methods as shown in the shared legend. The colored circles show ANN results,
where different colors represent the number of neurons per layer in a double layer ANN
as shown in the corresponding color bar.
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Figure II.5: The seven-dimensional interpolation results. Top:SEOBNRv3, bot-
tom:IMRPhenomPv2. The x-axes show the number of training points N and the y-axes
shows the errors, training, and execution time as shown on the plot. Left: errors of the
amplitude (A(t)) and phase (φ(t)) respectively, middle: training time in unit seconds, and
right: execution time in unit seconds. The solid lines show the results at t = −3500M and
the dashed lines for t = −50M. Different colors represent different interpolation meth-
ods as shown in the shared legend. The colored circles correspond to the results of ANN
at t = −3500M and the colored diamonds for t = −50M. Different colors represent a
different number of neurons on a double layer ANN as shown in the corresponding color
bar.
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Methods Advantages Disadvantages Training
time

Linear (RGI) standard scipy needs regular grid O(N)

TPI robust and needs regular grid O(Nk)
high accuracy

GMVP irregular grid complex #basis function
fast execution time #error tolerance

Polynomial fit irregular grid Runge’s phenomenon O(N) and
simple and fast only univariate in scipy #polynomial degree

RBF scipy high computational O(N3)
irregular grid complexity

GPR irregular grid depends on the choice O(N3)
can predict uncertainty of kernel and hyperparameters

complex

ANN irregular grid complex #neurons
flexible architecture choices #hidden layers

Table II.1: Summary of features of the methods used in this study. We present the advan-
tages, the disadvantages and the scaling complexity for each method. For linear interpo-
lation, TPI, RBF, and GPR the (training time) depends on the number of training points N
(and polynomial degree k). Other methods have different complexity scalings that affect
their training time.



BIBLIOGRAPHY 107

Bibliography
[1] LIGO: The laser interferometry gravitational wave detector;. https://
www.ligo.caltech.edu.

[2] Virgo;. http://www.virgo-gw.eu.

[3] Abbott BP, et al. GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs. Phys Rev X. 2019 Sep;9:031040. Available from:
https://link.aps.org/doi/10.1103/PhysRevX.9.031040.

[4] LIGO third obesrerving time (O3);. https://dcc.ligo.org/public/
0152/G1801056/004/G1801056-v4.pdf.

[5] Blanchet L. Gravitational Radiation from Post-Newtonian Sources and In-
spiralling Compact Binaries. Living Reviews in Relativity. 2014 Feb;17.
Available from: https://link.springer.com/article/10.12942/

lrr-2014-2#aboutcontent.

[6] Campanelli M, Lousto CO, Marronetti P, Zlochower Y. Accurate Evolu-
tions of Orbiting Black-Hole Binaries without Excision. Phys Rev Lett.
2006 Mar;96:111101. Available from: https://link.aps.org/doi/10.
1103/PhysRevLett.96.111101.

[7] Pretorius F. Evolution of Binary Black-Hole Spacetimes. Phys Rev Lett.
2005 Sep;95:121101. Available from: https://link.aps.org/doi/10.
1103/PhysRevLett.95.121101.

[8] Baker JG, Centrella J, Choi DI, Koppitz M, van Meter J. Gravitational-Wave
Extraction from an Inspiraling Configuration of Merging Black Holes. Phys
Rev Lett. 2006 Mar;96:111102. Available from: https://link.aps.org/
doi/10.1103/PhysRevLett.96.111102.

[9] Damour T. Coalescence of two spinning black holes: An effective one-body
approach. Phys Rev D. 2001 Nov;64:124013. Available from: https:
//link.aps.org/doi/10.1103/PhysRevD.64.124013.
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Abstract
The detection of gravitational-wave signals from coalescing eccentric binary black
holes would yield unprecedented information about the formation and evolution
of compact binaries in specific scenarios, such as dynamical formation in dense
stellar clusters and three-body interactions. The gravitational-wave searches by
the ground-based interferometers, LIGO and Virgo, rely on analytical waveform
models for binaries on quasicircular orbits. Eccentric merger waveform models
are less developed, and only a few numerical simulations of eccentric mergers
are publicly available, but several eccentric inspiral models have been developed
from the post-Newtonian expansion. Here we present a novel method to con-
vert the dominant quadrupolar mode of any circular analytical binary-black-hole
model into an eccentric model. First, using numerical simulations, we examine
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the additional amplitude and frequency modulations of eccentric signals that are
not present in their circular counterparts. Subsequently, we identify suitable an-
alytical descriptions of those modulations and interpolate key parameters from
twelve numerical simulations designated as our training dataset. This allows us to
reconstruct the modulated amplitude and phase of any waveform up to mass ratio
3 and eccentricity 0.2. We find that the minimum overlap of the new model with
numerical simulations is around 0.98 over all of our test dataset that are scaled to
a 50M� black-hole binary starting at 35 Hz with aLIGO A+ design sensitivity. A
Python package pyrex easily carries out the computation of this method.
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III.1 Introduction
Coalescing stellar-mass black-hole binaries are one of the primary sources of GW
signals detected by the ground-based interferometers, the aLIGO [1], Virgo [2],
and KAGRA [3]. In the first three observing runs (O1–O3), detection pipelines
assumed BBH mergers to have negligible eccentricity when entering the orbital
frequencies to which aLIGO, Virgo, and KAGRA are sensitive [4, 5, 6]. BBHs
formed in an isolated environment through a massive stellar evolution are expected
to circularize and therefore have undetectable eccentricity by the time they enter
the LIGO band [7]. However, BBHs with a detectable eccentricity can form in a
dense stellar cluster through dynamical capture [8, 9].

A possible scenario is that the binary gains eccentricity due to gravitational
torques exchanged with a circumbinary disk [10]. Eccentric BBHs can also form
from three-body interactions [9], where the BBH behaves as the inner binary.
In this system, the Kozai-Lidov [11, 12] mechanism triggers the oscillation that
boosts the eccentricity.

Interactions of BBHs in a typical globular cluster suggest a significant eccen-
tric BBH merger rate. As many as ∼ 5% of binaries may enter the LIGO detector
band ( f ≥ 10 Hz) with eccentricities e > 0.1 [13, 14, 15]. A confident measure-
ment of significant eccentricity in a BBH system would be strong evidence for
the dynamical formation scenarios in dense stellar clusters and would boost our
understanding of the dynamical evolution of compact objects.

The impact of eccentricity is more substantial during the early inspiral and
therefore plays a vital role in the space-based detector era [16]. In the LIGO band,
the detection of GWs from an eccentric orbit would suggest that the binary was
formed with a small initial separation and did not have time to circularize, or the
binary evolved through an unknown dynamical process. Incorporating eccentric
BBH simulations may also lead to an increase in the LIGO/Virgo/KAGRA de-
tection rate [14]. Besides, the detection of eccentric BBH mergers could capture
effects from the extreme-gravity regime and therefore can be used for testing the
general theory of relativity [17, 18].

We highlight the significance of detecting GWs from eccentric BBHs. Con-
structing template models for eccentric waveforms is challenging, and we aim to
make progress towards this goal especially for the late inspiral and merger regimes
that are most accessible with today’s observations. One of the main difficulties in
developing an eccentric waveform model is that only a few NR simulations with
higher eccentricity are available. Thus, many studies focus on developing ec-
centric models from the PN expansion. The development of full IMR eccentric
waveform models is currently an actively researched area [19, 20, 21].

Huerta et al. [19] construct a time-domain eccentric nonspinning waveform
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model (e0 < 0.2) up to mass ratio 5.5, where e0 is the eccentricity 10 cycles before
the merger. Their model is called ENIGMA, a hybrid waveform that has been cali-
brated using a set of numerical simulations and trained using GPR. Reference [20]
presents a low-eccentricity model (e0 < 0.2) called SEOBNRE using the expansion
of the EOB waveform family. A more up-to-date EOB formalism is demonstrated
in Refs. [22, 23]. Hinder et al. [21] present a time-domain, nonspinning eccentric
waveform model up to mass ratio q = m1/m2 = 3 from 23 NR simulations that are
publicly available in the SXS catalog. The referenced eccentricity is eref ≤ 0.08
starting at seven cycles before the merger. Like Ref. [19], the early inspiral of this
model is hybridized with a PN expansion to produce a full IMR model in a Mathe-
matica package [24]. In addition, Ref. [25] recently developed an eccentric model
NRSur2dq1Ecc for nonspinning waveforms and eccentricities up to 0.2 from 47
NR simulations. Although the model was trained for q = 1, it can be extended
to mass ratio q ≈ 3. Apart from the studies above, nonspinning, low-eccentricity
frequency-domain models from the PN expansion are publicly available in the
LAL [26, 27, 28].

The excitement to search for an eccentric BBH motivated the following anal-
ysis. References [29, 30, 31] recently developed an analysis to find the signature
of an eccentric BBH in the O1, O2 and several events in the O3 data using the
SEOBNRE model. Additionally, Ref. [32] analyzed the heaviest BBH system dur-
ing O1–O3, GW190521 [33] with 325 NR simulations. They found that this event
is consistent with highly precessing, eccentric model with e ≈ 0.7.

We present a promising method to add eccentricity to quasicircular systems
independent of the PN expansion. We apply this method to nonspinning, time-
domain waveforms, although in principle it can be used in more general settings.
Our technique focuses on a fast reconstruction of the near-merger eccentric BBH
waveform and can be applied to any analytical circular nonspinning model. We
build our model from 12 NR simulations and test against further 8 NR simulations
from the open SXS catalog [34]. Our method is very simple and can be applied
to any circular time-domain model obtained from, e.g., the phenomenological
[35, 36, 37] or EOB [38, 39] families.

We model the deviation from circularity visible in the amplitude and phase
of eccentric GW signals. This deviation is modeled across the parameter space
and can be simply added to any quasicircular model, which elevates that model
to include eccentric effects. This approach is inspired by the ”twisting” technique
that is applied for reconstructing precessing spins from an aligned-spin model to
build, e.g., the IMRPhenomP family [36, 40, 41, 42, 43]. The dynamic calibration
of the waveform model is motivated by our previous study [44] and the regression
techniques tested in detail in Ref. [45].

We calibrate our model for mass ratios q ≤ 3 and eccentricity e ≤ 0.2, and
provide it as a Python package called pyrex [46]. Our model has been constructed
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for a fiducial 50 M� BBH and can then be rescaled for other total masses M. We
find that the overlap of all our test data against NR is above 98%. Moreover, we
expand the construction to earlier regimes than the calibrated time span. Although
we do not calibrate for higher mass ratios, the early inspiral, or higher orbital
eccentricity, we allow the building of waveforms beyond the parameter boundaries
used for calibration.

The organization of this manuscript is as follows: In Sec. III, we present the
methodology to construct this model. Section III discusses the primary outcome
and the faithfulness of our model. Finally, Sec. III summarizes and concludes the
prospect of our studies. Throughout this article, we use geometric units in which
G = c = 1.

III.2 Method
Using NR simulations, we investigate the frequency and amplitude modulations
in eccentric BBH signals and implement them in analytical waveforms to develop
our model. As described by Peters [7], the orbital eccentricity in binary systems
decreases over time due to energy loss through GW radiation. Pfeiffer et al. [47]
investigated this in numerical simulations of the SXS catalog. The authors point
out that one of the main differences in the evolution of low-eccentricity initial data
compared to quasicircular binaries is an overall time and phase shift, where the
quasicircular data represent the binary at a point close to merger. Following these
studies, Hinder et al. [21] showed that the GW emissions from low-eccentric bina-
ries and circular binaries are indistinguishable near the merger stage. Specifically,
Hinder et al. suggest that one only loses 4% of the signal when substituting the
GW emission from low-eccentricity binaries with circular orbits 30M before the
peak of the amplitude (t = 0). They use this fact to build an eccentric IMR model
by replacing the late inspiral eccentric model with a circular waveform. Combin-
ing the finding above, we model the decaying eccentricity as amplitude and phase
modulation up to t = −29M. We then substitute the GW strain at t > −29M with
the circular model for the same binary masses.

III.2.1 Data preparation
We use 20 nonspinning NR simulations from the SXS catalog up to mass ratio 3
and eccentricity 0.2 to build our model (see Table III.1). We follow the definition
of eccentricity ecomm in Ref. [21] as the eccentricity measured at the referenced fre-
quency, x = (Mω)2/3 = 0.075. These simulations are divided into a training data
set of 12 simulations and the test datasets of 8 simulations, as shown in Fig. III.1.
Binaries of the test dataset fall within the training data’s parameter boundaries.
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Hence, we do not perform extrapolation with the test data.
We combine the “+” and “×” polarization using the spin-weighted spherical

harmonics with the following expression [48]:

h+ − ih× =
M
r

∞∑
`=2

m=∑̀
m=−`

h`m(t) −2Y`m(ι, φ), (III.1)

where M and r are the total mass of the system and the distance from the observer,
respectively; −2Y`m are the spin-weighted spherical harmonics that depend on the
inclination angle ι and the phase angle φ; and h`m(t) can be extracted from the NR
data in the corresponding catalog. We construct our model for h2±2, the leading
contribution of spherical harmonic modes with ` = 2, m = ±2. Reference [21]
suggests that other, subdominant modes are less significant for nearly equal-mass
systems with low eccentricity. Here we consider only moderately small eccentrici-
ties; therefore we only model the dominant mode. For future studies, subdominant
harmonics will be important to model high-eccentricity signals accurately.

We prepare the data as follows. First, we align all the waveforms in the time
domain such that the peak amplitude is at t = 0. Subsequently, we remove the
first 250M from the start of the waveforms due to the junk radiation, and the last
29M before t = 0 due to circularization (see Fig. III.2). Later, we use a circular
waveform for t > −29M. We then decompose h2±2 into amplitude (A), phase
(Ψ), and the phase derivative, ω = dΨ

dt , where the referenced frequency follows
Ref [21].

We model amplitude A22 and frequency (ω22) as a simple quasicircular piece
plus an oscillatory function. The final model then yields the phase (Ψ22) by inte-
grating the frequency.

III.2.2 Eccentricity estimator
In numerical simulations, eccentricity is often discussed as a consequence of im-
perfections in the initial data [49]. It manifests itself as small oscillations on top
of the gradual binary evolution, where the oscillation’s amplitude is proportional
to the eccentricity (see A22 and ω22 plots in Figs. III.2 and III.3). We use this
residual oscillation as a key to estimating the eccentricity evolution.

Mroué et al. [50] compare various methods to estimate eccentricity using eX(t).
The orbital eccentricity is proportional to the amplitude of a sinusoidal function,
eX(t), expressed by

eX(t) =
XNR(t) − Xc(t)

2Xc(t)
,

⇔ eX(Xc) =
XNR(Xc) − Xc

2Xc
, (III.2)
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Figure III.1: The training and test data, shown by the red circles and the blue plus signs,
are located in the parameter space of mass ratio and eccentricity. We use 20 NR sim-
ulations from the SXS catalog and divide them into 12 NR training datasets and 8 test
datasets.
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Figure III.2: The full and the chopped waveform of the SXS:BBH:1364 simulation (q =

2, ecomm = 0.044). The blue line shows the full NR h22 mode, and the orange line presents
the time range used in this study. We remove the first 250M due to the junk radiation and
modulate the residual oscillation at −1500M ≤ t ≤ −29M.
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Figure III.3: The top-left panel shows the amplitude, the top-right panel shows the time
derivative of the phase ω22 = dΨ22/dt, and the bottom panel shows the phase of h22.
We present the key parameters from the training dataset for q = 2 (` = 2,m = 2). The
numbers in the legend correspond to the case numbers of the simulations shown in Ta-
ble III.1. Although higher-eccentricity waveforms produce more oscillations than the
lower-eccentricity waveforms, all data appear identical at t > −30M due to circulariza-
tion as shown in the top panels. We employ the residual amplitudeA22 and frequency ω22

to develop our model in the late inspiral regime.
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Table III.1: NR simulations from the SXS catalog used in this study with mass ratio q =

m1/m2, eccentricity at the reference frequency ecomm, and the number of orbits before
the maximum amplitude of ‖h22‖. ecomm is the eccentricity at the reference frequency
(Mω)2/3 = 0.075 as described in Ref. [21]. The quasicircular waveforms (ecomm = 0.000)
have eccentricities lower than 10−5 at the reference frequency.

Case Simulations Training/test q ecomm Norbs

1 SXS:BBH:0180 Training 1 0.000 26.7
2 SXS:BBH:1355 Training 1 0.053 11.9
3 SXS:BBH:1357 Training 1 0.097 12.8
4 SXS:BBH:1358 Test 1 0.099 12.1
5 SXS:BBH:1359 Test 1 0.100 11.7
6 SXS:BBH:1360 Test 1 0.142 11.1
7 SXS:BBH:1361 Test 1 0.144 10.9
8 SXS:BBH:1362 Training 1 0.189 10.2
9 SXS:BBH:1363 Training 1 0.192 10.1
10 SXS:BBH:0184 Training 2 0.000 13.7
11 SXS:BBH:1364 Training 2 0.044 14.2
12 SXS:BBH:1365 Test 2 0.060 14.1
13 SXS:BBH:1366 Test 2 0.095 13.6
14 SXS:BBH:1367 Test 2 0.096 13.6
15 SXS:BBH:1368 Training 2 0.097 13.6
16 SXS:BBH:1369 Training 2 0.185 13.6
17 SXS:BBH:0183 Training 3 0.000 13.5
18 SXS:BBH:1372 Test 3 0.092 15.6
19 SXS:BBH:1373 Training 3 0.093 15.3
20 SXS:BBH:1374 Training 3 0.180 13.5

where X is eitherω22 orA22, and Xc(t) is the X quantity in circular binaries instead
of low-order polynomial fitting functions that are often used in the literature. We
reverse this relation to convert a circular model [with given Xc(t)] to an eccentric
model using an analytical description of the oscillatory function eX(Xc). We apply
the Savitzky-Golay filter [51] to smooth the eX(t) curves from noises caused by
numerical artifacts. Savitzky-Golay is a digital filter applied to smooth the se-
lected data points without altering the signal direction by fitting the adjacent data
with a low-degree polynomial fit.

We stress that the definition of the orbital eccentricity is not unique. Thus, one
could use different definitions of eccentricity. In principle, any definition can be
accepted if consistently applied to the study in question. The NR data we use are
labeled with a value for the initial eccentricity that is based on PN initial data [21].
As we shall discuss below, these labels are similar to what we estimate for the
eccentricity using Eq. (III.2), but not identical. However, we refrain from redefi-
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Figure III.4: The eccentricity estimator from A22 plotted against the circular amplitude
Ac (left), and the eccentricity estimator from ω22 plotted against the circular omega ωc

(right) with the same mass ratio. Different colors show different cases of training data for
mass ratio q = 2. We smooth the data from numerical artifacts using the Savitzky-Golay
filter (see text).

nition of the initial eccentricity of the NR data and instead identify each NR sim-
ulation with the value of eccentricity at the reference frequency (Mω)2/3 = 0.075
determined by the original Ref. [21]. We do this because (i) we want to avoid
any confusion as to what NR data we are using and what their properties are, and
(ii) by making the amplitude of eX a function of the eccentricity label imposed by
Ref. [21], we introduce an extra uncertainty that may be seen as representing the
ambiguity in determining the initial eccentricity of the respected NR simulations.
Thus, we present a conservative estimate of the approach’s accuracy.

As a check, we compute the orbital eccentricity using the eccentricity estima-
tor (eX) and find that the results agree with a maximum relative error of roughly
10% against ecomm quoted in the SXS catalog and given in Table. III.1. In Fig. III.4,
we present the eccentricity estimator eX(Xc) as a function of its circular amplitude
and frequency,Ac and ωc, respectively.

III.2.3 Fitting eX

Our main goal is to model an eccentric waveform by modulating the amplitude and
phase of a circular model. To construct the model, we interpolate the additional
oscillation of an eccentric waveform depending on its eccentricity and mass ratio,
where the relationship between the circular and the eccentric model is expressed in
Eq. (III.2). Accordingly, we look for a fitting function to model eX(Xc) that relies
on the desired parameters (q, e) and reverse Eq. (III.2) to obtain the eccentric
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amplitude and frequency. We then integrate the frequency to obtain the eccentric
phase and construct the eccentric h22.

We note that alternatives to fitting the amplitude and frequency modulations
have been studied in Ref. [25]. In particular, they investigated using the phase
residual instead of the frequency, or fitting the eccentric amplitude and phase (or
frequency) directly instead of recasting the problem in terms of differences to
noneccentric signals. Here we find that the most suitable strategy for our approach
is to fit the residual amplitude and frequency oscillation defined as the eccentricity
estimator (eX) that comes from {A22, ω22} and integrate ω22 to obtain the phase
(Ψ22).

In a suitable parametrization, the eccentricity estimator eX is a decaying sinu-
soidal function (see Fig. III.4) with its amplitude defined by the orbital eccentricity
e [50]. To model eX for various eccentricities and mass ratios, we fit eX with a set
of free parameters modifying a damped sinusoidal function. These parameters
are two amplitude quantities (A and B), a frequency ( f ), and phase (ϕ) with the
following relation:

eX(Xc) = AeB Xκ
c sin( f Xκ

c + ϕ). (III.3)

A, B, f , and ϕ are standard damped sinusoidal parameters obtained from the opti-
mized curve fitting.

We use a Xκ
c instead of Xc to describe the evolution of the residual oscillations

of the amplitude and frequency mainly for the following reasons: Xc is a rapidly
evolving function. Therefore, it is more difficult to model eX with a standard
sinusoidal function with a constant frequency. Although it is in principle possible
to use Xc directly in the model, we would have to slice the data into multiple
small time windows that overlap. Thus, the results will be less smooth; one would
have to blend all those individual functions defined on small intervals into one big
function. Besides, we cannot guarantee our result beyond our calibration range,
especially for the early inspiral. Using a power law allows us to fit the entire
region with one set of free parameters. However, we note that the power law of Xc

induces a twist resulting in infinitely large eccentricities for the very early inspiral
stage. That is a problem with assuming exponential decay, and the fact that the
power law we use has a negative exponent.

We fit our model eX from the starting frequency flow = 25 Hz for a circular
BBH with a total mass M = 50 M�. The power law for ωc is κ = −59/24, and
for Ac it is κ = −83/24. We emphasize that these values are customized i.e., we
expect that one might need different values to calibrate with higher eccentricity, a
higher mass ratio, or a different starting frequency.

By optimizing the curve fit between eX and Eq. III.3, we obtain the four quan-
tities (A, B, f , ϕ) for all training data. The relation between the mass ratio (q),
eccentricity (e), and the three parameters A, B, f is shown in Fig. III.5. The am-
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Figure III.5: Key quantities of A22 (left) and ω22 (right) of a damped sinusoidal func-
tion obtained from the curve fitting [see Eq. III.3]. The amplitude parameters (A and B)
depend strongly on the eccentricity (e), whereas the square of the frequency ( f 2) is cor-
related to the mass ratio (q). We leave ϕ as a free nuisance parameter that we maximize
over when comparing to the test data. The left color bar corresponds to the bottom panel,
and the right color bar to the top panel.

plitude components A and B are strongly correlated to eccentricity, whereas the
mass ratio determines the frequency squared. Hence, we perform one-dimensional
linear interpolation across eccentricity to obtain the values of A and B. Similar to
that, we linearly interpolate f 2 across mass ratios. We choose f 2 instead of f
because the data is smoother for interpolation. The square root of f 2 gives either
positive or negative values. However, this ambiguity can be absorbed by the phase
parameter ϕ.

The phase parameter ϕ is an additional degree of freedom that we cannot ex-
plore sufficiently with the available NR data. For small sets of NR simulations
with nearly constant values of q and e, but varying `, we find that the best-fit ϕ
mirrors changes in `. Thus, we expect that it may correlate strongly with the mean
anomaly. Because the orientation of the ellipse is astrophysically less interesting
than the value of the eccentricity, we do not attempt to model the effect of varying
the mean anomaly other than introducing the phenomenological nuisance param-
eter ϕ. We interpolate the other parameters when generating a new waveform
model with different mass ratios and referenced eccentricities.

We apply a one-dimensional interpolation for each key quantity shown in
Fig. III.5. A and B are interpolated over different eccentricities e, f 2 is inter-
polated over the mass ratio q, and the phase of the oscillation ϕ can be chosen
arbitrarily.

Once we obtain the eccentricity estimators eX using the interpolated quantities,
we substitute the results to reconstruct A22 and ω22 using Eq. III.2. To construct
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Ψ22, we integrate ω22 numerically using the trapezoidal rule. We truncate the
waveform at t = −50M and join it with the nonspinning circular model. We then
smooth the transition with the Savitzky-Golay filter at −46M < t < −25M.

We then build h2±2 as the combination of the amplitude and phase as follows:

h`m = A`m e−iΨ`m . (III.4)

To reconstruct the gravitational-wave strain h = h+ − h×, we compute the spin-
weighted spherical harmonics Y`m(ι, φ) and employ Eq. III.1.

III.3 Results
We built a new nonspinning eccentric model by modulating the residual amplitude
and phase oscillations of the circular analytical models, IMRPhenomD [35] and
SEOBNRv4 [52]. IMRPhenomD is an aligned-spin IMR model that was originally
built in frequency domain and calibrated to numerical simulations for mass ratios
q ≤ 18. SEOBNRv4 is an aligned-spin time-domain IMR model [52, 53] that has
been calibrated to 140 NR waveforms produced with the SpEC code up to mass
ratio 8 and extreme-mass-ratio signals.

As described in Sec. III, we interpolate the residual amplitude and phase os-
cillations of the training dataset for the given mass ratio and eccentricity. To
construct a new, eccentric waveform for the intermediate to near-merger regime,
we then use one of the nonspinning circular models with the desired mass ratio,
compute the eccentricity estimators (eX) from the analytical description given in
Eq. (III.3), and reconstruct the desired eccentric waveform model for each test
data. We develop a map from circular nonspinning waveforms to eccentric wave-
forms that can be applied to any analytical model with a relatively simple and fast
function using only 20 NR simulations.

We evaluate the results by computing the overlap between the new model and
the NR test data. The overlap is maximized over a time and phase shift, as well as
the free phase offsets of the residual oscillations. Mathematically, we define the
overlap O based on an inner product between two waveforms:

〈h1, h2〉 = 4 Re
∫ f2

f1

h̃1( f ) h̃∗2( f )
Sn( f )

d f , (III.5)

O = max
{t0,Ψ0,ϕA,ϕω}

〈h1, h2〉

‖h1‖‖h2‖
, (III.6)

where Sn is the sensitivity curve of the corresponding GW interferometer, h̃( f ) is
the Fourier transform of h(t), ∗ denotes complex conjugation and ‖h‖ =

√
〈h, h〉.
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The mismatch or unfaithfulness is defined by

M = 1 − O. (III.7)

We investigate three sensitivity curves for the future GW detectors, aLIGO
A+, the Einstein Telescope (ET), and Cosmic Explorer (CE). LIGO A+ is the fu-
ture GW interferometer with 1.7 times better sensitivity than the current detector,
expected to start observing in mid-2024 at the earliest [54]. The ET is a 10 km
GW observatory planned to be built on the border between Belgium, Germany,
and Netherlands which could be operating in the mid-2030s [55]. The ET is ex-
pected to have higher sensitivity towards the low-frequency range. CE is a 40 km
third-generation GW detector which has higher sensitivity towards low redshift
(z > 10) that is planned to start observing in the 2030s [56]. Since our model
focuses on the late inspiral case, and because the unfaithfulness is insensitive to
a change in overall signal-to-noise ratio, the values obtained for the future third-
generation detectors show similar behavior [57]. Hence, we only show the overlap
results for the LIGO A+ design sensitivity. A possible caveat is that our model
might not fill the LIGO A+ band down to 10 Hz. Thus, there is a chunk of inspiral
power missing in the signal.

Figure III.6 visually compares the strain h2±2 of each NR test dataset with the
new eccentric nonspinning signal built from analytical models, IMRPhenomD and
SEOBNRv4 for a 50 M� BBH with inclination angle ι=0 (face-on) and phase of
coalescence, φc=0. Using our method, we find that the minimum overlap between
the new model and NR is ≈ 0.98 (log10M = −1.8) over all of our test datasets.
The minimum overlap occurs at the highest eccentricity in the test dataset.

Although we calibrated the new model for limited ranges in mass ratio, eccen-
tricity, and time, we let the production of the new model go beyond our calibration
range. In Fig. III.7, we show the unfaithfulness of the new model against the NR
test data for various total masses with the aLIGO A+ design sensitivity curve.
The left panel shows the unfaithfulness within the calibrated frequency range, be-
tween 25 Hz and the ISCO frequency scaled over the total mass. Similarly, the
right panel presents the unfaithfulness beyond the calibrated frequency range, be-
tween 20 Hz and the ringdown frequency. We use the definitions of the ISCO and
ringdown frequencies as follows:

fISCO = 1/(63/2πM), (III.8)

and
fRD = 0.1/M. (III.9)

Figure III.7 shows that the mismatches decrease toward higher-total-mass sys-
tems. As the total mass increases, the overlap computation covers a smaller wave-
form regime towards merger in the frequency space. Since the eccentricity de-
creases over time, the near-merger regime has lower eccentricities. Thus, the
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down frequency (beyond the calibration range), where we define the ringdown frequency
as fRD=0.1/M.

overlap between the model and the corresponding NR simulation is better for the
higher-mass systems compared to the lower-mass ones. For comparison, we find
that mismatches between circular analytical models and the eccentric NR test data
are at least 1 order of magnitude worse than the results we find for our eccentric
model.

The unfaithfulness between eccentric waveforms is better for {25, ISCO} than
for {20, Ringdown}. We investigate the contribution weight between the early
inspiral and the ringdown in the unfaithfulness results by comparing with the {25,
Ringdown} and {20, ISCO} ranges. We argue that the mismatches for the low
masses are dominated by the inspiral, whereas for high masses, the mismatches
are dominated by the merger or ringdown. In the mismatch computation, we add
padding in the ringdown area, but the early inspiral should come purely from the
fitting data.

Furthermore, we test how well one can extract the parameters of an eccentric
signal h(q, e) by comparing with various waveforms with different eccentricities
e and mass ratios q. We generate a pyrex waveform (q = 1, e = 0.144) and
compare it with various other signal parameters (q, e) using the same analytical
waveform model. The results are shown in Fig. III.8. We emphasize that in this
study, we did not run a standard PE pipeline that stochastically explores a much
greater parameter space. In particular, we do not consider varying the total mass
or spin. Hence, our results are only a first indication of potential parameter am-
biguities. Our results in Fig. III.8 show that the mismatch between the generated
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ratios and eccentricities. Waveforms with higher parameter distance have lower overlap.
The color bar shows the log10 mismatch.

waveform and other waveforms having similar mass ratios but different eccentric-
ities is relatively low, suggesting that an accurate measurement of the eccentricity
is challenging for high-mass BBH systems where only the late inspiral and merger
are accessible through the GW detection.

III.4 Conclusion and future perspectives
The detection of GWs from an eccentric BBH merger would be a crucial step to-
wards understanding the physical evolution of compact binary coalescences and
the nature of BBHs in globular clusters. Due to limitations in waveform mod-
eling, the current search and parameter estimation pipelines in the LIGO/Virgo
data analysis rely on analytical waveform models for circular binaries. One of the
limitations to developing eccentric BBH models is the small number of eccentric
NR simulations. NR simulations that are publicly available have low eccentrici-
ties (e ≤ 0.2) at Mω2/3 = 0.075. We use 20 NR simulations from the open SXS
catalog and split them into 12 training datasets and 8 test datasets to develop our
method.

We presented a novel method to convert any circular nonspinning waveform
model into a low-eccentricity nonspinning waveform. To develop our method,
we analyzed the residual modulations in the amplitude and frequency of eccentric
waveforms compared to the circular signals with the same mass ratio in the 12
NR simulations of the training dataset. We modeled the decrease of eccentricity
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over time, known as the eccentricity estimators, eX, using a damped sinusoidal fit,
where the fitting function is built upon four key parameters. We then performed
a one-dimensional interpolation for each key parameter (A, B, and f ) to build
the eccentric waveform with the desired mass ratio and eccentricity. One of our
model parameters, ϕ, shows no clear correlation with the physical parameters we
explore. However, the small number of NR simulations used here did not allow
us to model the effect of varying the mean anomaly in detail, and we expect ϕ to
represent this degree of freedom. When quantifying the agreement between our
model and the test data, we maximize over this nuisance parameter.

We then build a new model using the fitting values of eX and the amplitude
and frequency of the circular model which here we take from IMRPhenomD and
SEOBNRv4. Our new model has an overlap 0.98 . O . 0.999 over all NR sim-
ulations in our test dataset with the LIGO A+ design sensitivity curve. We hint
that we need more training and test datasets for further development of this model
beyond the current parameter boundaries. The computation of our method can be
performed easily and quickly in the Python package pyrex [46].

Although we calibrate our model to a 50 M� BBH (q ≤ 3, e ≤ 0.2) starting at
frequency flow = 25 Hz, we let the computation go slightly beyond the calibrated
range. The calibrated time range of the waveform is from the late inspiral up to
the near-merger phase, but we can extend the model through merger and ring-
down by using the circular data. For the early inspiral, an analytical PN model
could be used to complete the description of the entire coalescence. This way, our
approach can be adapted to develop a complete IMR eccentric model. This would
be especially important for future generations of GW interferometers as they have
higher sensitivity especially in the low-frequency range. Careful studies of ec-
centric search and parameter estimation are needed to detect eccentric compact
binary coalescences and their origin.
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4
Conclusions and future prospects

“A new scientific truth does not triumph by convincing its oppo-
nents and making them see the light, but rather because its oppo-
nents eventually die, and a new generation grows up that is familiar
with it.”

Max Planck

4.1 Summary and discussion
Signal analysis of GW data observed by LIGO and Virgo is carried out by com-
puting the likelihood between the output data and the template model. These tem-
plates are derived from solving the vacuum Einstein’s field equations with two
main approaches, analytical and numerical relativity. Analytically, one expands
the v/c terms of flux and energy known as PN approximation. Although PN is
computationally quick, this approximation becomes unfaithful when the binary
moves faster towards merger (fast-less accurate). Another approach is to solve
Einstein’s field equations numerically. NR provides better accuracy, especially in
the regime where PN breaks down, despite the higher computational cost (slow-
more accurate). Hence, only relatively a few numbers of NR simulations are avail-
able. Bridging these two methods has been the focus of many studies developed
in the community. We highlight two semi-analytical approaches that provide fast-
more accurate waveforms are known as EOB and the Phenomenological models.
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The goal of these studies is to build a model that has high accuracy towards NR,
spans wide parameter ranges and is computationally cheap.

To some extent, these semi-analytical models have been calibrated to NR.
However, when new NR simulations become available, one needs to recompute
the fitting algorithm or recalibrate the current model with the new numerical sim-
ulations in the parameter of interest. This work demands human resources and
is time-consuming. We highlight this issue and investigate strategies to automat-
ically calibrate any waveform models without requiring extensive human depen-
dency.

We began with developing a method that projects sparse-more accurate wave-
forms onto a set of dense-less accurate ones. This method deals with dimensional-
ity reduction and interpolation, which becomes crucial when more source param-
eters are included in the model. The results are a set of waveforms with accuracy
that lies between the two models and can be generated swiftly. Here we guarantee
that our new waveforms always have higher accuracy towards the sparse model
compared to the agreement between the two initial ones. This study is important
for the source modeling, especially to ensure that the transition between the new
model to the existing one is smooth. More importantly, we can apply our proof of
concept studies further to various models with different parameters.

Our new set of waveforms have reasonable accuracy across the parameter
space. However, we face challenges as we expand to higher dimensional param-
eters due to poorer accuracy and higher computational cost of interpolation. We
should emphasize that this problem also occurs in various models as interpolation
is the cornerstone in developing a gravitational waveform model. We follow up
this issue by directly comparing the accuracy and computational complexity of
various interpolation, regression, and fitting techniques. This comparison is im-
portant to develop strategies with more dimensional parameters and tackle more
datasets. Moreover, we find that complex interpolation techniques do not always
yield the most accurate and fastest results. By direct comparison, the outcome
of this study favors polynomial interpolation as a prospectus interpolation tech-
nique, especially with higher dimensional parameters that include precessing sys-
tem (seven parameters). Of course, one may exchange computational complexity
and accuracy depending on the study goal.

Initially, we expected to expand our studies beyond seven dimensions (pre-
cessing - eccentric). However, eccentric waveform models are poorly developed
at the time of our studies as there are only a few NR data publicly available. We
note that the development of an eccentric model is demanding, especially after the
detection of GW190521, an event that may be highly eccentric or highly precess-
ing BBH. Signal analysis of such events can be improved with a better eccentric
model applicable in the template. Besides, the discovery of an eccentric BBH
would help us understand the origin of BBH that is crucial in astronomy.
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Thus, we developed an algorithm to turn any quasicircular waveform model
into eccentric ones. In this study, we employ publicly available nonspinning NR
simulations focusing on the late inspiral regime. We investigated the residual os-
cillations of eccentric NR from its quasicircular counterpart with the same mass
component. This way, we interpolate quantities that depend on mass ratio and
eccentricity to produce a new set of waveforms. Learning from NR behavior,
we apply a similar method to any semi-analytical waveform model. Thus, we
perform a ’twist’ to any nonspinning quasicircular semi-analytical model to pro-
duce its eccentric counterpart. We should emphasize that we do not create a new
eccentric model, but provide a ready-to-use algorithm to add eccentricity to any
nonspinning quasicircular models.

In summary, the key contribution of our studies lies in the general methods
that can be applied to improve any existing models and can be adopted in any
waveform family. Through publications I, II, and III, we summarize our findings
as follows

1. The enriched basis method (see publication I) is reliable in developing a
rapid and accurate model. This method guarantees that the new model has
at least the same accuracy as the basis. The faithfulness is increased with
more iterations.

2. The enriched basis method from the projection of one model to another
would produce less smooth waveforms than the data reduction originated
from the same model. Studies in the data placing and regression lead to
further improvements.

3. The traditional regression methods in publication II may provide a compara-
ble accuracy or speed against ML methods, at least up to seven-dimensional
parameter spaces. According to our analysis, advanced computational com-
plexity may not be necessary. However, ML may speed up the process for
parameter spaces with more dimensions.

4. We show that we can convert circular waveform models into eccentric ones
in publication III. For the nonspinning model, the fitting function depends
strongly on mass ratio and eccentricity. The residual amplitude oscillation
depends on the eccentricity, and the frequency depends on the mass ratio.

Furthermore, we obtained the following results:

(i) A proof of concept to dynamically calibrate any waveform model using an
iterative SVD. We investigate a method to update waveforms with lower
dimensionality using another model with more dimensions.
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(ii) A Python package that automatically categorizes training and test data from
the dataset. This package is called pycachu, where the computation of
iterative SVD is carried over.

(iii) Analysis of various regression methods that include accuracy, speed, and
computational complexity.

(iv) A publicly available Python package, pyrex adds eccentricity to any circu-
lar nonspinning analytical waveforms.

4.2 Future prospects
We highlight possible extension of our studies as follows:

A Reduced order quadrature (ROQ). Future GW interferometers are ex-
pected to be more sensitive. Hence, we would observe more distant com-
pact binary coalescences and higher SNR for closer binaries. The detection
rates increase with the improved sensitivity. This improvement comes with
a demand for faster parameter estimation. We can expand the enriched ba-
sis method further with the detector output data s to speed up the analysis.
We start with the reduced basis from a set of orthogonal basis waveforms
varying in parameters, B. Subsequently, we project a full GW signal onto
these data and interpolate the results. We then iterate the procedure with
some validation points until the overlap results are below some threshold.

Let us start with the waveform generation by projecting the enriched basis
waveforms (Eq. (I.16) in publication II), which reads

PEB
j ( f ;~λ) =ΣK

k=1c′k(~λ)vT
k j. (4.1)

We can remove index j and rename the notation of the reduced bases by

h =ΣK
k=1c′k(~λ)vT

k . (4.2)

Revisiting Eq. (2.47), the log-likelihood ratio satisfies

ln Λ = (s|h) −
1
2

(h|h), (4.3)

with the inner product defined as

(s|h) = 4R
∫ ∞

0

h( f )s∗( f )
S n( f )

. (4.4)
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We can substitute Eq. (4.2) to (2.47) and modify (s|h) such that

(s|h)ROQ = RΣK
k=1h(~λ)ωk, (4.5)

with

ωk = 4∆ f ΣM
j=1

s∗( f j)vT
k ( f j)

S n( f j)
. (4.6)

Similarly,

(h|h)ROQ = Σkh∗(~λ)h(~λ)Ψk, (4.7)

with the weights Ψk

Ψk = 4∆ f ΣM
j=1

Ck( f j)
S n( f j)

,Ck = vT
k ( f j)(vT

k ( f j))∗ (4.8)

where ∆ f is the delta frequency, and f j is the jth sample frequency.

The ROQ method [48] has been applied to speed up the analysis of GW
data. Further improvements may include precessing systems and parameter
spaces with higher dimensionality.

B Prospect of developing waveforms with ML. We described various re-
gression techniques to speed up the waveform generations in Publication II.
Although ML is a promising technique, it might be redundant for parame-
ter spaces with less than seven dimensions. We argue that other traditional
methods can provide comparable accuracy and speed. However, ML may
speed up the process when including more than seven-dimensional parame-
ter spaces such as precessing eccentric model. Studies on ML in waveform
generation are currently underway [106, 107, 108, 109].

C Modeling eccentric BBH for the 3G era. The first detection of an eccen-
tric BBH would help us to learn more about binary evolution. However,
only a few numbers of eccentric models are available and are relatively dif-
ficult to compute. We proposed a simple method to convert any circular
waveform model into an eccentric model without losing much accuracy.
The algorithm can be applied further to create an IMR model by hybridiz-
ing with the inspiral from PN approximation, higher eccentricity from NR
simulations, and the inclusion of the spin parameters.
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A
Notations and conventions

A.1 Conventions in this dissertation
δi j Kronecker delta, where δi j = 1, for (i = j), otherwise zero,
z∗ complex conjugate of z,
:= imposed absolute equality,
≡ derived absolute equality,
Rx real part of x,
Ix imaginary part of x,
~x vector of x,
η=(-1,1,1,1).
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A.2 Units
Throughout this dissertation, geometric units G = c = 1 are used. In SI units,
these measurement corresponds to:

G =6.67259 × 10−11 m3

kg s2 , (A.1)

c =2.99792458 × 108 m
sec

, (A.2)

1M� =1.98892 × 1030kg (A.3)
=1476.63m (A.4)

=4.92549 × 10−6seconds, (A.5)

1Mpc =3.08568025 × 1022m. (A.6)

A.3 Fourier transforms
The convention for the Fourier transforms s̃( f ) of a continuous time signal s(t)
follows these expression:

s̃( f ) B
∫ ∞

−∞

s(t)e−2πi f t dt, (A.7)

s(t) ≡
∫ ∞

−∞

s̃( f )e2πi f t d f . (A.8)



B
LIGO Virgo detections

Table B.1: List of GW events during the first and second observing runs (2015-2017). 10
BBH and 1 BNS collisions were detected [27]. The numbers show the median value with
90% credible intervals, where m1 and m2 are the masses of the heavier and lighter BH,
M is the chirp mass, χeff is the dimensionless spin effective, M f and a f denote the final
source-frame mass and spin that emits radiated Energy Erad and peak luminosity `peak

at distance dL and redshift z, and sky localization ∆Ω. We discuss the GW parameters
further in Section 2.3 and the conversion to SI units can be found in Appendix. A
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Table B.2: 38 BBHs and 1 BNS candidates were detected during the first half of the third
observing run (O3a), between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC
[28]. The numbers correspond to median values with 90% credible intervals. The units
and parameters are the same as in Table. B.1 with SNR shows the matched filter SNR of
the corresponding event.
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