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Abstract—This paper presents an extension of the dual-layer
model predictive control (MPC) for industrial DC microgrids.
This structure allows an easier integration of stochastic methods
on all levels. Moreover, in the new three-layer MPC, energy
storages are proposed for each level. As a proof of concept, a
control is presented for the new layer, the primary control level
in microgrids. The MPC as a central control strategy, has the
disadvantage that a new model has to be created for new bus
participants. By a simply expandable state space model and a
parameterization with data sheet values, this disadvantage can
be refuted. Further, for the application on a programmable logic
controller (PLC), a simpler and faster MPC with an equal control
performance, is presented.

Index Terms—MPC, DC Microgrid, Three-Layer MPC Control

I. INTRODUCTION

Small manufacturing companies often have great difficulties
to withstand the price pressure against larger companies.
Especially since, unlike large companies, they are not ex-
cluded from many taxes (at least in Germany), like the tax
on electricity. It can be worthwhile for such companies to
integrate renewable energy as a decentralized supplier, to
lower production costs. To take into account the volatility
of renewable energies, energy storage systems (ESS) can be
used. Those small sub grids with decentralized suppliers and
storage devices are called microgrid (MG). The ESS and as
well as regenerative energy are easier to connect to direct
current (DC) MG, since batteries work with DC [1]. DC
systems have further advantages, e.g. inverters of electric
motors can distribute braking energy directly via the DC grid,
converter losses are reduced, space requirements are reduced
by replacing decentralized rectifiers with one central supplier
and the modeling is simpler. Especially for small companies in
the price competition, a DC MG with decentralized renewable
energies can be an alternative, because MG not only allow
consumers to determine the time to sell or buy energy, but
also how they deal with renewable energy [2]. Components
are available, but there is still a need for research in the area
of grid control. The aim of this paper is to present a uniform
MPC concept, based on cascade control for industrial DC MG,
so that safe operation can be guaranteed, as well as to reduce
the operating costs of its user. The concept is shown in Fig. 1
and is based on the hierarchical rule structure of [3].

Fig. 1. Proposed control structure for DC MGs.

MPC-based control are already present at all levels [4],
therefore, a unified concept of MPC is reasonable.

MPC have the disadvantage that they are central controls,
require a system model, and an optimization problem must
be solved in real time. However, at the tertiary level, these
disadvantages, except for run time, no longer come into play.
Thus, in [5] MPC, rule based control (RBC), and stochastic
model predictive control (SMPC) were compared for a MG,
with the MPC variants being much more efficient. In [6], an
islanded MG was studied. It was shown that an SMPC could
reduce the use of fossil fuels. Bordons et al. show in their
book [7] their summarized research results in MPC for MG,
but without primary control. In the MPC in primary control
uses different principals than in the other levels [4].

In summary, especially at the tertiary level many MPC vari-
ants are used. In [8], a two-layer SMPC scheme was presented,
but this does not involve the primary level. Moreover, in this
concept, the inner MPC is without stochastic part. In this
publication, this concept is extended to all three levels (see
[3]) and a suitable energy storage combination is proposed, see
Fig. 1. Different MPC variants for the tertiary and secondary
levels have already been presented [8], so for the proof of
concept, we present only a simple MPC for the primary level.
The primary control in the literature focuses on decentralized
control of converters i. e. replacement of the droop control
[9], [10]. In this paper also the droop control is replaced, but
the current controller of the inverter is still used. In addition,
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the proposed central controller has many more states than
controllers in the literature [9].

In order to counteract the mentioned disadvantages of MPC-
procedures in the field of MG control, an easily extendable
model, parameterizable by data sheets, is created. Together
with the assumption that the considered MGs are for small
factories and changes to the electrical distribution are relatively
rare, the disadvantages of a model-based procedure can be
invalidated. The major problem with centralized control is the
dependence on the main controller, which can be mitigated
by decentralized contingency characteristics in case of com-
munication failure. Solving an optimization problem on the
other hand is more difficult on the PLC due to its computing
architecture. Therefore, the standard MPC is compared with a
fast and less complex discrete model predictive trajectory set
control (MPTSC) [11].

The main contributions of this paper are
• the proposition of an MPC cascade structure, which is

specially adapted for industrial MGs,
• a simple and easily extensible DC MG dynamic system

model,
• a comparison between a normal MPC and an MPC with

discrete values.
The remainder of the paper is structured as follows: Sec. 2
presents in detail the proposed MPC cascade structure. The
system model required for MPC is introduced in Sec. 3. This
is then used in the two MPC variants introduced in Sec. 4.
To compare the MPCs, an experimental setup is introduced in
Sec. 5. Based on this, the results are presented in Sec. 6 and
the conclusion in Sec. 7.

II. CONTROL STRUCTURE CONCEPT

The proposed concept is aimed at small companies with the
goal of introducing renewable energy and (thereby) reducing
operating costs resulting from high electricity costs. A special
aspect is that dynamic loads are taken into account. Thus, the
concept is particularly well suited for small robot- or machine
tool-intensive production.

In the state of the art the hierarchical rule structure of [3]
has become generally accepted. This concept is maintained
and extended for connection to the electricity market. Since
participation in the electricity market requires a constant
demand over a certain horizon, we suggest an energy storage
system for each cascaded control level. This balances power
peaks and dips, generated by the uncertain renewable energy
source. The complete structure is shown in Fig. 1

The goal of any power grid is to supply consumers with
electric energy. In addition, the operating costs of the MG
should be reduced for the operators. This shall be done by
the consequent use of SMPC processes which can incorporate
uncertainties into the load prediction, thus increasing reliability
and/or cost savings. However, it is still possible to incorporate
simpler standard MG control procedures into the proposed
structure.

To simplify the nomenclature, the level of the control is
written in parentheses before the control. For example, the

(P)MPC is the model-based predictive control of the primary
level. Each level is discussed in detail in the following sections.

A. Primary Control

The task of the primary level is to supply load (in our
case robots) with sufficient electrical power and to maintain
the voltage level. The control of the current is carried out
decentrally directly on the inverters and controls in sync with
the switching cycle of the inverter. The control cycle frequency
for the voltage control is chosen around 50-100 Hz to be
in range of the highly dynamic loads. Another characteristic
of robots and other mechatronic systems is that their power
consumption varies strongly (see Fig. 4). This requires an
energy storage which has a fast response, a high power density
and also a high cycle life. Thus, a capacitive storage system
is the obvious choice.

The main goal of the control is to supply all loads with
electric energy. The secondary goal is to have enough stor-
age reserves for an extreme situation (e.g. extreme power
deficit/surplus). A possible tracking cost function J at time
step k for the MPC would be

J =
Np

∑
i=1

∥Q (y(k + i) − yR(k + i))∥2 +

r1 ⋅
Np

∑
i=1

∥u(k + i − 1)∥2 + r2 ⋅
Nc

∑
i=1

∥∆u(k + i)∥2
,

(1)

where Np is the prediction horizon and Nc is the manipu-
lated variable horizon; Q, r1 and r2 are weighting matrices,
y is the output variable and u is the manipulated variable.

In addition, there is the requirement from the stock market
that the power demand must remain constant. The power con-
sumption of the robots is particularly subject to uncertainties.
Including these uncertainties can reduce voltage cap violations
or improve supply reliability by scheduling larger reserves.
The particular challenge in this area is the fast cycle time,
which could be too short for scenario-based approaches for
MPC. On the other hand, analytical approaches also have
major runtime problems on typical industrial hardware for this
level of control.

B. Secondary Control

At this level, the aim is to ensure that the capacity level
is always sufficient to supply the robots. As a secondary
objective, line losses and the operating costs of the battery
are to be minimized. The control cycle in this level is based
on the renewable energies and the energy storage and should
be approx. 1–10 s. In this level, response time and high cycle
life are not as important as in the primary level. However, since
high energy density is needed, we propose to use a lithium-ion
battery.

Also in this level, there must be no trading with the power
exchange, so there must be enough energy in the battery to
bridge extreme cases (grid downtimes, weather fluctuations
[12]). Stochastic disturbance variables are mainly the renew-
able energy yield and production adjustments.
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Since the goal in this level is to achieve a reduction in
operating costs in addition to balancing energy shortages by
the battery, we propose an economic model predictive control.
A possible cost function J could include:

J =
Np

∑
i=1

Closs (k + i) + Np

∑
i=1

Cbat (k + i)+
a ⋅ ∥SSC (k + n) − SSC,setp∥2

.

(2)

The loss cost Closs is the transmission loss multiplied by
the electrical power cost. The scaling factor a can be used to
set the significance so that the state of charge (SoC) of the
supercapacity SSC is close to the nominal value SSC,setp.

Especially the inclusion of the battery lifetime according
to [13] in the cost function as batterycost Cbat has the
disadvantage that it is then no longer linear and thus cannot
be reliably solved in small time. Since solving a non-convex
problem takes much more time, time is also a major issue
here, especially with the stochastic reformulations.

C. Tertiary Control

In this level it is possible to reduce operating costs by
interacting with the power exchange through advantageous
trade deals. This means that the economic aspect has a much
greater influence on operating behavior at this level, since
security of supply can almost always be ensured by purchasing
power.

The power exchange results in many constraints [7], since
trading is only allowed at certain times. In addition, bids
must sometimes be completed up to 36 h before the power is
delivered. This requires good predictions and a long prediction
horizon. The regular cycle is also specified by the power
exchange to 15 min. A long-term energy storage is needed
to cope with power outages, to use only self-generated elec-
tricity or to generate trading profits in the electricity market.
Hydrogen storage is a possible long-term storage solution.

Uncertainties in this level are again the weather, since
predictions are made over a very long horizon. Deviations
between predicted and actual energy lead to power differences
which have to be absorbed by energy storage. In addition the
change in the electricity price cannot be predicted exactly.

The goal here is therefore clearly to reduce operating costs
by taking advantage of electricity trading Ctrade, the hydrogen
storage Chyd, the battery storage Cbat and renewable energies.
The cost function J could result to

J =
Np

∑
i=1

(Ctrade (k + i) + Cbat (k + i) + Chyd (k + i)) . (3)

Problematic are the many constraints resulting from the elec-
tricity market (e.g. discrete trading volumes, fixed trading
hours, no guaranteed trading conclusion in the spot market,
etc.), the long prediction horizon and the large number of
uncertain variables (load demand, renewable energies, spot
market, etc.).

III. CONTROL-ORIENTED MODEL

To allow a real-time implementation, a model with low
computational requirements and therefore reduced complexity
is required. In addition, the model should be easy to expand
for new bus participants. Therefore all loads and sources are
represented by a real power source. The main reason for this
is that the inverters internally have an essential fast current
control and so the current can be given by the MPC. Electric
lines are modeled using the π circuit diagram and the DC link
capacitance is modeled as such. The components are shown
in Fig. 2.

Fig. 2. Composition of the modeling modules for all loads and suppliers.

These models can now be parameterized via cable man-
ufacturer standards [14] and inverter manuals [15]. Since the
inductance of the line is very small and its time constant is far
below the sampling frequency, it can be neglected, c. f. [16].
Cable capacitance could also be removed in this way, but these
do not affect modeling complexity, so they are retained. The
components are now joined together to create a module for
each power supply participant. The equivalent circuit diagram
for one producer and one consumer is shown in Fig. 3.

All components were approximated by a real current source
is, since this is the internal controlled variable of the active
components (ESS, active front end (AFE)). This current is
is also the input u of the state-space model (Eqn. 1). The
intermediate circuit capacitors Cs were connected in parallel
to a real current source. The wires were simulated via the π
equivalent circuit.

One half of the line capacitance Cl is parallel to the
intermediate circuit capacitance Cs and these were therefore
summed up. The voltage uCi

of this capacitance i is also
the state x and output y of the state-space model. The line
resistance Rl connects this capacitance to the final capacitance.
This consists of the sum of all line end capacitances and
simultaneously describes the voltage of the DC bus uCn

. The
current source, DC link capacitance and cable, without the
end capacitance, constitute as a module. The linear state space
representation of this module i results to:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),
x = y = uCi

, a = −
Rsi +Rli

RsiRli (Cs1 +
Cl1

2
) ,

b = 1

Cs1 +
Cl1

2

, c = 1, d = 0.

(4)

The modules can now be coupled with the Compositional
Modeling to the coupling block’s final capacitance. Thus any
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Fig. 3. Schematic structure of the physical model of two components with
the coupling capacity.

number of modules can be connected and the model can be
extended with new components.

For each ESS an additional state for the SoC must be
defined. However, more accurate storage models from the
literature can also be used. The SoC was read from the battery
management system. The power source isBat

becomes then a
controlled power source, which is controlled by the storage
management system.

IV. PRIMARY LEVEL MPC – (P)MPC

Model-based control methods are mainly used in slow
processes [17]. This is due to the functional principle of the
MPC. Based on a system model, the best possible manipulated
variable sequence u is determined in order to minimize a cost
function J :

min
u
J(x,u) = V (x (NP)) + NP

∑
k=1

l (xk,uk) (5)

s. t. ∶ xk+1 = f(x,u)
uk ∈ U ∀k = 1, . . . , NU

xk ∈ X ∀k = 1, . . . , NP

The cost function J is divided here into terminal costs V ,
which evaluate the costs of the system trajectory at the end of
the prediction horizon NP, and integral costs l, which evaluate
the costs along the prediction horizon. The sequence of
manipulated variables is chosen from the range of admissible
manipulated variables U considering the admissible states X .
Thus, constraints are directly taken into account. The solution
of the optimization is thus an optimal sequence of manipulated
variables, of which the first manipulated variable is used as
system input. In the next step k + 1 the optimization problem
(OP) is solved again with (in our case) newly measured states.

A. Model Predictive Trajectory Set Control (MPTSC)

In a linear state space model, a convex optimization problem
must be solved for the optimal manipulated variable. On
industry-typical PLCs, this is often a problem at fast control
rates. To solve this problem, following [11] a discrete control
set

u
∗ ∶= {u∗min, u

∗
min +∆u

∗
, u

∗
min + 2∆u

∗
... u

∗
max} ∈ U (6)

is used. Then, from this set u∗, the (sub)optimal solution for
cost function J is selected, c. f. [11].

The disadvantage of this method is that there is no optimal
solution and the manipulated variable jumps at every change.
With MPC, on the other hand, the ratio of actuator activity
and control deviation can be set via two matrices. Since the

Fig. 4. Power curves of the robots (blue) and the PV (orange), which were
used to test the control structure.

actuator is an electrical converter, which sets the output via
a pulse width modulation (PWM), actuating activity (also
jumps) is irrelevant. The aspect of the (sub) optimal solution
is discussed in more detail in the next chapter.

V. TEST SETUP

To show the suitability of the concept, the (P)MPC is
implemented at an exemplary test facility. This facility consists
of an AFE as load, an AFE as supply, and an ESS with DC-DC
converter.

As ESS a lithium-ion battery was available. A use of this
ESS in the primary level would be, due to the short charge
and discharge cycles, bad for the life span. Therefore in
this paper the AFE is used instead of the capacity storage
in the real implementation. Thus, at least in the simulation,
the conceptual constraints were also tested. The difference
between the use of the AFE and the supercapacity model is
mainly a simplification of the model (no efficiency and state
of charge required) and a simplification of the constraints.
Assuming that the supercapacity model is improved by a
feedback of measurements, we assume that a simulation is
sufficient for the validation of the constraints (at least for the
primary level).

The supply AFE [15] has a nominal power of 140 kW and is
therefore designed for larger loads. The switching frequency of
the AFE is 4 kHz, so rather slow compare to smaller devices,
to reduce switching losses. One effect of this low switching
frequency is that the control in particular reacts slowly to
changes and thus the voltage has a large control error. This can
also be seen in the unloaded case, where the voltage scatters
about ± 5 V (see the first 170 s in Fig. 6), so the manipulated
variable has a great uncertainty. For this reason, the suboptimal
control solution, doesn’t have an extremely negative influence,
since the required manipulated variable cannot be set perfectly.
The internal current control of the AFE is with 4 kHz control
clock much faster than the (P)MPC (100 Hz).

As load, a randomized data set (see Fig. 4) was generated
for each robot covering twice 50 point to point movements.
The power curves of these four robots were merged together
with different pause lengths. The data for the photovoltaic
system are measurements originated from a domestic facility.
To increase the variance in the data, measurements were scaled
down from 2.5 days to 2 hours. This also has the effect that
a more complex test scenario has been created.

A detailed description of the test setup can be found in [18].
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A. Model validation

To validate the model, presented in chapter 3, which is used
for prediction in the MPC the described experimental setup
with a voltage droop curve as control, is used. Since the model
is used in the MPC and data sheet values are used, it should be
checked in advance how well the system is represented. The
comparison of the simulated AFE voltage (first model state)
and the real AFE voltage is shown in Fig. 5.

The voltage curve of the first state matches the measurement
well. However, it is noticeable that the voltage measurement is
very noisy. This is mainly due to the low switching frequency
of the AFE of 4 kHz which results in a root mean square error
(RMSE) of 2.5 V. This roughly corresponds to the measure-
ment noise. However, the power curve has large deviations in
the first 20 s, the power RMSE is 57 W here. The non-linear
component effects (saturation, temperature dependency etc.) of
the AFE are visible, which were neglected in the modelling.
To improve the modeling result, all model parameters could
still be identified or a more complex model could be used.
However, both have the disadvantage that a higher operator
overhead is required and thus will not be considered further
for the time being.

VI. RESULTS

The MPC and the MPTSC are compared based on runtime
and control accuracy. The setpoint for all states was set to
650 V. For the MPC a model with four states (AFE, ESS,
load, DC bus) was created. The voltage of the AFE of the
described setup with the MPC using a control horizon of three
and a prediction horizon of five, is displayed in Fig. 6.

The weighting matrices for actuator activity and control
deviation were designed empirically. The voltage curve from
Fig. 6 appears very noisy. This is due to the slow PWM
frequency, which results in lower switching losses, but also
a higher voltage ripple. The voltage ripple with a constant
load, i.e. the first 120 s, is ±5 V. This corresponds to the
value in Fig. 5, because also here the voltage ripple is ±5 V
with constant load (0 to 5 s). At 180 s a strongly changing
load (robot movements) starts. From 180 s on the deviation
from the nominal voltage increases. The cause for that is,

Fig. 5. Comparison of the proposed model with a measurement of the test
setup.

Fig. 6. DC voltage of the AFE capacitance (first state of the model) by using
the MPC as voltage control.

Fig. 7. DC voltage of the AFE capacitance (first state of the model) by using
the MPTSC as voltage control.

that the model parameters only originate from a data sheet
and were not directly identified at the test facility. This has
the advantage that models can be easily constructed, since
the identification of model parameters is a dedicated field of
research. The drawback are larger control errors result from
these model deviations. These control errors can be detected
from 180 s onwards. Compared to the control deviation in
Fig. 5 (first 5 s in idle mode) this value is smaller. An automatic
identification of the model parameters can still lead here to a
large improvement of the control error.

The major challenge with the MPC is that the real-time
capability suffers with larger electric networks, which pro-
duce larger optimization problems. Therefore, the MPTSC
presented by [11] was also implemented. This MPC does not
solve a continuous optimization problem, but selects the best
possible manipulated variable from a predefined set. If the
discretization of the manipulated variable is chosen so that
it lies below the noise of the manipulated variable, it makes
no difference whether a suboptimal solution or an optimal
solution is used, since only a suboptimal value is set anyway.
The MPTSC was tested on the test setup with the same
parameters and an output set from -15 to 15 A in 1 A steps. The
results are shown in Fig. 7. As predicted, a direct comparison
of the voltage shows no difference between the MPC and the
MPTSC.

Fig. 7 and Fig. 6 represent only the first 15 min of the
test scenario. Table I therefore shows the mean and standard
deviation of the control variable for 2 h. Here it can even be
seen that the MPTSC not only does not deposit worse, but also
better than the MPC. This is mainly due to the unidentified
model. Especially with the parameterization by data sheet
values, many other effects are neglected, which are otherwise
considered in the identified parameters.

To compare only the runtimes of the control processes,
the algorithm was simulated on a PLC. Especially for the
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AFE Voltage
mean σ

MPC with 4 States 652.8 V 3.1 V
MPTSC with 4 States 652.3 V 3.0 V

TABLE I
COMPARISON OF CONTROL ACCURACY OF MPC AND MPTSC.

communication and the load calculation (c. f. [18]) a larger
overhead is needed. Thus, only the algorithms are compared in
the runtime comparison. To show that MPTSC can also control
larger networks in a satisfactory time, a model with eight states
(AFE, ESS, Photovoltaics (PV), four times load, DC bus) was
also created for the runtime comparison. The results are shown
in Fig. 8 and Table II. It can be seen that the MPTSC with
four states is nine times faster than the normal MPC with four
states, and 17 times faster with 8 states. This difference thus
only increases with increasing number of states and prediction
horizon length. This is due to the fact that no matrix inverse
has to be solved for MPTSC. Thus the algorithmic complexity
(in O notation) of the MPC is O(n3) (because of the matrix
inverse) and that of the MPTSC O(n2), where n depends on
the number of states and the prediction horizon. For PLCs
there are linear algebra toolboxes, but fast matrix operations
are not available.

Fig. 8. PLC run time comparison of MPC and MPTSC with 4 and 8 states(S)

runtime for PLC cycle
mean σ

MPC with 8 States 4310.6µs 36.3µs
MPC with 4 States 660.0µs 34.6µs

MPTSC with 8 States 256.0µs 16.5µs
MPTSC with 4 States 73.2µs 10.8µs

TABLE II
COMPARISON OF RUNTIME OF MPC AND MPTSC.

To improve the control result, an additional load forecast
can be used. The disturbance of the system, the load, can
be predicted by an autoregressive or autoregressive integrated
moving average (ARIMA) model. This forecast can then be
used instead of the dead-time afflicted power measurement.

VII. CONCLUSION

In this paper, a new three-layer MPC cascade was presented
for the application in industrial DC microgrids. By this exten-
sion, uncertainties in the industrial environment, which are
caused by dynamic loads, can be considered consequently. As
a proof of concept, the scheme for the new layer was presented
in this paper and tested in an experimental setup. Since the
standard MPC will be too slow for larger networks, a runtime

comparison with a simpler MPTSC was performed. The results
show that, especially without a parameter identified model,
the proposed control scheme has equal control quality with
faster runtimes. In the future, this approach will be used for
stochastic control at any level.
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