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Abstract

This thesis deals with K3 surfaces and their moduli spaces. In the first part we identify a class
of complex K3 surfaces, called of zero entropy, with a particularly simple (but infinite) auto-
morphism group, naturally arising from complex dynamics. We provide a lattice-theoretical
classification of their Néron-Severi lattices. In the second part we move to the study of the
Kodaira dimension of the moduli spaces of elliptic K3 surfaces of Picard rank 3. We show
that almost all of them are of general type, by using the low-weight cusp form trick devel-
oped by Gritsenko, Hulek and Sankaran. Moreover, we prove that many of the remaining
moduli spaces are unirational, by providing explicit projective models of the corresponding
K3 surfaces. In the final part, we investigate the set of rational points on K3 and Enriques
surfaces over number fields. We show that all Enriques surfaces over number fields satisfy
(a weak version of) the potential Hilbert property, thus proving that, after a field extension,
the rational points on their K3 cover are dense and do not come from finite covers.

Key words: K3 surfaces, elliptic fibrations, lattices, dynamical systems, automorphisms,
moduli spaces, Kodaira dimension, Enriques surfaces, Hilbert property, rational points.
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Preface

K3 surfaces are ubiquitous in modern mathematics and physics. They arise naturally in
many different contexts, from string theory to representation theory and Lie groups, from
particle scattering in particle physics to differential geometry. From the point of view of
algebraic geometry K3 surfaces are very special, since they are the only surfaces (together
with abelian surfaces) that have a trivial canonical bundle. This peculiarity makes K3 sur-
faces objects of great interest, as they are the simplest algebraic varieties that are not trivial
to study. Since the end of the 19th century, when the italian school led by Castelnuovo
and Enriques started studying the theory of algebraic surfaces, many breakthroughs have
been accomplished in the understanding of K3 surfaces. Nevertheless, K3 surfaces continue
to offer such a variety of deep and interesting questions, that we are still naturally brought
back to studying their properties.

As natural 2-dimensional generalizations of elliptic curves, K3 surfaces can be studied
from different perspectives, from an algebraic, a geometric and an arithmetic point of view.
The goal of this thesis is to offer insights in all three directions, and to show some underlying
connections between them. The first problem that we tackle is trying to understand the
group of automorphisms of K3 surfaces. Despite a huge theoretical machinery that allows
us to view their automorphisms as isometries of certain lattices, our grasp of such groups of
automorphisms is very limited. Thanks to works by Nikulin, Vinberg and Kondō, we have a
complete classification of complex K3 surfaces with a finite automorphism group depending
on their Néron-Severi lattice, but practically nothing is known beyond this. Therefore we try
to identify K3 surfaces with an infinite, but simple, automorphism group. The idea comes
from complex dynamics: if f is an automorphism of a complex surface, we can attach to it
a number h(f) ≥ 0, called the entropy of f , that measures the complexity of its dynamics.
The most “regular” automorphisms are those of zero entropy. Hence we say that a complex
K3 surface has zero entropy if all its automorphisms have zero entropy. Otherwise the K3
surface has positive entropy. Unsurprisingly, the automorphism group of K3 surfaces with
zero entropy is very special: Cantat and Oguiso show that it is almost-abelian, that is,
abelian up to a finite group (cf. Theorem 2.1.1). As Nikulin showed that there are only
finitely many Néron-Severi lattices of K3 surfaces with zero entropy, we attempt to classify
them. Our main result is the following:

Theorem 1. Let X be a complex K3 surface admitting an elliptic fibration with only irre-
ducible fibers. X has zero entropy if and only if its Néron-Severi lattice belongs to an explicit
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list of 32 lattices.

The list can be found in Theorem 2.5.9. We are also able to remove the extra, technical
assumption if the Picard rank of X is big enough:

Theorem 2. Let X be a complex K3 surface with Picard rank ρ(X) ≥ 19. Then either X
has a finite automorphism group, or it has positive entropy.

Theorem 1 singles out the Néron-Severi lattices of K3 surfaces with a very simple auto-
morphism group. More specifically, such K3 surfaces are shown to admit a unique elliptic
fibration |F |, and their automorphism group is isomorphic, up to a finite group, to the Z-
module MW(F ) of rational sections of |F |. This gives an explicit characterization of the
automorphism groups of K3 surfaces of zero entropy.

Then we move to the study of the geometry of K3 surfaces and their moduli spaces. The
reason for this is to investigate whether K3 surfaces with zero entropy have some additional
special geometric properties. For instance, thanks to recent works by Roulleau, we know that
the moduli spaces of many K3 surfaces with finite automorphism group are unirational. This
shows that K3 surfaces with finite automorphism group are very special from a geometric
point of view as well: indeed, they can be realized as very explicit projective models. This
led us to wonder whether K3 surfaces with zero entropy are special from this point of view
as well. The “simplest” K3 surfaces with zero entropy are those of Picard rank 3: more
specifically, they are the K3 surfaces with Néron-Severi lattice isometric to U ⊕ 〈−2k〉, with
k ∈ {2, 3, 4, 5, 7, 9, 13, 25} (if k = 1 the K3 surfaces have a finite automorphism group). Thus
we try to understand whether the moduli spaces M2k of U ⊕ 〈−2k〉-polarized K3 surfaces
are unirational. Our main results are the following. We refer to Theorems 3.1.1 and 4.1.1
for the complete and precise statements.

Theorem 3. The moduli space M2k is of general type for k ≥ 220 and for some smaller
values of k, until k = 170. Moreover, the Kodaira dimension of M2k is non-negative for
k ≥ 176 and for some smaller values of k, until k = 140.

Theorem 4. The moduli space M2k is unirational for k ≤ 34 and for some larger values of
k, up to k = 97. Therefore the moduli spaces of K3 surfaces with zero entropy and Picard
rank 3 are all unirational.

Theorems 3 and 4 provide an almost exhaustive classification of the Kodaira dimensions
of the moduli spacesM2k. Moreover Theorem 4 answers positively the question whether the
moduli spaces of K3 surfaces with zero entropy are unirational. This confirms our expectation
that K3 surfaces with zero entropy are very special, even from a purely geometric standpoint.

In the last chapter of the thesis we move to the study of a fundamental, arithmetic
property of algebraic varieties, the Hilbert property. Roughly speaking, an algebraic variety
over a number field K satisfies the Hilbert property if its K-rational points are dense, and
they do not come from a finite number of finite covers of X. The study of the Hilbert property

2



has several ramifications into many number-theoretic problems, such as the inverse Galois
problem and weak approximation. The reason why the Hilbert property arises naturally in
the context of entropy on K3 surfaces is very concrete, and it depends on a recent theorem
by Demeio (cf. Theorem 5.2.4). In a nutshell, it states that the K3 surfaces admitting many
elliptic fibrations sharing few reducible components satisfy the Hilbert property. Such a
result builds a bridge between the Hilbert property and the entropy on K3 surfaces: indeed,
K3 surfaces with positive entropy have at least 2 elliptic fibrations with infinitely many
sections, and consequently we expect many of them to satisfy the Hilbert property.

Nevertheless, deciding whether a K3 surface over a number field satisfies the Hilbert
property remains a hard problem for the majority of K3 surfaces. For instance, we do not
even know in general whether their K-rational points are dense. However, we know that
rational points are potentially dense, that is, they are dense after a finite field extension.
Hence we try to implement a similar approach, and we ask the question of which K3 surfaces
satisfy the potential Hilbert property, that is, which K3 surfaces satisfy the Hilbert property
after a finite field extension. Our two main results in this direction are:

Theorem 5. All K3 surfaces over a number field K that cover an Enriques surface satisfy
the potential Hilbert property. In particular, all Kummer surfaces satisfy the potential Hilbert
property.

Theorem 6. Let X be a K3 surface over a number field K. If ρ(XC) < 10, and X admits
two distinct genus 1 fibrations, then X satisfies the potential Hilbert property.

Notice that Theorem 5 deals with K3 surfaces with “large” Picard rank, while Theorem
6 with K3 surfaces with “small” Picard rank. Together, they show that a huge class of K3
surfaces satisfies the Hilbert property after a finite field extension. Our future goal is to show
that all K3 surfaces with positive entropy satisfy the potential Hilbert property. This would
reveal a strong connection between the dynamical side of the entropy and the arithmetic side
of the Hilbert property, thus achieving a big breakthrough in our understanding of rational
points on K3 surfaces over number fields.

Contents. Let us briefly explain how the thesis is organized. In Chapter 1 we recall the
basics of lattices and K3 surfaces that we will use throughout the thesis. We do not include
the proof of the majority of the statements, but we provide detailed references. In Chapter
2 we study K3 surfaces of zero entropy, and we prove Theorems 1 and 2. The contents of
the chapter follow the paper [Mez21]. Chapters 3 and 4 are devoted to the study of the
moduli spaces M2k. More precisely, in Chapter 3 we prove Theorem 3, while in Chapter
4 we prove Theorem 4. Chapter 3 follows the paper [FM21], joint with Mauro Fortuna
(Leibniz Universität Hannover), while Chapter 4 follows the paper [FHM20], joint with
Mauro Fortuna and Michael Hoff (Universität des Saarlandes). The case k = 11 in Section
4.6 is new, and it is part of a joint work in progress with Michael Hoff. Finally in Chapter 5
we study the Hilbert property on K3 and Enriques surfaces, and we prove Theorems 5 and
6. This is part of a joint work in progress with Damián Gvirtz (University College London).
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Computational data. Throughout the thesis, and especially in Chapter 2, we need the
help of the computer to carry out some computations. The programming languages that we
use are Magma and Macaulay2. We provide the detailed pseudocode of the most important
algorithms that we implement. The interested reader can ask for the actual implemented
algorithms to the author.
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1 | Preliminaries

1.1 Lattices

In this section we recall some basics about lattices that we will use throughout the thesis.
The main references are [Nik79b], [CS99], [Kne02], [Ebe13], [Kon20, Chapter 1] and [Huy16,
Chapter 14].

Definition 1.1.1. A lattice is a finitely generated free Z-module L endowed with a non-
degenerate symmetric bilinear form (, ) with values in Z. The rank rk(L) is the rank of L as
a Z-module. L is called even if (x, x) ∈ 2Z for all x ∈ L. The signature of L is the signature
of the natural extension of the bilinear form to the real vector space L⊗R. Hence L is called
positive (resp. negative) definite if the signature of L is (rk(L), 0) (resp. (0, rk(L))). The
determinant det(L) of L is the determinant of any matrix representing the bilinear product
(, ) on L. If there is no chance of ambiguity, we will simply write the bilinear product (v, w)
as v · w.

Example 1.1.2. The lattice U of rank 2 with intersection matrix(
0 1
1 0

)
is called the hyperbolic plane. It has signature (1, 1) and it is unimodular, that is, | det(U)| =
1.

We will be primarily interested in even, negative definite lattices for applications to the
theory of K3 surfaces. Therefore in the following we assume L to be even and negative
definite.

To the lattice L we can attach the dual lattice

L∨ = {x ∈ L⊗Q | (x, L) ∈ Z}.

L∨ is a lattice with the natural extension of the bilinear product on L. It has the same rank
of L, so the quotient AL = L∨/L is a finite group. We can endow AL with the quadratic
form qL with values in Q/2Z such that

qL(x, x) = (x, x) (mod 2Z),
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where x denotes the class of x ∈ L∨ in the quotient AL. The finite group AL, endowed with
this quadratic form qL, is called the discriminant group of L. The cardinality of AL coincides
with the absolute value of the determinant of L. The length of the group AL, denoted by
`(AL), is the minimum number of generators of the abelian group AL. The p-length `p(AL)
of AL is the length of its p-part.

If L is any lattice and n ≥ 1, we denote by L(n) the lattice whose bilinear product coin-
cides with the bilinear product of L, multiplied by n. Therefore det(L(n)) = nrk(L) det(L).
We will say that L(n) is a multiple of L.

Definition 1.1.3. An embedding of lattices i : L ↪→ M is called primitive if the cokernel
M/i(L) is torsion-free. The saturation of i(L) in M , denoted by i(L)sat, is the smallest
primitive sublattice of M containing i(L).

1.1.1 Root lattices

Definition 1.1.4. A root lattice is an even, negative definite lattice L that admits a basis
given by vectors of norm −2.

Vectors of norm −2 are usually called roots. The building blocks of root lattices are ADE
lattices. These are the lattices An (for n ≥ 1), Dn (for n ≥ 4) and En (for 6 ≤ n ≤ 8). They
can be interpreted as the root lattices associated to the Dynkin diagrams of the corresponding
type. We refer to [Kon20, Section 1.1] for a precise definition of ADE lattices, but we list in
the following table their basic properties. The subscript n denotes the rank of the lattice.

L | det(L)| AL
An n+ 1 Z/(n+ 1)Z
D2n 4 Z/2Z× Z/2Z
D2n+1 4 Z/4Z
E6 3 Z/3Z
E7 2 Z/2Z
E8 1 {0}

Table 1.1: Discriminant groups of ADE lattices

Proposition 1.1.5 ([Kon20], Proposition 1.12). Any root lattice is the direct sum of ADE
lattices.

If L is an even, negative definite lattice, we denote by Lroot the root part of L, that is,
the sublattice of L generated by the vectors of L of norm −2. Clearly, a lattice coincides
with its root part if and only if it is a root lattice. On the other hand, the root part of a
lattice L is empty if and only if L has no roots.
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1.1.2 Overlattices

Let L be an even, negative definite lattice.

Definition 1.1.6. An overlattice of L is an even, negative definite lattice L′ containing L
such that the quotient L′/L is finite. If L′ is an overlattice of L, we denote by [L′ : L] the
index of the overlattice, i.e. the index of L as a subgroup of L′.

Lemma 1.1.7 ([Nik79b], Section 1.4). Let L′ be an overlattice of L. Then the following
equality holds:

| det(L)|
| det(L′)|

= [L′ : L]2.

The following fundamental proposition gives a concrete way to characterize the overlat-
tices of a given lattice L.

Proposition 1.1.8 ([Nik79b], Proposition 1.4.1). There exists a 1:1 correspondence between
overlattices of L and isotropic subgroups of AL, i.e. subgroups H < AL such that qL|H ≡ 0.

Proof. We will give the main ideas of the proof, as they will be useful in the thesis. If L′ is
an overlattice of L, we can associate to it the subgroup H = L′/L < AL. Since the bilinear
product on L′ is even and has values in Z, the quadratic form qL is equivalently zero on the
subgroup H.
Conversely, given a qL-isotropic subgroupH < AL, we can consider the preimages y1, . . . , yn ∈
L∨ ⊆ L⊗ Q of a set of generators of H under the projection L∨ → AL. Then we associate
to H the overlattice L′ of L obtained by adjoining to L the vectors y1, . . . , yn. L′ is an even
lattice, since H was qL-isotropic.

If L′ is an overlattice of L given by an isotropic subgroup H < AL, the discriminant
group of L′ is simply AL′ = H⊥/H with the induced quadratic form in the quotient. This
quadratic form is well-defined, as H < AL is isotropic.

Definition 1.1.9. A lattice L is called a root-overlattice if one of the following equivalent
conditions holds:

1. L is an overlattice of a root lattice;

2. L admits a Q-basis given by vectors of norm −2;

3. The root part Lroot has the same rank as L.

Otherwise, we say that L is a non-root-overlattice.
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1.1.3 Genus

Definition 1.1.10 ([Nik79b], Corollary 1.13.4). Two even lattices L, M with the same
signature are said to be in the same genus if one of the following equivalent conditions holds:

1. The discriminant groups AL, AM are isometric;

2. The lattices U ⊕ L, U ⊕M are isometric.

If L is a lattice, we say that the genus of L is the set of all lattices M in the same genus of
L, up to isometry. The genus of a lattice is always a finite set.

When the genus of a lattice L is trivial, we will say that L is unique in its genus. Only few
negative definite lattices are unique in its genus, and they are completely classified, thanks to
works by Watson, Lorch and Kirschmer (cf. [Wat63], [LK13]). More precisely, the following
holds:

Theorem 1.1.11 ([LK13]). A negative definite lattice is unique in its genus if and only if
it is a multiple of a lattice in the (finite) list avalaible at [LK13]. In particular, it has rank
at most 10.

We will need the following easy result.

Lemma 1.1.12. 1. Let L be an even, negative definite lattice, and consider two isotropic
subgroups H,H ′ < AL such that there exists an isometry ϕ ∈ O(L) with ϕ(H) = H ′.
Then H,H ′ give rise to isometric overlattices of L.

2. Let L,L′ be two even, negative definite lattices in the same genus. Then, for every
overlattice P of L, there exists an overlattice P ′ of L′ such that P and P ′ are in the
same genus.

Proof. 1. The two overlattices are obtained by adjoining the generators of H (more pre-
cisely, their preimages in L∨ under the projection L∨ → AL) to L, so the isometry ϕ
of L extends to an isometry of the two overlattices.

2. P corresponds to an isotropic subgroup H < AL, which in turn can be seen as an
isotropic subgroup H ′ of AL′ by using the isometry AL ∼= AL′ . The overlattice P ′ of L′

corresponding to H ′ is then in the genus of P , since they have isometric discriminant
groups AP ∼= H⊥/H ∼= (H ′)⊥/H ′ ∼= AP ′ .

1.1.4 Dense sphere packings

We start with an easy remark. If R is a root-overlattice of rank r, then the (absolute value
of the) determinant of R is at most 2r. This is because by Lemma 1.1.7 this maximum is
attained at a root lattice, and it is rather straightforward to see that the (only) root lattice
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attaining the maximum is Ar1, with determinant ±2r.

One of the main questions in the theory of dense sphere packings is to “reverse” this line
of reasoning. More precisely, given a definite lattice L with minimum m, can we bound the
(absolute value of the) determinant of L from below? The minimum min(L) of a lattice L
is simply the minimum absolute value of the norms of the vectors of L. The following is one
of the main theorems in the theory of dense sphere packings.

Theorem 1.1.13 ([CS99], Table 1.2). Let L be an even, negative definite lattice of rank r,
with m = min(L). Then there exists a number δr > 0 such that

(m/4)(r/2)√
| det(L)|

≤ δr.

In other words, there exists a constant ∆m,r, depending on r and m = min(L), such that
| det(L)| ≥ ∆m,r.

If L has no roots, then clearly min(L) ≥ 4. Therefore [CS99, Table 1.2] provides some
lower bounds for | det(L)|:

r = rk(L) ∆r

1 4
2 12
3 32
4 64
5 128
6 192

r = rk(L) ∆r

7 256
8 256
9 278
10 283
11 266
12 233

r = rk(L) ∆r

13 192
14 146
15 106
16 73
17 48
18 29

Table 1.2: Lower bounds for the determinant of definite even lattices without roots.

Remark 1.1.14. The bounds in Table 1.2 are not known to be sharp if n > 8. It is in general
very hard to find sharp bounds, and the interested reader can consult [CS99, Chapters 1–2]
for a comprehensive survey about dense sphere packings.

Theorem 1.1.13 has many important consequences. For our purposes, we combine it with
the initial remark in order to obtain the following result:

Proposition 1.1.15. If r ≤ 8, then any lattice L of rank r in the genus of a root-overlattice
has min(L) = 2. Equivalently, if r ≤ 8, there are no root-overlattices in the genus of a lattice
with no roots.

Proof. Notice first that two lattices in the same genus have the same determinant. Therefore,
if r < 8, the claim follows from the fact that | det(L)| ≤ 2r if L is a root-overlattice, while
| det(L)| ≥ ∆r > 2r if L has no roots by Table 1.2.
If instead r = 8, we have that ∆8 is exactly 28 = 256. This means that the same argument
with the two inequalities works analogously if L is not A8

1, the only root-overlattice of rank
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8 with determinant 256. However, we can check with the Siegel mass formula [CS88] that
A8

1 is unique in its genus: indeed, if q is the quadratic form on the discriminant group of A8
1,

we have

m(q) =
1

10321920
=

1

|O(A8
1)|
.

Remark 1.1.16. • A more geometric proof that A8
1 is unique in its genus uses the theory

of elliptic fibrations on K3 surfaces (cf. Section 1.2). Indeed by [Nik79a] any K3 surface
X with Néron-Severi lattice isometric to U ⊕ A8

1 has finite automorphism group, so
every elliptic fibration on X has finitely many sections. Therefore by the Shioda-Tate
formula 1.2.6 any lattice L such that U ⊕ L ∼= U ⊕ A8

1 is a root-overlattice. As A8
1 is

the unique root-overlattice with determinant 256, we conclude that L ∼= A8
1, i.e. A8

1 is
unique in its genus.

• The previous result is in general not true if r > 8. For instance, there exists a lattice
with minimum 4 in the genus of A12

1 . We will see other similar examples in Chapter 2,
arising from more geometric constructions.

1.2 K3 surfaces

In this section we recall some basic fundamental properties of K3 surfaces, with particular
interest towards elliptic fibrations. The main references are [Mir89], [SS19], [Huy16, Chapter
11] and [SS10]. We fix an algebraically closed field k = k of characteristic 6= 2, 3; we will
then point out which results are only valid when k is the field C of complex numbers.

Definition 1.2.1. A smooth, projective surface X over k is a K3 surface if H1(X,OX) = 0
and its canonical bundle KX is trivial.

Remark 1.2.2. In Chapter 5 we will be interested in K3 surfaces defined over number fields.
A geometrically smooth, projective surface X over a field K is a K3 surface if the base
change XK to an algebraic closure K of K is a K3 surface.

H2(X,Z) is naturally endowed with a unimodular intersection pairing, making it isomet-
ric to the K3 lattice

ΛK3 = U3 ⊕ E2
8 ,

where U is the hyperbolic plane and E8 is the unique (up to isometry) even unimodular
negative definite lattice of rank 8. In particular the signature of H2(X,Z) is (3, 19). Since
the canonical bundle of X is trivial, there exists a unique (up to scalars) nowhere-vanishing
(2, 0)-form ωX on X.

The Néron-Severi group NS(X) = Pic(X) is a hyperbolic sublattice of H2(X,Z), i.e.
it has signature (1, ρ(X) − 1), where ρ(X) = rk(NS(X)) is the Picard rank of X. The
transcendental lattice T(X) = NS(X)⊥ ⊆ H2(X,Z) is the orthogonal complement of NS(X)
in H2(X,Z), and its complexification T(X)C = T(X)⊗ C contains the (2, 0)-form ωX .
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1.2.1 Elliptic fibrations

Let X be a K3 surface.

Definition 1.2.3. A genus 1 fibration on X is a proper, flat morphism π : X → P1 such
that the generic fiber of π is a smooth elliptic curve. If π admits a section, then it is called an
elliptic fibration. A K3 surface admitting an elliptic fibration is called elliptic. If there is no
chance of ambiguity, we will call section of π the image S = σ(P1) of a section σ : P1 → X.

Remark 1.2.4. Definition 1.2.3 above is valid for any base field K, even if the characteristic
of K is 2 or 3 or if K is not algebraically closed. The advantage, when the characteristic is
6= 2, 3, is that the condition that the generic fiber is smooth is equivalent to the existence
of a smooth closed fiber. Instead, in the case when the characteristic is 2 or 3, quasi-elliptic
fibrations can appear; we refer the interested reader to [SS19, Section 7.5] for more details.

On K3 surfaces, the genus formula for a smooth curve C reads C2 = 2g(C)−2. Therefore
smooth elliptic curves on K3 surfaces have self-intersection 0. Moreover by Riemann-Roch
we have that dim |C| = g(C), so any smooth elliptic curve E on a K3 surface X induces a
genus 1 fibration |E|. There exists a 1:1 correspondence between isotropic (that is, of norm
0), non-zero nef elements in NS(X) and genus 1 fibrations on X. Moreover, if E ∈ NS(X)
is isotropic and nef, it induces an elliptic fibration if and only if there exists an element
S ∈ NS(X) of square −2 such that E · S = 1. Indeed, either S or −S is effective by
Riemann-Roch, but E ·S = 1 and E is nef, so S must be effective. S decomposes as the sum
of some irreducible curves. As E is nef, it has non-negative intersection with all irreducible
curves on X, hence from the equation E · S = 1 we deduce that there exists a component
S0 of S such that E · S0 = 1. S0 is a section of the elliptic fibration induced by E, since it
is a smooth, rational curve that meets E at precisely one point.

Now assume k = C. If |E| is a genus 1 fibration, we can define its degree as the lowest
positive intersection of E with a smooth curve on X. The degree of |E| is 1 if and only if E
is an elliptic fibration. If instead the degree d of |E| is strictly bigger than 1, then we can
consider the associated Jacobian fibration J(X) (cf. [Huy16, Section 11.4]), which is again
a K3 surface. The Néron-Severi lattice of J(X) is closely related to the Néron-Severi lattice
of X. For instance, we have that

ρ(J(X)) = ρ(X), det(NS(J(X))) = det(NS(X))/d2

(cf. [Keu00, Lemma 2.1]).

1.2.2 The Shioda-Tate formula

Let X be a K3 surface, and |E| an elliptic fibration on X with section S0. The sublattice
〈E, S0〉 of NS(X) generated by the elliptic fiber and its section is isometric to the hyperbolic
plane U . Since U is unimodular, we have an orthogonal decomposition NS(X) = U⊕L, where
L is a negative definite lattice of rank ρ(X) − 2. L encodes all the geometric information
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about the elliptic fibration |E|, including the structure of its reducible fibers. More precisely,
the root part Lroot of L is a root lattice, so it is sum of some ADE lattices. Each summand
is generated by the irreducible components of a reducible fiber not intersecting the section
S0, and the Kodaira type of the reducible fiber determines the type of the ADE lattice. For
instance, a fiber of type In produces the lattice An−1, a fiber of type I∗n produces the lattice
Dn+4, and so on (cf. [Mir89, Table II.3.1]).

Definition 1.2.5. The Mordell-Weil group of |E| is the set MW(E) of sections of the elliptic
fibration |E|. It has the structure of an abelian group, induced by the group structure on
the generic fiber. The chosen section S0 is the neutral element of this addition, and it is
called the zero section.

We have an isomorphism of groups L/Lroot ∼= MW(E) (cf. [Mir89, Theorem VII.2.1]).
From this it follows immediately (cf. also the original statement [Shi72, Corollary 1.5]):

Theorem 1.2.6 (Shioda-Tate formula). Let X be a K3 surface and |E| an elliptic fibration
on X. Then

ρ(X) = 2 +
∑
t∈P1

(nt − 1) + rk(MW(E)),

where nt is the number of irreducible components of the fiber over t ∈ P1.

The sum in the right-hand side is clearly finite, since there are only finitely many re-
ducible fibers (we are assuming char(k) 6= 2, 3). We deduce that rk(MW(E)) ≤ ρ(X) − 2,
and equality holds if and only if |E| has only irreducible fibers (i.e., all the fibers are either
smooth elliptic curves, or nodal or cuspidal rational curves).

There is another important equality concerning the number of singular fibers and their
Euler characteristic, when k = C.

Proposition 1.2.7 ([Mir89], Lemma IV.3.3). Assume k = C. Let π : X → P1 be an elliptic
fibration induced by E. Denote by S ⊆ P1 the subset of points of P1 whose fiber is singular.
Then

24 = e(X) =
∑
t∈S

(e(π−1(t)),

where e denotes the Euler characteristic. Now define

e(L) :=


n+ 1 if L = An

n+ 2 if L = Dn

n+ 2 if L = En.

Then, if the root part Lroot of the orthogonal complement L decomposes as Lroot =
⊕

i∈I Ri,
where the lattices Ri are ADE lattices, we have∑

i∈I

e(Ri) ≤ 24.
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Proof. The first part is precisely [Mir89, Lemma IV.3.3]. For the second part, we can easily
compute the Euler characteristic of each Kodaira fiber. The values can be found in [Mir89,
Table IV.3.1]. Then the inequality follows immediately from this. Notice that we only have
an inequality because the sum only runs over the reducible fibers.

We conclude the paragraph with a fundamental geometric interpretation of the genus of
a lattice. Let X be a K3 surface admitting an elliptic fibration |E|, inducing a decomposition
NS(X) = U ⊕ L. As explained above, L encodes a lot of geometric information about the
fibration |E|. Now by Definition 1.1.10 the genus L consists of the negative lattices M such
that NS(X) = U ⊕L = U ⊕M . Thus the genus of L parametrizes the possible “structures”
of elliptic fibrations on the K3 surface X. For instance, we have the following:

Lemma 1.2.8. Let X be a K3 surface admitting an elliptic fibration |E|, inducing a de-
composition NS(X) = U ⊕ L. Then |E| has finitely many sections if and only if L is a
root-overlattice.

Proof. We have an isomorphism of groups L/Lroot ∼= MW(E), so |E| has finitely many
sections if and only if Lroot has finite index in L. Since Lroot is a root lattice, this is equivalent
to L being a root-overlattice.

Elliptic fibrations with finitely many sections are very special. We deal with them in the
next section.

1.2.3 Elliptic fibrations with finitely many sections

In this section we need k = C. Let X be a K3 surface and |E| an elliptic fibration on X
admitting a finite number of sections. The choice of a zero section S0 of |E| induces an
orthogonal decomposition NS(X) = U ⊕ L. By Lemma 1.2.8, we have that L is a root-
overlattice.

Since we are restricting ourselves to K3 surfaces, the finite group MW(E) ∼= L/Lroot can
only be one of the following 12 groups (cf. [MP89, Table 4.5]):

Z/2Z,Z/3Z,Z/4Z,Z/2Z× Z/2Z,Z/5Z,Z/6Z,
Z/7Z,Z/8Z,Z/2Z× Z/4Z,Z/3Z× Z/3Z,Z/2Z× Z/6Z,Z/4Z× Z/4Z.

(1.1)

Moreover, the existence of torsion sections in MW(E) depends on the root lattice Lroot,
as the next proposition shows.

Proposition 1.2.9. Denote by ` = |MW(E)| = [L : Lroot] the index of the overlattice L.
Then:

1. `2 | det(Lroot);
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2. If Lroot contains a Dn (resp. an En lattice) as a summand, then ` divides det(Dn)
(resp. det(En)). In particular ` ≤ 4.

Proof. 1. It follows directly from Lemma 1.1.7.

2. The restriction map
MW(E)→ Tors(Et),

sending any torsion section of |E| to its intersection point with the fiber Et over t,
is injective for any t ∈ P1 (cf. [Mir89, Corollary VII.3.3]). Therefore the cardinality
` of MW(E) divides the cardinality of Tors(Et) for any t ∈ P1. If Et is a singular
fiber of additive type (which is assured if its dual graph of (−2)-curves not meeting
the zero section is Dn or En), then the number of its torsion points coincides with the
determinant of the corresponding lattice (cf. [Mir89, Lemma VII.3.5]).

1.2.4 Positive and nef cones and automorphisms

We assume that the base field is k = C. Let X be a K3 surface. The positive cone CX of X
is the cone

CX = {v ∈ NS(X)⊗ R | v2 > 0}+,

where the superscript + denotes the component containing an ample class. For any δ ∈
NS(X) of square −2, we define the reflection associated with δ as the isometry sδ of NS(X)
such that

v 7→ v + (v · δ)δ

for any v ∈ NS(X). The subgroup of the group O(NS(X)) of isometries of the Néron-Severi
lattice generated by all these reflections is called the Weyl subgroup of NS(X), and it is
denoted W (NS(X)). We denote by O+(NS(X)) the subgroup of index 2 of O(NS(X)) pre-
serving the positive cone. Notice that W (NS(X)) is contained in O+(NS(X)).

There exists a chamber decomposition of the positive cone CX , and the Weyl subgroup
W (NS(X)) acts transitively on the set of chambers (cf. [Huy16, Proposition 8.2.6]). The
transitivity of the action of W (NS(X)) can be rephrased in geometric terms: if v ∈ CX is
an element in the positive cone, either it is nef, or there exists a smooth rational curve δ
such that v · δ < 0 (cf. [Huy16], Corollary 8.1.7). Then v′ := sδ(v) has positive intersec-
tion with δ, and we can repeat the process with v′. After a finite number of reflections,
the element v becomes nef. This is because the intersection of v with a fixed ample class
gets smaller at each step. We conclude that there exists a unique nef element in the orbit
W (NS(X)) · v. A fundamental domain for the action of W (NS(X)) on the positive cone is
given by the nef cone (cf. [Huy16, Corollary 8.2.11]). By the discussion above, the quotient
O+(NS(X))/W (NS(X)) can be viewed as the subgroup of O+(NS(X)) of isometries preserv-
ing the nef cone.
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Let f ∈ Aut(X) be an automorphism of the K3 surface X. f acts as an isometry f ∗ on
the Néron-Severi lattice, hence there exists a map

Aut(X)→ O+(NS(X)),

since automorphisms preserve the positive cone. The next fundamental proposition char-
acterizes kernel and cokernel of this map. First, we need some notation. We denote by
O∆+(NS(X)) the subgroup of O+(NS(X)) of isometries preserving the set ∆+ ⊆ NS(X) of
smooth (−2)-curves (i.e. those isometries ϕ ∈ O(NS(X)) such that ϕ(C) = C for every
class C ∈ NS(X) corresponding to a smooth (−2)-curve on X). Not all isometries preserve
the set of smooth (−2)-curves. For instance reflections do not: if δ ∈ NS(X) represents a
smooth (−2)-curve on X, then sδ(δ) = −δ.
Moreover, we denote by OHdg(T(X)) < O(T(X)) the group of Hodge isometries of the tran-
scendental part T (X) ⊆ H2(X,Z), i.e. the isometries of the transcendental lattice that
preserve the integral Hodge structure on T(X). We refer to [Huy16, Section 3.2] for more
details.

Proposition 1.2.10 ([PŠ71], Section 7 - [Huy16], Chapter 15). Let X be a smooth complex
projective K3 surface. Then:

1. The homomorphism
Aut(X)→ O+(NS(X))/W (NS(X))

has finite kernel and cokernel.

2. The group Aut(X) is isomorphic to the group

{(α, β) ∈ O∆+(NS(X))×OHdg(T(X)) | α = β ∈ O(ANS(X)) = O(AT(X))},

where α and β are the induced isometries of the isometric discriminant groups ANS(X) =
AT(X).

Now assume that the K3 surface X admits an elliptic fibration |E|, and let S ∈ MW(E)
be any section of |E|. The section S induces the translation τS ∈ Aut(X) via the group
structure on the generic fiber. More precisely, S induces an automorphism of the generic fiber
Eη by translation by S ∩ Eη. This automorphism extends to a well-defined automorphism
of the surface X. Since different sections produce different automorphisms, we obtain an
injective map

MW(E) ↪→ Aut(X). (1.2)

The translations τS preserve the elliptic fibration |E|. Conversely, if f is any automorphism
of X preserving the elliptic fibration |E|, then one of its powers is a translation. This is
because by Theorem 1.2.6 and Proposition 1.2.7 any elliptic fibration on a K3 surface has
at least 3 singular fibers, hence the action of any automorphism of X preserving |E| acts on
the base P1 with finite order.

We conclude the section with a result that will come in handy later.
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Proposition 1.2.11. Let X be an elliptic K3 surface, |F | an elliptic fibration on X, and
f ∈ O+(NS(X)).

1. If E = f(F ) is nef, then there exists s ∈ W (NS(X)) < O+(NS(X)) such that g = f ◦ s
preserves the nef cone and g(F ) = f(F ) = E.

2. If |F | has only irreducible fibers and E = f(F ) is nef, then f preserves the nef cone.

3. If f preserves the nef cone and the set of Hodge isometries is trivial, i.e. OHdg(T(X)) =
{± id}, then f corresponds to an automorphism of X if and only if ± id = f ∈
O(ANS(X)).

Proof. 1. If f preserves the nef cone there is nothing to prove. So assume that there exists
a nef divisor H ∈ NS(X) such that f(H) is not nef, that is, there exists a (−2)-curve
C such that f(H) · C < 0. Then f−1(C) has square −2, so by Riemann-Roch either
f−1(C) or −f−1(C) is effective; since H ·f−1(C) = f(H)·C < 0, necessarily −f−1(C) is
effective by the nefness of H. Now notice that E ·C = f(F )·C ≥ 0, as E is nef and C is
effective, and also −f(F ) ·C = F ·(−f−1(C)) ≥ 0, as F is nef and −f−1(C) is effective;
these two inequalities imply that E ·C = 0, so C is a component of a reducible fiber of
the elliptic fibration |E|. Now we can compose f with the reflection sC associated to
the (−2)-curve C and obtain an isometry f ′ = sC ◦ f such that f ′(F ) = sC(E) = E,
as C is orthogonal to E, and

f ′(H) · C = f(H) · sC(C) = f(H) · (−C) > 0.

Since there are only finitely many components in the reducible fibers of the elliptic
fibration |E|, we can repeat the argument and obtain an isometry g = sC1 ◦ . . .◦sCr ◦f
such that g(F ) = E and g preserves the nef cone.

2. We can repeat the argument of the previous point. As there are no (−2)-curves or-
thogonal to F and f is an isometry, then there are no (−2)-curves orthogonal to E,
and we conclude that f preserves the nef cone.

3. By Proposition 1.2.10 a power of f corresponds to an automorphism of X, say fn.
We claim that f ∈ O∆+(NS(X)), i.e. f preserves the set of (−2)-curves. Assume by
contradiction that there exists a (−2)-curve C such that D = f−1(C) is not irreducible.
Surely D is effective: for, let H ∈ NS(X) be a nef divisor not orthogonal to D.
Then H · D = f(H) · C > 0 by nefness of f(H), hence D is effective. Therefore
D = C1 + . . . + Cr splits as the sum of r ≥ 2 irreducible curves. Without loss of
generality C1 is a (−2)-curve, so we can repeat the previous argument to f−1(C1),
which is again effective of norm −2. After n steps, we have that

f−n(C) = C ′1 + . . .+ C ′s (1.3)

for some irreducible curves C ′1, . . . , C
′
s, s ≥ 2. Since f−n is an automorphism of X by

assumption, then f−n(C) is a (−2)-curve, and thus it is rigid by Riemann-Roch. Since

16



s ≥ 2, the equality (1.3) is contradictory, thus showing that indeed f preserves the set of
(−2)-curves. Therefore by Proposition 1.2.10 f corresponds to an automorphism ofX if
and only if f ∈ O(ANS(X)) coincides with the restriction of a g ∈ OHdg(T(X)) = {± id}.

Remark 1.2.12. From [Ogu02], Lemma 4.1, we know that the assumption OHdg(T(X)) =
{± id} is always satisfied if X has odd Picard rank. Moreover, if X has even Picard rank (and
ρ(X) < 20) and the period ωX ∈ T(X)C is very general, then again OHdg(T(X)) = {± id}.
Indeed, any Hodge isometry of the transcendental lattice T(X) has ωX as an eigenvector, so
it suffices to choose ωX outside the countable union of lines in T(X)C corresponding to the
eigenvectors of isometries in O(T(X)).

1.3 Moduli spaces of lattice polarized K3 surfaces

In this section we review the construction of the moduli spaces of lattice polarized K3 sur-
faces. Our main reference is [Dol96].

Let L be a lattice of signature (2, n). Let ΩL be one of the two connected components of

{[w] ∈ P(L⊗ C) | (w,w) = 0, (w, w̄) > 0}.

It is a hermitian symmetric domain of type IV and dimension n. O+(L) is the index two
subgroup of the orthogonal group O(L) preserving ΩL. If Γ < O+(L) is of finite index we
denote by FL(Γ) the quotient Γ\ΩL. By a result of Baily and Borel [BB66], FL(Γ) is a quasi-
projective variety of dimension n. Such varieties are called modular orthogonal varieties.
Recall that the boundary of the Baily-Borel compactification of FL(Γ) is 1-dimensional: its
0-dimensional components are called 0-cusps, while its 1-dimensional components are called
1-cusps. We define:

Õ(L) := ker(O(L)→ O(AL))

and
Õ

+
(L) := Õ(L) ∩O+(L).

We fix an integral even lattice M of signature (1, t) with t ≥ 0.

Definition 1.3.1. An M-polarized K3 surface is a pair (X, j) where X is a K3 surface and
j : M ↪→ NS(X) is a primitive embedding.

Let
N := j(M)⊥ΛK3

be the orthogonal complement of M in ΛK3. It is an integral even lattice of signature
(2, 19 − t). By the Torelli theorem (cf. [PŠ71], or [Dol96, Corollary 3.2]), the moduli
spaces of M -polarized K3 surfaces can be identified with the quotient of a classical hermitian
symmetric domain of type IV and dimension 19− t by an arithmetic group. More precisely,
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the 2-form ωX of a M -polarized K3 surface X determines a point in the symmetric space
ΩN (the period domain), unique up to the action of the group (cf. [Dol96, Proposition 3.3])

Õ
+

(N) = {g ∈ O+(ΛK3) | g|M = id}.

Theorem 1.3.2 ([Dol96], Section 3). The variety FN(Õ
+

(N)) is isomorphic to the coarse
moduli space of M-polarized K3 surfaces. Its dimension is 20− rk(M).

1.4 Projective models of K3 surfaces

In this section we recall three well-known geometric constructions of K3 surfaces. Namely,
double covers of the quadric surface P1×P1 (see Section 1.4.1) and of the Hirzebruch surface
F4 (see Section 1.4.2) branched over suitable curves define lattice polarized K3 surfaces with
respect to the lattices U(2) and U respectively. Furthermore, every elliptic K3 surface can
be reconstructed from its Weierstrass fibration (see Section 1.4.3).

1.4.1 Double covers of P1 × P1

Let F0 := P1×P1 be the smooth quadric surface in P3. Its Picard group is generated by the
classes of the two pencils `1, `2 of lines, hence Pic(F0) endowed with the intersection form on
F0 is isometric to the hyperbolic plane U . The canonical bundle is KF0 = OF0(−2,−2).

Now let π : X → F0 be the double cover branched over a smooth curve B ∈ | − 2KF0 | =
|OF0(4, 4)|. Then X is a smooth K3 surface. The pullbacks Ei = π∗`i for i = 1, 2 are smooth
elliptic curves, and E1 · E2 = 2`1 · `2 = 2, so that

〈E1, E2〉 = U(2) ↪→ NS(X).

This embedding is primitive, and NS(X) = U(2) for a very general branch divisor B.
Assume now that there exists a smooth rational curve C ∈ |OF0(1, d)| for d ≥ 0 inter-

secting B with even multiplicities. For instance, C can be simply tangent to B in exactly
2d+ 2 points. Then we have the following (cf. [Fes18, Proposition 5.1]):

Lemma 1.4.1. Let ν : X → Y be a double cover of smooth projective surfaces branched over
a smooth curve B, and assume that there exists a smooth rational curve C ⊆ Y intersecting
B with even multiplicities. Then the pullback ν∗C splits into two irreducible components,
both isomorphic to C.

Proof. Let D := ν−1(C) ⊆ X. The double cover ν induces a double cover ν : D → C,
where D denotes the normalization of D. ν is isomorphic to an unbranched double cover,
because the branch locus of ν coincides with the set b(C) := {x ∈ C | multx(C,B) ≡ 1
(mod 2)} = ∅. The unique unbranched double cover of C ∼= P1 is given by a disjoint union
of two smooth rational curves isomorphic to C. This implies that D splits as the union of
two irreducible components (not necessarily disjoint).
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In the case Y = F0 as above, the pullback D = π∗C = D1+D2 splits into the union of two
irreducible components D1, D2

∼= P1. Since D1 is smooth and rational, we have D2
1 = −2,

and moreover D1 · E1 = 1, D1 · E2 = d. This implies that there exists an embedding (not
necessarily primitive)

〈E1, E2, D1〉 =

0 2 1
2 0 d
1 d −2

 ∼= U ⊕ 〈−2(2d+ 4)〉 ↪→ NS(X).

If instead the branch divisor B is not smooth, but has simple singularities, the double
cover π : X → F0 is a K3 surface with isolated simple singularities. Therefore the minimal
desingularization X̃ → X is a smooth K3 surface, since simple singularities do not change
adjunction.

The following result is well known, but we include its proof for the sake of completeness.

Proposition 1.4.2. Let X be an elliptic K3 surface with NS(X) ∼= U ⊕ 〈−2k〉 for some
k ≥ 1. Then X can be realized as a double cover of F0 if and only if k is even and k ≥ 4.

Proof. If X is a double cover of F0, the pullback map induces a primitive embedding

U(2) ↪→ NS(X) = U ⊕ 〈−2k〉.

Any even lattice of rank 3 containing primitively U(2) has determinant divisible by 4, so we
conclude that k = 1

2
det(NS(X)) is even.

Conversely assume that NS(X) = U ⊕〈−2k〉 for a certain k ≥ 4 even. Then as above we
have an isomorphism 0 2 1

2 0 d
1 d −2

 ∼= U ⊕ 〈−2k〉

for d = 1
2
(k − 4) ≥ 0, so there are two genus one fibrations |E1|, |E2| : X → P1 induced by

the two elements E1, E2 of the basis of square zero. We can now consider the surjective map

π = (|E1|, |E2|) : X → F0.

It is a morphism of degree 2, since the preimage of any point of F0 consists of the two points of
intersection of two elliptic curves in |E1| and |E2|, as E1 ·E2 = 2. Consider the branch divisor
B; if B is smooth, then π is a double cover, as claimed. Assume by contradiction that B is
singular. B must have simple singularities, since otherwise the canonical divisor of X would
be strictly negative. ThusX is the desingularization of the double cover π̃ : X̃ → F0 branched
over B, and therefore NS(X) contains the class of a smooth rational curve orthogonal to U .
This is however absurd, since rk(NS(X)) = 3 and NS(X) 6∼= U ⊕ A1.

It only remains to deal with the case k = 2, so consider a K3 surface X with NS(X) =
U ⊕ 〈−4〉. If by contradiction X is a double cover of F0, then NS(X) contains primitively
U(2), so that

U ⊕ 〈−4〉 ∼=

0 2 a
2 0 b
a b −2c


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for a, b, c ∈ Z, c ≥ 1. Say that this isomorphism is given by the choice of a basis {E1, E2, D}.
The determinant of NS(X) is 4, and this forces ab+ 2c = 1. Thus a, b are odd, and without
loss of generality a < 0, b > 0. Now choose n ≥ 0 such that a + 2n = 1 and consider the
divisor D + nE2. It is effective by Riemann-Roch, since

(D + nE2)2 = −2c+ 2nb = −2c+ b(1− a) = −2c− ab+ b = b− 1 ≥ 0

and D + nE2 has intersection 1 ≥ 0 with the nef divisor E1. Moreover (D + nE2) · E1 = 1
means that D+nE2 coincides with kE1 +S for a certain k ≥ 0 and a section S of the elliptic
pencil |E1|. In other words, NS(X) is generated by the three elements E1, E2, S. However
the intersection form of X with respect to this basis is0 2 1

2 0 α
1 α −2


and this matrix has determinant 4 only if α = −1, which is a contradiction, as E2 is nef and
S is effective.

Remark 1.4.3. LetX be a K3 surface with NS(X) = U⊕〈−2k〉 for a certain k ≥ 4 even. Then
an argument as above shows that a basis of NS(X) is given by {E1, E2, D} with intersection
matrix 0 2 1

2 0 d
1 d −2


where d = 1

2
(k−4), π = (|E1|, |E2|) : X → F0 is the double cover branched over a (4, 4)-curve

B, and C = π(D) is a smooth (1, d)-curve meeting B with even multiplicities.

1.4.2 Double covers of F4

Consider the Hirzebruch surface F4 := P(OP1 ⊕ OP1(4)). We denote by p : F4 → P1 the
P1-bundle structure. We have that Pic(F4) = Z〈f, s〉, where f is the class of a fiber F of the
projection p, while s is the class of the unique curve S ⊆ F4 with negative self-intersection.
The intersection form on Pic(F4) with respect to this basis is(

0 1
1 −4

)
∼= U.

The canonical bundle of F4 is given by KF4 = −2s− 6f . Notice that ϕ = ϕ|s+4f | : F4 → C4

is the desingularization of the quartic cone C4 ⊆ P5 over the normal rational curve C =
Im(|OP1(4)|) ⊆ P4.

Now consider the double cover π : X → F4 branched over a curve B ∈ | − 2KF4| =
|4s+12f |. The linear system |4s+12f | has a fixed part, given by the curve S, and a moving
part |3s+ 12f |. Assume that B splits as the sum S+B0, where B0 ∈ |3s+ 12f | is a smooth
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irreducible curve disjoint from S, as s · (3s + 12f) = 0. Then the surface X is a smooth
K3 surface. The pullback E = π∗F is a smooth elliptic curve, since the restricted double
cover E → F is branched over (4s + 12f) · f = 4 points. Moreover π is totally ramified
over S ⊆ B, so π∗S = 2C, where C = π−1(S) ∼= P1 is a smooth rational curve. Since
E · C = 1

2
(π∗F ) · (π∗S) = F · S = 1, we have a primitive embedding(

0 1
1 −2

)
∼= U ↪→ NS(X).

For a very general branch divisor B, we simply have NS(X) ∼= U .
Consider the linear system |s + 2kf | for k ≥ 2. Its general member D is a smooth

rational curve meeting F in 1 point, S in 2k − 4 points and B in (s + 2kf) · (4s + 12f) =
8k − 4 points. Assume further that the curve D intersects the branch divisor B with even
multiplicities. Then Lemma 1.4.1 ensures that the pullback π∗D = D1 + D2 splits into
two disjoint components D1, D2

∼= P1. This implies that there exists an embedding (not
necessarily primitive)

〈E,C,D1〉 =

0 1 1
1 −2 k − 2
1 k − 2 −2

 ∼= U ⊕ 〈−2k〉 ↪→ NS(X),

since D1 · E = 1
2
(π∗D) · (π∗F ) = D · F = 1 and D1 · C = 1

4
(π∗D) · (π∗S) = 1

2
D · S = k − 2.

Proposition 1.4.4. Every elliptic K3 surface X is the desingularization of a double cover
of the Hirzebruch surface F4.

Proof. Assume that U ↪→ NS(X), and denote by E,C the smooth curves in X generating
U such that E2 = 0, C2 = −2. Consider the linear system |4E + 2C|. By [Huy16, Corollary
8.1.6] the divisor 4E + 2C is nef, as it has non-negative intersection with every smooth
rational curve. Moreover 4E+2C has intersection 0 with the curve C. Since (4E+2C)2 = 8
and dim |4E + 2C| = 5, ψ = ϕ|4E+2C| : X → P5 is a morphism onto a surface Y ⊆ P5

contracting C. C is a smooth (−2)-curve, so Y is singular. Now the elliptic curve E has
intersection 2 with 4E + 2C, so ψ has degree 2 by [Sai74a, Theorem 5.2]. This implies that
deg(Y ) = 4, so Y ⊆ P5 is a singular surface of minimal degree, hence Y is the quartic cone
C4 (see [del87]). Therefore ψ factors through the minimal resolution of C4, which is F4,
giving a morphism π : X → F4 of degree 2. Now we can repeat the argument in the proof
of Proposition 1.4.2, obtaining that X is the desingularization of a double cover of F4.

Remark 1.4.5. Every K3 surface X with NS(X) = U ⊕ 〈−2k〉 for a certain k ≥ 2 can be
obtained as a double cover π : X → F4 branched over a smooth curve B ∈ |4s + 12f |
admitting a rational curve D ∈ |s + 2kf | intersecting B with even multiplicities. If instead
X is a K3 surface with NS(X) = U ⊕ 〈−2〉, then it is the desingularization of the double
cover of F4 branched over a curve B with a unique singularity of type A1.
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1.4.3 Weierstrass fibrations

Let X be a smooth elliptic K3 surface. By [Mir89, Section II.3] X is the desingularization
of a Weierstrass fibration π′ : Y → P1, where Y is defined by an equation

Y 2Z = X3 + AXZ2 +BZ3 (1.4)

in P(OP1(4) ⊕ OP1(6) ⊕ OP1) with A ∈ H0(OP1(8)) and B ∈ H0(OP1(12)) minimal and
with ∆ = 4A3 + 27B2 not identically zero. Conversely, every such Weierstrass fibration
desingularizes to a smooth elliptic K3 surface. We will usually restrict to the chart {Z 6= 0}
over the affine base A1

t ⊆ P1, where equation (1.4) becomes

y2 = x3 + A(t)x+B(t), (1.5)

with A and B polynomials in t of degree at most 8 and 12 respectively. Notice that this is
the equation of the generic fiber of the Weierstrass fibration, which is an elliptic curve over
C(t). Under this identification, sections of the fibration π (or π′) correspond to C(t)-rational
points of equation (1.5). In particular the distinguished zero section is located at the point
at infinity S0 = (0 : 1 : 0). Moreover we will write S = (u(t), v(t)) to denote the section
S of π corresponding to the C(t)-rational point (u(t), v(t)) of equation (1.5). By the above
description, u, v ∈ C(t) are rational functions of degree at most 4, 6 respectively.

Remark 1.4.6. Let X be a U ⊕ 〈−2k〉-polarized K3 surface. If k ≥ 2, the given elliptic
fibration on X admits an extra section S such that S · S0 = k − 2. This follows from the
isomorphism of lattices

U ⊕ 〈−2k〉 ∼=

0 1 1
1 −2 k − 2
1 k − 2 −2

 .

Conversely, if X is an elliptic K3 surface and S is an extra section with S · S0 = k− 2, then
there exists an embedding

U ⊕ 〈−2k〉 ↪→ NS(X).

This embedding is not necessarily primitive. However, it is primitive if the lattice U ⊕〈−2k〉
has no non-trivial overlattices (for instance if k is square-free, cf. [Nik79b, Proposition 1.4.1]).

1.5 Enriques surfaces

We conclude this preliminary chapter by recalling some basic facts about Enriques surfaces,
that we will use in the last part of the thesis. The main references are [CD89] and [Cos85].
We will work over a field K of characteristic different from 2 and 3.

Definition 1.5.1. An Enriques surface is a projective, geometrically smooth surface S with
H1(S,OS) = 0 and such that the canonical bundle KS is 2-torsion.
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The universal cover of an Enriques surface is a K3 surface, that we will call its K3 cover.
Vice versa, the quotient of a K3 surface by an involution without fixed points is an Enriques
surface. Much of the geometry of an Enriques surface can be understood from its K3 cover.
The group Num(S), obtained by taking the quotient of the Néron-Severi group NS(S) of
an Enriques surface S by the 2-torsion element KS, is a lattice, and it is isometric to the
unimodular hyperbolic lattice U ⊕ E8 of rank 10.

Let S be an Enriques surface, X its K3 cover. The definition of a genus 1 fibration on
S is the same as the one for K3 surfaces (see Definition 1.2.3). Despite the many similari-
ties between Enriques and K3 surfaces, genus 1 fibrations behave quite differently. We are
going to recall in the following the basic properties of genus 1 fibrations on Enriques surfaces.

First of all, every Enriques surface admits a genus 1 fibration (see [CD89, Theorem 5.7.1]).
However, no genus 1 fibration on S has a section. This follows from the fact that any elliptic
pencil on S has precisely two double fibers. In order to see this, let |F | be an elliptic pencil
on S, π : X → S the K3 cover and |E| the elliptic pencil on X such that π∗F = 2E. Then
we have a cartesian diagram

X S

P1 P1.

π

π′

If t1, t2 ∈ P1 are the branch points of the double cover π′ : P1 → P1, their fibers F1, F2 ⊆ S
are indeed double. Therefore, we will usually write elliptic pencils on S as |2F |, where F is
called a half-pencil.

The Riemann-Roch formula on Enriques surfaces reads C2 = 2g(C) − 2 whenever C is
an irreducible curve, as in the case of K3 surfaces. Therefore smooth rational curves are
precisely the (−2)-curves. However, not all isotropic vectors induce elliptic pencils:

Proposition 1.5.2 ([CD89], Corollary 5.7.2). Let F ∈ NS(S) be a non-zero isotropic vector,
i.e. F 2 = 0. Then either dim |F | = 1 or dim |2F | = 1.

Next, we move to the study of the (bi)sections of an elliptic pencil on S. The following
is the main result in this direction:

Theorem 1.5.3 ([Cos85], Proposition 3.4 and Theorem 4.1). Let |2F | be an elliptic pencil
on S. |2F | admits a bisection, i.e. an irreducible curve C ⊆ S such that C ·F = 1. Moreover,
we can choose such a C so that either C2 = −2, so C is smooth and rational (and |2F | is
called a special elliptic pencil), or C2 = 0, and C has (arithmetic) genus 1.

Rational bisections are indeed very special. For instance, the generic Enriques surface
contains no (−2)-curve. We say that an Enriques surface is nodal if it admits a (−2)-curve,
otherwise it is said unnodal. If S is nodal, then it admits a special elliptic pencil by [Cos85,
Theorem 4.1].
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Remark 1.5.4. Special elliptic pencils are also important because they pull back to elliptic
fibrations on the K3 cover X (cf. [Kon86a, Lemma 2.6]). Indeed, if C is a rational bisection
of |2F |, and E = π∗F , then the pullback π∗C splits as the disjoint union of two (−2)-curves
S1, S2, that are sections of |E|. This follows from the straightforward computation

2E · S1 = E · (S1 + S2) = π∗F · π∗C = 2F · C = 2.

Let |2F | be an elliptic pencil on an Enriques surface S, denote by π : X → S its K3 cover
and by E = π∗F the pullback of the pencil. We would like to understand the configuration
of reducible fibers of |E| from that of |2F |. This is completely answered by the following
proposition. We adopt Kodaira’s names for the possible reducible fibers on the elliptic
pencils.

Proposition 1.5.5 ([HS11], Section 3.2). Let F0 ∈ |2F | be a singular fiber.

• If F0 is multiple, then F0 = 2F ′0, where F ′0 is a fiber of type In. Moreover π∗F0 is a
fiber of type I2n.

• If F0 is not multiple, then π∗F0 consists of two fibers isomorphic to F0.

It follows that, if E0 ∈ |E| is a reducible fiber not of type I2n on the K3 surface X, then
there exists a second fiber E1 ∈ |E| isomorphic to E0.

Definition 1.5.6. An exceptional sequence on S is a list of 10 effective isotropic divisors
D1, . . . , D10 ∈ Num(S) such Di ·Dj = 1 for any i 6= j.

Exceptional sequences play a fundamental role towards the understanding of the geometry
of an Enriques surface. Every Enriques surface admits an exceptional sequence. Notice that
the 10 divisors Di span a lattice isometric to U ⊕ A8, which is an index 3 sublattice of
Num(S). The following is the structure theorem for exceptional sequences:

Theorem 1.5.7 ([Cos85], Theorem 3.3). 1. Any exceptional sequence on S is of the form

F1, F1 +R1, F1 +R1 + C
(1)
1 , . . . , F2, F2 +R2, F2 +R2 + C

(2)
1 , . . . ,

where the Fi are elliptic half-pencils, Ri is a rational bisection of |2Fi|, and the C
(i)
j

are (−2)-curves orthogonal to Fi.

2. Every Enriques surface admits an exceptional sequence with at least 3 half-pencils.

3. There exists a unique exceptional sequence up to isometries of NS(S).

The maximum number of elliptic half-pencils in exceptional sequences on S is an im-
portant invariant of the Enriques surface S, and it usually denoted by nd(S). Clearly, if
S is unnodal, nd(S) = 10. Moreover the previous theorem shows that nd(S) ≥ 3 for any
Enriques surface S. Examples of Enriques surfaces S with nd(S) = 4 are Kondo’s surfaces
of type II (cf. [Kon86a]) with finite automorphism group.
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2 | Classification of K3 surfaces of zero
entropy

2.1 Introduction

Let X be a smooth projective K3 surface over an algebraically closed field. The study of the
group Aut(X) of automorphisms of X is a central topic at the intersection of algebraic, arith-
metic and differential geometry. Since the early works by Nikulin [Nik79a], Kondō [Kon86b]
and Vinberg [Vin83], many have tried to understand explicitly the structure of the group
Aut(X) using very different approaches. A very successful approach in the last 20 years
has been via complex dynamics and entropy, pioneered by Cantat [Can01] and McMullen
[McM02]. Our aim is to combine this with the huge lattice-theoretical machinery classically
used to study K3 surfaces.

The first step towards the understanding of the group Aut(X) was made by Nikulin
[Nik79a], Vinberg [Vin07] and Kondō [Kon86b], who completely classified the Néron-Severi
lattices of complex K3 surfaces with a finite automorphism group (more precisely, Nikulin
solved the case of Picard rank ρ(X) 6= 4, Vinberg the case ρ(X) = 4, and Kondō described
their automorphism group). Their work relies on the theory of lattices developed by Nikulin
in the 70’s. However, when the automorphism group becomes infinite, very little is known.
For example, we can describe the full automorphism group only of some K3 surfaces (see
Vinberg’s examples [Vin83] or Shimada’s recent algorithm [Shi15]).

Our goal is to identify a class of complex K3 surfaces with an infinite but simple automor-
phism group. The entropy of an automorphism of a surface is a measure of the complexity of
its dynamics (cf. Definition 2.2.3). The automorphisms with the most regular dynamics are
those of zero entropy. A K3 surface X is said to have zero entropy if all its automorphisms
have zero entropy. The automorphism group of K3 surfaces of zero entropy is particularly
simple:

Theorem 2.1.1 ([Can99; Ogu07]). Let X be a smooth complex projective K3 surface with
infinite automorphism group. The following are equivalent:

1. X has zero entropy;
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2. X admits a unique genus 1 fibration with infinite automorphism group;

3. Aut(X) is almost-abelian, i.e. there exists a normal, finite index subgroup G <
Aut(X), a finite group K and a short exact sequence

0→ K → G→ Zr → 0

for some r ≥ 1.

The advantage of this characterization is that it is purely lattice-theoretical, as the
uniqueness of the genus 1 fibration with infinite automorphism group can be read off from
the Néron-Severi lattice of X. A classification of complex K3 surfaces admitting a unique
genus 1 fibration with infinite automorphism group was asked for by Nikulin in [Nik14].

We address this classification problem in the case when X satisfies a technical condition.
More precisely, we want X to admit an elliptic fibration with only irreducible fibers, i.e.
with only nodal or cuspidal singular fibers. Our main result is the following:

Theorem 2.1.2. Let X be a smooth complex projective K3 surface with infinite automor-
phism group. Suppose that X admits an elliptic fibration with only irreducible fibers. Then
X has zero entropy if and only if the Néron-Severi lattice NS(X) belongs to an explicit list
of 32 lattices.

The reader can find this list in Theorem 2.5.9. Incidentally, we also classify which of
these 32 classes of K3 surfaces admit other genus 1 fibrations during the proof of Theorem
2.1.2 (see Theorem 2.5.11).

The classification in Theorem 2.1.2 is obtained in three steps; we are going to outline
the main ideas of each of them. If X is a K3 surface admitting an elliptic fibration, then
the sublattice of NS(X) generated by the elliptic curve F and its zero section S0 induces
an orthogonal decomposition NS(X) = U ⊕ L. When ρ(X) = 3, the rank of L is 1, hence
the intersection form on NS(X) is completely governed by a unique number, which coincides
with the determinant of NS(X). Since automorphisms preserve the nef cone (cf. Section
1.2.4), we can rephrase our problem in terms of the nef cone of such surfaces. We then show
that the structure of the nef cone can be understood by solving some congruences involving
the determinant of NS(X). This allows us to show that X has zero entropy if and only if
det(NS(X)) satisfies a certain arithmetic property (cf. Theorem 2.4.7).

When ρ(X) ≥ 4, the intersection form on NS(X) depends on a lattice L of rank
ρ(X) − 2 ≥ 2, hence it is impractical to generalize the previous approach. Nevertheless,
we switch our attention to the study of the genus of L (cf. Section 1.1.3). The second
step of the proof of Theorem 2.1.2 consists in proving that if X satisfies the assumptions
of Theorem 2.1.2 and has zero entropy, then its Néron-Severi lattice must decompose as
NS(X) = U ⊕ L, with L having trivial genus. A priori it could happen that a K3 surface
has many elliptic fibrations, but a unique one with infinite automorphism group. We rule
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this out by proving that if a K3 surface admits an elliptic fibration with only irreducible
fibers and another elliptic fibration with finite automorphism group, then it admits a third
“intermediate” elliptic fibration with infinite automorphism group (cf. Claim 2.6.3). We
obtain this result by studying the genera of root lattices.

The third and final step of the proof of Theorem 2.1.2 amounts to studying the negative
definite lattices L unique in their genus. These are completely classified by Theorem 1.1.11.
Despite the existence of infinitely many negative definite lattices unique in their genus, we
are able to reduce to a finite number of cases by using a recursive argument based on The-
orem 2.3.5 and the classification in Picard rank 3 obtained previously. The classification is
then completed by checking individually these remaining lattices.

It is natural to ask what happens if we remove the technical condition in Theorem 2.1.2.
If ρ(X) = 20 is maximal, the K3 surface is called singular, and in this case Oguiso has
proved that X always has positive entropy (cf. [Ogu07, Theorem 1.6]). Using the techniques
introduced above, we are able to generalize his result to Picard rank 19:

Theorem 2.1.3. All smooth complex projective K3 surfaces with Picard rank ≥ 19 and
infinite automorphism group have positive entropy.

The outline of the chapter follows closely the previous discussion. In Section 2.2 we
recall the definition of the entropy, the classification of automorphisms of K3 surfaces due
to [Can99], and Theorem 2.1.1. In Section 2.3 we lay the groundwork to prove the main
theorem 2.1.2. More precisely, we use Nikulin’s theory of lattices to find sufficient conditions
for a K3 surface to have positive entropy. In Sections 2.4, 2.5 and 2.6 we explain the three
steps discussed above, in order to obtain the classification in Theorem 2.1.2. Finally, in
Section 2.7 we prove Theorem 2.1.3.

Convention 2.1.4. Throughout the chapter we will always work over C. We have used the
software Magma to implement all the algorithms.

2.2 Entropy on K3 surfaces

Let X be a K3 surface. The cohomology group H1,1(X,R) is a vector space of dimension
20, endowed with a hyperbolic nondegenerate metric qX . Hence the sheet

HX = {c ∈ H1,1(X,R) | qX(c) = 1}+

intersecting the Kähler cone of X is a model for the hyperbolic space H19. Since the au-
tomorphism group Aut(X) of the surface acts as isometries on H2(X,R) and preserves the
Kähler cone, we have a natural map

Aut(X)→ O(HX).
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Moreover Aut(X) can be seen as a discrete subgroup of isometries of H2(X,R), since it
embeds into the group O(H2(X,Z)) of isometries of the lattice H2(X,Z) ⊆ H2(X,R) (cf.
[Huy16, Proposition 15.2.1]).

Definition 2.2.1. Let φ ∈ O(HX) be an isometry of the hyperbolic space HX . φ is called

• elliptic, if φ fixes an inner point x ∈ HX\∂HX ;

• parabolic, if φ is not elliptic and fixes a unique point in the boundary ∂HX ;

• hyperbolic, if φ fixes two points in the boundary ∂HX .

The next classical theorem by Cantat classifies the automorphisms of a K3 surface X
into these three types.

Theorem 2.2.2 ([Can99], Corollaire 2.2). Let f ∈ Aut(X), and denote by f ∗ ∈ O(HX) the
induced isometry on the hyperbolic space HX .

• f ∗ is elliptic if and only if f has finite order.

• f ∗ is parabolic if and only if f is not periodic and it respects a genus 1 fibration on X
(i.e. there exists a primitive, nef element F ∈ NS(X) with F 2 = 0 such that f ∗F = F ).
In this case, all eigenvalues of φ∗ have norm 1.

• f ∗ is hyperbolic otherwise. There exists an eigenvalue of φ∗ of norm > 1.

The concept of entropy of automorphisms is closely related to this classification. The
entropy can be defined in much more generality, but we restrict ourselves to the case of a
complex projective variety Y .

Definition 2.2.3. Let Y be a complex projective variety and g an automorphism of Y . The
entropy of g is defined as the quantity h(g) = log λ(g∗), where λ(g∗) is the spectral radius
of the pullback map g∗ : H∗(Y,C) → H∗(Y,C) on singular cohomology, i.e. the maximum
norm of its eigenvalues.

Remark 2.2.4. Over C there exists an equivalent, more topological, definition of the entropy,
that measures how fast the iterates of g create distinct orbits. See [Can14] for a nice in-
troduction, and [Gro03], [Yom87] for the equivalence of the two definitions. If instead the
variety is defined on a field of positive characteristic, there exists a similar definition of the
entropy that uses étale cohomology; the interested reader can consult [ES13].

If X is a K3 surface and f an automorphism of X, then the pullback f ∗ acts as the identity
on H0(X,C)⊕H4(X,C). Moreover f ∗ acts with finite order on the complexification T(X)C
of the transcendental lattice by [Huy16, Corollary 3.3.4], so the entropy of f coincides with
log λ(f ∗|NS(X)C), where f ∗|NS(X)C is the restriction of the pullback to NS(X)C ⊆ H2(X,C).
Hence Theorem 2.2.2 can be rephrased as follows:
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Corollary 2.2.5. Let f ∈ Aut(X) be an automorphism of the K3 surface X. Then f has
zero entropy if and only if f ∗ is either elliptic or parabolic. In other words, f has zero entropy
if and only if f has either finite order or it respects a genus 1 fibration on X.

Definition 2.2.6. A K3 surface X is said to have zero entropy if all of its automorphisms
have zero entropy. Otherwise X is said to have positive entropy.

If X has a finite automorphism group, then every f ∈ Aut(X) is elliptic, hence X has
zero entropy. K3 surfaces with a finite automorphism group have been widely studied by
Nikulin and Vinberg (see for instance [Nik80], [Nik81a], [Nik81b], [Nik84], [Nik87], [Nik96],
[Nik99], [Vin07]); we have in fact a complete classification of Néron-Severi lattices of complex
K3 surfaces with a finite automorphism group (see also [Kon86b] for a description of their
automorphism groups). Therefore we are interested in studying K3 surfaces of zero entropy
with an infinite automorphism group.

Remark 2.2.7. Having zero entropy only depends on the Néron-Severi lattice NS(X), and
not on the K3 surface X itself. For, let f be an automorphism of X of positive entropy.
Then f can be seen as an element of positive entropy in the group O+(NS(X))/W (NS(X))
by Proposition 1.2.10, which depends only on the Néron-Severi lattice NS(X). Conversely,
if f ∈ O+(NS(X))/W (NS(X)) has positive entropy, then by Proposition 1.2.10 there exists
a power fn that comes from an automorphism of X, and fn still has positive entropy.
In the following, we will say that a Néron-Severi lattice N has zero entropy (resp. positive
entropy) if any K3 surface X with NS(X) = N has zero entropy (resp. positive entropy).

The following result characterizes the automorphism group of a K3 surface with zero
entropy. If |E| is a genus 1 fibration on X, the automorphism group of |E| is the subgroup
of automorphisms of X that preserve E ∈ NS(X).

Theorem 2.2.8 ([Ogu07], Theorem 1.4). Let X be K3 surface with an infinite automorphism
group. Then X has zero entropy if and only if there exists a unique genus 1 fibration |E| on
X with infinite automorphism group.

We stress that the uniqueness above is not up to automorphism, but it is an absolute
uniqueness. Since we will be mainly interested in elliptic K3 surfaces, we can state Theorem
2.2.8 in a more precise way:

Corollary 2.2.9. Let X be a K3 surface admitting an elliptic fibration |F | with infinitely
many sections. Then X has zero entropy if and only if |F | is the unique elliptic fibration on
X with infinitely many sections.

Proof. Notice first that, if |F | is an elliptic fibration on X with infinitely many sections, then
|F | has an infinite automorphism group. This follows from the injectivity in equation (1.2).
Thus, if X admits two distinct elliptic fibrations with infinitely many sections, then X has
positive entropy by Theorem 2.2.8.
Conversely, assume that |F | is the unique elliptic fibration on X with infinitely many sections.
If by contradiction X has positive entropy, then by Theorem 2.2.8 there exists a genus 1
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fibration |E| on X with infinite automorphism group. Choose any automorphism f of X
of infinite order preserving |E|. Then f also preserves the elliptic fibration |F |: indeed, the
element f ∗F induce an elliptic fibration with infinitely many section, and |F | is the unique
such fibration. Hence f preserves the sublattice 〈F,E〉 ⊆ NS(X), and therefore it can be seen
as an isometry of the orthogonal complement L of 〈F,E〉 ⊆ NS(X). E and F are isotropic,
so the sublattice 〈F,E〉 has signature (1, 1), and consequently L is negative definite. f is an
isometry of infinite order of a definite lattice, a contradiction by [SS19, Theorem 2.14].

Remark 2.2.10. 1. K3 surfaces with a unique elliptic fibration with infinitely many sec-
tions were studied by Nikulin [Nik14]. He shows that as soon as a K3 surface admits
two distinct elliptic fibrations with infinitely many sections, then it admits an infinite
number of such fibrations (cf. [Nik14, Theorem 10]).

2. If a K3 surface admits an elliptic fibration with infinitely many sections, then its Picard
rank ρ(X) is at least 3. This follows from the Shioda-Tate formula 1.2.6, as the rank
of the Mordell-Weil group of the fibration is non-zero.

2.3 Elliptic K3 surfaces of zero entropy

Let X be a smooth complex projective elliptic K3 surface. Assume that X admits an elliptic
fibration |F | with only irreducible fibers (i.e. all the singular fibers of the fibration are either
nodal or cuspidal rational curves). Most of the results of this section heavily depend on this
assumption; we will say explicitly when this assumption can be dropped.

If S0 is the zero section of the fibration |F |, the unimodularity of the trivial lattice
〈F, S0〉 ∼= U induces an orthogonal decomposition

NS(X) = 〈F, S0〉 ⊕ L,

where L is an even negative definite lattice of rank r = ρ(X) − 2. Notice that L has no
roots, because the elliptic fibration |F | has no reducible fibers.

We will denote in the following by [x, y, z] ∈ NS(X) the divisor written with respect to
the basis {F, S0,B} of NS(X), where B is a basis of L, fixed once and for all. We will denote
by ‖z‖L the norm of the vector z ∈ L.

Let 0 6= D = [x, y, z] ∈ NS(X) be a divisor (not necessarily irreducible nor reduced) such
that D2 ≥ −2. By Riemann-Roch one of D and −D is effective, and since F · D = y, we
have that D is effective if y > 0, while −D is effective if y < 0. This leads to the following
useful characterization:

Lemma 2.3.1. Let X be a K3 surface admitting an elliptic fibration |F | with only irreducible
fibers. Let A ∈ NS(X) be a divisor with A2 ≥ 0 and A · F ≥ 0. Then A is nef if and only if
A ·D ≥ 0 for all divisors D = [x, y, z] ∈ NS(X) with D2 = −2 and y > 0.
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Proof. The divisor A is nef if and only if it has non-negative intersection with all irreducible
(−2)-curves on X (cf. [Huy16, Corollary 8.1.4, 8.1.7]). Suppose that there exists D =
[x, y, z] ∈ NS(X) with D2 = −2 and y > 0 such that A · D < 0. Then by the above
discussion D is effective, and, since D2 = −2, it splits into the sum of some irreducible
(−2)-curves. The inequality A ·D < 0 implies that there exists an irreducible (−2)-curve C
(which is a summand of D) such that A · C < 0, contradicting the nefness of A.
Conversely, if A is not nef, there exists an effective (−2)-curve C = [x, y, z] such that
A ·C < 0. As above y ≥ 0, but y = 0 only if C is contained in a fiber of the elliptic fibration
|F |, hence y > 0 since by assumption there are no reducible fibers.

Lemma 2.3.2. Let X be a K3 surface admitting an elliptic fibration |F | with only irreducible
fibers. Let F 6= E = [α, β, γ], C = [x, y, z] ∈ NS(X) be effective, primitive divisors such that
E2 = 0 and C2 = −2. Then the equation E · C = m can be equivalently written as

−1

2
‖v‖L = β(β +my),

where v = yγ − βz. In particular E is nef if and only if

−1

2
‖v‖L − β2 ≥ 0

for any such C, and E induces a genus 1 fibration with only irreducible fibers if and only if

−1

2
‖v‖L − β2 > 0

for any such C.

Proof. This is a straightforward computation. The self-intersections of E,C force{
α = β +

− 1
2
‖γ‖L
β

x = y +
− 1

2
‖z‖L−1

y

. (2.1)

Notice that β 6= 0 since E 6= F , and y 6= 0 since we are assuming that L has no roots.
Substituting these expressions into the equation

m = E · C = αy + βx− 2βy + (γ, z)L,

we easily obtain the desired equation.

The next proposition highlights a certain “periodicity” of elliptic curves on X; notice
that this highly depends on the assumption that X admits an elliptic fibration with only
irreducible fibers.

Proposition 2.3.3. Let X be a K3 surface admitting an elliptic fibration with only irre-
ducible fibers. Let E = [α, β, γ], E ′ = [α′, β, γ′] ∈ NS(X) be primitive isotropic elements with
the same intersection number F ·E = F ·E ′ = β and γ′ ≡ γ (mod β) (that is, all the entries
are congruent modulo β). Then E induces a genus 1 fibration (resp. an elliptic fibration) on
X if and only if E ′ does so.
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Proof. Say γ = [γ1, . . . , γr] and assume γ′ = [γ1 + β, γ2, . . . , γr]; α
′ is an integer by equation

(2.1), since γ′, γ are congruent modulo β. Then E is nef if and only if E ′ is nef: indeed, if
there exists an effective C = [x, y, z] such that C2 = −2 and E ·C = m < 0, by Lemma 2.3.2
we have

−1

2
‖v‖L = β(β +my),

where v = yγ − βz. If we put z′ = [z1 + y, z2, . . . , zr], clearly v = yγ′ − βz′ doesn’t change,
so E ′ · C ′ = m < 0, where C ′ = [x′, y, z′]. Analogously, E has a section if and only if E ′ has
one. We conclude by repeating the same argument for every coordinate of γ.

Remark 2.3.4. This periodicity in Proposition 2.3.3 can be interpreted via translations with
respect to the given elliptic fibration |F |. For, let S = [x, 1, z], with z ∈ L. Notice that S
is irreducible, since if it split into the sum of irreducible (−2)-curves, one of these would be
orthogonal to F , and we assumed that are no vertical (−2)-curves in |F |. Thus S is a section
of |F | and it induces a translation τS, that is an automorphism of the K3 surface preserving
the class F . It is not hard to show that

τS([α, β, γ]) = [α′, β, γ + βz]

for a suitable α′. Therefore, elements E and E ′ as in Proposition 2.3.3 are always conjugated
under the action of Aut(X).

The following theorem will be one of our main tools to prove that many K3 surfaces
have positive entropy. Let again X be an elliptic K3 surface with NS(X) = U ⊕ L. For any
primitive sublattice L′ of L there exists an elliptic K3 surface X ′ with Néron-Severi lattice
NS(X ′) = U ⊕ L′. This follows from the surjectivity of the period map for K3 surfaces (cf.
[Tod80], Theorem 1), since U ⊕L′ ↪→ U ⊕L ↪→ ΛK3 embeds primitively into the K3 lattice.
The goal of the following theorem is to relate the entropy of X to the entropy of X ′. Recall
that we say that NS(X) has positive entropy if X has positive entropy (since having positive
entropy only depends on the Néron-Severi lattice by Remark 2.2.7).

Theorem 2.3.5. Let X be a K3 surface admitting an elliptic fibration with only irreducible
fibers, inducing a decomposition NS(X) = U ⊕ L. Assume that there exists a primitive
sublattice L′ of L of corank 1 such that U ⊕ L′ has positive entropy. Then X has positive
entropy if one of the following conditions holds:

• | det(L)| > 2| det(L′)|

• | det(L)| = 2| det(L′)| and ρ(X) ≤ 10.

Proof. By the primitivity of L′ in L, we can fix a basis for L that completes a basis of L′.
Then the intersection matrix of L is

L =

(
L′ M
MT −2k

)
.
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We denote by [x, y, z, w] ∈ NS(X) the divisor with coordinates x, y wrt U , z wrt L′ and w
wrt to 〈−2k〉. By assumption U ⊕L′ has positive entropy, so by Corollary 2.2.9 there exists
a primitive effective divisor E ′ = [α, β, γ] ∈ U ⊕ L′, E ′ 6= [1, 0, . . . , 0], that induces a second
elliptic fibration with infinitely many sections on every K3 surface X ′ with NS(X ′) = U⊕L′.
We extend E ′ to a divisor E = [α, β, γ, 0] ∈ NS(X) by fixing the last coordinate to 0. Clearly
E is still primitive, effective and isotropic. We claim that E is also nef. By construction we
have that E has non-negative intersection with all the (−2)-curves coming from U ⊕ L′, i.e.
E · C ≥ 0 for any effective (−2)-curve C = [x, y, z, 0] ∈ NS(X).
Therefore, let C = [x, y, z, w] ∈ NS(X) be an effective (−2)-curve with w 6= 0. We need to
show that E · C ≥ 0. By Lemma 2.3.2 we have that the intersection E · C equals (up to a
positive constant)

−1

2
vTL′v +MTv · (βw) + kβ2w2 − β2,

where v = yγ − βz. We know that the minimum of the previous expression is attained at
the vector v where the gradient vanishes, i.e. at the vector v such that L′v = βwM , and by
substituting this in the previous expression we find that the minimum is in fact

1

2
β2w2MTL′−1M + kβ2w2 − β2.

After dividing by β2w2, it is sufficient to show that

1

2
MTL′−1M + k − 1

w2
≥ 0.

Since w ∈ Z is an integer, it then suffices to prove that

MTL′−1M ≥ −2k + 2. (2.2)

Now consider the matrix

P =

(
L′ M
MT −2k + 2

)
,

obtained from L by changing the −2k in the last entry to −2k + 2. By using Laplace’s
formula for the determinant, we compute that

det(P ) = det(L) + 2 det(L′).

L′ and L are negative definite, so their determinants are opposite in sign. Since by assump-
tion | det(L)| ≥ 2| det(L′)|, the deteminant of P is also opposite in sign to det(L′) (or 0 if
| det(L)| = 2| det(L′)|), hence P is negative semidefinite. By the theory of Schur complement
(see for instance [Gal19, Proposition 2.2]) this implies that

(−2k + 2)−MTL′−1M ≤ 0,

which is the desired inequality (2.2). This proves that E ∈ NS(X) is nef.
Moreover E induces an elliptic fibration on X, since it already had a section on U ⊕ L′. It
only remains to show that E has infinitely many sections. We will do it separately for the
two distinct assumptions.
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• Assume that | det(L)| > 2| det(L′)|. Then by the discussion above det(P ) 6= 0 is
opposite in sign to det(L′), so P is negative definite. The theory of Schur complement
implies that

(−2k + 2)−MTL′−1M < 0,

i.e. the inequality (2.2) holds and is never an equality. In other words, E is not only nef,
but it has strictly positive intersection with all the effective (−2)-curves C = [x, y, z, w]
with w 6= 0. This means that the (−2)-curves orthogonal to E are actually elements of
the sublattice U⊕L′, and therefore the elliptic fibration |E| has at most rk(L′) < rk(L)
vertical components not meeting the zero section. By the Shioda-Tate formula 1.2.6
we conclude that |MW(E)| =∞.

• Assume instead that ρ(X) ≤ 10. The previous discussion implies that E induces an
elliptic fibration |E| on X with zero section SE. Consider the primitive embedding
i : 〈E, SE〉 = U ↪→ U ⊕ L. The orthogonal complement i(U)⊥ is in the genus of L,
and L is a lattice without roots by assumption, thus i(U)⊥ is not a root-overlattice by
Proposition 1.1.15. We conclude again that |MW(E)| =∞

Remark 2.3.6. This criterion is not sharp, as we will see later, but it is quite powerful.
Indeed, it will allow us to work only with a finite number of lattices (cf. Algorithm 2.5.7).

We now present a second method to prove that a certain K3 surface X has positive
entropy. Recall that this amounts to showing that X admits (at least) two elliptic fibrations
with infinitely many sections. Therefore it is natural to study the number of elliptic fibrations
on X, and then investigate how many of them have infinitely many sections. However the
number of elliptic fibrations is often infinite (cf. [Nik14, Theorem 10]), hence it is more
significant to compute the number of elliptic fibrations up to the action of Aut(X). This
number is finite by [Ste85, Proposition 2.6].
We denote

N(X) = #{elliptic fibrations on X}/Aut(X),

Npos(X) = #{elliptic fibrations on X with infinitely many sections}/Aut(X).

Clearly Npos(X) ≤ N(X), and if Npos(X) > 1, then X has positive entropy by Corollary
2.2.9. Notice that in the next result we do not assume any extra assumption on the given
elliptic fibration |F |. A generalization of the next theorem has recently been proved by Festi
and Veniani [FV21b, Theorem 2.8].

Theorem 2.3.7. Let X be an elliptic K3 surface, NS(X) = U ⊕ L and denote by |F | the
given elliptic fibration. If the Picard rank ρ(X) is even (and ρ(X) < 20), assume that the
period ωX ∈ T(X)C is very general. Then N(X) = 1 if and only if L is unique in its genus
and the restriction map O(L)→ O(AL) is surjective.

Proof. Assume first that the restriction map O(L) → O(AL) is not surjective, and let ϕ ∈
O(AL) be an isometry of AL not in the image of the restriction map. By [Huy16, Theorem
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14.2.4 ] we have an f ∈ O(NS(X)) such that f = ϕ ∈ O(AL) = O(ANS(X)). Up to composing
f with a finite number of elements in the Weyl group W (NS(X)), we can assume that
E = f(F ) is nef, and hence that it induces an elliptic fibration. Notice that the Weyl group
W (NS(X)) acts trivially on ANS(X), so we still have that f = ϕ ∈ O(AL) = O(ANS(X)). We
want to prove that E and F induce distinct elliptic fibrations under the action of Aut(X).
Assume by contradiction that there exists g ∈ Aut(X) such that g∗(F ) = E. Then h =
(g∗)−1 ◦f preserves the elliptic fibration |F |. Up to composing with a translation in MW(F ),
we can assume that h preserves the lattice U generated by F and its zero section; hence
h ∈ O(L) is an isometry of the orthogonal complement L of U . By the generality assumption
on ωX , Remark 1.2.12 and Lemma 1.2.11 imply that (g∗)−1 = ± id ∈ O(ANS(X)) = O(AL).

Hence h = ±f = ±ϕ does not lift to an isometry of L, a contradiction.
Assume instead that L is not unique in its genus, and let M be a lattice in the genus of L not
isometric to L. By [Nik79b, Proposition 1.5.1] we have an embedding j : M ↪→ NS(X) such
that j(M)⊥ = U . Assume that j(M)⊥ = 〈E,C〉, where E2 = 0, C2 = −2 and E ·C = 1. Up
to applying a certain (finite) number of isometries si ∈ W (NS(X)), we can assume that E is
nef, and induces an elliptic fibration on X with respect to which NS(X) = 〈E,C〉 ⊕M . C
is effective, since E ·C = 1 > 0, so C splits as the union of some smooth (−2)-curves. Since
E is nef and E ·C = 1, necessarily C is the union of a section SE of the elliptic fibration |E|
and some vertical components, say

C = SE +
∑
i,j

C
(j)
i ,

with C
(j)
i a vertical (−2)-curve for every i, j, and j indexing the reducible fibers of the

fibration induced by E. Since

−2 = C2 = S2
E + 2SE

(∑
i,j

C
(j)
i

)
+
∑
j

(∑
i

C
(j)
i

)2

,

and the intersection form restricted to the (−2)-curves of a reducible fiber not intersecting
SE is negative definite, we have that for all j there exists one and only one i such that
SE · C(j)

i = 1. Hence applying the reflections s
C

(j)
i
∈ W (NS(X)) we keep E fixed and we

map SE into S ′E = SE +
∑

j C
(j)
i . By repeating the same argument to S ′E, we conclude that

C and SE are conjugated under the action of the Weyl group W (NS(X)), and therefore

〈E, SE〉⊥ ∼= 〈E,C〉⊥ ∼= M.

Certainly E,F are distinct up to automorphism, since the two orthogonal complements
L = 〈F, S0〉⊥ and M = 〈E, SE〉 are not isometric by assumption.
Finally we have to prove the converse. So assume that L is unique in its genus and the
restriction map O(L)→ O(AL) is surjective. Let |E| be another elliptic fibration on X. The
orthogonal complement 〈E, SE〉⊥ ⊆ NS(X) is in the genus of L, hence it is isometric to L by
assumption. Therefore there exists an isometry f ∈ O+(NS(X)) such that f(F ) = E. The
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restricted isometry f ∈ O(AL) comes by assumption from a ϕ ∈ O(L), so we can construct
g ∈ O+(NS(X)) such that g|〈E,SE〉 = id and g|L = ϕ. Now h = g−1◦f ∈ O+(NS(X)) satisfies
by construction

h(F ) = E and h = id ∈ O(AL),

so by Lemma 1.2.11.(1) there exists h′ = h ◦ s ∈ O+(NS(X)) such that h′(F ) = E, h′

preserves the nef cone and h′ = id ∈ O(AL). Thus h′ is an automorphism of X by Lemma
1.2.11.(3), and consequently F and E are conjugated under the action of Aut(X).

In a completely analogous manner we can prove:

Theorem 2.3.8. Let X be an elliptic K3 surface with NS(X) = U ⊕ L, where L is not a
root-overlattice. If the Picard rank ρ(X) is even (and ρ(X) < 20), assume that the period
ωX ∈ T(X)C is very general. Then Npos(X) = 1 if and only if L is the unique non-root-
overlattice in its genus and the restriction map O(L)→ O(AL) is surjective.

It is important to stress the fact that the numbers N(X), Npos(X) really depend on the
period of X, not only on the Néron-Severi lattice NS(X) (see for instance [FV21b, Theorem
2.8]). However in our case we can bypass the generality assumption, since we are only
interested in whether the entropy of X is zero or positive. Let us make this precise with the
following corollary.

Corollary 2.3.9. Let X be an elliptic K3 surface with NS(X) = U⊕L. Assume that either:

• L has at least two distinct non-root-overlattices in its genus, or

• The restriction map O(L)→ O(AL) is not surjective.

Then X has positive entropy.

Proof. Let X ′ be a very general K3 surface with NS(X ′) = U ⊕ L. Then Theorem 2.3.8
implies that X ′ has positive entropy. Since having positive entropy only depends on the
Néron-Severi lattice and NS(X) = NS(X ′), we conclude that X also has positive entropy.

Theorem 2.3.5 and Corollary 2.3.9 give two concrete methods to understand whether a
K3 surface has zero or positive entropy. In the next sections we will perform an exhaustive
inspection of the Néron-Severi lattices of elliptic K3 surfaces admitting an elliptic fibration
with only irreducible fibers, in order to obtain the classification of Theorem 2.1.2.

2.4 K3 surfaces of Picard rank 3

By the Shioda-Tate formula 1.2.6, a K3 surface admitting an elliptic fibration with infinitely
many sections must have Picard rank at least 3. The aim of this section is to study the
number of elliptic fibrations on K3 surfaces of Picard number 3.
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Let X be an elliptic K3 surface of Picard rank 3, and denote by |F | an elliptic fibration
on X. The Néron-Severi lattice has the form

NS(X) = U ⊕ 〈−2k〉

for a certain k ≥ 1. If k = 1, then the pencil |F | admits a reducible fiber and only one
section by Proposition 1.2.9. Thus we can assume k ≥ 2. Shimada [Shi15] presents an
algorithm to compute the automorphism group of these K3 surfaces; however the full auto-
morphism group can only be computed for a finite number of Picard lattices (more precisely,
Shimada computes it for k ≤ 16). Notice that, if k ≥ 2, the elliptic fibration induced by F
has no reducible fibers, thus infinitely many sections by Shioda-Tate’s formula 1.2.6. In par-
ticular, any K3 surface X with NS(X) = U⊕〈−2k〉, k ≥ 2, has infinite automorphism group.

Remark 2.4.1. Most results proved in this section are contained in Nikulin’s paper [Nik99];
however, since some of the ideas used will be useful later on, we have decided to include the
proofs. Moreover, our approach is rather different from Nikulin’s. Of course the classification
of K3 surfaces of Picard rank 3 admitting a unique elliptic (resp. genus 1) fibration we
independently obtain coincides with Nikulin’s (cf. Theorem 3 and the subsequent discussion
in [Nik99]).

Let us fix a basis {F, S,D} of the lattice U ⊕ 〈−2k〉 such that the intersection matrix is0 1 0
1 −2 0
0 0 −2k

 .

We will denote by [α, β, γ] the divisor αF + βS + γD in NS(X) = U ⊕ 〈−2k〉. For the sake
of readability, we rewrite Lemma 2.3.2 and equation (2.1) in this setting.

Remark 2.4.2. Let X be a K3 surface with NS(X) = U ⊕ 〈−2k〉. Since the rank 1 lattice
〈−2k〉 is unique in its genus, all elliptic fibrations on X are isomorphic. Therefore, if k ≥ 2,
all elliptic fibrations on X have no reducible fibers, and infinitely many sections.

Lemma 2.4.3. Keep the notations as above. Let F 6= E = [α, β, γ], C = [x, y, z] ∈ NS(X)
be effective, primitive divisors such that E2 = 0 and C2 = −2. Then we have

β | kγ2, y | kz2 − 1. (2.3)

Moreover the equation E · C = m can be equivalently written

k(yγ − βz)2 = β(β +my). (2.4)

In particular E is nef if and only if

k(yγ − βz)2 − β2 ≥ 0

for any such C, and E induces a genus 1 fibration with only irreducible fibers if and only if

k(yγ − βz)2 − β2 > 0

for any such C.
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Proposition 2.4.4. Let X be an elliptic K3 surface with NS(X) = U ⊕ 〈−2k〉, for k ≥ 2.
The number N(X) of elliptic fibrations on X up to automorphism is 2m−1, where m is the
number of distinct prime divisors of k.

Proof. Let |E| be an elliptic fibration on X, SE its zero section. The lattice 〈E, SE〉 ∼= U
embeds primitively in the lattice NS(X) = U ⊕ 〈−2k〉, and since the rank 1 lattice 〈−2k〉
is unique in its genus, we have that 〈E, SE〉⊥ ∼= 〈−2k〉. Therefore E induces an isometry
f ∈ O+(NS(X)) such that f(F ) = E. This gives a function

{|E| elliptic fibration} → {f ∈ O+(NS(X))}.

Composing with the restriction map O(NS(X)) → O(ANS(X)) = O(AL), we obtain another
function

{|E| elliptic fibration} → {f ∈ O(AL)}.
By the proof of Theorem 2.3.7 this map is surjective. Two elliptic fibrations |E1|, |E2|
are conjugated under the action of Aut(X) if and only if there exists g ∈ Aut(X) such
that g(E1) = E2 thus, by Lemma 1.2.11, if and only if the induced f1, f2 ∈ O(AL) satisfy
f1 = ±f2. Consequently we obtain a bijection

{elliptic fibrations}/Aut(X)←→ O(AL)/{± id}.

The discriminant group AL is cyclic, generated by the element D
2k

, where {D} is a basis for
L = 〈−2k〉. Its norm in AL is − 1

2k
(mod 2Z), hence we can identify O(AL) with the group

Gk = {x ∈ Z/2kZ | x2 ≡ 1 (mod 4k)}.

An immediate application of the Chinese remainder theorem shows that Gk has 2m elements,
concluding the proof.

Proposition 2.4.4 implies that the K3 surfaces X with NS(X) = U⊕〈−2k〉, k not a power
of a prime, have at least two different elliptic fibrations with infinitely many sections, and
thus positive entropy. In order to deal with the remaining cases, we need a more in-depth
analysis.

Proposition 2.4.5. Let X be a K3 surface with NS(X) = U ⊕ 〈−2k〉, and assume that
there exists an integer q such that q2 < k and q - k − 1. Then X has infinitely many elliptic
fibrations, or equivalently it has positive entropy.

Proof. If k is not a power of a prime, then X has positive entropy by Proposition 2.4.4.
Therefore assume that k = pn is the power of a prime. We distinguish two cases depending
on the exponent n.

n ≥ 3: Consider the divisor E = [p + pn−1, p, 1] on X. We claim that E induces a genus 1
fibration on X with infinite automorphism group. First, E is nef: indeed by Lemma
2.4.3 it amounts to showing that

pn(y − pz)2 ≥ p2
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for any effective (−2)-curve C = [x, y, z]. Since y | pnz2 − 1 by equation (2.3), y must
be coprime with p. Therefore y − pz 6= 0 and

pn(y − pz)2 ≥ pn ≥ p3 ≥ p2,

as claimed. Notice that E does not admit a section, as the intersection E·C is a multiple
of p for any curve C in X. However the degree of the genus 1 fibration |E| (cf. Section
1.2.1) is p, since E admits the p-section Sp = [p2n−4 + 2pn−2, pn−2− 1, pn−3]. Therefore
we can consider the corresponding Jacobian fibration J(X), which has Néron-Severi
lattice isometric to U ⊕ 〈−2pn−2〉 by Section 1.2.1. Since n ≥ 3 by assumption, E
becomes an elliptic fibration J(E) with only irreducible fibers on J(X) by Remark
2.4.2. Consequently the group Aut(J(E)) is infinite, and it acts with infinite order on
E: indeed, under the identifications J(X) ∼= Pic0(X/P1) and X ∼= Pic1(X/P1) (see
[Huy16, Section 11.4.1]), the generic fiber of J(X) acts by translation on X and it
preserves the fibration |E|. This shows that Aut(E) is infinite. We conclude that X
has positive entropy by Theorem 2.2.8.

n ≤ 2: By assumption there exists a q such that q2 < k = pn and q - pn − 1. Since n ≤ 2, q
must be coprime with p. Consider the primitive isotropic divisor E = [q2 + pn, q2, q].
We claim that E induces an elliptic fibration on X. In order to show that it is nef, by
Lemma 2.4.3 it amounts to showing that

pn(yq − q2z)2 ≥ q4

for any effective (−2)-curve C = [x, y, z]. Since pn > q2, it suffices to show that
y− qz 6= 0. Therefore assume by contradiction that y = qz. By equation (2.3) we have
that y = qz | pnz − 1, so necessarily z = 1. But then y = q | pn − 1, contradicting the
assumption on q. Then we have to show that |E| has a section, or equivalently that
its degree is 1. Since det(NS(X)) = 2k = 2pn with n ≤ 2, it is sufficient to show that
the degree of |E| is not p. In fact E · C is never a multiple of p if C has square −2:
indeed, if E · C = m, by Lemma 2.4.3 we have that

pn(y − qz)2 = q2 +my,

so if p | m we would have that p | q, a contradiction.

The next lemma lists the integers k that are not covered by Proposition 2.4.5:

Lemma 2.4.6. The only natural numbers k satisfying the condition

(C): For all r ∈ N with r2 < k, r | k − 1

are
L1 = {2, 3, 4, 5, 7, 9, 13, 25}.
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Proof. Let N be the number of distinct prime divisors of k − 1, and assume N ≥ 5. Put

e =
1

2
log2 k.

We have that N ≤ e, since otherwise, denoted by {pi} the increasing sequence of prime
numbers, we would have

N∏
i=1

pi > 4N = 22N > 22e = k > k − 1,

(remember that we have N ≥ 5, and 2 ·3 ·5 ·7 ·11 > 45), contradicting the fact that k−1 has
N distinct prime divisors. Now let q be the smallest prime number not dividing k− 1. If we
can show that q2 < k, we are done. k−1 has N distict prime divisors, so q is smaller or equal
than the (N + 1)-th prime number, which in turn is strictly smaller than 2N (since there is
always a prime number between α and 2α for every α > 1). Hence q2 < (2N)2 ≤ 22e = k.
If instead N ≤ 4, then as above we can choose q as one of the first 5 prime numbers, hence
q ≤ 11. Therefore all natural numbers strictly greater than 112 = 121 cannot satisfy (C). A
quick inspection of the first 121 natural numbers yields the list L1 above.

Combining Proposition 2.4.5 and Lemma 2.4.6 we are left with a finite number of Picard
lattices, corresponding to the values of k in the set L1 above. The next is the main result of
the section, completing the classification of K3 surfaces of zero entropy and Picard number
3.

Theorem 2.4.7. Let X be an elliptic K3 surface of Picard rank 3, NS(X) = U ⊕ 〈−2k〉,
k ≥ 2. Then X has zero entropy (or equivalently, a unique elliptic fibration) if and only if
k ∈ L1 = {2, 3, 4, 5, 7, 9, 13, 25}.

The ‘only if’ part is proved by Proposition 2.4.5 and Lemma 2.4.6. For the ‘if’ part, we
are going to perform an exhaustive study of the possible elliptic fibers on these remaining
surfaces. We start with a technical lemma.

Lemma 2.4.8. Let X be a K3 surface with NS(X) = U ⊕〈−2k〉, and assume that k = pn is
a power of a prime. Let E ∈ NS(X) be effective and primitive with E2 = 0 and C ∈ NS(X)
with C2 = −2 and E · C = 1. Then E is either the given elliptic fiber F on X, or is of one
of the following two types:

F ′q,γ′ = [q2 + kγ′2, q2, qγ′], F ′′q,γ′ = [q2k + γ′2, q2k, qγ′],

with q > 0 and (q, γ′) = 1.

Proof. Let E = [α, β, γ], and put q = (β, γ) > 0. By primitivity of E we have that q - α,

and the equation E2 = 0 can be rewritten as α = β + kγ2

β
. Therefore q2 must divide β, say

β = q2β′, γ = qγ′, with (β′, γ′) = 1. Let us distinguish two cases.
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• If p | q, then p divides β and γ, so, by primitivity of E, p must not divide

α = q2β′ +
pnγ′2

β′
.

Since β′ is coprime with γ′, the only possibility for this to hold is that β′ = pn = k.
This case yields an elliptic fiber of type F ′′q,γ′ .

• If instead (p, q) = 1, then as above β′ | pn, say β′ = pm. Let C = [x, y, z]. If 0 < m < n,
then equation (2.4)

pn(γ′y − qβ′z)2 = β′(q2β′ + y)

implies that p | q2β′ + y, thus p | y, and this is a contradiction since p | y | pnz2 − 1.
Therefore β′ can only be either 1 (yielding a fiber of type F ′q,γ′) or k = pn (yielding a
fiber of type F ′′q,γ′).

The condition (q, γ′) = 1 is necessary in order for E to be primitive.

Proof of Theorem 2.4.7. We only have to show the ‘if’ direction by Proposition 2.4.5 and
Lemma 2.4.6. Let X be a K3 surface with NS(X) = U ⊕〈−2k〉, and assume that k is one of
the values in L1. We want to prove that the given elliptic fibration |F | on X is the unique
elliptic fibration. By Lemma 2.4.8 we know that the possible other elliptic fibers on X are
either F ′q,γ′ or F ′′q,γ′ for some coprime integers q > 0 and γ′. It is therefore sufficient to show
that none of these divisors can be nef. We start with F ′q,γ′ .
Let E = F ′q,γ′ = [q2 + kγ′2, q2, qγ′]. By Proposition 2.3.3 we can assume that 0 < qγ′ < q2,
or equivalently that γ′ ∈ (0, q).
If E induces an elliptic fibration, then we have that E ·C > 0 for every effective (−2)-curve C,
since E does not admit any reducible fiber. By Lemma 2.4.3, we can rewrite the inequality
E · C > 0 as

k(yγ′ − qz)2 − q2 > 0

where C = [x, y, z]. Consider first the case when C is a section of the given elliptic fibration
F , i.e. F ·C = 1. Then C = [kn2, 1, n] for some n ∈ Z, and the inequality E ·C > 0 becomes

k(γ′ − qn)2 > q2, or equivalently |γ′ − qn| > q√
k

for any n ∈ Z. This inequality can hold for all n ∈ Z only if γ′ /∈ (−q/
√
k, q/
√
k) mod-

ulo q. The next picture summarizes the situation: γ′ can only be in the green part if E is nef.

0 q√
k

q − q√
k

q

Notice that this is already sufficient to conclude if k ≤ 4, since the green part is already
empty.
If instead k ≥ 5, consider next the case when C = [x, y, z] is a bisection of F , i.e. y = F ·C =
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2. By Lemma 2.4.3 we have that x = 2 + kz2−1
2

, and since k ≡ 1 (mod 2), then necessarily
z = 2m + 1 must be odd. Thus C is of the form C = [∗, 2, 2m + 1] for some m ∈ Z, and
hence we can rewrite the inequality E · C > 0 as

k(2γ′ − q(2m+ 1))2 > q2, or equivalently |(2γ′ − q)− 2mq| > q√
k

for any m ∈ Z. This inequality can hold for all m ∈ Z only if 2γ′ − q /∈ (−q/
√
k,+q/

√
k)

modulo 2q, that is if γ′ /∈ (q/2− q/2
√
k, q/2 + q/2

√
k) modulo q. Again the picture summa-

rizes the situation.

0 q√
k

q − q√
k

q

q
2
− q

2
√
k

q
2

+ q

2
√
k

Notice that this is already sufficient to conclude if k ≤ 9, since the green part is already
empty.
If instead k ≥ 10, we continue the process by considering 3-sections and 4-sections of the
given elliptic fibration F , that are of the form [∗, 3, 3r ± 1], [∗, 4, 4s ± 1] respectively, for
r, s ∈ Z. It is straightforward to check that with these two further conditions the green part
becomes empty for each value of k, thus concluding the proof. The reasoning for F ′′q,γ′ is
completely identical.

Remark 2.4.9. A natural, follow-up question is to study the moduli spacesM2k of U⊕〈−2k〉-
polarized K3 surfaces, and to investigate whether those M2k corresponding to the zero
entropy cases have some special geometric property. The same question has been asked for
in the case of K3 surfaces with finite automorphism group: in many cases the corresponding
moduli spaces are unirational (cf. [Rou19; Rou20]). In Chapters 3 and 4 we tackle the
problem of studying the geometry of the moduli spaces M2k. It turns out that for the
8 cases k ∈ {2, 3, 5, 7, 9, 13, 25} of zero entropy, the corresponding moduli space M2k is
unirational (cf. Theorem 4.1.1).

Another natural question is whether the elliptic K3 surfaces with NS(X) of one of these
8 types admit other genus 1 fibrations. As a corollary of the previous theorem, any other
genus 1 fibration must have no sections.

Theorem 2.4.10. Let X be an elliptic K3 surface of Picard rank 3, NS(X) = U ⊕ 〈−2k〉
and k ∈ {2, 3, 4, 5, 7, 9, 13, 25}. Denote by F the fiber of the given elliptic fibration.

1. If k ∈ {2, 3, 5, 7, 13} is prime, then X admits a unique genus 1 fibration, induced by F .

2. If k = p2 ∈ {4, 9, 25} is a square, then X admits infinitely many genus 1 fibrations, all
meeting the given elliptic fiber F at p points (counted with multiplicity). Moreover, the
number of genus 1 fibrations on X up to the action of Aut(X) is 2 if k ∈ {4, 9} and 3
if k = 25.

42



Proof. 1. By Theorem 2.4.7, any genus 1 fibration |E| on X different from |F | has no
sections, so its degree d is greater than 1. If J(X) is the Jacobian fibration associated
to |E|, we have that det(NS(J(X))) = det(NS(X))/d2 = 2k/d2 by Section 1.2.1. This
is however a contradiction if k > 2 is a prime number. If instead k = 2, we only have
the possibility d = 2; this would imply det(NS(J(X))) = 1, which is a contradiction,
as there are no even unimodular lattices of rank 3.

2. Assume that E = [α, β, γ] induces a genus 1 fibration on X. Going through the proof
of Lemma 2.4.8, we have that β = q2β′, γ = qγ′, with (q, γ′) = 1 and β′ a divisor of
k = p2. If β′ is either 1 or k = p2, then E is either of type F ′q,γ′ or of type F ′′q,γ′ , and
we have proved in Theorem 2.4.7 that all such elements cannot be nef. So E is of the
form

E = [q2p+ pγ′2, q2p, qγ′]

for some q > 0 and γ′ 6= 0 coprime with q′. We are going to repeat the argument in
the proof of Theorem 2.4.7.
Consider first the case k = 4, i.e. p = 2. Since E is nef, it has non-negative intersection
with all the sections of the elliptic fibrations |F |, that are of the form Sn := [4n2, 1, n]
for n ∈ Z. The inequality E · Sn ≥ 0 can be rewritten by Lemma 2.4.3 as

4(γ′ − 2qn)2 − 4q2 ≥ 0,

or equivalently
|γ′ − 2qn| ≥ q

for all n ∈ Z. This inequality can hold for all n ∈ Z only if γ′ /∈ (−q, q) modulo 2q, as
the picture shows.

0 2qq

Therefore γ′ ≡ q (mod 2q), hence γ′ is a multiple of q. But since q and γ′ are coprime
by assumption, we conclude that q = 1, i.e.

E = Eγ′ := [2γ′2 + 2, 2, γ′]

for some odd γ′ (as if γ′ is even, E is not primitive). By Proposition 2.3.3 we have that
Eγ′ is nef if and only if E1 = [4, 2, 1] is nef, and it is straightforward to check that E1

is indeed nef.
We move to the case k = 9, i.e. p = 3. We will use a similar approach as before. Since E
is nef, it has non-negative intersection with all the sections and bisections of the elliptic
fibration |F |, that are of the form Sn := [9n2, 1, n], Bn := [18m2 + 18m+ 6, 2, 2m+ 1]
respectively, for n,m ∈ Z. The inequalities E ·Sn ≥ 0 and E ·Bm ≥ 0 can be rewritten
by Lemma 2.4.3 as {

9(γ′ − 3qn)2 − 9q2 ≥ 0

9(2γ′ − 3q(2m+ 1))2 − 9q2 ≥ 0
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or equivalently {
|γ′ − 3qn| ≥ q

|(2γ′ − 3q)− 6mq| ≥ q
(2.5)

for all n,m ∈ Z. We look at γ′ modulo 3q. The first inequality can hold for all n ∈ Z
only if γ′ /∈ (−q, q) modulo 3q:

0 3qq 2q

Moreover the second inequality can hold for all m ∈ Z only if 2γ′−3q /∈ (−q, q) modulo
6q, that is if γ′ /∈ (q, 2q) modulo 3q:

0 3qq 2q

We conclude that γ′ ≡ ±q modulo 3q, i.e. γ′ is a multiple of q, and thus q = 1 from
the assumption that q and γ′ are coprime. We have shown that

E = Eγ′ := [3γ′2 + 3, 3, γ′]

for some γ′ coprime with 3 (otherwise E is not primitive). In order to check that all
these elements are nef, it is sufficient by Proposition 2.3.3 to show that E±1 = [6, 3,±1]
are nef. This is again a straightforward computation.
We conclude with the case k = 25, i.e. p = 5. The nefness of E implies that E has
non-negative intersection with all the sections, bisections, trisections and 4-sections of
the elliptic fibration |F |. Analogously to the above cases, these inequalities can be
rewritten as 

|γ′ − 5qn| ≥ q

|(2γ′ − 5q)− 10qm| ≥ q

|(3γ′ ± 5q)− 15qr| ≥ q

|(4γ′ ± 5q)− 20qs| ≥ q

(2.6)

for all n,m, r, s ∈ Z. In similar fashion to the cases k = 4, 9, these inequalities force γ′

to be a multiple of q, which in turn implies that q = 1 by the assumption that q and
γ′ are coprime. Thus

E = Eγ′ := [5γ′2 + 5, 5, γ′]

for some γ′ coprime with 5 (otherwise E is not primitive). In order to check that all
these elements are nef, it is sufficient by Proposition 2.3.3 to show that E±1 = [10, 5,±1]
and E±2 = [25, 5,±2] are nef. This is again a straightforward computation.
Summing up, we have shown that if k = p2 ∈ {4, 9, 25} is a square, then all the genus
1 fibrations on X are either the elliptic fibration |F | or they are of the form

E = Eγ′ := [pγ′2 + p, p, γ′]
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for some γ′ coprime with p. This proves the first part of the statement. In order to
count the number of genus 1 fibrations up to Aut(X), we use the fact that the action
of Aut(X) on NS(X) is generated by a translation τ ∈ MW(F ) and an involution σ:

τ =

1 k 2k
0 1 0
0 1 1

 , σ =

1 0 0
0 1 0
0 0 −1


(see [Shi15, Section 9]). This can be proved by using the fact that any automorphism f
of X preserves the elliptic fiber F , so up to composing with a power of τ we can assume
that f preserves the lattice 〈F, S0〉 ∼= U . But then f can be seen as an automorphism
of the orthogonal complement U⊥ = 〈−2k〉, hence necessarily f ∈ {id, σ}.
Now notice that the automorphisms τ, σ act on the genus 1 fibrations Eγ′ as

τ(Eγ′) = Eγ′+p, σ(Eγ′) = E−γ′ .

Thus all genus 1 fibrations Eγ′ are conjugated under the action of Aut(X) if p is 2 or
3, while if p = 5 we have two distinct classes, represented for instance by E1 and E2.

2.5 K3 surfaces of Picard rank 4 ≤ ρ(X) ≤ 10

Let X be an elliptic K3 surface of Picard rank 4 ≤ ρ(X) ≤ 10. From now on, we will assume:

Assumption 2.5.1. X admits an elliptic fibration |F | with only irreducible fibers.

Then NS(X) = U ⊕ L, where L has no roots. In order to single out the Néron-Severi
lattices of K3 surfaces of zero entropy, we want to apply Theorem 2.3.5 and Corollary 2.3.9.
We will proceed inductively: we already have a complete list of lattices of rank 3 of zero
entropy, and Theorem 2.3.5 allows us to obtain informations on the entropy of Néron-Severi
lattices of higher rank. Recall that any even hyperbolic lattice of rank at most 10 embeds
in the K3 lattice (cf. [Nik79b], Theorem 1.14.4), hence the orthogonal complement L of U
in NS(X) can be any even negative definite lattice of rank rk(L) ≤ 8.

Remark 2.5.2. The reason for which we restrict ourselves first to the case 4 ≤ ρ(X) ≤ 10 is
basically Proposition 1.1.15. Indeed, let X and NS(X) = U ⊕L be as above. Since L has no
roots, we know by Corollary 2.3.9 that, if L admits a non-isometric non-root-overlattice in
its genus, then X has positive entropy. However, given the fact that rk(L) ≤ 8, Proposition
1.1.15 implies that no lattice in the genus of L is a root-overlattice. In other words, if L is
not unique in its genus, then X has positive entropy.

One could hope that the checks involving Theorem 2.3.5 and Corollary 2.3.9 are enough
to single out the Néron-Severi lattices of the K3 surfaces of zero entropy. However this is not
the case, as we are going to see in the following. We present an algorithm that searches for
elliptic fibrations on a given Néron-Severi lattice. The algorithm is based on the following
lemma.
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Lemma 2.5.3. Let X be an elliptic K3 surface with NS(X) = U ⊕ L, L without roots. Let
E = [α, β, γ] ∈ NS(X) be a primitive element with E2 = 0. To any v ∈ L we associate the
finite set

I(v) =

{
y ∈ N : y |

(
−1

2
‖v‖L − β2

)
, z =

1

β
(yγ − v) ∈ L and y |

(
−1

2
‖z‖L − 1

)}
,

where z ∈ L means that z has integer entries. Then E is nef if and only if

I(v) = ∅ for all v ∈ L with − 1

2
‖v‖L < β2.

Proof. E is not nef if and only if there exists C = [x0, y0, z0] with C2 = −2, y0 > 0 such
that E · C < 0. Let v = y0γ − βz0. Then Lemma 2.3.2 shows that y0 | (−1

2
‖z0‖L − 1) and

−1
2
‖v‖L < β2. Moreover

−1

2
‖v‖L−β2 = −1

2
‖y0γ−βz0‖L−β2 ≡ −1

2
‖−βz0‖L−β2 = β2

(
−1

2
‖z0‖L − 1

)
≡ 0 (mod y0),

hence y0 ∈ I(v) and thus I(v) 6= ∅. Conversely, assume that y0 ∈ I(v) for a v ∈ L with
−1

2
‖v‖L < β2. Put z0 = 1

β
(y0γ − v) ∈ L and choose x0 ∈ Z such that C = [x0, y0, z0] has

C2 = −2 (such x0 is an integer since y0 | (−1
2
‖z0‖L− 1) by assumption). Then Lemma 2.3.2

shows that E · C < 0, hence E is not nef.

Remark 2.5.4. • Lemma 2.5.3 gives a practical way to decide whether a primitive isotropic
divisor is nef. Indeed, the set of v ∈ L satisfying 1

2
‖v‖L < β2 is finite, since L is negative

definite, so we only have to perform a finite number of checks.

• Lemma 2.5.3 can be generalized to any lattice L. Let L be any even negative definite
lattice, and E ∈ U ⊕L primitive of square zero. Consider the root part R = Lroot ⊆ L,
and say that R is generated by effective (−2)-roots r1, . . . , rm. Then the effective (−2)-
roots in U⊕L can be orthogonal or not to the given elliptic fiber F = [1, 0, 0] ∈ NS(X).
If r is an effective root with r ·F = 0, then r is a linear combination of r1, . . . , rm with
nonnegative coefficients. If instead r · F > 0, then r = [x, y, z] ∈ NS(X) has y > 0,
and hence we can apply the previous lemma. Summing up, we obtain that E is nef if
and only if the sets I(v) as in the lemma are empty, and Eri ≥ 0 for all i = 1, . . . ,m.

• Lemma 2.5.3 is a result analogous to Proposition 4.1 in [Shi14]. Shimada’s algorithm
checks the nefness of a divisor of positive square, while ours checks it for elements of
square 0. Both algorithms boil down to listing some short vectors in L = U⊥ ⊆ NS(X).

Algorithm 2.5.5 (Search for elliptic fibrations). We are given a Néron-Severi lat-
tice U ⊕ L, with n := rk(L), and we want to search for elliptic fibers E = [α, β, γ] ∈ U ⊕ L
for a fixed β ≥ 2.
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– Choose a vector γ = [γ1, . . . , γn] with 0 ≤ γi < β for all 1 ≤ i ≤ n such that

α := β +
−1

2
‖γ‖L
β

∈ Z and E := [α, β, γ] is primitive.

– List all the vectors v1, . . . , vN ∈ L with 1
2
‖v‖L < β2.

– For each vi compute the set I(vi) described in Lemma 2.5.3. If the sets I(vi) are empty
for 1 ≤ i ≤ N , then E is nef and we only have to search for a section of E.

– We compute the intersection E · C for all effective (−2)-curves C = [x, y, z] such that
1 ≤ y ≤ 10 and z = [z1, . . . , zn] with −β < zi < β. As soon as one of these intersection
numbers is 1, we stop the algorithm and we return E together with its section.

Recall that, since ρ(X) ≤ 10, by Remark 2.5.2 we only have to consider the Néron-Severi
lattices U ⊕L, with L unique in its genus. By Theorem 1.1.11, we know that L is unique in
its genus if and only if it is a multiple of one of the lattices of an explicit list (that we can
find at [LK13]). The first step is to reduce to a finite number of lattices, by using Theorem
2.3.5. We will use the following key idea.

Remark 2.5.6. Let L be a lattice in the list [LK13] of rank n, and fix any primitive sublattice
L′ of corank 1. Assume by inductive hypothesis that the list of Néron-Severi lattices of
Picard rank n+ 1 = 2 + (n− 1) is finite (it is indeed finite for ρ(X) = 3 by Theorem 2.4.7).
Then there exists a positive integer m0 such that the Néron-Severi lattices U ⊕ L′(m) for
m > m0 have positive entropy. Moreover notice that

det(L′(m)) = mn−1 det(L′), det(L(m)) = mn det(L),

for any m ≥ 1, hence there exists m1 such that | det(L(m1))| ≥ 2| det(L′(m1))|. Therefore by
Theorem 2.3.5 we have that all the Néron-Severi lattices U ⊕ L(m) with m ≥ max{m0,m1}
have positive entropy.

Algorithm 2.5.7 (Candidate lattices). We create a finite list of lattices that are candi-
date to have zero entropy. For the moment we assume n ≤ 8.

– Put n := 2. Let Ln−1 be the finite list of candidate lattices of rank n − 1. Consider
the list Lprimn of lattices in [LK13] of rank n (if the lattice is not even, multiply it by
2). We create an empty list Ltempn+1 .

– Pick L ∈ Lprimn , and choose its first principal minor L′ of rank n− 1. We set

m0 := max{m ≥ 1 | L′(m) ∈ Ln−1}, m1 :=

⌈
2
| det(L′)|
| det(L)|

⌉
− 1

and m := max{m0,m1}. We add to Ltempn+1 the lattices L(u) for 1 ≤ u ≤ m.
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– Pick L ∈ Ltempn+1 . If L has a (−2)-root, we discard it from Ltempn+1 . If not, then for any
principal minor L′ of L of rank n − 1 we check whether L′ /∈ Ln−1 and | det(L)| ≥
2| det(L′)|. If both conditions hold, we discard L from Ltempn+1 .

– We repeat the previous check for many primitive sublattices of L of corank 1. More
precisely, choose a random upper-triangular matrix T with ones in the diagonal. Then
consider the primitive sublattice L′ of L spanned by any n− 1 of the n columns of T .
We check whether L′ /∈ Ln−1 and | det(L)| ≥ 2| det(L′)|. If both conditions hold, we
discard L from Ltempn+1 .

– For any 2 ≤ β ≤ 15 we search for elliptic fibers on U ⊕ L with given β by using
Algorithm 2.5.5. If we find an elliptic fiber, we stop and we discard L from Ltempn+1 . This
is sufficient to ensure that U ⊕ L has positive entropy, since L is unique in its genus,
hence any elliptic fibration on U ⊕ L has infinitely many sections.

– We return Ln+1 := Ltempn+1 .

Remark 2.5.8. Algorithm 2.5.7 works analogously for n > 8, by changing the condition
| det(L)| ≥ 2| det(L′)| with the more restrictive | det(L)| > 2| det(L′)| (and by defining m1

as the smallest integer strictly greater than 2 |det(L′)|
| det(L)| ). This is because the assumption in

Theorem 2.3.5 becomes more restrictive when ρ(X) > 10.

After running Algorithm 2.5.7 for 2 ≤ n ≤ 8, we obtain the following:

Theorem 2.5.9. The only Néron-Severi lattices of K3 surfaces X of Picard rank ρ(X) ≤ 10
that satisfy Assumption 2.5.1 and that can have zero entropy are of the form U ⊕ L, where
L is isometric to one of the following 32 lattices sorted by rank:

1 :
(
−4
)
,
(
−6
)
,
(
−8
)
,
(
−10

)
,
(
−14

)
,
(
−18

)
,
(
−26

)
,
(
−50

)
2 :

(
−14 3

3 −6

)
,

(
−10 2

2 −4

)
,

(
−10 0

0 −4

)
,

(
−6 3
3 −6

)
,

(
−6 1
1 −6

)
,(

−6 2
2 −4

)
,

(
−6 0
0 −4

)
,

(
−4 2
2 −4

)
,

(
−4 1
1 −4

)
,

(
−4 0
0 −4

)

3 :

−4 −2 −2
−2 −4 −2
−2 −2 −6

 ,

−4 −1 −1
−1 −4 1
−1 1 −4

 ,

−4 2 2
2 −6 −1
2 −1 −6

 ,

−4 1 2
1 −4 1
2 1 −4

 ,

−4 1 1
1 −4 −1
1 −1 −4

 ,

−4 2 0
2 −4 0
0 0 −6

 ,

−4 −2 2
−2 −4 0
2 0 −4



4 :


−4 0 0 −2
0 −4 0 −2
0 0 −4 −2
−2 −2 −2 −4

 ,


−4 −2 −1 1
−2 −4 1 −1
−1 1 −4 1
1 −1 1 −4

 ,


−4 1 1 1
1 −4 1 1
1 1 −4 1
1 1 1 −4

 ,


−4 −1 −2 2
−1 −4 1 −1
−2 1 −4 1
2 −1 1 −4


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5 :


−4 −1 −1 −1 −2
−1 −4 −1 −1 −2
−1 −1 −4 −1 −2
−1 −1 −1 −4 1
−2 −2 −2 1 −4



6 :


−4 1 −1 −1 0 0
1 −4 −2 1 0 0
−1 −2 −4 2 −3 0
−1 1 2 −4 3 0
0 0 −3 3 −6 −3
0 0 0 0 −3 −6


8 : E8(2).

Remark 2.5.10. The K3 surfaces with Picard lattice isometric to U ⊕ E8(2) were already
studied in [Nik81b] and proven to have zero entropy (cf. [Nik81b, Theorem 4.2.2 and 4.2.4]).

Theorem 2.5.11. The elliptic K3 surfaces X such that NS(X) = U ⊕ L, with L one of
the previous 32 lattices, have a unique elliptic fibration, hence zero entropy. Moreover the
following table specifies whether such surfaces admit other genus 1 fibrations:

ρ(X) Nr° Other genus 1 fibr.? E · F

4

1 Yes 5
2 Yes 3
3 No −
4 Yes 3
5 No −
6 No −
7 No −
8 No −
9 No −
10 Yes 2

ρ(X) Nr° Other genus 1 fibr.? E · F

5

1 No −
2 No −
3 Yes 3
4 No −
5 Yes 3
6 Yes 3
7 Yes 2

6

1 Yes 2
2 Yes 3
3 Yes 5
4 Yes 3

7 1 Yes 3
8 1 Yes 3
10 1 Yes 2

Table 2.1: Genus 1 fibrations on K3 surfaces of zero entropy. The last column indicates
the smallest intersection number of other genus 1 fibrations |E| on X with the fiber of the
unique elliptic fibration |F |.

Proof. Let L be one of the lattices above, n = rk(L). We want to prove that there exists
a unique elliptic fibration on X, so let E = [α, β, γ] ∈ U ⊕ L be primitive of square 0 with
β > 0; the goal is to show that E does not induce an elliptic fibration. In order to do so, we
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generalize the approach of Theorem 2.4.7.
First, we can assume that the entries of γ are in [0, β− 1] by Proposition 2.3.3. If E induces
an elliptic fibration, then |E| has no reducible fibers, since L is unique in its genus and it
has no roots. This means that E ·C > 0 for any effective (−2)-divisor C = [x, y, z] ∈ U ⊕L.
By Lemma 2.3.2, the inequality can be rewritten as

−1

2
‖yγ − βz‖L − β2 > 0, or equivalently − 1

2

∥∥∥∥y γβ − z
∥∥∥∥
L

> 1.

The vector c = γ
β

has rational entries between 0 and 1. If we are able to find finitely many

effective (−2)-divisors Ci := [xi, yi, zi] such that the n-dimensional balls

Bi =

{
−1

2
‖yic− zi‖L ≤ 1

}
cover the hypercube [0, 1]n, then we are done. Indeed this shows that, for any primitive
isotropic E different from the given elliptic fiber F , E · Ci ≤ 0 for at least one of our (−2)-
divisors Ci. This implies that E cannot induce an elliptic fibration.
We will explain one example in detail; the others are checked similarly with the help of a
computer. Let

L =

(
−6 2
2 −4

)
.

We consider the effective (−2)-divisors

C1 = [0, 1, 0, 0], C2 = [3, 1, 1, 0], C3 = [2, 1, 0, 1], C4 = [3, 1, 1, 1].

These yield the balls

B1 = {3c2
1 − 2c1c2 + 2c2

2 ≤ 1}, B2 = {3(c1 − 1)2 − 2(c1 − 1)c2 + 2c2
2 ≤ 1},

B3 = {3c2
1−2c1(c2−1)+2(c2−1)2 ≤ 1}, B4 = {3(c1−1)2−2(c1−1)(c2−1)+2(c2−1)2 ≤ 1}.

(0, 0) (1, 0)

(0, 1) (1, 1)

B1

B2

(0, 0) (1, 0)

(0, 1) (1, 1)

B1

B2

B3 B4
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As we can see from the picture, the balls indeed cover the square [0, 1]2, as wanted.
For the second part of the statement we repeat a similar process. First, we run Algorithm
2.5.5 (more precisely, a modified version of it that only checks the nefness of an isotropic
divisor) for “small” values of β, and we find other genus 1 fibrations on some of our lattices,
as specified by Table 2.1. For the remaining lattices, we implement the exact same strategy
as in the first part of the proof. More precisely, assume that the open balls

B̊i =

{
−1

2
‖yic− zi‖L < 1

}
still cover the hypercube [0, 1]n. Then the corresponding Néron-Severi lattice does not admit
any other genus 1 fibration. Indeed, if E = [α, β, γ] different from F is nef, primitive and
isotropic, then E · Ci ≥ 0 for all our effective (−2)-divisors Ci, implying that the vector
c = γ

β
/∈ B̊i for all i, a contradiction.

2.6 K3 surfaces of Picard rank ρ(X) > 10

In order to complete our classification, we have to deal with K3 surfaces with Picard rank
ρ(X) > 10. Let X be an elliptic K3 surface of Picard rank ρ(X) > 10 satisfying Assumption
2.5.1, Then the Néron-Severi lattice of X decomposes as NS(X) = U ⊕ L, L without roots.
The goal of the section is to prove the following theorem, that concludes our classification.

Theorem 2.6.1. Let X be a K3 surface with Picard rank ρ(X) > 10 satisfying Assumption
2.5.1. Then X has positive entropy.

The proof of this result relies on the help of the software Magma. Let us explain the
strategy.

We consider first the case when the lattice L is unique in its genus. This only happens
when L is a multiple of one of 6 lattices (cf. [LK13]) of rank 9 or 10. These cases are easily
dealt with by using Algorithm 2.5.7 (with slight modifications, according to Remark 2.5.8).
It turns out that all these Néron-Severi lattices have positive entropy.
Therefore, from now on, we assume that L is not unique in its genus. This implies that any
K3 surface X with NS(X) = U ⊕L admits a second elliptic fibration, not isomorphic to the
given |F |. If this second fibration has infinitely many sections, then it is already enough to
conclude that X has positive entropy by Theorem 2.2.8. However, it can happen that this
second elliptic fibration has only finitely many sections, as the next example shows.

Example 2.6.2 ([Shi07]). Consider the singular K3 surface X with transcendental lattice

T(X) =

(
20 10
10 20

)
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Shioda [Shi07] gives an explicit Weierstrass equation for X, namely

y2 = x3 + t5 − 1

t5
− 11,

and he proves that the Mordell-Weil group of X over P1
t has maximal rank 18. However,

X appears in Shimada-Zhang’s list (cf. [SZ01, Table 2, Number 58]) of singular extremal
K3 surfaces. These two results imply that X admits both an elliptic fibration with only
irreducible fibers, and an elliptic fibration with finitely many sections.

Our goal is to prove that any K3 surface admitting both an elliptic fibration with only
irreducible fibers and an elliptic fibration with finitely many sections, must admit a third
“intermediate” elliptic fibration. This can be rephrased more precisely in terms of genera of
lattices:

Claim 2.6.3. Let R be a root-overlattice such that U⊕R embeds primitively in the K3 lattice.
If the genus of R contains a lattice L without roots, then the genus of R also contains a third
lattice M with 0 < rk(Mroot) < rk(M).

Theorem 2.6.1 will immediately follow from Claim 2.6.3. For, let X be a K3 surface
with NS(X) = U ⊕ L, L without roots and not unique in its genus (we have already dealt
with the case when L is unique in its genus). If the new lattice in the genus of L is not
a root-overlattice, then it induces an elliptic fibration with infinitely many sections by the
Shioda-Tate formula 1.2.6. If instead it is a root-overlattice, then by Claim 2.6.3 we can
choose a non-root-overlattice in the genus of L and repeat the same argument.

Remark 2.6.4. The fact that Claim 2.6.3 holds is somewhat surprising. From the point of
view of elliptic fibrations, it shows that the Mordell-Weil rank of elliptic fibrations on a
given K3 surface X cannot jump from 0 to the maximum ρ(X)− 2 without attaining some
intermediate value. Moreover, Claim 2.6.3 becomes false as soon as we try to relax the
assumption on L. For instance, the root lattice A9

1 admits a unique non-isometric lattice in
the genus, namely A1 ⊕ E8(2), that has only one root. In other words, if X is a K3 surface
with NS(X) = U ⊕A9

1, then the Mordell-Weil rank of elliptic fibrations on X jumps from 0
to 8 = ρ(X)− 3 without attaining any intermediate value.

It only remains to prove Claim 2.6.3. Notice that by Proposition 1.1.15 we can assume
that rk(R) ≥ 9. We first consider the case when R is a root lattice.

Algorithm 2.6.5 (RootLattices). We create a database D of root lattices not unique in
their genus, and we show that any root lattice R as in Claim 2.6.3 contains an element of D
as a direct summand.

– Initialize an empty list D.

– Create the list R of root lattices R of rank r satisfying the following properties:

1. 9 ≤ r ≤ 18;
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2. det(R) ≥ ∆r, where ∆r can be found in Table 1.2;

3. If R =
⊕

i∈I Ri, where each Ri is an ADE lattice, then∑
i∈I

e(Ri) ≤ 24,

where e(Ri) equals n+ 1 (resp. n+ 2) if R = An (resp. R = Dn or R = En).

All root lattices R as in Claim 2.6.3 must satisfy these three conditions. More specif-
ically, condition (2) takes care of the fact that the genus of R contains a lattice with
no roots (cf. Theorem 1.1.13), while conditions (1) and (3) depend on the fact that
U ⊕R embeds primitively in the K3 lattice (cf. Proposition 1.2.7).

– For any root lattice R =
⊕

i∈I Ri ∈ R, we check whether there is a proper sublattice
S =

⊕
j∈J$I of R that is in D. If it exists, then we discard R from the list R.

– If no proper sublattice of R is in D, then we run through all these proper sublattices,
until we find S =

⊕
j∈J$I that has a non-root-overlattice in its genus. We use the

function GenusRepresentatives in order to compute the genus. If we find such an S,
we add S to D and we discard R from R.

– We return R and D.

The output of Algorithm 2.6.5 is R = ∅ and D consisting of 131 root lattices. This can
be interpreted as follows. D is a list of root lattices admitting a non-root-overlattice in their
genus. Moreover, for any root lattice R as in Claim 2.6.3, there exists S ∈ D such that
R = S⊕T for a certain root lattice T . This implies that the genus of R contains a lattice M
with 0 < rk(Mroot) < rk(M), as claimed in Claim 2.6.3. Indeed, if S ′ is a non-root-overlattice
in the genus of S, then M = S ′ ⊕ T is in the genus of R and it satisfies

0 ≤ rk(Sroot) < rk(Mroot) < rk(M)

by construction.

In order to conclude the proof of Claim 2.6.3, we need to analyze in an analogous way
the root-overlattices. For, we implement a function AllOverLattices that computes all the
overlattices of a given lattice L and with given quotient group S < AL. More precisely, the
algorithm computes all the overlattices L′ of L such that L′/L ∼= S. Then it only remains
to run the following algorithm:

Algorithm 2.6.6 (RootOverlattices).

– Create the list R of root lattices R of rank r satisfying the following properties (cf. Algo-
rithm 2.6.5):

1. 9 ≤ r ≤ 18;
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2. det(R) ≥ ∆r, where ∆r can be found in Table 1.2;

3. If R =
⊕

i∈I Ri, where each Ri is an ADE lattice, then∑
i∈I

e(Ri) ≤ 24,

where e(Ri) equals n+ 1 (resp. n+ 2) if R = An (resp. R = Dn or R = En).

– PickR ∈ R. For any group S listed in equation (1.1), check whether the following conditions
on k = #S hold:

1. k2 | det(R);

2. det(R)/k2 ≥ ∆r;

3. The condition of Proposition 1.2.9, part 2. holds.

4. If rk(R) = 18, the pair (R, S) belongs to the Shimada-Zhang list [SZ01, Table 2].

If S satisfies these conditions, then compute the overlattices of R with quotient group S by
using the algorithm AllOverLattices. Add to a list O the overlattices R′ of R such that
R′root = R.

– Choose an overlattice R′ ∈ O of R. We know from Algorithm 2.6.5 that there exist non-
root-overlattices M1, . . . ,Ms in the genus of R (and we have stored such lattices during
Algorithm 2.6.5). Then by Lemma 1.1.12 there are overlattices of M1, . . . ,Ms in the genus
of R′. If one of these lattices in the genus of R′ is a non-root-overlattice and has minimum
2, we discard R′ from O.

– For any remaining R′ ∈ O, we search for lattices in the genus of R′ that are non-root-
overlattices and have minimum 2, by using GenusRepresentatives. If we find one, we
discard R′ from O.

– If O = ∅, we discard R from R.

– We return R.

Remark 2.6.7. The reason why we use the list D constructed during Algorithm 2.6.5 in
order to find lattices in the genus of R′ is purely computational. In fact, the algorithm
GenusRepresentatives is computationally very expensive, and the preliminary search that
we implemented allows us to run Algorithm 2.6.6 in a reasonable amount of time.

The output of Algorithm 2.6.6 is R = ∅, thus concluding the proof of Claim 2.6.3 and
of Theorem 2.6.1.

Summing up the results of the last three sections, we have:

Theorem 2.6.8. Let X be a K3 surface satisfying Assumption 2.5.1. Then:
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1. X has zero entropy, or equivalently X admits a unique elliptic fibration with infinitely
many sections, if and only if NS(X) belongs to an explicit list of 32 lattices. In partic-
ular ρ(X) ≤ 10.

2. X admits a unique genus 1 fibration if and only if NS(X) belongs to an explicit list of
14 lattices. In particular ρ(X) ≤ 5.

2.7 K3 surfaces of Picard rank ≥ 19

The last section of this chapter is devoted to the proof of the following theorem:

Theorem 2.7.1. All K3 surfaces with Picard rank ≥ 19 and infinite automorphism group
have positive entropy.

When the K3 surface X is singular, i.e. it has ρ(X) = 20, it has been proved by Oguiso
(cf. [Ogu07, Theorem 1.6]) that X has positive entropy. Using the methods introduced
earlier in the chapter, we are able to extend his result to ρ(X) = 19.

Let X be a K3 surface with Picard rank 19. X is elliptic by [Huy16, Corollary 14.3.8],
so its Néron-Severi lattice is NS(X) = U ⊕ L′, for a certain negative definite lattice L′ of
rank 17. The transcendental lattice T(X) = NS(X)⊥ has rank 3 and signature (2, 1), so it
embeds into the unimodular lattice U2⊕E8 by [Nik79b, Corollary 1.12.3]. This implies that
NS(X) contains at least a copy of E8, hence NS(X) = U ⊕ E8 ⊕ L for a certain negative
definite lattice L of rank 9.

Remark 2.7.2. By [Nik79a] we know that the automorphism group of X is finite if and only
if NS(X) ∼= U ⊕E8⊕E8⊕A1. In all the other cases of Picard rank 19, X admits an elliptic
fibration with infinitely many sections.

Theorem 2.7.3. Let X be a K3 surface with ρ(X) = 19 and an infinite automorphism
group. Then X admits at least two distinct elliptic fibrations with infinitely many sections.
Equivalently, X has positive entropy.

Proof. Let NS(X) = U ⊕ E8 ⊕ L. We first consider the genus of L. Indeed, if the genus
of L contains at least two non-isometric non-root-overlattices, then any K3 surface Y with
NS(Y ) = U ⊕ L has positive entropy, and it admits two distinct elliptic fibrations with
infinitely many sections. If these two elliptic fibrations are induced by E1, E2 ∈ U ⊕ L, it is
clear that the extensions [E1, 0], [E2, 0] ∈ U ⊕ L⊕ E8 induce distinct elliptic fibrations with
infinitely many sections on X, thus X has positive entropy.

Assume first that L is unique in its genus. Then [LK13] shows that L is a multiple of
one of 4 lattices: L1 = E8 ⊕ A1, L2 = E8(4) ⊕ A1, L3, L4, where L3 has no roots and L4

has rk((L4)root) = 8. Theorem 2.6.8 shows that U ⊕ L has positive entropy whenever L is
L2, L3, or any multiple L1(m), L2(m), L3(m), L4(m) with m > 1. As above, if U ⊕ L has
positive entropy, then also U ⊕ L⊕E8 has positive entropy. Moreover, by Remark 2.7.2 we
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can discard L1, as U ⊕ E8 ⊕ L1 has a finite automorphism group. We thus only have to
consider L = L4; we will deal with it at the end of the proof.

Assume instead that L is not unique in its genus. If the genus of L contains no root-
overlattices, then U ⊕ L has positive entropy (and therefore X has positive entropy) by
Theorem 2.3.8. Hence we can assume that L is a root-overlattice. We can easily list all
root-overlattices of rank 9, obtaining 53 distinct genera of root-overlattices. Studying these
genera with Magma, we find out that 41 of these 53 contain at least two non-isometric non-
root-overlattices, hence by the remark at the beginning of the proof these give rise to K3
surfaces of positive entropy. After also discarding the lattice E8 ⊕ A1 by Remark 2.7.2, we
remain with the genera of the following 12 lattices:

A9
1, D4⊕A5

1, D
2
4 ⊕A1, D4⊕D5, E6⊕A2⊕A1, D6⊕A3, E7⊕A2

1, D7⊕A2, E7⊕A2, D9, O, L4,

where L4 is the lattice unique in its genus discussed above, and O is an overlattice of A3⊕A6
1

of index 2.
It is easy to check that the genera of D4 ⊕D5, D6 ⊕A3, E7 ⊕A2, D9, O contain respectively
the lattices D8 ⊕ 〈−4〉, E7 ⊕ A1 ⊕ 〈−4〉, E8 ⊕ 〈−6〉, E8 ⊕ 〈−4〉, D2

4 ⊕ 〈−4〉. We then claim
that the K3 surfaces X with NS(X) = U ⊕ E8 ⊕ L, with L one of these 5 lattices have
positive entropy. Consider NS(X) = U ⊕E8⊕E8⊕ 〈−4〉, as the other 4 are analogous. The
lattice E8 ⊕ E8 is not unique in its genus (its genus contains the overlattice D+

16 of D16 of
index 2). This implies the existence of two distinct elliptic fibrations on U ⊕ E8 ⊕ E8, say
E1, E2. Then these two fibrations extend to elliptic fibrations F1 = [E1, 0], F2 = [E2, 0] on
U ⊕ E8 ⊕ E8 ⊕ 〈−4〉 with infinitely many sections, as the orthogonal complements F⊥1 , F

⊥
2

are not generated by roots (since both the orthogonal complements contain 〈−4〉 as a direct
summand).

In order to conclude the proof, we need to study the remaining 7 lattices. We switch
back to the lattices E8 ⊕ L, namely

E8⊕A9
1, E8⊕D4⊕A5

1, E8⊕D2
4⊕A1, E8⊕E6⊕A2⊕A1, E8⊕E7⊕A2

1, E8⊕D7⊕A2, E8⊕L4.

They all contain at least two non-isometric non-root-overlattices in the genus, thus conclud-
ing the proof.

Remark 2.7.4. The same approach could be used to study K3 surfaces of smaller Picard rank.
Indeed [Nik79b, Corollary 1.12.3] shows that any transcendental lattice T(X) of rank ≤ 6
embeds into the unimodular lattice U2⊕E8. Therefore, if X is a K3 surface with ρ(X) ≥ 16,
its Néron-Severi lattice is isometric to U ⊕ E8 ⊕ L, for a certain negative definite lattice L.
However, already in Picard rank 18, we find lattices L such that E8 ⊕ L admits a unique
non-root-overlattice in the genus. Two examples are given by

L = D8, E7 ⊕ A1.

This corresponds to the fact that all the elliptic fibrations with infinitely many sections on
the K3 surfaces with NS(X) ∼= U ⊕ E8 ⊕D8 or NS(X) ∼= U ⊕ E8 ⊕ E7 ⊕ A1 have the same
frame (i.e., isometric orthogonal complements U⊥ in NS(X)).
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This approach based on the study of the genus is thus not sufficient to decide whether
these K3 surfaces have positive entropy. One possible approach to deal with these two cases
is to use the neighboring method (see [EK14, Section 5]). Let us explain it in the case of a
K3 surface X with NS(X) = U ⊕E8 ⊕E7 ⊕A1. The dual graph of these reducible fibers is:

S0

The red diagram highlights a new elliptic fiber F ′ of type I∗6 . Since the blue diagram
must be a reducible fiber in the pencil |F ′|, it must be a fiber of type I∗2 :

It is now possible to recognize a new elliptic fiber F ′′ of type I16. The elliptic pencil |F ′′|
has infinitely many sections: if by contradiction MW(F ′′) was finite, then F ′′ would have a
second reducible fiber of type I2, so the root lattice A15⊕A1 would embed in E8⊕E7⊕A1.
This is impossible, as they have the same rank and their determinants do not differ by a
square (cf. Lemma 1.1.7). Now the computation of the genus explained at the beginning
of the remark ensures that all elliptic fibrations on X with infinitely many sections have
a reducible fiber of type I16. Moreover there exists a unique such elliptic fibration up to
automorphisms, as the isometries of the discriminant group of the transcendental lattice are
trivial (cf. Theorem 2.3.7). Thus the only way to decide whether X has zero entropy is to
investigate whether there is a second cycle of type I16 on X. Nevertheless, this does not
seem like an easy task. For instance, after doing some successive neighboring steps, we find
the following graph of (−2)-curves on X:
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A possible approach is to find isomorphic elliptic fibrations (for instance, other elliptic
fibrations with reducible fibers E8, E7 and A1), construct the corresponding isometry ϕ of
NS(X), and look at the image of the I16 cycle under ϕ. We tried this for the following two
elliptic fibrations:

Unfortunately, it turns out that both isometries preserve the I16 cycle. A much more
detailed study of the elliptic fibrations on such surfaces is probably needed to determine
their entropy.
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3 | The Kodaira dimension of some mod-
uli spaces of elliptic K3 surfaces

3.1 Introduction

Moduli spaces of complex K3 surfaces are a fundamental topic of interest in algebraic geome-
try. One of the first geometric properties one wants to understand is their Kodaira dimension.
Towards this direction, the seminal work [GHS07b] of Gritsenko, Hulek and Sankaran proved
that the moduli space F2d of polarized K3 surfaces of degree 2d is of general type for d > 61
and for other smaller values of d. It is then natural to address the general question about
the Kodaira dimension of moduli spaces of lattice polarized K3 surfaces. We are interested
in studying a particular class of such surfaces, namely elliptic K3 surfaces of Picard number
at least 3.

When X is elliptic, the classes of the fiber and the zero section in the Néron-Severi group
of X generate a lattice isometric to the hyperbolic plane U , and they span the whole Néron-
Severi group if the elliptic K3 surface is very general. The geometry of elliptic surfaces can
be studied via their realization as Weierstrass fibrations (cf. Section 1.4.3). By using this
description, Miranda [Mir81] constructed the moduli space of elliptic K3 surfaces and showed
its unirationality as a by-product. Later, Lejarraga [Lej93] proved that this space is actually
rational. We want to study the divisors of the moduli space of elliptic K3 surfaces which
parametrize the surfaces whose Néron-Severi groups contain primitively U⊕〈−2k〉, for k ≥ 1.
These are the moduli spacesM2k of U ⊕〈−2k〉-polarized K3 surfaces. Geometrically we are
considering elliptic K3 surfaces admitting an extra class in the Néron-Severi group: if k = 1,
it comes from a reducible fiber of the elliptic fibration, while if k ≥ 2 it is represented by
an extra section, intersecting the zero section in k − 2 points with multiplicity (cf. Remark
1.4.6).

In this chapter we aim at computing the Kodaira dimension of the moduli spaces M2k.

Theorem 3.1.1. The moduli space M2k is of general type for k ≥ 220, or

k ≥ 208, k 6= 211, 219, or k ∈ {170, 185, 186, 188, 190, 194, 200, 202, 204, 206}.

Moreover, the Kodaira dimension of M2k is non-negative for k ≥ 176, or

k ≥ 164, k 6= 169, 171, 175 or k ∈ {140, 146, 150, 152, 154, 155, 158, 160, 162}.
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The Torelli theorem for K3 surfaces (see [PŠ71]) allows the moduli spaces M2k to be
realized as quotients of bounded hermitian symmetric domains ΩL2k

of type IV and dimen-

sion 17 by the stable orthogonal groups Õ
+

(L2k), where the lattice L2k is the orthogonal
complement of U ⊕ 〈−2k〉 in the K3 lattice ΛK3. Via this description, one can apply the
low-weight cusp form trick (Theorem 3.2.1) developed in [GHS07b]. This tool provides a
sufficient condition for an orthogonal modular variety to be of general type. Namely, one
has to find a non-zero cusp form on Ω•L2k

of weight strictly less than the dimension of ΩL2k

vanishing along the ramification divisor of the projection ΩL2k
→ Õ

+
(L2k)\ΩL2k

. In our
case, to construct a suitable cusp form, we use the quasi-pullback method (Theorem 3.2.5)
to pull back the Borcherds form Φ12 along the inclusion Ω•L2k

↪→ Ω•II2,26 induced by a lattice
embedding L2k ↪→ II2,26. Here, the lattice II2,26 denotes the unique (up to isometry) even
unimodular lattice of signature (2, 26). The lattice embedding L2k ↪→ II2,26 determines the
number N(L2k) of effective roots in L⊥2k. If N(L2k) is positive, the embedding determines the
weight 12+N(L2k) of the cusp form. Therefore the whole proof of Theorem 3.1.1 boils down
to finding the values of k for which there exists a suitable primitive embedding L2k ↪→ II2,26,
whose orthogonal complement contains at least 2 and at most 8 roots (cf. Problem 3.4.1).

The chapter is organized as follows. In Section 3.2 we describe the method used in
proving Theorem 3.1.1, namely the low-weight cusp form trick (Theorem 3.2.1). The desired
form is cooked up as a quasi-pullback of the Borcherds form Φ12 (Theorem 3.2.5). Section
3.3 is devoted to the proof of Proposition 3.3.1. Indeed, we study some special reflections

in the stable orthogonal group Õ
+

(L2k). This is then used to impose the vanishing of the
quasi-pullback Φ|L2k

of the Borcherds form along the ramification divisor of the quotient
map ΩL2k

→M2k. In Section 3.4 we tackle Problem 3.4.1 of finding primitive embeddings
L2k ↪→ II2,26 with at least 2 and at most 8 orthogonal roots. First, we prove that for any
k ≥ 4900 such an embedding exists. Then, we perform an exhaustive computer analysis
to find explicit embeddings for the remaining values of k. It relies on the geometry of K3
surfaces with Néron-Severi group isometric to U ⊕ E8.

Convention 3.1.2. Throughout the chapter we will always work over C. We have used the
software Magma to implement the algorithm described at the end of Section 3.4.

3.2 Low-weight cusp form trick

The computation of the Kodaira dimension of modular orthogonal varieties relies on the
low-weight cusp form trick developed by Gritsenko, Hulek and Sankaran [GHS07b]. In order
to describe it, we need to review some theory of modular forms on orthogonal groups.

Let L be an even lattice of signature (2, n). A modular form of weight k and character
χ : Γ → C∗ for a finite index subgroup Γ < O+(L) is a holomorphic function F : Ω•L → C
on the affine cone Ω•L over ΩL such that

F (tZ) = t−kF (Z) ∀t ∈ C∗, and F (gZ) = χ(g)F (Z) ∀g ∈ Γ.
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A modular form is a cusp form if it vanishes at every cusp (see Section 1.3). We denote
the vector spaces of modular forms and cusp forms of weight k and character χ for Γ by
Mk(Γ, χ) and Sk(Γ, χ) respectively.

Recall that for any finite index subgroup Γ < O+(L) we have denoted by FL(Γ) the
quotient Γ\ΩL (cf. Section 1.3). If M is the Néron-Severi lattice of a K3 surface and
L = M⊥

ΛK3
is the orthogonal complement of L in the K3 lattice, then ΩL is the period domain

for M -polarized K3 surfaces, and FL(Õ
+

(L)) is the coarse moduli space of M -polarized K3
surfaces (cf. Theorem 1.3.2)

Theorem 3.2.1 ([GHS07b], Theorem 1.1). Let L be a lattice of signature (2, n) with n ≥ 9,
and let Γ < O+(L) be a subgroup of finite index. The modular variety FL(Γ) is of general
type if there exists a non-zero cusp form F ∈ Sk(Γ, χ) of weight k < n and character χ that
vanishes along the ramification divisor of the projection π : ΩL → FL(Γ) and vanishes with
order at least 1 at infinity.

If Sn(Γ, det) 6= 0 then the Kodaira dimension of FL(Γ) is non-negative.

Remark 3.2.2. By [Ma18, Theorem 1.3] there are only finitely many lattices L of signature
(2, n) with n ≥ 9 such that FL(Γ) is not of general type. Therefore, our moduli spacesM2k

are known to be of general type for k large enough.

Remark 3.2.3. In the recent paper [Ma21] the author shows the necessity for an additional
hypothesis in Theorem 3.2.1 concerning the so-called irregular cusps (cf. [Ma21, Theorem
1.2]). However, this does not affect our case as explained in [Ma21, Example 4.10].

3.2.1 Ramification divisor

First, we need to describe the ramification divisor of the orthogonal projection, which turns
out to be the union of rational quadratic divisors associated to reflective vectors.

For any v ∈ L⊗Q such that v2 < 0 we define the rational quadratic divisor

Ωv(L) := {[Z] ∈ ΩL | Z · v = 0} ∼= Ωv⊥L

where v⊥L is an even integral lattice of signature (2, n− 1).
The reflection with respect to the hyperplane defined by a non-isotropic vector r ∈ L is

given by

σr : l 7→ l − 2
(l, r)

r2
r.

If r is primitive and σr ∈ O(L), then we say that r is a reflective vector. We notice that r is
always reflective if r2 = ±2, and we call it root in this case.

If v ∈ L∨ and v2 < 0, the divisor Ωv(L) is called a reflective divisor if σv ∈ O(L).

Theorem 3.2.4 ([GHS07b], Corollary 2.13). For n ≥ 6, the ramification divisor of the
projection πΓ : ΩL → FL(Γ) is the union of the reflective divisors with respect to Γ < O+(L):

Rdiv(πΓ) =
⋃

Zr⊂L
σr∈Γ∪−Γ

Ωr(L)
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3.2.2 Quasi pullback

To apply Theorem 3.2.1, we need a supply of modular forms for Γ. These are provided by
quasi-pullbacks of modular forms with respect to some higher rank orthogonal group. In
our case, let II2,26 denote the unique (up to isometry) even unimodular lattice of signature
(2, 26):

II2,26 = U2 ⊕ E3
8 .

Borcherds proved [Bor95] that M12(O+(II2,26), det) is a 1-dimensional complex vector space
spanned by a modular form Φ12, called the Borcherds form. The zeroes of Φ12 lie on rational
quadratic divisors defined by (−2)-vectors in II2,26, i.e. Φ12(Z) = 0 if and only if there exists
r ∈ II2,26 with r2 = −2 such that Z · r = 0. Moreover the multiplicity of the rational
quadratic divisor of zeroes of Φ12 is one.

Given a primitive embedding of lattices L ↪→ II2,26, with L of signature (2, n), we define

R−2(L⊥) := {r ∈ II2,26 | r2 = −2, r · L = 0}.

To construct a modular form for some subgroup of O+(L), one might try to pull back Φ12

along the closed immersion Ω•L ↪→ Ω•II2,26 . However, for any r ∈ R−2(L⊥) one has Ω•L ⊂ Ω•
r⊥

and hence Φ12 vanishes identically on Ω•L. The method of the quasi-pullback, developed
by Gritsenko, Hulek, and Sankaran [GHS07b], deals with this issue by dividing out by
appropriate linear factors:

Theorem 3.2.5 ([GHS15], Theorem 8.3). Let L ↪→ II2,26 be a primitive non-degenerate
sublattice of signature (2, n), n ≥ 3, and let ΩL ↪→ ΩII2,26 be the corresponding embedding of
the homogeneous domains. The set of (−2)-roots R−2(L⊥) in the orthogonal complement of
L is finite. We put N(L) := |R−2(L⊥)|/2. Then the function

Φ|L(Z) :=
Φ12(Z)

Πr∈R−2(L⊥)/±1(Z, r)

∣∣∣∣
ΩL

∈M12+N(L)(Õ
+

(L), det) (3.1)

is non-zero, where in the product over r we fix a system of representatives in R−2(L⊥)/± 1.
The modular form Φ|L vanishes only on rational quadratic divisors of type Ωv(L) where
v ∈ L∨ is the orthogonal projection with respect to L⊥ of a (−2)-root r ∈ II2,26 on L∨.

Moreover, if N(L) > 0, then Φ|L is a cusp form.

We want to apply the low-weight cusp form trick and Theorem 3.2.5 to the orthogonal
variety isomorphic to the moduli space of U ⊕ 〈−2k〉-polarized K3 surfaces.

First, we need to compute the orthogonal complement L2k of a primitive embedding
U ⊕ 〈−2k〉 ↪→ ΛK3. Since there exists a unique primitive embedding U ⊕ 〈−2k〉 ↪→ ΛK3 up
to isometry by [Nik79b, Theorem 1.14.4], we get the isomorphism

L2k = U ⊕ E2
8 ⊕ 〈2k〉 ∼= (U ⊕ 〈−2k〉)⊥ΛK3

.

We will denote by M2k
∼= FL2k

(Õ
+

(L2k)) the moduli space of U ⊕ 〈−2k〉-polarized K3
surfaces.
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Second, we need to find a suitable primitive embedding of L2k ↪→ II2,26, such that the
quasi-pullback Φ|L2k

is a cusp form of weight (strictly) less than 17 which vanishes along the
ramification divisor of the projection

π : ΩL2k
→M2k = Õ

+
(L2k)\ΩL2k

.

Remark 3.2.6. By [GHS09, Theorem 1.7] the abelianization of Õ
+

(L2k) is isomorphic to
Z/2Z. This is because L2k is isometric to U2 ⊕ E8 ⊕ 〈−2k〉⊥E8

, since the embedding U ⊕
〈−2k〉 ↪→ ΛK3 is unique up to isometry (cf. [Nik79b, Theorem 1.14.4]). As a consequence,
the Albanese varieties of the moduli spaces M2k are all trivial (cf. [Kon88, Theorem 2.5]).

Moreover, [GHS09, Corollary 1.8] implies that the unique non-trivial character of Õ
+

(L2k)
is det.

3.3 Special reflections

Let L2k ↪→ II2,26 be a primitive embedding. Since the embedding U ⊕ E2
8 ↪→ II2,26 is unique

up to isometry by [Nik79b, Theorem 1.14.4], we can assume that every summand of U ⊕E2
8

is mapped identically onto the corresponding summand of II2,26. Therefore, any choice of a
primitive vector l ∈ U ⊕ E8 of norm l2 = 2k gives a primitive embedding

L2k = U ⊕ E2
8 ⊕ 〈2k〉 ↪→ II2,26.

In this section we prove the following:

Proposition 3.3.1. The quasi pullback Φ|L2k
defined in Thereom 3.2.5 vanishes along the

ramification divisor of

π : ΩL2k
→M2k = Õ

+
(L2k)\ΩL2k

for any primitive embedding L2k ↪→ II2,26 such that (L2k)
⊥
II2,26

does not contain a copy of E8.

For any l ∈ L we define its divisibility div(l) to be the unique m > 0 such that l ·L = mZ
or, equivalently, the unique m > 0 such that l/m ∈ L∨ is primitive. Since div(r) > 0 is
the smallest intersection number of r with any other vector, div(r) divides r2. Moreover, if
r is reflective, the number 2 l·r

r2
must be an integer, so r2 divides 2(l · r) for all l ∈ L, i.e.

r2 | 2 div(r). Summing up
div(r) | r2 | 2 div(r).

Proposition 3.3.2. Let r ∈ L2k be a reflective vector. Then σr induces ± id in AL2k
, i.e.

±σr ∈ Õ(L), if and only if r2 = ±2 or r2 = ±2k and div(r) ∈ {k, 2k}.

Proof. Similar to [GHS07b, Proposition 3.2, Corollary 3.4] .

Now σr ∈ O+(L ⊗ R) if and only if r2 < 0 (see [GHS07a]). Recall that a lattice T is
called 2-elementary if AT is an abelian 2-elementary group.
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Proposition 3.3.3. Let r ∈ L2k be primitive with r2 = −2k and div(r) ∈ {k, 2k}. Then
Lr := r⊥L2k

is a 2-elementary lattice of signature (2, 16) and determinant 4.

Proof. We have the following well-known formula for det(Lr) (see for instance [GHS07b,
equation 20]):

det(Lr) =
det(L2k) · r2

div(r)2
∈ {1, 4}.

Since L2k has signature (2, 17) and r2 < 0, we have that Lr has signature (2, 16). Therefore
det(Lr) cannot be 1, because there are no even unimodular lattices with signature (2, 16)
(see [Nik79b, Theorem 0.2.1]). This shows that div(r) = k. Therefore the reflection σr acts
as − id on the discriminant group AL2k

(see [GHS07b, Corollary 3.4]). Now we can extend

−σr ∈ Õ(L2k) to an element σ̄r ∈ O(ΛK3) by defining σ̄r|U⊕〈−2k〉 = id on the orthogonal

complement of L2k ↪→ ΛK3. Put Sr := (Lr)
⊥
ΛK3

. It is easy to see that

σ̄r|Lr
= − id and σ̄r|Sr

= id .

Then Lr is 2-elementary by [Nik79b, Corollary I.5.2].

Proposition 3.3.4. Given any embedding L2k ↪→ II2,26, let r ∈ L2k be a primitive reflective
vector with r2 = −2k, and consider Lr = r⊥L2k

as above. Under the chosen embedding, the
orthogonal complement (Lr)

⊥
II2,26

is isometric to either

D10 or E8 ⊕ A2
1.

Proof. Since II2,26 is unimodular, the discriminant groups of Lr and (Lr)
⊥
II2,26

are isometric

up to a sign. Proposition 3.3.3 thus implies that (Lr)
⊥
II2,26

is a 2-elementary, negative definite
lattice of rank 10 and determinant 4. By [Nik79b, Proposition 1.8.1], any 2-elementary
discriminant form is isometric to a direct sum of finite quadratic forms, each of which is
isometric to one of four finite quadratic forms, namely the discriminant forms of the 2-
elementary lattices A1, A1(−1), U(2), D4. Since (Lr)

⊥
II2,26

has signature −2 (mod 8) and
determinant 4, it is immediate to see that its discriminant form must be isometric to the
discriminant form of A2

1. Now we notice that the lattice E8 ⊕A2
1 is a 2-elementary, negative

definite lattice of rank 10 with the desired discriminant form. Finally it is enough to compute
the genus of E8⊕A2

1. A quick check with Magma yields that the whole genus consists of E8⊕A2
1

and D10. Alternatively, one can use the Siegel mass formula [CS88] and check that the mass
of the quadratic form f associated to the lattice E8 ⊕ A2

1 is

m(f) =
5

28 · 4! · 1814400
=

1

2229534720
.

Since a straightforward check shows that D10 is in the genus of E8 ⊕ A2
1, and the equality

1

|O(D10)|
+

1

|O(E8 ⊕ A2
1)|

=
1

3715891200
+

1

5573836800
=

1

2229534720
= m(f)

holds, we deduce that {D10, E8 ⊕ A2
1} is the whole genus of E8 ⊕ A2

1.
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Now we are ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. In order to prove that Φ|L2k
vanishes along the ramification di-

visor of the projection π, we have to show that Φ|L2k
vanishes on the (−2k)-divisors Ωr(L2k)

given by reflective vectors r ∈ L2k of norm −2k (see Theorem 3.2.4). Hence let r be a
(−2k)-reflective vector. By Proposition 3.3.4, (Lr)

⊥
II2,26

is a root lattice with at least 180

roots (E8 ⊕ A2
1 has 244 and D10 has 180). Since by assumption the orthogonal complement

of L2k in II2,26 does not contain a copy of E8, the root lattice generated by R−2(L⊥2k) has
rank at most 9 and does not contain a copy of E8. By checking all such root lattices, we
obtain |R−2(L⊥2k)| ≤ |{roots of D9}| = 144 (just recall that An has n(n + 1) roots, Dn has
2n(n − 1) roots, E6, E7 have 72 and 126 roots respectively). Consequently Φ|L2k

vanishes
along the (−2k)-divisor Ωr(L2k) given by r with order ≥ (180− 144)/2 > 0, as claimed.

3.4 Lattice engineering

By the previous discussion, we have transformed our original question of determining the
Kodaira dimension of M2k to the following

Problem 3.4.1. For which 2k > 0 does there exist a primitive vector l ∈ U ⊕E8 with norm
l2 = 2k such that l is orthogonal to at least 2 and at most 8 roots?

We want to find a lower bound for the values 2k answering Problem 3.4.1 positively (see
Proposition 3.4.5). Since U⊕E8 contains infinitely many roots, we want to start by reducing
to the more manageable case of E8, whose number of roots is finite.

For simplicity we define

R(l) := {r ∈ U ⊕ E8 | r2 = −2, r · l = 0} = R−2(L⊥2k).

The following is a slight generalization of [TV19, Lemma 4.1, 4.3], proved in [Pet19,
Lemma 3.3 and 3.4].

Lemma 3.4.2. Let l = αe+ βf + v, where U = 〈e, f〉 such that e2 = f 2 = 0 and e · f = 1,
v ∈ E8 and α, β ∈ Z, with norm l2 = 2k > 0. Let r = α′e + β′f + v′ be a vector of R(l),
where v′ ∈ E8 and α′, β′ ∈ Z. If α 6= β, α, β >

√
k and αβ < 5

4
k, then α′ = β′ = 0.

In other words, if l = αe + βf + v ∈ U ⊕ E8 is a vector of norm 2k satisfying the
assumptions of Lemma 3.4.2, then the roots of U ⊕ E8 orthogonal to l are roots of E8.
Therefore the set R(l) coincides with the set of roots in v⊥E8

. The following lemma, inspired
by [GHS07b, Theorem 7.1], controls the number of roots of E8 orthogonal to v.

Lemma 3.4.3. There exists v ∈ E8 with v2 = 2n and such that v⊥E8
contains at least 2 and

at most 8 roots if the inequality

2NE7(2n) > 28NE6(2n) + 63ND6(2n), (3.2)

holds, where NL(2n) denotes the number of representations of 2n by the positive definite
lattice L.
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Proof. We follow closely [GHS07b, Theorem 7.1]. Let a ∈ E8 be a root. Its orthogonal

complement E
(a)
7 := a⊥E8

is isometric to E7. The set of 240 roots in E8 consists of the 126

roots in E
(a)
7 and 114 other roots, forming the subset X114. Assume that every v ∈ E(a)

7 with
v2 = 2n is orthogonal to at least 10 roots in E8, including ±a. By [GHS07b, Lemma 7.2] we
know that every such v is contained in the union

28⋃
i=1

(A
(i)
2 )⊥E8

t
63⋃
j=1

(A
(j)
1 )⊥

E
(a)
7

, (3.3)

where A
(i)
2 (resp. A

(j)
1 ) are root systems of type A2 (resp. A1) contained in X114 (resp.

E
(a)
7 ). Denote by n(v) the number of components in the union (3.3) containing v. Since

(A
(i)
2 )⊥E8

∼= E6 and (A
(j)
1 )⊥

E
(a)
7

∼= D6, we have counted the vector v exactly n(v) times in the
sum

28NE6(2n) + 63ND6(2n).

We distinguish three cases.

1. If v · c 6= 0 for every c ∈ X114 r {±a}, then v is orthogonal to at least 4 copies of A1

in E
(a)
7 , so n(v) ≥ 4.

2. If v is orthogonal to only one A
(i)
2 (6 roots), then v is orthogonal to at least 2 copies of

A1 in E
(a)
7 , so n(v) ≥ 3.

3. If v is orthogonal to at least two A
(i)
2 , then n(v) ≥ 2.

In conclusion n(v) ≥ 2 for every v ∈ E
(a)
7 . Therefore, under our assumption that every

v ∈ E(a)
7 with v2 = 2n is orthogonal to at least 10 roots, we have shown that any such v is

contained in at least 2 sets of the union (3.3), i.e.

2NE7(2n) ≤ 28NE6(2n) + 63ND6(2n).

Proposition 3.4.4. Let n ≥ 952. Then there exists v ∈ E8 with v2 = −2n such that v⊥E8

contains at least 2 and at most 8 roots.

Proof. [GHS07b, equations (31), (33) and (34)] give the following estimates:

NE7(2n) > 123.8 n5/2, NE6(2n) < 103.69 n2, ND6(2n) < 75.13 n2.

By Lemma 3.4.3, we immediately obtain the claim.

We are now ready to answer Problem 3.4.1:

Proposition 3.4.5. Let k ≥ 4900. Then there exists a primitive l ∈ U ⊕ E8 with l2 = 2k
and 2 ≤ |R(l)| ≤ 8.
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Proof. Pick k > 0 and consider l = αe + βf + v, where l2 = 2k, v2 = −2n, so that
αβ = n + k. Suppose that there exist α and β satisfying the hypotheses of Lemma 3.4.2
such that n = αβ − k ≥ 952. Then Proposition 3.4.4 implies that we can find a v ∈ E8 with
v2 = −2n such that v⊥E8

contains at least 2 and at most 8 roots. Moreover Lemma 3.4.2
ensures that the roots of U ⊕E8 orthogonal to l = αe+ βf + v are contained in E8, so that
l⊥U⊕E8

also contains at least 2 and at most 8 roots. Therefore the existence of such α, β is
sufficient for the existence of l ∈ U ⊕ E8 with 2 ≤ |R(l)| ≤ 8.

Now let k ≥ 4900 = 702, and consider

α = d
√
k + 6e, β = α + 1.

Clearly α 6= β, gcd(α, β) = 1 and α, β >
√
k. Moreover

5

4
k − αβ ≥ 5

4
k − (

√
k + 7)(

√
k + 8) =

1

4
k − 15

√
k − 56 > 0,

and
n = αβ − k ≥ (

√
k + 6)(

√
k + 7)− k = 13

√
k + 42 ≥ 952,

completing the proof.

In order to deal with the remaining values of k, we use of the geometry of the K3 surfaces
with Néron-Severi lattice isometric to U ⊕E8. We recall in the following the main properties
of such surfaces.

Let X be a K3 surface with NS(X) = U ⊕ E8. Then X has finite automorphism group
and a finite number of irreducible (−2)-curves (see e.g. [Nik79c] or [Kon89]). More precisely,
if |E| denotes the unique elliptic fibration on X, then the irreducible (−2)-curves on X are
the 9 curves C2, . . . , C10 contained in the reducible fiber of |E|, plus the unique section of E,
which we will denote by C1. The dual graph of such (−2)-curves is

C1 C2 C3 C4 C5 C6 C7 C9 C10

C8 (3.4)

Now let D ∈ NS(X) = U⊕E8 be a primitive divisor of norm 2k > 0 with 2 ≤ |R(D)| ≤ 8.
In other words, D⊥ contains at least 1 and at most 4 effective (−2)-divisors. Up to the action
of the Weyl group W < O(U ⊕E8) we can assume that D is nef, since isometries of U ⊕E8

do not change the number of orthogonal roots. The nef cone Nef(X) is rational polyhedral,
and a basis can be computed in Magma. It turns out that one such basis {D1, . . . , D10} is
the dual basis of {C1, . . . , C10}, i.e. Di · Cj = δij for all 1 ≤ i, j ≤ 10. For instance, D1 = E
defines the only elliptic fibration on X, and D2

1 = 0. Moreover D2
i > 0 for i ≥ 2. This means

that the nef divisor D is a linear combination of D1, . . . , D10 with non-negative coefficients

D =
10∑
i=1

diDi.
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By construction, the (−2)-curve Cj is orthogonal to D if and only if dj = 0. This implies
that the root part of D⊥ is a root lattice R generated by the (−2)-curves {Cj | dj = 0}.
Since R contains at most 4 effective roots, it is one of the following root lattices:

A1, A
2
1, A

3
1, A

4
1, A2, A2 ⊕ A1.

Choose one of these root lattices R, and fix one of the finitely many sub-diagrams J ⊆
{1, . . . , 10} of the dual graph (3.4) giving rise to a root lattice 〈Cj | j ∈ J〉 isometric to R.
Thus the nef divisors D orthogonal precisely to {Cj | j ∈ J} are all those of the form

D =
∑
i/∈J

diDi

for some di > 0. Since we are only interested in divisors of norm 2k < 2 · 4900, we can use
the inequality

D2 ≥
∑
i/∈J

d2
iD

2
i + 2

∑
16=i/∈J

d1di(D1Di),

to bound the di for i /∈ J . More precisely, we have that

d2
i ≤

2 · 4900

D2
i

∀i ≥ 2, and d1 ≤
4900∑

16=i/∈J D1Di

.

By varying the coefficients di’s in these ranges, we obtain all primitive vectors D ∈ U⊕E8

with D2 ≤ 2 · 4900 and 2 ≤ |R(D)| ≤ 8 up to the action of O(U ⊕E8). Therefore this search
is completely exhaustive.

A similar list can be obtained if we allow D to have up to 10 orthogonal roots. All the
previous discussion works analogously, with the only difference that the root part of D⊥ can
also be isometric to A5

1 or A2 ⊕ A2
1.

We get the following: a primitive vector l ∈ U ⊕ E8 with l2 = 2k < 2 · 4900 and
2 ≤ |R(l)| ≤ 8 exists if and only if

k ≥ 208, k 6= 211, 219 or k ∈ {170, 185, 186, 188, 190, 194, 200, 202, 204, 206}. (3.5)

Moreover a similar vector l with 2 ≤ |R(l)| ≤ 10 exists if and only if

k ≥ 164, k 6= 169, 171, 175 or k ∈ {140, 146, 150, 152, 154, 155, 158, 160, 162}. (3.6)

We have implemented the algorithm described above in Magma. We are now ready to
prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Proposition 3.4.5 combined with the subsequent search ensures that
there exists a primitive l ∈ U ⊕ E8 with norm l2 = 2k and 2 ≤ |R(l)| ≤ 8 if k ≥ 4900 or k
belongs to the list (3.5), in particular for any k ≥ 220. Such an l ∈ U ⊕ E8 determines an
embedding L2k ↪→ II2,26 with the property

1 ≤ N(L2k) ≤ 4,
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where N(L2k) is the number of effective roots in the orthogonal complement (L2k)
⊥
II2,26

. Hence
Theorem 3.2.5 provides a non-zero cusp form Φ|L2k

of weight 12 +N(L2k) ≤ 12 + 4 < 17 =
dim(M2k), which vanishes along the ramification divisor of π : ΩL2k

→ M2k in view of
Proposition 3.3.1, since l⊥ does not contain E8, otherwise l would be orthogonal to at least
240 roots. Then the low-weight cusp form trick (Theorem 3.2.1) ensures that M2k is of
general type.

An analogous argument shows thatM2k has non-negative Kodaira dimension if k belongs
to the list (3.6), in particular for any k ≥ 176.
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4 | Unirationality of some moduli spaces
of elliptic K3 surfaces

4.1 Introduction

In the previous chapter we were able to compute the Kodaira dimension of almost all mod-
uli spaces M2k of U ⊕ 〈−2k〉-polarized K3 surfaces. In particular, we showed that these
spaces are of general type if k is “big enough” (see Theorem 3.1.1). It is natural to ask what
happens for smaller values of k. For instance, for which values of k is M2k (uni)rational?
Unirational varieties have Kodaira dimension −∞, so M2k is surely not unirational for all
the values of k listed in Theorem 3.1.1. Unirational moduli spaces are in fact very rare, but
at the same time they are of fundamental importance: indeed, unirational moduli spaces are
the easiest to describe, as their objects can be explicitly parametrized by a finite number of
parameters.

The problem of studying whether moduli spaces of K3 surfaces are unirational is very
classical, and it dates back to works of Mukai [Muk88; Muk96; Muk06; Muk12; Muk92].
His contribution was showing that the moduli spaces F2d of K3 surfaces of degree 2d are
unirational for d ≤ 11 and d = 12, 15, 17, 19. This was later improved by Farkas and Verra
[FV18; FV21a] extending the unirationality result to K3 surfaces of degree d = 13, 21 by
using the connection to special cubic fourfolds. Recently, the moduli spaces of n-pointed K3
surfaces of degree d ≤ 21 were studied systematically in [Ma19]. It is then natural to ask
the more general question about the unirationality of moduli spaces of lattice polarized K3
surfaces. Farkas and Verra [FV12; FV16; Ver16] worked out the case of polarized Nikulin
surfaces. The case of 2-elementary K3 surfaces was studied in [Ma15], and further results in
this direction were obtained in [BHK16] by using orbits of representation of algebraic groups.
Furthermore, Roulleau investigated the unirationality of moduli spaces of K3 surfaces with
finite automorphism group (cf. [Rou19; Rou20]).

The main result of the chapter is the following:

Theorem 4.1.1. The moduli space M2k is unirational for k ≤ 34, for 36 ≤ k ≤ 50 and
k /∈ {42, 48} and for the following values of k:

{52, 53, 54, 59, 60, 61, 62, 64, 68, 69, 73, 79, 81, 94, 97}.
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The strategy for the proof of Theorem 4.1.1 involves a systematic study of projective
models of K3 surfaces in M2k. More precisely, we realize such surfaces as:

1. Double covers of P2;

2. Double covers of F0 = P1 × P1 (cf. Section 1.4.1);

3. Double covers of F4 (cf. Section 1.4.2);

4. Weierstrass fibrations (cf. Section 1.4.3);

5. Complete intersections in P3, P4 and P5 containing either two smooth rational curves
or an elliptic curve and a rational curve meeting at one point (cf. Section 4.3.1).

6. Complete intersections in the Grassmannian G(2, 5) ⊆ P9 (cf. Section 4.6).

We stress the fact that the cases not covered by Theorem 4.1.1 are still open, and we have
no information about their Kodaira dimension at the moment. We are currently working
on trying to prove unirationality of some of them, by realizing their objects as complete
intersections in homogeneous spaces. At the present time, the only case that we were able
to solve in this way is k = 11 (see Section 4.6).

It would be of great interest to find connections between the spacesM2k and other known
geometric objects. One such connection was found in [BH17], where the authors showed that
the moduli space M56 is birational to a P1-bundle over the universal Brill–Noether variety
W1

9,6 parametrizing curves of genus 9 together with a pencil of degree 6. Their strategy was
to use the relative canonical resolution of these curves on rational normal quartic scrolls.
We hope that our methods can be used to reveal new reincarnations of the moduli spaces
M2k since we provide explicit methods to study such elliptic K3 surfaces and the geometry
of their moduli spaces.

The chapter is divided as follows. In Section 4.2 we prove the unirationality of M2k for
k ≤ 6 and k = 8 by realizing the K3 surfaces in M2k as either Weierstrass fibrations or as
double covers of P2, F0 and F4. In Section 4.3 we then complete the proof of Theorem 4.1.1
by showing the unirationality of M2k for the remaining values of k. More precisely, we first
find an exhaustive list of possible projective models for U ⊕ 〈−2k〉-polarized K3 surfaces as
complete intersections in P3, P4 and P5. This is then used to construct a dominant rational
map I 99KM2k (as in diagram 4.4), where I is a unirational parameter space (cf. Section
4.3.2), concluding our proof. Finally, in Section 4.6 we solve the last remaining case k = 11.

Convention 4.1.2. We have used the software Macaulay2 to perform the computations.
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4.2 Unirationality of M2k for small k

The aim of this section is to show the unirationality of M2k for k ≤ 6 and k = 8. Our
strategy will involve the geometric constructions of Section 1.4. Since the arguments in each
case are somewhat different, we present a case-by-case analysis.

4.2.1 k = 1

The variety M2 is the moduli space of U ⊕ 〈−2〉-polarized K3 surfaces. If X is a general
K3 surface in M2, then X is the desingularization of a Weierstrass fibration Y with an
A1 singularity. Hence X admits an elliptic fibration with a reducible fiber, consisting of
two irreducible smooth rational curves. A quick inspection of the Kodaira fibers [Mir89,
Table I.4.1] yields that this reducible fiber can be either of type I2 (two smooth rational
curves meeting transversely at two distinct points) or III (two smooth rational curves simply
tangent at one point). This depends on whether the A1 singularity on Y belongs to a nodal
or cuspidal rational curve respectively. After moving the singular fiber to t = 0, Y can be
written as a Weierstrass fibration

y2 = x3 + a(t)x2 + b(t)x+ c(t)

satisfying t | b(t) and t2 | c(t). Up to a change of coordinates in x, this equation is equivalent
to the one in (1.5). Conversely, a general such Weierstrass equation desingularizes to an
elliptic K3 surface with an I2 or a III fiber at t = 0. From this description we can define a
dominant rational map

P2 := {(a, b, c) ∈ H0(OP1(4))×H0(OP1(8))×H0(OP1(12)) : t | b(t), t2 | c(t)} 99KM2

sending the polynomials (a, b, c) into the isomorphism class of the desingularization of the
corresponding Weierstrass equation. Since P2 is an affine space, M2 is unirational.

4.2.2 k = 2

An U ⊕ 〈−4〉-polarized K3 surface X is an elliptic K3 surface admitting a section S disjoint
from the zero section S0 of the given elliptic fibration by Remark 1.4.6. Let

y2 = x3 + a(t)x2 + b(t)x+ c(t)

be a Weierstrass equation for X, where the point at infinity S0 = (0 : 1 : 0) is the zero
section. Let S = (u(t), v(t)) be the extra section. Notice that the points of intersection of S
and S0 coincide with the poles of v (or equivalently of u), as (u(t0) : v(t0) : 1) = (0 : 1 : 0)
if and only if t0 is a pole for v. But S and S0 are disjoint by assumption, so u, v are simply
polynomials of degree at most 4, 6 respectively. After the change of variables x 7→ x − u,
y 7→ y − v, the Weierstrass equation becomes

y2 + 2v(t)y = x3 + d(t)x2 + e(t)x, (4.1)
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for polynomials d, e, v of degree at most 4, 8, 6 respectively. Conversely, a general Weierstrass
equation as in (4.1) defines an elliptic K3 surface containing the disjoint sections S0 = (0 :
1 : 0), S = (0, 0), and therefore an U ⊕ 〈−4〉-polarized K3 surface. This implies that there
exists a dominant rational map

P4 := {(d, e, v) ∈ H0(OP1(4))×H0(OP1(8))×H0(OP1(6))} 99KM4.

P4 is an affine space, so M4 is unirational.

4.2.3 k = 3

Let X be the desingularization of a double cover of P2 branched over a sextic B with an A2

singularity. Then X is a K3 surface with

〈2〉 ⊕ A2
∼= U ⊕ 〈−6〉 ↪→ NS(X).

Since 6 is square-free, this embedding is primitive. Conversely, if X is a K3 surface with
NS(X) ∼= 〈2〉 ⊕ A2, the linear system associated to the first element of the basis induces a
morphism X → P2 of degree 2 contracting the two (−2)-curves, so X is the desingularization
of a double cover of P2 branched over a sextic with an A2 singularity. Up to a projective
transformation, we can assume that the sextic B ⊆ P2 has an A2 singularity at P = (0 : 0 :
1) ∈ P2, and that the unique line of P2 meeting B in P with multiplicity 3 is V (x0). This
forces B to be given by an equation f(x0, x1, x2) ∈ H0(OP2(6)) with the coefficients of x6

2,
of x0x

5
2, of x1x

5
2, of x0x1x

4
2 and of x2

1x
4
2 all being zero. We denote by P6 the linear subspace

of H0(OP2(6)) consisting of all such polynomials. Therefore there exists a dominant rational
map

P6 99KM6.

P6 is an affine space, hence M6 is unirational.

4.2.4 k = 4

By Proposition 1.4.2 and Remark 1.4.3 a general U ⊕ 〈−8〉-polarized K3 surface X is the
double cover of F0 branched over a smooth (4, 4)-curve B admitting a line L simply tangent
to B at 2 points. Choose coordinates ((x0 : x1), (y0 : y1)) on F0 = P1 × P1 such that
L = V (x0). If B is given by a bihomogeneous polynomial f(x0, x1, y0, y1) of bidegree (4, 4),
then B is tangent to L at 2 points if and only if

f(x0, x1, y0, y1) = x0g(x0, x1, y0, y1) + x4
1h1(y0, y1)2h2(y0, y1)2

for g ∈ H0(OF0(3, 4)), h1, h2 ∈ H0(OP1(1)). Therefore we get a dominant rational map

P8 := {(g, h1, h2) ∈ H0(OF0(3, 4))×H0(OP1(1))×H0(OP1(1))} 99KM8

sending (g, h1, h2) to the isomorphism class of the double cover of F0 branched along the
divisor f = 0 defined above. It follows that M8 is unirational.
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4.2.5 k = 5

Let X be the desingularization of a double cover of P2 branched over a sextic B with a simple
node and admitting a tritangent line. Then X is a K3 surface with2 1 0

1 −2 0
0 0 −2

 ∼= U ⊕ 〈−10〉 ↪→ NS(X)

(see Lemma 1.4.1). Since 10 is square-free, this embedding is primitive. Conversely, let X be
a K3 surface with NS(X) ∼= U ⊕ 〈−10〉 and take a basis {H,L,C} with intersection matrix
as above. The linear system |H| induces a morphism X → P2 of degree 2 contracting C.
Let Y → P2 denote the double cover obtained contracting C. Then Y has a singular point
of type A1, so the branch locus B ⊆ P2 has a node. Moreover L is mapped onto a line of P2

meeting B with even multiplicities, so generically it will be a tritangent of B. Now, up to a
projective transformation, we can assume that the tritangent line is given by V (x0), so that
B is given by an equation of the form

f = x0g(x0, x1, x2) + h1(x1, x2)2h2(x1, x2)2h3(x1, x2)2. (4.2)

We can also assume that the node of B is located at P = (1 : 0 : 0). This forces the
coefficients of g of the terms x5

0, x
4
0x1 and x4

0x2 to be zero. We denote by Q10 the linear
subspace of H0(OP2(5)) consisting of all such polynomials. Then there exists a dominant
rational map

P10 = Q10 ×H0(OP1(1))3 99KM10.

sending (g, h1, h2, h3) to the isomorphism class of the double cover of P2 branched over f
defined as in equation (4.2). As P10 is an affine space, M10 is unirational.

4.2.6 k = 6

By Proposition 1.4.2 and Remark 1.4.3, a general such K3 surface is the double cover of F0

branched over a (4, 4)-curve B admitting a smooth (1, 1)-curve C intersecting B in 4 points
with multiplicity 2. We can choose coordinates on F0 so that C = V (x0y1−x1y0) and B does
not pass through the point ((0 : 1), (0 : 1)) ∈ C, so that the intersection B ∩ C is contained
in the chart W = {x0 6= 0, y0 6= 0}, with coordinates (1 : u), (1 : v). Say that B is given by
the equation

f(x0, x1, y0, y1) =
∑

i+j=k+l=4

αijklx
i
0x

j
1y
k
0y

l
1

with α0404 = 1. Since C|W = V (u−v), the intersection B∩C ⊆ W is given by the vanishing
of

g(u) = f(1, u, 1, u) =
∑

i+j=k+l=4

αijklu
j+l =

8∑
η=0

βηu
η,
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where βη =
∑

j+l=η αijkl and β8 = α0404 = 1. Now g(u) has 4 double roots at u = ε1, ε2, ε3, ε4

if and only if
g(u) = (u− ε1)2(u− ε2)2(u− ε3)2(u− ε4)2.

The choice of ε1, ε2, ε3, ε4 uniquely determines the coefficients βη for η ≤ 7, which in turn
uniquely determine 8 of the αijkl. The 17 other coefficients αijkl are free parameters so, if
we denote them by α′1, . . . , α

′
17, we have a rational dominant map

P12 := {(εi, α′j) ∈ (A1)4 × (A1)17} 99KM12.

P12 is an affine space, so M12 is unirational.

4.2.7 k = 8

By Proposition 1.4.2 and Remark 1.4.3, a general such K3 surface is the double cover of F0

branched over a (4, 4)-curve B admitting a smooth (1, 2)-curve C intersecting B in 6 points
with multiplicity 2. We can choose coordinates on P3 such that F0 = V (x0x3 − x1x2) and
C is the twisted cubic curve V (x0x3 − x1x2, x

2
1 − x0x2, x

2
2 − x1x3). We may also assume

that B does not pass through the point (0 : 0 : 0 : 1) ∈ C, so that the intersection B ∩ C
is contained in the chart W = {x0 6= 0} ⊆ P3 with coordinates (1 : u : v : w). Then
C|W = V (v − u2, w − u3), so if B is given by a quartic f(x0, x1, x2, x3) ∈ H0(OP3(4)), the
intersection B ∩ C ⊆ W is given by the vanishing of

g(u) = f(1, u, u2, u3).

Now an argument as in the case k = 6 shows that M16 is unirational.

4.3 Unirationality of M2k via projective models in Pn

This aim of this section is to continue the proof of Theorem 4.1.1. Our strategy is to realize
U ⊕ 〈−2k〉-polarized K3 surfaces as complete intersections in Pn for 3 ≤ n ≤ 5 containing
suitable pairs of curves. More precisely, ifX ∈M2k is very general, with NS(X) = U⊕〈−2k〉,
we want to find a Z-basis of NS(X) given by a very ample polarization and two other smooth
curves, where we distinguish two cases:

Case 1: Two rational curves meeting transversely at several points in general position;

Case 2: A rational curve and an elliptic curve meeting transversely at one point.

In Case 2 the resulting K3 surfaces are automatically elliptic. In Case 1 we check this
case by case by computing the genus of the resulting lattice (cf. Section 4.3.3).
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4.3.1 The construction

We describe the construction in detail for Case 2. Let n, d, γ be integers such that 3 ≤ n ≤ 5,
3 ≤ d ≤ 8 and γ ≥ 1.

Step 1: We construct a smooth elliptic curve E of degree d in Pn with a distinguished point p.

Step 2: We construct a smooth rational curve Γ of degree γ intersecting E transversely only
at the point p.

Step 3: We choose (if it exists) a smooth K3 surface X in Pn of degree 2n−2 containing E∪Γ.

Then, we get a K3 surface X containing an elliptic curve E and a rational curve Γ with the
following lattice embedding2n− 2 γ d

γ −2 1
d 1 0

 ∼= U ⊕ 〈2n− 2− 2dγ − 2d2〉 ↪→ NS(X). (4.3)

In particular, we set k = d2 + dγ−n+ 1. We check in each case that the resulting surface X
is a U ⊕ 〈−2k〉-polarized K3 surface by showing that such a lattice embedding is generically
primitive (see Section 4.3.4). By abuse of notation, we denote by E and Γ the classes in
NS(X) of the corresponding curves under this lattice embedding. Recall that the moduli
space M2k of U ⊕ 〈−2k〉-polarized K3 surfaces is an irreducible, quasi-projective variety of
dimension 17.

We can easily adapt the above strategy to Case 1. First, we construct a smooth rational
curve Γ1 ⊆ Pn of degree γ1, together with m points p1, . . . , pm ∈ Γ1. Then, we construct
a second smooth rational curve Γ2 intersecting Γ1 transversely, precisely at p1, . . . , pm. Fi-
nally, Step 3 remains unchanged: we just choose (if it exists) a smooth K3 surface X in Pn
containing Γ1 ∪ Γ2.

We compute in Macaulay2 that the constructed curves are smooth points of a component
of the right dimension in the corresponding Hilbert schemes. By standard semicontinuity
arguments (see e.g. [Sch13]), we will perform our computations over a finite field (the
main reason for doing this is that the computation is much faster over a finite field, but
our constructions also work over the rationals). Finally, a dimension count shows that the
construction dominates the corresponding moduli space M2k. We will present more details
in the rest of the section.

4.3.2 Unirationality

In this section we show that the constructions described above in Step 1, 2 and 3 can be
realized as incidence varieties, which are then shown to be unirational.
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Remark 4.3.1. We denote by Hd,g,n the open subscheme of the Hilbert scheme parametrizing
smooth irreducible curves of degree d and genus g in Pn. We notice that Hd,g,n is irreducible
if g ∈ {0, 1} and n ∈ {3, 4, 5} by [Ein86]. Moreover, we can easily compute the dimension of
Hd,g,n for g ∈ {0, 1} by using the fact that every smooth curve C ⊆ Pn of genus g ≤ 1 and
degree d > 0 is non-special, that is, H1(OC(1)) = 0. Indeed, this implies that H1(NC/Pn) = 0,
and thus

dimHd,g,n = h0(NC/Pn) =

{
(n+ 1)d+ (n− 3) if g = 0

(n+ 1)d if g = 1.

Step 1: We include the proofs of the following classical results for the sake of completeness.

Lemma 4.3.2. Let n and d be integers with 3 ≤ n ≤ 5 and 3 ≤ d ≤ 8. The incidence
variety

H1
d,1,n := {(E, p) | p ∈ E} ⊆ Hd,1,n × Pn

of elliptic curves of degree d in Pn with a marked point is unirational. Its dimension is

dimH1
d,1,n = dimHd,1,n + 1.

Proof. The moduli spaceM1,2 of elliptic curves marked with 2 points is rational by [Bel98].
In order to construct an elliptic curve E of degree d ≥ 3 in Pn together with a marked point
p, we start with a plane cubic curve E ′ with two distinguished points p and q. The choice
of a basis of the vector space V = H0(E ′,OE′(dq)) of dimension d yields a birational map

E ′ → E ⊂ Pd−1

where the image E is a smooth elliptic curve of degree d (recall that all line bundles on E ′

of degree d are of the form OE′(dq), see e.g. [Eis05, Theorem 6.16]). The choice of the basis
is unirational since it is parametrized by an open subset of V d. If d− 1 > n, then we project
the curve E birationally to a smooth elliptic curve of degree d in Pn. If d− 1 < n, then we
embed the ambient space Pd−1 into Pn in order to get again an elliptic curve of degree d in
Pn. In both cases, we have to choose an appropriate linear subspace of Pn or Pd−1, and this
choice is clearly unirational.

Remark 4.3.3. Let p1, . . . , pm ∈ Pn be a set of points spanning a linear subspace Pl ⊆ Pn.
We say that p1, . . . , pm are in general position if they are in general position inside Pl. In
particular, we have m ≤ l + 1 ≤ n+ 1.

Lemma 4.3.4. Let n, γ and m be integers with 3 ≤ n ≤ 5, 1 ≤ γ ≤ 8 and m ≤ min{n +
1, γ + 1}. Fix points p1, . . . , pm ∈ Pn in general position. The variety

Hγ,0,n(p1, . . . , pm) := {Γ 3 p1, . . . , pm} ⊆ Hγ,0,n

of rational curves of degree γ in Pn passing through p1, . . . , pm is irreducible and unirational.
Moreover, it is non-empty, of dimension

dim(Hγ,0,n(p1, . . . , pm)) = dim(Hγ,0,n)−m(n− 1).
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Proof. Since the variety of embeddings Embγ(P1,Pn) of degree γ is rational and the mor-
phism Embγ(P1,Pn) → Hγ,0,n sending a morphism to its image is dominant, we have that
Hγ,0,n is irreducible and unirational. If p1, . . . , pm are points in Pn in general position, we
consider the subvariety T of Embγ(P1,Pn) × (P1)m consisting of embeddings f : P1 ↪→ Pn
and m points x1, . . . , xm ∈ P1 such that f(xi) = pi for all 1 ≤ i ≤ m. Since the conditions
f(xi) = pi are linear and T dominates Hγ,0,n(p1, . . . , pm), we deduce that Hγ,0,n(p1, . . . , pm)
is irreducible and unirational.

In order to show that Hγ,0,n(p1, . . . , pm) is non-empty, fix a general linear map h : Pγ → Pn
and points q1, . . . , qm ∈ Pγ in general position such that h(qi) = pi for all 1 ≤ i ≤ m. Since
there is always a smooth rational normal curve C ⊆ Pγ of degree γ passing through m ≤ γ+1
points in general position, then Γ := h(C) ⊆ Pn is the desired smooth rational curve (by the
generality assumption on h).

Finally, we have to compute dim(Hγ,0,n(p1, . . . , pm)). Let Γ ∈ Hγ,0,n(p1, . . . , pm) be a
rational curve as constructed above, and consider the divisor D := p1 + . . .+ pm over Γ. Let
H be the restriction of the hyperplane class on Pn to Γ. Then the exact sequences

0→ TΓ(−D)→ TPn|Γ(−D)→ NΓ/Pn(−D)→ 0

and
0→ OΓ(−D)→ OΓ(H −D)n+1 → TPn|Γ(−D)→ 0,

combined with the fact thatH1(OΓ(H−D)) = 0 (by Serre duality, as deg(OΓ(H−D)) > −2),
imply that H1(NΓ/Pn(−D)) = 0. Thus, the dimension of Hγ,0,n(p1, . . . , pm) coincides with
χ(NΓ/Pn(−D)), and a straightforward computation using the two previous exact sequences
yields

χ(NΓ/Pn(−D)) = (γ + 1)(n+ 1)− 4−m(n− 1) = dim(Hγ,0,n)−m(n− 1).

Step 2: As a consequence of the previous discussion and the fact that m general points on
a rational curve of degree γ lie in general position for m ≤ γ + 1, we obtain:

Lemma 4.3.5. Let γ1, γ2 and m be integers with 1 ≤ γ2 ≤ γ1 ≤ 8 and m ≤ min{n+1, γ2+1}.
The incidence variety

Imγ1,γ2,n = {(Γ1,Γ2) | Γ1 ∩ Γ2 = {p1, . . . , pm}} ⊆ Hγ1,0,n ×Hγ2,0,n

of two rational curves intersecting transversely at m points in general position is irreducible
and unirational, of dimension

dim Imγ1,γ2,n = dimHγ1,0,n +m+ dimHγ2,0,n −m(n− 1).

Notice that the irreducibility and the unirationality of Imγ1,γ2,n follow from the fact that
by Lemma 4.3.4, Imγ1,γ2,n is dominated by a projective bundle over Hγ1,0,n. The transversality
of the intersection does not affect the result since it is an open condition. Similarly, we have:
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Lemma 4.3.6. Let n, d and γ be integers with 3 ≤ n ≤ 5, 3 ≤ d ≤ 8 and γ ≥ 1. The
incidence variety

Id,γ,n = {(E,Γ) | E ∩ Γ = {pt}} ⊆ Hd,1,n ×Hγ,0,n

of an elliptic and a rational curve intersecting transversely at one point is irreducible and
unirational, of dimension

dim Id,γ,n = dimHd,1,n + 1 + dimHγ,0,n − (n− 1).

Step 3: The choice of a K3 surface X containing E ∪ Γ (or Γ1 ∪ Γ2) is parametrized by
an iterated Grassmannian G. In the case n = 3, X is a quartic surface, so G = |IE∪Γ(4)|.
In the case n = 4, X is a complete intersection of a quadric and a cubic, hence G = PE is a
projective bundle over |IE∪Γ(2)|, whose fiber over q ∈ |IE∪Γ(2)| is PEq defined in the exact
sequence

0→ H0(OP4(1))
·q→ H0(IE∪Γ(3))→ Eq → 0.

Finally, in the case n = 5, X is a complete intersection of 3 quadrics, thus our parameter
space is G = Gr(3, H0(E ∪ Γ, IE∪Γ(2))). All these parameter spaces G are rational. We are
going to discuss in detail Case 2, as Case 1 can be handled analogously.

Let k = dγ+d2−n+1. We want to construct the surfaces inM2k by using the embedding
of lattices as in equation (4.3). We consider the incidence variety

I := {(X,E,Γ) | E ∪ Γ ⊆ X, E ∩ Γ = {pt}} ⊆ G× Id,γ,n

of triples (X,E,Γ), where X is a complete intersection in G containing the two curves E,Γ.
We denote by Ism ⊆ I the open subvariety of I containing triples (X,E,Γ) with X a smooth
K3 surface.

Lemma 4.3.7. The image of the morphism π1 : Ism →M2k, sending a triple (X,E,Γ) to
the isomorphism class of the smooth K3 surface X, is open in M2k. In particular, as M2k

is irreducible, either Ism = ∅ or π1 is dominant.

Proof. Choose a basis {H,E,Γ} of U ⊕〈−2k〉 such that the intersection matrix of {H,E,Γ}
is as in equation (4.3), and let X be a U ⊕ 〈−2k〉-polarized K3 surface. Up to the action
of the Weyl group, we can assume that H ∈ NS(X) is big and nef. By Saint-Donat’s result
[Sai74b, Theorem 5.2], H is very ample if and only if there is no element C ∈ NS(X) with
C2 = −2 and H · C = 0, and no element D ∈ NS(X) with D2 = 0 and H · D = 2. Both
conditions are closed inM2k, and if H is indeed very ample, it embeds X in Pn as a surface
containing the desired pair of curves.

In order to show the unirationality of M2k, we will use the following proposition. We
denote by π2 : I → Id,γ,n the forgetful map that sends the triple (X,E,Γ) to the pair (E,Γ).
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Proposition 4.3.8. Assume that there exists a pair (E,Γ) ∈ Id,γ,n such that the fiber F :=
π−1

2 (E,Γ) contains an element in Ism. If the number dim Id,γ,n + dimF coincides with the
expected dimension of I

dimM2k + dim PGL(n+ 1) + dim |E|+ dim |Γ| = 18 + dim PGL(n+ 1),

then π2 is dominant. As a consequence I is unirational, π1 : I 99K M2k is a dominant
rational map, and thus M2k is unirational.

Proof. Since by assumption Ism 6= ∅, then by Lemma 4.3.7 the morphism π1 : Ism →M2k

is dominant and induces a dominant rational map π1 : I 99K M2k. The map π1 can be
decomposed as the composition q2 ◦ q1, where q1 sends a triple (X,E,Γ) to the K3 surface
X, and q2 sends a (smooth) K3 surface to its isomorphism class. The set of automorphisms
of Pn fixing a K3 surface X ⊆ Pn is finite so that the dimension of the fiber of q2 is equal to
dim PGL(n+ 1). Moreover, the fiber of q1 is 1-dimensional since the elliptic curve E moves
in a 1-dimensional pencil and Γ is rigid on X. Since π1 is dominant, necessarily dim I is at
least the expected dimension

dimM2k + dim PGL(n+ 1) + dim |E|+ dim |Γ| = 18 + dim PGL(n+ 1).

Now let d ≤ dimF be the minimal dimension of the fibers of π2. By semicontinuity of the
fiber dimension, there exists on open dense subset U of Id,γ,n such that dim π−1

2 (E ′,Γ′) = d
for all (E ′,Γ′) ∈ U . If d < dimF , then

dim I = dim Id,γ,n + d < dim Id,γ,n + dimF,

which is a contradiction, since by assumption the number dim Id,γ,n+dimF coincides with the
expected dimension of I. This implies that π2 is dominant, and thus gives to I (generically)
the structure of a projective bundle over Id,γ,n (with fiber isomorphic to G). In particular, I
is unirational, and therefore M2k is unirational, too.

The previous proposition proves the existence of the diagram

I

M2k Id,γ,n

π1 π2 (4.4)

whenever Ism 6= ∅ and a certain equality of dimensions holds. As we already remarked,
the general fiber of π2 is isomorphic to the iterated Grassmannian G defined above, of
dimension

dimπ−1
2 (E,Γ) =


h0(E ∪ Γ, IE∪Γ(4))− 1 for n = 3,

h0(E ∪ Γ, IE∪Γ(2))− 1 + h0(E ∪ Γ, IE∪Γ(3))− 6 for n = 4,

3 · (h0(E ∪ Γ, IE∪Γ(2))− 3) for n = 5.
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In the case n = 4, we choose a quadric hypersurface through E ∪ Γ and then a cubic hyper-
surface through E ∪ Γ which is not a multiple of the chosen quadric.

We check with Macaulay2 that there exists a pair (E,Γ) ∈ Id,γ,n such that the fiber
F = π−1

2 (E,Γ) contains one element in Ism and that

dim Id,n,γ + dimF − dim PGL(n+ 1) = 18.

In order to compute the dimension of Id,n,γ, we check with Macaulay2 that (E,Γ) is a smooth
point of Id,n,γ. Notice that the same strategy works analogously for Case 1, with the only
difference that the previous number has to be 17 instead of 18. This follows from the fact
that the two smooth rational curves are rigid on the K3 surface, and thus the fiber of q1 in
the proof of Proposition 4.3.8 is 0-dimensional. All the experimental data can be found in
Tables 4.1, 4.2, 4.3.

Remark 4.3.9. We are also adapting the above strategy to prove unirationality for some
quasi-polarized K3 surfaces. We construct nodal K3 surfaces having a node (i.e., having a
unique A1-singularity) and containing either a smooth rational curve or a smooth elliptic
curve (see Section 4.5 for more details).

4.3.3 Search for the lattices

In this section we explain how we obtain an exhaustive list of projective models of elliptic
K3 surfaces of Picard number 3 in Case 1 and 2.

In Case 2, the K3 surface is automatically elliptic. In Case 1, we actually have to check
that the lattice contains a copy of the hyperbolic plane. By [Nik79b, Corollary 1.13.3], the
lattices U ⊕ 〈−2k〉 are unique in their genus, so an even lattice L of rank 3, signature (1, 2)
and determinant 2k contains a copy of U if and only if L is in the genus of U ⊕ 〈−2k〉 (see
Section 1.1.3). This amounts to computing the discriminant groups of L; we do not report
these straightforward computations here.

In order to obtain an exhaustive, but finite, list of possible projective models for such K3
surfaces in P3, P4 and P5, we want to bound the degrees of the elliptic and rational curves.
This bound arises from the fact that curves of fixed genus and “high” degree do not lie on
hypersurfaces of “small” degree. We explain this in detail for the case of two rational curves
in P3 meeting transversely at m points in general position; the strategy in the other cases is
completely analogous.

Let Γ1,Γ2 be smooth rational curves in P3 of degree γ1 and γ2, respectively, meeting at
m points. The short exact sequence

0→ IΓ1∪Γ2(4)→ OP3(4)→ OΓ1∪Γ2(4)→ 0

combined with the maximal rank conjecture (see e.g., [Lar17]) implies that h0(IΓ1∪Γ2(4)) > 0
if and only if

35 = h0(OP3(4)) > h0(OΓ1∪Γ2(4)) = 4(γ1 + γ2) + 2−m. (4.5)
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Notice that the number m of intersection points is bounded by the degrees γ1, γ2, since
there are no smooth rational curves of degree γ passing through more than 2γ points of Pn in
general position (cf. the formula in Lemma 4.3.4). Therefore, the inequality (4.5) provides
a bound dmax for the degrees γ1, γ2 of the two rational curves.

Now, we can produce the list of all possible projective models of elliptic K3 surfaces of
Picard number 3 in Case 1 and 2: for every γ1 ≤ γ2 ≤ dmax and every m ≤ 2γ1 satisfying the
inequality (4.5), we check whether the corresponding lattice contains a copy of the hyperbolic
plane by looking at its genus.

Remark 4.3.10. The same search works analogously in the case of nodal K3 surfaces since we
only have to bound the degree of the smooth rational curve or of the smooth elliptic curve.

4.3.4 Primitivity

The K3 surfaces that we construct in Tables 4.1, 4.2, 4.3 are in fact U ⊕〈−2k〉-polarized K3
surfaces for suitable values of k. In order to show this, we have to prove that the embeddings
as in equation (4.3) are primitive. We will perform a case-by-case inspection, depending on
the divisibility of k. Recall that, if D ∈ U ⊕ 〈−2k〉 is primitive and divisible by r in NS(X),
then r2 | k (see Lemma 1.1.7).

Table 4.1: We consider the lattice embedding Λ1
n,γ1,γ2

↪→ NS(X) in equation (4.6). If
k 6= 50, it is easy to see that the embedding is not primitive if and only if the divisor Γ1 + Γ2

is divisible in NS(X). However, Γ1 + Γ2 has square 0, it is reduced and connected, hence
it is primitive in NS(X). If instead k = 50, the embedding is primitive if and only if the
divisor H − Γ2 is primitive in NS(X). If by contradiction H − Γ2 would be divisible by 5,
then 1

5
(H − Γ2) would have square 0 and intersection 1 with H; this is a contradiction since

there are no curves of degree 1 and arithmetic genus 1.

Table 4.2: We consider the lattice embedding Λ2
n,d,γ ↪→ NS(X) in equation (4.7). We are

going to apply the following strategy for all the cases.
Let D ∈ Λ2

n,d,γ be a generator of 〈E,Γ〉⊥. Since 〈E,Γ〉 is a copy of the hyperbolic plane,
we have that D2 = −2k and the basis {E,Γ, D} gives an explicit isomorphism Λ2

n,d,γ
∼=

U ⊕ 〈−2k〉. Therefore, the embedding Λ2
n,d,γ ↪→ NS(X) is primitive if and only if D is

primitive in NS(X). Hence assume that 1
2
D ∈ NS(X) (thus 4 | k); if D is divisible by some

other number r the argument is analogous. A straightforward computation yields

D = H − (γ + 2d)E − dΓ.

We distinguish some cases depending on the parity of d, γ.
• d ≡ γ ≡ 0 (mod 2): In this case D is divisible by 2 if and only if H is divisible by 2, but
the hyperplane section is primitive in NS(X).
• d ≡ 1, γ ≡ 0 (mod 2): D is divisible by 2 if and only if H − Γ is divisible by 2. But
1
2
(H − Γ) would have square 0 and intersection 2 with H, and there are no curves of degree

2 and arithmetic genus 1.
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• d ≡ 0, γ ≡ 1 (mod 2): D is divisible by 2 if and only if H − E is divisible by 2. If
k = 24, 1

2
(H −E) would be a curve of degree 2 and arithmetic genus 1. If k = 40, 1

2
(H −E)

would have square −2, so it would be either effective or anti-effective. But (H − E)H < 0,
(H−E)E > 0, and this is a contradiction since H and E are nef. Finally, if k = 68, 1

2
(H−E)

would have square −2 and intersection 0 with H; this is a contradiction since the K3 surfaces
we are considering are generically smooth.
• d ≡ γ ≡ 1 (mod 2): D is divisible by 2 if and only if H − E − Γ is divisible by 2. If
k ∈ {16, 28}, 1

2
(H−E−Γ) would have square−2, but (H−E−Γ)H < 0 and (H−E−Γ)E > 0

leads to a contradiction as above. If instead k = 52, 1
2
(H − E − Γ) would be a (−2)-curve

orthogonal to H which is again a contradiction.

Table 4.3: The reasoning is completely analogous to the previous case.

4.4 Experimental data

4.4.1 Case 1: Two rational curves

Let γ1, γ2 and m be integers. Let Γ1,Γ2 ⊂ Pn be two rational curves of degree γ1 and γ2,
respectively, intersecting transversely at m points. If X ⊆ Pn is a K3 surface containing the
union Γ1 ∪ Γ2, then there exists a lattice embedding

Λ1
n,γ1,γ2

:=

2n− 2 γ1 γ2

γ1 −2 m
γ2 m −2

 ↪→ NS(X). (4.6)

For suitable choices, this lattice is isometric to U⊕〈−2k〉 for some integer k. In Table 4.1 we
specify this integer k in every case and list the data obtained with our Macaulay2 program.
Note that there is more than one configuration of two rational curves yielding a K3 surface
in M2k. We only list one possiblity for each k in Table 4.1.

Example 4.4.1. k = 10: Let X ⊆ P3 be a smooth quartic surface containing two disjoint
lines Γ1,Γ2. Then X is a K3 surface with the following primitive lattice embedding4 1 1

1 −2 0
1 0 −2

 ∼= U ⊕ 〈−20〉 ↪→ NS(X).

We recall the dimension count in this example:

2 · dim(Hilbt+1(P3)) + (h0(Γ1 ∪ Γ2, IΓ1∪Γ2(4))− 1)− dim PGL(4) =

= 2 · 4 + 24− (42 − 1) = 17 = dimM2k + dim |Γ1|+ dim |Γ2|.
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k n γ1 γ2 m dim(Hilbγ1·t+1(Pn)) dim(Hilbγ2·t+1(Pn)) dimπ−1
2 (Γ1,Γ2)

10 3 1 1 0 4 4 24
13 3 2 1 0 8 4 20
17 4 2 1 0 11 6 24
19 3 3 1 1 12 4 17
21 4 2 2 1 11 11 21
25 3 4 1 0 16 4 12
26 3 3 3 0 12 12 8
29 4 4 1 0 21 6 14
31 5 3 2 1 20 14 21
34 3 5 1 0 20 4 8
36 5 3 3 2 20 20 18
37 3 5 1 1 20 4 9
39 5 3 3 1 20 20 15
41 5 4 3 0 26 20 6
43 3 4 3 1 16 12 5
46 5 5 3 4 32 20 12
49 3 6 1 1 24 4 5
50 5 5 3 0 32 20 0
53 5 6 1 0 38 8 6
59 5 5 3 3 32 20 9
61 5 5 3 1 32 20 3
64 3 5 3 2 20 12 2
69 5 6 3 4 38 20 6
73 5 5 4 4 32 26 6
79 5 6 3 3 38 20 3
81 5 6 3 2 38 20 0
94 5 7 3 4 44 20 0
97 3 5 4 4 20 16 0

Table 4.1: List of lattices in Case 1

4.4.2 Case 2: An elliptic and a rational curve

Let d, n, γ be integers such that 3 ≤ d ≤ 8, 3 ≤ n ≤ 5 and 1 ≤ γ ≤ 7. Let E ⊂ Pn be
an elliptic curve of degree d, and let Γ ⊂ Pn be a rational curve of degree γ intersecting E
transversely at one point. We denote by X ⊆ Pn a K3 surface with the following lattice
embedding

Λ2
n,d,γ :=

2n− 2 d γ
d 0 1
γ 1 −2

 ∼= U ⊕ 〈−2(d2 + dγ +−n+ 1)〉 ↪→ NS(X). (4.7)
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We set k = d2 + dγ − n+ 1. In Table 4.2 we specify this integer k in every case and list the
data obtained with our Macaulay2 program.

k n d γ dim(Hilbd·t(Pn)) dim(Hilbγ·t+1(Pn)) dimπ−1
2 (E,Γ)

9 4 3 1 15 6 23
10 3 3 1 12 4 19
12 4 3 2 15 11 18
13 3 3 2 12 8 15
15 4 3 3 15 16 13
16 3 3 3 12 12 11
16 5 4 1 24 8 24
17 4 4 1 20 6 18
18 3 4 1 16 4 15
20 5 4 2 24 14 18
21 4 4 2 20 11 13
22 3 4 2 16 8 11
24 5 4 3 24 20 12
26 3 4 3 16 12 7
26 5 5 1 30 8 18
27 4 5 1 25 6 13
28 3 5 1 20 4 11
28 5 4 4 24 26 6
30 3 4 4 16 16 3
31 5 5 2 30 14 12
32 4 5 2 25 11 8
33 3 5 2 20 8 7
38 3 5 3 20 12 3
38 5 6 1 36 8 12
39 4 6 1 30 6 8
40 3 6 1 24 4 7
44 5 6 2 36 14 6
46 3 6 2 24 8 3
52 5 7 1 42 8 6
54 3 7 1 28 4 3
59 5 7 2 42 14 0
68 5 8 1 48 8 0

Table 4.2: List of lattices in Case 2

Example 4.4.2. k = 10: Let X ⊆ P3 be a smooth quartic surface containing a line Γ and an
elliptic curve E of degree 3 intersecting transversely at one point. Then X is a K3 surface
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with the following primitive lattice embedding4 3 1
3 0 1
1 1 −2

 ∼= U ⊕ 〈−20〉 ↪→ NS(X).

We recall the dimension count in this example:

dim(Hilb3·t(P3)) + 1 + dim(Hilbt+1(P3))− 2 + (h0(E ∪ Γ, IE∪Γ(4))− 1)− dim PGL(4) =

= 12 + 1 + (4− 2) + (19− 1)− (42 − 1) = 18 = dimM2k + dim |E|+ dim |Γ|.

4.5 Construction of nodal elliptic K3 surfaces

We adapt our above construction in order to deal with nodal K3 surfaces having one A1-
singularity. As in Step 1 of the construction in Section 4.3.1, we construct a curve of degree
d (that can either be a rational or an elliptic curve). In the second step we choose a point
p ∈ Pn, that can either belong or not to the chosen curve, depending on the situation.
The final step is to construct a K3 surface X containing the given curve and having an
A1-singularity at p.

We restrict our considerations to the case of an elliptic curve E with a point p on it, as the
other cases are treated similarly. The desingularization of X contains the exceptional divisor
Cp ∼= P1 over the A1-singularity. Then we have the following lattice embedding (which will
also be primitive by Section 4.3.4)2n− 2 0 d

0 −2 1
d 1 0

 ∼= U ⊕ 〈−2 · (d2 − n+ 1)〉 ↪→ NS(X).

given by the intersection matrix with respect to the basis 〈OPn(1)|X , Cp, E〉. We set k′ =
d2 − n+ 1. Hence, we have an incidence variety

I ′ := {(X,E) | (E, p) ∈ H1
d,1,n and E ⊂ X ∈M2k′} ⊂ M2k′ ×H1

d,1,n

and the natural projections, denoted by π′1 and π′2. The fiber π′−1
2 (E, p) is unirational.

Indeed, to obtain a K3 surface that is nodal in a point, one has to solve linear equations in
the coefficients of the equations generating the K3 surface and of their derivatives. But the
choice is unirational, and therefore the incidence variety I ′ is unirational. The unirationality
of M2k′ follows by the construction of a smooth K3 surface with the desired properties and
a dimension count, as in Case 1 and 2 (Proposition 4.3.8 holds almost verbatim in the nodal
case as well). The following table lists our experimental data for such nodal K3 surfaces.
We denote by dim π′−1

2 (E, p) the dimension of the space of nodal K3 surfaces containing E
and having a node at p ∈ E.
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k′ n d dim(Hilbd·t(Pn)) dim π′−1
2 (E, p)

6 4 3 15 24
7 3 3 12 20
12 5 4 24 28
13 4 4 20 19
14 3 4 16 18
21 5 5 30 22
22 4 5 25 14
23 3 5 20 12
32 5 6 36 16
33 4 6 30 9
34 3 6 24 8
45 5 7 42 10
47 3 7 28 4
60 5 8 48 4
62 3 8 32 0

Table 4.3: List of values for nodal K3 surfaces

Remark 4.5.1. One can repeat the same process as above by considering a rational curve
instead of an elliptic curve. This leads to the unirationality of M2k for the following values
of k:

k ∈ {13, 17, 21, 25, 31, 37, 41, 61}.
However we have already shown the unirationality of M2k for these values of k before (see
Table 4.1). Therefore, we do not treat these cases in detail.

We end this final section with three examples demonstrating how to choose a nodal K3
surface in Pn for n = 3, 4 and 5 containing a given curve and having an A1-singularity at
a point. Furthermore, we recall the dimension count in these examples showing that the
projection π′1 : I ′ 99KM2k′ is dominant.

Example 4.5.2 (Nodal quartic surfaces: k′ = 7.). Given an elliptic curve E together with a
point p in P3, a nodal K3 surface containing E and with a node at p is a quartic generator
of the ideal IEp2 := IE ∩ (Ip)2.

Let X ′ ⊂ P3 be a nodal quartic surface containing an elliptic curve E of degree 3 with an
A1-singularity at a point of E. Then the desingularization X of X ′ is a smooth K3 surface
with the following primitive lattice embedding4 0 3

0 −2 1
3 1 0

 ∼= U ⊕ 〈−14〉 ↪→ NS(X).

We recall the dimension count in this case:

dim(Hilb3·t(P3)) + 1 + (h0(IEp2(4))− 1)− dim PGL(4)

= 12 + 1 + (21− 1)− (42 − 1) = 18 = dimM2k′ + dim |E|.
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Example 4.5.3 (Nodal complete intersections of a quadric and a cubic: k′ = 6.). Given an
elliptic curve E together with a point p, we get a nodal K3 surface by choosing two generators
of degree 2 and 3 in the ideal IE with the same tangent space at the point p. Therefore, we
compute all quadric and cubic hypersurfaces containing E and being tangent at p to a P3

that contains the tangent line of E at p. The ideal of such hypersurfaces, denoted IE,P3 , is
the intersection of IE and I2

p ∩ IP3 .
Let X ′ ⊂ P4 be a nodal K3 surface containing an elliptic curve E of degree 3 with an

A1-singularity at a point of E. Then the desingularization X of X’ is a smooth K3 surface
with the following primitive lattice embedding6 0 3

0 −2 1
3 1 0

 ∼= U ⊕ 〈−12〉 ↪→ NS(X).

We recall the dimension count in this case:

dim(Hilb3·t(P3)) + 1 + dim(P3 containing the tangent line Tp(E))

+ (h0(IE,P3(2)) + h0(IE,P3(3))− 7)− dim PGL(5)

= 15 + 1 + 2 + (7 + 24− 7)− (52 − 1) = 18 = dimM2k′ + 1.

Example 4.5.4. Nodal complete intersections of three quadrics: k′ = 12. Given an elliptic
curve E together with a point p, we obtain a nodal K3 surface by choosing a nodal quadric
in the ideal IEp2 := IE ∩ (Ip)2 and two further quadrics in the ideal of E.

Let X ′ ⊂ P5 be a nodal K3 surface containing an elliptic curve E of degree 4 with an
A1-singularity at a point of E. Then the desingularization X of X ′ is a smooth K3 surface
with the following primitive lattice embedding8 0 4

0 −2 1
4 1 0

 ∼= U ⊕ 〈−24〉 ↪→ NS(X).

We recall the dimension count in this case:

dim(Hilb4·t(P5)) + 1 + (h0(IEp2(2))− 1) + (2 · (h0(IE(2))− 1− 2))− dim PGL(6)

= 24 + 1 + (9− 1) + (2 · (13− 1− 2))− (62 − 1) = 18 = dimM2k′ + 1.

4.6 The case k = 11

We end the chapter by dealing with the last remaining case, namely k = 11. We have decided
to dedicate its own section to this case, as the strategy involved is different from the ones of
the previous sections. More precisely, we realize the generic K3 surface inM22 as a complete
intersection in the Grassmannian G(2, 5) ⊆ P9. Then a dimension count following Proposi-
tion 4.3.8 (together with an explicit smooth example) allows us to show the unirationality
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of M22. Let us first recall some well-known facts about K3 surfaces of degree 10, following
[Muk88].

We denote by G(2, 5) ⊆ P9 the Grassmannian of lines in P4 embedded in P9 via the usual
Plücker embedding. We denote by x0, . . . , x9 a set of coordinates for P9. G(2, 5) ⊆ P9 is
given by the vanishing of 4 quadrics, it has degree 5 and dimension 6.

The intersection of G(2, 5) with a general linear subspace P6 ⊆ P9 of dimension 6 is a
quintic del Pezzo 3-fold Y (see [Muk88, Theorem 0.9]). There are many equivalent definitions
of such del Pezzo 3-folds: for instance they are the zero set in P6 of the maximal pfaffians of
a 5 × 5 skew-symmetric matrix with general linear polynomials as entries by the structure
theorem by Buchsbaum and Eisenbud [BE77]. Moreover, they are precisely those Fano 3-
folds in P6 whose linear sections are del Pezzo surfaces of degree 5. Recall that a del Pezzo
surface of degree 5 is the blow-up of the plane P2 at 4 general points.

Let X be a general K3 surface of degree 10. The polarization of X given by the very
ample line bundle L on X with L2 = 10 embeds X in P9 as the complete intersection of a
quintic del Pezzo 3-fold and a quadric hypersurface (see [Muk88, Corollary 0.3]). In other
words, a general K3 surface of degree 10 is a complete intersection in G(2, 5) of a quadric
and a codimension 3 linear space.

We are interested in the projective model of K3 surfaces inM22 given by the intersection
matrix 10 4 0

4 0 1
0 1 −2

 ∼= U ⊕ 〈−22〉.

Remark 4.6.1. The moduli spaceM22 is a codimension 2 subvariety of the moduli space F10

of K3 surfaces of degree 10, so we have two possibilities: either no K3 surface in M22 can
be realized as a complete intersection in G(2, 5), or the general one can. We will exclude the
first possibility during the course of the construction, when we will find an explicit example.

By looking at the intersection matrix above, we want to realize the K3 surfaces in M22

as complete intersections in G(2, 5) with a singular point V , and with an elliptic pencil of
degree 4 having V as a base point.

We start with the Segre embedding s : P1 × P2 ↪→ P5. Denote by [t0 : t1], [y0 : y1 : y2]
and [x0 : . . . : x5] the coordinates on P1, P2 and P5 respectively. The image of s is a 3-fold T .
We embed P5 ↪→ P6 as the hyperplane {x6 = 0}, and we construct the cone S with vertex
V = [0 : . . . : 0 : 1] over T . We can see S as the image of the morphism

Spec(R) := Spec(C[t0, t1, y0, y1, y2, x6]) ↪→ P6

extending the Segre embedding s so that x6 7→ x6. We consider t0, t1 (resp. y0, y1, y2) to
have bidegree (1, 0) (resp. (0, 1)) in R; by homogeneity, x6 must have bidegree (1, 1) in R.
S ⊆ P6 is a cubic scroll of dimension 4, given by the equations

S = {x0x4 − x1x3 = x0x5 − x2x3 = x1x5 − x2x4 = 0}.
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Moreover S admits a ruling

ρ : S → P1

[x0 : . . . : x6] 7→ [x0 : x1] = [x3 : x4] = [x5 : x6]

with fiber P3 = {x0 = x1 = x2 = 0}.
Now let Y be the subvariety of S given by an equation of bidegree (1, 2) in R. First, Y

contains the vertex V , so V is singular at V . This is because the only monomials in R of
bidegree (1, 2) containing x6 are yix6 for i ∈ {0, 1, 2}. Moreover Y is a (singular) quintic del
Pezzo 3-fold. This is well-known, but let us sketch the argument. Clearly Y is a Fano 3-fold
(for instance, the projection onto the second factor P2 gives a morphism Y → P2 with fiber
P1). Moreover the linear section {x6 = 0} of Y is a surface Z in P1 × P2 of bidegree (1, 2),
which is a del Pezzo surface of degree 5 (indeed, the projection Z → P2 onto the second
factor is the blow-up of 4 points).

The ruling ρ restricts to a morphism σ : Y → P1 with fiber Q1 = {x0 = x1 = x2 = 0}∩Y ,
which is a quadric surface. In other words, Y is covered by a pencil of quadric surfaces passing
through the vertex V .

Remark 4.6.2. Not all quintic del Pezzo 3-folds in P6 lie inside a cubic scroll. Let HdP,5

be the space of quintic del Pezzo 3-folds, and Hscroll
dP,5 ⊆ HdP,5 the subspace of those lying

inside a cubic scroll. One can check that Hscroll
dP,5 is of codimension 1 in HdP,5. However, both

spaces are unirational. HdP,5 is unirational by the structure theorem by Buchsbaum and
Eisenbud [BE77]. For the other one, notice first that the space Hscroll of cubic scrolls in P6 is
unirational (they are Cohen-Macaulay subschemes of P6 of codimension 2, so we can apply
Ellingsrud’s result [Ell75]). Then Hscroll

dP,5 is (generically) a projective bundle over Hscroll with
fiber isomorphic to

PH0(Spec(R),OSpec(R)(1, 2)) ∼= P14.

Finally, we choose a quadric Q2 ⊆ P6 passing through the vertex V . The intersection
X = Y ∩ Q2 is a K3 surface of degree 10 singular at V , and the morphism σ restricts to a
genus 1 fibration π : X → P1 of degree 4, since the fibers are intersections of two generic
quadrics in P3. All the elliptic curves in this pencil pass through the vertex V . After blowing
up V , we obtain a smooth K3 surface with the desired Néron-Severi lattice (the exceptional
divisor becomes a section of the elliptic pencil).

We obtain with Macaulay2 an explicit smooth example. Therefore it only remains to
show that the parameter space of such complete intersections is unirational, and that the
dimension count works as in Proposition 4.3.8. We have shown in Remark 4.6.2 that the
space Hscroll

dP,5 is unirational, and certainly the space of quadrics of P6 passing through V is
rational. So the parameter space is indeed unirational. For the dimension count, we have

h0(NS/P6) + (h0(OSpec(R)(1, 2))− 1) + h0(IV (2))− dim PGL(7) = 30 + 14 + 21− 48 = 17,

thus concluding the proof.
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5 | Enriques surfaces satisfy the poten-
tial Hilbert Property

5.1 Introduction

Given an algebraic variety X defined over a field K, one would like to understand “how
many” K-rational points the variety X has. This problem has been at the heart of funda-
mental discoveries in algebraic and arithmetic geometry in the past century. Depending on
the base field K, the question of determining the set of K-rational points of X can have
slightly different flavours. For instance, if K = Fp is a finite field, the problem is equivalent
to understanding how many solutions there are to the defining equations of X modulo p. If
instead K is an infinite field, then one needs a way to establish whether X has a “small”
or a “large” number of K-rational points. The coarsest possibility is to ask whether the
K-rational points are (Zariski) dense in X. However, this remains a very hard question to
answer for many classes of varieties. Indeed, the only completely settled case is the one of
curves: for rational and elliptic curves, the problem was classically solved, while Faltings’
theorem [Fal83] shows that C(K) is not dense in C for any non-singular algebraic curve C
of genus g ≥ 2 over a number field K. In the case of varieties of higher dimension, Vojta’s
conjectures [Voj87] predict when rational points should be dense, but in very few cases we
actually have a definitive answer.

Considering instead varieties that admit a dense set of K-rational points, one might find
finer ways to understand how “large” the set X(K) of K-rational points is. If K is a number
field there are multiple, classical possibilities. The most important for us is the so-called
Hilbert property, that was first studied by Hilbert. Roughly speaking, a variety X over a
number field K satisfies the Hilbert property if the set X(K) of K-rational points is dense in
X, and it does not come from a finite number of finite covers Yi → X (see Definition 5.2.1).
The Hilbert property is closely related to weak approximation (see [Ser92]).

The importance of the Hilbert property derives from its several connections to other fun-
damental problems in Arithmetic Geometry and Number Theory. For instance the following
conjecture, attributed to Colliot-Thélène and Sansuc [CS87], would settle, if proved, the
inverse Galois problem:

Conjecture 5.1.1 (Colliot-Thélène, Sansuc). Every unirational variety over a number field
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satisfies HP.

While on one side varieties with Kodaira dimension −∞ are believed to have “many” K-
rational points, on the other hand by Vojta’s conjectures one expects varieties with positive
Kodaira dimension to have fewer K-rational points. Therefore, as for curves, the case where
we expect a more varied behaviour is the one of Kodaira dimension zero. In the present
chapter we will focus on K3 and Enriques surfaces. In recent years much work has been
devoted to the study of the Hilbert property on such classes of surfaces. For instance,
Corvaja and Zannier [CZ17, Appendix 1] proved that, if the Vojta’s conjectures hold, then
every Kummer surface satisfies the Hilbert property. Moreover Demeio provided a link
between the Hilbert property and the presence of many genus 1 fibrations on K3 surfaces
(cf. [Dem21, Theorem 1.2]).

For Enriques surfaces, one needs to adjust the definition of the Hilbert property. In
fact, as already noted by Corvaja and Zannier [CZ17, Section 2.2], the definition of the
Hilbert property is not suitable for varieties with a torsion fundamental group. Therefore
they introduce a modified version of the Hilbert property, called the weak Hilbert property.
An Enriques surface satisfies the weak Hilbert property if and only if its K3 cover satisfies
the Hilbert property (cf. Definition 5.2.3).

Despite these important results, it is still very hard to understand whether many K3
surfaces satisfy the Hilbert property. In fact, the density of K-rational points is still not
known for the majority of K3 surfaces. Therefore we slightly change perspective, and we
focus on studying whether K3 and Enriques surfaces satisfy the Hilbert property after a
finite field extension. We call this the potential Hilbert property. Our main result is the
following:

Theorem 5.1.2. Every Enriques surface over a number field satisfies the potential weak
Hilbert property. Equivalently, every K3 surface over a number field covering an Enriques
surface satisfies the potential Hilbert property.

Theorem 5.1.2 shows that, if X is a K3 surface over K covering an Enriques surface,
there exists a finite field extension L/K such that the base change XL satisfies the Hilbert
property. During the course of the proof of Theorem 5.1.2 we are able to effectively find such
a field extension L/K: in fact we show that, if X(L) is dense and the geometric Néron-Severi
group of X is defined over L, then XL satisfies the Hilbert property.

As an immediate consequence we have (see [Keu90]):

Corollary 5.1.3. Every Kummer surface over a number field satisfies the potential Hilbert
property.

Notice that Theorem 5.1.2 only deals with K3 surfaces with large Picard rank, i.e. ρ > 10.
However, we are also able to prove the following:

Theorem 5.1.4. Let X be a K3 surface over a number field K. If XC admits at least two
distinct genus 1 fibrations, and ρ(XC) < 10, then X satisfies the potential Hilbert property.
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Our proof relies on a detailed study of the embeddings of root lattices into the Néron-
Severi lattice of K3 surfaces, and on Demeio’s result [Dem21, Theorem 1.2]. We stress the
fact that our methods can be easily adapted to a much wider class of K3 surfaces, thus
showing some evidence towards the following conjecture:

Conjecture 5.1.5. Let X be a K3 surface over a number field K. If XC admits at least two
genus 1 fibrations and Aut(XC) is infinite, then X satisfies the potential Hilbert property. In
particular, if XC has positive entropy, then X satisfies the potential Hilbert property.

Conjecture 5.1.5, if proved, would provide a surprising link between the geometric side of
complex dynamics on K3 surfaces, and a purely arithmetic question as the Hilbert property.

The chapter is organized as follows: in Section 5.2 we review the basic facts about the
Hilbert property, with special interest towards K3 surfaces. Section 5.3 contains the technical
core of the chapter. We provide an in-depth study of root lattices on K3 surfaces, and we
prove Propositions 5.3.4 and 5.3.7, the two main ingredients of the proof of Theorem 5.1.2.
Finally, in Section 5.4 we prove Theorem 5.1.2 by using the results of Section 5.3.

5.2 The Hilbert property

Throughout the section K is a number field and X is a geometrically irreducible, projective
variety over K.

Definition 5.2.1. X satisfies the Hilbert property (HP for short) if the set of its K-rational
points X(K) is not thin, i.e. X(K) is (Zariski) dense in X and for any finite morphism
p : Y → X of degree ≥ 2 such that X(K) r p(Y (K)) is not dense in X, there exists a
rational section of p.

Thinness is a measure of “how many” K-rational points the variety X has. Clearly, the
fact that a variety satisfies HP highly depends on the base field K. For instance, if the set
of K-rational points X(K) is not dense, then X cannot satisfy HP. However, if a variety X
over K satisfies HP, then the base change XL satisfies HP for any finite field extension L/K
[Ser92, Proposition 3.2.1]. Therefore it makes sense to introduce the following definition.

Definition 5.2.2. A variety X over K satisfies the potential Hilbert property (PHP for short)
if the base change XL satisfies HP for a certain finite field extension L/K.

This definition allows much more flexibility: for instance, if X is an elliptic K3 surface
or an Enriques surface, we can always choose a finite field extension L/K such that X(L) is
dense (see [BT98; BT00]). Therefore a much larger class of varieties can satisfy PHP.

We will be mainly interested in studying the Hilbert property for Enriques and K3 sur-
faces. We remark immediately that the “classical” definition of Hilbert property (i.e. Defi-
nition 5.2.1) is not very suitable in the case of Enriques surfaces, and more generally for all
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varieties with a finite, non-trivial fundamental group. Indeed Corvaja and Zannier prove in
[CZ17, Theorem 1.6] that any smooth projective variety satisfying HP must be algebraically
simply connected (and thus its fundamental group cannot have subgroups of finite index).

Consequently, we formulate the following definition:

Definition 5.2.3. An Enriques surface satisfies the weak Hilbert property (WHP for short)
if its K3 cover satisfies HP. We will write PWHP for the potential weak Hilbert property.

This definition coincides with the one in [CZ17, Section 2.2] in the case of Enriques sur-
faces.

An important sufficient condition for a K3 surface to satisfy HP, due to Demeio, is the
following:

Theorem 5.2.4 ([Dem21], Theorem 1.2). Let X be a K3 surface over K admitting at least
two distinct genus 1 fibrations. Denote by D ⊆ X the divisor obtained as the union of all
the irreducible curves on X that are orthogonal to all genus 1 fibrations on X. If X rD is
simply connected and X(K) is dense in X, then X satisfies HP.

Remark 5.2.5. When we ask X rD to be simply connected, we mean that the base change
XC rD over C has to be simply connected. In reality, for Theorem 5.2.4 we only need that
there are no unramified covers of degree > 1 over X rD, which is a weaker condition than
π1(XC rD) = 1 (cf. [CZ17, Proposition 1.1]).

The power of Theorem 5.2.4 derives from the fact that it allows us to infer the Hilbert
property for a K3 surface X just by looking at its Néron-Severi lattice. The downside,
however, is that sometimes the geometric Néron-Severi lattice NS(XC) is not entirely defined
over K, and consequently some genus 1 fibrations on XC do not exist over K. Our solution to
this problem is to extend the base field to a number field L/K such that NS(XL) = NS(XC).
Then we can show that XL satisfies HP by lattice-theoretical methods.

Remark 5.2.6. The divisor D in Theorem 5.2.4 (to be more precise, a very closely related
object) already appeared in the paper [Nik14]. More precisely, Nikulin defines the exceptional
sublattice of a complex K3 surface to be the sublattice E(NS(X)) ⊆ NS(X) spanned by all
the irreducible curves on X that are orthogonal to all genus 1 fibrations on X with infinite
stabilizer. Clearly, if E(NS(X)) = 0, then D = ∅, and therefore X satisfies HP by Theorem
5.2.4. Nikulin shows that, if ρ(X) ≥ 6, there are only finitely many Néron-Severi lattices of
K3 surfaces with a non-zero exceptional lattice; combining this with the above discussion,
we obtain that there are only finitely many Néron-Severi lattices of rank ≥ 6 of K3 surfaces
not satisfying HP. However, a list of lattices N for which E(N) 6= 0 is not known at the
moment. For instance, all K3 surfaces with zero entropy have a non-zero exceptional lattice
(cf. Chapter 2). Nevertheless, notice that many of the K3 surfaces with zero entropy found
in Theorem 2.5.11 (or better, their models over some number field) actually satisfy PHP.
Indeed, those who admit some extra genus 1 fibrations have an empty divisor D: the only
elliptic fibration |F | has irreducible fibers, and the fiber itself F is not a part of the divisor
D, as it is not orthogonal to the extra genus 1 fibrations.
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Remark 5.2.7. Theorem 5.2.4 already shows that any unnodal Enriques surface satisfies
PWHP. Indeed, any Enriques surface S admits at least three genus 1 fibrations (possibly
after base changing to a larger number field) by Theorem 1.5.7, induced by elliptic half-
fibers F1, F2, F3. If S is unnodal, |2Fi| has only irreducible fibers for each i, and therefore
the pullbacks Ei = π∗Fi induce genus 1 fibrations on the K3 cover X with at most two
reducible fibers (with two irreducible components each). Denote by C1 and C2 the two
irreducible components of such an elliptic fiber of |E1|. C1 and C2 are interchanged by the
Enriques involution σ, and, up to reordering, C1 ·E2 6= 0. Therefore C2 ·σ(E2) = C1 ·E2 6= 0,
and consequently no curve on X is orthogonal to all genus 1 fibrations on X. Since rational
points are potentially dense on X by [BT00], we conclude that X satisfies PHP.

5.3 Root lattices on K3 surfaces

We devote this section to an in-depth study of the possible embeddings of a root lattice R
into the Néron-Severi lattice of a K3 surface.

Convention 5.3.1. Let us fix some notations and conventions about root lattices that will
be used throughout the chapter. We will keep the following numbering of the components:

C1 C2 C3 Cn−2 Cn−1 Cn

An
C1

C3
C4 Cn−2 Cn−1 Cn

C2

Dn

C1 C2

C3

C4 C5

C6

E6

C1 C2 C3

C4

C5 C6

C7

E7

C1 C2

C3

C4 C5 C6 C7

C8

E8

If R is a direct sum of some ADE lattice, we will number its components following the order
of the direct summands, and we will use the above convention for the numbering of the basis
vectors in each summand.

The discriminant groups of ADE lattices are discussed in Section 1.1.1. We will often
write vectors in AR = R∨/R as vectors in the dual lattice R∨.

In order to show that many K3 surfaces satisfy PHP, by Theorem 5.2.4 we need to
understand when the complement of some (−2)-curves on a K3 surface is simply connected.
The problem of determining the fundamental group of an “open” K3 surface was initialized
by works of Shimada, Zhang and Keum [SZ01; KZ02]. We recall the main result:
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Theorem 5.3.2 ([SZ01], Theorem 4.3). Let X be a complex K3 surface, and consider a
root lattice R spanned by some (−2)-curves C1, . . . , Cr on X. Assume that R satisfies the
following three conditions:

1. rk(R) ≤ 18;

2. `(AR) ≤ 20− rk(R);

3. the embedding R ↪→ NS(X) is primitive.

Then the complement X r (C1 ∪ . . . ∪ Cr) is simply connected.

Remark 5.3.3. If the embedding R ↪→ NS(X) is primitive, then the inequality

`(AR) ≤ 22− rk(R)

holds. For, denote by R⊥ the orthogonal complement of R in the K3 lattice ΛK3. The
unimodularity of the K3 lattice implies that AR and AR⊥ are isomorphic as finite groups,
and hence

`(AR) = `(AR⊥) ≤ rk(R⊥) = 22− rk(R).

Therefore we would like to understand what happens when the embedding R ↪→ NS(X)
is not primitive. The following result already appeared in the preprint [Sch18, Theorem 1.1];
nevertheless, our proof is somewhat different from the one there.

Proposition 5.3.4. Let X be a complex K3 surface, and consider a root lattice R spanned
by some (−2)-curves in X. If the embedding of lattices i : R ↪→ NS(X) is not primitive, then
the roots of the saturation i(R)sat are roots of R. In particular, i(R)sat is not a root lattice.

Proof. Assume by contradiction that in the saturation i(R)sat of i(R) there is a vector D
of norm −2 that is not in i(R). If R is spanned by (−2)-curves C1, . . . , Cr, we can write
D =

∑
i αiCi for αi ∈ Q. Since the norm of D ∈ NS(X) is −2, one of D and −D is effective,

and without loss of generality we can assume that D is effective. Hence at least one of the
αi is positive. Moreover we can write D = C ′1 + . . .+ C ′s for some (not necessarily distinct)
irreducible curves on X. After separating the Ci with positive and negative coefficients αi,
we get an equality ∑

j

C ′j +
∑
αi<0

(−αi)Ci =
∑
αi≥0

αiCi (5.1)

inside NS(X). Up to multiplying both sides by a positive integer, we can assume that the
coefficients αi are integers. Since the right hand side belongs to the negative definite lattice
i(R), its associated linear system contains only one effective divisor, which is itself (both
sides of the equation are effective, since they are positive linear combinations of effective
curves). Therefore equality (5.1) is an equality of divisors, so the curves C ′1, . . . , C

′
s coincide

with some of the Ci, and thus they are contained in i(R). We conclude that D ∈ i(R), a
contradiction.
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Combining Theorem 5.3.2 with Proposition 5.3.4, we obtain the following:

Corollary 5.3.5. Let X be a complex K3 surface, and consider a root lattice R spanned by
some (−2)-curves C1, . . . , Cr in X. Assume that R satisfies the following three conditions:

1. rk(R) ≤ 18;

2. `(AR) ≤ 20− rk(R);

3. all the overlattices of R (as an abstract lattice) are root lattices.

Then the complement X r (C1 ∪ . . . ∪ Cr) is simply connected.

Remark 5.3.6. Notice that the condition (3) above is equivalent to the condition

3’. all the overlattices of R (as an abstract lattice) contain more roots than R.

Indeed, both conditions are equivalent to the following: all isotropic vectors in the discrim-
inant group AR have a preimage in R∨ of norm −2. For instance, Am1 satisfies condition
(3) above if and only if m < 8, while Am2 does so if and only if m < 6. Similarly, it is
straightforward to check that any root lattice of rank < 8 satisfies condition (3).

Let R be a root lattice, R′ an overlattice of R of index p prime. We say that R′ is given by
v ∈ R∨ if R′ = R[v]. Moreover, we consider v to be normalized, i.e. v = 1

p
(α1C1 + . . .+αrCr)

for some 0 ≤ αi ≤ p−1 (cf. Convention 5.3.1). We say that the overlattice R′ is concentrated
at some curves {Ci}i∈I if αi = 0 for any i /∈ I. The following result characterizes overlattices
of root lattices.

Proposition 5.3.7. Let R be a root lattice, R′ an overlattice of R of index p prime. Then
the curves over which R′ is concentrated span a sublattice of R isometric to Amp−1, for some
m ≥ 1. Therefore, if R′ is not a root lattice, then Amp−1 admits an overlattice that is not a
root lattice as well.

Proof. Assume that R = R1 ⊕ . . . ⊕ RN splits as the direct sum of certain ADE lattices.
The overlattice R′ of R is given by a normalized vector v ∈ R∨, and its image v ∈ AR =
AR1 × . . .× ARN

has order p, so v = (v1, . . . , vN) for certain vi ∈ ARi
of order p (or vi = 0).

Therefore we only need to classify the vectors of order p in AR, where R is an ADE lattice.
Assume R = Apr−1, spanned by C1, . . . , Cpr−1 (cf. Convention 5.3.1). The discriminant
group AR is cyclic of order pr, and its generator is the image of e = 1

pr
(
∑
jCj) ∈ R∨. All

vectors of order p in AR are the images of mr · e ∈ R∨, for m ∈ {1, . . . , p − 1}. It is easy
to notice that, after normalizing mr · e, its coefficients are zero precisely in the positions
p, 2p, . . . , (r − 1)p. Thus mr · e ∈ R∨ is concentrated at the curves {Ci : p - i}, that span a
sublattice of R isometric to Arp−1.
The reasoning for Dn (and p = 2) and for E6, E7 (and p = 3, p = 2 respectively) is completely
analogous.
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Remark 5.3.8. We can interpret Proposition 5.3.7 in a more geometric way, at least when R is
a root lattice generated by (−2)-curves on a K3 surface X. If the embedding i : R ↪→ NS(X)
is not primitive, then the saturation of i(R) contains an overlattice R′ of R of index p prime.
We denote by X0 the K3 surface obtained from X by contracting all the (−2)-curves in
R where the overlattice R′ is concentrated, and by t1, . . . , tm the resulting singular points
of X0. The fact that R′ ⊆ NS(X) implies that there exists a cyclic p : 1 cover X ′ → X0

branched precisely over the singular points t1, . . . , tm ∈ X0, where X ′ is smooth. Since the
image of a smooth ramification point of a p : 1 cover is a singular point of type Ap−1 (see
[Bar+04, Proposition III.5.3]), we conclude that the root type of the curves of X where R′

is concentrated is Amp−1.

Proposition 5.3.7 will be a key ingredient for the proof of Theorem 5.1.2. In order to
explain its potential, we prove the following result, which anticipates the strategy that we
will implement to prove our main theorem.

Theorem 5.3.9. Let X be a K3 surface over a number field K. If XC admits at least two
distinct genus 1 fibrations, and ρ(XC) < 10, then X satisfies PHP.

Proof. We choose a number field L/K over which the base change XL admits two genus
1 fibrations |E1|, |E2|, and X(L) is dense in X. Let H = 〈E1, E2〉 ⊆ NS(XC). If C is an
irreducible curve orthogonal to all genus 1 fibrations on XL, then clearly C ∈ H⊥. Since
H is isometric to U(m) for some m ≥ 1, H⊥ is negative definite, and therefore C is a
(−2)-curve. Denote by R the root lattice spanned by all (−2)-curves C1, . . . , Cr on XL that
are orthogonal to all genus 1 fibrations on X. R embeds into H⊥, so rk(R) < 8. All the
overlattices of R are root lattices by Remark 5.3.6, hence the complement XLr(C1∪. . .∪Cr)
is simply connected by Corollary 5.3.5, and finally XL satisfies HP by Theorem 5.2.4.

5.4 Proof of the main theorem

We have already seen in Remark 5.2.7 that every unnodal Enriques surface satisfies PWHP.
Therefore let S be a nodal Enriques surface over a number field K, and denote by π : X → S
its K3 cover. Up to enlarging the number field K, we assume that X(K) is dense in X (see
[BT00]), and that NS(XK) = NS(XC).

S admits a special elliptic pencil |2F | by [Cos85, Theorem 4.1], with rational bisection
R0. Let M ⊆ NS(SC) be the root lattice spanned by all (−2)-curves on S orthogonal to all
genus 1 fibrations on S.

The pullback of the special elliptic pencil |2F | induces an elliptic fibration |E| on the
K3 cover X. More precisely, each of the two disjoint components S0, P of the pullback of
R0 is a section of |E|. Moreover the pullbacks of the (−2)-curves in M span a root lattice
R ⊆ NS(X), isometric to M2.

Our goal is to show that the Enriques surface S satisfies PWHP. By virtue of Theorem
5.2.4, it is sufficient to show that the complement of the curves in X, that are orthogonal to
all genus 1 fibrations on the K3 surface X, is simply connected. Notice that all such curves
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are (−2)-curves by an argument similar to the one in the proof of Theorem 5.3.9, since there
are at least 3 distinct genus 1 fibrations on X (the pullbacks of the 3 genus 1 fibrations on
S).

Remark 5.4.1. The (−2)-curves on X that are orthogonal to all genus 1 fibrations on X
surely lie in the root lattice R, since R is spanned by the pullbacks of the curves on S
orthogonal to all genus 1 fibrations on S. However, it can happen that a (−2)-curve C ∈ R
intersects non-trivially a genus 1 fibration E ′ on X, not coming from S. If σ denotes the
Enriques involution of X, we have that σ(C) intersects non-trivially the genus 1 fibration
σ(E ′) on X, so we can remove C and σ(C) from R. Equivalently, we can make M smaller by
removing the (−2)-curve π(C). Therefore we can assume, just by making M smaller, that
the (−2)-curves in R ∼= M2 are precisely the curves on X that are orthogonal to all genus 1
fibrations.

First, let us find some restrictions on the root lattice M ⊆ NS(SC). Up to enlarging the
number field K, the Enriques surface S admits two further elliptic pencils |2F ′|, |2F ′′|, with
F ·F ′ = F ·F ′′ = F ′ ·F ′′ = 1. By looking at the intersection matrix, it is easy to realize that
the lattice H ⊆ NS(S) spanned by F, F ′ and F ′′ is isometric to U⊕A1. Since by assumption
the root lattice M ⊆ NS(S) is spanned by (−2)-curves that are orthogonal to all genus 1
fibrations on S, we have that M ↪→ H⊥ ∼= E7. The isometry H⊥ ∼= E7 follows from the fact
that the embedding H ∼= U ⊕A1 ↪→ U ⊕E8

∼= NS(SC) is unique up to isometry by [Nik79b,
Theorem 1.14.4], and the orthogonal complement of A1 in E8 is clearly isometric to E7. As
a consequence rk(M) ≤ 7. Up to making M smaller, we can assume that the (−2)-curves
in R ∼= M2 are precisely the curves on X that are orthogonal to all genus 1 fibrations (see
Remark 5.4.1). We have three possibilities for the root lattice M2 ∼= R ↪→ NS(XC):

(1) The embedding R ↪→ NS(XC) satisfies the three conditions of Theorem 5.3.2.

(2) The embedding R ↪→ NS(XC) is primitive, but `(AR) > 20− rk(R).

(3) The embedding R ↪→ NS(XC) is not primitive.

Clearly X satisfies HP in situation (1), by combining Theorems 5.3.2 and 5.2.4. In order
to deal with situation (2), we show the following:

Lemma 5.4.2. There are no root lattices M ↪→ E7 with `(AM) = 11− rk(M).

Proof. Clearly no root lattice of rank ≤ 5 can satisfy the property `(AM) = 11 − rk(M),
since `(AM) ≤ rk(M). Assume instead that r := rk(M) ∈ {6, 7}. Since the length of AM
coincides with the maximum of the p-lengths, we have `p(AM) = 11 − r ∈ {4, 5} for some
prime p. If p > 2, then each ADE summand of M with determinant multiple of p has rank
at least 2 and p-length 1 (see Table 1.1), and hence rk(M) ≥ 8, a contradiction. Thus
`2(AM) = 11 − r. By checking all ADE lattices with even determinant (namely A2n−1, Dn

and E7), we observe from Table 1.1 that

rk(L) + `2(AL) ≡ 0 (mod 2)
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for any ADE lattice L. This implies that rk(M) + `2(AM) is even as well, a contradiction
since rk(M) + `2(AM) = 11.

Lemma 5.4.2 implies that situation (2) actually never occurs: indeed, if M2 ∼= R ↪→
NS(XC) is primitive and `(AR) > 20− rk(R), then

20− rk(R) = 20− 2 rk(M) < `(AR) = 2`(AM) ≤ 22− rk(R)

by Remark 5.3.3, i.e. `(AM) = 11− rk(M). However there are no such root lattices M that
embed into E7 by Lemma 5.4.2.

Finally, we need to deal with the situation when the embedding R ↪→ NS(XC) is not
primitive. Proposition 5.3.4 implies that the saturation of R has the same roots as R, and
therefore R admits an overlattice R′ of index p prime that is not a root lattice. Applying
Proposition 5.3.7 to R ∼= M2, we know that the overlattice R′ is concentrated at a sublattice
R̃ ⊆ R isometric to Arp−1 for some r ≥ 1. The image π(R̃) ↪→ E7 is isometric to Asp−1 for

some s ≥ r
2
. Moreover R̃ has an overlattice that is not a root lattice by Proposition 5.3.7,

and by Remark 5.3.6 this leaves us with the possibilities

R̃ = Ar1, 8 ≤ r ≤ 14, R̃ = A6
2. (5.2)

In order to conclude the proof of Theorem 5.1.2, we will assume the existence of many
(−2)-curves on X orthogonal to all genus 1 fibrations on X, and spanning a non-primitive
sublattice R ⊆ NS(XC) isometric to one of the lattices in (5.2); we will see that such an
assumption leads to a contradiction, as we are always able to find an extra genus 1 fibration
intersecting non-trivially one of these (−2)-curves. We split the argument in two sections,
one for Ar1 and one for A6

2.

5.4.1 Case R = Ar
1

We keep the notations as in the previous section. We start by studying the overlattices
of R = Ar1 that are not root lattices. The discriminant group of A1 is cyclic of order 2,
generated by an element of square −1

2
(mod 2Z). If 8 ≤ r ≤ 11, there exists a unique

overlattice of index 2 of R that is not a root lattice up to isometry, corresponding to the
vector 1

2
(C1 + . . . + C8) ∈ R∨. If instead 12 ≤ r ≤ 14, we have a second overlattice of

index 2 that is not a root lattice, given by 1
2
(C1 + . . . + C12) ∈ R∨. We can deal with the

two cases, corresponding to the two overlattices, in a completely analogous way. We will
present a detailed argument for the first case, that works verbatim for the second case as well.

Consequently, throughout the section, we will assume the following:

Assumption 5.4.3. On the K3 cover X there are eight (−2)-curves C1, . . . , C8 orthogonal
to all genus 1 fibrations on X, and spanning a root lattice R ∼= A8

1 that is not primitive in
NS(X).
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The goal of the section is to show that this is impossible. Notice that eight (−2)-curves
span a lattice isometric to A8

1 if and only if they are disjoint. By the discusssion at the
beginning of the section, the embedding R ↪→ NS(X) is not primitive if and only if the
divisor D = 1

2
(C1 + . . .+ C8) is integral, that is if D ∈ NS(X).

Recall that the special elliptic pencil |2F | on the Enriques surface S pulls back to an
elliptic fibration |E| on X, with disjoint sections S0 and P . Moreover C1, . . . , C8 are orthog-
onal to E by Assumption 5.4.3. Therefore C1, . . . , C8 are vertical components in reducible
fibers of |E|. We start with a lemma concerning the possible configurations of the curves
C1, . . . , C8 in the reducible fibers of |E|. Notice that, since the divisor 2D = C1 + . . . + C8

is divisible by 2, the sum C1 + . . .+ C8 must have even intersection number with any other
curve on X.

Lemma 5.4.4. Let C1, . . . , Cr be disjoint (−2)-curves in a reducible fiber E0 of the elliptic
fibration |E|, and assume that Z = C1 + . . . + Cr has even intersection with all the (−2)-
curves in E0. Then we have the following possibilities for the fiber type of E0 and r ≥ 1,
shown in the picture below:

1. E0 = I2n, r = n, or E0 = III, r = 1;

2. E0 = I∗n, r ∈ {2, 4};

3. E0 = I∗2n, r = n+ 2;

4. E0 = III∗, r = 3;

5. E0 ∈ {IV ∗, III∗, II∗}, r = 4.

Proof. All the cases are handled similarly; we are going to show one of them in detail.
Consider the case E0 = I∗2n:
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D1

D3

D4 D5 D2n+2
D2n+3

D2n+4

D2 D2n+5

Assume first that D1 and D2 belong to the divisor Z. Then D3 /∈ Z because it meets D1

and D2, and D4 /∈ Z, otherwise D3 · Z = 3. Now D5 /∈ Z, since otherwise D4 · Z = 1, and
so on, until D2n+3 /∈ Z. Now we have two choices: either D2n+4 and D2n+5 both belong to
Z, or none does.
Assume instead that D1 ∈ Z, but D2 /∈ Z. Then D4 ∈ Z (otherwise D3 · Z = 1), and so on
until D2n+2 ∈ Z. In this case exactly one of D2n+4 and D2n+5 belongs to Z.
Assume finally that D1, D2, D2n+4, D2n+5 /∈ Z. Then D3, D2n+3 /∈ Z (otherwise D1 · Z = 1),
and hence D4, D2n+2 /∈ Z, and so on, until no component belongs to Z.

We need to show that Assumption 5.4.3 leads to a contradiction. We divide our argument
in several subcases, depending on the reducible fibers of the elliptic fibration |E| on X.

Case 1: There is a II∗ fiber. Since the elliptic fibration |E| is the pullback of an elliptic
fibration on the Enriques surface S, by Proposition 1.5.5 there must exist two fibers of type
II∗. The dual graph of (−2)-curves is as follows, where the red vertices correspond to the
curves Ci:

C1 = D′1

D′2

C3 = D′3

D′4

C5 = D′5

D′6

D′7

D′8

C7 = D′9

D′′1 = C2

D′′2

D′′3 = C4

D′′4

D′′5 = C6

D′′6

D′′7

D′′8

D′′9 = C8

S0

P

The configuration of the red vertices follows from Lemma 5.4.4. Moreover S0 and P ,
being sections of |E|, must intersect the II∗ fibers at the only component of multiplicity 1.

Now the blue diagram in the picture highlights a new elliptic fiber of type I∗5 , intersecting
C1 non-trivially. This contradicts Assumption 5.4.3.
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Case 2: There is a III∗ fiber. A singular fiber of type III∗ on the Enriques surface S
gets doubled on the K3 cover by Proposition 1.5.5.

D′1

D′2

D′3

D′4

D′5

D′6

D′7

D′8

D′′1

D′′2

D′′3

D′′4

D′′5

D′′6

D′′7

D′′8

S0

We assume first that D′7 is one of our curves Ci. Then the blue diagram in the pic-
ture above highlights a new elliptic fiber of type II∗, intersecting D′7 non-trivially. This
contradicts Assumption 5.4.3.

If instead D′7 is not one of the Ci, then by Lemma 5.4.4 we have only one possible
configuration for the red vertices in the left fiber, consisting of the three curves D′1, D′3 and
D′8. Depending on the position of the second section P of |E|, we have one of the following
two dual graphs:

D′1

D′2

D′3

D′4

D′5

D′6

D′7

D′8

D′′1

D′′2

D′′3

D′′4

D′′5

D′′6

D′′7

D′′8

S0

P

D′1

D′2

D′3

D′4

D′5

D′6

D′7

D′8

D′′1

D′′2

D′′3

D′′4

D′′5

D′′6

D′′7

D′′8

S0

P

The blue diagrams in the pictures, of type I∗3 and I16 respectively, intersect D′1 and D′8
non-trivially, contradicting Assumption 5.4.3.

Case 3: There is a IV ∗ fiber. The dual graph is as follows:
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S0

The new elliptic fiber of type I∗6 highlighted in blue in the picture contradicts Assumption
5.4.3.

Case 4: There is an I∗n fiber. By Lemma 5.4.4 there are three cases to consider for the
configuration of our curves in an I∗n fiber. Recall that a fiber of type I∗n on the Enriques
surface S gets doubled on the K3 cover by Proposition 1.5.5.

D′2

D′3

D′4

D′5

D′6

D′7

D′8

D′9

D′′2

D′′3

D′′4

D′′5

D′′6

D′′7

D′′8

D′′9

S0

D′1 D′′1

If the component D′2 is one of the Ci, then the diagram in blue gives a contradiction. Notice
that this already covers all possible configurations if the fiber is of type I∗0 . If instead n ≥ 2
and the configuration of the Ci is as follows, then a new elliptic fiber of type II∗ gives the
desired contradiction.

S0
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For the last configuration, namely the one containing only two red vertices far from S0,
we find the following new elliptic fibers, depending on 1 ≤ n ≤ 4 (notice that n ≤ 4, since
the rank of the Néron-Severi lattice of the Enriques surface S is 10):

S0 S0

S0 S0

Case 5: There are at least 2 fibers of type I2n, with n ≥ 2. Here we only work on the
K3 cover X. Recall that the elliptic fibration |E| admits (at least) two sections, S0 and P .
If S0 (or P ) meets one of the I2n fibers at a component that is one of the Ci, then the next
picture gives a contradiction (we draw only the case n = 2, as the other ones are completely
analogous):

S0

If instead both S0 and P meet the two fibers away from the components Ci, then the following
new elliptic fiber gives the desired contradiction:

S0

P
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Case 6: There is a fiber of type I2n, n ≥ 5. Depending on the intersection of S0 with
the fiber, a new elliptic fiber of type III∗ or II∗ gives the desired contradiction:

S0 S0

Case 7: There are at least 4 fibers of type I2 (or III). Notice that this is the last
case: combining Cases 5 and 6 we know that there is at most one fiber I2n with 2 ≤ n ≤ 4,
so the remaining ≥ 4 curves Ci must lie on I2 (or III) fibers. If S0 (or P ) meets at least one
of the I2 (or III) fibers at a component that is one of the Ci, then the new elliptic fiber

S0

of type I∗0 gives the desired contradiction. Otherwise both S0 and P meet the four I2 (or
III) fibers away from the Ci, and hence the new elliptic fiber

S0

P

of type I4 concludes the case.

5.4.2 Case R = A6
2

Throughout the section, we will assume the following:

Assumption 5.4.5. On the K3 cover X there are twelve (−2)-curves C1, . . . , C12 orthogonal
to all genus 1 fibrations on X, and spanning a root lattice R ∼= A6

2 that is not primitive in
NS(X).
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The goal of the section is to show that this is impossible. Our strategy will be com-
pletely analogous to the case M = Ar1 solved in Section 5.4.1. First, we have to classify the
overlattices of R = A6

2 of index 3 that are not root lattices. The discriminant group of A2

is cyclic of order 3, generated by a vector of norm −2
3

(mod 2Z). Therefore there exists a
unique overlattice of index 3 of R that is not a root lattice, namely the one corresponding
to 1

3
(C1 + 2C2 + . . . + C11 + 2C12) ∈ R∨ (cf. Convention 5.3.1). Therefore, the embedding

R ↪→ NS(X) is not primitive if and only if the divisor D = 1
3
(C1 + 2C2 + . . . + C11 + 2C12)

is integral, that is if D ∈ NS(X).
We keep the notations as in Section 5.4. In particular, we denote by |E| the elliptic

fibration on the K3 cover X, and by S0, P its sections. Notice that, since the divisor 3D =
C1 + 2C2 + . . .+C11 + 2C12 is divisible by 3, the sum C1 + 2C2 + . . .+C11 + 2C12 must have
intersection ≡ 0 (mod 3) with any other curve on X.

Lemma 5.4.6. Let C1, . . . , C2r be (−2)-curves in a reducible fiber E0 of the elliptic fibration
|E| generating a root lattice of type Ar2, and assume that Z = C1 + 2C2 + . . .+C2r−1 + 2C2r

has intersection ≡ 0 (mod 3) with all the (−2)-curves in E0. Then we have the following
possibilities for the fiber type of E0 and r ≥ 1, shown in the picture below:

1. E0 = I3n, r = n, or E0 = IV , r = 1;

2. E0 = IV ∗, r ∈ {2, 3};

3. E0 ∈ {III∗, II∗}, r = 3.

1

2

1

2

1 2 2 1

2

1

1 2 1 2

1 2 2 2 1

1

1 2 1 2 1 2

Proof. The proof is straightforward and completely analogous to the one of Lemma 5.4.4.

We perform a case-by-case analysis, as in the previous section.
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Case 1: There is a II∗ fiber. The dual graph is as follows:

S0

P

The blue diagram highlights a new elliptic fiber of type I∗5 , and it intersects a red component
non-trivially, thus contradicting Assumption 5.4.5.

Case 2: There is a III∗ fiber. The dual graph is as follows:

S0

The blue diagram in the picture highlights a new elliptic fiber of type II∗, contradicting
Assumption 5.4.5.

Case 3: There is a IV ∗ fiber. By Lemma 5.4.6 we have two possibilities for the config-
uration of red components. The dual graph is as follows:
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C1

C2 C5

C6
C4

C3

C7

C8 C11
C12

C10

C9

S0

Surely at least one of C1 or C6 (and symmetrically, at least one of C7 and C12) is a red
component by Lemma 5.4.6, so the new elliptic fiber of type I∗6 highlighted in blue contradicts
Assumption 5.4.5.

Case 4: There is an I18 fiber. The dual graph is as follows, depending on which com-
ponent the zero section S0 meets:

S0 S0

In both cases the new elliptic fiber of type III∗ contradicts Assumption 5.4.5.

Case 5: There is an I3n fiber with n > 1. After dealing with Cases 1 – 4, we can
assume that all the reducible fibers of |E| are of type I3n for some n ≥ 1, and that our 12
components do not lie on a unique fiber. In this case the dual graph is as follows:

C ′C

S0

By Lemma 5.4.6 at least one of C and C ′ is a red component, so the new elliptic fiber of
type IV ∗ highlighted in blue contradicts Assumption 5.4.5.
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Case 6: There are 6 fibers of type I3 (or IV ). We have the following dual graph:

C ′C

S0

At least one of C and C ′ is one of the Ci by Lemma 5.4.6, say C without loss of generality.
Then the new elliptic fiber

C ′C

S0

of type IV ∗ intersects C non-trivially, contradicting Assumption 5.4.5.
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man. In: Invent. Math. 73 (1983), pp. 349–366.

[Fes18] D. Festi. A practical algorithm to compute the geometric Picard lattice of K3
surfaces of degree 2. 2018. arXiv: 1808.00351.

[FHM20] M. Fortuna, M. Hoff, and G. Mezzedimi. Unirational moduli spaces of some
elliptic K3 surfaces. 2020. arXiv: 2008.12077.

112



[FM21] M. Fortuna and G. Mezzedimi. “The Kodaira dimension of some moduli spaces
of elliptic K3 surfaces”. In: J. London Math. Soc. (2021). doi: https://doi.
org/10.1112/jlms.12430.

[FV12] G. Farkas and A. Verra. “Moduli of theta-characteristics via Nikulin surfaces”.
In: Math. Ann. 354.2 (2012), pp. 465–496.

[FV16] G. Farkas and A. Verra. “Prym varieties and moduli of polarized Nikulin sur-
faces”. In: Adv. Math. 290 (2016), pp. 314–328.

[FV18] G. Farkas and A. Verra. “The universal K3 surface of genus 14 via cubic four-
folds.” In: J. Math. Pures Appl. (9) 111 (2018), pp. 1–20.

[FV21a] G. Farkas and A. Verra. “The unirationality of the moduli space of K3 surfaces
of genus 22”. In: Math. Ann. 380.3-4 (2021), pp. 953–973.

[FV21b] D. Festi and D. C. Veniani. Counting elliptic fibrations on K3 surfaces. 2021.
arXiv: 2102.09411.

[Gal19] J. Gallier. The Schur Complement and Symmetric Positive Semidefinite (and
Definite) Matrices. 2019. eprint: https://www.cis.upenn.edu/~jean/schur-
comp.pdf.

[GHS07a] V. Gritsenko, K. Hulek, and G. K. Sankaran. “The Hirzebruch-Mumford volume
for the orthogonal group and applications.” In: Doc. Math. 12 (2007), pp. 215–
241.

[GHS07b] V. A. Gritsenko, K. Hulek, and G. K. Sankaran. “The Kodaira dimension of the
moduli of K3 surfaces.” In: Invent. Math. 169.3 (2007), pp. 519–567.

[GHS09] V. Gritsenko, K. Hulek, and G. K. Sankaran. “Abelianisation of orthogonal
groups and the fundamental group of modular varieties.” In: J. Algebra 322.2
(2009), pp. 463–478.

[GHS15] V. Gritsenko, K. Hulek, and G. K. Sankaran. “Moduli of K3 surfaces and ir-
reducible symplectic manifolds.” English. In: Handbook of moduli. Volume I.
Somerville, MA: International Press; Beijing: Higher Education Press, 2015,
pp. 459–526.

[Gro03] M. Gromov. “On the entropy of holomorphic maps”. In: Enseign. Math. (2)
49.3-4 (2003), pp. 217–235.
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