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Abstract

Nowadays, scientific articles are mostly published as PDF files containing
unstructured and semi-structured text. This way of scholarly communication
severely limits the possibilities to automatically process and reuse scholarly
knowledge. As a consequence, applying data analysis methods to scientific
literature is a non-trivial process. FAIR scholarly knowledge graphs (SKGs)
is one approach to represent scholarly knowledge in a structured, machine-
actionable, and semantic manner. In this thesis, we exploit SKGs, specifically
the Open Research Knowledge Graph (ORKG), in data science. We introduce
a generic architecture for applying data science to scholarly data. We then
implement the architecture using the ORKG as the main data source and test
it in two use cases in different domains. We demonstrate approaches that
reuse the ORKG content to draw new insights and build applications and
visualizations on top of SKGs data.

Zusammenfassung

Heutzutage werden wissenschaftliche Artikel meist als PDF-Dateien verof-
fentlicht, die unstrukturierten und halbstrukturierten Text enthalten. Diese
Art der wissenschaftlichen Kommunikation schrankt die Moglichkeiten zur
automatischen Verarbeitung und Wiederverwendung von wissenschaftlichem
Wissen stark ein. Folglich ist die Anwendung von Datenanalysemethoden
auf wissenschaftliche Literatur ein nicht-trivialer Prozess. FAIR scholarly
knowledge graphs (SKGs) ist ein Ansatz, um wissenschaftliches Wissen in
einer maschinenverarbeitbaren, strukturierten und semantischen Weise darzustellen.
In dieser Arbeit nutzen wir SKGs, insbesondere den Open Research Knowl-
edge Graph (ORKG), in Data Science. Wir stellen eine allgemeine Architek-
tur fiir die Anwendung von Data Science auf wissenschaftliche Daten vor.
Anschlieffend implementieren wir die Architektur unter Verwendung des
ORKG als Hauptdatenquelle und testen sie in zwei Anwendungsféllen in un-
terschiedlichen Doméanen. Wir demonstrieren Ansitze, die den ORKG-Inhalt
wiederverwenden, um neue Erkenntnisse zu gewinnen und Anwendungen
und Visualisierungen auf Basis der SKG-Daten zu erstellen.
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Chapter 1

Introduction

1.1 Introduction

Data science gained traction in recent years due to the growing importance
of data in knowledge societies. The argument is that it is possible to gain
valuable information and insights from data [30].

Usually, each data science use case begins with collecting and organizing
data, which takes up most of the data scientist’s time'. In general, the data
required for typical data science use cases, such as sales analysis, is stored lo-
cally (e.g., in the internal databases of the company). In this case, the time
spent on collecting the required data to begin the analysis is minimized.
However, conducting data science tasks in other scenarios could be more
challenging. For instance, applying data analysis methods and approaches
to scientific literature in any research field is a non-trivial process.

Consider the following scenario. A scientist wants to keep pace with the lit-
erature analyzing the basic reproduction number (R0) and case fatality rate
(CFR) of COVID-19 in different locations of the world published in recent
scientific articles. She wants to visually compare COVID-19 to other viruses
in terms of contagiousness (i.e., R0) and deadliness (i.e., CFR). To do this, our
scientist needs a significant amount of time and effort to search for and se-
lect the articles that correspond to her needs, extract the relevant knowledge
from the articles (i.e., RO and CFR), and create a data set. Only then, she can
visualize and compare the RO and CFR of the different viruses. Depending
on the number of articles our scientist reviews, considerable effort may be
needed to gather the relevant data. An important part of the problem over-
all is that the articles are published in PDF format, i.e., knowledge is buried
in machine-inactionable format [46]. This severely limits the possibilities to
automatically process and reuse scholarly knowledge.

Ihttps://www.forbes.com/sites/gilpress/2016/03/23/
data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
?7sh=6834623b6£63
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Nowadays, almost all scientific articles are communicated in digital forms
[33], inactionable PDF documents containing semi-structured and unstruc-
tured text. Extracting data manually by humans with expert knowledge and
creating structured up-to-date databases and data sets is expensive [60]. Col-
lecting scholarly knowledge this way is a tedious and time-consuming task,
and the problem compounds when we need to consider hundreds or thou-
sands of articles.

As the numbers of articles continue to grow, these challenges are not getting
any easier and the costs of analyzing and reviewing the literature also in-
crease unless good data management systems are developed. Wilkinson et
al. [74] proposed a set of four principles to guide research data management:
Research data and metadata should be Findable, Accessible, Interoperable,
and Reusable (FAIR), for both humans and machines. By following these
principles in publishing and storing articles, any type of research data such
as tools, algorithms, and results should be available to other researchers to
ensure transparency, reproducibility, and reusability.

Recently, the community has proposed approaches to represent scholarly
knowledge in a machine-actionable, structured, and semantic manner. One
approach is scholarly knowledge graphs. Knowledge graphs are large net-
works of real-world entities and relationships, usually expressed in W3C
standards such as Web Ontology Language (OWL) and Resource Descrip-
tion Framework (RDF) [75, 23]. Scholarly knowledge graphs (SKGs) are a
sub-category of knowledge graphs specialized for the scholarly domain [66].
SKGs may contain metadata that describes articles entities such as authors,
institutions, journals, and citation relationships. SKGs also characterize other
research knowledge such as methods, technologies, and results [9]. On one
hand, SKGs help researchers to share their data in a structured and reusable
way. On the other hand, they enable scientists to navigate, analyze, and gain
new insights from scholarly data. Examples of scholarly knowledge graphs
include the Open Research Knowledge Graph (ORKG)?, Microsoft Academic
Graph (MAG)?, and OpenAIRE research graph®.

1.2 Motivation

Numerous stakeholders benefit from the implementation of the FAIR data
principles in research infrastructures, including [74]:

e Researchers wanting to reuse each other’s data.

*https://www.orkg.org/

3https:
//www.microsoft.com/en-us/research/project/microsoft-academic-graph/

“https://graph.openaire.eu/
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e Data publishers in service provision.

e Software developers building data analysis and processing services on
top of scholarly data.

e Data scientists analyzing, mining, and discovering knowledge from
scholarly data.

The work presented here relates primarily to the last two points.

One of the challenges in SKGs research area is to develop new services that
reuse the data of SKGs to enable exploring the knowledge produced in re-
search fields and drawing new insights®.

In this thesis, we tackle this challenge by exploiting SKGs, specifically the
Open Research Knowledge Graph (ORKG), in data science. Since the ORKG
implements (to a reasonable degree) the FAIR data principles, we demon-
strate that the ORKG makes the reuse of scholarly knowledge in data science
across literature much easier and more efficient. In other words, we develop
and demonstrate approaches that reuse the ORKG content, and possibly data
from other sources, to enable data science and discover new knowledge in
the research areas of our case studies.

We tackle the following research questions:
e RQ1: Can SKGs, specifically the ORKG, be exploited in data science?

e RQ2: What are the technical approaches to exploit SKGs in data sci-
ence?

1.3 Structure

We briefly present the structure of this thesis document and its chapters.

Chapter 2: Fundamentals. After introducing and motivating the aim of the
thesis, this chapter provides an overview of the basics of scholarly data sci-
ence, data science pipeline, scholarly knowledge graphs, and the difference
between relational and graph databases.

Chapter 3: Related Work. This chapter presents several scholarly databases,
their technological characteristics, and how we can use them in data science.
Moreover, it provides an overview of existing approaches used for extracting
scholarly data from the literature and conducting data analysis, using both
data and metadata.

Shttps://skg.kmi.open.ac.uk/SKG2020/
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Chapter 4: Scholarly Data Science Architecture and Implementation. This
chapter introduces a generic architecture for data science on scholarly data,
possible implementation choices for the architecture, as well as the specific
implementation proposed in this thesis, including the tools and methods
used in our work.

Chapter 5: COVID-19 Use Case. The architecture implementation presented
in Chapter 4 is tested by performing numerous data science tasks, such as
spatial and pattern analysis, on COVID-19 related scholarly knowledge ob-
tained from the ORKG and other sources. Furthermore, the result of a previ-
ous study is updated by reusing the ORKG content in Jupyter Notebook.

Chapter 6: Invasion Biology Use Case. The architecture implementation
presented in Chapter 4 is tested in an additional research field and other data
science tasks. In contrast to the COVID-19 Use Case, here we first ingest data
into the ORKG and only then use it in downstream data science. Moreover,
in this use case we do not just use Jupyter Notebook but additionally develop
interactive web applications.

Chapter 7: Discussion. This chapter discusses the advantages and limita-
tions of our work and outlines future work.

Chapter 8: Conclusion. This chapter summarizes the major contributions
of this thesis.



Chapter 2

Fundamentals

This chapter is an overview of the fundamental concepts used throughout
this thesis. We first introduce data science in general terms and scholarly data
science, specifically. Next we provide an overview of the stages of a typical
data science pipeline. We then introduce the concept of knowledge graph,
which we specialize to scholarly knowledge graphs. Finally, we present the
main differences between relational and graph databases.

2.1 Scholarly data science

Several authors have attempted to define and describe data science. Zhu et
al. [81] defined data science as a group of " theories, methods, and technolo-
gies for studying data nature". Van der Aalst [67] explained it as an integra-
tion of "statistics, data mining, distributed systems and databases" to extract
value from data. However, in a more comprehensive definition, data science
is a set of various methods including data extraction, preprocessing, analysis,
and visualization which is used to gain valuable information and insights for
a better understanding of the data. It uses techniques drawn from numerous
fields such as mathematics, statistics, and computer science.

During the last years, the considerable growth in the number of published
scientific articles has lead to sizeable amounts of scholarly data. Scholarly
data published in the literature include authors, organizations, institutions,
methods, technologies, citation information, research results, and other ar-
ticles content. This data is being produced and accumulated in all research
fields. Reports estimate that a new article is published every 20 seconds'.
Due to the form in which scholarly data is published—primarily, as PDF
documents—processing and analyzing scholarly data relies on substantial
manual effort. Here is where scholarly data science comes in: applying data
science methods on scholarly data extracted from the literature.

https://www.explainxked.com/wiki/index.php/The_Rise_of_Open_Access


https://www.explainxkcd.com/wiki/index.php/The_Rise_of_Open_Access

Chapter 2. Fundamentals 9

2.2 Data science pipeline

Fayyad et al. [28] presented a process model for knowledge discovery in
databases (KDD). The authors used the term KDD to refer to the overall pro-
cess of extracting useful insights from data. The model consists of five stages
(Data selection - Preprocessing - Transformation - Mining - Interpretation and
evaluation) and leads from raw data to insights.

Since there is no formally ”standardized” process or workflow that fits every
data scientist [12], several other efforts introduced workflows and pipelines
for data science, data analysis, and knowledge discovery such as [12, 35, 16,
28]. Based on these efforts, a typical data science pipeline, depicted in Figure
2.1, consists of the following stages:

“oa.

o ol .© »ES

Analysis

Acquisition Preprocessing Exploring Analysis Presentation

1 1 | | |

FIGURE 2.1: A typical data science pipeline.

1. Data Acquisition: Data is essential to any data science task. Thus, after
identifying the task goal, a data scientist selects the relevant sources and
starts collecting data [28]. The importance of this step comes from the
fact that all the following stages in the pipeline depend on the quality
of the data gathered in this stage. The following should be considered
when collecting data:

e Variety of ways to access data (e.g., files vs. APIs) [16].

e Regulations for access and use of data (e.g., rules for personal data,
API limitations).

e Data formats (e.g., data sets vs. streams, structured vs. unstruc-
tured).

2. Data Preprocessing: To make data analysis ready, the collected data
must typically be processed [35]. Among others, the following concerns
need to be considered [76]:

¢ Noise: Data may contain outliers or errors (e.g., Height="-170 cm”).

e Incompleteness: Data may contain missing feature values or cer-
tain features of interest.
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e Inconsistency: Data may contain conflicts in names or values (e.g.,
Age="50" and date of birth = 701.01.2000”).

For these reasons, data must generally be preprocessed and prepared
for subsequent analyses. Once it is understood what each data feature
represents, the data preprocessing stage can begin. Major techniques in
this stage include [2, 76]:

e Data cleaning: Including dealing with missing values, smoothing
noisy data, identifying or removing outliers, and resolving incon-
sistencies.

e Data integration: Integrating data from different sources.
e Data transformation: Normalization and aggregation.

The result of the data preprocessing stage is data sets ready to be used
for exploration and analysis [18].

3. Data Exploring: This stage is sometimes called exploratory data analy-
sis (EDA). EDA uses statistics and graphical tools to provide an overview
of the available data before applying other analysis methods [14]. For
instance, data scientists may inspect the distribution of features by plot-
ting scatterplots to check for skewed data.

4. Data Analysis: This stage is about in-depth analysis. Depending on the
goals, users choose which methods and algorithms to use such as visu-
alization, spatial analysis, pattern recognition, clustering, classification,
regression, etc [82].

The primary goals of data analysis are prediction and description [28,
82]. If it is a predictive analysis problem, then partitioning the data into
training and test sets as well as the creation and evaluation of a pre-
dictive (possibly a machine learning) model, are done in this stage. On
the other hand, descriptive analysis aims to extract new and valuable
information, insights, and patterns from data.

5. Interpretation and results presentation: The outputs and insights gained
in the previous step need to be presented to/for relevant stakeholders
[12]. These results may be in form of reports, presentations, applica-
tions, and different kinds of visualizations such as maps, charts, etc
[12].

While working on each stage in the pipeline, it is often necessary to go back
to previous stages and adjust some decisions taken earlier in the pipeline
[28]. In other words, the overall process is usually repeated and tuned until
the desired results are obtained, Figure 2.1.
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Moreover, the time spent working on each stage should be addressed at the
beginning of the use case. A 2016 survey? found that data scientists spend
most of their time cleaning and organizing data (60%). Collecting data sets
is another time-consuming task, as it accounts for about 19% of the work of
data scientists. Data scientists spend relatively less time mining data and
searching for patterns (9%).

2.3 Scholarly knowledge graphs

We now describe what is understood by knowledge graph and scholarly
knowledge graph, as a specialization. We then present the main differences
between typical relational databases and graph databases.

2.3.1 Scholarly knowledge graph: A definition

The semantic web aims to create a web of machine-readable knowledge [61].
It has proposed to represent knowledge using graph data models, e.g., using
the Resource Description Framework (RDF) [75]. RDF is a framework for
describing information about resources. Its key structure is the statement,
also known as triple. An RDF statement has the following structure:

<subject> <predicate> <object>

Sets of RDF triples are called RDF graphs. The graph consists of nodes and
edges where nodes are called entities (subjects and objects) and edges are
called relations (predicate). Each entity is uniquely identified with an Inter-
nationalized Resource Identifier (IRI).

Paulheim [51] suggested a definition for knowledge graph by proposing a
set of characteristics that distinguish knowledge graphs. These include:

o KGs describe real-world entities of numerous domains as well as the
relations between entities.

e KGs define possible classes and relations between entities in a schema.

With scholarly knowledge graphs (SKGs), this broad characterization of KGs
has been specialized to the scholarly domain [66]. A SKG represents scientific
information and may not only contain metadata that describes the entities
referred to articles such as authors, institutions, journals, etc. but also data
that describes the methods, tools, data sets, technologies used in research and
the obtained research results [9].

*https://www.forbes.com/sites/gilpress/2016/03/23/
data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
?7sh=6834623b6£63
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2.3.2 Difference between relational and graph databases

Relational database management systems (RDBMSs) (such as Oracle and
MySQL) are widely used. An RDBMS stores data in tables [17] based on
a schema that defines the fixed features and data types of the stored records
[40, 5]. The schema is the structure of the database and it should be de-
fined at the database creation time. Relationships between the tables in the
RDBMS are built using primary and foreign keys. In general, RDBMSs are ef-
ficient unless the data contains many relationships demanding joins of large
number of tables [69]. At this point, joining the tables using primary and
foreign keys is not a practical solution anymore. Furthermore, the current
trend of big data introduces new challenges such as unstructured data, semi-
structured data, and fast-changing data [79].

Recently, there has been much interest in non-relational database manage-
ment systems (NoSQL DBMSs) [31]. NoSQL DBMSs store unstructured and
semi-structured data [50, 36]. One type of these DBMSs is graph DBMSs,
which store connected data, i.e.,, data with many interconnected relation-
ships. Graph DBMSs are often used to store knowledge graphs by repre-
senting data as nodes and edges [50, 55]. Common graph DBMSs include
Neo4j® and OrientDB*.

A primary difference between relational and graph databases is that rela-
tional databases have a predefined schema to organize data while graph
databases do not enforce a fixed schema [5].

Batra and Tyagi [64] performed a comparative analysis of relational and graph
models, in which the performance of Neo4j and MySQL is investigated. The
analysis shows that the retrieval of results in graph databases is faster than
in relational ones. Furthermore, graph databases are more flexible than rela-
tional databases as new data types and relationships can be added to Neo4j
without redefining the schema, which is not the case in relational databases.
The schema of MySQL needs to be updated with each new data type.

One drawback of Neo4j is the absence of built-in security support [64, 70].
It has Access Control List (ACL) security mechanisms but it is managed at
the application layer. On the other hand, many RDBMSs, such as MySQL,
contain comprehensive support for ACL-based security.

Another significant downside of Neo4;j is the lack of support [70]. Most of
the support comes from its parent company’s website and is limited from
outside the website. On the other hand, the huge popularity of relational
databases over the last decades led to increased user support. Relational
databases have a unified language which is SQL. Different RDBMSs, such
as Oracle and MySQL, have various SQL implementations but SQL does not

Shttps://neo4j.com/
4https://www.orientdb.org/
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differ much between these implementations, i.e., support for one implemen-
tation is usually applicable to other implementations. As a result, MySQL,
for instance, has comprehensive support from both its parent company (Sun)
and its users.
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Chapter 3

Related Work

Several databases in various domains contain structured scholarly data that
can be used in data science. However, if the required data is not available in
existing databases, then extracting it from articles is the first step in the data
science pipeline. Thus, the work presented here relates to four aspects:

1. Scholarly databases
2. Extracting structured information from articles
3. Data analysis on article metadata

4. Data analysis on article content

3.1 Scholarly databases

This section is an overview of several scholarly databases. We present their
technological differences and how we can use them in data science. Some of
the databases are implemented using RDBMS, while others use non-relational
database management systems to store data. For the latter we discuss schol-
arly knowledge graphs (SKGs) hosted on graph databases.

3.1.1 Domain-specific SKGs

Recently, several organizations and research groups worked on constructing
domain-specific KGs and used them for tackling problems in the correspond-
ing domains [39].

The CovidGraph project' proposed a COVID-19 KG. To build the graph, the
project team integrated data from numerous public biomedical sources such
as CORD-19? [72] and Lens COVID-193 data sets. Data from open-source

Ihttps://covidgraph.org/
’https://www.semanticscholar.org/cord19
*https://about.lens.org/covid-19/
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knowledge bases such as the NCBI Gene database* and Gene ontology re-
source® [6, 15] was also integrated into the graph. The graph data is stored
using Neo4j [73] and can be queried using Cypher (an SQL-like query lan-
guage optimized for graphs). Researchers and users can explore the data
stored in the graph by using two web applications. Both applications are free
and there is no need for registration.

The first application is called visual graph explorer® and is used for exploring
the data visually. The application supports users in finding articles, authors,
patents, and genes and facilitates the understanding of the relations between
these entities. For instance, users can explore which genes are mentioned in a
specific article, and find the articles that mention a particular gene or a com-
bination of genes. To use the visual graph explorer application, users start by
selecting an entity type such as genes, patents, articles, authors, diseases, etc.
Users can then query against the database by entering a Cypher query or a
free text in the toolbar.

The second application is the Neo4j browser’. To use the application, users
should log in. The credentials are publicly available. The following creden-
tials are valid at the time of writing this thesis:

User: public
Password: corona

Users can query the graph directly on the database level via Cypher. It offers
a basic visualization of the resulting graph as well as data export in CSV and
JSON formats.

Related to the pathophysiology of Corona-Virus, Domingo-Ferndndez et al.
[20] also proposed a COVID-19 knowledge graph. To build the graph, the
authors extracted information from both metadata and data of articles. They
then transformed this data into Biological Expression Language (BEL) triples
and used the triples to build the knowledge graph.

The research community can navigate and analyze the information stored
in the graph by using a web application called BiKMi®. No registration is
needed to use the application. The needed credentials are freely available to
log in to the guest’s dashboard and explore the statistical summaries of the
data available in the graph. The following credentials are valid at the time of
writing this thesis:

User: guest
Password: anonymousUser

“nttps://www.ncbi.nlm.nih.gov/gene
http://geneontology.org/covid-19.html
®https://1live.yworks.com/covidgraph/
"https://db.covidgraph.org/
8https://bikmi.covid19-knowledgespace.de/
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The back-end of the application’ is implemented using OrientDB (a NoSQL
DBMS that allows both relational and graph queries). Furthermore, users can
query the graph directly on the database level by logging into OrientDB and
running either their own SQL queries or one of the bookmarked queries. The
result of the query is shown in a table and can be exported in JSON files.

In biodiversity, Penev et al. [52] created the OpenBiodiv: an open biodi-
versity knowledge management system (OBKMS) that exploits text mining
and semantic technologies to construct an infrastructure for managing bio-
diversity knowledge that fulfills the FAIR principles. To build the Open-
Biodiv, the authors extracted information from more than 5000 articles and
journals. They then transformed this information into RDF (Resource De-
scription Framework) and modeled it in OpenBiodiv-O ontology. Senderov
et al. [57] introduced the OpenBiodiv-O ontology with the aim to fill the
gaps between the various biodiversity ontologies by focusing on biological
taxonomy:.

The OpenBiodiv is stored using GraphDB. To interact with OpenBiodiv, users
have two options:

1. Via the front-end of the web portal'?: Users with no prior knowledge of
SPARQL are supported with a web application, in which they can enter

a word or a phrase (e.g., a name of a species or an author) to search for.

2. Directly via the SPARQL endpoint to the database!': Users can run
SPARQL queries against the database.

In OpenBiodiv, users can find information about both the metadata and ac-
tual content of the articles. While several simple questions can be answered
using the front-end web application, more complex questions can only be
answered using SPARQL queries. The result of the query can be exported in
various formats such as JSON, CSV, TSV, XML, and binary RDF.

The Cooperation Databank (CoDa) is another scholarly knowledge graph in
yet another domain, namely human cooperation in social dilemmas. CoDa
was developed by Spadaro et al. [59] to explore and analyze the content
of the articles related to human cooperation. It is an open-access machine-
readable database that contains 2641 annotated articles, theses, and unpub-
lished raw data related to human cooperation. To build the graph, the au-
thors performed first a comprehensive systematic search for relevant studies
in English, Japanese, and Chinese in form of articles, book chapters, and doc-
toral theses. Next, they annotated the concepts and information contained in
these studies into RDF formats and modeled them in an ontology. The ontol-
ogy represents a set of concepts in the cooperation field and the relationships

‘nttp://graphstore.scai.fraunhofer.de/studio/index.html
nttp://openbiodiv.net/
Hnttp://graph.openbiodiv.net/
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that exist between them. The CoDa knowledge graph supports FAIR princi-
ples and is hosted using a TriplyDB graph DBMS. CoDa is available online'?.

Two services enables interacting with CoDa:

1. R-shiny web application!3: Users can explore the data in CoDa and
conduct meta-analysis, meta-regression, and other statistical analyses.
There are several tutorials and videos that guide users through the dif-
ferent analyses supported by the application.

2. SPARQL endpoint“: Users can run SPARQL queries against the CoDa
database.

3.1.2 Generic SKGs

As we saw, domain-specific SKGs are rich in data extracted from articles con-
tent. Thus, they enable exploring and analyzing actual articles content in
specific research areas. In contrast, most of the generic, domain-independent
KGs typically model metadata that describes the article entities without do-
main restrictions. Researchers use these generic KGs for questions that do
not require domain-specific knowledge [39], for instance, co-author network
analysis. Examples of generic SKGs include the Microsoft Academic Graph
(MAG) and the OpenAIRE Research Graph.

Microsoft Research released MAG in 2015. MAG contains structured meta-
data describing over 250 million article entities and related authors, institu-
tions, and fields of study. Wang et al. [71] described the design and schema
of MAG, and how it can be exploited in analytics. To build MAG, software
agents with natural language processing capabilities were used to extract
metadata from the scholarly literature on the web. The extracted metadata
was then organized in MAG, where the nodes represent the entities (such as
articles, authors, and conferences) and the edges represent the relationships
between these entities.

MAG is available onlinel®, where users can search for topics, authors, confer-
ences, journals, study fields, etc. Furthermore, users can perform their own
analyses and explore the data of the graph online. For example, users can
run an analysis at the level of articles!® and explore the distribution of article
types (e.g., books or patents), distribution of articles over years, as well as the
top authors, journals, institutions, and conferences in specific topics. Other

2https://data.cooperationdatabank.org/
Bhttps://app.cooperationdatabank.org/
“https://data.cooperationdatabank.org/coda/databank/sparql/databank
Bhttps://academic.microsoft.com/home
https://academic.microsoft.com/publications/
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analyses at the level of authors!’, topics'®, conferences!?, journals?’, and in-

stitutions?! are also available online. The data sets used to generate the vi-
sualizations can be downloaded in CSV format. Moreover, for the users who
prefer to conduct their analyses in their own environment, regular snapshots
of MAG are available for download??.

Furthermore, Farber [25] created the Microsoft Academic Knowledge Graph
(MAKG), an RDF version of MAG. MAKG is a large data set of RDF triples of
scholarly metadata about authors, organizations, and study fields. A SPARQL
endpoint along with query examples are provided online®.

Another generic SKG is the OpenAIRE Research Graph?*. It is an open graph
that contains a huge collection of metadata describing articles and links be-
tween scientific products such as datasets and software. Schirrwagen et al.
[56] presented the curation approaches performed in the OpenAIRE infras-
tructure. To build the graph, the project team collected metadata from more
than 70 thousand community-trusted sources such as PubMed? and Zen-
0do? in a data lake. After that, they transformed this metadata according
to the internal metadata model and then generated the graph. In the case of
open access articles, the team mined the full text of the articles and obtained
links between artefacts. The graph is hosted on an Okeanos super computer.
Several applications are available to interact with the graph, including:

e Explore?’: Users can search for scholarly works, authors, and projects.
Results can be filtered by several factors such as article type or funder
and can be exported in CSV files.

e Monitor?®: Users can search for organizations and track their research
outputs and trends through several charts, maps, and graphs. The re-
trieved charts and data sets can be downloaded for further analysis.

Moreover, for users who prefer to conduct their analyses in their own envi-
ronment, the OpenAIRE Research Graph can be exported in several dumps®.

7https://academic.microsoft.com/authors
Bnttps://academic.microsoft.com/topics
19https://academic.microsoft.com/conferences
https://academic.microsoft.com/journals
2lhttps://academic.microsoft.com/institutions
2https://www.microsoft.com/en-us/research/project/open-academic-graph/
Bhttp://ma-graph.org/sparql-endpoint/
Zhttps://graph.openaire.eu/
Phttps://pubmed.ncbi.nlm.nih.gov/
2https://zenodo.org/
?https://beta.explore.openaire.eu/
Bhttps://beta.monitor.openaire.eu/
Phttps://zenodo.org/record/3516918#.X_8CWOhKg2w
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3.1.3 Relational databases

Relational database management systems (RDBMSs) are also widely used to
store scholarly knowledge. We present three databases of this type.

Bamford et al. [10] proposed the Catalogue of Somatic Mutations in Can-
cer database (COSMIC). COSMIC contains somatic mutation information cu-
rated manually by experts from more than 27,000 articles from PubMed. To
build the database, experts read first the abstracts of the articles and identi-
fied relevant ones. They then manually extracted information about muta-
tions, genes, and cancer types and entered it into the database. The COSMIC
database is implemented in an Oracle RDBMS. The database is freely accessi-
ble®® and it is updated four times a year. Users can search for specific genes,
mutations, and cancer types in the database (free text search). The results of
the search are shown in tables and can be downloaded in CSV, TSV, and Excel
tiles. Furthermore, the whole database or parts of it can also be downloaded
from the website for further analyses.

Additionally, there exist several scholarly databases in the field of protein
interactions, such as MINT [80] and MIPS [49].

Zanzoni et al. [80] created the Molecular INTeraction database (MINT). MINT
contains structured information about more than 130 thousand interactions
extracted from 6024 articles in biological literature. The database is hosted in
an SQL server (PostgreSQL) and is freely accessible®!. Users can query the
database via free text search. The retrieved results are shown in a table but
can not be exported.

Pagel et al. [49] introduced another database specialized to protein-protein
interactions in mammals called MIPS. MIPS contains information about more
than 900 proteins extracted manually from more than 370 research articles
and stored using a MySQL DBMS. The database is freely accessible®?. The
website provides different interfaces for users and experts to interact with
the database. Furthermore, users wishing to perform further analyses can
download the entire database from the website.

To conclude this section, in Table 3.1 we provide a tabular summary of the

different databases we discussed along with their characteristics. We also

create an ORKG Comparison for these databases®.

Ohttps://cancer.sanger.ac.uk/cosmic
3lhttps://mint.bio.uniroma2.it/
Zhttp://mips.gsf.de/proj/ppi/
Bhttps://www.orkg.org/orkg/comparison/R70880
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3.2 Information extraction

Some literature focuses on extracting structured data from articles using text
mining and natural language processing approaches. This work can be seen
as a precursor to scholarly data science, where information extraction pop-
ulates a database from unstructured or semi-structured text [63]. After this,
data science is applied to gain insights from data.

Several works introduced systems to abstract metadata. Tkaczyk et al. [62]
presented an open-source system to extract structured metadata from arti-
cles. The system is available online**. Users can upload a PDF file of the
article and the system will automatically extract the metadata such as arti-
cle title, authors, journal, and bibliographic information. However, it is chal-
lenging to use this system for scholarly data science purposes due to multiple
reasons. First, users can only upload one article at a time, which means that
extracting metadata from numerous articles to build a data set could take
a considerable amount of time. Second, users cannot export the extracted
metadata into data sets or files automatically.

Other disciplinary systems have been proposed that extract knowledge from
literature, e.g., [60] and [63]. Swain and Cole [60] designed the ChemDataEx-
tractor, a system for extracting structured chemical information from text and
tables of research documents. The system is accessible online®. Users can
upload their files in PDF, XML and HTML formats. ChemDataExtractor ap-
plies natural language processing methods to deliver results. The structured
machine-readable output can be saved to a database or exported in several
formats such as SDF, CSV, and JSON files for further analysis.

Related to the biomedical literature, Torii et al. [63] created the RLIMS-P, a
system for extracting ”protein phosphorylation information on protein ki-
nase, substrate, and phosphorylation sites” from the literature. RLIMS-P
mines PubMed abstracts and open access full-text articles. It is available on-
line®®. Users can enter the PMIDs of the articles, i.e., the identifier of the ar-
ticle on PubMed, which they want to extract information from. The returned
results can be exported in CSV files.

3.3 Data analysis on article metadata

A considerable amount of work has focused on analyzing the metadata of
conference series.

34http://cermine.ceon.pl
Bhttp://chemdataextractor.org/
3https://research.bioinformatics.udel.edu/rlimsp/
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OpenResearch [65] is a crowdsourcing platform that supports this kind of
analysis. It enables collecting, organizing, sharing, and publishing informa-
tion about scientific events (such as conferences) and event series in a se-
mantically structured way. OpenResearch is accessible online®” and contains
metadata about 9000 events and 1000 event series.

Examples of exploiting OpenResearch in data analysis include [26] and [27].
Fathalla et al. [26] analyzed scholarly metadata of 40 computer science con-
ference series by performing descriptive statistics and exploratory data anal-
ysis. The authors selected the relevant series first. They then collected meta-
data about these events from numerous online sources. After that, the col-
lected metadata is preprocessed, ingested into OpenResearch, and analyzed.
Insights about the continuity of each conference series over the years, the
time and geographical distribution of conferences, and the popularity and
productivity of the computer science sub-fields were studied and visualized
in different forms such as tables, charts, and maps. The authors expanded
this work to include Physics, Engineering, and Mathematics as additional
research fields [27].

Other examples of analyzing the metadata of conference series include [13]
and [11]. Biryukov and Dong [13] analyzed 14 sub-fields in the computer
science literature. They used the computer science bibliographic database
(DBLP)*® to build a data set from articles of 2626 conferences. They then
performed statistical analysis over the data set and compared the sub-fields
in terms of collaboration patterns, population stability, and productivity.

To understand the growth of the human-computer interaction (HCI) research
area in Brazil, Barbosa et al. [11] explored the metadata of 340 articles pub-
lished in an HCI conference series in Brazil. The authors analyzed and visu-
alized the data to investigate the evolution of the community, co-authorship
networks, institutions, and research topics over time.

Apart from conference series analysis, another effort to analyze and visu-
alize scholarly metadata is presented by Nielsen et al. [47]. The authors
developed a free web service called Scholia®®. Scholia fetches scholarly in-
formation from Wikidata and generates scholarly profiles of the searched en-
tity. Users can search for researchers, topics, organizations, awards, events,
etc. When searching, the system queries against the SPARQL endpoint of
Wikidata and creates visualizations on-the-fly. These visualizations consti-
tute then the scholarly profiles on Scholia. The profiles contain lists of articles
of researchers or organizations, distribution of articles over time, co-author
graphs, maps, and more.

3https://www.openresearch.org/wiki/Main_Page
Bhttps://dblp.org/
Phttps://scholia.toolforge.org/
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Researchers exploited SKGs in analyzing metadata in different research fields.
For example, Effendy and Yap [22] analyzed the research trend in computer
science using MAG. The authors investigated trends, evolution, and inter-
relationships in different sub-fields.

While the work presented in this section focuses on analyzing metadata, our
work demonstrates some approaches to analyze the actual content of articles.

3.4 Data analysis on article content

Agrawal et al. [1] proposed a domain-independent method for extracting
specific concepts from articles. The approach uses natural language process-
ing and text mining methods to extract the aim (target of the article), methods
(approaches used to achieve the aim), and results (final output) from the ti-
tle, abstract, and citation contexts of articles. The extracted concepts are then
used to represent the research community as a knowledge graph stored in
Neo4j database. To test the domain-independence of the proposed approach,
the authors used a large data set consisting of 332793 articles and performed
trend analysis in two distinct communities (computational linguistics and
computer vision). They studied the research growth and decline across dif-
ferent topics in these fields.

The constructed knowledge graph is not public and thus users can not in-
teract with it. However, by using the graph, the authors argue that they
can summarize research fields in many ways. For instance, they can find all
the methods used in the articles related to a specific field. Moreover, they
can summarize the work of specific authors and analyze trends in research
tields. Neo4j provides an interface to help the authors query the required
data to perform such analyses.

While Agrawal et al. worked on summarizing research fields in terms of
aims, methods, and results of articles, our work tends to gain new knowledge
in research fields by exploiting the ORKG in data science. The ORKG is not
restricted to these three concepts (aim, method, and result). We can describe
the articles using several other properties in the ORKG.

Furthermore, several efforts exploited scholarly databases in their analysis
such as [19, 58, 77].

Dimitrova et al. [19] demonstrated how to use OpenBiodiv (Section 3.1.1) to
address specific tasks, for instance, finding the institutions that store material
specimens of the genus Prosopistoma from numerous sources in the litera-
ture. Answering this type of questions is important for several stakeholders
including curators, taxonomists, and institutions.
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Shepherd et al. [58] showed how to successfully mine and integrate data sets
from COSMIC database (Section 3.1.3). The article provides three examples
of finding certain data sets of interest.

Ye et al. [77] presented a method for exposing activating cancer mutations. To
test the proposed method, the authors used data from the COSMIC database
to detect clusters of activating mutations in specific protein sequences.
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Chapter 4

Scholarly Data Science
Architecture and Implementation

This chapter introduces a generic architecture for data science on scholarly
knowledge, possible implementation choices for the architecture, as well as
the specific implementation proposed in this thesis, including the tools and
methods used in our work.

4.1 Scholarly data science architecture

Gupta et al. [29] presented a model for knowledge discovery in databases
(KDD). The model splits the KDD process (Section 2.2) into three layers. The
bottom layer is called the storage schema layer and it is responsible for stor-
ing knowledge. The middle layer is the core layer, in which the essential
mining process is conducted. The top layer is the front-end layer, i.e., the
user interface of the system.

Rahman [54] proposed a systematic data mining architecture to mine intel-
lectual knowledge from social data. The architecture is divided into several
units:

1. Data collection and temporary storage unit: For collecting and storing
data from Facebook.

2. Data processing unit: For preprocessing and normalizing the collected
data.

3. Data parsing and classifying unit: This unit is the heart of the mining
process. Different activities such as parsing data to select features and
classifying text attributes using the K-nearest neighbor (k-NN) algo-
rithm are performed in this unit.

4. Knowledge representation unit: For visualizing the extracted knowl-
edge.
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Moreover, YueShun and Wei [78] and Meo et al. [44] presented additional
data mining systems with different architectures.

Inspired by [29, 54, 44, 78], we introduce a generic architecture for scholarly
data science. Figure 4.1 depicts the different components of the proposed
architecture.
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FIGURE 4.1: Scholarly data science architecture.

4.1.1 Scholarly data sources

We begin with scholarly data sources. As we saw in Section 2.2, specifying
the relevant data sources is one of the first steps of any data science use case.
After defining the problem, the scientist determines the required data sources
and collects data.

Common types of scholarly data sources include:

e Relational databases: A very popular storage solution, where data can
be stored in tables [17]. Common relational database management sys-
tems (RDBMSs) include SQL Server!, MySQLz, and Oracle’. Examples

Ihttps://www.microsoft.com/de-de/sql-server/sql-server-2019
’https://www.mysql.com/de/
Shttps://www.oracle.com/de/
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of scholarly relational databases include MINT and MIPS (mentioned
in Section 3.1.3).

e Non-relational databases: These databases cover different types such as
key-value stores and graph databases [45]. Graph databases represent
data as a network of nodes and edges [50] and are widely used for stor-
ing knowledge graph data [55]. Common graph database management
systems include Neo4j and OrientDB. Examples of scholarly knowl-
edge graphs include the Open Research Knowledge Graph (ORKG)
and OpenAIRE research graph.

e Flat files [7]: Store data in plain text format with one record per line.
Each record is separated by a delimiter (e.g., comma as in the CSV for-
mat or tab as in the TSV format). Data in flat files map to a single table,
unlike relational databases that contain multiple tables.

e Spreadsheet files: A special type of flat files that also organize the data
in tabular format, i.e., rows and columns. However, a spreadsheet can
contain multiple sheets and each sheet can map to a different table, i.e.,
multiple data sets may be merged together into one spreadsheet [8].
Common spreadsheet formats are XLS and XLSX.

e Open data sources: Such as Application Program Interfaces (APIs) and
web services. Data can be obtained from open sources in various for-
mats such as CSV, JSON, and HTML.

Several databases implemented using relational and graph database man-
agement systems are discussed in 3.1.

4.1.2 Data science environment

The second component in the architecture is the data science environment,
which is where the data science pipeline explained in Section 2.2 is executed.
Depending on the problem at hand, such pipelines are often complex and
involve numerous steps involving different kinds of processing ways, algo-
rithms, and models. Moreover, a wide range of tools, frameworks, and pro-
gramming languages may be used in the environment. Some of the most
important data science programming languages and packages include:

e Python*: A general-purpose programming language, used widely for
addressing data science issues [68]. Several libraries are built-in Python

“nttps://www.python.org/
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to support data science and machine learning such as NumPy®, Pan-
das®, Bokeh’, MatPlotLib®, Tensorflow?, Geoviews!?, etc.

e R!!: A programming language for data science and statistics. It allows
data to be prepared, processed, and modeled [43]. R contains several
useful libraries such as Tidyverse!? and Plotly'®. The majority of data
science community now use Python and R [53].

e Shiny'*: An R package for creating interactive web applications. Shiny
has pre-installed input and output controls that have an automatic “re-
active” binding between them. This allows the application to be cus-
tomized interactively and live by the user without any background
knowledge of the programming language.

e JavaScript'®: An object-oriented programming language. Although it
is mostly used for web development, libraries such as D3¢ and Am-
Charts!” are powerful for data visualization and dashboard creation.

e Scala!®: A general-purpose programming language used for different
purposes such as web development and machine learning. It is also
efficient for handling big data.

e Structured Query Language (SQL): A popular programming language
for storing, processing, and retrieving data from relational databases.
Even though it is not central to data science operations, it is impor-
tant in the stage of collecting data since data are often managed by a
RDBMS.

e SPARQL!: While SQL is widely used to retrieve data from relational
databases, SPARQL is the standard language to query graph data en-
coded following the RDF data model. In order to make a SPARQL
query, a SPARQL endpoint is needed, i.e., software that can send a
query formulated in SPARQL syntax using the SPARQL protocol to the

Shttps://numpy.org/
®https://pandas.pydata.org/
"https://docs.bokeh.org/en/latest/
$https://matplotlib.org/
‘https://www.tensorflow.org/
Ohttps://geoviews.org/
Hhttps://www.r-project.org/
Phttps://www.tidyverse.org/
Bhttps://plotly.com/r/
4nhttps://shiny.rstudio.com/
Bhttps://www. javascript.com/
6nttps://d3js.org/
7https://www.amcharts. com/
Bhttps://www.scala-lang.org/
Phttps://www.w3.org/TR/sparqlil-query/
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server that contains the queried data, and presents the results received
back in a suitable form.

Software and script development in any programming language should, and
perhaps typically does, occur using an integrated development environment
(IDE). Common IDEs include:

e Jupyter Notebook?’: An open-source web application that follows an
ordered list of input/output cells. These cells provide space for code,
markdown text, mathematical formulas, and media content. Users can
interact with their code and show the outputs of the code cells in the
same document. The final work can be exported as a PDF, HTML, and
Python file. Jupyter Notebook supports multiple languages like Python
and R.

e PyCharm?!: An IDE designed for programming in Python. Free open-
source community and professional versions are available. With the
community version, pure Python projects can be created, while the pro-
fessional version offers further possibilities of web development and
HTML, JS, and SQL support.

e RStudio?: A very popular IDE for R programming language.

e Visual Studio?: An IDE from Microsoft for JavaScript development.
Visual studio code is a very popular JavaScript text editor.

4.1.3 Hardware infrastructure

The data science environment needs to be implemented and executed on
hardware. Possible implementations for the hardware infrastructure include:

e Localinstallation: Considering the available computing power, the nec-
essary tools are installed on a local machine. When working with big
data sets, the technical characteristics of the machine play an important
role. Furthermore, to use data science programming languages such
as Python and R, programmers can choose between installing Jupyter
Notebook or the corresponding IDEs.

e Cloud implementation: Sometimes, it is not desirable (or possible) to
perform data science tasks in a local environment. Handling large amounts
of data poses multiple challenges for data access and processing. To
overcome these challenges, cloud-based computing technologies are in-
frastructure for handling the intensive use of computing power and

https://jupyter.org/

2lhttps://www. jetbrains.com/de-de/pycharm/
2https://rstudio.com/
Bhttps://visualstudio.microsoft.com/
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storage [38]. Available cloud services include Amazon Web Services
(AWS)?*, Google Cloud Platform?>, and Microsoft Azure?®. Moreover,
if a collection of Jupyter notebooks is located in a Git repository, Binder?”
is another solution to serve easily executable notebooks, making the
code reproducible by users everywhere without requirements on the
local machine except for internet connectivity and a browser.

4.1.4 Outputs

As for the results, some of the common forms of data science experiment
outputs include [12]:

e Reports and presentations: Telling the story of the data along the data
science pipeline to delivering results. Ideally, reports are clearly writ-
ten containing concise conclusions and omitting unnecessary data. Fur-
thermore, reports should be reproducible.

e Applications, web pages, dashboards, and visualizations: Intuitive, clear,
and easy to use.

e Statistical and machine learning models.

Users (mentioned in next section) employing data science outputs for their
purposes may face some challenges such as [35]:

e Poor documentation of the sequence of steps made during the analysis.

e Static and inflexible reports that do not allow for interactive inspecting
of contents.

4.1.5 Actors

The last part of our architecture represents the actors interacting with the
different components, including;:

e Data providers: Actors with credentials who ingest their data into data
sources. Data providers should be authorized to avoid any inconve-
nience related to the quality of the added data.

e Programmers: Actors with programming skills who import the data
into the data science environment, explore, model, and analyze the
data. On one hand, this kind of actor consumes the data collected from

Zhttps://aws.amazon.com/de/
Phttps://cloud.google.com/
2https://azure.microsoft.com/
2’https://mybinder.org/
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the source, on the other hand, they generate new content and services
for another kind of actor.

e Users: Actors who use the services such as applications and dashboards
resulting from the data science environment for various purposes, e.g.,
management and decision making.

4.2 Architecture implementation

As discussed in the previous section, several diverse choices are available for
implementing each architecture component. We now present our choices for
the architecture implementation, including the tools and methods.

4.2.1 Scholarly data sources

As for the scholarly data sources, our main source is the Open Research
Knowledge Graph (ORKG). We start by presenting some of the relevant main
features of the ORKG.

The ORKG is an infrastructure that enables the acquisition, curation, publish-
ing, and processing of scholarly knowledge published in the literature [33].
It is available as an online service that stores research contributions (e.g., the
contributions published in research articles) in a graph-based database, en-
abling easier reuse of scholarly knowledge. One kind of reuse is in down-
stream data science.

Since ORKG represents research contributions in a structured and machine-
readable form, it becomes possible to automatically generate comparisons of
contributions addressing the same research problem. Oelen et al. [48] pre-
sented a workflow to compare research contributions in a scholarly knowl-
edge graph and implemented the workflow in ORKG. Each article in the
ORKG consists of at least one research contribution and is represented with
data including for instance methods, materials, results, etc. The output of the
flow is a comparison table containing the compared contributions as columns
(or rows), the commonly shared properties as rows (or columns), and the val-
ues of these properties in the table cells. Users can modify the comparison
table according to their needs, share it using a link, and export it in numerous
formats such as PDF, CSV, and IXIgX. As these comparisons tabulate relevant
data extracted from the literature, they can be used for scholarly data science.

The ORKG Python library?® is another key ORKG feature that supports us-
ing comparisons for data science purposes. The library streamlines read-
ing ORKG content, and contribution data in particular, directly into native

Bhttps://pypi.org/project/orkg/


https://pypi.org/project/orkg/

Chapter 4. Scholarly Data Science Architecture and Implementation 32

Python data structures (specifically, Pandas data frames). This means that
ORKG content can be easily accessed and reused in a data science environ-
ment, e.g., Jupyter Notebook.

Wikidata?’ is another knowledge graph used as a data source in this work.
Wikidata is a knowledge graph database operated by the Wikimedia founda-
tion since 2012. Wikidata has a SPARQL endpoint, which allows the data to
be queried via SPARQL queries. In particular, we query the population data
of Chinese provinces from Wikidata to help answering an analytical question
in Chapter 5.

Finally, as a third data source we also integrate data from flat files such as
CSV files, from Geo]JSON files and Shapefiles. These files are obtained from
open sources.

4.2.2 Data science environment

After importing scholarly data from the sources, we perform data science
tasks in our environment using several tools such as programming languages,
libraries, and IDEs. We use Jupyter Notebook to create and execute Python
notebooks. In the notebooks, we use numerous Python libraries, including
Pandas, Numpy, Bokeh, Geoviews, and Matplotlib to process the data. We
use also the ORKG Python library to access ORKG content in Jupyter Note-
book. In addition to Python and Jupyter, we also use R with its IDE RStudio
and several libraries such as Shiny, Plotly, Tidyverse and its ggplot2 to create
an interactive shiny web application. Moreover, we use visual studio code
with the JavaScript library amCharts to build a web page containing an in-
teractive network visualization. SPARQL is also used to retrieve data from
Wikidata.

As for the methods, common methods are used in both use cases—described
in following chapters—to implement the pipeline explained in Section 2.2, in
particular:

e Importing and preprocessing data: After importing scholarly data into
our environment, we preprocess it. The aim is to obtain data frames
ready for analysis. Furthermore, we apply regular expression opera-
tions (RegExr) for filtering text strings. In RegExr a text pattern is de-
scribed by a special syntax and then applied to the data frame.

e Visualizing data: We use multiple visualization libraries in Python, R,
and JavaScript to produce interactive visualizations and applications
on top of scholarly data.

Phttps://www.wikidata.org/wiki/Wikidata:Main_Page
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In addition to these methods common to both use cases, we use additional
methods that are specific to one use case. These methods are detailed in the
respective chapters.

4.2.3 Hardware infrastructure

The software and service environment is implemented locally. We have in-
stalled the IDEs and the required libraries on a local machine and performed
all the tasks using it. We used a dell latitude 5480 laptop that has the follow-
ing hardware characteristics:

e Processor: Intel(R) Core(TM) i3-7100U CPU @ 2.40 GHz
e Random Access Memory (RAM) : 8 GB

e Used disk space: 12 GB (without the space used for the operation sys-
tem).

4.2.4 Outputs

Outputs from our data science environment include:

e Different types of interactive visualizations, including charts, maps and
graphs

e Interactive web application
e Interactive web page
¢ Notebooks and reports

We consider the challenges [35] mentioned in Section 4.1.4. We provide re-
producible and well-documented analyses using Jupyter Notebook. For each
analysis, we embed the script, its documentation, and the interactive visual-
izations and results in one notebook.

All scripts, applications, visualizations, and other results are available on Git-

Lab repositories® 3!.

4.2.5 Actors

Overall, we have three kinds of actors interacting with different components
in the architecture.

Onttps://gitlab.com/TIBHannover/orkg/orkg-notebooks/- /tree/master/covid_19
Blhtt .
ps:
//gitlab.com/TIBHannover/orkg/orkg-notebooks/-/tree/master/invasion_biology
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e Data providers: Actors and researchers can ingest structured descrip-
tions of their articles and research contributions in the ORKG database.

e Programmers: Actors who import the data into data science environ-
ments to analyze, model, and visualize data. As notebooks are avail-
able online and are served in executable form, users with little or no
programming skills can interact with the scripts, run them, and inspect
the outputs.

e Users: Actors who use services, specifically applications and dashboards,
for their own purposes, e.g., exploring, analyzing, management, and
decision making.

In the following chapters, we test the presented architecture implementation
in two use cases in different domains and report our results.
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Chapter 5

COVID-19 Use Case

In this chapter, we apply the presented scholarly data science architecture im-
plementation to COVID-19 related scholarly knowledge obtained from the
ORKG and other sources. Specifically, we describe a data science pipeline
to visualize model estimates against the observations and quantify the over-
all model performance. Next, we present two pipelines to perform a spatial
and pattern analysis of both model performance and COVID-19 prevalence
across China. Finally, we describe another pipeline for updating a study re-
sult by combining multiple ORKG Comparisons. We provide the links to the
notebooks in the corresponding sections to support their online execution
and thus reproducibility and active exploration of the results and visualiza-
tions (e.g., hovering over the visualizations in the notebooks shows more
details than the static visualizations presented in this document).

5.1 Methods

In addition to the common methods listed in Section 4.2.2, specific methods
used in this use case include the following.

e Data combination: After retrieving ORKG (Comparison) data into a
data science pipeline, it is integrated with data from other sources to
answer specific analytical questions.

e (Geo-)Spatial analysis and pattern discovery: A method for studying
the geographical distribution of data to state patterns, trends, differ-
ences, and associations within regional distributions [37]. Moreover, it
can be used to analyze and interpret model results.

e Clustering analysis: A method for partitioning a set of data points ac-
cording to some measure of similarity (e.g., distance) into subsets [3].
Each subset is a cluster, such that data points that are in the same clus-
ter are similar to each other and different from data points in other clus-
ters. The goal of clustering is to reveal subgroups within heterogeneous
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data. It is an unsupervised learning procedure, i.e., predefined groups
of data points are not required.

5.2 SEIR model estimates

Aleta et al. [4] investigated the effect of travel restrictions on the spread
of COVID-19 in China. To simulate the spread of the epidemic, a stochas-
tic SEIR-metapopulation model was implemented. The model estimates the
number of infected cases depending on the mobility data in 2019 and 2020.
This allows comparing two radically different scenarios, one with no travel
restrictions (2019) and another in which mobility is reduced by a travel ban
(2020).

The information relevant to us is the numbers that the model estimated and
the number of observed cases in each Chinese province. This data is ex-
tracted and organized in an ORKG Comparison'. Building on this, we per-
formed different data science tasks implemented as two Jupyter notebooks.
The notebooks are described in the next three sub-sections.

5.2.1 Estimated vs. observed cases and model performance

This sub-section describes our work in an online accessible Jupyter note-
book?.

We first visualize the data, i.e., visualize the number of estimated against the
observed cases in each Chinese province using a bar plot. Then, we evaluate
the performance of the model by determining the overall prediction error.
Figure 5.1 shows the workflow used to implement these two tasks.

Import SEIR
comparison Prt—??ies Data Index of
table from sFi)n Visualization a;gt;rzeemegtl
ORKG g of the mode

FIGURE 5.1: Workflow used for visualization and prediction
error calculation.

Using the ORKG Python library, we import the comparison of SEIR model
estimates into a Jupyter notebook. Then, we preprocess the data frame, i.e.,

Thttps://wuw.orkg.org/orkg/comparison/R39082
“https://mybinder.org/v2/gl/TIBHannover%2Forkg)2Forkg-notebooks/HEAD?
filepath=covid_19%2FSEIR/visualization
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we clean the data and apply regular expression operations to prepare the
data for visualization. Figure 5.2 shows the final plot.

10000 -

M Estimated

2000 1 M Observed
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4000

Number of Cases

2000

Province

FIGURE 5.2: Number of estimated and observed cases in Chi-
nese provinces.

The figure clearly shows that the model considerably overestimates the num-
ber of infected cases in almost all Chinese provinces. We notice that the es-
timation of the model was close to the observations in only a few provinces
(e.g., Zhejiang and Hainan). In other provinces, there is a huge gap, indicat-
ing that the model has a poor performance in these provinces.

Next we quantify the model performance by calculating the index of agree-
ment of the model. As a performance indicator, the index of agreement® is
a standardized measure of the degree of model prediction error that varies
between 0 and 1. The agreement value of 1 indicates a perfect match between
the observed and estimated values, while 0 indicates no agreement at all.

We write a function to calculate the index of agreement. The function takes
two parameters: an array of observed values and an array of estimated val-
ues. As a result, the function returns the index. The index of agreement of
the SEIR model is d = 0.194, i.e., poor overall performance.

The next two sub-sections describe our work in another online accessible
Jupyter notebook?.

Shttps://agrimetsoft.com/calculators/Index%200f%20Agreement
4https://mybinder.org/v2/gl/TIBHannovery2Forkgh2Forkg-notebooks/HEAD?
filepath=covid_19%2FSEIR/spatial_analysis
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5.2.2 Spatial and pattern analysis of model performance

Having evaluated the overall model performance, we now evaluate the model
performance in light of spatial patterns and differences by plotting a map of
China and investigating each province separately. To achieve this, data from
the ORKG is not enough since we lack geospatial data. Thus, we integrate
data from two additional sources into our data frame. The steps followed in
this section are presented in Figure 5.3.

-
Import SEIR Data Feature Integrate Create
comparison Preproces Engi . geometric choropleth
from ORKG sing ngineering data map

.

( Left j Jom

Visualize and Query the

L summary 9 gi from Wikidata

FIGURE 5.3: Workflow of spatial analysis of model perfor-
mance.

The first two steps in this workflow are similar to the previous one. After im-
porting and preprocessing data, feature engineering is applied to determine
the model prediction error in each province. Previously, we used the index
of agreement to measure the overall prediction error. However, this method
requires the average observation and prediction values. Thus, it can not be
used to compute the prediction error for individual records, i.e., provinces.
To achieve this, we use the Mean Absolute Error (MAE). Therefore, a new
feature for MAE is created in our data frame based on the ‘estimated” and
‘observed’ features.

However, we noticed that the number of cases is skewed, i.e., the numbers in
Hubei are much higher than the numbers in other provinces, which results
in a skewed MAE. To adjust for the skewness, we use logarithmic transfor-
mation. Figure 5.4 shows a partial snapshot of the data frame, in which the
provinces are sorted by the model prediction error in descending order.

We still miss geographic information of the administrative provinces. We
integrate this data from a GeoJSON file into our original data frame using
left join.

Finally, regarding the map type, we choose choropleth maps. A choropleth
map is used to spatially visualise data by coloring or shading geographic
regions depending on the values of a particular variable® [21]. With this type

Shttps://www.axismaps.com/guide/choropleth
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location MAE MAE_log

=

Hubei 10608.871 9.269446

2 Hunan 288258 5663856
0 Henan 195871 5277456
3 Guangdong 155.516 5.046749
4 Chongaqing 145806 4982277
5 Jiangxi 62.290 4131801
26 Sichuan 56.129 4027553
9 Shaanxi 52774 3966019
G Anhui 50226 3916533
T Jiangsu 34516 3541423
7 Shanxi 20774 3.033702
20 Hebei 17871 2883179
24 Shanghai 17.774 2877737
22 Fujian 16.161 2.782601
19 Guangxi 15.452 2737738
21 Guizhou 13.710 2618125
23 Shandong 12516 2527008
18 Yunnan 7903 2067242
25 Beijing 6.710 1903599
14 Gansu 5677 1.736423
15 Liaoning 4128 1.418035
13 Tianjin 3645 1.293356
11 Jilin 2935 1.076707
12 Heilongjiang 2677 0.984897
16 Hainan 1.774 0573237
8 Zhejiang 1581 0.453058
10 Qinghai 0.806 -0.215672

FIGURE 5.4: A data frame snapshot with model prediction error
in each Chinese province.

of map, we can inspect how the model prediction error changes across the
provinces as shown in Figure 5.5.

A color bar varying from dark blue to yellow is used to represent the magni-
tude of prediction error. Dark blue indicates a very low error, i.e., the model
estimations are accurate, and yellow references a high error. Based on this
result, the model performs best in Qinghai and worst in Hubei.

Next, we investigate the relationship between the model prediction error and
province population size. We hypothesize that the model performs worse
(i.e., has a higher prediction error) in highly populated provinces.

To test the hypothesis, we need the population data of each province. There-
fore, as described in Figure 5.3, we first query the population data from Wiki-
data and merge the results with the original data frame using left join. With
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Model Prediction Error

Longitude

FIGURE 5.5: Spatial overview of model prediction error.

the population data, we cluster the provinces based on their population into
two groups “high population” and “low population” using the K-means al-
gorithm [41, 42]. Figure 5.6 shows the provinces clustered into two groups.
There are 17 low-populated and 10 high-populated provinces.

Figure 5.7 shows the clustering summary of the algorithm. As we can see,
the model has a much lower prediction error in the low populated provinces
(22.411), compared to the error in high populated provinces (1142.135). This
result confirms our hypothesis that the model performs worse in the higher
populated provinces.

5.2.3 Spatial and pattern analysis of prevalence

So far we have gained a spatial overview of the model performance. The
next task is to obtain a spatial overview of the spread of COVID-19. In other
words, we analyze the distribution of the confirmed cases in the provinces
spatially. Therefore, we create a choropleth map showing the prevalence
across China.

As shown in Figure 5.8, until 05.02.2020 (date of the SEIR model estimates
article [4]), the number of confirmed cases in Hubei was highest. Note that
we divided the number in Hubei by 20 in order to ensure informative color
grades on the map. At the time the article was written, there were 19665
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FIGURE 5.6: Clustering of provinces according to population.

index estimated observed MAE\ MAE_log pop Clusters
Cluster

High population | 10.800000 37893.600000 2487.400000| 1142.135500 | 4.261136 77.763089 1.0
Low population | 18.058824 860.588235 175588235 22411588 | 2.233390 30.7408653 0.0

FIGURE 5.7: Clustering algorithm summary.

confirmed cases in Hubei and 8317 in the rest of China. This means that in
Hubei alone there were 70% of the total confirmed cases in China. Moreover,
we note that the provinces neighboring Hubei in the north, south, and east
also have a high number of cases. By further inspecting the map, we could
divide the provinces into four categories depending on the number of cases:

1. Very high prevalence: Provinces with more than 1000 cases.
2. High prevalence: Provinces with cases between 500 and 1000.
3. Moderate prevalence: Provinces with cases between 150 and 499.
4. Low prevalence: Provinces with less than 150 cases.
Figure 5.9 shows this regional distribution pattern.

Here, we clustered the provinces by studying the spatial distribution pattern
of the prevalence. However, we have also applied K-means clustering algo-
rithm on the data to group the provinces based on the number of confirmed
cases. This led to similar clustering results.



Chapter 5. COVID-19 Use Case 42

50 <

Confirmed cases

30 <

200

20

v T T T b T ¥ ¥ T T T v T v T T T T T v
90 100 110 120 130
Longituce

FIGURE 5.8: Spatial overview of prevalence.

Finally, we return to model performance. We investigate the model predic-
tion error in each of the four prevalence clusters by calculating the index
of agreement. As mentioned before, computing the index of agreement for
only one observation is not possible. Since the "Very high prevalence’ cluster
has only one province (Hubei), we drop it from further analysis. Of course,
we still can consider the prediction error in Hubei using MAE as shown in
Figure 5.4. However, the index of agreement and the MAE are not directly
comparable.

The evaluation results show that the model has a prediction error of:

e 0.03 for category 2, which corresponds to provinces with high preva-
lence (500-1000).

e (.11 for category 1, which corresponds to provinces with moderate preva-
lence (150-499).

e 0.22 for the category 0, which corresponds to provinces with low preva-
lence ( < 150).

This result suggests that the performance of the model varies with the change
of prevalence. The model works best in the provinces where the prevalence
is low. The performance gets worse as the prevalence increases.
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FIGURE 5.9: Regional distribution pattern of prevalence.
5.3 Multiple ORKG Comparisons as data source

This section describes our work in two online accessible Jupyter notebooks®.

We integrate data from multiple ORKG Comparisons and from another source
(Google Docs), to update the results of a previous study.

In 2014, a study that compares Ebola to other infectious diseases was pub-
lished in a Guardian article’. In this study, the basic reproduction number
(RO) and case fatality rate (CFR) of numerous infectious diseases were gath-
ered from the literature and organized in a data set. Then, a comparison of
the diseases in terms of contagiousness and deadliness was visualized. The
gathered data is available on Google Docs®. As the article was published in
2014 it does not include COVID-19.

This is an opportunity for us to demonstrate how to update the Guardian
Microbe-Scope with COVID-19 by leveraging ORKG, the existing ORKG Com-
parisons for RO and CFR of COVID-19 and the data science approaches we
already introduced.

®https://mybinder.org/v2/gl/TIBHannover2Forkg%2Forkg-notebooks/HEAD?
filepath=covid_19/RO_CFR

"https://www.theguardian.com/news/datablog/ng-interactive/2014/oct/15/
visualised-how-ebola-compares-to-other-infectious-diseases

8nttps://docs.google.com/spreadsheets/d/
1kHCEWY-d9HX1Wrft9jjRA2xf6WHQ1lmwyrXel6wjxkW8/edit#gid=0
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FIGURE 5.10: Workflow of updating the Guardian study.

Data for RO and CFR of COVID-19 were already extracted from the literature
and organized in two ORKG Comparisons’'?. We use this scholarly data
along with the Guardian data to create a new visualization that includes the
original infectious diseases and COVID-19. Figure 5.10 shows the workflow
of the process. First, we import the third-party data, preprocess it, and re-
produce the original plot. Then, we import RO and CFR comparisons and
compute the mean value for each. After that, we plot the new visualization,
shown in Figure 5.11.

Building on the original Guardian article, we adopt the following five classes
of contagiousness:

e Not very: If RO is less than 1.
e Quite contagious: If RO is between 1 and 5.
e Very contagious: If RO is between 5 and 7.
e Highly contagious: If R0 is between 7 and 12.
e Vaccinate now!: If RO is higher than 12.
As for the deadliness, we adopt the following four classes:
e Not too deadly: If CFR is less than 1%.
e Quite deadly: If CFR is between 1 and 20%.
e Deadly: If CFR is between 20 and 50%.
e Extremely deadly: If CFR is higher than 50%.

‘nttps://www.orkg.org/orkg/comparison/R44930
Ohttps://www.orkg.org/orkg/comparison/R41466
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FIGURE 5.11: The contagiousness and deadliness of SARS-
CoV-2 relative to other infectious diseases.

COVID-19 is represented with the red dot in the plot. According to the ORKG
data, COVID-19 is classified as quite contagious and quite deadly relative to
other infectious diseases.

Finally, we visualize the variance of COVID-19 contagiousness and deadli-
ness relative to other infectious diseases by plotting COVID-19 in different
locations. For this, we searched for common locations in the two compar-
isons, i.e., locations that have both RO and CFR values in the corresponding
ORKG Comparisons. This led to four common locations: Hubei, Wuhan,
China, and Japan.

For the uncommon locations, we took the mean of each of RO and CFR to
represent COVID-19 in one extra dot called ‘international’. As a result, we
have five dots in our plot indicating how contagious and deadly COVID-19
is in different locations.

This final plot for this use case is shown in Figure 5.12. The figure suggests



Chapter 5. COVID-19 Use Case 46

that COVID-19 is classified differently in two locations: In Japan, COVID-
19 is quite contagious and not too deadly, while in Hubei, the virus is very
contagious and quite deadly.
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FIGURE 5.12: The contagiousness and deadliness of SARS-
CoV-2 in different locations, relative to other infectious dis-

eases.
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Chapter 6

Invasion Biology Use Case

Our work in this use case is inspired by hi-knowledge! [24, 34]. The web-
site provides an interactive network visualization of different hypotheses in
invasion biology. The scholarly data of the articles related to the hypothe-
ses is available on the website in multiple Excel files. In this use case, we
tirst ingest the Excel data into the ORKG, create ORKG Comparisons, and
then apply the presented scholarly data science architecture implementation
to develop an interactive web application, interactive web page, and perform
other analyses.

6.1 Methods

In addition to the common methods listed in Section 4.2.2, specific methods
used in this use case include the following.

e Data ingestion into the ORKG
e Creating and publishing ORKG Comparisons

e Building an interactive web application and a web page on top of schol-
arly data

6.2 Importing articles and creating comparisons

In this section, we provide an overview of data ingestion and comparison
creation in the ORKG.

Building on hi-knowledge, we work on ten hypotheses in invasion biology.
Each of these hypotheses has been discussed in tens or hundreds of scientific

Ihttps://hi-knowledge.org/invasion-biology-large/


https://hi-knowledge.org/invasion-biology-large/
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articles. Articles have tested the hypotheses by exploring and investigating

several plant and non-plant taxa?.

The starting point for us is scholarly data that was extracted from articles
and published on the hi-knowledge website in separate files, one file per hy-
pothesis. This data includes both article metadata and the extracted essential
data, specifically:

e Article authors
e Publication year

e Article’s stand of the hypothesis: Indicating whether it supports, is un-
decided, or questions the hypothesis

e The investigated taxa in the article, e.g., plants, birds, reptiles, etc.

e Number of investigated taxa in the article

e The continent in which the study was conducted

e Used research method: Experimental, observational, or correlational
e Experiment type: Enclosure, lab, or field.

We start by organizing and preprocessing the files, i.e., bringing them into
the right format for ingestion into ORKG. For ingestion, we first create a CSV
tile for each hypothesis. The CSV file should be formatted in a way that it
adheres to the following rules:

e The first row is the header: We specify here the properties that each
contribution will have in the ORKG (these are columns in the CSV file
and properties in ORKG contributions).

e One article per row: Starting with the second row, each following row
corresponds to one contribution (one article could have one or more
contributions).

e Cell values: These correspond to the property values, i.e., research con-
tribution data. By default, each cell value is considered a literal (i.e.,
text). It is also possible to use an existing ORKG resource.

e For import into the ORKG, the CSV file should at least have the prop-
erty for article title.

e Author names should be separated by a semicolon (e.g., Authorl; Au-
thor2).

2As defined in Wikipedia, a taxon (plural taxa) is a group of one or more populations of
organisms seen by taxonomists to form a unit. Members of a taxon are usually inferred to be
related, they have characters in common that differentiate from other taxa.


https://en.wikipedia.org/wiki/Taxon
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Having prepared the CSV files, we can ingest them into the ORKG. To facil-
itate data ingestion, the ORKG provides an import tool®. The tool allows for
checking how the data will be ingested; before starting the actual ingest, it is
thus possible to first preview the data to ensure it is structured as expected.
Following ingestion, we create ORKG Comparisons, one for each hypothesis.

To clarify this process, we provide an example of importing the CSV file of
the limiting similarity hypothesis and creating an ORKG Comparison with
data related to this hypothesis.

1. First, we create the CSV file with header as follows:

paper:title,paper:authors,paper:publication_year,
paper:research_field,hypothesis,stand of hypothesis,
measure of species similarity,measure of invasion success,
number of plant species,continent,research method,

type of experiment.

2. Using the import tool, we upload the CSV file and verify the data before
the actual importing.

3. Once verified, we import the CSV file into the ORKG.

4. Since all the contributions share the same properties, we can compare
them [48]. We select all the contributions we have just imported.

5. A new comparison appears listing all the contributions of the articles
along with the properties. An example of a comparison of five contri-
butions can be found here*.

6. Then, we publish the comparison to obtain an identifier for it.

The list of comparisons for the ten hypotheses we created for this use case can
be found on ORKG by searching for ‘invasion” and filtering by type ‘Com-

parison’ °.

6.3 Conducting scholarly data analysis

Describing scholarly knowledge in the ORKG opens up the opportunity to
reuse knowledge in downstream data science. The following three sections
describe how we reuse the hi-knowledge data we just ingested into ORKG in
three different tools that demonstrate the variety of possibilities at hand.

Shttps://www.orkg.org/orkg/csv-import

“https://www.orkg.org/orkg/comparison?contributions=R52072,R52074,R52076,
R52078,R52080

Shttps://wuw.orkg.org/orkg/search/invasion?types=Comparison


https://www.orkg.org/orkg/csv-import
https://www.orkg.org/orkg/comparison?contributions=R52072,R52074,R52076,R52078,R52080
https://www.orkg.org/orkg/comparison?contributions=R52072,R52074,R52076,R52078,R52080
https://www.orkg.org/orkg/search/invasion?types=Comparison
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6.3.1 Analysis with Python Jupyter Notebook

After publishing, an ORKG Comparison gets a unique resource number. For
example, the recourse number of the limiting similarity comparison is R52143°.
Using the Python package and the comparison resource number, we can im-
port comparison data into Jupyter Notebook.

With Jupyter Notebook, we perform data analysis across the articles related
to six hypotheses, one notebook per hypothesis. As in the first use case, the
Jupyter notebooks are accessible on Binder”.

We describe in more detail the notebook developed to analyze the data of
119 contributions related to the propagule pressure hypothesis. We formu-
late seven analytical questions and answer them by processing data and pro-
ducing figures and plots, which can be explored online®.

It is worth mentioning that the main hypothesis in this notebook (propag-
ule pressure) is divided into five sub-hypotheses according to the measure of
propagule pressure. The first sub-hypothesis considers the total number re-
leased as the measure of propagule pressure. Propagule size, propagule fre-
quency, distance from the source, and other proxies are measures of propag-
ule pressure in the other sub-hypotheses.

Question 1: How many research contributions have discussed the propag-
ule pressure hypothesis? How many contributions support, are undecided,
or question the hypothesis?

After importing and preprocessing the comparison data, we plot a donut
chart that shows the number of contributions supporting, being undecided,
and questioning the main hypothesis.

Figure 6.1 shows that this hypothesis is discussed in 119 contributions and it
is widely supported in the literature. More than 75% of the contributions sup-
port the hypothesis (i.e., 90 out of 119), while 15% (18 contributions) question
it, and 10% (11 contributions) are undecided.

Question 2: How many contributions have discussed each of the sub-hypothesis
of propagule pressure? How many contributions support, are undecided,
or question each sub-hypothesis?

®https://www.orkg.org/orkg/comparison/R52143

"https://mybinder.org/v2/gl/TIBHannoverY2Forkg%2Forkg-notebooks/HEAD?
filepath=invasion_biology%2Fhypotheses_notebooks

$https://mybinder.org/v2/gl/TIBHannover’2Forkg)2Forkg-notebooks/HEAD?
filepath=invasion_biology%2Fhypotheses_notebooks/propagule_pressure


https://www.orkg.org/orkg/comparison/R52143
https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks
https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks
https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks/propagule_pressure
https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks/propagule_pressure
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The donut charts in Figures 6.2, 6.3, 6.4, 6.5, and 6.6 answer this question. As
the figures suggest, most of the literature considers the propagule size as a
measure of propagule pressure (49 out of 119 contributions), and as in the
main hypothesis, the five sub-hypotheses are widely supported.

Using the Python Graphviz package, we can also demonstrate the hierarchy
of the hypothesis. Figure 6.7 depicts a graph visualization of the hypothesis
and its sub-hypotheses.

To test the hypothesis, some articles investigated plant taxa while others in-
vestigated non-plant taxa such as birds, reptiles, etc.

We first look at the articles that investigated plant taxa, specifically with the
following question.

Question 3: How many plant taxa did each article investigate? Which arti-
cles investigated the highest numbers of plant taxa?
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To answer this question, in Figure 6.8 we plot a bar chart that demonstrates
the number of investigated plant taxa in each article along with the article’s
stand for the hypothesis and the publication year. Each bar in the plot rep-
resents an article, while the bar height reflects the number of plant taxa in-
vestigated in the article. We disable the labels of the x-axis because the titles
of the articles are too long to be represented as axis ticks labels. To see ti-
tles, interested readers can explore the notebook online, where plots can be
hovered to reveal the relevant four elements of information for each article:
article title, the exact number of investigated plant taxa, article publication
year, and stand for the hypothesis.

Figure 6.9 depicts a plot that shows the top-10 articles with the highest num-
bers of investigated plant taxa.

Question 4: How many non-plant taxa did each article investigate? Which
articles investigated the highest numbers of non-plant taxa?
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Using the same logic as in the last question, the bar charts presented in Fig-
ures 6.10 and 6.11 answer this question.

Question 5: The literature tests the hypotheses by examining plant and
non-plant taxa. What exactly are these non-plant taxa? How many articles
investigated each taxon?

We construct an overview of the different taxa examined in the articles by
plotting a bar chart. Each bar represents an investigated taxon, while the bar
height represents the number of articles examining each taxon. Figure 6.12
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shows that plants were the most (49) investigated taxa. Other popular taxa
include insects, birds, and fishes.

Question 6: When were the relevant articles published? In other words,
what are the most productive years in terms of publishing articles related
to this hypothesis?

Figure 6.13 summarizes the distribution of articles over the years. A large
number of related articles were published between 2009 and 2013. The most
productive year is 2012 with 16 relevant articles.
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Question 7: Where did the studies related to this hypothesis take place?

Another interesting point is to look at the distribution of experiments over
the continents to discover if there are dominant continents. Figure 6.14 sug-
gests that there is a focus on North America (49 out of 119 contributions).
Furthermore, 3 studies were conducted in all continents except Antarctica.

6.3.2 Interactive web application with R Shiny

In the previous section, we exemplary described one Jupyter notebook that
analyses scholarly knowledge related to one hypothesis. As mentioned above,
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the analysis of other individual hypotheses can be explored online®.

With this approach, it is hard to get an overview of all hypotheses, since we
need to open and compare notebooks, which is not a practical solution.

To address this, we have explored the possibility to build an interactive web
application using R Shiny. The application is accessible online!°. It provides
an interactive overview of ten hypotheses, where users can select a hypothe-
sis from a drop-down menu, then several plots about this hypothesis will be
shown interactively. The plots include:

‘https://mybinder.org/v2/gl/TIBHannover2Forkg%2Forkg-notebooks/HEAD?
filepath=invasion_biology%2Fhypotheses_notebooks
Ohttps://invasion-biology.shinyapps.io/overview_hypotheses/


https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks
https://mybinder.org/v2/gl/TIBHannover%2Forkg%2Forkg-notebooks/HEAD?filepath=invasion_biology%2Fhypotheses_notebooks
https://invasion-biology.shinyapps.io/overview_hypotheses/
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e Distribution of articles over continents
e Number of investigated taxa in each article
e Top-5 articles with highest numbers of investigated taxa

e Distribution of articles over years.

6.3.3 Interactive web page using JavaScript amCharts

As an additional and last variant to interact with hi-knowledge scholarly
data, we also propose an implementation that supports exploring the con-
nections between hypotheses. Assuming the inter-hypotheses relationships
[24, 34] and hi-knowledge website!!, and based on the number of contribu-
tions supporting, being undecided, or questioning each hypothesis obtained
in Jupyter notebooks analysis, we create a web page containing a network
visualization implemented as a force-directed tree!?. The force-directed tree
is a special type of chart for displaying multi-item data related in a linear,
hierarchical, or mixed way. We build this interactive network visualization
using JavaScript amCharts. It represents the different hypotheses as nodes
and their relations to each other as connections in a graph network. The web
page can be visited here!3.

To clarify the network, we explain its components as follows:

e Each node represents a hypothesis. The name of the hypothesis is shown
under the node.

e The size of the node corresponds to the number of scientific articles
that discuss the hypothesis. Hence, the larger the node the higher the
number of articles related to the hypothesis.

e The nodes with no pie charts represent hypotheses that are not yet
tested in the literature.

e The nodes with pie charts represent hypotheses that were tested in the
literature.

e Each pie chart is divided into three parts indicating the stand of the
relevant articles (green = supporting, red = questioning, grey = unde-
cided).

e When hovering over a node, we can see the name of the corresponding
hypothesis, the number of scientific contributions that tested it, and the
number of supporting, undecided, and questioning articles.

Hhttps://hi-knowledge.org/invasion-biology-large/

Phttps://www.amcharts.com/docs/v4/chart-types/force-directed/

Bhttps://tibhannover.gitlab.io/orkg/orkg-notebooks/invasion_biology/
hypotheses_network_vis.html


https://hi-knowledge.org/invasion-biology-large/
https://www.amcharts.com/docs/v4/chart-types/force-directed/
https://tibhannover.gitlab.io/orkg/orkg-notebooks/invasion_biology/hypotheses_network_vis.html
https://tibhannover.gitlab.io/orkg/orkg-notebooks/invasion_biology/hypotheses_network_vis.html
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e As we saw in the Python Jupyter notebook, some hypotheses have sub-
hypotheses. We include these sub-hypotheses in the network as node
children. We can click on the node to expand it and explore its children
(i.e., its sub-hypotheses).
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Chapter 7

Discussion

Conducting scholarly data science is a challenging task due to the lack of
structure of articles published in the literature. In this work, we introduced,
implemented, and tested an architecture for applying data science to schol-
arly data. We demonstrated through two use cases that the SKGs, specifi-
cally the ORKG, can be exploited in scholarly data science. We performed
numerous data science tasks using different tools and methods to draw new
insights in the research fields of our use cases and to build new applications
and visualizations on top of SKG data. Our work shows that the proposed
approach applies to other SKGs and other use cases. This answers our first
research question from Section 1.2.

Furthermore, this work assumes SKGs as a given data source. We did not dis-
cuss the construction process of SKGs or the technical approaches to build a
SKG for data science. Thus, the presented architecture itself addresses our
second research question. We discussed how to implement each component
in the architecture. The interaction between these components demonstrates
the technical approaches of exploiting scholarly databases in general and
SKGs (e.g., the ORKG), specifically, in data science. Our implementation is
only one way of realizing the architecture. Other implementations may use
different set up of the architecture components.

Looking at the results from a larger distance, we can make a few interesting
observations, discussed next in terms of advantages and limitations of our
work.

7.1 Advantages

Flexibility. Anadvantage of the proposed approach is the flexibility in terms
of conducting highly specialized data science tasks.

To address their research questions, scientists process data in very heteroge-
neous and typically complex manner. The research problem frames the strat-
egy according to which the data is processed. A generic processing strategy
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for all questions is of course not possible to devise. Thus, while specialized
user interfaces optimally address one or a small set of tasks, the integration of
a data science environment (e.g., Jupyter Notebook) with data sources such
as the ORKG for scholarly knowledge offers more flexibility.

An example can be seen in the difference between our approach and the sys-
tem provided in the hi-knowledge website. The website provides an inter-
active network visualization of different hypotheses in the invasion biology
research area. The visualization is presented at two levels. The first level
shows the relationships between the individual hypotheses. If we dive into a
hypothesis, we are shown the hierarchy of the selected hypothesis, the num-
ber of articles related to the (sub) hypothesis, and the number of articles sup-
porting, being undecided, and questioning each (sub) hypothesis.

While the website introduces a user-friendly interface and a sophisticated vi-
sualization of hypotheses, it is built for a specific purpose and does not pro-
vide opportunities to analyze the data about the hypotheses or the scientific
articles related to them for other purposes. In contrast, our approach enables
the data to be processed in arbitrary ways and, thus, to conduct a wide vari-
ety of data science tasks such as building applications and visualizations.

Efficiency. Another advantage of exploiting the ORKG in data science is
the ORKG Python library (presented in Section 4.2.1). The library enables us
to fetch ORKG content directly into Jupyter Notebook. In other words, once
data is added to the ORKG, we can easily load ORKG data and directly begin
our analysis. With this feature, we can update our Jupyter notebooks and the
included visualizations and results on-the-fly by updating the ORKG content
used in the analyses and re-running the notebooks scripts.

Furthermore, related to the data science pipeline (mentioned in Section 2.2),
since the ORKG Python library supports reading ORKG content directly into
native Pandas data frames, we argue that the library supports the acquisi-
tion stage and the first part of the preprocessing stage of our pipeline. This
demonstrates one side of the efficiency in our approach. Activities including
downloading data, importing data into the environment, and transforming
data into Pandas data frames are not needed to conduct data science tasks in
Jupyter Notebook.

On the other hand, exploiting the MAG or the OpenAIRE research graph,
for instance, does not include this advantage. Although these graphs offer
the possibility of conducting several analyses on their websites, these do not
cover all the analyses a scientist may want to perform. To overcome this ob-
stacle, the creators of MAG and OpenAIRE research graphs provide regular
snapshots of their graphs for download. Since it is regular snapshots, a sci-
entist who wants to update her analyses should wait until the next release of



Chapter 7. Discussion 61

the snapshots. Only then, she can download the graph data and update her
results.

Data science on articles content. A third advantage in the implementation
of our approach is that we worked on scientific article contents imported
from a generic SKG (the ORKG). This enabled the variety and depth of data
science tasks we conducted in different domains. This stands in stark con-
trast to numerous articles (mentioned in Section 3.3) that reported analyzing
scholarly metadata.

Conducting data analysis on articles metadata helps scientists to gain in-
sights about research entities described by this metadata such as authors,
institutions, journals, and their relationships. Scientists can perform differ-
ent kinds of analyses on this level such as conference series analysis, research
trend analysis, the productivity of authors or institutions, and citation rela-
tionships. However, for science it is interesting to analyze the actual content
of articles because this content represents the researchers’” contributions to
advancing knowledge. The work presented demonstrates some possibilities
into such direction.

7.2 Limitations

At the time of writing this thesis, the ORKG contains structured descriptions
of about 5000 articles in more than 460 research fields!. Since our implemen-
tation relies on the ORKG, the limited amount of content in the ORKG affects
the variety of fields, in which data science tasks can be done. Furthermore,
while generic KGs cover a wide range of domains and, thus, support con-
ducting data science tasks in numerous domains, they cannot be expected to
be comprehensive or aligned to any single domain in particular [32].

Another limitation of our work is that we only focused on a limited set of
data science tasks. In other words, our approach is evaluated on standard
data science tasks. We focused on descriptive analysis tasks to understand
the available data and extract insights and valuable information from it. We
did not consider predictive analysis methods in this work.

Moreover, as mentioned in Section 4.2.3, all data science tasks were per-
formed on a local laptop with limited resources. Some data science tasks
may include handling large amounts of data with its own challenges for data
access and processing. For instance, exploiting several scholarly databases
or SKGs such as MAG or the OpenAIRE research graph may introduce some
of these challenges due to the large size of the dumps.

Ihttps://www.orkg.org/orkg/stats
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7.3 Future work

As mentioned in the previous section, we evaluated our approach using only
descriptive analysis tasks. In future work, we would consider extending the
evaluation to predictive analysis tasks.

Furthermore, in this work, we exploited scholarly knowledge graphs in data
science. Another idea is to exploit data science in SKGs research area. One of
the research directions is to convert the huge amount of unstructured and
semi-structured data published in numerous formats such as text and ta-
bles into graph data. As we discussed in this thesis, several initiatives are
working on converting human knowledge into knowledge graphs, whether
domain-specific or generic. This leads to a fast evolution of approaches for
managing such data, i.e., collecting and processing. Data science can be used
to address these issues.
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Chapter 8

Conclusion

Nowadays, scientific articles are mostly published as PDF files containing
unstructured and semi-structured text. This way of scholarly communication
limits the possibilities of reusing scholarly knowledge for other purposes.

Scholarly knowledge graphs (SKGs) represent scholarly knowledge in a struc-
tured way. Thus, they enable researchers to navigate, analyze, and gain new
insights from scholarly data. As we have described, domain-specific SKGs
contain descriptions of articles content in specific fields. This enables con-
ducting scholarly data science in these fields. In contrast, most of the generic
SKGs focus on article metadata enabling metadata-level analysis including
conference series analysis and trend analysis.

The Open Research Knowledge Graph (ORKG) is a generic SKG that allows
describing research contributions in a structured and machine-readable way.
The ORKG aims to implement the FAIR principles for scholarly knowledge.
This allows for easier reuse in downstream data science of scholarly knowl-
edge published in the literature.

In this thesis, we exploited the ORKG in data science pipelines. We presented
and implemented an architecture for applying data science to scholarly data.
Then, we tested the architecture and the implementation in two use cases
in different domains (COVID-19 and invasion biology). We developed and
demonstrated approaches that reuse the ORKG content and, when needed,
data from other sources, to enable data science and discover new knowledge
in the research areas of our case studies.

In the first use case, most of the needed data was readily available in the
ORKG. We refined the ORKG data and then reused it in different tasks such
as evaluating model performance using spatial analysis and discovering pat-
terns in the model estimation. Additionally, a spatial analysis of the spread
of COVID-19 across Chinese provinces was performed to reveal regional pat-
terns. We also updated the results of an old Guardian study by reusing the
ORKG content of different comparison tables. With this update, we com-
pared the contagiousness and deadliness of COVID-19 to other viruses and
diseases.
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In the second use case, we started earlier in the scholarly data science work-
flow and firstly ingested scholarly data in the ORKG. Structured descriptions
of hundreds of articles in the invasion biology research field were added to
the ORKG. Then, we reused this data to analyze the support of hypotheses
in invasion biology using an interactive web application and an interactive
web page.

Furthermore, we presented several scholarly databases in different research
fields. We discussed their technological differences and how we can exploit
them in data science.

To summarize, publishing and storing scholarly knowledge in a machine-
actionable way and according to the FAIR principles facilitates, among oth-
ers, the reuse of this knowledge in data science. This enables gaining inter-
esting insights and developing new applications and services across research
tields.
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