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Abstract

In recent years, deep learning models have become very powerful – even outperforming
humans on a variety of tasks. This enables more real-world applications, including also
sensitive fields such as medical diagnoses or jurisdiction. Besides achieving sufficiently
good performance, the requirement to justify and explain the models’ decisions is becoming
increasingly important.

This work aims to enable a broader application of a specific model class that is inherently
interpretable, namely explain-then-predict models, by reducing the annotation cost of the
explanations. We focus on the ExPred model as a representative of explain-then-predict
models.

We investigate its dependency on rationale annotations, a special kind of explanation,
through training using gradually fewer rationale-labeled instances. Furthermore, we ex-
plore different approaches that aim to reduce the number of human-labeled instances
required during training, such as active learning and weak supervision.

Our results show that even with only a fraction of instances annotated with rationales
from the original dataset, ExPred still achieves good performance (within 95% of the
performance when using 100% annotation). Depending on the dataset, only a few thousand
annotated rationales are required. Using weak supervision, this can be further reduced, at
least in specific settings. On the Movie Reviews dataset, we achieve good performance with
only 5% of the original rational labels. The tested off-the-shelf active learning methods do
not provide any benefit over randomly selecting instances to label. However, the extensive
behavior analysis enables the future design of active learning methods that are tailored
to explain-then-predict models. We start by proposing an active learning method that
outperforms the random baseline on the Movie Reviews dataset.
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Chapter 1

Introduction

1.1 Motivation

In recent years, deep learning models have become the state of the art in various domains.
In 2015, a model outperformed humans on ImageNet [Rus+15; He+16] for the first time.
With the introduction of transformer models [Vas+17] and especially BERT [Dev+19]
natural language processing, systems took another leap towards similar performance as
humans [NB19]. This enables more and more real-world applications of these systems in
sensitive fields such as medical diagnoses, jurisdiction, or social participation. But “with
great power comes great responsibility” (attributed to Voltaire [Thi29]) and it has been
shown that these models can reproduce social biases and display unwanted behaviors such
as discrimination or semantically incorrect correlation [MPL19], which are hard to discover
since these systems are black-box models.

This motivates the increased interest in making such models explainable. There are two
broad categories of approaches to understanding why a model has come to a certain deci-
sion: post-hoc methods and interpretability-by-design. Post-hoc methods aim to analyze an
already trained model in order to explain its prediction. In contrast, the interpretability-
by-design scheme tries to build models that are inherently interpretable. Although post-
hoc methods may seem appealing at first since the already existing high-performing models
can be continued to be used, several methods have shown failure cases where they provide
a plausible yet no causal explanation [JW19]. Thus, we focus on interpretability-by-design
in this work.

More precisely, we will consider models that follow the explain-then-predict paradigm.
This class of models first extracts a subset of the input serving as an explanation and
then bases its final prediction only on this subset, therefore achieving faithful explanation
by design. While there are models that do not require any additional training data for
the explanation [LBJ16; BAT19; Jai+20], these do not achieve competitive performance
to those who do [JW19; DeY+20; ZRA21]. Although acquiring rationale annotations
alongside task labels poses not much more effort to some tasks [DeY+20], it may do to
others, and there are already various datasets available with only task-level annotations.
This work aims to reduce the requirement for human-annotated rationales. In particular,
we investigate the effectiveness of active learning and weak supervision. Reducing the
number of rational annotations needed can enable wider usage of interpretable models,
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leading to more reliable models, increased trust in to the models prediction and better
human-model cooperation.

1.2 Problem Formulation and Research Questions

In this work, we aim to reduce the dependency on explanation annotations for explain-
then-predict models. Put more formally, this means the following:

Given

(i) an explain-then-predict model f(x) = (y∗, r) where x is the input sequence, y∗
the task-level prediction and r the explanation also known as rationale. r is a
binary sequence of the same length as the input sequence x, where a 1 indicates
that the token is important for the model’s decision and 0 that it has no influence.
Where f(·) requires annotation for the rationales to be trained. We will focus on
ExPred [ZRA21] as a representative of this model class.

(ii) a dataset D = {(xi,y∗i, ri)}Ni=1 = Dtrain ∪Dval ∪Dtest with disjoint train, validation
and test splits of sizes Ntrain, Nval, Ntest respectively.

(iii) further we divide Dtrain into two disjoint subsets L and U , where L is just some
subset of Dtrain and U is the rest of the samples from Dtrain, but without the
explanation annotation (U = {(x,y∗)|(x,y∗, r) /∈ L}).

the goal is to find an approach that makes it possible to train f using only U and L and
to reduce the size of L as much as possible while still achieving good task and explanation
performance. Particularly, the performance should be better than that of unsupervised
approaches such as Lei et al. (u) [LBJ16], which use |L| = 0. We call |L| = b the
annotation budget. We define good performance as 95% of the performance achieved
using 100% supervision of the rationales (b=1).

We derive the following primary research questions:

RQ1 How much does the task and explanation performance for explain-then-predict mod-
els degenerate if fewer instances with rationale annotations are available at training
time, i.e. if we reduce the size of L?

RQ2 Can we leverage weak labels, which are available almost for free, e.g. by using Lei
et al. (u) [LBJ16] as weak labeler f̃(·)?

RQ3 Given a fixed annotation budget b, how much can we improve test performance
by selecting a specific L, i.e. acquiring rationals r for specifically useful instances,
without knowing r beforehand, e.g. through active learning?

We emphasize that throughout the thesis we will assume that task-level annotations are
always available for all instances. We only aim to reduce the number of rationale annota-
tions. This is a practical scenario since there are a lot of task-level datasets available that
lack explanation annotations.
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1.3 Structure of the Thesis

In this chapter, we motivated this work and defined the problem and the research questions
we are answering.

Chapter 2 gives an overview of the fundamentals and related works that are relevant
to our research. This work builds on two pillars: Interpretable machine learning and ap-
proaches to reduce labeling cost for machine learning models. In section 2.1 “Interpretable
Machine Learning” an introduction to the concepts of interpretable machine learning is
given. Reducing the labeling cost (section 2.2) can be achieved in many ways including
subsection 2.2.1 “Fidelity Weighted Learning” and section 2.3 “Active Learning”.

Corresponding to our three research questions, we perform three groups of experiments in
chapter 3 “Experimental Evaluation”. For each of these groups, we give a short motivation,
describe the experimental setup, and present the results. In order to make the description
more compact, we describe the parts of the setup that are the same for all experiments
in section 3.1. section 3.2 “Preliminary Analysis: The Baseline and its Need for Rational
Supervision” answers RQ1, section 3.3 “Learning from Weakness: Semi-Supervision using
Weak Labels” RQ2 and section 3.4 “Active Learning” RQ3, respectively. For active
learning, we additionally perform an extensive study on the behavior of the different
approaches (subsection 3.4.4), which aims to provide insight on how to design improved
active learning methods that are tailored to rationale extraction.

We conclude this work (chapter 4) by giving a résumé of our results in section 4.1. We
are pointing out the limitations of our work as well interesting lines of future research in
section 4.2
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Chapter 2

Related Work

2.1 Interpretable Machine Learning

While machine learning models have become incredibly powerful, they have also become
extremely complex, meaning that the reasoning behind a model’s decision is in many
cases not understandable for human beings, neither for the user nor the developer. In
subsection 2.1.1 “Motivation and Definition” some scenarios will be highlighted in which
explainability is a desired property of machine learning systems, and an intuitive defini-
tion for interpretability will be given. This is followed by subsection 2.1.2, in which the
terminology interpretable machine learning is defined and available concepts are summa-
rized. In the two last sections, we will focus on models specific to NLP, more precisely
on how to measure interpretability (subsection 2.1.3 “Quantifying Interpretability: Eraser
Benchmark”) and on a model class that is interpretable by design (subsection 3.1.1 “Model
Selection: Explain-then-Predict Models”).

2.1.1 Motivation and Definition

There is neither a strict mathematical definition of interpretability nor a generally ac-
cepted informal one [Mol20], but there have been several attempts to specify it, e.g.
“Interpretability is the degree to which an observer can understand the cause of a deci-
sion” [Mil18, p. 14] or “Interpretability is the degree to which a human can consistently
predict the model’s result.” [KKK16]. If the second definition were accepted, a system
could never be superior to a human.

Interpretability of machine learning systems has two beneficiaries: model developers and
model users. In the latter case, imagine a system that predicts whether a patient is likely to
have cancer based on X-ray images. Even if the overall model performance reported by the
developer is better than a human expert, a doctor using such a system to support his/her
diagnoses would probably not trust the model if he/she cannot obtain an explanation for
the decision from the system as one would from a human member of a cancer board. An
explanation, in this case, could be either in natural language describing which features of
the input image have led to the prediction or simply some way of highlighting the parts
of the image that were relevant for the decision. Using this additional information, the
doctor can now make an informed decision about whether the model’s forecast is plausible,
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and the system can even guide him/her to features indicating cancer that he/she might
have overlooked at first. To sum up, better explainable models enable better collaboration
between users and systems, improve certainty and help strengthen the user’s trust in the
system.

In addition to improving the operation of such systems, interpretable models or methods
that make models interpretable also facilitate the developer’s work. Deep learning mod-
els are incredibly good at picking up hidden patterns in the data, but they sometimes
learn correlations that are not semantically correct or unwanted for other reasons. Under-
standing the individual prediction can help discover such undesired decision rules, which
are not always revealed by the validation metrics. Carrying on the example from above,
the training data could have been collected from databases of hospitals. One – bad –
way of doing this would be to take all cancer positive samples from one and all negative
samples from another hospital. This could lead to artifacts in the images caused by differ-
ent hardware or configurations, which are much easier distinguishable for the model than
actual symptoms of cancer. This can lead to a phenomenon called right for the wrong rea-
sons [MPL19]. The model’s predictions based on the dataset are correct, but using such
semantically meaningless correlations for predictions based on new datasets would lead
to massive misprediction since the new data points would most likely not fulfill the same
conditions. Looking at the reasons for the model’s decision can help to find such errors in
the data as well as in the model [WGS20]. Additionally, questioning and understanding
the model’s “train of thought” can help to build better models in the future and enables
us to learn from AI about the problems they are solving, e.g. in the cancer example one
might discover new indicators for cancer.

In addition to these content-related advantages of interpretable models, there are also
legal requirements for explaining and justifying a decision that has been made about a
person [GF17], and there will probably be other similar laws in the future.

2.1.2 Categories of Interpretability Methods

The quality of an explanation is dependent on the question one wants to answer, e.g. what
aspects of the model’s behavior are of interest. Additionally, the methods are set apart
by what kind of explanation is produced, e.g. highlighting important parts of the input
vs. a textual explanation. The categorization of explanations we will look at is guided
by [Mol20].

In [WGS20], current approaches are outlined and the following aspects are analyzed:

• The model’s parameters: This provides insights about the learned structure of the
model, e.g. representation probing.

• The model’s input: This shows how the input influences the prediction, e.g. which
parts of the input are most influential. This includes looking for (global) patterns
in the model’s decision process.
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• The training data: This inspects the way the training samples influence the pre-
dictions, e.g. which training samples would change the current model’s prediction
if they were removed from the training data and the model was retrained with the
resulting dataset.

When considering the model’s predictions, one can distinguish between methods aiming
at a global understanding of the model and those aiming at an explanation of individual
predictions. Global explanations usually take the form of extracted decision rules from a
trained model. But even simple if-this-then-that rules, which are often not strong enough
to describe complex models globally, become quickly very unclear and therefore not un-
derstandable to a human because of the sheer number of rules. Thus, one typically looks
at individual predictions, also known as local explanations, or at groups of predictions,
e.g. the ones belonging to the same class. Examples of locally valid decision rules are
anchors [RSG18] and triggers [Wal+21]. The question that is answered this way most of
the time is: Which parts or features of the input were most influential for the prediction?
A common alternative is to ask: Which parts of the input has to change or in what ways
does the input have to change in order to change the model’s prediction? Looking at a
group of instances can reveal how the model separates one group from another. The last
category of methods we are discussing tries to find data points in the training dataset that
would, if removed, change the prediction in a specific test instance, e.g. [Yeh+18]. These
methods are sometimes called data influence methods [WGS20] and can help find biases
and errors in the dataset. Most local explanation methods – apart from data influence
methods, which reveal the training instances that were most influential for a certain pre-
diction – determine the degree of influence different parts of the input had on the model’s
predictions. This kind of local can be generated based on gradients [Smi+17; STY17;
Sak20], attention scores [BCB16] or perturbations [RSG16; LMJ17].

So far, we have looked at the explanation itself. Another aspect that divides existing
methods is whether they analyze an already trained model, in which case the methods are
called post-hoc methods, or whether they build an intrinsically interpretable model. In
the next section, we will look at specific examples from each of those categories that are
commonly used in NLP.

2.1.2.1 Post-hoc Models

Post-hoc models can be divided into two kinds: the ones that are applicable independently
of the model at hand, which are therefore called model-agnostic methods, and those that
require models to have certain properties, e.g. access to gradients, which are known as
model-dependent methods. In this section we will look at four methods, namely two
representatives of each category. For a qualitative evaluation of most of the approaches
see subsection 2.1.3 “Quantifying Interpretability: Eraser Benchmark”.

The first method we consider is LIME, short for Local Interpretable Model-agnostic Ex-
planations [RSG16]. It is a local, model-agnostic post-hoc method and hence applicable
to any black-box model. The idea is to explain a single prediction (locally) to a human
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by approximating the complex black-box model f locally around the data point x with
a simpler yet interpretable model g ∈ G, e.g. a decision tree or a linear model. The
authors also provide an algorithm that aims to select a subset of instances that, when
analyzed with LIME, explains the overall behavior of the model. This extension called
SP-LIME is not discussed in this section. In order to create a training dataset Zx for
g(·), samples in the vicinity of x are created solely by perturbing x and f(·)’s prediction.
During training of f(·), the samples are weighted by the similarity of πx(z) to x, resulting
in loss L(f, g, πx) = ∑

z∈Zx
π(z)(f(z)− g(z))2. Even if the surrogate is conceptually inter-

pretable, it can quickly become too complex to be comprehensible to a human, e.g. if the
decision tree is too deep or the linear model has too many non-zero coefficients. The best
explanation is therefore a model that minimizes the loss L(l, g, πx) but also the surrogate’s
complexity Ω(g). Overall, we obtain the objective argming∈G L(f, g, πx) + Ω(g).

Figure 2.1: Concept of LIME in a two-feature example. The linear classifier (dashed line)
serves as a local explanation for the big red cross and the blue circles, but it
does not describe the full data space (background color). Source: [RSG16]

To wrap it up, LIME has three main components:

(i) A surrogate model g: In the paper, they used a sparse linear model achieved through
lasso regularization.

(ii) A perturbation strategy to construct Zx from x: For text tasks, the authors’ choice
is to randomly remove words from x.

(iii) A proximity function πx(z) = exp(−D(x, z)2/σ2)) with D being a distance function,
e.g. cosine distance for text.

According to Molnar [Mol20, Chapter 5], these three main components are also the greatest
weakness of LIME since choosing these hyperparameters is non-trivial and has a consid-
erable influence on the resulting explanation.

There are several methods that try to generate locally valid decision rules around a given
instance x which they have to apply in order to come to a certain decision. If we were able
to find rules that can be applied globally, then we would probably not need a complex
model. Anchors [RSG18], again a model-agnostic method and introduced by the same
authors as LIME, are such an example. An anchor A is a set of predicates – in the paper
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it is always the presence of specific words, e.g. A = {’not’, ’bad’} – that returns true if all
rules are fulfilled. Furthermore, A is a sufficient condition for a sample z from Dx(z|A)
to predict f(z) if it predicts the same as f(x) with a high probability. Hereby, Dx(z|A)
is the perturbation distribution around x of sample z where A applies. For example, if
x = ’This movie is not bad’, then A(x) = 1 and the probability p(f(x) = f(’not bad’))
should be high. More formally, A is an anchor if ED(z|A)1f(x)=f(z) > τ,A(x) = 1. These
anchors can be efficiently constructed using a greedy algorithm. Given a sample x and
target precision τ (percentage of other examples that fulfill the anchor and lead to the same
prediction), we first approximate Dx by perturbing x, which results in a set of samples
Zx. In the case of language, this can be achieved by replacing words. We then start
with candidates for A, which consist of the individual tokens of x and, in our example,
are {’This’}, {’movie’}, {’is’}, {’not’}, {’bad’}. For each of the tokens, we estimate the
precision of Zx and take the best candidate. We then create all possible combinations of
rules containing two tokens by using the token selected in the first iteration. We repeat
these steps until we meet our τ .

Figure 2.2: LIME vs. Anchors– A Toy Visualization. In contrast to LIME, Anchors
find regions to which the rules apply. Source: [Mol20]

In contrast to LIME and Anchors, gradient-based methods are not model-agnostic since
they require access to the gradients of the model. Gradient-based methods evaluate the
importance of the input features by looking at the gradient of the predicted class i of
classifier f(x) with respect to the input x. The attribution map is therefore defined as
M(x) = ∂f(x)i

∂x . This variant of gradient attributions are usually referred to as simple
gradients. An alternative approach is to consider gradients w.r.t. the loss of the ground
truth L(f(x),y∗) or the predicted label L(f(x), argmaxi f(x)i). The reasoning behind this
is derived from the perspective that features have a big influence on the model’s prediction
if a small change in this feature results in a large change in the model’s prediction. This
naive approach is associated with several problems, thought, such as being too local and
therefore sensitive to noise and not being able to cope well with the saturation of the
activation functions in the network[WGS20]. There are several works that try to overcome
the shortcomings of this vanilla method, e.g. SmoothGrad [Smi+17] and Integrated
Gradients [STY17]. One has to point out that the feature attribution we are usually
interested in is single value per feature. In the case of images, it is pixels, and in the case
of text, words. Both kinds of features are often not represented by a single value because
pixels consist of different channels and words of subword tokens. Therefore, some kind of
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Figure 2.3: Exemplary result of vanilla input gradients (VanillaGrad), Integrated
Gradients (IntegGrad) and SmoothGrad (SmoothGrad). Source: based
on[Smi+17]

aggregation of the gradients for each of these scalars is needed. Common choices include
the sum of the absolute values of the gradients for each component [WGS20] and the dot
product of the gradient with the embedding. Another class of model-specific methods are
attention-based ones [LBJ16; BCB16], which interpret the attention scores of the model
as relevance scores of the features. For example, in the case of models that use a BERT
encoder, the attention scores of the [CLS] tokens from the last or penultimate layer are
usually aggregated to calculate the scores. Although this may seem plausible, it has been
shown that attention scores are not very reliable [JW19]. This can be ascribed to the fact
that the tokens to which attention is applied to are a mixed representation of the input
tokens.

2.1.2.2 Interpretability by Design

In contrast to post-hoc methods, interpretability-by-design approaches create models that
are at least partly comprehensible for humans. These approaches range from simply
using inherently interpretable models such as sparse linear models, decision trees, and
nearest neighbor classifiers [Mol20] over using such models on top of semantic features
extracted using nontransparent models to only ensuring meaningful intermediate repre-
sentations [Hig+16; Mar+21]. Incorporating explanations into the model and the training
process allows for a additional kind of explanations for the model’s decision, e.g. textual
justification [Nar+20]. Although it has been shown that using explanations as a seman-
tic regularization can boost the model’s generalization performance [ZMW16; Raj+19], it
does not necessarily results in causal explanations. This has been demonstrated in partic-
ular in the case of standard attention scores as indicators for the influence of individual
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features on the prediction [JW19]. Motivated by this, there are two lines of work: hard at-
tention models, which are discussed in the section Model Selection: Explain-then-Predict
Models, and models that use an opaque model to extract semantic features and use an
interpretable model on top of it [Mar+21]. The latter is also called a semantic bottleneck.

In this work, we will focus on explain-then-predict models which provide an explanation
in terms of rationales, a subset of the input sequence. They do so by first predicting the
rationale r based on the input sequence x and then basing the actual task prediction only
on the token contained in r. They are therefore seen as hard attention models. More
details can be found in subsection 3.1.1 “Model Selection: Explain-then-Predict Models”.

2.1.3 Quantifying Interpretability: Eraser Benchmark

Since interpretability is a relatively nascent field in NLP, there are many lines of research
seeking to provide desired properties and unified evaluation metrics. One of the most
popular works on rationales is the ERASER benchmark [DeY+20], which will be used
as a gold standard throughout this work. The benchmark revises and augments seven
existing NLP datasets in order to provide a variety of tasks based on which models can
be evaluated. Furthermore, metrics for measuring the accordance of rationale predictions
with human annotations as well as metrics for assessing the faithfulness of the explanations
were introduced.

The authors consider both hard and soft rationales for the selection of the tokens. We will
focus mainly on the metrics defined for hard-selection of the input tokens since this kind
of rationales is of major importance for this work. The hard explanation performance
is measured by token-wise precision, recall, and derived F1 scores. In order to present
a less rigorous metrics, partial matches via intersection over union using a threshold of
0.5 are introduced to calculate F1 scores. For soft-selection methods, Area Under the
Precision-Recall Curve (AUPRC) is proposed as performance measure. In addition to
measuring the conformity of the model’s explanations to human annotations, also referred
to as plausibility, another critical property of the predicted rationales is their faithfulness,
meaning that the rationales should truly reflect the model’s prediction. The authors
call a rationale faithful if it is sufficient to make the task prediction and if it is also
comprehensive. In order to be sufficient for the task level prediction m(·)i of class i, m(·)i
should not change much when the prediction is only based on the tokens included in the
rationale r instead of on the whole input sentence x. This property is therefore defined as
sufficiency = m(x)i−m(r)i. Comprehensiveness measures how much information is in the
non-rationale tokens that support the original prediction, leading to comprehensiveness =
m(x)i − m(x \ r)i. A faithful model achieves high comprehensiveness scores and low
sufficiency scores.

The datasets consist of disjoint training, validation, and publicly available test sets. All
datasets are based on datasets with task-level annotations and augmented with rationales.
For datasets without comprehensive rationales, the authors acquired an additional test set
containing comprehensive rationale annotations. Some of the datasets have been slightly
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changed, e.g. in CoS-E each instance has been converted from a multiple-choice question
to multiple question-answer pairs for which the label is either true or false in accordance
to the correctness of the answer. For more details on other tasks see the paper[DeY+20].

The datasets introduced in the paper are:

• Evidence Inference [Leh+19]: An NLI-task on full-text articles describing random-
ized controlled trials; the task is to predict whether a medical intervention improves
over a comparator on a specific outcome.

• BoolQ [Cla+19]: A reading comprehension task with yes/no questions fromWikipedia.
• Movie Reviews [ZE08]: Sentiment analysis on movie reviews.
• FEVER [Tho+18]: The task is to predict whether a claim is supported or rejected

by a text source.
• MultiRC [Kha+18]: A reading comprehension task in which the task is to predict

whether a given reply answers a question.
• CoS-E [Raj+19]: A common-sense reasoning dataset.
• E-SNLI [Cam+18]: An NLI-task in which the model has to predict whether the

given premise entails the hypothesis.

In the present work, we will focus on Movie Reviews and MultiRC. Therefore, more
detailed descriptions of these datasets are given in section 3.1 “Common Experimental
Settings”.

The authors evaluate multiple baseline interpretability methods for the task from above.
For hard-selection models, they compare Lei et al. (u), Lehman et al., BERT-to-
BERT and the supervised version of Lei et al. (u) introduced in this paper (for more
details see subsection 3.1.1 “Model Selection: Explain-then-Predict Models”). For soft-
selection, they apply an LSTM [HS97] decoder using additive attention on top of BERT-
encoder [Dev+19] or GloVe [PSM14] vectors in the case of Evidence Inference and BoolQ
in order to overcome quadratic memory consumption of the self-attention layer. They
compare the following soft-scoring methods: vanilla input gradients, attention weights
and LIME (see subsubsection 2.1.2.1 “Post-hoc Models”).

Hard-selection models are regarded as faithful by construction and therefore only agree-
ment of the predicted rationales with human annotators and not comprehensiveness and
sufficiency has been reported. The main result is that the supervised version of Lei et al.
outperforms the unsupervised version Lei et al. (u) in most cases, both in terms of task
performance and token F1 scores. In general, a good task performance seems to be asso-
ciated with a good explanation performance. For soft-selection models, the main outcome
is twofold. Firstly, the findings for attention-based attribution confirm that soft-selection
models tend to yield rationales that are in accordance with human annotations but are
not faithful. Secondly, LIME has been demonstrated to be the most faithful approach on
these tasks.
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Figure 2.4: The trend towards larger language models. Source: [Ros20]

2.2 Reducing Labeling Cost

Most deep learning models require massive amounts of labeled training data annotated
by subject matter experts (SMEs). This is especially an issue in NLP since language is
sparse, which is why more data is required to cover the input space. This issue becomes
more and more important due to the trend of building models with an increasing number
of parameters (Figure 2.4).

[Rat+17a] provides a good overview of different techniques that reduce the labeling cost.
The following list is guided by this work.

Active learning selects – given a labeling budget b, a small initially labeled dataset L0,
and a large unlabeled dataset U – those instances from U that, if labeled next by
an oracle o(·), are estimated to be most helpful for the training of the model. o(·)
is usually a human annotator. The labeling cost is set a fixed to budget b and the
usefulness of the resulting dataset is optimized. Multiple formal objectives and other
details can be found in section 2.3 “Active Learning”.

Semi-supervised learning starts off with a small labeled dataset L0 and a large unlabeled
dataset U , but instead of labeling additional samples, it utilizes assumptions about
smoothness or low dimensional structure in order to use unlabeled data, e.g. through
unsupervised representation learning.

Transfer learning takes a model trained on a different task and applies it to the task
at hand. A commonly used approach is to pre-train the model on an available,
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large, and relatively similar dataset and fine-tune it on a task of interest [Dev+19;
Sha+14]. Another example is multi-task learning where a model is simultaneously
optimized for different tasks using some shared representation. Lastly, there are
some approaches that do not use the parameters of an already trained model, but
its predictions to train another model, e.g. model distillation [San+20]. This can be
considered a combination of transfer learning and weak supervision.

Weak supervision makes use of high-level annotations or noisy labels for training. More
formally, in weak supervision we can use multiple weak supervision sources j =
1 . . .m to label U = {x1, . . . xn}, resulting in weak datasets Lweak,1, . . . Lweak,m where
each Lweak,j is associated with a coverage set Cj , which is the set of points Lweak,j
is defined over. For each xi ∈ Cj , the probability of the label yi is pj(yi|xi) < 1,
although it may also be unknown. Weak supervision approaches try to denoise the
labels, to combine different weak sources or to model pj(yi|xi) in order to weight the
samples during the training accordingly.

Forms of weak annotations may include:

Weak labels from sources like crowd workers, heuristic rules, distant supervision
(labels constructed from existing databases), or predictions of other models.

Constrains which encode domain knowledge.

Distributions from which instances can be sampled, e.g. available through genera-
tive models.

Invariances like geometric transformations of images that probably retain their
class. Based on this categorization, data augmentation can be seen as a form
of weak supervision.

With Snorkel [Rat+17b], a weak supervision framework has been introduced that
reduces the annotation cost by writing heuristic labeling functions also known as
data programming instead of asking annotators for instance-wise labels. This leads
to a massive annotation speed-up, but also reduces label quality. To mitigate this,
the authors treat the labeling functions as multiple weak sources and model the
accuracies without ground truth access by considering the overlaps and conflicts of
the different rules. The results of the pipeline are probabilistic labels that the actual
model is trained with.
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Figure 2.5: Overview of different approaches to reducing labeling cost. Source: [Rat+17a]

2.2.1 Fidelity Weighted Learning

A more simplistic approach than [Rat+17b] has been introduced in [Deh+18]. The objec-
tive is to train a model f(x) = y as well as possible given

(i) a small strongly labeled dataset Lstrong

(ii) a large unlabeled dataset U with |Lstrong| � |U |

(iii) and access to some weak annotation function f̃(x) = ỹ

Hereby ỹ is a noisy label for x. Since it is assumed that evaluating f̃ is cheap, it can
then be used to create a weak dataset Lweak = {(x, f̃(x))|x ∈ U} with negligible cost.
Depending on what one considers to be the input to the approach (f̃(x) or Lweak), this
approach can be seen as a semi-supervised or weakly-supervised approach.

The authors argue that treating the weak labels or even all labels including the strong ones
as equal ignores the different fidelities of the labels and therefore disregards information
that could be used during training. In their approach, called Fidelity Weighted Learning
(FWL), a so-called soft dataset Lsoft = {(x, ȳ,Σ)|x ∈ Lweak ∪Lstrong} where ȳ is the soft
label and Σ is the associated uncertainty estimate. To simplify, the model f(·) is then
trained on this soft dataset by using the uncertainty estimates to weight the samples based
on their estimated quality.

The method consists of three steps:

Firstly, pre-train the student model f(x) = φ(ψ(x)) on the weak dataset Lweak. This
results in a trained representation layer ψ(x) that is in accordance with the weak
labels and a task specific layer φ(·).

15



Secondly, train the teacher model on the learned representations using the strong labels
{(ψ(x), y)|(x, y) ∈ Lstrong}. In the paper, they use a clustered Gaussian Process GP
that provides good uncertainty estimates Σ(x) and soft labels T (x) = ȳ and creates
Lsoft = {(x, ȳ,Σ(x))|x ∈ Lweak∪Lstrong}. The intuition is that the teacher learns to
correct the student’s mistakes since it has to use the contaminated representations
learned on the weak data.

Lastly, fine-tune the student on Lsoft by using the soft labels ȳ as targets and Σ(x) to
weight samples, i.e. scale the learning rate sample-wise accordingly.

The authors evaluate the framework on a toy task, on document ranking and sentiment
classification, and they compare it to multiple baselines including:

• WA: The weak annotator f̃(·).
• NNweak: The student trained on the weak data only.
• NNstrong: The student trained on the strong data only.
• NNweak,strong+ : The student jointly trained on weak and strong annotations by

oversampling the strong data.
• NNweak→strong: Here, transfer learning is used by pre-training the model with the

weak data and fine-tuning it with the strong data.
• NNweakω→strong: Pre-train on weak data and fine-tuning on strong data, but weight-

ing all samples using a fixed value ω during pre-training, which results in a smaller
pre-train learning rate. ω is estimated as the mean ω over all samples from FWL.

• FWL: The fidelity-weighted learning scheme described above.

The results show that FWL outperforms all baselines consistently across the different
tasks. Among the simple baselines, NNweakω→strong is slightly ahead of NNweak,strong+

and NNweak→strong, which show no significant differences between them.

2.3 Active Learning

In this section we look at another technique to reduce labeling cost: active learning. We
first describe the motivations to use this class of approaches (subsection 2.3.1 “Motivation
and Definition”), continue by presenting different application scenarios (subsection 2.3.2
“Scenarios for Active Learning”) and follow up with subsection 2.3.3 “Optimization Goals”,
in which we formally define different possible optimization goals for active learning. In
subsection 2.3.4 “Classical Approaches”, we give examples of active learning approaches
optimizing for the different goals, and we conclude with discussing deep learning tailored
methods (subsection 2.3.5 “Deep Learning”)

2.3.1 Motivation and Definition

According to [Set12, p. xi], “Active Learning is the study of machine learning systems
that improve by asking questions”. The intuition is that a learner can learn better if it
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is able to actively explore the input space. This is analogous to humans learning a new
language better and with less explanation (data) needed if he/she can ask for the meaning
of specific words or phrases that he/she does not know about or is unsure about in certain
contexts.

This becomes even clearer when looking at a 1D classification example. In this example,
we assume that we want to learn to predict whether a certain person, Mia, would say that
the weather is good or bad based on the hours of sunshine per day. We assume that there
is one threshold τ∗ ∈ [0h, 24h] that separates bad from good weather. In the classical
supervised setup, we would now acquire a dataset D by presenting Mia with different
hours of sunshine and asking her for each value whether she thinks that it is nice weather
or not, e.g. by uniformly sampling D = {(x,MiaLikesTheWeather(x))|x = 0, 2, 4, . . . , 24},
where MiaLikesTheWeather(x)) = x > τ∗, τ∗ = 4. We then end up with a classifier
τ = x+ + x+−x−

2 = 4 + 5−4
2 = 4.5, where x+ is the smallest positive value and x− the

biggest value in the negative class in D using a labeling budget of b = 13. In contrast to this
classical approach, an active learner is able to ask Mia iteratively. We start, e.g. with the
two boundary values L0 = {(0, 0), (24, 1)}, which results in τ0 = 12. Step t = 1 and t = 2
result in L1 = {(0, 0), (12, 1), (24, 1)} with τ1 = 6 and L1 = {(0, 0), (6, 1), (12, 1), (24, 1)}
with τ2 = 3, respectively. The active learner performs a bisection search resulting at step
4 in L4 = {(0, 0), (3, 0), (4.5, 1), (6, 1)(12, 1), (24, 1)} and τ4 = 3.75 only using a budget of
b = 6. Here, the active learner always chose the sample that was closest to the decision
boundary τt of the classifier at time t as the sample to be labeled next.

The active learning setup usually involves the following components:

(i) A model or learner fθ : X 7→ Y that requires labeled training data L ⊆ X × Y in
order to be trained and that yields parameters: θ = train(f, L).

(ii) Some source of unlabeled data U ⊆ X from which the model can choose samples.
U may be a fixed set or it may change over time. More details are discussed in
subsection 2.3.2 “Scenarios for Active Learning”.

(iii) An oracle o : X 7→ Y that provides access to the true labels, but is expensive to
evaluate. In most cases, this will be a human expert.

(iv) An annotation budget b: The number of times o(·) can be asked to provide a label.

(v) An inital set of labeled samples L0.

(vi) An initial parameter vector θinit.

Algorithm 1 provides a high-level view on how most active learning algorithms work.
Active learners differ mainly in their assumptions about U and the way they select new
instances. θinit is either set to θinit = θt−1 or kept constant in order to avoid overfitting
to the instances selected early on.
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Algorithm 1: High-level view on the active learning framework
Input: U , train(·, ·), o(·), b, L0
Output: Lb and θb

1 for t = 1 to b do
2 θt = train(fθinit

, Lt−1)
3 Select an instance xt from U to label next
4 Lt = Lt−1 ∪ {(xt, o(xt))}

2.3.2 Scenarios for Active Learning

Active learning algorithms can be distinguished by three types of scenarios they assume
to be given. These differ mainly in the nature of the source of unlabeled data [Set12, pp.
5].

The first scenario is query synthesis, which entails that the active learner creates samples
from the input space X that have to be labeled next. This allows the active learner
to explore the input space, but may result in out-of-distribution examples if the input
space is not well-defined. This is a common occurrence since defining the input space is
often difficult in practice. Imagine a binary image classification task of the classes dogs
and birds. One approach could be to ask for annotation of samples that the model is
most unsure about. If the input space is well-defined, one could imagine that images of
dogs in typical bird environments will be generated, e.g. a dog setting in a tree. But if the
input space is ill-defined, generated instances could combine features differently, producing
instances that lie between the two classes but are not realistic. This could result in hybrids
of birds and dogs, e.g. a dog with wings. These unrealistic examples can be hard to label
for a human and are therefore not helpful. There are works that try to overcome these
problems by using generative models like variational autoencoders [SR19].

Another possible setting is selective sampling, in which the source of unlabeled data is a
stream. The active learner only has access to one sample at a time and has to decide
whether it should be labeled or not. But deciding whether a sample is informative enough
without being able to compare it to others is a difficult task.

The most popular setup is pool-based sampling, which means that a large pool U of un-
labeled examples is available. The active learner scores all samples in U and selects the
most promising one based on an acquisition function or utility function u : X 7→ R that
estimates the usefulness of labeling a sample (or a set of samples) and re-training the
model on this new dataset L′ = L ∪ {(x, o(x))}. In many cases, u is actually dependent
on the trained model u(fθ, L). Note that in order for this method to be useful, evaluating
u(·) must be much cheaper than actually labeling x and retraining the classifier. This
is the most common scenario since nowadays we can easily crawl the web for most data
types and find large collections of samples that can be used to retrain U . In this work, we
will focus on the pool-based scenario since it is also the most common one in NLP.
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Algorithm 2: Pool-based sampling of active learning
Input: U0, train(·, ·), o(·), b, u(·), L0
Output: Lb and θb

1 for t = 1 to b do
2 θt = train(fθinit

, Lt−1)
3 xt = argmaxx∈U u(fθt , U t−1)
4 Lt = Lt−1 ∪ {(xt, o(xt))}
5 U t = U t−1 \ {xt}

(a) Query Synthesis (b) Selective Sampling (c) Pool-based Sampling

Figure 2.6: Overview of Active Learning Scenarios. Source [Set12]

2.3.3 Optimization Goals

As discussed in the previous sections, active learning aims to select or generate the in-
stances for being labeled next that are the most helpful. We will now look at different
ways of formalizing this. The current section is strongly guided by [Set12, pp. 11, pp. 21,
pp. 37, pp. 47] if not stated otherwise.

As we have already seen in the example in subsection 2.3.1 “Motivation and Definition”
concerning the case of a 1D binary classifier, we can reduce the number of samples needed
to achieve the same error rate quadratically by performing a binary search. To generalize
to higher dimensions or multi-class settings, we can interpret the distance to the decision
boundary as the certainty of the model’s prediction. If the model is very certain about
a prediction, it does not need the label for the instance since it is far away from the
decision boundary and we assume that the model from the iteration before already provides
some useful information. We, therefore, want to select the instance the model is unsure
about. The family of utility functions used for this selection process is thus referred to
as uncertainty sampling. If the model at hand provides a posterior distribution P (y|x),
we can formulate the objective as being the selection of those instances x for which the
posterior distribution is closest to a uniform distribution. This makes this kind of utility
function easily applicable to a wide range of models.

Whenever we train a model, the objective is to find a model fθ from a hypothesis space
H that describes our data distribution D as well as possible. For example, fθ could
be a neural network with parameters θ and H the set of all possible parameter values.
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Usually, D is not fully available and therefore we try to find the model fθ that fits a set of
samples Dtrain from D. Let V ⊂ H be the version space, in which V is the set of possible
models that are in accordance with our training data Dtrain. By adding more instances
to Dtrain, the version space becomes – potentially – smaller. Therefore, we can formulate
the active learning objective as selecting instances that reduce V the most and therefore
diminish the classification error. This is known as version space search. Note that there
are model classes for which version space search and uncertainty sampling are equivalent,
e.g. for support vector machines. This kind of approach is limited to cases for which we
can calculate or at least approximate the version spaces.

Another perspective on active learning is minimizing expected error. Here, we want to
select the instances that, when added to the training set, reduce the future error or the
error an unseen samples. This can be formulated as the expected error over all possible
labels:

x∗ = argminx EY |θ,x

 ∑
x′∈U

EY |θ+,x′L(y, ŷ)

 (2.1)

= argminx
∑
y

pθ(y|x)

 ∑
x′∈U

∑
y′

pθ+(y′|x′)L(y′, ŷ)

 (2.2)

Hereby, θ represents the model parameters resulting from training on L, and θ+ represents
the parameters resulting from re-training the model on L ∪ (x, y) after adding x from U
and labeling it with labeled y′. ŷ refers to the predicted class of θ+. To calculate the
utility function, we need to add each x ∈ U with all possible labels to L and retrain the
classifier. This makes the approach, although theoretically appealing, unpractical in most
cases except for some model classes like Naive Bayes, Gaussian random fields, or nearest
neighbor methods. There are related methods such as variance reduction which try to
overcome this issue, but they are outside of the scope of this work.

In uncertainty sampling and version space search, each data point is considered individu-
ally and is not analyzed as part of the larger structure of the data space, which can lead
to selecting outliers that are not representative of the distribution. This issue is addressed
by density-weighted methods by adding a term to the utility function that measures the
similarity to all other data points in U .

x∗ = argmaxx u(x) ·

 ∑
x′∈U

φ(x, x′)

β

(2.3)

Here, u(·) is some utility function, φ(x, x′) is a similarity measure of x, and x′ and β are
hyperparameters trading off between similarity and utility.

The last set of approaches, cluster-based methods, tries only to optimize covering the input
space well. The reasoning is that if we can choose a representative set of samples, this is
sufficient. To do so, one needs a similarity measure in order to select diverse (dissimilar)
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instances. If the diversity measure is not dependent on the model, e.g. because a hidden
layer of the network is used, the same methods can also be used to create the initial
training dataset Linit. This is called warm starting. Alternatively, purely diversity-based
methods can even be used as a single step selection method[Hua+16].

2.3.4 Classical Approaches

Having formalized different objectives for active learning, we will now present three classi-
cal examples for uncertainty sampling [Set12, pp. 14] and two for version space search[Set12,
pp. 15 ff.]. Later, in subsection 2.3.5 “Deep Learning”, we will also introduce a represen-
tative of the class of cluster-based methods.

The simplest uncertainty-based approach is least confident (LC):

x∗ = argmaxx 1− Pθ(ŷ|x) with ŷ = argmaxy Pθ(y|x) (2.4)

This method selects the instances with the highest believe to being mislabeled while ig-
noring information about the rest of the distribution. The method max-margin utilizes
the probabilities of the classes predicted to be the most likely ŷ1 and the second most
likely ŷ2 to occur and judges instances as most important when the model cannot clearly
discriminate between them:

x = argmaxx(Pθ(ŷ2|x)− Pθ(ŷ1|x)) (2.5)

Max-entropy is the most general and most common uncertainty method and takes the
whole posterior distribution into account:

x∗ = argmaxxHθ(Y |X) = argmaxx−
∑
y

Pθ(y|x) logPθ(y|x) (2.6)

This utility function is the most appropriate for non-binary classification settings because
it can be interpreted as optimizing the expected log-loss, which is what we usually do in
classification. For a binary classification setting, it does not matter which of the three
methods is chosen, which is why many works also use uncertainty sampling [Ein+20].

Query by disagreement (QBD) is one of the earliest approaches from the realm of version
space search. It works in the stream-based selective sampling scenario and selects an
instance x to be labeled next when there are two models h1(·) and h2(·) in the current
version space V that do not agree on x – put formally, if ∃h1, h2 ∈ V : h1(x) 6= h2(x). In
most scenarios, this condition has to be approximated since V is directly available or too
big to test all possible pairs of h1(·) and h2(·). For instance in the binary classification
case, this can be done by maintaining two models: one that is the most specific to L
hs(·) and one that is the most general hg(·). This can be achieved by sampling random
points from the data distribution, creating two new datasets by adding them to L and
labeling one of them as positive and the other as negative. hs(·) is then trained on the
first dataset and hg(·) on the second one. The modified selection criterion is now: select
x if hs(x) 6= hg(x).

21



Figure 2.7: The three uncertainty-based utility functions for binary and ternary cases.
Source: [Set12]

A crucial limitation that QBD exhibits is that it can only be easily applied in the binary
case and in a stream-based setting. Query by committee (QBC) overcomes this constraint
by using an ensemble or committee C to estimate the version space and by incorporating
the information of how many of the models in the committee agree on an instance. One
possible utility function is then variation ratio (VR)[Bel+18]:

x∗ = argmaxx 1− voteC(y, x)
|C|

(2.7)

Here, voteC(ŷ, x) = ∑
θ∈C 1y = hθ(x) and ŷ is the class predicted by the ensemble. In

another concept, the prediction of the committee is used as a Bayesian estimate of the
uncertainty, which can be used to formulate alternative versions of the uncertainty-based
utility functions. This allows their usage for models that do not provide good uncertainty
estimates. For entropy, we can either obtain hard vote entropy:

x∗ = argmaxx−
∑
y

voteC(y, x)
|C|

log voteC(y, x)
|C|

(2.8)

or soft vote entropy:
x∗ = argmaxx−

∑
y

pC(y|x) log pC(y|x) (2.9)

Hereby, pC = 1
|C|

∑
θ∈C pθ(y|x).

2.3.5 Deep Learning

Classical active learning algorithms are, for two reasons, not the perfect fit for deep learn-
ing:

Firstly, they operate with the method of selecting one instance at a time and training
the model with the new dataset L ∪ (x, o(x)). While this might be a realistic scenario
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for classical machine learning algorithms, which typically require relatively few training
samples and are trained quickly, this is not feasible for deep neural networks. Training can
take hours or even days, which makes it impossible to have a human annotator waiting
for the training to finish. Also, adding a single instance does not improve the model’s
performance significantly due to the sheer number of samples needed. Therefore, deep
learning models require active learning methods that select batches of samples instead of
single instances [GS19; Ein+20]. Just taking the top-k samples based on one of the classical
utility functions, such as Least Confident, bears the risk that very similar samples could
be chosen, which are individually helpful but add redundant information to the labeled
training set. Approaches like BADGE [Ash+19] and APLS [YLB20] try to trade off
between uncertainty and diversity.

Secondly, the softmax activation is known to provide bad uncertainty estimates[Ein+20;
GS19]. One attempt to overcome this is to use QBC methods. Since most of the mod-
ern neural networks use dropout layers, one natural way to simulate ensembles without
the need to train multiple heavy-weighted networks is to run the instances through mul-
tiple forward passes with the dropout layers in training mode. This method is called
MCD [GIG17] and has been shown to approximate Bayesian inference. Other methods
such as perceptron ensembles (PE)[Ein+20] involve training multiple decoders on top of
a shared encoder.

The acquisition function of (2.10) of Expected Gradient Length (EGL) [Hua+16] uses the
gradient as an indicator for the change in the model parameters that is to be expected when
adding a sample x ∈ U with a label y to L instead of relying directly on the uncertainty
estimates. This method is also motivated by variance reduction, which in itself is an
implicit form of expected error reduction.

x∗ = argmaxx EY |x,θ [∇θL(x, y, θ)] (2.10)

Core-Set [SS18] and Discriminative Active Learning (DAL) [GS19] were created to in-
troduce a batch setup. They solely optimize for sampling a representative subset of the
data distribution. Due to only requiring access to some hidden representation layers but
not the task-solving layer, those methods are easily transferable to other settings apart
from the classification scenario, which is the most common setting in active learning.

A Core-Set of size B is defined as “B center points such that the largest distance between
a data point and its nearest center is minimized” [SS18]. Here, the distance is measured
in some representation space, usually some hidden layer of the network. Unfortunately,
constructing such a Core-Set is NP-hard. In the paper, they propose a greedy algorithm
that maximizes the criterion in each iteration and applies a refinement algorithm after-
wards if estimated to be feasible. This first step is often applied on its own [Ein+20] and
referred to as GCS.

Core-Set results in a set of points with roughly the same distance between any two
points but ignores the density of the distribution, which leads to oversampling in sparse
regions [GS19]. Furthermore, the DAL-authors argue that Core-Set does not scale to
large datasets. They measure the usefulness of a sample as the difficulty to be classified to

23



belong to U vs. L. This can also be interpreted as optimizing for the objective of making
the distributions U and L indistinguishable and therefore selecting L to be representative
of the whole data distribution, assuming U represents it well. Formally, the model is
decomposed into f : X → Y and f ′ ◦ ψ with ψ : X → Z ′ and Z ′ → Y, where X is the
input, Y the label and Z ′ a hidden representation space. In each active learning iteration,
they train a discriminator d : Z ′ → {u, l}, which models p(y = u|ψ(x)) where u is the
label for samples belonging to U and l the label for samples belonging to L, respectively.
The final utility function is:

x∗ = argminx p(ŷ = u|ψ(x)) (2.11)

In order to acquire diverse batches, d(·) is retrained after selecting a sample and pseudo-
labeling it as l. This suffices since the embedding ψ(x) does not change considerably
whether a single instance or several are labeled.
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Chapter 3

Experimental Evaluation

In this chapter we are going to investigate our research questions (RQ1-RQ3, see sec-
tion 1.2 “Problem Formulation and Research Questions”) through experiments.

In section 3.1 “Common Experimental Settings”, we describe the experimental details
that stay the same throughout the analysis. This includes the choice of the model
(subsection 3.1.1 “Model Selection: Explain-then-Predict Models”), the hyperparameters
used during training (subsection 3.1.2 “Model Hyperparameters and Training”), and the
datasets we apply the model to (subsection 3.1.3 “Datasets”).

We start our experiments in section 3.2 “Preliminary Analysis: The Baseline and its Need
for Rational Supervision”, where we investigate how the rationale performance degrades
when gradually decreasing the number of rationale annotations used during training. This
lays the foundation for the following research and already answers RQ1.

Having established this baseline, we attempt to reduce the labeling budget even further
by applying semi-supervision through the labels given by Lei et al. (u) (section 3.3
“Learning from Weakness: Semi-Supervision using Weak Labels”). To answer RQ2, we
test a simple approach to determine if weak-supervision is promising line of research.

Finally, we turning to RQ3, explore different active learning approaches in section 2.3
“Active Learning”, and provide an extensive analysis on the behavior of the different
approaches.

3.1 Common Experimental Settings

In this section an overview of the general experimental setup is given. First, we look at the
choice of the model that we consider in the context of this work by analyzing the available
candidates from the explain-then-predict class. We choose the explain-then-predict family
in the first place because it is faithful by construction and exhibits state-of-the-art results.
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3.1.1 Model Selection: Explain-then-Predict Models

In this section, we justify the selection of the model and lay out the details of its inner
workings. Explain-then-predict models provide rationales and aim to be faithful by con-
struction. They all follow the same structure: Given an input sequence x = (x1, . . . , xl),
they first apply the so-called explanation generator g(x) = r to predict the rationale
r = (r1, . . . , rl) ∈ {0, 1}n, a vector indicating the subset of the input tokens x that are
relevant to solve the task at hand. Then only the tokens included in the rationale are
given to the actual classifier f(x⊗ r) = y, where ⊗ is a masking operator. For brevity we
denote x⊗ r = x̃

The implementation of g(·), f(·), and ⊗ and the way g(·) and f(·) are being trained sets
the methods apart.

⊗ can either be implemented as replacing the tokens where ri = 0 with a special [MASK]
token retaining the structure of the input or it can simply delete the non-rationale tokens.
Consequently for this sentiment analysis example

(’Even’, ’though’, ’it’, ’was’, ’sometimes’, ’funny’, ’I’, ’did’, ’not’, ’like’, ’the’, ’movie’)
⊗

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

evaluates to

([MASK], [MASK], [MASK], [MASK], [MASK], [MASK], ’I’, ’did’, ’not’, ’like’, ’the’, ’movie’)

or
(’I’, ’did’, ’not’, ’like’, ’the’, ’movie’)

.

Providing f(·), only the reduced version of x assures that the final prediction is based only
on the tokens present in the rationale r. Therefore, the explanation can be regarded as
faithful.

The training of g(·) and f(·) can differ in two ways: On the one hand, they can either be
trained jointly as end-to-end models or independently as pipeline models. On the other
hand, some of the implementations require supervision on the rationales, others do not.

In Table 3.1, we present an overview of the approaches discussed in this chapter, including
the discussed properties of the different models as well as exemplary performance on the
datasets MultiRC and Movie Reviews, where available. Additionally, FULL INPUT is
displayed which is a BERT-based model that gets the full-input and is equivalent to the
second stage of ExPred. This serves as a reference for the model performance. Token
F1 refers to the macro F1 on token matches of the rationale predictions, macro F1 to
the classification performance of the task head. The results for FRESH are taken from
the original paper and are not comparable since they use the original version of MultiRC
and Movie Reviews and not the modified ones from ERASER benchmark. Furthermore,
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Table 3.1: Approach comparison with regard to their properties and results are taken
from[ZRA21]. = indicates degenerated runs due to REINFORCE. ∗ results are
taken from [Jai+20] and therefore not directly comparable.

Approach Supvis.
on r E2E MultiRC Movie Reviews

Macro F1 Token F1 Macro F1 Token F1
FULL INPUT - - 0.708 - 0.894 -
ExPred 3 7 0.698 0.640 0.915 0.348
BERT-to-BERT 3 7 0.633 0.412 0.860 0.145
Lehman et al. 3 7 0.614 0.140 0.750 0.139
FRESH ∗ (3) 7 0.63-0.67 - 0.93-0.94 -
Lei et al. 3 3 0.665 0.331 0.914 0.285
Lei et al. (u) 7 3 0.648 = 0.920 0.322
Bastings et al. 7 3 - - - -

they can not provide performance results on the rationales since the annotations were
not available when the experiments were conduced. Overall, ExPred achieves the best
results but requires supervision on the rationales, which makes it a perfect candidate for
our investigations. In the following sections, we will discuss the model in more detail. In
the end, we focus on ExPred since it is the model most relevant to this work. The fact
that it provides state-of-the-art results and requires training data on the rationales make
it the perfect fit for our research questions.

End-to-End Models The end-to-end models we are looking at, Lei et al. (u) [LBJ16]
and Bastings et al. [BAT19], are trained jointly (expressed as f(g(x)⊗x)), reducing the
need for an explicit supervision signal on rationales and using only task-level annotations
plus some constraint on the selected rationales. This is not trivial since the hard selection
g(x)⊗ x is a non-differentiable operation.

In the original version of Lei et al. (u), the authors employ a unidirectional recurrent
encoder to implement f(x) = p(y|x ⊗ r) in conjunction with a classification layer on top
of the last hidden state and a bi-directional recurrent encoder with a shared classification
layer at each time step to model g(x) = p(r|x). The objective to be minimized is

cost(r,x, y∗) = L(r,x, y∗) + Ω(r) (3.1)

where L(r,x, y∗) is simply the classification loss, here chosen to be

L(r,x, y∗) = ‖f(x̃)− y∗‖22 (3.2)
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and
Ω(r) = λ1 ‖r‖2︸ ︷︷ ︸

(∗)

+λ2
∑
i

|ri − ri−1|︸ ︷︷ ︸
(∗∗)

(3.3)

acts as a regularizer on the rationales. It enforces short (∗) and continuous (∗∗) selections.
Optimizing this directly using some SGD variant would lead to empty rationales since the
gradient signal from L to the explanation generator is always zero. To solve this issue, the
excepted loss is optimized instead:

min
θf ,θg

∑
(x,y∗)∈D

Er∼g(x) [cost(r,x,y∗)] (3.4)

This is approximated using sampling, resulting in a REINFORCE-style algorithm [Wil92].
DeYoung et al. [DeY+20] replaced both encoders with BERT models in their implemen-
tation, followed by a LSTM and introduced a supervised version by simply adding the
cross-entropy loss on the rationales as a third loss term. In this work we use Lei et al.
(u) to refer to the improved, BERT-based version.

REINFORCE-style training exhibits unstable convergence, sometimes leading to degener-
ated results. To overcome this issue, Bastings, Aziz, and Titov [BAT19] utilize differential
binary variables, which allow end-to-end training without the need for REINFORCE.
Instead of predicting a discrete distribution (selected/unselected) for each token, they use
a continuous distribution over the domain [0, 1] that has almost all its density mass at 0
and 1, namely the rectified Kumaraswamy, and use the re-parameterization trick to pre-
dict the parameters of the distribution. They then sample from this distribution to get
the rationale prediction for each token. This allows non-zero gradients. During training,
the selection is not necessarily hard (ri ∈]0, 1[), but most predictions are almost 0 or 1,
since most of the probability mass of the rectified Kumaraswamy distribution is at or
close to 0 and 1. During the evaluation, the values are converted to hard selections by
thresholding. They optimize a similar objective to [LBJ16] but introduce a target length
for the rationales. In order to solve this constrained optimization problem, they use the
Lagrangian relaxation.

Pipeline Models In contrast to end-to-end models, pipeline models train g(·) and f(·)
independently which makes the training procedure much more simple.

One of the earliest models was introduced by Lehman et al. [Leh+19]. In this work,
multiple models were proposed. We will focus on the neural pipeline model which is
referred to as Lehman et al. since it is the model that ensures faithful rationales and
has been used regularly as a baseline [DeY+20; ZRA21]. g(·) is implemented as a sentence-
wise independent classifier and trained using human supervision. It uses a GRU-encoder
to get a vector representation of a sentence which is then concatenated with a prompt
representation created by a bag-of-word model and passed to a classification layer to
predict whether this sentence should be contained in the rationale. f(·) follows a similar
architecture except that is trained only on the concatenated sentences that have been
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identified by the first stage. The ERASER paper [DeY+20] proposed a similar model
where both stages are implemented using a BERT model, allowing better performance
and token-wise instead of sentence-wise rationale selection. This model is called BERT-
to-BERT.

Jain et al. [Jai+20] approach the problem differently. To overcome the issue of post-hoc
explanation methods not being faithful, they realized the so-called support model g(·)
by first training on the target task, in their case different BERT variants depending
on the tasks. The support model is then analyzed using post-hoc methods like simple
gradients or attention scores to create continuous attribution scores for each token. In
order to construct hard rationales, the attribution scores are discretized by one of two
heuristics, either taking the top-k token or the sequence of k consecutive tokens which
maximize the sum of scores. k is a hyperparameter. f(·) is realized, again, as a BERT
variant following the same architecture as the support model but trained on the extracted
rationales rather than the whole text. In order to allow mixing in human supervision on
the rationales, they propose another version that trains an explicit extractor model on
human annotations when given and on the pseudo labels created by one of the methods
described above otherwise.

Predict and Explain, and then Predict again All of these pipeline models exhibit the
same issue: the stage selecting the rationale (g(·)) has very little information of the target
task and relies mainly on the human annotations or the handcrafted heuristics to create the
rationales. Zhang, Rudra, and Anand [ZRA21] try to overcome this issue using ExPred,
a multi-task learner (MTL), in the first stage which simultaneously optimizes the target
task and the selection of rationales based on a shared representation. The second stage
(f(·)), again, only uses the predicted rationales for training.

More precisely, g(·) shares its BERT-encoder with an auxiliary task head f ′(·) that solves
the same task as the actual f(·) but uses a different set of parameters. The decoder of the
generator is a unidirectional GRU followed by a shared token-wise classifier. This MTL
is trained using the combined loss L = Ltask + λLexp, where Ltask is the cross-entropy
loss on f ′(·) and Lexp is a weighted form of the cross-entropy loss on the tokens where
weights are inverse of the prior probabilities for each class (3.5)1. λ is a hyperparameter
that trades off rationale against auxiliary performance. To avoid propagating errors from
the first into the second stage, only instances where the prediction of the auxiliary head
matches the ground truth are used during training of the second stage.

1Note: The formula differs to the one in [ZRA21] due to a typo in the original paper but reflects the
actual implementation.
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Figure 3.1: ExPred model architecture. Source: [ZRA21]

Lexp = 1
|r|

|r|∑
i=1

wi BCE(ri, r∗i ) (3.5)

= 1
|r|

|r|∑
i=1

|r|
|rr∗i |

BCE(ri, r∗i ) (3.6)

=
|r|∑
i=1

1
|rr∗i |

BCE(ri, r∗i ) (3.7)

where r∗i is the ground truth rationale token at position i, BCE(·, ·) is the binary cross-

entropy and |rr∗i | =
{
|r1| r∗i = 1
|r0| r∗i = 0

, with |r1| = ∑|r|
i=1 r

∗
i and |r0| = |r| − |r1|. Therefore,

|r|
|rr∗

i
| = wi corresponds to the inverse prior probability of token i to be r∗i and the loss to

the token-wise weighted mean BCE.

3.1.2 Model Hyperparameters and Training

In our experiment, we follow the model and training settings introduced by Zhang, Rudra,
and Anand [ZRA21].

The models g(·) and f(·) use a standard BERTbase uncased model as the encoder (12
layers, 768 hidden dimensions, 12 attention heads) along with the associated pre-trained
tokenizer from the huggingfaces library [Wol+20]. In the case of g(·), the contextualized
representations are then fed into a unidirectional GRU with 128 hidden dimensions. Each
token is then individually classified to be part of the rationale or not through a classification
layer with 256 hidden dimensions and a sigmoid non-linearity. The classification head
used in both f(·) and g(·) is stacked on top of the representation of the [CLS]-token
produced by the last encoder layer and employs two fully connected layers with a hidden
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dimensionality of 256 and output dimensionality 2 (for Movie Reviews and MultiRC). A
dropout layer [Hin+12] with dropout probability 0.5 is placed before the first of the two
layers, tanh is the non-linearity between the two, and a softmax follows after the last one.
The classification and explanation heads are initialized using the Xavier initializer [GB10].

Sequences longer than 512 tokens are truncated and any tokens beyond that boundary are
classified not to be part of the rationale.

During training, a batch size of 16, the Adam optimizer with a learning rate of 1e−5,
(β1, β2) = (0.9, 0.999), ε = 1e−8, and weight decay of zero are used. Additionally, gradient
clipping to 0.5 is applied. Learning rate scheduling is not applied.

The training for both stages (f(·) and g(·)) is performed over ten epochs. Additionally, for
f(·), early stopping is applied based on the validation macro F1 score with a patience of
ten. For g(·), it has turned out to be helpful if it slightly overfits the rationale annotation
since this leads to better rationales that are passed on to the second stage during training.
Therefore, no early stopping is used during the training of g(·).

We use λ = 5 for Movie Reviews and λ = 20 for MultiRC as these values were found to
be the best by Zhang, Rudra, and Anand [ZRA21] who utilized parameter sweeping.

The model is implemented using Pytorch 1.8.0+cu111 [Pas+19].

3.1.3 Datasets

We start our experiments on the same datasets used in the ExPred paper [ZRA21] but
discard FEVER.

In FEVER, the task is to predict whether a given claim is supported or not by a text
passage from Wikipedia. The instances follow the format [CLS][claim][SEP][document].
The rationales are only defined on the document, not on the claim. Results from Lei et al.
(u) on FEVER from the ERASER paper show that even if no rationale is extracted, the
task is still solvable with reasonable performance, which makes the dataset less interesting
for rationale extraction. This fact and time constrains (the dataset consists of 97,957
instances) ruled FEVER out.

Movie Reviews contains movie reviews with associated sentiment labels positive or negative.
The input format is [CLS]["What is the sentiment of this review?"][SEP][review].
The rationales are provided at token level and are relatively short as can be seen in Ta-
ble 3.2.

MultiRC is a reading comprehension task. Given a string [CLS][question]||[answer]
[SEP][document]: Predict whether the answer answers the question based on the document.
Note that there are multiple instances containing the same question and document but
different answers as this was originally a multiple choice question format. The rationales
are only defined on the document and are on a sentence level.
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Table 3.2: Dataset statistics. Source [DeY+20]

Datset Documents Instances Rationale % Evidences Evidence Lengths
MultiRC
Train 400 24029 17.4 56298 21.5
Val 56 3214 18.5 7498 22.8
Test 83 4848 - - -
Movie Reviews
Train 1599 1600 9.35 13878 7.7
Val 150 150 7.45 1143.0 6.6
Test 200 200 - - -
FEVER
Train 2915 97957 20.0 146856 31.3
Val 570 6122 21.6 8672 28.2
Test 614 6111 - - -

3.2 Preliminary Analysis: The Baseline and its Need for
Rational Supervision

Table 3.1 compares unsupervised and supervised explain-then predict models. One can see
that the supervision on the rationales improves the task and the explanation performance.
To get a more detailed picture of the extent of the problem, experiments are conduced
to figure out the performance loss if different amounts of the rationale annotations are
available during training. Based on the results, we select a fixed annotation budget which
is assumed to be given in the rest of the experiments.

3.2.1 Experimental Setup

We conduct our experiments on ExPred using the training and model details described
in section 3.1 “Common Experimental Settings”.

For both datasets D = Movie Reviews and D = MultiRC, we randomly sample a fraction or
budget b ∈ [0, 1] of instances for which we keep the rationale annotation and remove them
for the rest. This results inD′ = U1−b∪Lb, with U1−b = {(xi,y∗i)|(xi, ri,y∗i) ∈ D∧i /∈ Sb}
and Lb = {(xi,y∗i, ri)|(xi, ri,y∗i) ∈ D∧i ∈ Sb} where Sb is the sampled index set. For each
fraction, we sample two different subsets and train the model for each of these modified
datasets twice using two random seeds to account for variation in usefulness of the sample
and in the training procedure, likewise. This is done for the training set only. Validation
and test sets always contain 100% of the rationales.

In order to train ExPred using instances where no rationale annotations are available,
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we modify the loss L = Ltask + λLexp to

L = Ltask +
{
λLexp, if evidence is available
0 otherwise

(3.8)

Since λ has been selected based on the full dataset, one could argue that the influence of
the explanation loss Lexp decreases by a factor b. This is the case since the loss per batch
changes from

Lbatch = 1
B

B∑
i=1
Li (3.9)

= 1
B

B∑
i=1
Lclsi

+ 1
B

B∑
i=1

λLexpi
(3.10)

= Lcls + Lexp (3.11)
(3.12)

on average, to
L′batch = Lcls + bLexp (3.13)

because the explanation loss is only non-zero in b% of all cases. Experiments showed that
compensating for this fact by L′batch = Lcls + 1

b bLexp had no effect so we stick to (3.8). B
refers to the batch size.

We run the experiments for b = 1, 0.9, . . . 0.1, resulting in 9 ∗ 2 + 1 runs per dataset
and report the test macro F1-score on class prediction for the auxiliary head of g(·), the
predictions of f(·), and the token F1-score on the explanation head. After inspecting the
results, we added b = 0.5, 0.01 to investigate the performance in very low data regimes.

3.2.2 Results

Figure 3.2 depicts the results of this initial experiment. Generally speaking, the perfor-
mance of the explanation head (token F1 g(·)) decreases with fewer annotations available.
But shape of the curves differs considerably between Movie Reviews and MultiRC. The
macro F1 score of the auxiliary task head of g(·) slightly increases but remains relatively
stable. This could hint at the fact that the explanation loss Lexp gains slightly more influ-
ence during training; as discussed above. The macro F1 of the overall model f(·) also stays
mostly stable. This is somewhat surprising since one would expect the task performance
to suffer from bad rationales, leading to less meaningful inputs to the second stage of the
model.

Taking a closer look at the rationales performance, one can see that on Movie Reviews,
the token F1 stays stable until reaching b = 0.8 at roughly 0.34 and drops almost linearly
after that until it reaches a score of 0.25 at b = 0.05. In contrast, on MultiRC, the token
performance stays around 0.64 until b = 0.4 and slowly decreases to 0.59 at b = 0.05, then
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drops massively to 0.525 at b = 0.01. Although this seems like a big difference at first, one
has to remember that MultiRC is much bigger than Movie Reviews while the model size
stays the same. Meaning, the absolute number of instances with rationale annotations
differs massively. e.g. b = 0.1 is 0.1 · 1600 = 160 for Movie Reviews and 0.1 · 24029 = 2402
for MultiRC, which is still twice as much the whole Movie Reviews dataset. Another
aspect is that the variance – here shown as one standard deviation – is bigger in the case
of Movie Reviews. This aligns with the fact that the absolute number of instances is much
lower in Movie Reviews.
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Figure 3.2: Test scores of ExPred if trained on different amounts of rationales.

The main results show that especially the token performance but also the other metrics
stay within 95% of the performance at b = 1 down to 0.6 < b < 0.7 ( =̂960 < babs < 1120)
for Movie Reviews and 0.1 < b < 0.2 ( =̂2400 < babs < 4800) for MultiRC, which might
already be good enough for a lot of applications. This means that, depending on the task,
a few thousand samples are sufficient. Therefore, we consider RQ1 to be answered.

3.3 Learning from Weakness: Semi-Supervision using Weak
Labels

Since solely reducing the amount of annotated rationales only works well enough (within
95% of performance at 100%) down to a certain point as shown in section 3.2 “Preliminary
Analysis: The Baseline and its Need for Rational Supervision”, one possible approach to
tackle the issue of dropping performance is to apply semi-supervision or weak supervision
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techniques. This line of approaches is especially appealing since we acquire weak anno-
tations from unsupervised models like FRESH, Lei et al. (u), or Bastings et al.
almost for free.

Inspired by Dehghani et al. [Deh+18], we try to answer RQ2 by investigating if semi-
supervision using weak labels improves performance over just using strong labels. Since
we want to establish if semi-supervision works and not necessarily aim to achieve state-of-
the-art results, we choose the NNweak→strong baseline from [Deh+18] as a starting point.
This approach has low implantation cost and can serve as an indicator for deciding whether
weak supervision is a promising direction. It is up to future research to investigate more
sophisticated approaches like FWL.

3.3.1 Experimental Setup

The setting is as follows: given a labeling budget b, a large unlabeled data pool, more
precisely with no annotations on the rationales, U = {(xi,y∗i)}ni=1, and a weak labeler
g̃ : x → r that produces noisy or low fidelity labels. In our case these labels are the
rationale annotations. First, we randomly select an index set |Sb| = b from which the
corresponding instances are being labeled by an oracle o(·) that provides strong labels,
resulting in Lstrong,b = {(xi, o(xi),y∗i)|(xi,y∗i) ∈ U∧i ∈ Sb. This is simulated by selecting
instances from the original dataset (Movie Reviews or MultiRC). Then f̃(·) is utilized to
create a weakly labeled dataset Lweak,1−b = {(xi, g̃(xi),y∗i)|(xi,y∗i) ∈ U ∧ i /∈ Sb}.
Notably, we only employ weak labels for the instances that were not strongly labeled in
order to avoid conflicting information.

NNweak→strong takes Lstrong,b and Lweak,1−b and pre-trains f(·) on Lweak,1−b and fine-
tunes/trains on Lweak,1−b. Both training steps exactly follow the setting described in
section 3.1 “Common Experimental Settings”. We denote the dataset used for pre-training
as Dpre−train and the one used for fine-tuning as Dtrain. If no pre-training dataset is given
(∅), this is simply equivalent to the standard training procedure.

To investigate if the model tends to forget information from the pre-training stage during
fine-tuning, we run variants of the experiment where the BERT-encoder has been frozen
after pre-training up to layer ten.

We use ExPred as f(·) and Lei et al. (u) as g̃(·) [DeY+20]2. We run the experiments
on Movie Reviews and MultiRC. We run the experiment for b = 0.05 and b = 0.2 since
Movie Reviews already exhibits a huge performance drop at b = 0.2, but MultiRC stays
stable until b = 0.05. We run each setting from two random seeds and report the average
score as well as one standard deviation.

As a baseline, we include the performance of f(·) trained on Lstrong,b at the corresponding
budgets as well as at b = 1. Additionally, we list the results of the weakly labeled Lei et
al. (u) and ExPred trained on 100% weak labels Lweak,1−b.

2The implementation and parameters can be found https://github.com/successar/
Eraser-Benchmark-Baseline-Models
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3.3.2 Results

Table 3.3 and Figure 3.3 show the detailed results. First of all, we look at the performance
of the weak labeler Lei et al. (u) in comparison to ExPred at 100% supervision. This
marks the upper border we want to stay within 95% of. On both datasets, the task score
on the actual task (Macro F1 f(·)) is comparable among the different runs; roughly 0.81
for Movie Reviews and 0.7 for MultiRC. In contrast, the token F1 score does differ. In the
case of Movie Reviews, it is slightly (0.44 vs. 0.31) and in case of MultiRC considerably
lower (0.64 vs 0.2) for Lei et al. (u) than for ExPred. These results are to be expected
since Lei et al. (u) is designed for sentiment analysis tasks where the rationales are
usually short and fine-grained, i.e. on token level. Both properties do not apply in the
case of MultiRC.

As a lower border, we report ExPred trained only on weak labels. For Movie Reviews,
the token performance is, as one would expect, lower than the weak labeler itself. This is
not the case for MultiRC, where the trained ExPred beats the performance of the weak
labels by approximately at 0.04. This indicates that the weak labels exhibit symmetric
noise around the true labels which can be smoothed out by ExPred. It is also remarkable
that the task performance macro F1 (f(·)) drops compared to 100% strong labels. This
means that the rationales are not good enough for the second stage of ExPred to achieve
good task performance.

The results of MultiRC at b = 0.2 are less interesting since even with only strong super-
vision, ExPred achieves strong results above 95% of the performance at b = 1.0, and
does not improve with weak supervision. In fact, it decreases when the encoder is frozen
during fine-tuning. Meaning that, it only achieves reasonable performance if most of the
information learned during pre-training can be overwritten during fine-tuning. On Movie
Reviews, we see a drop in token performance which can be mitigated using weak super-
vision in combination with freezing the BERT-encoder during fine-tuning, in which case
we achieve comparable results to 100% supervision.

On a budget of b = 0.05 on Movie Reviews, we are still able to achieve performance, in
particular token performance, above our target. On MultiRC, the performance on only
strong labels is only slightly below this threshold but weak supervision neither helps nor
damages performance, if the encoder is not frozen.

Overall, the results show that weak supervision can help to achieve comparable results
to the performance achieved using 100% of annotation with only 20% strong labels and
good performance with only 5% strong labels if the weak labels are of high quality. If the
performance of the weak labeler is considerably lower than the results of the model using
only strong data during training, it hurts the performance. Freezing the encoder amplifies
the effect, since it helps to preserve information learned during pre-training. This effect is
much stronger for the token F1 but also visible in the other metrics.

Using a more sophisticated weak supervision approach like FWL, where labels with esti-
mated low quality are weighted less during training, might help to alleviate this issue for
MultiRC.
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Table 3.3: Weak supervision results on Movie Reviews and MultiRC. ∅ implies that the stage is not executed at all. e represents
if the BERT-encoder is frozen during fine-tuning. The performance metrics follow the format ’mean (± standard
deviation)’

f(·) Dpre−train Dtrain b e Macro F1 f(·) Token F1 g(·) Macro F1 f ′(·)
MultiRC
ExPred ∅ Lstrong,b 1.00 7 0.708 (± 0.016) 0.647 (± 0.004) 0.660 (± 0.017)
ExPred (paper) ∅ Lstrong,b 1.00 7 0.698 0.640
Lei et al. (u) ∅ Lstrong,b 1.00 7 0.649 0.206
ExPred ∅ Lweak,1−b 0.00 7 0.578 (± 0.144) 0.244 (± 0.031) 0.673 (± 0.005)
ExPred ∅ Lstrong,b 0.20 7 0.708 (± 0.01) 0.628 (± 0.008) 0.686 (± 0.006)
ExPred Lweak,1−b Lstrong,b 0.20 7 0.716 (± 0.001) 0.628 (± 0.002) 0.665 (± 0.001)
ExPred Lweak,1−b Lstrong,b 0.20 3 0.674 (± 0.013) 0.447 (± 0.021) 0.669 (± 0.006)
ExPred ∅ Lstrong,b 0.05 7 0.705 (± 0.002) 0.591 (± 0.004) 0.689 (± 0.006)
ExPred Lweak,1−b Lstrong,b 0.05 7 0.700 (± 0.003) 0.581 (± 0.031) 0.679 (± 0.003)
ExPred Lweak,1−b Lstrong,b 0.05 3 0.686 (± 0.000) 0.429 (± 0.005) 0.681 (± 0.000)

Movie Reviews
ExPred ∅ Lstrong,b 1.00 7 0.872 (± 0.018) 0.339 (± 0.013) 0.892 (± 0.011)
ExPred (paper) ∅ Lstrong,b 1.00 7 0.915 0.348
Lei et al. (u) ∅ Lstrong,b 1.00 7 0.850 0.317
ExPred ∅ Lweak,1−b 0.00 7 0.810 (± 0.030) 0.219 (± 0.014) 0.925 (± 0.016)
ExPred ∅ Lstrong,b 0.20 7 0.871 (± 0.015) 0.290 (± 0.024) 0.901 (± 0.019)
ExPred Lweak,1−b Lstrong,b 0.20 7 0.839 (± 0.013) 0.284 (± 0.005) 0.905 (± 0.028)
ExPred Lweak,1−b Lstrong,b 0.20 3 0.836 (± 0.048) 0.347 (± 0.014) 0.932 (± 0.004)
ExPred ∅ Lstrong,b 0.05 7 0.864 (± 0.016) 0.249 (± 0.011) 0.926 (± 0.021)
ExPred Lweak,1−b Lstrong,b 0.05 7 0.847 (± 0.010) 0.210 (± 0.050) 0.902 (± 0.011)
ExPred Lweak,1−b Lstrong,b 0.05 3 0.885 (± 0.007) 0.325 (± 0.004) 0.930 (± 0.007)
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3.4 Active Learning

Active learning is a common technique to reduce the annotation cost. In this section we
investigate RQ3, namely “Given a fixed annotation budget b, how much can we improve
by selecting a specific L without knowing r beforehand, e.g. through active learning?”.
Again we assume the task-level labels to be given and use active learning only to deter-
mine the instances for which we acquire the rationale annotations. We base our research
mainly on three works: [Ein+20], [She+21], and [SC08], which will be shortly introduced
in subsection 3.4.1 “Selection of Active Learning Methods”. subsection 3.4.2 “Experi-
mental Setup” lines out the implementation details and describes adaptations we had to
make to transfer from a classification to our sequence tagging setup. Subsequently, in sub-
section 3.4.3 “Results”, we first discuss the performance results followed by an extensive
analysis on why active learning does not improve much in our setting as well as possible
changes to tackle the arising issues (subsection 3.4.4 “Analysis: Reason for the Failure of
Active Learning”).

3.4.1 Selection of Active Learning Methods

Over the years, various active learning approaches have been introduced, which are of-
ten specifically designed to work well for one model class in combination with specific
datasets.Lowell, Lipton, and Wallace [LLW19] points out that this poses a limitation on
the practical usage of active learning because it is hard to know which method is going to
work for new models or datasets. We attempt to overcome this by selecting approaches
that have been successfully applied to similar models, here specifically BERT, and com-
parable tasks, in our case sequence tagging, if possible.

[Ein+20] performs an extensive study of comparing six different active learning approaches
on BERT on ten different datasets. A limitation of this paper is that all considered
datasets are binary classification tasks. They investigate a simple least confidence ap-
proach (LC), based on the uncertainty predicted by the model, two ensemble-based meth-
ods (MCD and PE), expected gradient length (EGL) and two purely diversity-based
methods (GCS and DAL), which were introduced in subsection 2.3.5 “Deep Learning”.
The results show that all of the methods, with the exception of EGL and PE, consistently
outperform the random baseline but none shows a significant advantage over the others.

In order to apply these methods to a sequence tagging task, some modifications have to be
made. We use [SC08] as references, which provides an analysis of active learning strategies
for sequence labeling tasks but on conditional random fields (CRFs) and not on BERT.

The most similar work to ours is [She+21], which examines four different active learning
methods using different models including BERT on two sequence tagging datasets on the
task of named entity recognition (NER). They compare one uncertainty-based approach
Maximum Normalized Log-Probability (MNLP), which is an improved version of the least
confident strategy for sequences with two approaches that use MCD to estimate an ensem-
ble. More precisely, the authors apply variation ratio (VR) and Bayesian active learning
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Table 3.4: Comparison of active learning approaches that have been applied to BERT.
p(ŷ|x) describes if the approach uses the probability of the predicted class,
p(y|x) if it makes use of the whole distribution.

Approach Uses App. to Seq.
on BERT

Better than
randomp(ŷ|x) p(y|x) Diversity MCD

MNLP 3 7 7 7 BERT [She+21] 3

VR 7 7 7 3 BERT [She+21] 3

BALD 7 3 7 3 BERT [She+21] 3

LC 3 7 7 7 as MNLP 3

LC (MCD) 3 7 7 3 7 3

PE 3 7 7 7 7 7

EGL 7 3 3 7 7 7

DAL 7 7 3 7 7 3

GCS 7 7 3 7 7 3

by disagreement (BALD) which is especially appropriate for multi-class classification. The
main result is that all methods work comparably well on BERT but outperform the ran-
dom baseline. Additionally, they show that for strategies using MCD the performance
degrades massively when only using the dropout layers of the classifier head. Another
interesting insight is that for Transformer models, one can use more lightweight models
like DistilBERT [San+20] as a surrogate model during active learning which leads to
speed up but depending on the scenario sometimes too small performance drops of the
final models.

Table 3.4 gives an overview of different properties of all methods that have been applied
using BERT. EGL and PE are ruled out since they have not outperformed the random
baseline in some cases. To cover a variety of aspects, we choose one diversity-based, one
uncertainty-based, and one Monte-Carlo-dropout-based strategy and prefer approaches
that have been applied to sequence tagging, leading to our final selection of MNLP,
VR, and GCS. For more details on the approaches see section 2.3 “Active Learning” and
especially subsection 2.3.5 “Deep Learning”. GCS is chosen over DAL due to its lower
implementation cost.

One can observe that the selection does not contain any strategy that trades off diversity
against uncertainty like EGL, BADGE, or APLS would do. In this work we focus on
methods that have already been successfully applied to BERT and it is up to future
research to investigate the utility of these methods.

3.4.2 Experimental Setup

We apply active learning to ExPred on two datasets: Movie Reviews and MultiRC. We
follow the training procedure described in section 3.1 “Common Experimental Settings”.
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We simulate the oracle o(·) by removing the rationale annotations from the fully labeled
datasets and re-add them if selected by the active learner.

Notation In order to describe the implementation of the active learning approaches, we
first define the following notation. As in previous sections, the first stage of the model,
namely the explanation generator, is referred to as g(x) = p(r|x) and maps from the
input sequence x to the rationale sequence r. It shares its BERT-encoder ψ(x) = z =
(z[CLS], z1, . . . , zn) with the auxiliary head f ′(x) = p(y|x). Here z represents the sequence
of contextualized tokens returned by BERT. The second stage f(x̃) = p(y|x̃) predicts the
label distribution of y based on the reduced input sequence x̃ (x̃ = x⊗ r).

·̂ refers to the predicted value and ·∗ describes the ground truth, while the plain variable
refers to the random variable. For example, p(r∗i |x) refers to the predicted probability
of rationale token i to be the same class as given by the human annotation, while r̂i =
argmaxr p(r|x) is the predicted class.

Details of Query Strategies We apply the active learning methods in a batched setup
where bt instances are selected per active learning iteration t. If not specified, the top-bt
instances are selected according to the acquisition function. Iteration t = −1 refers to the
warm-start iteration and b−1 to warm-start budget respectively.

In each iteration, we train the model from scratch to avoid overfitting to the instances
selected early on [Ein+20; She+21].

The acquisition function of MNLP was introduced by Shen et al. [She+17] and is derived
from the LC (3.14) method by assuming independence of the individual token of the
sequence (3.15) and taking the sum of the log-probabilities instead of the product of
the probabilities them-self. (3.16), however, favors longer sequences since they are less
likely [She+21]. In order to compensate for this, a normalization factor is introduced,
leading to (3.17):

x∗ = argmaxx−p(r̂|x) (3.14)

= argmaxx−
n∏
i=1

p(r̂i|x) (3.15)

= argmaxx−
n∑
i=1

log(p(r̂i|x)) (3.16)

x∗ = argmaxx−
1
n

n∑
i=1

log(p(r̂i|x)) (3.17)

We follow [She+21] and apply Variation Ratio (already introduced in subsection 2.3.4
“Classical Approaches”) by simulating the ensemble C using Monte-Carlo dropout by
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performing |C| = m forward passes with all dropout layers set to evaluation mode. The
final utility of VR is defined by:

x∗ = argmaxx
1
n

n∑
i=1

V Ri (3.18)

with V Ri = 1 − voteC(r̂i,x)
|C| . These methods selected instances where the average token

disagreement amongst the simulated ensemble is maximized.

Analogous to [Ein+20], we employ the greedy version of Core-Set (GCS) – described in
subsection 2.3.5 “Deep Learning” – by using the embedding z[CLS], which is returned by
the last layer of the BERT-encoder as the representation of the sequence.

Additionally, we report the results of the random baseline Random.

Parameters In order to speed up the whole process, we only train the first stage – the
explanation generator – in each active learning iteration and the second stage only after
the last epoch. Therefore we report the token F1 of the whole pipeline f(·) only after the
last epoch. All reported scores are test scores.

We run each active learning method over six iterations, each from four different seeds. We
use different warm-start budgets b−1 and select instances per iteration bt as well as per
dataset (see Table 3.5 “Shared parameters of the active learning strategies per dataset”).
The training seeds of the random number generator are reset to the same value before the
training in each active learning iteration, more precisely before the parameter initialization
of the model, in order to reduce variance that is not introduced by the data selection.

Table 3.5: Shared parameters of the active learning strategies per dataset.

Dataset b−1 bt b−1:5

rel. abs. rel. abs. rel. abs.
Movie Reviews 0.05 80 0.1 160 0.65 1040
MultiRC 0.02 480 0.04 961 0.26 6247

For VR we set m = 5.

3.4.3 Results

The results of our main experiments are reported in Figure 3.4 and Figure 3.5 for Movie
Reviews and MultiRC, respectively. Each column contains three metrics for one active
learning method and the Random baseline plotted against the active learning iteration.
The first row shows the token F1 on the rationales predicted by g(·), the second row the
classification macro F1 of the auxiliary head f ′, and the last row the size of the labeled
dataset |L−1:t| = b−1:t at time t.
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For both datasets, none of the methods outperforms the Random baseline regarding their
token F1 clearly. For VR on Movie Reviews, one could argue that it is slightly better,
but for all time steps, the performance is within one standard deviation of the baseline
therefore it is not much stronger. On MultiRC, one can even see a degradation compared
to Random, which lies outside of one standard deviation. Moreover, we observe that
GCS is performing the worst on Movie Reviews, while on MultiRC it is performing the
best compared to the other methods. The values of the macro F1 of the auxiliary head
are less stable than the token F1 for all methods on both datasets and stay roughly the
same.

Table 3.6 displays the results of the final models after the last active learning iteration, as
well as the scores of the ExPred model train on the full datasets (b = 1) as a reference.
The results confirm what we already know from the experiment in section 3.2 “Preliminary
Analysis: The Baseline and its Need for Rational Supervision”: we only need a fraction
of the full dataset to get relatively close to the performance at 100%.

One difference between the two datasets one has to bear in mind is that the absolute
number of instances added in each iteration to the labeled training set is much bigger for
MultiRC than for Movie Reviews. This and the fact that GCS does comparably well on
MultiRC suggests that diversity is an issue for the other approaches. The reason why GCS
is not working could potentially lie in the chosen representation. [Ma+19] and [Cho+21]
show that there are more sophisticated approaches that yield better embeddings than just
taking the z[cls] as sequence representation, like averaging the representation of all tokens
and the output of different layers.

Overall, one can say that none of those active learning methods clearly improves over the
Random baseline. In the case of MultiRC the performance even drops a little bit. This
answers RQ3 negatively. Active learning or at least none of the tested off-the-shelf active
learning methods is helping to improve given a fixed annotation budget.

In the next sections we will further investigate potential reasons for this behavior in order
to enable the design of active learning methods that are tailored to rationale extraction
using ExPred.
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Table 3.6: Test scores of the final models after the last active learning iteration. The
results are in the format “mean (± std. dev.)”.

Active Learner Token F1 g(·) Macro F1 f(·)
Movie Reviews
ExPred (b = 1) 0.339 (± 0.013) 0.872 (± 0.018)
GCS 0.316 (± 0.003) 0.885 (± 0.015)
MNLP 0.317 (± 0.018) 0.872 (± 0.020)
Random 0.311 (± 0.005) 0.884 (± 0.022)
VR 0.328 (± 0.014) 0.889 (± 0.017)

MultiRC
ExPred (b = 1) 0.647 (± 0.004) 0.708 (± 0.016)
GCS 0.633 (± 0.001) 0.717 (± 0.002)
MNLP 0.618 (± 0.008) 0.718 (± 0.005)
Random 0.635 (± 0.005) 0.716 (± 0.005)
VR 0.618 (± 0.009) 0.719 (± 0.009)

3.4.4 Analysis: Reason for the Failure of Active Learning

There are several cases when active learning fails. In this section we list different hypothe-
ses for this and conduct experiments in the subsequently sections to support or refute
them.

Hypothesis 1: All instances are equally helpful. The most trivial case occurs when all
instances are equally helpful. If all instances provide the same utility for training the model
it does not matter which ones are selected and therefore it exists no acquisition function
that can do better (or worse) than random. The slight but consistent drop of performance
on MultiRC of all active learning methods below Random suggests otherwise.

Hypothesis 2: The acquisition function fails to measure the utility. Assuming that
some instances are more helpful than others, active learning fails if the selection strategy
is not able to discover the usefulness. This can either be the case because the aspect
measured by the utility function, like diversity (GCS) or uncertainty (MNLP or VR), is
not correlated with the utility or if the function fails to measure it correctly.

GCS can fail if the chosen embedding space is not semantically meaningful. Another issue
of GCS pointed out by [GS19] is that it tends to under-sample high density regions of
the embedding space and to over-sample sparse regions because its optimization is solely
based on the instances’ distances.

Uncertainty-based methods like MNLP and VR are unsuccessful if the estimated uncer-
tainty or ensemble agreement does not reflect the models’ true certainty. One has to point
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out that MNLP uses the probability of the class predicted by the model. If the model
predicts the wrong class but with high probability, the utility score produced by MNLP
is low, even though it would be helpful to label this particular example.

Hypothesis 3: The batch construction leads to non-representative batches. Lastly,
VR and MNLP could fail even if they measured the utility of each individual instance
correctly. This is the case if the top-bt instances were very similar, i.e. they similar new
information to the model. This is the case because they measure the utility for the current
model when adding one single instance and they do not take the other instances into
account already selected in the same active learning iteration. Besides the dissimilarity
within batches, one has also to assure diversity across batches to ensure representatives
for the data distribution.

3.4.4.1 Do the instances differ in their utility?

In order to assess the upper bound a purely uncertain-based method can achieve, we
propose two oracle methods that have access the ground truth labels of the rationales.
This can be seen as estimating the ground truth of the utility of the instances. We
emphasize that this is not a practical scenario and that those acquisition functions are
only used to analyze the behavior of the active learning methods and properties of the
datasets.

As emphasized above, MNLP fails to produce good scores if the model is overconfident
on wrong decisions. We mitigate this by modifying MNLP to use the ground truth labels
r∗ instead of the predicted ones r̂, leading to Maximum Normalized True Log-Probability
(MNTLP):

x∗ = argmaxx−
1
n

n∑
i=1

log(p(r∗i |x)) (3.19)

If the ground truth is available, another natural choice is just to select the instances for
which the models current predictions differs most from the annotations, which is measured
by the loss:

x∗ = argmaxx Lexp(r̂, r∗) (3.20)

where r is the model’s prediction associated with x. We call this method Highest Expla-
nation Loss (HXL).

We use the same training setup as described in subsection 3.4.2 “Experimental Setup” and
report the results in Figure 3.6.
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Results For Movie Reviews, we see a considerable improvement in token performance for
both, HXL and MNTLP, over Random, where HXL outperforms MNTLP. The gains
are naturally higher in earlier active learning iterations. The auxiliary head performance
stays stable and is comparable for all three methods. These results show that for Movie
Reviews there are instances that provide a much higher utility for the models training
than others and that the non-oracle query strategies are not able to reveal it.

The results in the case of MultiRC paint another picture: the token performance of HXL
and MNTLP is much worse than Random, where MNTLP is a little worse than HXL.
This shift is also visible for the macro F1, where both oracle versions perform worse than
Random. Here the drop in performance is not as big as for the token F1, but it is still
substantial. The fact that both metrics decrease, indicates that the selected instances do
not provide much semantically new information since it affects both tasks and therefore
probably the encoder. Nevertheless, the change in performance shows that the instances
have different values. Among other things, these results could be caused by selecting
instances that are not representative of the distribution. One the one hand this would
be the case if they are outliers. Outliers would be probably hard to classify but not
helpful if added to the training set. On the other hand this can happen if the selected
instances are very contently similar or share a lot of tokens, individually providing new
but similar information to the model. We will investigate the latter hypothesis in the next
subsubsection 3.4.4.2 “Diversifying Oracles”, since the effect seems likely because it also
happens on MultiRC where larger batches are selected.
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Figure 3.6: Results of the oracles vs Random baselines.
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3.4.4.2 Diversifying Oracles

The way the instances in the dataset are constructed in MultiRC but produces greater
risk of selecting homogeneous batches. The instances follow the structure: [question]
||[answer][SEP][document]. The ERASER version of the dataset was derived from
the original MultiRC dataset introduced in [Kha+18]. The instances there consist of a
document, a question and multiple answers, where several of them are correct. On average,
each question is associated with 2.6 correct and 5.4 answers in total. Additionally, each
document appears in multiple instances with different questions (on average 11.3). Since
the documents are longer than the questions and answers, it means that instances just
sharing the document are relatively similar and they become even more similar if they
share the question too.

Results Figure 3.7a shows the average number of unique documents and document-
question-pairs selected in one iteration. One can see that the batches selected by Random
are much more diverse in terms of these two metrics than for HXL and MNTLP. We
added another method Highest Explanation Loss Dummy Diversity (HXLDD) that uses
the same acquisition function as HXL but adds a post-processing step. After scoring all
instances according to HXL, we first find the instance with the highest score per document-
question-pair and set the scores of all others in the group to 0, enforcing diversity in a
very naive way. This results in much more diverse batches.

Figure 3.7b displays the performance results. The token F1 increases a little bit compared
to HXL and MNTLP but does not reach the performance of Random. Although the
results are not very strong, they suggest that diversity is an issue here and that using a
more complex diversification methods could potentially improve the results. Even though
the interaction between effects of diversity and uncertainty is hard to disentangle. One
has to point out that the way we are creating diversity only enforces diversity within the
current batch Lt but does not take the instance already labeled in L−1:t−1 into account.
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3.4.4.3 Rank Correlation of Different Methods

Following [GS19] and [Hua+16], we compare and analyze the way the methods select the
instances by converting the scores produced during the first iteration (t = 0) to ranks and
plot them for each pair of active learning methods. Lower ranks are better than higher
ranks, while higher scores indicate higher utility.3 Due to a large number of instances
we prefer a 2D-histogram with a logarithmic color scale over a pure scatter plot. The
lightest color corresponds to the maximum number of instances per bin and the darkest
to the minimum. Additionally, we report Spearman’s rank correlation coefficient and on
the diagonal a distribution plot of the scores. For GCS, we interpret the selection order
as score. Instances that are not selected are scored with zero are not included in the
plot. We also exclude instances scored by HXLDD with zero since they do not reflect the
uncertainty.

A limitation of this procedure is that during the conversion to ranks the distance between
the consecutive score is not preserved. An alternative would be to normalize the scores
and look at the density, but we keep it consistent with [GS19].

Results Figure 3.8 and Figure 3.9 compare the ranking of the non-oracle methods. The
score distribution of GCS is not very informative since an instance selected in the corset
creation at iteration i has the score bt − i and therefore each score appears exactly once.
(For more details see subsection 2.3.5 “Deep Learning”). In general, the ranks produced
by GCS are not correlated with the ranks of VR and MNLP, neither for MultiRC nor
for Movie Reviews. This is not very surprising since the score are constructed artificially
and the selection order is not necessarily meaningful because it is highly dependent on
the initial selection. Regarding the rankings of VR and MNLP, one can observe that
correlation is quite strong for Movie Reviews (ρ = 0.74) but slight for MultiRC (ρ =
0.36). The difference in correlation indicates that the scores for Movie Reviews are more
ambiguous than MultiRC. For both datasets, they agree on a lot of instances that are very
useful or not at all. But especially for MultiRC, there is also a great number of instances
where they do not agree on the middle ranks. For both datasets and for both uncertainty-
based methods most of the instances get a low score and just a small proportion is rated
very useful.

The ranks for the oracle-based methods HXL and MNTLP (Figure 3.10 and Figure 3.11)
are highly correlated (ρ = 0.52) for both datasets. This is not surprising since the acquisi-
tion functions do not differ much (see (3.21) and (3.27)) and the influence of the model’s
prediction and therefore the variation is reduced by using the ground truth data. On
MultiRC, HXLDD is similarly correlated to MNTLP (ρ = 0.52) but stronger to HXL
(ρ = 0.52). One difference between Movie Reviews and MultiRC is that for MultiRC
the methods do very strongly agree on high and low ranks while for Movie Reviews the
methods agree mainly on high ranks.

3The picture does not change much in a later iteration.
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Since we discovered from Figure 3.6 that both oracle methods improve compared to Ran-
dom on Movie Reviews, we can regard the scores produced by them as possible ground
truth values. First of all, we observe the same phenomenon for GCS as before – it is
not correlated with the other methods at all. For Movie Reviews MNTLP is strongly
correlated with MNLP (ρ = 0.57) and with VR (ρ = 0.6). This shows, that VR is some-
what better in estimating the true scores. In contrast, HXL is almost not correlated with
MNLP (ρ = 0.15) and VR (ρ = 0.1). Again, they largely agree with HXL on the high
ranks (low utility instances), but there are also a large number of instances ranked with
a high score by MNLP and VR which exhibit low scores produced by HXL forming a
“C”-shape. This either means that a) these are the instances where the model is wrong
but highly confident or b) that this relates to the difference in weighting to tokens (see
subsubsection 3.4.4.4 “Weighting of Tokens”). The former reason is unlikely because this
must have affected MNTLP as well. For MultiRC, the correlations are lower for MNTLP
but higher for HXL, compared to Movie Reviews. That fits the mold that this is a prob-
lem related to the weighting of the tokens in the acquisition function since the difference
here is lower than for Movie Reviews, where the rationales are shorter and therefore the
weighting has a stronger influence.

Overall, one can observe that the correlations are stronger (except for the oracle methods)
for Movie Reviews than for MultiRC. The higher consistency across methods supports
what the performance results already indicated, i.e. the utility of the instances is easier to
measure for Movie Reviews than for MultiRC.
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3.4.4.4 Weighting of Tokens

Another potential issue of the active learning methods we look at is that they are weighting
each token in one sequence equally. For the training of ExPred it has been shown to be
beneficial if to use the weighted average of the token-wise binary cross-entropy loss instead
of an unweighted version.

By revisiting the formulation of the acquisition functions of MNTLP (3.21) and HXL
(3.22), it is apparent that the only difference lies in the weights wi.

x∗ = argmaxx−
1
n

n∑
i=1

log(p(r∗i |x)) (3.21)

x∗ = argmaxx = Lexp(ri, r∗i ) (3.22)

= 1
n

n∑
i=1

wi BCE(ri, r∗i ) (3.23)

= 1
n

n∑
i=1

wi(−1)(r∗i log(p(r = 1|x)) + (1− r∗i ) log(1− p(r = 1|x))) (3.24)

= − 1
n

n∑
i=1

wi(r∗i log(p(r = 1|x)) + (1− r∗i ) log(p(r = 0|x))) (3.25)

= − 1
n

n∑
i=1

wi

{
log(p(r = 1|x)) if r∗ = 1
log(p(r = 0|x)) otherwise

(3.26)

= − 1
n

n∑
i=1

wi log(p(r∗i |x)) (3.27)

Additionally, in Figure 3.6 one sees that HXL outperforms MNTLP at least on Movie
Reviews. Assuming the bad performance on MultiRC is diversity-related one could at
least expect some improvement on Movie Reviews when using the loss of the predicted
class (HPXL):

x∗ = argmaxx Lexp(ri, r̂i) (3.28)

= − 1
n

n∑
i=1

wi log(p(r̂i|x)) (3.29)

We apply HPXL using the same setting as in previous experiments and report macro
F1 and token F1. In Figure 3.14 the results of HPXL for Movie Reviews and MultiRC
are presented. The macro F1 stays relatively stable for both datasets. For MultiRC, the
token F1 increases over time but performs worse than random. Although one has to point
out that is among the better methods on MultiRC. On Movie Reviews, however, HPXL
outperforms Random substantially. The low performance on MultiRC could be caused
by the diversity issue discussed earlier on. Additionally, the rationales are shorter in the
case of Movie Reviews and therefore the weighting is more important than for MultiRC.
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Figure 3.14: HPXL vs Random on Movie Reviews and MultiRC
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Figure 3.15: Pair-wise rank comparisons of HPXL on Movie Reviews

Results Figure 3.15 and Figure 3.16 depict the rank comparisons of HPXL to the other
methods. The plots follow the same schema as described in subsubsection 3.4.4.3 “Rank
Correlation of Different Methods”. GCS shows a completely different behavior than
HPXL, independent of the dataset. The results on MultiRC do not show any salience.
The oracle methods MNTLP and HXL are slightly less correlated (ρ = 0.22 and ρ = 0.24)
than the non-oracle methods MNLP and VR (ρ = 0.32 and ρ = 0.21). On Movie Re-
views, all methods (except GCS) show a cluster with low ranks assigned by HPXL but
high ranks assigned by the other methods. For the oracle methods, especially for HXL,
these are probably the instances where the model’s predictions differ from the ground
truth. For the non-oracle methods and also for MNTLP, instances with very short ra-
tionales are most likely located there. Interestingly, VR is also stronger correlated than
MNLP with HPXL.

Overall, we can hypothesize that weighting up the uncertainty of the underrepresented
class does improve the results primarily in cases where we have short rationales.
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Figure 3.16: Pair-wise rank comparisons of HPXL on MultiRC
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3.4.4.5 Diversity

Following Yuan, Lin, and Boyd-Graber [YLB20] we use the Jaccard-similiarity J(T1, T2)
between two sets of tokens T1 and T2 where we assume |T2| � |T1| and T2 to represent the
token distribution to measure the diversity of T1, i.e. to measure the representativeness of
T1 for T2.

J(T1, T2) = |T1 ∩ T2|
|T1 ∪ T2|

(3.30)

We report J(TLt , TUt) as “Diversity Lt” and J(TL−1:t , TUt) as “Diversity L−1:t”, where TS
is the union of all tokens in instances in S. U t is the set of unlabeled instances at time t,
Lt the instances which are being labeled at iteration t, and L−1:t that have been labeled
from iteration −1 to (including) iteration t.

Results In Figure 3.17 one can see the diversity over time for all different active learning
methods, both oracle-based and non-oracle-based approaches. As one would expect, GCS
and HXLDD result in the most diverse batches. Interestingly, they do not produce more
diverse batches than Random on MultiRC. This indicates either that the selected batches
are large enough to cover the diversity when selecting randomly or that the diversification
does not work as well as it could. In the case of GCS, this adds another piece of evidence
that the used representation is optimal. On Movie Reviews however, GCS does manage
to construct significantly more diverse batches than Random, meaning that the represen-
tation seems better. On Movie Reviews the relative size of the gap to the next method is
much smaller than for MultiRC, giving another lead that diversity could be a bigger issue
for the latter. HXL and MNTLP result in relatively less heterogeneous batches on both
datasets, which as already mentioned in subsubsection 3.4.4.2 “Diversifying Oracles”, this
is not surprising since the scores produced by these methods are less influenced by random
factors like model initialization or the warm-start dataset,since they use the ground truth
labels instead of the predicted classes and therefore exhibit less noise. More noise would
contribute to more diverse batches. MNLP and VR are producing less diverse batches
on Movie Reviews than on MultiRC. Additionally, the variance of those two methods is
smaller on Movie Reviews than on MultiRC. This could indicate that the model’s predic-
tions are more stable on Movie Reviews, leading to less noise and therefore less diverse
batches. Interestingly, HPXL produces batches with a comparable diversity to Random
on Movie Reviews but not on MultiRC. Together with the fact that HPXL performs well
on Movie Reviews but worse than random on MultiRC, we can conclude that HPXL finds
a good trade-off of good scores and diversity on Movie Reviews but not on MultiRC and
works better for skewed label distributions.

Overall, the lower scores for Movie Reviews compared to the ones on MultiRC are caused
by the longer sequence in MultiRC, leading more quickly to almost full coverage of all
tokens.

The fact that the order produced diversity by the different acquisition function for the
current batch Lt and the order of diversity of the labeled dataset L−1:t does not differ
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and is increasing shows that the selected batches always contain a great number of new
tokens, meaning that not only the batches but also the labeled dataset is diverse.

3.4.4.6 Batch Construction

Following the hypothesis that the diversity of the constructed batches is an issue on Mul-
tiRC, we conduct another experiment to find supporting evidence. To prove this, one has
to find a diversification method that performs better than Random. Just getting closer
to random than by taking the top-k instances could also mean that the scores are less
important for the selection. We choose HPXL and HXL to test an alternative batch
construction method since those are the best performing non-oracles and oracle methods
on Movie Reviews. Furthermore we assume that their good results indicate that the main
issue in MultiRC is the batch construction.

The batches are sampled by dividing the range of scores into 2k bins of equal width and
sampling from each of the top-k bins one instance each. The intuition is that, as one can
see from Figure 3.16 and Figure 3.11, most of the instances get assigned a score in the
lower half of the score range. By discarding them we ensure that only select instances that
are reasonable useful. Additionally, randomly selecting from each bin ensures diversity in
terms of the score.

Results In Figure 3.18 and Figure 3.19 we compare the performance results of the two
different sampling methods. Figure 3.20 depicts the diversity of the selected batches and
the labeled dataset (for details see subsubsection 3.4.4.5 “Diversity”).

Performance-wise in the case of Movie Reviews, we can say that using stratified sampling
instead of top-k sampling for batch construction reduces the performance but stays slightly
above Random. Meanwhile, it only increases the diversity for HXL but not for HPXL.
One has to emphasize that the diversity of the constructed batches of HXL is much
lower than for HPXL using top-k sampling. That supports the hypothesis that non-
oracle acquisition functions generate more diverse batches by having a greater source of
randomness through the prediction of the model. By adding randomness through the
stratified sampling the influence of the scores is reduced but diversity is increased. This
shows for Movie Reviews that diversity is not an issue since trading off the effect of the
scores towards more diverse batches hurts performance.

On MultiRC the picture is similar yet different. Stratified sampling increases diversity
massively and puts it close but below the token performance of Random. In parallel, the
performance increases for both approaches and gets closer to Random. This is particularly
the case for the token F1 but in combination with HXL also for the macro F1 of the
auxiliary head. Since the performance stays below Random, one cannot conclude if
stratified sampling reduces the influence of the utility scores and is therefore getting closer
to Random. An alliterative explanation is that HXL with stratified sampling results
in higher scores than with top-k sampling due to useful yet diverse instances. If the
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performance had risen above random, one could have stated that the utility scores are
helpful but the selected batches produced by top-k sampling lack diversity.
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Figure 3.18: Comparison of top-k and stratified batch construction on Movie Reviews

3.4.4.7 Batch Size

To investigate the hypothesis that the larger batch size of the selected instances bt in case
of MultiRC contributes to the diversity issue and hinders performance we re-run HXL
and HPXL on MultiRC and change the warm-start fraction b−1 and the batch size bt
to roughly match the absolute number of instances selected as in case Movie Reviews.
Table 3.7 lists the hyperparameters used in former experiments and the adapted ones.
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Table 3.7: Standard and adapted bts for MultiRC to match Movie Reviews.

Dataset b−1 bt b−1:5

rel. abs. rel. abs. rel. abs.
Movie Reviews 0.050 80 0.100 160 0.65 1040
MultiRC (standard) 0.020 480 0.040 961 0.26 6247
MultiRC (adapted) 0.003 73 0.007 189 0.26 1082

Results Figure 3.21 shows the outcome of the experiment in terms of performance and
diversity. We provide the results of the former experiment (standard settings) up to t = 1.
The diversity is only reported for the active learning iterations t >= 0, since the instances
are randomly selected in the warm-start iteration (t = −1) and therefore do not reflect
the behavior of the active learning strategies. Note that (only here) we report the size of
the labeled dataset instead of the active learning iteration in contrast to figures earlier on
in this work.

One can observe that HPXL with batch size bt = 0.007 results in comparable token
performance to Random and to the run using the standard setting. This means that the
batch size does not have a significant influence for HPXL, for the tested settings. HXL
using bt = 0.007, however, performs worse than Random with the same step size and
the performance gap is bigger than for HXL and Random with bt = 0.04. Additionally,
HXL using bt = 0.007 results in worse result performance than when using bt = 0.04.
A plausible explanation could be that the top scores are not very reliable, since larger,
selected batches contain more candidates. This is mitigating the influence of wrongly
scored instances.

The diversity of the labeled dataset L−1:t in the bt = 0.007 setting approaches the diversity
of the runs using bt = 0.04 for all methods. Interestingly, this is not the case for batch
diversity. Batch diversity is much lower for all methods in the small batch setting than
in the large base setting. One has to bear in mind that this does not reflect the diversity
introduced per instance in the selected batch but the overall representatives of the batch
regarding the unlabeled dataset. Therefore, the scores of smaller batches are naturally
smaller. A possible extension to this measure is normalizing the scores by the batch size.
In this case, the diversity introduced by each instance is bigger when using smaller batches.

Generally, we can conclude that using smaller batch sizes does not increase the diversity
of the labeled dataset L−1:t and therefore does not provide considerable impact. This is
also apparent from the performance results.
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3.4.4.8 Auxiliary Head Uncertainty as an Indicator for Hardness of Instances

We end our experiments with a slightly unrelated experiment. One potential failure case,
already mentioned before, with the least certain methods is that they only work well if
the predicted class is the actual class. This is due to the fact that if the model is highly
certain about a wrong prediction, it will not select the instance to be labeled. Under
the assumption that there are sentences that are harder to understand by the model, e.g.
because they contain rare words, one can argue that the hardness of the auxiliary task
f ′(·) is correlated with the hardness of the rationale generation head g(·). Since in our
scenario we assumed that the true labels y∗ for the auxiliary task are given, we can use the
uncertainty predicted by the auxiliary head for the true class as an acquisition function:

x∗ = argmaxx 1− p(y∗|x) (3.31)

We call this auxiliary least true certain (AuxLTC) 4. In this experiment, we pre-train the
model only using task-level annotation y∗ and then selects all instances in one batch. This
gives some indication if this is a useful direction to investigate further.

Results Figure 3.22 shows the performance results. On Movie Reviews, the token F1
is worse than Random, whereas on MultiRC it is comparable. The impression that the
auxiliary head uncertainty on the true class does not correlate much is confirmed by the
ranking comparisons of the other methods, presented in Figure 3.23 and Figure 3.24. We
can make three interesting observations: firstly for both datasets, the scores are almost all
very close to zero or zero, where the majority is at 0. Looking at the raw numbers, there
are scores in between but just very few. A score of 0 means that the auxiliary head predicts
the ground truth with almost 100% certainty and 1 means it predicts the instances wrong
with very high probability. The second interesting fact is that the acquisition functions
are not based on the explanation loss and therefore weight the tokens equally. This results
in a slight negative correlation of the ranks for Movie Reviews (ρ around -0.25). For
the loss-based and all methods on MultiRC, there is no correlation (ρ ≈ 0). Lastly, the
horizontal stripes of the rank plots on MultiRC show that many instances get exactly the
same score leading to the same ranks. This means that the distributions around 0 and 1
are very narrow leading to numerical collisions.

Overall, one can state that the auxiliary head is not a suitable indicator of the uncertainty
of the explanation head if already trained on a fully labeled dataset.

4In our implementation this is erroneously called auxiliary least true uncertain
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Chapter 4

Closure

4.1 Conclusion

In this work, we investigated:

(i) the degree to which the performance of ExPred, as a representative of pipeline
explain-then-predict models, depends on the amount of rationale annotations avail-
able during training (RQ1).

(ii) if weak supervision, here using the example of pre-training on weak labeled produced
by Lei et al. (u), can reduce the number of strongly rationale-labeled instances
needed during training (RQ2).

(iii) if we can improve through labeling specifically useful instances using active learning
(RQ3).

RQ1 We show that even with only a fraction of instances annotated with rationales
from the original dataset, ExPred still achieve good performance (within 95% of the
performance when using 100% annotation). On Movie Reviews, between 60% and 70% of
the rationale annotations are needed, which is equivalent to around 960 and 1100 instances,
respectively. On MultiRC, ExPred achieves 95% of the performance at 100% supervision
with 10% to 20% of that annotate data, i.e. 2400 to 4800 instances, respectively. (For
more details see section 3.2 “Preliminary Analysis: The Baseline and its Need for Rational
Supervision”.)

RQ2 The results on weak supervision are mixed: Using Lei et al. (u) as weak labeler
and the simple weak supervision scheme of pre-training on the weak and fine-tuning on
the strong data (NNweak→strong) provides only on Movie Reviews a considerable benefit,
reducing the fraction of instance needed to achieve 95% performance from 70% to 5%. On
MultiRC, the weakly labeled instances do not help but can hurt the performance. This is
most likely the case due to the low performance of the weak labeler. (Further details can
be found in section 3.3 “Learning from Weakness: Semi-Supervision using Weak Labels”.)
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RQ3 As emphasized in [LLW19], selecting a suitable active learning method without test-
ing it is an unsolved problem and poses a considerable challenge to the practical application
of active learning. We experience the same: all examined off-the-shelf methods (MNLP,
VR using MCD, and GCS) did not consistently outperform the Random baseline. On
Movie Reviews, VR achieves slightly better results than Random, but the performance
does not justify the additional training cost. In the case of MultiRC, the performance
even drops below Random when using any of the three methods. We hypothesize that for
MultiRC the bad performance is an issue regarding the diversity of the selected batches.
(For more detailed description refer to section 3.4 “Active Learning”)

In our subsequent investigation of the active learning methods, we learn in subsubsec-
tion 3.4.4.1 that for both datasets the utility for the training of the instances differs and
therefore a successful active learning method can exist.

For Movie Reviews, we can successfully design active learning approaches (HXL and
MNTLP) that outperform Random, under the assumption that the ground truth labels
are available before asking the oracle for the labels. This approach is not practical but
generates the insight that the uncertainty estimates provided by the classification layer
do not reflect the uncertainty regarding the unknown label. This is also true for the
uncertainty estimates generated by Bayesian Inference (MCD, VR). For MultiRC, even
with perfect information, these approaches fail. (See subsubsection 3.4.4.1.)

Moreover, we are able to design a practical, non-oracle approach that successfully outper-
forms the Random baseline on Movie Reviews by weighting the uncertainty of the tokens
in a sequence non-uniformly as done in the formulation of the training loss. On MultiRC,
this method does not improve over Random either. (See subsubsection 3.4.4.4.)

Our analysis on representatives and diversity of selected batches and the resulting datasets,
in subsubsection 3.4.4.5 and subsubsection 3.4.4.2, indicate that on MultiRC no method
produces a more diverse selection than random sampling. On Movie Reviews only GCS
and HPXL do. In conjunction with the performance results, we observe that for Movie
Reviews higher diversity is in some cases correlated with better performance but not al-
ways. Since on MultiRC none of the investigated methods performs better than Random,
we can not draw a clear conclusion if the diversity itself leads to the higher token perfor-
mance. The increased token performance is either caused by more diversity or because
the more diverse methods rely less strongly on the utility scores and are therefore closer
to the performance of random selection.

Hence, the diversity issue could also be due to the large batch sizes used on MultiRC. We
investigate in subsubsection 3.4.4.7 this issue and find out that at least using the same
absolute batch sizes as on Movie Reviews does not lead to considerable improvements.
This could be different when using very small batch sizes but would make the application
of active learning non-feasible.

The comparison of the ranks produced by the different approaches suggests what also
the performance results show: which instances provide more utility to the training is less
ambiguous on Movie Reviews than on MultiRC and therefore easier to measure. In general,
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all methods agree mostly on which instances provide almost no useful information but
produce conflicting results on the top ranks. (See subsubsection 3.4.4.3 for more details.)

The unsuccessful attempt to use the auxiliary head as an indicator for the instances’ utility
shows that the hardness of the instances for the task-level predictions is not correlated to
the hardness of the explanation generation. (See subsubsection 3.4.4.8.)

To summarize, we show that applying active learning for annotating rationales performs
reasonably on the sentiment analysis task Movie Reviews when using an acquisition func-
tion that weighs the token non-uniformly. On MultiRC, none of the tested methods and
variations improves over Random. Potential issues are unreliable uncertainty estimates
and non-representative selected batches.

4.2 Limitations and Future Work

The presented results only apply to ExPred in combination with MultiRC and Movie
Reviews. In order to investigate if the results generalize to other explain-then-predict
models and datasets, one has to extend the experiments, e.g. to other datasets from the
ERASER benchmark and models like FRESH. In general, adding a statistical test to
determine if the observed results are statistically significant or not could increase the
explanatory power of the work. This, however, is out of focus of this work because we aim
to provide the first step of exploration.

Our first exploratory steps in this works show for the weak supervision approaches, it is
a potentially promising line of research to test more sophisticated schemes like FWL and
other, potentially multiple sources of weak labels, such as post-hoc methods like attention
scores or input gradients. These sources could then be combined using Snorkel.

Regarding active learning, there are several interesting directions left for investigation.
However, the main concerns are creating better utility scores and constructing more rep-
resentative batches. To achieve the former, one should test if MCD-methods improve
when increasing the number of forward passes, i.e. increasing the size of the simulated
ensemble, and explore other utility functions like BALD. Investigating the latter includes
finding better sequence representations to measure diversity on and exploring active learn-
ing schemes that combine diversity and uncertainty like APLS or BADGE. All these
methods have to be adapted in order to reflect the insight that a non-uniform weighting
of the tokens’ uncertainty estimates produces better results.
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4.1 Active Learning
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