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Kurzfassung

Diese Arbeit beschäftigt sich mit der Analyse und dem Entwurf von Multimoden-
Antennen unter Nutzung von charakteristischen Moden. Eine Multimoden-
Antenne besteht aus einem einzelnen physischen Antennenelement, welches
mehrere unabhängige Antennentore besitzt. Die Tore sollen zueinander orthogo-
nale Richtcharakteristiken erzeugen, um Richt- und Polarisationsdiversität zu
erzielen. Die Nutzung von Multimoden-Antennen stellt daher im Vergleich zu
Gruppenantennen mit räumlich verteilten Antennenelementen eine kompakte
Alternative für MIMO-Systeme (multiple-input multiple-output) dar.

Die systematische Analyse und der systematische Entwurf von Multimoden-
Antennen wird durch die Theorie der charakteristischen Moden ermöglicht. Dies
ist auf die vorteilhaften Orthogonalitätseigenschaften der charakteristischen
Moden einer beliebigen Antenne zurückzuführen. Insbesondere sind die moda-
len Richtcharakteristiken orthogonal zueinander. Die Tore einer Multimoden-
Antenne sollten daher unterschiedliche Sätze von charakteristischen Moden
anregen. Auf diese Weise ergeben sich ideal unkorrelierte Antennentore.

Um einen gewissen Satz von charakteristischen Moden selektiv anzuregen,
müssen ihre charakteristischen Flächenstromdichten orthogonal zu jenen aller
anderen Moden sein. Dabei stellt sich heraus, dass die Orthogonalität der charak-
teristischen Flächenstromdichten durch die Symmetrie der Antennen bedingt ist.
Dies ist auf die grundlegende Tatsache zurückzuführen, dass die charakteristi-
schen Flächenstromdichten Basisfunktionen der irreduziblen Darstellungen der
Symmetriegruppe einer Antenne sind. Charakteristische Flächenstromdichten,
die zu unterschiedlichen irreduziblen Darstellungen oder zu unterschiedlichen
Zeilen einer mehrdimensionalen irreduziblen Darstellung gehören, sind ortho-
gonal zueinander. Die zueinander orthogonalen Sätze von charakteristischen
Flächenstromdichten können also ermittelt werden, indem die charakteristischen
Moden einer Antenne den irreduziblen Darstellungen ihrer Symmetriegruppe
zugeordnet werden. Die Anzahl der zueinander orthogonalen Sätze von charakte-
ristischen Flächenstromdichten wird von der endlichen Anzahl der irreduziblen
Darstellungen und ihren Dimensionen bestimmt und ist folglich begrenzt.

Diese unterschiedlichen Sätze von charakteristischen Moden können durch
Antennentore, welche die Symmetrieanforderungen der irreduziblen Darstellun-



gen erfüllen, getrennt voneinander angeregt werden. Dies hat zur Folge, dass ein
einzelnes Antennentor aus mehreren symmetrisch auf der Antenne platzierten
Speisepunkten besteht. Die Eingangssignale der Antennentore werden mithilfe
eines Speisenetzwerkes zu den Speisepunkten verteilt. Die optimalen Torkonfi-
gurationen sind ausschließlich durch die Symmetrie einer Antenne bestimmt
und sind damit unabhängig von der letztendlichen Ausgestaltung und Größe der
Antenne. Das bedeutet, dass die optimalen Torkonfigurationen a priori bekannt
sind und dass eine obere Grenze für die Realisierung orthogonaler Tore existiert.

Weiteres a priori Wissen kann gewonnen werden, indem Beziehungen zwi-
schen unterschiedlichen Symmetriegruppen ausgenutzt werden. Symmetriegrup-
pen können isomorph sein oder können als direktes Produkt ausgedrückt werden,
was erlaubt, auf der Analyse einfacherer Symmetriegruppen aufzubauen. Zudem
können verwandte Symmetriegruppen in Familien zusammengefasst werden. Die
charakteristischen Moden der entsprechenden Antennengeometrien besitzen ähn-
liche Eigenschaften sowohl hinsichtlich der Eigenwerte als auch hinsichtlich der
charakteristischen Flächenstromdichten. Außerdem können diese Eigenschaften
anhand der modalen Analyse einer verallgemeinerten Antennengeometrie mit
unendlicher Symmetriegruppe abgeschätzt werden. Diese Verwandtschaftsbezie-
hungen werden ausgenutzt, um für die Realisierung einer gewünschten Anzahl
an orthogonalen Antennentoren potentiell geeignete Antennengeometrien zu
vergleichen und die minimale Antennengröße abzuschätzen.

Anhand dieser verallgemeinerten modalen Analyse und des a priori Wissens
aus der Symmetrieanalyse wird eine kompakte Sechs-Tor-Multimoden-Antenne
basierend auf einer quadratischen Geometrie entwickelt. Die Speisepunkte der
optimalen Torkonfigurationen werden durch Schlitze ersetzt, um eine flexible
Impedanzanpassung durchzuführen. Ein Speisenetzwerk, welches die Torsigna-
le zu den Schlitzen mit den von den irreduziblen Darstellungen geforderten
Amplituden- und Phasenbeziehungen verteilt, wird in Mehrlagentechnologie rea-
lisiert. Einem modularen Entwurfsansatz folgend werden das Antennenelement
und das Speisenetzwerk zunächst getrennt optimiert und dann zusammengesetzt.
Die Simulations- und Messergebnisse zeigen, dass die sechs Antennentore
praktisch unkorreliert sind und damit die gewünschte Richt- und Polarisati-
onsdiversität aufweisen. Der gefertigte Prototyp bestätigt damit die praktische
Nutzbarkeit und Relevanz der vorgestellten Entwurfskonzepte.

Schlagwörter: Antennenentwicklung, Antennendiversität, Antennentheorie,
Charakteristische Moden, Eigenwerte und Eigenfunktionen, Gruppentheorie,
Multiple-Input Multiple-Output (MIMO), Multimoden-Antennen, Symmetrie.



Abstract

This thesis deals with the systematic analysis and design of multimode antennas
based on characteristic modes. A multimode antenna is a single physical antenna
element with several independent antenna ports. The ports are intended to excite
mutually orthogonal radiation patterns in order to provide pattern and polarization
diversity. Therefore, the use of multimode antennas is a space-efficient alternative
for multiple-input multiple-output (MIMO) systems compared to conventional
antenna arrays with spatially distributed antenna elements.

A systematic analysis and design of multimode antennas is enabled by means
of the theory of characteristic modes. This is due to the fact that the characteristic
modes of an arbitrary antenna object possess advantageous orthogonality
properties. In particular, the modal radiation patterns are orthogonal to each
other. Therefore, the ports of a multimode antenna should excite mutually
exclusive sets of characteristic modes. This way, perfectly uncorrelated antenna
ports are realized by exploiting the diversity potential of the characteristic modes.

In order to selectively excite a certain set of characteristic modes, their
characteristic surface current densities must be orthogonal to those of all
other modes. This orthogonality property, however, is not guaranteed by the
theory of characteristic modes. It is found, though, that the orthogonality
of the characteristic surface current densities is governed by the symmetry
of the antenna. This is due to the fundamental fact that the characteristic
surface current densities are basis functions of the irreducible representations
of the symmetry group of an antenna. Characteristic surface current densities
belonging to different irreducible representations or belonging to different rows
of a multi-dimensional irreducible representation are orthogonal to each other.
The mutually orthogonal sets of characteristic surface current densities are thus
found by assigning the characteristic modes to the irreducible representations of
the symmetry group of a given antenna, which can be done automatically by
means of the projection operator method. Consequently, the number of mutually
orthogonal sets of characteristic surface current densities is governed by the
finite number and dimensions of the irreducible representations and thus limited.

These mutually exclusive sets of characteristic modes can be excited separately
by antenna ports that fulfill the symmetry requirements of the irreducible



representations. This means that a single antenna port consists of several feed
points placed symmetrically on the antenna element. The input signals of the
antenna ports are distributed to the feed points by means of a feed network. The
optimal port configurations are governed solely by the symmetry of an antenna
and are thus independent of the actual antenna shape and size. In other words,
the optimal port configurations are known a priori and there is an upper bound
for realizing orthogonal antenna ports. These optimal port configurations can be
constructed automatically by means of the projection operator method.

Further a priori knowledge is gained by exploiting relationships between
different symmetry groups. Symmetry groups may be isomorphic or may be
decomposed as direct-product groups, allowing to reuse or build upon the
analysis of simpler symmetry groups. Additionally, related symmetry groups can
be collected into families. The characteristic modes of the corresponding antenna
geometries have similar properties in terms of both eigenvalues and characteristic
surface current densities. Moreover, these properties can be estimated by means
of a modal analysis of a generalized antenna geometry with an infinite symmetry
group. These relationships are exploited in order to compare potentially suitable
antenna geometries and estimate the minimum antenna size for realizing a
desired number of orthogonal antenna ports.

Based on this generalized modal analysis and the a priori knowledge gained
from the symmetry analysis, a compact six-port multimode antenna based on a
square geometry is designed. The feed points of the optimal port configurations
are replaced by excitation slots in order to flexibly perform impedance matching.
A feed network which distributes the port signals to the excitation slots with the
correct amplitude and phase relations as required by the irreducible representa-
tions is realized in multilayer technology. Following a modular design approach,
the antenna element and the feed network are first optimized separately and then
assembled. The simulation and measurement results show that the six antenna
ports are practically uncorrelated, offering the desired pattern and polarization
diversity. With these results, the fabricated prototype demonstrates the practical
feasibility and relevance of the presented design concepts.

Keywords: Antenna Design, Antenna Diversity, Antenna Theory, Characteristic
Modes, Eigenvalues and Eigenfunctions, Group Theory, Multiple-Input Multiple-
Output (MIMO), Multimode Antennas, Symmetry.
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1 Introduction

The use of multiantenna systems has become ubiquitous in modern wireless
communications. Multiple antennas at the transmitter and/or the receiver of a
wireless communication system enable numerous techniques which are indis-
pensable for current and future wireless applications [1–3]. Systems employing
multiple antennas are oftentimes simply referred to as multiple-input multiple-
output (MIMO) systems [3]. Common examples for multiantenna techniques in a
MIMO system are beamforming, spatial diversity, and spatial multiplexing [2–4].
These are certainly the most prominent MIMO techniques and thus serve best
for giving an overview about the various benefits of using multiple antennas.

Beamforming typically aims at exploiting the gain provided by an array of
antennas (array gain) in order to increase the signal-to-interference-plus-noise
ratio (SINR) [3]. This is achieved by steering the main beam of an antenna
array [5] at the transmitter and/or receiver towards a desired direction, focusing
the signal power in this direction and simultaneously suppressing interfering
signals from unwanted directions [6].1 Spatial diversity works in a similar
way as beamforming, but is used to combat fading due to multipath signal
propagation, ultimately reducing the error probability at the receiver [3]. The
diversity offered by spatially distributed antennas allows to purposefully exploit
independent multipath components of a single signal (diversity gain) [7,8]. This
can be achieved by recombining the multipath components at a multiantenna
receiver (diversity combining) [9], or by transmitting the same signal via
different antennas at a multiantenna transmitter (space-time coding) [10]. Spatial
multiplexing, finally, relies on multiple antennas at both the transmitter and
the receiver (true MIMO). In contrast to spatial diversity, different signals are
transmitted simultaneously via spatially independent propagation paths, yielding
an increased data rate (multiplexing gain) [3, 11, 12].

The multiple antennas at the transmitter and/or the receiver are commonly
realized as antenna arrays. In order to enable the above-mentioned multiantenna
techniques, an antenna array has to provide antenna diversity [7, 13,14]. This
denotes the capability of an antenna to potentially enable spatially independent

1Beamforming is related to direction-of-arrival estimation, which is yet another technique enabled
by multiple antennas at the receiver [6].
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propagation paths (e.g., in a rich-scattering scenario).2 Typically, an antenna
array consists of several identical antennas with a certain spacing [5] in order to
provide so-called spatial diversity [14, 15].3 However, identical antennas that
are placed in close proximity to each other in general have correlated radiation
patterns [16]. Due to this correlation, the spatial channels of a MIMO system are
not independent, resulting in performance degradations [17]. The correlation
should thus be as low as possible [14]. This is achieved by spacing the antennas
of an array appropriately apart (e.g., a half-wavelength spacing) [16]. However,
increasing the number of spatial MIMO channels requires more antennas. As a
consequence, there is a tradeoff between MIMO performance and array size [18].

There are, however, two further types of antenna diversity, which are called
pattern diversity and polarization diversity [14, 15]. Polarization diversity is
achieved by using different orthogonal polarizations, comprising the well-known
dual-polarized antennas [19], whereas pattern diversity relies on independent
radiation patterns, e.g., directional antennas whose beams point in different
directions. These two types of diversity have in common that they do not
necessarily require an antenna array. Instead, a single physical antenna element
with several antenna ports can be employed. Each port drives a specific antenna
mode with independent pattern and/or polarization. This concept is called
multimode antenna [18, 20], which may be interpreted as a virtual antenna
array whose elements are all located at the same point in space. For example,
a dual-polarized patch antenna [5] can be considered a two-port multimode
antenna. The two ports drive orthogonal polarizations, providing polarization
diversity. Ideally, a single multimode antenna enables the decorrelation of the
MIMO channels due to pattern and polarization diversity and thus constitutes a
space-efficient alternative to an antenna array with spatially distributed antennas.

Early multimode antenna designs reported in the literature are based on
well-known antenna types, e.g., patch antennas [21], biconical antennas [20,22],
and spiral antennas [18]. In more recent publications, the theory of characteristic
modes [23–25] is employed in order to enable a systematic design of multimode
antennas with arbitrary shape, as detailed in subsection 1.1. The characteristic
modes of an antenna possess orthogonal radiation patterns [24], offering a
mixture of pattern and polarization diversity. That is why they are ideally suited
for the design of multimode antennas. The antenna ports are realized in such
a way that they excite different sets of characteristic modes in order to exploit

2In contrast, diversity as a system concept comprises the wireless propagation channel, the antennas,
and the signal processing.

3Not to be confused with spatial diversity as a system concept [3].
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the diversity. This way, a compact diversity antenna is created. Combined with
suitable signal processing capabilities, a multimode antenna enables the MIMO
techniques introduced above with a single physical antenna element.

1.1 State of the Art and Background

The theory of characteristic modes was originally introduced in order to treat the
scattering of electromagnetic waves at arbitrarily shaped perfectly electrically
conducting (PEC) objects [23, 24, 26]. The applicability of this theory to
radiation problems, i.e., antenna designs, is extensively treated in [27–29]. In
these publications, it is demonstrated how the characteristic modes can be applied
in order to understand the radiation mechanisms of a given antenna geometry and
how this knowledge can be used in order to systematically synthesize a desired
antenna performance. In contrast to optimization procedures, the characteristic
modes enable a deterministic design approach based on physical insight [27,30].
Thanks to this, they have found widespread use in the solution of antenna analysis
and design problems [25,31]. Applications comprise polarization synthesis [27],
bandwidth manipulation and tuning [32], wideband and multiband operation [33],
antenna equivalent circuits [34], systematic geometry manipulation [35,36], and
reactive loading [37], among many more.

Another field of antenna research that has gained considerable attention
thanks to the beneficial properties of characteristic modes is the design of
multimode antennas. As stated above, the principal design goal is to realize
antenna ports which generate orthogonal radiation patterns by exciting different
sets of characteristic modes. The basic design work flow is well described by
some of the early pioneering works [38–41]. It starts with a modal analysis of a
given antenna object in order to identify those characteristic modes which are
suitable for excitation. By inspecting the corresponding modal near fields or
surface current densities, appropriate antenna ports are designed. For example,
in [38, 40] a rectangular PEC plate offering four suitable characteristic modes is
considered. Electrically small capacitive excitation elements [42] are placed at
the corners of the plate where the maxima of the modal electric near fields occur
in order to realize an effective coupling via the electric field. The excitation
elements are interconnected by a feed network in such a way that the resulting four
antenna ports excite different characteristic modes and thus mutually orthogonal
radiation patterns. In a similar way, a three-port multimode antenna also based
on a rectangular plate is designed in [41,43] using electrically small inductive
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excitation elements [42]. These are placed at the maxima of the modal surface
current densities in order to realize an effective coupling via the magnetic field.

Early multimode antenna designs based on characteristic modes are pre-
dominantly focused on mobile terminals with an electrically small rectangular
geometry [40, 43–45]. Based on the multimode antenna concept in conjunction
with characteristic modes, MIMO operation with up to four antenna ports is
enabled in such a spatially restricted environment, thereby efficiently utilizing
the given design space. More recent publications explore different geometries,
e.g., for base station applications. Multimode antennas based on a square
plate [46], a square cuboid [47], and a hexagonal plate [48] are reported, all
offering four antenna ports providing pattern and polarization diversity. Another
notable example is a three-port multimode antenna based on a biomimetic geom-
etry [49]. Besides the actual antenna design, signal processing with multimode
antennas has also attracted significant research interest. Recent publications
are dedicated to beamforming [50], direction-of-arrival estimation [51], and
massive MIMO [52,53], demonstrating that multimode antennas readily enable
the above-mentioned multiantenna techniques.

In particular, this thesis was elaborated in the context of the project M4 (Multi-
Mode Massive MIMO) within the priority program SPP1655 of the German
Research Foundation (DFG) aiming at wireless ultra-high data rate communi-
cations of 100 Gbit s−1 and beyond [54]. In this project, the targeted data rate
is achieved by combining a massive MIMO approach with an ultra-wide band-
width (UWB) from 6 GHz to 8.5 GHz, i.e., at frequencies below 10 GHz [52,55].
In order to obtain compact massive MIMO antenna arrays at these frequencies,
multimode antennas are employed as antenna elements. In the first phase of the
project, a compact 11 × 11 antenna array consisting of 121 four-port multimode
antennas (yielding a total of 484 antenna ports) was presented [46], demonstrat-
ing the feasibility and the potential of the concept. These promising results are
the motivation for aiming at even more antenna ports per multimode antenna.

Contemplating the multimode antennas reported in the literature (see above),
it is found that the maximum number of antenna ports achieved so far does not
exceed four. Furthermore, all reported multimode antennas rely on the intuitive
design approach enabled by the characteristic modes, i.e., inspecting the modal
near fields or surface current densities in order to place excitations, introduced
more than ten years ago as described above. However, towards more antenna
ports, the intuitive design approach becomes increasingly cumbersome as the
number of the characteristic modes to be taken into account grows. So far, no
general guidelines are available to systematically tackle this problem. This is
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illustrated in [56] by means of a rectangular plate, where the intuitive design
approach fails despite the simple geometry. Instead, it is found that the maximum
number of orthogonal antenna ports seems to be limited. Furthermore, there
seems to be a connection between the characteristic modes of the rectangular
plate and its symmetry. In this regard, it is noted that some of the multimode
antenna designs referenced above explicitly recognize the benefits of exploiting
symmetries. In these cases, the antenna ports consist of several symmetrically
placed excitation elements, respectively, which are driven by means of a feed
network in order to excite different sets of characteristic modes [40, 43, 46–48].

As a matter of fact, a connection between the theory of characteristic modes
and the theory of symmetry [57] was established in [58]. It was used to reduce
computational time and memory requirements in the numerical computation
of characteristic modes [59] by block diagonalizing the underlying impedance
matrix. This block diagonalization is possible as the characteristic modes can
be classified according to the symmetry properties of their respective modal
surface current densities. However, further applications to this connection have
surfaced only recently. In [60, 61], the classification of the characteristic modes
is employed in order to understand and predict so-called crossing avoidances
occurring during the tracking [62] of characteristic modes over a given frequency
range. Based on this approach, a complete tracking algorithm is presented in [63].

1.2 Objectives and Outline

In this thesis, the connection between the theory of characteristic modes and
the theory of symmetry is utilized in order to systematically analyze and design
multimode antennas with the goal to realize more orthogonal antenna ports
than reported so far in the literature. To this end, the consequences of the
symmetry of an antenna on its characteristic modes are examined in full detail
in order to gain an enhanced understanding of the fundamental properties of
characteristic modes. Based on this, mathematical techniques from the theory of
symmetry are applied in order to enable a systematic and automatic analysis
of symmetric multimode antennas in terms of characteristic modes. This way,
a priori knowledge is gained which allows to predict the diversity potential of
arbitrary symmetric antenna geometries. Moreover, general design guidelines
and automatic techniques for realizing orthogonal antenna ports are derived.
With this knowledge, a prototype multimode antenna is fabricated demonstrating
the feasibility of the presented concepts.
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First of all, the theory of characteristic modes is recapped in chapter 2 in order
to provide the analytical basis for this thesis. In particular, those properties of
characteristic modes which make them most suitable for the design of multimode
antennas are highlighted. Based on this, the state-of-the-art design work flow for
multimode antennas is illustrated by means of an example. This example also
serves to motivate the connection of the theory of characteristic modes to the
theory of symmetry and the potential consequences of this connection.

In order to gain a fundamental understanding about this connection, chapter 3
is dedicated to the theory of symmetry. Group theory and matrix representations
are introduced as the basic mathematical concepts of this theory. With these
concepts, the connection to the theory of characteristic modes is established. In
order to exploit this connection, advanced techniques from group theory are
presented which enable a systematic and automatic symmetry analysis.

The techniques from chapter 3 are applied in chapter 4 in order to analyze
the symmetry properties of characteristic modes. It is shown that the symmetry
group of a multimode antenna governs the number of mutually exclusive sets
of characteristic modes. These sets can be excited separately by appropriately
designed antenna ports. Consequently, there is an upper bound for realizing
orthogonal antenna ports. Advanced techniques from group theory are applied
in order to realize the optimal orthogonal antenna ports, enabling a systematic
and automatic port generation based on symmetry considerations alone.

In chapter 5, the relations between a family of geometries and their respective
symmetry groups are exploited in order to find a representative geometry. By
performing a modal analysis of this representative geometry, a priori knowledge
about the modal behavior of all geometries within the family is gained, which is
used to compare suitable antenna geometries and estimate the minimum antenna
size for realizing a desired number of orthogonal antenna ports.

Based on the findings in chapters 4 and 5, a six-port multimode antenna
is designed systematically in chapter 6. Excitation elements are introduced in
order to perform impedance matching and a feed network is realized which
distributes the signals from the antenna ports to the excitation elements. Finally,
a prototype is fabricated and simulation and measurement results are presented
which demonstrate the performance of the multimode antenna.

For the sake of completeness, the consequences of asymmetry on the design of
multimode antennas are discussed briefly in chapter 7. It is found that perfectly
uncorrelated antenna ports cannot be realized in this case. Therefore, a procedure
for realizing weakly correlated antenna ports is presented. In chapter 8, finally,
the principal results and conclusions of this thesis are summarized.



2 Theory of Characteristic Modes
and Multimode Antenna Design

Characteristic modes were introduced in [23] as a generalized expansion for
electromagnetic fields scattered or radiated by a PEC object. The theory of
characteristic modes states that an arbitrary surface current density on a PEC
object and its corresponding electromagnetic field can be decomposed into a
set of characteristic surface current densities and corresponding characteristic
fields with certain orthogonality properties.

The principal aim of this chapter is to introduce the fundamental properties
of characteristic modes which make them most suitable for multimode antenna
design. In order to achieve this goal, first, the electric field integral equation (EFIE)
is derived from Maxwell’s equations in order to formulate an impedance operator.
Based on this operator formulation, the definition of characteristic modes is
given and fundamental properties are presented. Next, the basic steps of the
numerical computation of characteristic modes for arbitrary PEC objects are
introduced. Finally, it will be demonstrated how the characteristic modes can be
used purposefully for the design of multimode antennas.

2.1 Electric Field Integral Equation
and Impedance Operator

With the EFIE, the electric field strength produced by an arbitrary current density
is computed. If PEC objects are considered, it can be combined with the boundary
condition of the tangential electric field strength on a PEC surface, yielding an
impedance operator that links the surface current density with an impressed
electric field. This impedance operator is the basis for the computation of
characteristic modes. In this section, the fundamental steps for deriving the EFIE
and the impedance operator are presented.4

The derivation of the EFIE is based on Maxwell’s equations. Throughout
this thesis, harmonic time dependence is assumed and all field quantities

4A detailed compilation of the employed field quantities and equations is provided in appendix A.
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are expressed as complex amplitudes. In the time-harmonic case, Maxwell’s
equations are written as follows [64]:

rot
(
H(r)

)
= J(r) + 𝑗𝜔D(r), (2.1a)

rot
(
E(r)

)
= − 𝑗𝜔B(r), (2.1b)

div
(
B(r)

)
= 0, (2.1c)

div
(
D(r)

)
= 𝑞(r), (2.1d)

where E denotes the electric field strength, H the magnetic field strength, D the
electric flux density, and B the magnetic flux density; J is the electric current
density and 𝑞 is the electric charge density; 𝜔 denotes the angular frequency,
𝑗 is the imaginary unit, and r = (𝑥,𝑦,𝑧)T a point in space; rot and div are the
curl and divergence operators, respectively.

The field strengths and the flux densities are connected via the constitutive
relationships [64]. In this thesis, only simple matter will be of interest.5 Therefore,
the constitutive relationships are written as proportional relations using the
permittivity 𝜀 and the permeability 𝜇 [64]:

D(r) = 𝜀E(r), (2.2a)
B(r) = 𝜇H(r). (2.2b)

The magnetic flux density B and the electric field strength E can also be
written in terms of the magnetic vector potential A and the electric scalar
potential 𝜙 [64, 65]:

B(r) = rot
(
A(r)

)
, (2.3)

E(r) = − 𝑗𝜔A(r) − grad
(
𝜙(r)

)
, (2.4)

where grad denotes the gradient operator. The magnetic vector potential is
computed by solving the inhomogeneous vector Helmholtz equation and the
electric scalar potential is computed by solving the inhomogeneous scalar
Helmholtz equation [64, 65]:

ΔA(r) + 𝑘2A(r) = −𝜇J(r), (2.5)

Δ𝜙(r) + 𝑘2𝜙(r) = −𝑞(r)
𝜀
, (2.6)

5Lossless, linear, homogeneous, and isotropic.
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where Δ denotes the Laplace operator6 and 𝑘 is the angular wave num-
ber (𝑘2 = 𝜔2𝜀𝜇). For harmonic time dependence, the electric charge density is
proportionally related to the divergence of the electric current density through
the continuity equation [64]:

div
(
J(r)

)
= − 𝑗𝜔𝑞(r). (2.7)

The solutions to the differential equations (2.5) and (2.6) are integrals which,
using (2.7), can both be formulated in terms of the current density [24, 65]:

A(r) = 𝜇
∭
𝑉′

J(r′)𝐺 (r,r′)d𝑉 ′, (2.8)

𝜙(r) = − 1
𝑗𝜔𝜀

∭
𝑉′

div
(
J(r′)

)
𝐺 (r,r′)d𝑉 ′. (2.9)

The integration is taken over the source volume𝑉 ′, i.e., the region where current
densities exist. The integral kernel 𝐺 (r,r′) for free space (Green’s function) is
given by [5, 66]:

𝐺 (r,r′) = 𝑒− 𝑗𝑘 ∥r−r′ ∥

4𝜋∥r − r′∥ , (2.10)

where ∥ · ∥ denotes the norm of a vector.
If PEC objects are considered, current densities can only exist on the object

surface. The volume integrals thus reduce to integrals over the object surface 𝑆′
and the electric field strength Es due to the surface current density can be
expressed by inserting (2.8) and (2.9) into (2.4), yielding the electric field
integral equation (EFIE):

Es (r) = − 𝑗𝜔𝜇
∬
𝑆′

J(r′)𝐺 (r,r′)d𝑆′ + 1
𝑗𝜔𝜀

grad
(∬
𝑆′

div
(
J(r′)

)
𝐺 (r,r′)d𝑆′

)
.

(2.11)
From this point onward throughout this thesis, J denotes a surface current density
on a PEC object and r′ denotes a point on the object surface, whereas r denotes
a point in space outside of the PEC object.

6In general, the Laplace operator applied to a vector field takes the form given in (5.3). In
Cartesian coordinates 𝑥,𝑦,𝑧, however, this reduces to applying the Laplace operator to each
scalar component of the vector field, decomposing the vector Helmholtz equation into three
independent scalar Helmholtz equations [65].
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As stated above, the impedance operator to be derived links an impressed
electric field with the current density on a PEC surface. In order to connect (2.11)
with the electric field strength Ei of an incident field, the boundary condition of
the electric field strength on a perfectly conducting surface is employed. This
states that the tangential component of the total electric field strength, which
is the superposition of the incident and the radiated or scattered electric field
strength, is zero on the PEC surface [24, 65]:(

Ei (r′) + Es (r′)
)
tan = 0, (2.12)

where tan denotes the component of a vector tangential to a surface. Combining
this equation with (2.11) finally yields the impedance operator 𝑍 [24]:(

Ei (r′)
)
tan = 𝑍J(r′)

=

(
𝑗𝜔𝜇

∬
𝑆′

J(r′′)𝐺 (r′,r′′)d𝑆′′

− 1
𝑗𝜔𝜀

grad
(∬
𝑆′

div
(
J(r′′)

)
𝐺 (r′,r′′)d𝑆′′

))
tan
. (2.13)

In contrast to the EFIE (2.11), the field quantities are evaluated on the object
surface 𝑆′ (primed coordinates). The integration is taken over the object surface 𝑆′
as well, which is distinguished by the double primed coordinates.

If the impressed electric field strength is known, the surface current density
induced on a PEC object can be computed by inverting the impedance operator.
This is usually done numerically by means of the method of moments, as will
be shown in section 2.3. The radiated or scattered fields can then be calculated
in the common way using the EFIE (2.11).

2.2 Theory of Characteristic Modes

Based on the impedance operator 𝑍 given in (2.13), the characteristic modes
can now be defined in a general way by means of the following generalized
eigenvalue problem [24]:

𝑋J𝑛 (r′) = 𝜆𝑛𝑅J𝑛 (r′), (2.14)

where J𝑛 is the 𝑛-th characteristic surface current density and 𝜆𝑛 the correspond-
ing eigenvalue. The linear operators 𝑅 and 𝑋 are the Hermitian parts of the



2.2 Theory of Characteristic Modes 11

complex impedance operator 𝑍 = 𝑅 + 𝑗 𝑋 [24], i.e., 𝑅 is the real part

𝑅J(r′) = 1
2
(
𝑍J(r′) + 𝑍∗J(r′)

)
=

(
𝜔𝜇

∬
𝑆′

J(r′′)
sin

(
𝑘 ∥r′ − r′′∥

)
4𝜋∥r′ − r′′∥ d𝑆′′

+ 1
𝜔𝜀

grad
(∬
𝑆′

div
(
J(r′′)

) sin
(
𝑘 ∥r′ − r′′∥

)
4𝜋∥r′ − r′′∥ d𝑆′′

))
tan
, (2.15)

and 𝑋 is the imaginary part

𝑋J(r′) = 1
2 𝑗

(
𝑍J(r′) − 𝑍∗J(r′)

)
=

(
𝜔𝜇

∬
𝑆′

J(r′′)
cos

(
𝑘 ∥r′ − r′′∥

)
4𝜋∥r′ − r′′∥ d𝑆′′

+ 1
𝜔𝜀

grad
(∬
𝑆′

div
(
J(r′′)

) cos
(
𝑘 ∥r′ − r′′∥

)
4𝜋∥r′ − r′′∥ d𝑆′′

))
tan
, (2.16)

where ∗ denotes complex conjugate. It is obvious that these operators yield a
real result if they are applied to a real surface current density. Therefore, both 𝑅
and 𝑋 are denoted as real operators.

Furthermore, the impedance operator 𝑍 is a symmetric operator due to the
reciprocity theorem [64]. For this reason, its real part 𝑅 and its imaginary
part 𝑋 both are real symmetric operators. In addition, 𝑅 is positive definite,
i.e., the power radiated by a surface current density (cf. (2.20)) is always greater
than 0, regardless of how small it is [24].7 This has the consequence that both
the eigenvalues 𝜆𝑛 and the characteristic surface current densities J𝑛 are real
quantities [24], as derived in appendix C.1.

2.2.1 Orthogonality and Power

As a consequence of their definition according to (2.14), characteristic modes
possess several interesting orthogonality properties. With respect to the charac-
teristic surface current densities, the following orthogonality relationships hold

7For the definitions of real, symmetric, and positive definite operators, refer to appendix C.



12 Theory of Characteristic Modes and Multimode Antenna Design

due to the symmetry of the operators [24]:8〈
J𝑚 (r′), 𝑅J𝑛 (r′)

〉
= 0, (2.17a)〈

J𝑚 (r′), 𝑋J𝑛 (r′)
〉
= 0, (2.17b)〈

J𝑚 (r′), 𝑍J𝑛 (r′)
〉
= 0, (2.17c)

where 𝑚 ≠ 𝑛 and ⟨ · , · ⟩ denotes the inner product as defined in appendix B.
The characteristic surface current densities are orthogonal with respect to the
impedance operator and its Hermitian parts.9

In order to uniquely define the characteristic surface current densities, they
are commonly normalized to radiate unit power, having dimension A/(m

√
W).

This normalization is used throughout this thesis as well, if not stated otherwise.
The orthogonality relationships in (2.17) can then be rewritten as [24]

1
2

〈
J𝑚 (r′), 𝑅J𝑛 (r′)

〉
= 𝛿𝑚𝑛, (2.18a)

1
2

〈
J𝑚 (r′), 𝑋J𝑛 (r′)

〉
= 𝜆𝑛𝛿𝑚𝑛, (2.18b)

1
2

〈
J𝑚 (r′), 𝑍J𝑛 (r′)

〉
=

(
1 + 𝑗𝜆𝑛

)
𝛿𝑚𝑛, (2.18c)

where 𝛿𝑚𝑛 is the Kronecker delta (which yields 1 if 𝑚 = 𝑛 and 0 otherwise). In
the case𝑚 = 𝑛, and due to the absence of any losses, (2.18a) denotes the radiated
power of the 𝑛-th characteristic mode (normalized to unity) and (2.18b) denotes
the reactive power of the 𝑛-th characteristic mode. The normalized complex
power 𝑃𝑛 of the 𝑛-th characteristic mode can thus be written as [67]

𝑃𝑛 =
1
2

〈
J𝑛 (r′), 𝑍J𝑛 (r′)

〉
= 1 + 𝑗𝜆𝑛

=
1
2

〈
J𝑛 (r′), 𝑅J𝑛 (r′)

〉
+ 𝑗 1

2

〈
J𝑛 (r′), 𝑋J𝑛 (r′)

〉
=

1
2

∯
𝑆=𝜕𝑉

(
E𝑛 (r) × H∗

𝑛 (r)
)
dS + 𝑗 𝜔

2

∭
𝑉

(
𝜇


H𝑛 (r)



2 − 𝜀


E𝑛 (r)



2
)
d𝑉.

(2.19)
8A general derivation is given in appendix C.2.
9In contrast, the characteristic surface current densities are in general not directly orthogonal to

each other, see section 2.4.3.
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The last line is derived from the complex Poynting theorem as introduced
in appendix A.5. E𝑛 and H𝑛 are the electric field strength and the magnetic
field strength, respectively, of the 𝑛-th characteristic mode (characteristic fields).
The first integral in the last line is taken over the closed surface 𝑆 = 𝜕𝑉 of
an arbitrary volume 𝑉 completely enclosing the PEC object. It describes the
complex power leaving or entering the volume through its surface.10 The second
integral is taken over the volume 𝑉 . Due to the assumption of simple matter in
section 2.1, the integrand is purely real. The second integral thus denotes the
reactive power within the volume, i.e., it is a measure for the energy storage of
the electromagnetic field.

If the surface 𝑆 is now chosen to be the sphere at infinity 𝑆∞ (far field), the first
integral in the last line of (2.19) is purely real, too, as the electric and magnetic
far fields are in phase [5]. In this special case, the decomposition of the complex
power into real and imaginary part is obvious and the first integral reduces to
the radiated power 𝑃rad,𝑛 of the 𝑛-th characteristic mode [25], which can then
be rewritten in terms of the characteristic electric far field (see appendix A.5):

𝑃rad,𝑛 =
1
2

〈
J𝑛 (r′), 𝑅J𝑛 (r′)

〉
=

1
2

∯
𝑆∞

(
E𝑛 (r) × H∗

𝑛 (r)
)
dS

=
1

2𝑍0

∯
𝑆∞



E𝑛 (r)


2d𝑆 = 1, (2.20)

where 𝑍0 is the wave impedance. The last line can be generalized to any two
combinations of characteristic modes, denoting the mutually radiated power
of two modes (far field correlation). However, due to the orthogonality of
the characteristic modes (2.18a), there is no far field correlation, yielding the
orthogonality relationship of the characteristic far fields [67]:

1
2𝑍0

∯
𝑆∞

(
E∗
𝑚 (r) · E𝑛 (r)

)
d𝑆 =

1
2

〈
J𝑚 (r′), 𝑅J𝑛 (r′)

〉
= 𝛿𝑚𝑛, (2.21)

i.e., the characteristic far fields are always orthogonal to each other. This is one
of the most important properties of characteristic modes and in particular most
suitable for the design of multimode antennas, as will be shown in section 2.4 at
the end of this chapter.

10This power flow is typically associated with an electromagnetic wave.
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2.2.2 Modal Expansion

An arbitrary surface current density J on a given PEC object can now be expressed
as a weighted sum of the characteristic surface current densities J𝑛 [24]:

J(r′) =
∞∑︁
𝑛=1

𝑎𝑛J𝑛 (r′) =
∞∑︁
𝑛=1

𝑉i,𝑛

1 + 𝑗𝜆𝑛
J𝑛 (r′). (2.22)

As the characteristic fields E𝑛 are linearly related to the surface current densities,
the total electric field Es can be expressed in the same way:

Es (r) =
∞∑︁
𝑛=1

𝑎𝑛E𝑛 (r) =
∞∑︁
𝑛=1

𝑉i,𝑛

1 + 𝑗𝜆𝑛
E𝑛 (r). (2.23)

In both equations, 𝑎𝑛 is called the modal weighting coefficient of the 𝑛-th char-
acteristic mode.11 The numerator of the modal weighting coefficient is called
the modal excitation coefficient 𝑉i,𝑛 and it is defined as the inner product of
the 𝑛-th characteristic surface current density J𝑛 and the impressed electric
field strength Ei (e.g., a plane wave) evaluated on the object surface, which is a
measure for the similarity of a characteristic mode and a given excitation:

𝑉i,𝑛 =
1
2

〈
J𝑛 (r′),Ei (r′)

〉
=

1
2

∬
𝑆′

(
J∗𝑛 (r′) · Ei (r′)

)
d𝑆′. (2.24)

The modal weighting coefficient 𝑎𝑛 expresses to what degree a characteristic
mode contributes to the total radiation. This property is also made clear by
the fact that the sum of the squared weighting coefficients is equal to the total
radiated power 𝑃rad, as derived in [67]:

𝑃rad =

∞∑︁
𝑛=1

��𝑎𝑛��2. (2.25)

Based on this, the normalized modal weighting coefficients 𝑏𝑛 are introduced
in [67] in order to express the relative contribution of each mode to the total
radiation and thus allow a better comparison between modes:

𝑏𝑛 =
𝑎𝑛√
𝑃rad

,

∞∑︁
𝑛=1

��𝑏𝑛��2 = 1. (2.26)

11For a detailed derivation, refer to appendix C.4.
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The normalized modal weighting coefficients can also be interpreted as the
correlation coefficients between the total electric far field and the modal electric
far fields [67].

2.2.3 Modal Parameters

The modal weighting coefficients 𝑎𝑛 as defined in (2.22) and (2.23) depend
on the modal excitation coefficients 𝑉i,𝑛 and the eigenvalues 𝜆𝑛. Whereas the
modal excitation coefficient is controlled by the impressed electric field, e.g., an
incident plane wave, the eigenvalue is a modal property independent of any
excitation. It only depends on the geometry of a given PEC object as well
as the frequency and thus expresses the potential of a characteristic mode to
contribute to the total radiation. This potential contribution is maximum if the
eigenvalue is zero (𝜆𝑛 = 0). As the eigenvalue is a measure for the reactive
power of a characteristic mode, this case is called modal resonance (cf. (2.18)
and (2.19)). Consequently, a characteristic mode is said to be inductive if 𝜆𝑛 > 0,
and capacitive if 𝜆𝑛 < 0 [27].12

The range of possible eigenvalues stretches from −∞ to ∞. In order to get a
more compact representation, the modal significance MS𝑛 is introduced [27]:

MS𝑛 =

���� 1
1 + 𝑗𝜆𝑛

���� , (2.27)

which maps the eigenvalues to the range from 0 (𝜆𝑛 → ±∞) to 1 (𝜆𝑛 = 0).
This offers the advantage that a significance criterion can be defined rather
intuitively. Throughout this thesis, a characteristic mode is said to be significant
if MS𝑛 ≥ 1√

2
(−1 ≤ 𝜆𝑛 ≤ 1) [25]. This way, the modal significance even enables

the definition of a modal bandwidth as will be made use of in later chapters.
However, the information on the energy storage of a mode (inductive, capacitive)
is lost. This may be recovered by introducing the characteristic angle 𝛼𝑛 [27]:

𝛼𝑛 = 𝜋 − arctan𝜆𝑛, (2.28)

which corresponds to the phase difference between a characteristic surface current
density and its corresponding characteristic electric field. The characteristic
angle ranges from 90° (𝜆𝑛 → +∞) over 180° (𝜆𝑛 = 0) to 270° (𝜆𝑛 → −∞).

12In general, the eigenvalue is the ratio of reactive power to radiated power of a characteristic mode,
as shown in appendix C.3. Due to the normalization of the radiated power, this reduces to (2.18).
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2.3 Numerical Computation of Characteristic Modes

The computation of characteristic modes requires the solution of a generalized
eigenvalue problem (2.14). This is commonly done numerically by applying
the method of moments (MoM) [68] as presented in [59]. By means of the
MoM, the impedance operator (2.13) is converted into an impedance matrix
so that the eigenvalue problem can be solved using well known matrix algebra.
In the context of characteristic modes, the MoM is thus needed to derive the
impedance matrix of an arbitrary PEC object.

2.3.1 Impedance Matrix

In order to transfer the impedance operator into a matrix, the continuous
surface current density J is approximated by a weighted sum of 𝑁 basis
functions β1,β2, . . . ,β𝑁 [68]:

J(r′) ≈
𝑁∑︁
𝑗=1

𝐼 𝑗β 𝑗 (r′). (2.29)

The basis functions are chosen a priori (see section 2.3.2) and are thus known
so that the current coefficients 𝐼 𝑗 are the unknowns in the usual application of
the MoM. Equation (2.29) is now inserted into (2.13), yielding

(
Ei (r′)

)
tan ≈ 𝑍

( 𝑁∑︁
𝑗=1

𝐼 𝑗β 𝑗 (r′)
)
=

𝑁∑︁
𝑗=1

𝐼 𝑗𝑍β 𝑗 (r′) (2.30)

due to the linearity of the impedance operator. The integrations of the impedance
operator are only taken over the known basis functions β 𝑗 , which are chosen in
such a way that the integrations can be performed numerically.

However, the electric field and the basis functions are still vector-valued
and continuous. In order to discretize these functions, the so-called testing is
performed. Both sides of (2.30) are multiplied by the basis functions forming
an inner product [68]. Using the basis functions for testing is called Galerkin
method and ensures that the impedance matrix is symmetric, which is mandatory
for characteristic mode computation [59]. Testing the left-hand side of (2.30)
with the 𝑖-th basis function β𝑖 yields the 𝑖-th excitation coefficient 𝑉𝑖:

𝑉𝑖 =

〈
β𝑖 (r′),Ei (r′)

〉
. (2.31)
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This is equivalent to sampling the continuous field and projecting it onto the
basis function, i.e., evaluating the tangential component. Likewise, testing the
right-hand side of (2.30) yields〈

β𝑖 (r′),
𝑁∑︁
𝑗=1

𝐼 𝑗𝑍β 𝑗 (r′)
〉
=

𝑁∑︁
𝑗=1

𝐼 𝑗

〈
β𝑖 (r′),𝑍β 𝑗 (r′)

〉
=

𝑁∑︁
𝑗=1

𝐼 𝑗𝑍𝑖 𝑗 . (2.32)

Exploiting the linearity of the inner product shows that the impedance coeffi-
cient 𝑍𝑖 𝑗 is the inner product of the 𝑖-th basis function and the 𝑗-th basis function
transformed by the impedance operator, expressing the mutual coupling between
these functions. Combining (2.31) and (2.32) and performing the testing with
all 𝑁 basis functions yields the following linear system of equations [68]:

𝑉𝑖 =

𝑁∑︁
𝑗=1

𝑍𝑖 𝑗 𝐼 𝑗 , 𝑖 = 1,2, . . . ,𝑁, (2.33)

which can be written conveniently in matrix form:

V = ZI, (2.34)

where

V =

©­­­­­­­«

〈
β1 (r′),Ei (r′)

〉〈
β2 (r′),Ei (r′)

〉
...〈

β𝑁 (r′),Ei (r′)
〉
ª®®®®®®®¬
, I =

©­­­­«
𝐼1
𝐼2
...

𝐼𝑁

ª®®®®¬
, (2.35)

and

Z =

©­­­­­­­«

〈
β1 (r′),𝑍β1 (r′)

〉 〈
β1 (r′),𝑍β2 (r′)

〉
· · ·

〈
β1 (r′),𝑍β𝑁 (r′)

〉〈
β2 (r′),𝑍β1 (r′)

〉 〈
β2 (r′),𝑍β2 (r′)

〉
· · ·

〈
β2 (r′),𝑍β𝑁 (r′)

〉
...

...
. . .

...〈
β𝑁 (r′),𝑍β1 (r′)

〉 〈
β𝑁 (r′),𝑍β2 (r′)

〉
· · ·

〈
β𝑁 (r′),𝑍β𝑁 (r′)

〉
ª®®®®®®®¬
.

(2.36)
Z is the 𝑁 × 𝑁 impedance matrix containing the geometry information of the
underlying PEC object.
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For the numerical computation of characteristic modes, the generalized
eigenvalue equation can now be written in matrix form with Z = R + 𝑗X [59]:

XI𝑛 = 𝜆𝑛RI𝑛, (2.37)

where I𝑛 is the 𝑛-th real eigenvector containing the characteristic current
coefficients which may be used to approximately construct the characteristic
surface current densities according to (2.29).

Accordingly, all equations introduced in section 2.2 containing current densi-
ties and impedance operators can now be written in matrix form. In particular,
the orthogonality relationships (2.18) reduce to [59]

1
2

IT
𝑚RI𝑛 = 𝛿𝑚𝑛, (2.38a)

1
2

IT
𝑚XI𝑛 = 𝜆𝑛𝛿𝑚𝑛, (2.38b)

1
2

IT
𝑚ZI𝑛 =

(
1 + 𝑗𝜆𝑛

)
𝛿𝑚𝑛. (2.38c)

Furthermore, the modal excitation coefficients (2.24) are expressed as a matrix
product using the MoM-excitation vector:

𝑉i,𝑛 =
1
2

IT
𝑛V. (2.39)

These relationships enable the convenient numerical computation of characteris-
tic modes and their derived quantities and parameters in a MoM environment.

2.3.2 Triangular Mesh and RWG Basis Functions

Before applying the method of moments as described above, the PEC object
under consideration needs to be discretized (meshing). A popular discretization
choice is the triangular mesh as it is capable of reproducing any arbitrarily
shaped surface with sufficient accuracy and low complexity [69]. An example
of a meshed rectangular plate is shown in Fig. 2.1(a).

On this mesh, a set of subsectional basis functions has to be defined. A
common and suitable choice are the so-called Rao-Wilton-Glisson (RWG)
basis functions, which are defined on two adjacent triangles (triangle pair) as
exemplarily marked in red in Fig. 2.1(a) and shown in detail in Fig. 2.1(b). The
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Figure 2.1 Triangular mesh and RWG basis function. (a) Triangular mesh of a rectangular plate with one triangle
pair highlighted in red and a group of three overlapping triangle pairs highlighted in yellow/orange. (b) Definition
of one RWG basis function on a triangle pair.

definition of the 𝑖-th RWG basis function is given as follows [69]:

β𝑖 (r′) =


𝑙𝑖

2𝐴+
𝑖

ρ+
𝑖
(r′), r′ ∈ 𝑇+

𝑖

𝑙𝑖
2𝐴−

𝑖
ρ−
𝑖
(r′), r′ ∈ 𝑇−

𝑖

0, otherwise
. (2.40)

The 𝑖-th RWG basis function only exists on the 𝑖-th triangle pair consisting
of the triangle 𝑇+

𝑖
(plus-triangle) and the triangle 𝑇−

𝑖
(minus-triangle). On the

plus-triangle with area 𝐴+
𝑖
, the basis function points from the remote edge,

denoted by r+
𝑖

in Fig. 2.1(b), towards the shared edge with edge length 𝑙𝑖 . The
direction is expressed by the vector ρ+

𝑖
, whose length and direction within the

triangle depend on the position vector r′. On the minus-triangle with area 𝐴−
𝑖
,

in contrast, the basis function points towards the remote edge, denoted by r−
𝑖

in
Fig. 2.1(b). The direction is expressed by the vector ρ−

𝑖
.

From the definition, it is obvious that a basis function has no component
normal to the boundary of the triangle pair it is defined on. This has the
consequence that only one basis function models the current flow over the
corresponding shared mesh edge. In contrast, the current flow within a triangle
is a superposition of up to three basis functions as exemplarily marked in yellow
and orange in Fig. 2.1(a). Furthermore, it is noteworthy that each basis function
is continuous over its shared edge. This has the consequence that all mesh edges
are free of line charges [69].

In addition to the basis functions themselves for modeling the current density
according to (2.29), their divergence is needed as well for discretizing the second
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integral of the impedance operator (2.13). The divergence of the 𝑖-th RWG basis
function is computed as follows [69]:

div
(
β𝑖 (r′)

)
=


𝑙𝑖
𝐴+
𝑖

, r′ ∈ 𝑇+
𝑖

− 𝑙𝑖
𝐴−
𝑖
, r′ ∈ 𝑇−

𝑖

0, otherwise
. (2.41)

The divergence of a basis function is proportional to the surface charge density
and it is constant in each triangle. The total charge of the plus- and the minus
triangle, respectively, is therefore the same with opposite sign so that the total
charge of a triangle pair is zero. One triangle pair with RWG basis function can
thus be interpreted as a small electric dipole.

2.3.3 Delta-Gap Source

During the work flow of multimode antenna design, at some point after the
modal analysis it will be necessary to define excitations. In a first step, it would be
desirable to have exciters which do not alter the PEC object under consideration
in order to evaluate the coupling to the characteristic modes, e.g., by means of
the modal weighting coefficients (2.22). For this purpose, delta-gap sources are
ideally suited as they are compatible with the RWG basis functions and do not
require any modifications of the given PEC object.

The delta-gap source is defined by introducing a gap with a small width Δ

within the PEC object. This way, two terminals are created across which an ideal
voltage source with voltage𝑈 is connected [70], as shown in Fig. 2.2(a). This is
most easily understood if an electric dipole antenna is envisioned.

Due to the small gap size, the electric field strength Ei within the gap is
assumed to be uniform and can thus be written as [70]

Ei =
𝑈

Δ
e𝑦 (2.42)

with respect to the coordinate system chosen in Fig. 2.2, where e𝑦 denotes
the unit vector in 𝑦-direction. If the gap width tends to zero, the electric field
strength can be expressed using the Dirac delta function 𝛿:

Ei = 𝑈𝛿(𝑦′)e𝑦 . (2.43)

Integrating the electric field strength over the gap width yields the voltage 𝑈
applied across the terminals, as required.
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Figure 2.2 Delta-gap source. (a) Feeding edge model. (b) Feeding edge as part of triangular mesh and RWG
basis function.

The mesh for the method of moments is now created in such a way that the
delta-gap source coincides with the 𝑖-th mesh edge of length 𝑙𝑖 , as depicted in
Fig. 2.2(b). Using (2.31), the 𝑖-th MoM excitation coefficient𝑉𝑖 can be computed
explicitly [70]. With respect to the coordinate system in Fig. 2.2, this yields

𝑉𝑖 =

∬
𝑆′

(
β𝑖 (r′) · Ei (r′)

)
d𝑆′ =

𝑙𝑖/2∫
−𝑙𝑖/2

∞∫
−∞

(
β𝑖 (𝑥 ′,𝑦′) ·𝑈𝛿(𝑦′)e𝑦

)
d𝑦′d𝑥 ′

=

𝑙𝑖/2∫
−𝑙𝑖/2

𝛽𝑖,𝑦 (𝑦′ = 0)𝑈d𝑥 ′ = 𝑈𝑙𝑖 . (2.44)

In this derivation, it is exploited that the RWG basis function is zero outside
of the 𝑖-th triangle pair and its component normal to the edge (here: 𝛽𝑖,𝑦) is
constant and unity [69]. The MoM excitation vector V can thus be simplified to

V = 𝑈𝑙𝑖
(
0, · · · ,0,1,0, · · · ,0

)T
, (2.45)

where only the 𝑖-th component is unequal to 0. This concept can easily be
generalized to more than one delta-gap source, as will be made extensive use of
throughout this thesis.
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2.3.4 Practical Considerations

The modal analyses in this thesis are conducted using a characteristic mode
computation (CMC) software developed at the Institute of Microwave and
Wireless Systems of Leibniz University Hannover. This software is implemented
in MATLAB [71]. It is based on the MoM MATLAB code presented in [70].
This code is modified by advanced computational techniques introduced in [72]
in order to enhance the accuracy of the calculation of the impedance matrix.
The eigenvalue problem is solved by means of built-in MATLAB functions. In
this subsection, some practical considerations regarding the characteristic mode
computation are discussed.

The CMC software possesses a built-in meshing algorithm based on the
Delaunay triangulation [73] in order to create the triangular mesh and introduce
the RWG basis functions. In [25], it is recommended for characteristic mode
analyses to choose the mesh density in such a way that the maximum edge length
occurring in the mesh is less than 1

15 of the smallest wavelength to be considered.
Throughout this thesis, the mesh density is set such that the maximum edge
length does not exceed 1

20 of the smallest wavelength. This is primarily done in
order to obtain accurate surface current densities.

For the numerical computation of characteristic modes, it is beneficial to
restrict the number of modes to be taken into account [62]. This is motivated by
the fact that there is usually only a limited number of modes which contribute
significantly to the modal expansion (cf. section 2.2.2). Throughout this thesis,
only modes with an eigenvalue |𝜆𝑛 | ≤ 100 are taken into account. This restriction
has been found to be sufficient so that (2.26) is fulfilled approximately.

The generalized eigenvalue problem (2.14) defining characteristic modes is
frequency dependent. It can only be solved at single frequency points. If a range
of frequencies is of interest, the eigenvalue problem has to be solved at each
frequency point within the range independently [25]. The aim of eigenvalue
tracking is to relate the characteristic modes at different frequency points such
that the eigenvalue curves are reasonably smooth, i.e., there are no discontinuities,
and characteristic surface current densities do not change abruptly.

Several tracking algorithms are presented in the literature. An overview is
provided in [62]. The correlation-based tracking introduced therein is used
by the CMC software. It correlates the characteristic currents at two adjacent
frequency points setting up a correlation matrix. Those mode pairs with highest
correlation each are assigned the same mode index and are thus considered the
same mode over frequency. This procedure is repeated for all frequency points.
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The correlation-based tracking algorithm is generally very robust. However,
it suffers from the presence of degenerate modes [62]. This problem will be
revisited in section 4.2.

2.4 Multimode Antenna Design

In section 2.2, it was shown that the characteristic modes of an arbitrary PEC
object possess particular orthogonality properties. Especially, the far fields of the
characteristic modes (characteristic far fields) are orthogonal to each other (2.21).
As discussed in section 1, this is an interesting property for MIMO applications.
If it is possible to selectively excite different characteristic modes with different
antenna ports, a diversity antenna with uncorrelated (orthogonal) antenna ports
can be realized. This is the basic goal of multimode antenna design.13

2.4.1 Selective Excitation of Characteristic Modes

According to (2.22) and (2.23), the total surface current density and the total
radiated field are weighted sums of characteristic modes. Throughout this thesis,
a characteristic mode is said to be excited if it contributes to these weighted
sums. In order to achieve antenna diversity, it would be desirable that an antenna
port excites only a limited set of characteristic modes (ideally only one mode)
whose weighting coefficients are unequal to zero. In short terms, this is called
“selective excitation of characteristic modes” [41].

A basic measure of the correlation between two antenna ports is the envelope
correlation coefficient (ECC). The ECC between the 𝑢-th and the 𝑣-th antenna
port of a multimode antenna ECC𝑢𝑣 is computed as follows [67]:

ECC𝑢𝑣 =

1
2𝑍0

∯
𝑆∞

(
E∗
𝑢 (r) · E𝑣 (r)

)
d𝑆√︁

𝑃rad,𝑢
√︁
𝑃rad,𝑣

, (2.46)

where E𝑢;𝑣 denotes the total electric far field radiated by the 𝑢-th and the
𝑣-th antenna port, respectively. The integration is taken over the sphere at
infinity 𝑆∞ (far field). 𝑃rad,𝑢;𝑣 denotes the total radiated power of the 𝑢-th and
the 𝑣-th antenna port, respectively. The ECC is a measure of how much power is
radiated by the 𝑢-th antenna port if the 𝑣-th port is driven. If 𝑢 = 𝑣, it yields 1
due to the normalization.
13The following publications are related to the content of this section: [PM18a] (© 2018 IET),

[PM19b] (© 2019 IEEE), and [JPHM20a] (© 2020 IEEE).
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The total radiated far fields in (2.46) can be expanded in terms of characteristic
modes (2.23):

ECC𝑢𝑣 =

1
2𝑍0

∯
𝑆∞

(∑∞
𝑚=1 𝑎

∗
𝑚,𝑢E∗

𝑚 (r) ·
∑∞

𝑛=1 𝑎𝑛,𝑣E𝑛 (r)
)
d𝑆√︁

𝑃rad,𝑢
√︁
𝑃rad,𝑣

. (2.47)

It is noted that the excitation information is completely represented by the
modal weighting coefficients 𝑎𝑚,𝑢 and 𝑎𝑛,𝑣 of the 𝑢-th and the 𝑣-th antenna port,
respectively, as the characteristic far fields themselves are independent of any
excitation. Due to the linearity of the integration, (2.47) can be rearranged:

ECC𝑢𝑣 =

∑∞
𝑚=1

∑∞
𝑛=1 𝑎

∗
𝑚,𝑢𝑎𝑛,𝑣

1
2𝑍0

∯
𝑆∞

(
E∗
𝑚 (r) · E𝑛 (r)

)
d𝑆√︁

𝑃rad,𝑢
√︁
𝑃rad,𝑣

. (2.48)

Exploiting the orthogonality of characteristic far fields (2.21), this reduces to

ECC𝑢𝑣 =

∑∞
𝑚=1

∑∞
𝑛=1 𝑎

∗
𝑚,𝑢𝑎𝑛,𝑣𝛿𝑚𝑛√︁

𝑃rad,𝑢
√︁
𝑃rad,𝑣

, (2.49)

which is unequal to zero only if 𝑚 = 𝑛:

ECC𝑢𝑣 =

∑∞
𝑛=1 𝑎

∗
𝑛,𝑢𝑎𝑛,𝑣√︁

𝑃rad,𝑢
√︁
𝑃rad,𝑣

=

∞∑︁
𝑛=1

𝑏∗𝑛,𝑢𝑏𝑛,𝑣, (2.50)

where 𝑏𝑛,𝑢;𝑣 are the normalized modal weighting coefficients of the 𝑢-th and the
𝑣-th antenna port, respectively, as defined in (2.26). Equation (2.50) demonstrates
the fact that two antenna ports are orthogonal if they excite mutually exclusive
sets of characteristic modes, i.e., 𝑏𝑛,𝑢 = 0 if 𝑏𝑛,𝑣 ≠ 0 and vice versa, and hence
confirms the statements given above.

The aim of multimode antenna design for MIMO is thus to realize antenna
ports that excite mutually exclusive sets of characteristic modes. In order to
achieve this aim, it is necessary to evaluate the requirements for a characteristic
mode to contribute significantly to the total radiation. To this end, the modal
weighting coefficients in (2.22) and (2.23) need to be inspected more closely.
There are basically two criteria that have to be fulfilled so that a characteristic
mode contributes significantly.

The necessary criterion is that a characteristic mode needs to be significant,
i.e., its modal significance must be greater than or equal to 1√

2
, as introduced in
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section 2.2.3. This ensures that the mode offers the potential to contribute signif-
icantly. The sufficient criterion is then that the excitation couples adequately to
the mode, which is measured by means of the modal excitation coefficient (2.24).
Obviously, if the exciting field is orthogonal to the characteristic surface current
density, the excitation coefficient is zero and the mode does not contribute to the
total radiation. However, finding an excitation consisting of a limited number
of field sources such that the mode contributes significantly is not that obvious
and is usually done by manually inspecting the characteristic surface current
densities, as demonstrated in the following subsections.

2.4.2 State-of-the-Art Design Work Flow

Having laid the foundations of multimode antenna design, the state-of-the-art
design work flow as reported in the literature is now reviewed by means of an
example. A rectangular PEC plate with dimensions 120 mm × 60 mm as shown
in Fig. 2.3 is chosen as a simple model for a typical smart phone chassis, which
shall be used as a multimode antenna for MIMO applications by selectively
exciting characteristic modes [43].

x

y

120 mm

6
0

 m
m

PEC

Figure 2.3 Rectangular PEC plate and coordinate system. © 2018 IET [PM18a].

The design process starts with a characteristic mode analysis. As a first step,
the modal parameters should be evaluated (section 2.2.3). To this end, the
eigenvalues and the modal significances of the rectangular PEC plate are shown
in Fig. 2.4 from 1 GHz to 6 GHz. With these plots, it is possible to decide which
modes are available for potential excitation as a function of frequency. The region
where modes are considered significant is marked by the black dashed lines. For
the rectangular plate, it is observed that each mode enters the significance region
at a specific frequency and then stays significant. In particular, the number of
significant modes increases with increasing frequency.
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(a) (b)

Figure 2.4 Modal parameters of rectangular PEC plate over frequency. Significance region denoted by black
dashed lines. (a) Eigenvalues. (b) Modal significances.

Figure 2.5 Modal significances of rectangular PEC plate at 2.5 GHz. Modes sorted according to their significance.
Modes are considered significant if their modal significance is greater than 1√

2
≈ 0.71.

It is now supposed that the operating frequency is chosen to be 2.5 GHz.
The modes can then be sorted according to their significance at that fre-
quency, yielding the significance plot in Fig. 2.5. It is clearly visible that
there are four significant modes which have the potential to contribute sig-
nificantly to the radiation. The corresponding surface current densities are
shown in Fig. 2.6. Interestingly, they are reminiscent of current modes of
fundamental antenna types. Mode 1 (Fig. 2.6(a)) is similar to a full-wave
dipole mode. Mode 2 (Fig. 2.6(b)), in contrast, has a differential mode behavior.
Modes 3 (Fig. 2.6(c)) and 4 (Fig. 2.6(d)), finally, can be considered as half-wave
dipole modes over the long and the short edge, respectively.

Based on these characteristic surface current densities, antenna ports can now
be defined. Delta-gap sources (section 2.3.3) are placed on the plate and driven
in such a way that the resulting ports reproduce the above-described current
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4
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Figure 2.6 Normalized surface current densities of significant characteristic modes of rectangular PEC plate
at 2.5 GHz. Principal current directions denoted by arrows. (a)–(d) Modes 1 to 4 as sorted in Fig. 2.5. (e) Color bar.
© 2020 IEEE [JPHM20a].

(a) Port 1 (b) Port 2 (c) Port 3 (d) Port 4

Figure 2.7 Port configuration on rectangular PEC plate. Positions of delta-gap sources denoted by black lines
and voltage directions denoted by arrows. (a)–(d) Ports 1 to 4. © 2020 IEEE [JPHM20a].

characteristics. One possible solution is shown in Fig. 2.7. Port 1 (Fig. 2.7(a)), for
example, is designed to excite mode 1 (Fig. 2.6(a)). It consists of four delta-gap
sources which are driven simultaneously with the same amplitude. The relative
phases (voltage directions) between the delta-gap sources are denoted by the
arrows. As intended, this configuration corresponds to the principal current
directions of mode 1. In the same way, ports 2, 3, and 4 (Fig. 2.7(b)–(d)) are
designed to excite modes 2, 3, and 4 (Fig. 2.6(b)–(d)), respectively.

The effectiveness of the chosen port configuration can now be evaluated by
means of the normalized modal weighting coefficients (2.26), which are depicted
in Fig. 2.8(a). As intended, the antenna ports excite the respective modes to a
high degree. However, non-significant modes are also excited to some extent.
Nevertheless, each port excites a different set of modes. In subsection 2.4.1, this
was found to be a prerequisite for a good multimode antenna design. Indeed,
the antenna ports are uncorrelated as demonstrated by the ECC in Fig. 2.8(b)
calculated according to (2.46). This is due to the fact that the antenna ports
excite mutually exclusive sets of characteristic modes.
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(a) (b)

Figure 2.8 Excitation parameters of rectangular PEC plate at 2.5 GHz with port configuration according to
Fig. 2.7. (a) Normalized modal weighting coefficients. (b) Envelope correlation coefficients.

The next design step would be to replace the delta-gap sources by practical
excitation structures (coupling elements) [42] and perform impedance matching.
Furthermore, a feed network is necessary in order to distribute the input signals
of the antenna ports to the respective coupling elements on the antenna with
the correct amplitude and phase relations [74]. These steps are not focused here
and will be postponed to chapter 6. The basic steps of the design work flow are
summarized as follows:

1. Conduct a modal analysis yielding characteristic surface current densities
and eigenvalues.

2. Evaluate the modal parameters and identify significant modes.

3. Evaluate the corresponding characteristic surface current densities in
order to derive suitable port configurations.

4. Check the antenna ports by means of the modal weighting coefficients.

5. Implement the coupling elements and, if required, the feed network.

It may be necessary to repeat steps 3 and 4 with different port configurations in
order to determine a suitable antenna setup iteratively.

The important design step for MIMO applications is the placement of the delta-
gap sources forming the antenna ports. This has been done here intuitively by
inspecting the characteristic surface current densities, yielding four orthogonal
antenna ports. The following example will show that this intuitive approach is
limited and a systematic design procedure is necessary.
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2.4.3 Towards More Antenna Ports

In the previous subsection, an idealized four-port multimode antenna has been
designed. The simple question arises how more orthogonal antenna ports may
be realized. An obvious answer to this question might be to increase the number
of significant characteristic modes. This approach is followed now.

Figure 2.9 Modal significances of rectangular PEC plate at 7.25 GHz. Modes sorted according to their
significance. Only the significant modes are taken into account for the sake of conciseness. © 2018 IET [PM18a].

Again, the rectangular PEC plate in Fig. 2.3 is considered. The modal
analysis in Fig. 2.4 has shown that with increasing frequency the number of
significant modes increases. It is now supposed that the ultra-wide frequency
range from 6 GHz to 8.5 GHz is of interest (section 1.1) [52,54]. To get a first
impression of how many modes are significant in this frequency band, the
modal significances are evaluated at the center frequency 7.25 GHz, as shown
in Fig. 2.9. A total of 28 modes are significant. If it were possible to excite all
these modes separately, a huge diversity potential could be exploited.

Following the work flow presented in the previous subsection, the characteristic
surface current densities as depicted in Fig. 2.10 are inspected. Compared to
those shown in Fig. 2.6, the current distributions are now rather complex and
difficult to interpret. In particular, it proves intricate to place delta-gap sources in
such a way that only certain desired modes are excited. Obviously, the intuitive
design approach is not adequate to tackle this problem.

However, a closer inspection of Fig. 2.10 reveals that several characteristic
surface current densities exhibit certain qualitative similarities, e.g., with respect
to the distribution of nulls and maxima. It is thus purposeful to group the
characteristic modes according to such similarities. A fundamental classification
can be carried out based on the symmetry properties of the characteristic surface
current densities. By examining the current densities in Fig. 2.10, it is found
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

(u) Mode 21 (v) Mode 22 (w) Mode 23 (x) Mode 24

(y) Mode 25 (z) Mode 26 (aa) Mode 27 (ab) Mode 28

Figure 2.10 Normalized surface current densities of significant characteristic modes of rectangular PEC plate
at 7.25 GHz. Principal current directions denoted by arrows. Color bar in Fig. 2.6(e). (a)–(ab) Modes 1 to 28 as
sorted in Fig. 2.9.
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Set Symmetry Modes Port

1
Reflection about 𝑥-axis
Reflection about 𝑦-axis
Rotation about 𝑧-axis

4, 5, 12, 16, 19, 22, 25 1

2 Rotation about 𝑧-axis 3, 8, 9, 13, 17, 24, 27 2

3 Reflection about 𝑥-axis 2, 7, 10, 15, 18, 21, 26 3

4 Reflection about 𝑦-axis 1, 6, 11, 14, 20, 23, 28 4

Table 2.1 Grouping of significant characteristic modes of rectangular PEC plate at 7.25 GHz according to their
symmetry properties with respect to coordinate system in Fig. 2.3. © 2018 IET [PM18a].

Figure 2.11 Characteristic current correlation coefficients of rectangular PEC plate at 7.25 GHz computed
according to (2.51). © 2018 IET [PM18a].

that some modes possess reflection symmetry about the 𝑥-axis, some possess
reflection symmetry about the 𝑦-axis, some possess rotational symmetry about
the 𝑧-axis, and some possess all three symmetries with respect to the coordinate
system in Fig. 2.3. It should be noted that these are exactly the symmetry
operations that leave the rectangular plate invariant. The symmetry properties
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Figure 2.12 Normalized modal weighting coefficients of rectangular PEC plate at 7.25 GHz with port configura-
tion according to Fig. 2.7. © 2018 IET [PM18a].

of the 28 significant characteristic modes are summarized in Table 2.1 and the
modes are grouped accordingly into four sets.

In order to investigate whether the characteristic surface current densities of
these sets are somehow related, the current correlation coefficient 𝜚𝑚𝑛 between
the 𝑚-th and the 𝑛-th characteristic surface current density is defined:

𝜚𝑚𝑛 =

〈
J𝑚 (r′),J𝑛 (r′)

〉〈
J𝑚 (r′),J𝑚 (r′)

〉〈
J𝑛 (r′),J𝑛 (r′)

〉 . (2.51)

The characteristic current correlation coefficients computed this way are shown
in Fig. 2.11. It is observed that the characteristic surface current densities
belonging to the same set, i.e., possessing the same symmetry, are correlated,
whereas those belonging to different sets are apparently orthogonal to each other.

At this point, it is noted that the antenna ports defined in Fig. 2.7 can also be
distinguished by their symmetry properties. Accordingly, they are also listed
in Table 2.1. These ports are now used on the rectangular plate at 7.25 GHz.
The evaluation of the normalized modal weighting coefficients in Fig. 2.12
reveals that each port only excites modes which belong to the same set as the
port. On the one hand, this is a positive result for multimode antenna design
as the antenna ports are again uncorrelated, as shown in Fig. 2.13. Exploiting
symmetries may be a possible way towards a systematic design procedure. On
the other hand, all 28 significant modes are to some extent in use, leaving no
further degree of freedom for realizing a fifth uncorrelated antenna port. Bearing
in mind Fig. 2.8(a), even non-significant modes are affected. Apparently, no
more than four uncorrelated antenna ports may be realized on a rectangular
plate. However, some modes in Fig. 2.12 are only weakly excited. This is due to
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Figure 2.13 Envelope correlation coefficients of rectangular PEC plate at 7.25 GHz with port configuration
according to Fig. 2.7. © 2018 IET [PM18a].

the actual port implementation. It may thus be possible to define further antenna
ports that are not perfectly uncorrelated, but only weakly correlated.

This last example has shown that the characteristic modes seem to be funda-
mentally governed by the symmetry of the underlying PEC object. In particular,
this relationship has obviously direct consequences on multimode antenna
design. Therefore, the theory of symmetry and its connection to the theory of
characteristic modes will be investigated more closely in the following chapters.





3 Theory of Symmetry

A symmetry operation is a transformation which maps an arbitrary geometric
object onto itself. In other words, such an operation leaves the object unaltered
or invariant. Mathematically, symmetry operations are described as coordinate
transformations. Those transformations that leave a specific object invariant
form the so-called symmetry group of that object [57].

This chapter is intended to present the fundamental concepts of the theory
of symmetry. To this end, first, the basics of coordinate transformations are
recapped. After that, the mathematical concept of group theory is introduced. It
is then shown how group theory is used to describe symmetry (symmetry group).
Based on this, advanced topics, in particular representation theory, are discussed
in order to establish a connection to the theory of characteristic modes. The final
goal of this chapter is to derive general properties of characteristic modes which
are governed by the symmetry group of the underlying PEC object.14

3.1 Coordinate Transformations

Coordinate transformations are the basic elements of a symmetry group. There-
fore, it is necessary to introduce the nomenclature of coordinate transformations
and explain how to work with them.

3.1.1 Symbolic Notation

Throughout this thesis, the Schoenflies notation will be employed [75]. If objects
of finite extent are considered, as is typical of antenna problems, there are two
basic types of coordinate transformations [57]: The rotation about an axis and
the reflection through a plane.

A rotation about an axis by an angle 2𝜋
𝓃

, where 𝓃 is a positive integer, is
denoted by𝐶𝓃 [57]. This operation may be repeated𝓅 times, which is written as
an exponentiation𝐶𝓅𝓃 . The case𝓅 = 𝓃 yields the identity transformation 𝐸 = 𝐶𝓃

𝓃
.

As an example, the rotation by 90° ( 2𝜋
4 ) is considered. Its symbol is𝐶4. Repeating

14The following publications are related to the content of this chapter: [PM19b] (© 2019 IEEE),
[PHM21] (© 2021 IEEE).
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this operation two times yields the rotation 𝐶2
4 = 𝐶2 by 180°. Repeating the

operation three times yields the rotation 𝐶3
4 by 270°, which is equal to the

rotation 𝐶−1
4 by −90°. Repeating the operation four times yields the rotation 𝐶4

4
by 360°, which finally is equal to the identity transformation 𝐸 .

A reflection through a plane is denoted by 𝜎 [57]. Performing a reflection
twice through the same plane is equal to the identity transformation 𝜎2 = 𝐸 .
Performing a rotation𝐶𝓃 about an axis by an angle 2𝜋

𝓃
followed by a reflection𝜎h

through a plane perpendicular to the rotation axis is called a rotary reflection or
rotoreflection 𝑆𝓃 [57]:15

𝑆𝓃 = 𝐶𝓃𝜎h = 𝜎h𝐶𝓃. (3.1)

As a special case, the rotation by 180° yields the spatial inversion operator 𝐼
(point reflection):

𝐼 = 𝑆2 = 𝐶2𝜎h = 𝜎h𝐶2. (3.2)
Any reflection can thus also be expressed as a combination of the inversion and
the rotation by 180° about the axis normal to the reflection plane [57]:

𝜎h = 𝐼𝐶−1
2 = 𝐼𝐶2 = 𝐶−1

2 𝐼 = 𝐶2𝐼 . (3.3)

Combining (3.1) and (3.3), any rotoreflection 𝑆𝓃 can also be written in terms of
two rotations about the same axis and the inversion:

𝑆𝓃 = 𝐼𝐶2𝐶𝓃. (3.4)

All coordinate transformations can be expressed as combinations of rotations
and the inversion, which will be exploited in the following subsection.

3.1.2 Rotation Matrices

All coordinate transformations symbolically introduced above have in common
that at least one point in a real three-dimensional Euclidian space R3 is left
invariant. The coordinate system is usually chosen such that this point is the
coordinate origin. An arbitrary coordinate transformation𝑇 can then be explicitly
expressed by a corresponding orthogonal rotation matrix R(𝑇) [75]:

R(𝑇) = ©­«
𝑅11 (𝑇) 𝑅12 (𝑇) 𝑅13 (𝑇)
𝑅21 (𝑇) 𝑅22 (𝑇) 𝑅23 (𝑇)
𝑅31 (𝑇) 𝑅32 (𝑇) 𝑅33 (𝑇)

ª®¬ , with R−1 (𝑇) = RT (𝑇). (3.5)

15The application of several coordinate transformations in succession is written as a product,
e.g., in (3.1). By convention, the operator on the right acts first in this notation [75]. In general,
coordinate transformations are not commutative so that the order of operations is of importance.
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If the original coordinates are denoted by r = (𝑥,𝑦,𝑧)T, the transformed coordi-
nates r̃ = (𝑥,𝑦̃,𝑧)T are computed as follows [75]:

r̃ = R(𝑇)r. (3.6)

The rotations 𝐶𝓃 are called proper rotations as the determinant of the
corresponding rotation matrices is equal to 1 [75]. For a rotation by 2𝜋

𝓃
about

an arbitrary axis through the origin whose direction is denoted by the unit
vector n = (𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧)T, the elements of the rotation matrix in (3.5) are [75]:

𝑅11 (𝐶𝓃) = 𝑛2
𝑥

(
1 − cos

2𝜋
𝓃

)
+ cos

2𝜋
𝓃
, (3.7a)

𝑅12 (𝐶𝓃) = 𝑛𝑥𝑛𝑦
(
1 − cos

2𝜋
𝓃

)
+ 𝑛𝑧 sin

2𝜋
𝓃
, (3.7b)

𝑅13 (𝐶𝓃) = 𝑛𝑥𝑛𝑧
(
1 − cos

2𝜋
𝓃

)
− 𝑛𝑦 sin

2𝜋
𝓃
, (3.7c)

𝑅21 (𝐶𝓃) = 𝑛𝑦𝑛𝑥
(
1 − cos

2𝜋
𝓃

)
− 𝑛𝑧 sin

2𝜋
𝓃
, (3.7d)

𝑅22 (𝐶𝓃) = 𝑛2
𝑦

(
1 − cos

2𝜋
𝓃

)
+ cos

2𝜋
𝓃
, (3.7e)

𝑅23 (𝐶𝓃) = 𝑛𝑦𝑛𝑧
(
1 − cos

2𝜋
𝓃

)
+ 𝑛𝑥 sin

2𝜋
𝓃
, (3.7f)

𝑅31 (𝐶𝓃) = 𝑛𝑧𝑛𝑥
(
1 − cos

2𝜋
𝓃

)
+ 𝑛𝑦 sin

2𝜋
𝓃
, (3.7g)

𝑅32 (𝐶𝓃) = 𝑛𝑧𝑛𝑦
(
1 − cos

2𝜋
𝓃

)
− 𝑛𝑥 sin

2𝜋
𝓃
, (3.7h)

𝑅33 (𝐶𝓃) = 𝑛2
𝑧

(
1 − cos

2𝜋
𝓃

)
+ cos

2𝜋
𝓃
. (3.7i)

The matrix is defined in such a way that the coordinate system is rotated
counterclockwise for positive angles. In Fig. 3.1, this is illustrated for a rotation
about the 𝑧-axis. Adopting the example from above, the rotation 𝐶4𝑧 by 90°
about the 𝑧-axis (𝓃 = 4, n = e𝑧 = (0,0,1)T) is expressed by the rotation matrix

R(𝐶4𝑧) =
©­«

0 1 0
−1 0 0
0 0 1

ª®¬ . (3.8)

Hence, the transformed coordinates expressed in terms of the original coordinates
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Figure 3.1 Rotation of coordinate system by 2𝜋
𝓃

about the 𝑧-axis.
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Figure 3.2 Rotation by 90° about the 𝑧-axis. (a) Original coordinate system and vector. (b) Fixed vector,
coordinate system rotated counterclockwise. (c) Vector rotated clockwise, fixed coordinate system.

are computed in the following way:

©­«
𝑥

𝑦̃

𝑧

ª®¬ =
©­«

0 1 0
−1 0 0
0 0 1

ª®¬ ©­«
𝑥

𝑦

𝑧

ª®¬ =
©­«
𝑦

−𝑥
𝑧

ª®¬ ,
i.e., the new 𝑥-axis corresponds to the original 𝑦-axis and the new 𝑦̃-axis points
in negative 𝑥-direction, whereas the new 𝑧-axis is identical to the original 𝑧-axis.

Due to the counterclockwise rotation of the coordinate system, an arbi-
trary vector v appears to rotate clockwise. As an example, it is supposed
that v = (1,1,0)T (Fig. 3.2(a)). Applying the rotation matrix yields

ṽ =
©­«

0 1 0
−1 0 0
0 0 1

ª®¬ ©­«
1
1
0

ª®¬ =
©­«

1
−1
0

ª®¬ .
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This result can be interpreted in two ways: The vector remains fixed and the
coordinate system is rotated by +90° about the 𝑧-axis, as illustrated in Fig. 3.2(b),
or the vector is rotated by−90° about the 𝑧-axis and the coordinate system remains
fixed, as illustrated in Fig. 3.2(c). Both interpretations are equivalent [76, 77]
and some care must be taken when implementing, evaluating, and interpreting
coordinate transformations. The second interpretation is useful for comparing the
effects of different coordinate transformations with respect to a fixed reference
and will be adopted throughout this thesis.

Reflections, rotoreflections, and the inversion are summarized as improper
rotations as the determinant of their respective rotation matrices is equal
to −1 [75]. In order to compute the rotation matrices of the improper rotations,
the rotation matrix of the inversion should be introduced first [75]:

R(𝐼) = ©­«
−1 0 0
0 −1 0
0 0 −1

ª®¬ = −E, (3.9)

where E is the identity matrix. This rotation matrix simply states that every
point is inverted, i.e., r̃ = −r. Now, it is exploited that the rotation matrix of the
product of two coordinate transformations 𝑇1 and 𝑇2 can be written as a matrix
multiplication [75]:16

R(𝑇1𝑇2) = R(𝑇1)R(𝑇2). (3.10)

Taking into account (3.3), the rotation matrix of a reflection can thus be expressed
as the product of the rotation matrices of the rotation by 180° about the axis
normal to the reflection plane and the inversion:

R(𝜎h) = R(𝐼𝐶2) = R(𝐶2𝐼) = R(𝐼)R(𝐶2) = R(𝐶2)R(𝐼). (3.11)

As an example, the reflection 𝜎𝑥𝑦 through the 𝑥𝑦-plane is considered. The
normal axis is the 𝑧-axis so that the rotation𝐶2𝑧 is needed, whose rotation matrix
is computed using (3.7). The rotation matrix of 𝜎𝑥𝑦 is therefore

R(𝜎𝑥𝑦) = R(𝐼)R(𝐶2𝑧) = ©­«
−1 0 0
0 −1 0
0 0 −1

ª®¬ ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬ =
©­«
1 0 0
0 1 0
0 0 −1

ª®¬ .
16In general, 𝑇1𝑇2 ≠ 𝑇2𝑇1. Consequently, R(𝑇1)R(𝑇2) ≠ R(𝑇2)R(𝑇1) [75].
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In the same manner, the rotation matrix of the rotoreflection 𝑆4𝑧 by 90° about
the 𝑧-axis can now be computed using either (3.1) or (3.4):

R(𝑆4𝑧) = R(𝜎𝑥𝑦)R(𝐶4𝑧) = ©­«
1 0 0
0 1 0
0 0 −1

ª®¬ ©­«
0 1 0
−1 0 0
0 0 1

ª®¬ =
©­«

0 1 0
−1 0 0
0 0 −1

ª®¬ .
Consequently, the rotation matrices of all proper and improper rotations can be
readily computed in a systematic way. As will become apparent throughout this
chapter, the rotation matrices are the basic building blocks of most symmetry-
related operations to be introduced.

3.1.3 Transformation Operators

So far, the transformation of the coordinate system has been discussed. When
working with characteristic modes, it will be of particular interest how the
characteristic surface current densities are affected by a transformation of the
coordinate system. It is therefore necessary to describe the transformation of a
function under a coordinate transformation.

If an arbitrary scalar function 𝑓 (r′) : R3 → C is considered,17 the transformed
function 𝑓 (r′) due to a coordinate transformation 𝑇 is written as [75]

𝑓 (r′) = 𝑃(𝑇) 𝑓 (r′) = 𝑓
(
R−1 (𝑇)r′

)
. (3.12)

If instead a vector-valued function f (r′) =
(
𝑓𝑥 (r′), 𝑓𝑦 (r′), 𝑓𝑧 (r′)

)T : R3 → C3 is
considered, the transformed function f̃ (r′) is expressed by

f̃ (r′) = 𝑃(𝑇)f (r′) = R(𝑇)f
(
R−1 (𝑇)r′

)
. (3.13)

In both cases, 𝑃(𝑇) is called the transformation operator of the coordinate
transformation 𝑇 operating on the function 𝑓 or f, respectively [75].18 The
corresponding rotation matrix and its inverse (transpose) are the basic building
blocks of this operator. In particular, the inverse of the rotation matrix R−1 effects
17The primed coordinate vector r′ is used in conjunction with transformation operators as the

functions to be operated on throughout this thesis are restricted to a geometric object, e.g., a
surface current density on a PEC object.

18In this thesis, the symbol 𝑃 is used interchangeably for both (3.12) and (3.13). This is mirrored
by the fact that all operations based on transformation operators to be introduced in this chapter
can be applied to both scalar and vector-valued functions. The distinction becomes clear from
the context, i.e., the type of function being operated on.
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Figure 3.3 Transformation operator of rotation 𝐶4𝑧 applied to vector-valued function. (a) Original func-
tion f (r′) = |𝑥′ |e𝑥 . (b) Transformed function f̃ (r′) = 𝑃 (𝐶4𝑧 )

(
|𝑥′ |e𝑥

)
= −|𝑦′ |e𝑦 .

a change of the coordinate dependence such that both the original function and
the transformed function are expressed in terms of the original coordinates r′ [75].
This corresponds to the interpretation of coordinate transformations with a fixed
reference coordinate system as depicted in Fig. 3.2(c).

In order to illustrate this concept, the rotation 𝐶4𝑧 by 90° about the 𝑧-axis is
considered again and applied to a vector-valued function. The corresponding
rotation matrix has already been computed above (3.8) so that the transformation
operator has the form

𝑃(𝐶4𝑧)f (r′) =
©­«

0 1 0
−1 0 0
0 0 1

ª®¬ f
(©­«

0 −1 0
1 0 0
0 0 1

ª®¬ ©­«
𝑥 ′

𝑦′

𝑧′

ª®¬
)
=

©­«
𝑓𝑦 (−𝑦′,𝑥 ′,𝑧′)
− 𝑓𝑥 (−𝑦′,𝑥 ′,𝑧′)
𝑓𝑧 (−𝑦′,𝑥 ′,𝑧′)

ª®¬ .
Now, it is supposed that the function f (r′) = |𝑥 ′ |e𝑥 restricted to a square
domain 𝑥 ′,𝑦′ ∈

[
− 𝑎

2 ,
𝑎
2
]

as shown in Fig. 3.3(a) is given. Applying the transfor-
mation operator yields

𝑃(𝐶4𝑧)
(
|𝑥 ′ |e𝑥

)
= −|𝑦′ |e𝑦 ,

which is shown in Fig. 3.3(b). The 𝑥-dependence and the 𝑥-direction are
replaced by a 𝑦-dependence and −𝑦-direction, respectively. The transformed
function appears to be rotated by −90°, which is equivalent to a rotation of the
coordinate system by +90° (cf. Fig. 3.2) [77]. As hinted at by this example, the
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transformation operators are the basic operators to treat surface current densities
under coordinate transformations.

In this context, some fundamental properties of the transformation operators
need to be introduced [75, 77]. First of all, the operators are linear:

𝑃(𝑇)
(
𝑎1 𝑓1 (r′) + 𝑎2 𝑓2 (r′)

)
= 𝑎1𝑃(𝑇) 𝑓1 (r′) + 𝑎2𝑃(𝑇) 𝑓2 (r′), (3.14a)

𝑃(𝑇)
(
𝑎1f1 (r′) + 𝑎2f2 (r′)

)
= 𝑎1𝑃(𝑇)f1 (r′) + 𝑎2𝑃(𝑇)f2 (r′), (3.14b)

with 𝑎1,𝑎2 ∈ C. Another important property is that the transformation operator
of a succession of coordinate transformations 𝑇1 and 𝑇2 is equal to applying the
two respective transformation operators in succession:19

𝑃(𝑇1𝑇2) 𝑓 (r′) = 𝑃(𝑇1)
(
𝑃(𝑇2) 𝑓 (r′)

)
, (3.15a)

𝑃(𝑇1𝑇2)f (r′) = 𝑃(𝑇1)
(
𝑃(𝑇2)f (r′)

)
. (3.15b)

Finally, the transformation operators are unitary operators:〈
𝑃(𝑇) 𝑓1 (r′),𝑃(𝑇) 𝑓2 (r′)

〉
=

〈
𝑓1 (r′), 𝑓2 (r′)

〉
, (3.16a)〈

𝑃(𝑇)f1 (r′),𝑃(𝑇)f2 (r′)
〉
=

〈
f1 (r′),f2 (r′)

〉
. (3.16b)

The unitarity of the transformation operators can be interpreted as the norm or
length preserving property. In particular, if f1 = f2, it is obvious that the norm of
a vector-valued function is not affected by a coordinate transformation.20

3.2 Group Theory

In mathematics, a group G is defined by the following four axioms [66, 75, 77]:

1. The product 𝑇3 = 𝑇1𝑇2 of two elements 𝑇1 and 𝑇2 of the group is again an
element of the group, i.e., a group is closed under multiplication.

2. The group multiplication is associative: (𝑇1𝑇2)𝑇3 = 𝑇1 (𝑇2𝑇3).21

19This corresponds to the interpretation already encountered in subsection 3.1.1 that the operator
on the right (here: 𝑇2) acts first.

20Based on the definition of the inner product and the corresponding norm in appendix B, the
functions to be operated on need to be square-integrable. This condition is fulfilled by all
functions considered in this thesis due to the restriction to a finite geometric object.

21The group multiplication is in general not commutative.
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3. There is always an identity element 𝐸 such that 𝑇𝐸 = 𝐸𝑇 = 𝑇 .

4. To each element 𝑇 there exists an inverse element 𝑇−1 in the group such
that 𝑇𝑇−1 = 𝑇−1𝑇 = 𝐸 .

The following sections will focus on finite groups as they are more common in
antenna problems and easier to understand at the beginning. Finite groups have
a finite number of elements, which is called the group order 𝑔. The concepts to
be introduced in the following sections will be generalized to specific groups
with an infinite number of elements in section 3.6 at the end of this chapter.

x

y
A

B

a

a

Figure 3.4 Square plate in 𝑥𝑦-plane with coordinate system and symmetry axes. © 2019 IEEE [PM19b].

Symmetry operation Symbol

Identity 𝐸

Rotation by 90° about the 𝑧-axis 𝐶4𝑧

Rotation by 180° about the 𝑧-axis 𝐶2𝑧

Rotation by 270° about the 𝑧-axis 𝐶3
4𝑧

Rotation by 180° about the 𝑥-axis 𝐶2𝑥

Rotation by 180° about the 𝑦-axis 𝐶2𝑦

Rotation by 180° about the diagonal 𝐴 𝐶2𝐴

Rotation by 180° about the diagonal 𝐵 𝐶2𝐵

Table 3.1 The eight elements of symmetry group 𝐷4.

For example, the symmetry operations of a square plate as shown in Fig. 3.4
form a finite group, which is called 𝐷4. It consists of eight coordinate trans-
formations (𝑔 = 8) that leave the square plate invariant [78]. These symmetry
operations are listed in Table 3.1.
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𝐷4 𝐸 𝐶4𝑧 𝐶2𝑧 𝐶3
4𝑧 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

𝐸 𝐸 𝐶4𝑧 𝐶2𝑧 𝐶3
4𝑧 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

𝐶4𝑧 𝐶4𝑧 𝐶2𝑧 𝐶3
4𝑧 𝐸 𝐶2𝐵 𝐶2𝐴 𝐶2𝑥 𝐶2𝑦

𝐶2𝑧 𝐶2𝑧 𝐶3
4𝑧 𝐸 𝐶4𝑧 𝐶2𝑦 𝐶2𝑥 𝐶2𝐵 𝐶2𝐴

𝐶3
4𝑧 𝐶3

4𝑧 𝐸 𝐶4𝑧 𝐶2𝑧 𝐶2𝐴 𝐶2𝐵 𝐶2𝑦 𝐶2𝑥

𝐶2𝑥 𝐶2𝑥 𝐶2𝐴 𝐶2𝑦 𝐶2𝐵 𝐸 𝐶2𝑧 𝐶4𝑧 𝐶3
4𝑧

𝐶2𝑦 𝐶2𝑦 𝐶2𝐵 𝐶2𝑥 𝐶2𝐴 𝐶2𝑧 𝐸 𝐶3
4𝑧 𝐶4𝑧

𝐶2𝐴 𝐶2𝐴 𝐶2𝑦 𝐶2𝐵 𝐶2𝑥 𝐶3
4𝑧 𝐶4𝑧 𝐸 𝐶2𝑧

𝐶2𝐵 𝐶2𝐵 𝐶2𝑥 𝐶2𝐴 𝐶2𝑦 𝐶4𝑧 𝐶3
4𝑧 𝐶2𝑧 𝐸

Table 3.2 Multiplication table of symmetry group 𝐷4. The table lists the products 𝑇1𝑇2, where 𝑇1 is found in
the first column from the left and 𝑇2 is found in the first row from the top.

Symmetry groups whose coordinate transformations leave at least one point
of the coordinate system invariant are called point groups [76].22 Point groups
can only contain proper and improper rotations. Single antenna elements, and in
particular multimode antennas, typically fall in this category, as will become
clear throughout this thesis.23

Performing two symmetry operations in succession, as introduced in sec-
tion 3.1.1, is the group multiplication (cf. (3.10) and (3.15)). By multiplying all
elements of a group with each other, the group multiplication table is set up [77].
For the symmetry group 𝐷4, this is shown in Table 3.2. The product of any two
elements is again an element of the group, as required. Obviously, the identity
transformation is the identity element of the group. Furthermore, the inverse
elements can be identified by the products yielding 𝐸 . In particular, 𝐶3

4𝑧 = 𝐶
−1
4𝑧 ,

i.e., the rotation by 270° is equal to the rotation by −90°.

3.2.1 Classes

An element 𝑇1 of a group G is said to be conjugate to another element 𝑇2 of the
same group if [75, 77]

𝑇2 = 𝑋𝑇1𝑋
−1 or 𝑇1 = 𝑋−1𝑇2𝑋, (3.17)

where 𝑋 is some element of the group.
22The coordinate system is usually chosen such that this point is the coordinate origin.
23In contrast, so called space groups additionally contain translations, which are found for example

in infinite crystal lattices [76].
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A class C of a group G is defined as a set of mutually conjugate elements
of G [75, 77]. Classes have the following properties [75]:

• Every element of a group is a member of one class of the group.

• No element of a group can be a member of more than one class.

• The identity always forms a class on its own.

Class C1 C2 C3 C4 C5

Elements 𝐸 𝐶4𝑧 , 𝐶−1
4𝑧 𝐶2𝑧 𝐶2𝑥 , 𝐶2𝑦 𝐶2𝐴, 𝐶2𝐵

Table 3.3 The five classes of symmetry group 𝐷4.

According to its definition, a class can be constructed by forming the prod-
uct (3.17) for every 𝑋 ∈ G. As an example, the element 𝐶2𝑥 of the symmetry
group 𝐷4 is considered. With the help of the multiplication table (Table 3.2),
the product (3.17) can be computed and the necessary inverse elements can be
found for every 𝑋 of 𝐷4, yielding

𝑋𝐶2𝑥𝑋
−1 =

{
𝐶2𝑥 , 𝑋 = 𝐸,𝐶2𝑧 ,𝐶2𝑥 ,𝐶2𝑦
𝐶2𝑦 , 𝑋 = 𝐶4𝑧 ,𝐶

−1
4𝑧 ,𝐶2𝐴,𝐶2𝐵

.

This means that 𝐶2𝑦 is conjugate to 𝐶2𝑥 and vice versa and both elements form a
class of the group. This procedure can be repeated for all elements of the group,
resulting in five classes [75, 78], as listed in Table 3.3.

3.2.2 Group Mappings

A mapping F of a group G onto another group G′ describes how an element 𝑇
of G is assigned to an element 𝑇 ′ = F (𝑇) of G′ [75]. The mapping is said to be
homomorphic if

F (𝑇1)F (𝑇2) = F (𝑇1𝑇2) ∀ 𝑇1,𝑇2 ∈ G. (3.18)

If (3.18) is fulfilled and, additionally, the mapping is one-to-one, i.e., both
groups are of the same order and each element 𝑇 of G is assigned to exactly one
element 𝑇 ′ of G′, the mapping is called isomorphic [75].

Such an isomorphic mapping has already been encountered in section 3.1.2.
The rotation matrices corresponding to the symmetry operations of the symmetry
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𝑇 𝐸 𝐶4𝑧 𝐶2𝑧 𝐶−1
4𝑧

R(𝑇)
©­­­«
1 0 0
0 1 0
0 0 1

ª®®®¬
©­­­«

0 1 0
−1 0 0
0 0 1

ª®®®¬
©­­­«
−1 0 0
0 −1 0
0 0 1

ª®®®¬
©­­­«
0 −1 0
1 0 0
0 0 1

ª®®®¬
𝑇 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

R(𝑇)
©­­­«
1 0 0
0 −1 0
0 0 −1

ª®®®¬
©­­­«
−1 0 0
0 1 0
0 0 −1

ª®®®¬
©­­­«
0 1 0
1 0 0
0 0 −1

ª®®®¬
©­­­«

0 −1 0
−1 0 0
0 0 −1

ª®®®¬
Table 3.4 Rotation matrices of symmetry group 𝐷4. © 2019 IEEE [PM19b].

group 𝐷4 form a group themselves with matrix multiplication as the group
multiplication rule [75]. Taking into account (3.10), the mapping F (𝑇) = R(𝑇)
is homomorphic. Moreover, as each element of 𝐷4 can be assigned to a unique
rotation matrix, the mapping is one-to-one and thus isomorphic. The rotation
matrices corresponding to the elements of 𝐷4 are summarized in Table 3.4. It is
noted that the multiplication table is fulfilled by both groups, as required.

3.2.3 Direct-Product Groups

A direct-product group is a group whose elements result from the multiplication
of the elements of two different groups. If 𝑇 is an element of a group G of
order 𝑔 and 𝑇 ′ is an element of another group G′ of order 𝑔′, the product 𝑇𝑇 ′ is
an element of the direct-product group G ⊗ G′ [75]. The direct-product group
is set up by forming all possible products 𝑇𝑇 ′ and its order is 𝑔𝑔′.

The concept of direct-product groups is best illustrated by means of an
example. The group 𝐷4 has been introduced at the beginning of this section
as the symmetry group of a square plate consisting of eight elements (𝑔 = 8).
Another common symmetry group is 𝐶s, which consists of the identity 𝐸 and
the reflection through the 𝑥𝑦-plane 𝜎𝑥𝑦 (𝑔′ = 2) [78].24 The corresponding
direct-product group 𝐷4 ⊗ 𝐶s is now formed by multiplying each element of 𝐷4
with each element of 𝐶s.

The multiplications of the elements of 𝐷4 with the identity 𝐸 of 𝐶s simply
yield the elements of 𝐷4. The first eight elements of the direct-product group
are hence the elements of 𝐷4 (proper rotations). The multiplications of 𝐶4𝑧
and 𝐶−1

4𝑧 of 𝐷4 with 𝜎𝑥𝑦 of 𝐶s respectively result in the rotoreflections 𝑆4𝑧

24For example, 𝐶s is the symmetry group of an ideal, 𝑧-oriented dipole antenna.
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𝐸 𝐶4𝑧 𝐶−1
4𝑧 𝐶2𝑧 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

𝐸 𝐸 𝐶4𝑧 𝐶−1
4𝑧 𝐶2𝑧 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

𝜎𝑥𝑦 𝜎𝑥𝑦 𝑆4𝑧 𝑆−1
4𝑧 𝐼 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝐴𝑧 𝜎𝐵𝑧

Table 3.5 Direct-product group 𝐷4 ⊗ 𝐶s. The table lists the products 𝑇𝑇′, where 𝑇 of 𝐷4 is found in the first
row from the top and 𝑇′ of 𝐶s is found in the first column from the left.

and 𝑆−1
4𝑧 according to (3.1). The multiplication of 𝐶2𝑧 of 𝐷4 with 𝜎𝑥𝑦 of 𝐶s

results in the inversion 𝐼 according to (3.2). Finally, the multiplications of 𝐶2𝑥 ,
𝐶2𝑦 , 𝐶2𝐴, and 𝐶2𝐵 of 𝐷4 with 𝜎𝑥𝑦 of 𝐶s are equal to the reflections 𝜎𝑥𝑧 , 𝜎𝑦𝑧 ,
𝜎𝐴𝑧 , and 𝜎𝐵𝑧 , respectively. In summary, the products of the elements of 𝐷4
with 𝜎𝑥𝑦 yield eight further elements (improper rotations) of the direct-product
group, which consequently contains a total of 8 · 2 = 16 elements. These are
listed in Table 3.5. It is noted that all products are commutative.

As a matter of fact, the direct-product group 𝐷4 ⊗ 𝐶s is the symmetry
group 𝐷4h [78]. This is the symmetry group of a square cuboid (Fig. 4.37). The
fact that it is built up from the simpler symmetry groups 𝐷4 and 𝐶s simplifies
its analysis [77],25 as will be further investigated in section 3.3.6.

3.3 Matrix Representations

A group of non-singular 𝑑 × 𝑑 square matrices𝚪with matrix multiplication as the
group multiplication rule is called a representation Γ of dimension 𝑑 of a group G
if it is homomorphic to G according to (3.18) with F (𝑇) = 𝚪(𝑇) [75, 77]. The
matrix 𝚪(𝑇) is called the representation matrix corresponding to the element 𝑇
of G. If the mapping is isomorphic, i.e., to every 𝑇 there belongs a unique 𝚪(𝑇),
the representation is said to be faithful.

As an example, the rotation matrices of the symmetry group 𝐷4 as listed
in Table 3.4 fulfill all criteria of a representation. In fact, they form a faithful,
three-dimensional (𝑑 = 3) representation of the symmetry group 𝐷4 [75].

3.3.1 Irreducible Representations

In general, a group has an infinite number of representations [75]. However,
these can be decomposed into the so-called irreducible representations having
minimum dimension. In particular, finite groups have only a finite number of
25𝐷4 and 𝐶s form subgroups [75] of 𝐷4h.
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irreducible representations which are unique up to a similarity transformation.
It thus proves purposeful to work only with the irreducible representations.

Before defining irreducible representations, the concept of equivalent rep-
resentations needs to be introduced. A 𝑑-dimensional representation Γ̄ of a
group G is equivalent to a 𝑑-dimensional representation Γ of the same group G
if their representation matrices are related by a similarity transformation [75]:

𝚪̄(𝑇) = S−1𝚪(𝑇)S ∀ 𝑇 ∈ G, (3.19)

where S is an arbitrary non-singular 𝑑 × 𝑑 square matrix. Accordingly, one-
dimensional representations can only be identical or not equivalent.

Now, a 𝑑-dimensional representation matrix 𝚪(𝑇) is considered which is
partitioned into block form in the following way [75]:

𝚪(𝑇) =
(
𝚪11 (𝑇) 𝚪12 (𝑇)

0 𝚪22 (𝑇)

)
∀ 𝑇 ∈ G. (3.20)

As 𝚪(𝑇) is a representation matrix by definition, the following statement is true
for any 𝑇1,𝑇2 ∈ G:

𝚪(𝑇1𝑇2) =
(
𝚪11 (𝑇1𝑇2) 𝚪12 (𝑇1𝑇2)

0 𝚪22 (𝑇1𝑇2)

)
= 𝚪(𝑇1)𝚪(𝑇2)

=

(
𝚪11 (𝑇1)𝚪11 (𝑇2) 𝚪11 (𝑇1)𝚪12 (𝑇2) + 𝚪12 (𝑇1)𝚪22 (𝑇2)

0 𝚪22 (𝑇1)𝚪22 (𝑇2)

)
. (3.21)

Apparently, 𝚪11 (𝑇) and 𝚪22 (𝑇) are also representation matrices of smaller
dimension. As they are part of 𝚪(𝑇), this representation is said to be reducible.

In general, a representation of a group G is called reducible if it is equivalent to
a representation of G whose representation matrices have the form of (3.20) [75].
Otherwise, it is called irreducible. This has the consequence that any reducible
representation can be built from the irreducible representations.

Obviously, the rotation matrices in Table 3.4 have the form of (3.20) and are
thus reducible. The irreducible representations of a symmetry group may be
found in the literature, e.g., [75], or can be constructed from the so-called basis
functions, as will be shown in section 3.5.4.

As stated above, finite groups have a finite number of irreducible represen-
tations. Throughout this thesis, the 𝑝-th irreducible representation of a finite
group will be denoted by Γ (𝑝) .
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3.3.2 Basis Functions

For the 𝑑𝑝-dimensional 𝑝-th irreducible representation Γ (𝑝) there exist sets of
𝑑𝑝 linearly independent functions ψ(𝑝)

1 ,ψ
(𝑝)
2 , . . . ,ψ

(𝑝)
𝑑𝑝

that can be expressed
as linear combinations of each other when operated on by a transformation
operator 𝑃 [75]:26

𝑃(𝑇)ψ(𝑝)
𝜈 (r′) =

𝑑𝑝∑︁
𝜇=1

Γ
(𝑝)
𝜇𝜈 (𝑇)ψ(𝑝)

𝜇 (r′), 𝜈 = 1,2, . . . ,𝑑𝑝 . (3.22)

These functions are said to form a basis of the 𝑝-th irreducible representa-
tion Γ (𝑝) and are thus called basis functions. The weighting coefficients Γ (𝑝)

𝜇𝜈 (𝑇)
are the elements of the representation matrix 𝚪 (𝑝) (𝑇) of the irreducible repre-
sentation Γ (𝑝) , where 𝜇 denotes the row index and 𝜈 denotes the column index.
The function ψ(𝑝)

𝜈 is said to belong to the 𝜈-th row27 of the 𝑑𝑝-dimensional
𝑝-th irreducible representation [77].

In order to illustrate the transformation of basis functions, the representation
matrices of the symmetry group 𝐷4 are introduced in Table 3.6. This symmetry
group has five irreducible representations [78]. The first four irreducible repre-
sentations Γ (1;2;3;4) are one-dimensional (𝑑1;2;3;4 = 1), i.e., their representation
matrices 𝚪 (1;2;3;4) (𝑇) are scalars which are either 1 or −1. One functionψ(1;2;3;4)

forms a basis of each of these irreducible representations. Applying a symmetry
operation of 𝐷4, the basis function is either left invariant (multiplication with 1)
or inverted (multiplication with −1) according to (3.22).

As an example, the function f (r′) = (−𝑦′,𝑥 ′,0)T with 𝑥 ′,𝑦′ ∈
[
− 𝑎

2 ,
𝑎
2
]

as
shown in Fig. 3.5(a) is considered. Now, each symmetry operation of the symme-
try group 𝐷4 is applied to this function in turn by means of the transformation
operators 𝑃(𝑇) as introduced in section 3.1.3. For reference, the transformation
operators corresponding to the elements of 𝐷4 applied to a generic function are
listed in Table 3.7.28 The transformed function is then

𝑃(𝑇)f (r′) =
{
(−𝑦′,𝑥 ′,0)T = f (r′), 𝑇 = 𝐸,𝐶4𝑧 ,𝐶2𝑧 ,𝐶

−1
4𝑧

(𝑦′,−𝑥 ′,0)T = −f (r′), 𝑇 = 𝐶2𝑥 ,𝐶2𝑦 ,𝐶2𝐴,𝐶2𝐵
. (3.23)

26In this chapter, the basis functions are written as vector-valued functions ψ(𝑝)
𝜈 as this will be the

usual application case throughout this thesis. Nevertheless, basis functions may also be scalar
functions, which will be denoted by 𝜓

(𝑝)
𝜈 .

27This nomenclature is adopted from [75] and [77]. At this stage, it may be somewhat confusing
as 𝜈 is the column index of the representation matrix. It will become more meaningful with the
introduction of the projection operators in section 3.5.

28The transformation operators form a group isomorphic to the symmetry group [75].
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𝐷4 𝐸 𝐶4𝑧 𝐶−1
4𝑧 𝐶2𝑧

Γ (1) 1 1 1 1

Γ (2) 1 1 1 1

Γ (3) 1 −1 −1 1

Γ (4) 1 −1 −1 1

Γ (5)

(
1 0
0 1

) (
0 1
−1 0

) (
0 −1
1 0

) (
−1 0
0 −1

)
𝐷4 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

Γ (1) 1 1 1 1

Γ (2) −1 −1 −1 −1

Γ (3) 1 1 −1 −1

Γ (4) −1 −1 1 1

Γ (5)

(
1 0
0 −1

) (
−1 0
0 1

) (
0 1
1 0

) (
0 −1
−1 0

)
Table 3.6 Representation matrices of symmetry group 𝐷4. © 2019 IEEE [PM19b].

𝑇 𝐸 𝐶2𝑧

𝑃 (𝑇)f (r′)
©­­­«
𝑓𝑥 (𝑥′,𝑦′,𝑧′)
𝑓𝑦 (𝑥′,𝑦′,𝑧′)
𝑓𝑧 (𝑥′,𝑦′,𝑧′)

ª®®®¬
©­­­«
− 𝑓𝑥 (−𝑥′,−𝑦′,𝑧′)
− 𝑓𝑦 (−𝑥′,−𝑦′,𝑧′)
𝑓𝑧 (−𝑥′,−𝑦′,𝑧′)

ª®®®¬
𝑇 𝐶4𝑧 𝐶−1

4𝑧

𝑃 (𝑇)f (r′)
©­­­«
𝑓𝑦 (−𝑦′,𝑥′,𝑧′)

− 𝑓𝑥 (−𝑦′,𝑥′,𝑧′)
𝑓𝑧 (−𝑦′,𝑥′,𝑧′)

ª®®®¬
©­­­«
− 𝑓𝑦 (𝑦′,−𝑥′,𝑧′)
𝑓𝑥 (𝑦′,−𝑥′,𝑧′)
𝑓𝑧 (𝑦′,−𝑥′,𝑧′)

ª®®®¬
𝑇 𝐶2𝑥 𝐶2𝑦

𝑃 (𝑇)f (r′)
©­­­«
𝑓𝑥 (𝑥′,−𝑦′,−𝑧′)

− 𝑓𝑦 (𝑥′,−𝑦′,−𝑧′)
− 𝑓𝑧 (𝑥′,−𝑦′,−𝑧′)

ª®®®¬
©­­­«
− 𝑓𝑥 (−𝑥′,𝑦′,−𝑧′)
𝑓𝑦 (−𝑥′,𝑦′,−𝑧′)
− 𝑓𝑧 (−𝑥′,𝑦′,−𝑧′)

ª®®®¬
𝑇 𝐶2𝐴 𝐶2𝐵

𝑃 (𝑇)f (r′)
©­­­«
𝑓𝑦 (𝑦′,𝑥′,−𝑧′)
𝑓𝑥 (𝑦′,𝑥′,−𝑧′)
− 𝑓𝑧 (𝑦′,𝑥′,−𝑧′)

ª®®®¬
©­­­«
− 𝑓𝑦 (−𝑦′,−𝑥′,−𝑧′)
− 𝑓𝑥 (−𝑦′,−𝑥′,−𝑧′)
− 𝑓𝑧 (−𝑦′,−𝑥′,−𝑧′)

ª®®®¬
Table 3.7 Transformation operators of symmetry group 𝐷4. © 2019 IEEE [PM19b].
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x'

y'

(a)

x'

y'

(b)

Figure 3.5 Basis function f (r′) = (−𝑦′,𝑥′,0)T =ψ(2) (r′) of one-dimensional second irreducible representa-
tion Γ (2) of symmetry group 𝐷4. (a) Invariant under the identity and the rotations about the 𝑧-axis. (b) Inverted
under the rotations about the other axes.

Under the identity and the rotations about the 𝑧-axis, the function is left invariant,
i.e., multiplied by 1 (Fig. 3.5(a)), whereas under the other rotations it is inverted,
i.e., multiplied by −1 (Fig. 3.5(b)). Comparing this result with Table 3.6, it
becomes apparent that the example function is in fact a basis function of the
second irreducible representation Γ (2) of the symmetry group 𝐷4.

The fifth irreducible representation Γ (5) is two-dimensional (𝑑5 = 2). The
corresponding representation matrices 𝚪 (5) (𝑇) are two-dimensional square
matrices. A pair of basis functions ψ(5)

1 ,ψ
(5)
2 forms a basis of this irreducible

representation. According to (3.22), the transformation of the first basis func-
tion ψ(5)

1 is described by the first column of the representation matrices (𝜈 = 1),
whereas the transformation of the second basis function ψ(5)

2 is described by
the second column (𝜈 = 2). The two basis functions may thus even transform
into each other if a representation matrix is not diagonal.

In order to get a better understanding about this, another example is considered.
The function f (r′) = ( |𝑥 ′ |,0,0)T, which was already examined in section 3.1.3,
is chosen again. Applying the transformation operators of Table 3.7 yields

𝑃(𝑇)f (r′) =


( |𝑥 ′ |,0,0)T = f1 (r′), 𝑇 = 𝐸,𝐶2𝑥
−(|𝑥 ′ |,0,0)T = −f1 (r′), 𝑇 = 𝐶2𝑧 ,𝐶2𝑦
(0,|𝑦′ |,0)T = f2 (r′), 𝑇 = 𝐶−1

4𝑧 ,𝐶2𝐴
−(0,|𝑦′ |,0)T = −f2 (r′), 𝑇 = 𝐶4𝑧 ,𝐶2𝐵

. (3.24)
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x'

y'

(a)

x'

y'

(b)

Figure 3.6 Basis functions of two-dimensional fifth irreducible representation Γ (5) of symmetry group 𝐷4.
(a) f1 (r′) = ( |𝑥′ |,0,0)T =ψ

(5)
1 (r′) belonging to the first row. (b) f2 (r′) = (0, |𝑦′ |,0)T =ψ

(5)
2 (r′) belonging

to the second row.

Comparing this result with Table 3.6, the function transforms according to
the first column of the fifth irreducible representation Γ (5) . However, it is said
to belong to the first row of the irreducible representation. This somewhat
confusing terminology will become more meaningful with the introduction of
the projection operators in section 3.5. Its partner function is f2 (r′) = (0,|𝑦′ |,0)T,
which belongs to the second row. The two basis functions are shown in Fig. 3.6.

3.3.3 Orthogonality Theorem

As will be shown throughout this thesis, the orthogonality theorem for matrix
representations is not only one of the most fundamental theorems of the theory
of symmetry, but also the decisive rule for the antenna analysis and design
concepts to be introduced. Not surprisingly, in [77] it is even called the “great
orthogonality theorem”.

Before presenting the orthogonality theorem, the concept of unitary repre-
sentations should be introduced. A unitary representation of a group G is a
representation whose representation matrices 𝚪(𝑇) are unitary [75], i.e.,

𝚪H (𝑇)𝚪(𝑇) = 𝚪(𝑇)𝚪H (𝑇) = E ⇔ 𝚪H (𝑇) = 𝚪−1 (𝑇) ∀ 𝑇 ∈ G, (3.25)

where H denotes conjugate transpose. It can be easily checked that the represen-
tation matrices shown in Table 3.6 are unitary.
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It is now supposed that there are two unitary irreducible representations Γ (𝑝)

and Γ (𝑞) of group G, which are not equivalent if 𝑝 ≠ 𝑞, but are identical if 𝑝 = 𝑞.
The following orthogonality theorem can then be formulated for the elements of
the representation matrices [75, 77]:∑︁

𝑇 ∈G
Γ
(𝑝)∗
𝜇𝜈 (𝑇)Γ (𝑞)

𝜆𝜅
(𝑇) = 𝑔

𝑑𝑝
𝛿𝑝𝑞𝛿𝜇𝜆𝛿𝜈𝜅 . (3.26)

The summation of the products of corresponding elements (𝜇 = 𝜆 ∧ 𝜈 = 𝜅) of
the matrices of different irreducible representations (𝑝 ≠ 𝑞) over the group
elements yields zero. Likewise, the summation yields zero if different ele-
ments (𝜇 ≠ 𝜆 ∨ 𝜈 ≠ 𝜅) of the same irreducible representation (𝑝 = 𝑞) are taken.
Again, this can be checked exemplarily with the irreducible representations of
the symmetry group 𝐷4 in Table 3.6.

Even more important for the purpose of this thesis is the resulting orthogonality
of basis functions [75]:〈

ψ
(𝑝)
𝜈 (r′),ψ(𝑞)

𝜅 (r′)
〉
= 0, for 𝑝 ≠ 𝑞 ∨ 𝜈 ≠ 𝜅, (3.27)

with the inner product as defined in appendix B. It states that

• basis functions belonging to different irreducible representations (𝑝 ≠ 𝑞),

• basis functions belonging to different rows of the same multi-dimensional
irreducible representation (𝑝 = 𝑞, 𝜈 ≠ 𝜅)

are orthogonal to each other. It is noteworthy that the value of the inner product
in (3.27) for 𝑝 = 𝑞 and 𝜈 = 𝜅 cannot be determined in a general way. It is only
specified up to the following form [75]:〈

ψ
(𝑝)
𝜈 (r′),ψ(𝑞)

𝜅 (r′)
〉
= 𝛿𝑝𝑞𝛿𝜈𝜅

1
𝑑𝑝

𝑑𝑝∑︁
𝜇=1

〈
ψ

(𝑝)
𝜇 (r′),ψ(𝑝)

𝜇 (r′)
〉
. (3.28)

However, the basis functions may be normalized such that they form an orthonor-
mal set (⟨ψ(𝑝)

𝜇 (r′),ψ(𝑝)
𝜇 (r′)⟩ = 1). In this case, the value of the inner product is

equal to 1 if 𝑝 = 𝑞 and 𝜈 = 𝜅 and the orthogonality theorem can then be written
in a compact form: 〈

ψ
(𝑝)
𝜈 (r′),ψ(𝑞)

𝜅 (r′)
〉
= 𝛿𝑝𝑞𝛿𝜈𝜅 . (3.29)
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Some examples for basis functions of the symmetry group 𝐷4 have
been introduced in subsection 3.3.2. The functions ψ(2) (r′) = (−𝑦′,𝑥 ′,0)T

andψ(5)
1 (r′) = ( |𝑥 ′ |,0,0)T are found to be basis functions of different irreducible

representations. Computing the inner product

〈
ψ(2) (𝑥 ′,𝑦′),ψ(5)

1 (𝑥 ′,𝑦′)
〉
=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

©­«
−𝑦′
𝑥 ′

0

ª®¬ · ©­«
|𝑥 ′ |
0
0

ª®¬ d𝑦′d𝑥 ′

=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

−𝑦′ |𝑥 ′ |d𝑦′d𝑥 ′

=

𝑎/2∫
−𝑎/2

|𝑥 ′ |
[
− 𝑦

′2

2

]𝑎/2

−𝑎/2
d𝑥 ′ = 0

yields that the two basis functions are indeed orthogonal, as required. The
functions ψ(5)

1 (r′) = ( |𝑥 ′ |,0,0)T and ψ(5)
2 (r′) = (0,|𝑦′ |,0)T are basis functions

of the two different rows of the two-dimensional irreducible representation.
Computing the inner product

〈
ψ

(5)
1 (𝑥 ′,𝑦′),ψ(5)

2 (𝑥 ′,𝑦′)
〉
=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

©­«
|𝑥 ′ |
0
0

ª®¬ · ©­«
0
|𝑦′ |
0

ª®¬ d𝑦′d𝑥 ′ = 0

yields that the two functions are orthogonal, too, as required. Both results are
rather intuitive if Fig. 3.5 and 3.6 are taken into account.

3.3.4 Characters

It is stated in subsection 3.3.1 that the irreducible representations are only unique
up to a similarity transformation. This has the consequence that there is some
kind of arbitrariness when working with representation matrices. In order to
uniquely characterize irreducible representations, the so-called characters are
introduced [77].

As the trace of a matrix is invariant under similarity transformations, the
character 𝜒 (𝑝) (𝑇) of the 𝑝-th irreducible representation corresponding to the
element 𝑇 of a group G is defined as the trace (the sum of the diagonal elements)
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of the representation matrix 𝚪 (𝑝) (𝑇) [77]:

𝜒 (𝑝) (𝑇) = tr
(
𝚪 (𝑝) (𝑇)

)
=

𝑑𝑝∑︁
𝜇=1

Γ
(𝑝)
𝜇𝜇 (𝑇). (3.30)

From this definition it follows that two irreducible representations of a finite
group are equivalent if they have the same character system [75] (cf. (3.19)). In
particular, the representation matrices of one-dimensional irreducible represen-
tations are identical to the characters.

At this stage, it should be noted that the classes of a group as introduced in
section 3.2.1 are defined by similarity transformations (cf. (3.17)). This has the
consequence that all elements 𝑇 of a class C have the same character [77].

𝐷4 C1 C2 C3 C4 C5

Γ (1) 1 1 1 1 1

Γ (2) 1 1 1 −1 −1

Γ (3) 1 −1 1 1 −1

Γ (4) 1 −1 1 −1 1

Γ (5) 2 0 −2 0 0

Table 3.8 Character table of symmetry group 𝐷4.

Based on this, a character table can be set up [77]. For the symmetry
group 𝐷4, this can now be done by computing the traces of the representation
matrices in Table 3.6. The individual symmetry operations are conveniently
summarized in the classes of the group (Table 3.3). The resulting character table
is given in Table 3.8. Character tables are usually provided in the literature,
e.g., in [57, 75–78].

The orthogonality of representations as introduced in subsection 3.3.3 is also
reflected in the characters [77]:∑︁

𝑇 ∈G
𝜒 (𝑝)∗ (𝑇)𝜒 (𝑞) (𝑇) = 𝑔𝛿𝑝𝑞 , (3.31)

i.e., the sum of the products of characters of different irreducible representa-
tions (𝑝 ≠ 𝑞) over all elements of the group yields zero. It follows that∑︁

𝑇 ∈G

��𝜒 (𝑝) (𝑇)
��2 = 𝑔, (3.32)
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which is useful for checking whether a given representation is irreducible [75].
The orthogonality theorem for characters can also be written in terms of the
classes C of the group [77]:∑︁

C∈G
𝜒 (𝑝)∗ (C)𝜒 (𝑞) (C)𝑁C = 𝑔𝛿𝑝𝑞 , (3.33)

where 𝑁C is the number of group elements in the class. From this form
of the orthogonality theorem it also follows that the number of irreducible
representations of a finite group is equal to the number of its classes [77].

The characters are a convenient tool for checking computations and results.
For the symmetry group 𝐷4, all relationships introduced in this subsection can
be easily checked by means of the character table.

3.3.5 Isomorphism

Isomorphic groups as introduced in section 3.2.2 have identical representations
and thus the same character system [75, 78]. As an example, the symmetry
group 𝐶4v [78] is considered.29 The rotations about the axes perpendicular to
the 𝑧-axis of 𝐷4 are replaced by reflections through planes containing the 𝑧-axis.
The resulting group elements are listed in Table 3.9.

Symmetry operation Symbol

Identity 𝐸

Rotation by 90° about the 𝑧-axis 𝐶4𝑧

Rotation by 180° about the 𝑧-axis 𝐶2𝑧

Rotation by 270° about the 𝑧-axis 𝐶3
4𝑧

Reflection through the 𝑥𝑧-plane 𝜎𝑥𝑧

Reflection through the 𝑦𝑧-plane 𝜎𝑦𝑧

Reflection through the 𝐴𝑧-plane 𝜎
𝐴𝑧

Reflection through the 𝐵𝑧-plane 𝜎
𝐵𝑧

Table 3.9 The eight elements of symmetry group 𝐶4v.

Although the groups 𝐷4 and 𝐶4v consist of different symmetry operations,
they have the same classes and character systems, which are those listed in
Table 3.8 [78]. The two groups are consequently isomorphic and obviously have
29This is the symmetry group of a right square pyramid (Fig. 4.32). For details, see section 4.5.3.
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similar properties. In particular, basis functions of the two groups must have the
same symmetry properties as they transform according to the same representation
matrices. Group isomorphisms enable the reuse of group properties and can
thus be exploited conveniently in order to simplify the symmetry analysis.

3.3.6 Direct-Product Representations

The irreducible representations of a direct-product group G ⊗ G′ can be de-
rived from the irreducible representations of the component groups G and G′.
If 𝚪 (𝑝) (𝑇) is the representation matrix of the 𝑝-th irreducible representation
of G belonging to the element 𝑇 and 𝚪 (𝑞) (𝑇 ′) is the representation matrix of
the 𝑞-th irreducible representation of G′ belonging to 𝑇 ′, the corresponding
representation matrix 𝚪 (𝑝𝑞) (𝑇𝑇 ′) of the direct-product group is [77]

𝚪 (𝑝𝑞) (𝑇𝑇 ′) = 𝚪 (𝑝) (𝑇) ⊗ 𝚪 (𝑞) (𝑇 ′) ∀ 𝑇 ∈ G,𝑇 ′ ∈ G′, (3.34)

where ⊗ denotes the direct product (Kronecker product) of two matrices [79].30

The characters 𝜒 (𝑝𝑞) (𝑇𝑇 ′) of a direct-product representation are computed
as the products of the characters 𝜒 (𝑝) (𝑇) and 𝜒 (𝑞) (𝑇 ′) of the component
representations [77]:

𝜒 (𝑝𝑞) (𝑇𝑇 ′) = 𝜒 (𝑝) (𝑇)𝜒 (𝑞) (𝑇 ′) ∀ 𝑇 ∈ G,𝑇 ′ ∈ G′. (3.35)

This has the consequence that all representation matrices and characters of a
direct-product group can be computed from the representation matrices and the
characters, respectively, of the component groups.

𝐶s 𝐸 𝜎𝑥𝑦

Γ (1) 1 1

Γ (2) 1 −1

Table 3.10 Character table of symmetry group 𝐶s.

The symmetry group 𝐷4h has been found in section 3.2.3 to be the direct
product of the groups 𝐷4 and 𝐶s. The character table of 𝐷4 is given in Table 3.8.
There are five irreducible representations. The character Table of 𝐶s is presented
in Table 3.10 [78]. It has two one-dimensional irreducible representations. By
employing (3.35), the character Table 3.11 of 𝐷4h can be set up.
30The direct product of two matrices is a matrix whose elements are all possible products of the

elements of the two matrices [79].
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𝐷4h 𝐸 𝐶4𝑧 𝐶−1
4𝑧 𝐶2𝑧 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

Γ (1) 1 1 1 1 1 1 1 1

Γ (2) 1 1 1 1 −1 −1 −1 −1

Γ (3) 1 −1 −1 1 1 1 −1 −1

Γ (4) 1 −1 −1 1 −1 −1 1 1

Γ (5) 2 0 0 −2 0 0 0 0

Γ (6) 1 1 1 1 1 1 1 1

Γ (7) 1 1 1 1 −1 −1 −1 −1

Γ (8) 1 −1 −1 1 1 1 −1 −1

Γ (9) 1 −1 −1 1 −1 −1 1 1

Γ (10) 2 0 0 −2 0 0 0 0

𝐷4h 𝜎𝑥𝑦 𝑆4𝑧 𝑆−1
4𝑧 𝐼 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎

𝐴𝑧
𝜎

𝐵𝑧

Γ (1) 1 1 1 1 1 1 1 1

Γ (2) 1 1 1 1 −1 −1 −1 −1

Γ (3) 1 −1 −1 1 1 1 −1 −1

Γ (4) 1 −1 −1 1 −1 −1 1 1

Γ (5) 2 0 0 −2 0 0 0 0

Γ (6) −1 −1 −1 −1 −1 −1 −1 −1

Γ (7) −1 −1 −1 −1 1 1 1 1

Γ (8) −1 1 1 −1 −1 −1 1 1

Γ (9) −1 1 1 −1 1 1 −1 −1

Γ (10) −2 0 0 2 0 0 0 0

Table 3.11 Character table of symmetry group 𝐷4h. © 2019 IEEE [PM19b].

Multiplying the characters of the irreducible representations Γ (1;2;3;4;5) of 𝐷4
with the characters of the first irreducible representation Γ (1) (𝑞 = 1) of 𝐶s
yields the characters of the irreducible representations Γ (1;2;3;4;5) of 𝐷4h. For
the proper rotations, the corresponding characters are exactly those of 𝐷4 as the
character 𝜒 (1) (𝐸) of 𝐶s is equal to 1. The same is true for the improper rotations
as the character 𝜒 (1) (𝜎𝑥𝑦) of 𝐶s is also equal to 1. Multiplying the characters
of the irreducible representations Γ (1;2;3;4;5) of 𝐷4 with the characters of the
second irreducible representation Γ (2) (𝑞 = 2) of 𝐶s yields the characters of
the irreducible representations Γ (6;7;8;9;10) of 𝐷4h. For the proper rotations, the
corresponding characters are again those of 𝐷4 as the character 𝜒 (2) (𝐸) of 𝐶s is
equal to 1. For the improper rotations, however, the corresponding characters are
those of 𝐷4 multiplied by −1 as the character 𝜒 (2) (𝜎𝑥𝑦) of 𝐶s is equal to −1.
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𝐷4h 𝐸 𝐶4𝑧 𝐶−1
4𝑧 𝐶2𝑧

Γ (5)

(
1 0
0 1

) (
0 1
−1 0

) (
0 −1
1 0

) (
−1 0
0 −1

)
Γ (10)

(
1 0
0 1

) (
0 1
−1 0

) (
0 −1
1 0

) (
−1 0
0 −1

)
𝐷4h 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

Γ (5)

(
1 0
0 −1

) (
−1 0
0 1

) (
0 1
1 0

) (
0 −1
−1 0

)
Γ (10)

(
1 0
0 −1

) (
−1 0
0 1

) (
0 1
1 0

) (
0 −1
−1 0

)
𝐷4h 𝜎𝑥𝑦 𝑆4𝑧 𝑆−1

4𝑧 𝐼

Γ (5)

(
1 0
0 1

) (
0 1
−1 0

) (
0 −1
1 0

) (
−1 0
0 −1

)
Γ (10)

(
−1 0
0 −1

) (
0 −1
1 0

) (
0 1
−1 0

) (
1 0
0 1

)
𝐷4h 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎

𝐴𝑧
𝜎

𝐵𝑧

Γ (5)

(
1 0
0 −1

) (
−1 0
0 1

) (
0 1
1 0

) (
0 −1
−1 0

)
Γ (10)

(
−1 0
0 1

) (
1 0
0 −1

) (
0 −1
−1 0

) (
0 1
1 0

)

Table 3.12 Representation matrices of two-dimensional irreducible representations of symmetry group 𝐷4h.

The group 𝐷4h has a total of ten irreducible representations. The representa-
tions Γ (5) and Γ (10) are found to be two-dimensional since the characters 𝜒 (5) (𝐸)
and 𝜒 (10) (𝐸) are equal to 2 (Table 3.11).31 In order to compute the corresponding
representation matrices, (3.34) is employed. As 𝐶s has only one-dimensional
irreducible representations, the direct product reduces to a multiplication of the
representation matrices of Γ (5) of 𝐷4 (Table 3.6) with the characters of 𝐶s (Ta-
ble 3.10). The resulting representation matrices of 𝐷4h are listed in Table 3.12.
The matrices of Γ (5) are exactly those of Γ (5) of 𝐷4 for both proper and improper
rotations. The representation matrices of Γ (10) are equal to those of Γ (5) of 𝐷4
for the proper rotations. For the improper rotations, however, they are equal to
those of Γ (5) of 𝐷4 multiplied by −1.

31The dimension of an irreducible representation can be directly deduced from the character 𝜒 (𝑝) (𝐸)
belonging to the identity 𝐸 as its representation matrix is always the identity matrix E.
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Although the structure of the symmetry group 𝐷4h is comparatively complex,
its interpretation as a direct-product group and decomposition into its component
groups greatly simplifies the symmetry analysis. The concepts introduced in this
section can be readily applied to other direct-product groups (see, e.g., [78]).

3.4 Connection to Characteristic Modes

Having laid the foundations of mathematically describing symmetries, it is now
time to turn back to the initial problem of finding a connection between the
symmetry of a PEC object and its characteristic modes, as stated in section 2.4.3.
For this purpose, first of all, the generalized eigenvalue problem defining the
characteristic modes as introduced in section 2.2 should be recalled:

𝑋J𝑛 (r′) = 𝜆𝑛𝑅J𝑛 (r′). (3.36)

3.4.1 Invariance of Impedance Operator

The impedance operator 𝑍 = 𝑅 + 𝑗 𝑋 as defined in (2.13) describes the geometry
of the underlying PEC object, i.e., it exclusively contains every information
about symmetry. It is thus purposeful to start with examining the effect of a
symmetry operation on the impedance operator.

Following the argument in [58], a transformation operator 𝑃(𝑇) (3.13)
corresponding to a symmetry operation 𝑇 leaving the underlying PEC object
invariant is applied to the impedance operator 𝑍 (2.13):

𝑃(𝑇)
(
𝑍J(r′)

)
= 𝑃(𝑇)

(
𝑗𝜔𝜇

∬
𝑆′

J(r′′)𝐺 (r′,r′′)d𝑆′′

− 1
𝑗𝜔𝜀

grad
(∬
𝑆′

div
(
J(r′′)

)
𝐺 (r′,r′′)d𝑆′′

))
tan
. (3.37)

As the surface of an object is not altered by a symmetry operation, the component
tangential to the surface (f)tan of an arbitrary vector-valued function is still
tangential to the surface after the transformation of the object:32

𝑃(𝑇)
(
f (r′)

)
tan =

(
𝑃(𝑇)f (r′)

)
tan. (3.38)

32The transformation operators of the square plate in Table 3.7 illustrate this behavior: The tangential
components 𝑓𝑥 and 𝑓𝑦 may swap their positions, but they remain tangential to the surface. The
normal component 𝑓𝑧 is unaffected by this.
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Likewise, the integration is not affected by the transformation since the integration
domain, i.e., the object surface, remains the same [58]:

𝑃(𝑇)
∬
𝑆′

f (r′′)d𝑆′′ =
∬
𝑆′

𝑃(𝑇)f (r′′)d𝑆′′. (3.39)

Next, the effect of a transformation operator on an arbitrary integrand containing
the integral kernel 𝐺 (2.10) is examined:

𝑃(𝑇)
(
f (r′′)𝐺 (r′,r′′)

)
= R(𝑇)f

(
R−1 (𝑇)r′′

) 𝑒− 𝑗𝑘∥R−1 (𝑇) (r′−r′′)∥

4𝜋


R−1 (𝑇) (r′ − r′′)




= R(𝑇)f

(
R−1 (𝑇)r′′

) 𝑒− 𝑗𝑘 ∥r′−r′′ ∥

4𝜋∥r′ − r′′∥
= 𝑃(𝑇)f (r′′)𝐺 (r′,r′′), (3.40)

where the orthogonality of the rotation matrix is exploited. As the integral kernel
is a function of the distance between two points, it is not affected by a symmetry
operation. This behavior is illustrated in Fig. 3.7. Although the two position
vectors are rotated, the distance between them remains the same. Finally, both
gradient and divergence are invariant under symmetry operations [58, 66]:

𝑃(𝑇)
(
grad 𝑓 (r′)

)
= grad

(
𝑃(𝑇) 𝑓 (r′)

)
, (3.41)

𝑃(𝑇)
(
divf (r′)

)
= div

(
𝑃(𝑇)f (r′)

)
, (3.42)

which simply means that differentiating the function first and then transforming
it is equivalent to transforming first and then differentiating.

Putting all pieces together finally yields that the transformation operator can
be directly applied to the surface current density:

𝑃(𝑇)
(
𝑍J(r′)

)
=

(
𝑗𝜔𝜇

∬
𝑆′

𝑃(𝑇)J(r′′)𝐺 (r′,r′′)d𝑆′′

− 1
𝑗𝜔𝜀

grad
(∬
𝑆′

div
(
𝑃(𝑇)J(r′′)

)
𝐺 (r′,r′′)d𝑆′′

))
tan

= 𝑍
(
𝑃(𝑇)J(r′)

)
, (3.43)

i.e., the impedance operator is invariant under the symmetry operations of the
underlying PEC object. Obviously, the impedance operator and the transformation
operator are interchangeable. The two operators are thus said to commute [66,77].
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Figure 3.7 Rotation of two position vectors and their difference by −90° about the 𝑧-axis. (a) Original vectors.
(b) Transformed vectors. The distances are preserved by the operation.

The same argument can be applied to the real part 𝑅 (2.15) and the imaginary
part 𝑋 (2.16) of the impedance operator. Alternatively, the linearity of the
operators can be exploited:

𝑃(𝑇)
(
𝑍J(r′)

)
= 𝑃(𝑇)

(
𝑅J(r′)

)
+ 𝑗𝑃(𝑇)

(
𝑋J(r′)

)
. (3.44)

Equivalently:

𝑍
(
𝑃(𝑇)J(r′)

)
= 𝑅

(
𝑃(𝑇)J(r′)

)
+ 𝑗 𝑋

(
𝑃(𝑇)J(r′)

)
, (3.45)

demonstrating that 𝑅 and 𝑋 , too, are invariant under symmetry operations.

3.4.2 Transformation of Eigenfunctions

Having established the invariance of the impedance operator under a symmetry
operation of the underlying PEC object, the next step in finding a connection to the
characteristic modes is to examine the behavior of the eigenvalue problem (3.36)
under a symmetry operation. To this end, a transformation operator 𝑃(𝑇) is
applied to both sides of the eigenvalue problem:

𝑃(𝑇)
(
𝑋J𝑛 (r′)

)
= 𝜆𝑛𝑃(𝑇)

(
𝑅J𝑛 (r′)

)
. (3.46)

Exploiting the invariance of the impedance operator and its Hermitian parts as
derived in the previous subsection yields [58]

𝑋
(
𝑃(𝑇)J𝑛 (r′)

)
= 𝜆𝑛𝑅

(
𝑃(𝑇)J𝑛 (r′)

)
. (3.47)
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Recalling that J𝑛 is an eigenfunction (characteristic surface current density)
corresponding to the in general 𝑑-fold degenerate eigenvalue 𝜆𝑛, this result states
that the transformed function 𝑃(𝑇)J𝑛, too, is an eigenfunction corresponding to
this eigenvalue for any symmetry operation 𝑇 .

However, an eigenfunction corresponding to a 𝑑-fold degenerate eigenvalue 𝜆𝑛
can most generally be expressed as a linear combination of 𝑑 eigenfunc-
tions J𝑛,1,J𝑛,2, . . . ,J𝑛,𝑑 [58,80]. Hence, the 𝜈-th eigenfunction J𝑛,𝜈 correspond-
ing to the eigenvalue 𝜆𝑛 transformed by operator 𝑃(𝑇) solving (3.47) can also
be written as follows:

𝑃(𝑇)J𝑛,𝜈 (r′) =
𝑑∑︁

𝜇=1
𝛾𝜇𝜈 (𝑇)J𝑛,𝜇 (r′), 𝜈 = 1,2, . . . ,𝑑, (3.48)

with the yet unknown weighting coefficients 𝛾𝜇𝜈 (𝑇).33 In order to illustrate
this concept, it is assumed that the two functions shown in Fig. 3.6 are eigen-
functions corresponding to a two-fold degenerate eigenvalue (𝑑 = 2). It was
shown that, under symmetry operations, the two functions transform among
themselves (3.24). This can also be expressed as a linear combination of the two
functions, where the weighting coefficients can take the values 1, −1, or 0.

With this example in mind, it is noticed that (3.48) is reminiscent of (3.22)
and the weighting coefficients can be collected into 𝑑 × 𝑑 square matrices γ(𝑇)
for every 𝑇 . It may thus be deduced that (3.48) describes the transformation
of basis functions according to a representation [58, 76]. In order to confirm
this, it has to be proven that the matrices γ(𝑇) form a homomorphic mapping
according to (3.18). This proof is provided in appendix C.5, demonstrating
that (3.48) indeed describes the transformation of eigenfunctions according to a
representation in the same way as basis functions. A so-formed representation is
even irreducible [58, 76] since the dimension of the representation is dictated by
the degeneracy of the respective eigenvalue and is thus minimal.

In conclusion, it is a fundamental fact that the characteristic surface current
densities act as basis functions of the irreducible representations of the symmetry
group of the underlying PEC object. The characteristic surface current densities
thus possess all the properties of basis functions introduced in this chapter.34

33If the eigenvalue is non-degenerate (𝑑 = 1), the corresponding eigenfunction is simply scaled
by 𝛾11 (𝑇) [66].

34As demonstrated in appendix C.5, the derivation of this subsection is applicable to arbitrary
eigenvalue problems and is solely based on the invariance of the operators of the eigenvalue
problem under symmetry operations.
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3.4.3 Understanding the Rectangular Plate Example

With the connection established above, it is now possible to understand the
observations made in section 2.4.3 regarding the rectangular PEC plate. To this
end, the symmetry of the rectangular plate (Fig. 2.3) needs to be analyzed.

Symmetry operation Symbol

Identity 𝐸

Rotation by 180° about the 𝑧-axis 𝐶2𝑧

Rotation by 180° about the 𝑥-axis 𝐶2𝑥

Rotation by 180° about the 𝑦-axis 𝐶2𝑦

Table 3.13 The four elements of symmetry group 𝐷2.

The four symmetry operations of the rectangular plate are listed in Table 3.13.
This symmetry group is called𝐷2 of order 𝑔 = 4 [78]. It has four one-dimensional
irreducible representations. The character table is given in Table 3.14 and it is
recalled that, for one-dimensional representations, the characters are equal to
the (one-dimensional) representation matrices.

𝐷2 𝐸 𝐶2𝑧 𝐶2𝑥 𝐶2𝑦

Γ (1) 1 1 1 1

Γ (2) 1 1 −1 −1

Γ (3) 1 −1 1 −1

Γ (4) 1 −1 −1 1

Table 3.14 Character table of symmetry group 𝐷2.

As the characteristic surface current densities are basis functions of the
irreducible representations, their transformation under the symmetry operations
of the rectangular plate is governed by (3.22). This enables the assignment
of the characteristic modes to the irreducible representations by applying all
symmetry operations of the symmetry group to the characteristic surface current
densities and comparing the results with Table 3.14. For the rectangular plate,
this can be easily done manually. At 2.5 GHz, the transformation of the surface
current densities of the significant characteristic modes under the symmetry
operations of 𝐷2 is shown in Fig. 3.8. Based on this, mode 1 is assigned to Γ (1) ,
mode 2 to Γ (2) , mode 3 to Γ (3) , and mode 4 to Γ (4) . At 7.25 GHz, the resulting
sorting of the characteristic surface current densities has already been performed
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(a) 𝑃 (𝐸)J1 = +1 · J1 (b) 𝑃 (𝐶2𝑧 )J1 = +1 · J1 (c) 𝑃 (𝐶2𝑥 )J1 = +1 · J1 (d) 𝑃 (𝐶2𝑦 )J1 = +1 · J1

(e) 𝑃 (𝐸)J2 = +1 · J2 (f) 𝑃 (𝐶2𝑧 )J2 = +1 · J2 (g) 𝑃 (𝐶2𝑥 )J2 = −1 · J2 (h) 𝑃 (𝐶2𝑦 )J2 = −1 · J2

(i) 𝑃 (𝐸)J3 = +1 · J3 (j) 𝑃 (𝐶2𝑧 )J3 = −1 · J3 (k) 𝑃 (𝐶2𝑥 )J3 = +1 · J3 (l) 𝑃 (𝐶2𝑦 )J3 = −1 · J3

(m) 𝑃 (𝐸)J4 = +1 · J4 (n) 𝑃 (𝐶2𝑧 )J4 = −1 · J4 (o) 𝑃 (𝐶2𝑥 )J4 = −1 · J4 (p) 𝑃 (𝐶2𝑦 )J4 = +1 · J4

Figure 3.8 Transformation of surface current densities of significant characteristic modes of rectangular PEC
plate at 2.5 GHz. As the characteristic surface current densities are basis functions of the irreducible representations,
a transformation is equal to a multiplication with the corresponding character in Table 3.14. Principal current
directions denoted by arrows. Mode indices according to Fig. 2.5. Color bar in Fig. 2.6(e). (a)–(d) J1 belonging
to Γ (1) . (e)–(h) J2 belonging to Γ (2) . (i)–(l) J3 belonging to Γ (3) . (m)–(p) J4 belonging to Γ (4) .

intuitively in Table 2.1 and it is found that the sets defined therein correspond to
the irreducible representations. With the number of representations in mind, it
is now evident why there are exactly four such sets.

Moreover, it is now possible to explain the correlation of the characteristic
surface current densities (2.51) as observed in Fig. 2.11. As the characteristic
surface current densities are basis functions of the irreducible representations,
they are governed by the orthogonality theorem (3.27). Applied to the rectangular
plate, it states that characteristic surface current densities belonging to different
irreducible representations are orthogonal to each other. For this reason, the four
sets defined in Table 2.1 are mutually orthogonal as evidenced by Fig. 2.11.

The antenna ports as defined in Fig. 2.7 can also be assigned to the irreducible
representations as shown in Table 2.1. They can thus be interpreted as basis
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functions as well since they transform in the same way as the characteristic surface
current densities they are intended to excite. Furthermore, the modal excitation
coefficients (2.24) have the same form as the orthogonality theorem (3.27) and
they are thus governed by it. This explains why the ports only excite modes
belonging to the same irreducible representation as found in Fig. 2.12.

This brief example shows that with the theory of symmetry and its connection
to characteristic modes it is possible to understand the observations made in
section 2.4.3. Consequences and applications of this connection will be studied
in full detail in chapter 4, especially with regard to multimode antenna design.

3.5 Projection Operator Method

An advanced technique from group theory is the projection operator method.
Originally, projection operators are used to derive basis functions of a given
irreducible representation. The projection operator method is therefore also
called the “basis-function generating machine” [77].

3.5.1 Projection Operators

The projection operator P (𝑝)
𝜇𝜈 of the 𝑑𝑝-dimensional 𝑝-th irreducible representa-

tion of a group G of order 𝑔 is defined as [75]

P (𝑝)
𝜇𝜈 =

𝑑𝑝

𝑔

∑︁
𝑇 ∈G

Γ
(𝑝)∗
𝜇𝜈 (𝑇)𝑃(𝑇), 𝜇,𝜈 = 1,2, . . . ,𝑑𝑝 . (3.49)

It is a weighted sum of the transformation operators 𝑃(𝑇) over all group
elements 𝑇 , where the weighting coefficients are the complex conjugate ele-
ments Γ (𝑝)∗

𝜇𝜈 (𝑇) of the representation matrices 𝚪 (𝑝) (𝑇). For a 𝑑𝑝-dimensional
irreducible representation, there exist 𝑑2

𝑝 such projection operators.
Due to the orthogonality of the irreducible representations (section 3.3.3), the

application of a projection operator to a basis function ψ(𝑞)
𝜅 yields [75]

P (𝑝)
𝜇𝜈 ψ

(𝑞)
𝜅 (r′) = 𝛿𝑝𝑞𝛿𝜈𝜅ψ(𝑝)

𝜇 (r′). (3.50)

If the basis function does not transform according to the same irreducible repre-
sentation (𝑝 ≠ 𝑞) or the same column of the irreducible representation (𝑝 = 𝑞,
𝜈 ≠ 𝜅) which the projection operator belongs to, the projection yields zero.
However, if it transforms according to the same column (𝜈 = 𝜅) of the same
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irreducible representation (𝑝 = 𝑞) which the projection operator belongs to, the
projection yields the basis function belonging to the 𝜇-th row, i.e., the same row
as the projection operator, of that irreducible representation.

This means that, if ψ(𝑝)
𝜈 is a basis function belonging to the 𝜈-th row of the

𝑑𝑝-dimensional 𝑝-th irreducible representation, its partner function belonging
to the 𝜇-th row of the same irreducible representation can be projected out of it
by applying the projection operator P (𝑝)

𝜇𝜈 :

P (𝑝)
𝜇𝜈 ψ

(𝑝)
𝜈 (r′) = ψ(𝑝)

𝜇 (r′). (3.51)

In particular [77]:
P (𝑝)
𝜈𝜈 ψ

(𝑝)
𝜈 (r′) = ψ(𝑝)

𝜈 (r′), (3.52)

which finally explains why ψ(𝑝)
𝜇 is said to belong to the 𝜇-th row and ψ(𝑝)

𝜈

is said to belong to the 𝜈-th row. This property of the projection operators is
especially useful for multi-dimensional irreducible representations. If one basis
function is known, its partner functions can be readily computed using the
appropriate projection operators.

This concept can be generalized further by applying the projection opera-
tor P (𝑝)

𝜈𝜈 to an arbitrary function f (r′) [75]:

P (𝑝)
𝜈𝜈 f (r′) = 𝑤 (𝑝)

𝜈 ψ
(𝑝)
𝜈 (r′), (3.53)

where 𝑤 (𝑝)
𝜈 is a weighting coefficient. This equation states that the application

of the projection operator to an arbitrary function projects out of it that part
which belongs to the 𝜈-th row of the 𝑝-th irreducible representation [77]. This
provides now an automatic procedure for deriving a basis of a given irreducible
representation [75]:

1. Choose an arbitrary function f (r′) such that P (𝑝)
𝜈𝜈 f (r′) does not yield zero

for one arbitrarily chosen 𝜈.

2. P (𝑝)
𝜈𝜈 f (r′) is then a basis function belonging to the 𝜈-th row according

to (3.53).

3. Use (3.51) to find its partner functions.

4. These basis functions may be normalized to form an orthonormal set.
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3.5.2 Character Projection Operators

For the construction of basis functions as described in the previous subsection,
a set of representation matrices needs to be known (e.g., Table 3.6). These may
not always be available as only the character tables are usually given in the
literature. Furthermore, representation matrices are only unique up to a similarity
transformation, as stated in section 3.3.1. In order to avoid this arbitrariness
and uniquely characterize an irreducible representation, the characters were
introduced in section 3.3.4. With this argument in mind, the character projection
operators P (𝑝) are defined [75]:

P (𝑝) =
𝑑𝑝

𝑔

∑︁
𝑇 ∈G

𝜒 (𝑝)∗ (𝑇)𝑃(𝑇). (3.54)

Instead of the elements of the representation matrices, the sum now contains the
characters. For this reason, there is exactly one character projection operator per
irreducible representation. For one-dimensional representations, in particular,
the projection operators and the character projection operators are identical.

The character projection operators can also be written in terms of the projection
operators for 𝜈 = 𝜇 [75]:

P (𝑝) =

𝑑𝑝∑︁
𝜇=1

P (𝑝)
𝜇𝜇 . (3.55)

By combining this equation with (3.50), the application of a character projection
operator to a basis function ψ(𝑞)

𝜅 yields

P (𝑝)ψ(𝑞)
𝜅 (r′) =

𝑑𝑝∑︁
𝜇=1

P (𝑝)
𝜇𝜇 ψ

(𝑞)
𝜅 (r′) =

𝑑𝑝∑︁
𝜇=1

𝛿𝑝𝑞𝛿𝜇𝜅ψ
(𝑝)
𝜇 (r′) = 𝛿𝑝𝑞ψ(𝑝)

𝜅 (r′).

(3.56)
Again, the projection yields zero if the basis function does not belong to the
same irreducible representation (𝑝 ≠ 𝑞) as the character projection operator.
However, if the basis function does belong to the same irreducible represen-
tation as the character projection operator (𝑝 = 𝑞), the projection yields the
basis function itself regardless of which row it belongs to. This property is
particularly useful for assigning a set of functions which are known to be
basis functions (e.g., characteristic surface current densities) to the irreducible
representations of a group.
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This concept, too, can be generalized further by applying a character projection
operator to an arbitrary function f. Combining (3.55) with (3.53) yields

P (𝑝) f (r′) =
𝑑𝑝∑︁
𝜇=1

P (𝑝)
𝜇𝜇 f (r′) =

𝑑𝑝∑︁
𝜇=1

𝑤
(𝑝)
𝜇 ψ

(𝑝)
𝜇 (r′). (3.57)

Applying a character projection operator to an arbitrary function projects out
of it a linear combination of basis functions belonging to the given irreducible
representation. However, a linear combination of basis functions is a basis
function of an equivalent irreducible representation [75]:

ψ̄
(𝑝)
𝜈 (r′) =

𝑑𝑝∑︁
𝜇=1

𝑆𝜇𝜈ψ
(𝑝)
𝜇 (r′), 𝜈 = 1,2, . . . ,𝑑𝑝 , (3.58)

where 𝑆𝜇𝜈 are the elements of a non-singular 𝑑𝑝 × 𝑑𝑝 square matrix S as used
in (3.19). The projected function P (𝑝) f is thus a basis function ψ̄(𝑝)

𝜈 of an
equivalent irreducible representation whose representation matrices are given by
the similarity transformation (3.19). Therefore, the character projection operator
of a given irreducible representation gives a valid basis function although the
corresponding representation matrices are unknown.

3.5.3 Applying Projection Operators

As the concepts introduced above will play a major role throughout this thesis,
they are now illustrated by a few generic examples. The computations are
performed explicitly in order to give an overview about how to work with
projection operators.

First of all, the computation of projection operators is demonstrated explicitly
for a simple example. The functionψ(2) (r′) = (−𝑦′,𝑥 ′)T as shown in Fig. 3.5(a)
was found in section 3.3.2 to be a basis function of the second irreducible
representation Γ (2) of the symmetry group𝐷4.35 Before employing the projection
operators, the transformation operators are needed. For the given function, they
have already been calculated in (3.23). The representation matrices (characters)

35For the sake of conciseness, the 𝑧-component is not displayed in the following examples. As the
functions to be considered have no 𝑧-component (planar problem in the 𝑥𝑦-plane), there is no
loss of information.
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are given in Table 3.6. Applying now the projection operator P (2) (3.49) yields36

P (2)
(
−𝑦′
𝑥 ′

)
=

1
8

((−𝑦′
𝑥 ′

)
+

(
−𝑦′
𝑥 ′

)
+

(
−𝑦′
𝑥 ′

)
+

(
−𝑦′
𝑥 ′

)
−

(
𝑦′

−𝑥 ′
)
−

(
𝑦′

−𝑥 ′
)
−

(
𝑦′

−𝑥 ′
)
−

(
𝑦′

−𝑥 ′
))

=

(
−𝑦′
𝑥 ′

)
,

i.e., the basis function itself. In the same manner, it can be checked that applying
any other of the projection operators (𝑝 ≠ 2) yields zero, as required by (3.50).

Using projection operators becomes even more meaningful when work-
ing with multi-dimensional irreducible representations (𝑑𝑝 ≥ 2). The func-
tionψ(5)

1 (r′) = ( |𝑥 ′ |,0)T as shown in Fig. 3.6(a) was found in section 3.3.2 to be
a basis function belonging to the first row (𝜈 = 1) of the two-dimensional (𝑑5 = 2)
fifth irreducible representation Γ (5) of the symmetry group 𝐷4. The transfor-
mation operators have already been computed in (3.24). The representation
matrices are given in Table 3.6 and the characters in Table 3.8. First, the character
projection operators (3.54) are employed. The projection with 𝑝 ≠ 5 yields zero.
Applying instead P (5) results in

P (5)
(
|𝑥 ′ |
0

)
=

2
8

(
2
(
|𝑥 ′ |
0

)
− 2

(
−|𝑥 ′ |

0

))
=

(
|𝑥 ′ |
0

)
,

i.e., the basis function itself. If a function is known to be a basis function,
the character projection operators provide a straightforward way in order to
assign this function to the corresponding irreducible representation. Next, the
projection operators (3.49) are applied to ψ(5)

1 :

P (5)
11

(
|𝑥 ′ |
0

)
=

2
8

(( |𝑥 ′ |
0

)
−

(
−|𝑥 ′ |

0

)
+

(
|𝑥 ′ |
0

)
−

(
−|𝑥 ′ |

0

))
=

(
|𝑥 ′ |
0

)
,

P (5)
21

(
|𝑥 ′ |
0

)
=

2
8

(
−

(
0

−|𝑦′ |

)
+

(
0
|𝑦′ |

)
+

(
0
|𝑦′ |

)
−

(
0

−|𝑦′ |

))
=

(
0
|𝑦′ |

)
,

P (5)
12

(
|𝑥 ′ |
0

)
=

2
8

(( 0
−|𝑦′ |

)
−

(
0
|𝑦′ |

)
+

(
0
|𝑦′ |

)
−

(
0

−|𝑦′ |

))
= 0,

P (5)
22

(
|𝑥 ′ |
0

)
=

2
8

(( |𝑥 ′ |
0

)
−

(
−|𝑥 ′ |

0

)
−

(
|𝑥 ′ |
0

)
+

(
−|𝑥 ′ |

0

))
= 0.

36The projection operator is equivalent to the character projection operator (3.54) as the representa-
tion is one-dimensional.
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The application of the projection operator P (5)
11 yields the function itself, which

means that ψ(5)
1 is a basis function belonging to the first row of the irreducible

representation according to (3.52). Due to this, the application of P (5)
21 yields

its partner function ψ(5)
2 (r′) = (0,|𝑦′ |)T belonging to the second row according

to (3.51). The two other projections yield zero according to (3.50) as ψ(5)
1 does

not belong to the second row (𝜈 ≠ 𝜅). This example demonstrates how the basis
functions of a multi-dimensional irreducible representation can be assigned to
its rows if an explicit set of representation matrices (Table 3.6) is given.

As a last example, the new function f (r′) = ( |𝑥 ′ |,|𝑦′ |)T is considered. Using
the character projection operator method, it is identified to be a basis function of
the fifth irreducible representation Γ (5) of the symmetry group 𝐷4:

P (5)
(
|𝑥 ′ |
|𝑦′ |

)
=

2
8

(
2
(
|𝑥 ′ |
|𝑦′ |

)
− 2

(
−|𝑥 ′ |
−|𝑦′ |

))
=

(
|𝑥 ′ |
|𝑦′ |

)
.

Therefore, it must be a linear combination ofψ(5)
1 andψ(5)

2 according to (3.57);
and in fact, f (r′) = ψ(5)

1 (r′) +ψ(5)
2 (r′). The projection operators can now be

used to project out of f these basis functions:

P (5)
11

(
|𝑥 ′ |
|𝑦′ |

)
=

2
8

(( |𝑥 ′ |
|𝑦′ |

)
−

(
−|𝑥 ′ |
−|𝑦′ |

)
+

(
|𝑥 ′ |
−|𝑦′ |

)
−

(
−|𝑥 ′ |
|𝑦′ |

))
=

(
|𝑥 ′ |
0

)
,

P (5)
21

(
|𝑥 ′ |
|𝑦′ |

)
=

2
8

(
−

(
|𝑥 ′ |
−|𝑦′ |

)
+

(
−|𝑥 ′ |
|𝑦′ |

)
+

(
|𝑥 ′ |
|𝑦′ |

)
−

(
−|𝑥 ′ |
−|𝑦′ |

))
=

(
0
|𝑦′ |

)
;

or alternatively:

P (5)
12

(
|𝑥 ′ |
|𝑦′ |

)
=

2
8

(( |𝑥 ′ |
−|𝑦′ |

)
−

(
−|𝑥 ′ |
|𝑦′ |

)
+

(
|𝑥 ′ |
|𝑦′ |

)
−

(
−|𝑥 ′ |
−|𝑦′ |

))
=

(
|𝑥 ′ |
0

)
,

P (5)
22

(
|𝑥 ′ |
|𝑦′ |

)
=

2
8

(( |𝑥 ′ |
|𝑦′ |

)
−

(
−|𝑥 ′ |
−|𝑦′ |

)
−

(
|𝑥 ′ |
−|𝑦′ |

)
+

(
−|𝑥 ′ |
|𝑦′ |

))
=

(
0
|𝑦′ |

)
.

This is a simple example for projecting out of an arbitrary function the basis
functions corresponding to a given set of representation matrices.

3.5.4 Computation of Representation Matrices

The projection operators are used to construct basis functions of the irreducible
representations. There may, however, be cases where an explicit knowledge
of the representation matrices is needed and a set of basis functions is known
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instead. In this section, it is demonstrated how representation matrices can be
constructed out of a given set of basis functions.

It is supposed that an orthonormal set of basis functionsψ(𝑝)
1 ,ψ

(𝑝)
2 , . . . ,ψ

(𝑝)
𝑑𝑝

fulfilling (3.29) and transforming according to (3.22) is known. Now, an inner
product with ψ(𝑝)

𝜅 is applied to (3.22):〈
ψ

(𝑝)
𝜅 (r′),𝑃(𝑇)ψ(𝑝)

𝜈 (r′)
〉
=

〈
ψ

(𝑝)
𝜅 (r′),

𝑑𝑝∑︁
𝜇=1

Γ
(𝑝)
𝜇𝜈 (𝑇)ψ(𝑝)

𝜇 (r′)
〉

=

𝑑𝑝∑︁
𝜇=1

Γ
(𝑝)
𝜇𝜈 (𝑇)

〈
ψ

(𝑝)
𝜅 (r′),ψ(𝑝)

𝜇 (r′)
〉

=

𝑑𝑝∑︁
𝜇=1

Γ
(𝑝)
𝜇𝜈 (𝑇)𝛿𝜅𝜇 = Γ

(𝑝)
𝜅𝜈 (𝑇), (3.59)

for 𝜅,𝜈 = 1,2, . . . ,𝑑𝑝. Due to the orthogonality theorem (3.29) and the nor-
malization of the basis functions, the inner product of the basis functions
on the right-hand side yields 1 only if 𝜇 = 𝜅 and 0 otherwise so that every
element Γ (𝑝)

𝜅𝜈 (𝑇) of the representation matrix 𝚪 (𝑝) (𝑇) can be computed as
follows:

Γ
(𝑝)
𝜅𝜈 (𝑇) =

〈
ψ

(𝑝)
𝜅 (r′),𝑃(𝑇)ψ(𝑝)

𝜈 (r′)
〉
. (3.60)

This way, the representation matrices for all 𝑇 ∈ G can be computed from an
orthonormal set of basis functions. The so-formed irreducible representation
is unitary [75]. As an example, the two basis functions ψ(5)

1 and ψ(5)
2 from

above can be used to compute the representation matrices of the fifth irreducible
representation Γ (5) of 𝐷4 as given in Table 3.6.

However, the function f (r′) = ( |𝑥 ′ |,|𝑦′ |)T has also been identified as a basis
function of this irreducible representation, though with a yet unknown set
of representation matrices. In order to derive these matrices with (3.60), its
partner function is needed first. A linearly independent function can be found by
applying the transformation operators. For example, 𝑃(𝐶4𝑧)f (r′) = ( |𝑥 ′ |,−|𝑦′ |)T

is linearly independent. It is even orthogonal to f so that it is already a suitable
partner function (appendix D.2). In more complicated cases, the Gram-Schmidt
orthogonalization process (appendix B.1) has to be applied in order to obtain an
orthogonal partner function [75]. The two basis functions are shown in Fig. 3.9.

After proper normalization of the basis functions, the representation ma-
trices are computed using (3.60). The detailed computation is presented in
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x'

y'

(a)

x'

y'

(b)

Figure 3.9 Alternative set of basis functions of two-dimensional fifth irreducible representation Γ (5) of symmetry
group 𝐷4. (a) ψ̄(5)

1 (r′) = ( |𝑥′ |, |𝑦′ |)T belonging to the first row. (b) ψ̄(5)
2 (r′) = ( |𝑥′ |,−|𝑦′ |)T belonging to

the second row. This set of basis functions is equivalent to that in Fig. 3.6.

𝐷4 𝐸 𝐶4𝑧 𝐶2𝑧 𝐶−1
4𝑧

Γ (5)

(
1 0
0 1

) (
0 −1
1 0

) (
−1 0
0 −1

) (
0 1
−1 0

)
𝐷4 𝐶2𝑥 𝐶2𝑦 𝐶2𝐴 𝐶2𝐵

Γ (5)

(
0 1
1 0

) (
0 −1
−1 0

) (
1 0
0 −1

) (
−1 0
0 1

)

Table 3.15 Computed representation matrices of fifth irreducible representation of symmetry group 𝐷4 corre-
sponding to the basis functions ψ̄(5)

1 (r′) = ( |𝑥′ |, |𝑦′ |)T and ψ̄(5)
2 (r′) = ( |𝑥′ |,−|𝑦′ |)T.

appendix D.2. The results are given in Table 3.15. The representation ma-
trices differ from those in Table 3.6, as expected. It is now even possible to
express the transformation matrix between the respective representation matrices.
As already observed above, f (r′) = ψ(5)

1 (r′) +ψ(5)
2 (r′) = ψ̄(5)

1 . Its orthogonal
partner function can be expressed as 𝑃(𝐶4𝑧)f (r′) = ψ(5)

1 (r′) −ψ(5)
2 (r′) = ψ̄(5)

2 .
With (3.58), the transformation matrix S and its inverse are found to be

S =

(
1 1
1 −1

)
, S−1 =

(
0.5 0.5
0.5 −0.5

)
.

Applying the similarity transformation (3.19) to the matrices in Table 3.6 indeed
yields those of Table 3.15. The two representations are thus equivalent, which
can also be checked by means of their characters.
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The described procedure is generally applicable if only the characters and
one basis function are known. The basic steps are summarized as follows [75]:

1. Use the character projection operator method to assign the given basis
function to the corresponding irreducible representation.

2. Apply the transformation operators to the basis function in order to find
linearly independent partner functions.

3. Use the Gram-Schmidt orthogonalization process to form an orthonormal
basis, if necessary (appendix B.1).

4. Compute the representation matrices using (3.60).

With this procedure, a complete basis and the corresponding representation
matrices can be derived.

In summary, the projection operators are versatile tools in conjunction with
matrix representations and basis functions. Their applications to characteristic
modes and multimode antenna design will be investigated in chapter 4.

3.6 Continuous Groups

So far, finite groups, i.e., groups with a finite number of elements, have been
considered. An infinite group, in contrast, is a group containing an infinite number
of elements [77]. Infinite groups arise if the group elements 𝑇 (Φ1,Φ2, . . . ,Φ𝐿)
vary continuously as functions of a set of 𝐿 parameters Φ1,Φ2, . . . ,Φ𝐿 . Such
infinite groups are called continuous groups [77].37

An arbitrary function of the group elements 𝑓 (𝑇) (e.g., a character) becomes
a function of the parameters, i.e., 𝑓 (𝑇 (Φ1,Φ2, . . . ,Φ𝐿)) [81]. A sum over the
group elements is replaced by an integral [75, 77]:∑︁

𝑇 ∈G
𝑓 (𝑇) →

∫
G

𝑓 (𝑇)d𝑇, (3.61)

where d𝑇 can be interpreted as an infinitesimal variation of the group elements.
This integration can be carried out explicitly as a Hurwitz invariant integral in
37In this section, only those methods and properties of continuous groups which differ from finite

groups will be explained. All other methods and properties of finite groups introduced in the
previous sections can be adopted directly.
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parameter space [77]:∫
G

𝑓 (𝑇)d𝑇 =

∫
Φ1

∫
Φ2

· · ·
∫
Φ𝐿

𝑓
(
𝑇 (Φ1,Φ2, . . . ,Φ𝐿)

)
· ℊ

(
𝑇 (Φ1,Φ2, . . . ,Φ𝐿)

)
dΦ𝐿 · · · dΦ2dΦ1, (3.62)

where ℊ is the density of group elements.
The concept of continuous groups can be generalized further to so-called

mixed continuous groups [77]. Such a group consists of a finite number of
𝑀 discrete regions Ψ1,Ψ2, . . . ,Ψ𝑀 . Every group element belongs to one of these
regions. Within one region, the group elements vary continuously as functions
of the already introduced parameters Φ1,Φ2, . . . ,Φ𝐿 .

In this case, the sum over the group elements is replaced by a sum over the
regions and integrals over the parameters [81]:∑︁

𝑇 ∈G
𝑓 (𝑇) →

𝑇 ∈Ψ𝑀∑︁
𝑇 ∈Ψ1

∫
Φ1

∫
Φ2

· · ·
∫
Φ𝐿

𝑓
(
𝑇 (Φ1,Φ2, . . . ,Φ𝐿)

)
· ℊ

(
𝑇 (Φ1,Φ2, . . . ,Φ𝐿)

)
dΦ𝐿 · · · dΦ2dΦ1. (3.63)

It should be noted that each region has its own density of group elements.
The group order 𝑔 of a continuous group can now be defined in a general way

as the sum of the integrals over the densities of group elements:

𝑔 =

𝑇 ∈Ψ𝑀∑︁
𝑇 ∈Ψ1

∫
Φ1

∫
Φ2

· · ·
∫
Φ𝐿

ℊ
(
𝑇 (Φ1,Φ2, . . . ,Φ𝐿)

)
dΦ𝐿 · · · dΦ2dΦ1. (3.64)

With these definitions, the methods introduced in the previous sections can
be adopted to continuous groups. This will now be illustrated exemplarily by
means of the symmetry group 𝐷∞.38 This is the symmetry group of a circular
disk in the 𝑥𝑦-plane as depicted in Fig. 3.10.39

Apart from the identity 𝐸 , it consists of an infinite number of rotations about
the 𝑧-axis by the continuous angle Φ denoted by 𝐶𝑧 (Φ), with 0 ≤ Φ < 2𝜋.
Furthermore, there is an infinite number of rotations by 180° about axes
38𝐷∞ is isomorphic to the orthogonal group in two dimensions 𝑂 (2) .
39As the name suggests, this symmetry group is related to 𝐷4. This relationship will be analyzed in

full detail in chapter 5.
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x

y

Φ

Figure 3.10 Circular disk in 𝑥𝑦-plane and coordinate system. One exemplary axis of symmetry with rotation
angle Φ with respect to the 𝑥-axis is shown.

𝑇 (Φ) 𝐸 𝐶𝑧 (Φ) 𝐶2 (Φ)

R
(
𝑇 (Φ)

) ©­­­«
1 0 0
0 1 0
0 0 1

ª®®®¬
©­­­«

cos(Φ) sin(Φ) 0
− sin(Φ) cos(Φ) 0

0 0 1

ª®®®¬
©­­­«
cos(2Φ) sin(2Φ) 0
sin(2Φ) − cos(2Φ) 0

0 0 −1

ª®®®¬
Table 3.16 Elements and rotation matrices of symmetry group 𝐷∞.

perpendicular to the 𝑧-axis.40 These rotation axes are characterized by the
angle Φ (one of them shown in Fig. 3.10) and the corresponding rotations are
thus denoted by 𝐶2 (Φ). Such a rotation is equivalent to the rotation 𝐶𝑧 (2Φ)
by 2Φ about the 𝑧-axis followed by the rotation𝐶2𝑥 by 180° about the 𝑥-axis [57]:

𝐶2 (Φ) = 𝐶2𝑥𝐶𝑧 (2Φ). (3.65)

This relationship simplifies the computation of the rotation matrices. The group
elements and the corresponding rotation matrices are listed in Table 3.16. The
rotation matrices are computed using 3.7 by replacing the discrete angle 2𝜋

𝓃

by Φ. The group elements are functions of one parameter, the rotation angle Φ.
The character table of 𝐷∞ is given in Table 3.17 [77]. There are three classes:

The identity 𝐸 , the rotations 𝐶𝑧 (Φ), and the rotations 𝐶2 (Φ) each form a class
on their own. However, the identity is equal to 𝐶𝑧 (0) and it thus lies in the same

40𝐷∞ is isomorphic to 𝐶∞v, which is the symmetry group of a right circular cone. In 𝐶∞v, the
rotations about axes perpendicular to the 𝑧-axis are replaced by reflections through planes
containing the 𝑧-axis (cf. 𝐷4 and 𝐶4v in section 3.3.5). These reflections may be easier to
visualize.
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𝐷∞ 𝐸 𝐶𝑧 (Φ) 𝐶2 (Φ)
Γ (1) = 𝐴1 1 1 1

Γ (2) = 𝐴2 1 1 −1

Γ (3) = 𝐸1 2 2 cos(Φ) 0

Γ (4) = 𝐸2 2 2 cos(2Φ) 0
.
.
.

.

.

.

.

.

.

.

.

.

Γ (2+𝜏) = 𝐸𝜏 2 2 cos
(
𝜏Φ

)
0

.

.

.

.

.

.

.

.

.

.

.

.

Table 3.17 Character table of symmetry group 𝐷∞.

region as the rotations 𝐶𝑧 (Φ). Hence, the group 𝐷∞ consists of two regions,
one containing 𝐸 as well as 𝐶𝑧 (Φ) and one containing 𝐶2 (Φ).

The character table also reveals that there is an infinite number of irreducible
representations. The first two ones are one-dimensional. They are alternatively
called 𝐴1 and 𝐴2.41 Furthermore, there is an infinite number of two-dimensional
irreducible representations. The 𝜏-th two-dimensional irreducible represen-
tation may alternatively be denoted by 𝐸𝜏 , with 𝜏 ∈ N>0. In particular, the
characters 𝜒 (2+𝜏) (𝐶𝑧 (Φ)) are functions of Φ. They are distinguished by 𝜏.

Based on this knowledge, the character projection operators can now be
specified by adopting (3.54) according to (3.63):

P (1) =
1
𝑔

( 2𝜋∫
0

𝑃
(
𝐶𝑧 (Φ)

)
ℊ

(
𝐶𝑧 (Φ)

)
dΦ +

2𝜋∫
0

𝑃
(
𝐶2 (Φ)

)
ℊ

(
𝐶2 (Φ)

)
dΦ

)
,

(3.66a)

P (2) =
1
𝑔

( 2𝜋∫
0

𝑃
(
𝐶𝑧 (Φ)

)
ℊ

(
𝐶𝑧 (Φ)

)
dΦ −

2𝜋∫
0

𝑃
(
𝐶2 (Φ)

)
ℊ

(
𝐶2 (Φ)

)
dΦ

)
,

(3.66b)

P (2+𝜏) =
2
𝑔

2𝜋∫
0

2 cos
(
𝜏Φ

)
𝑃
(
𝐶𝑧 (Φ)

)
ℊ

(
𝐶𝑧 (Φ)

)
dΦ, (3.66c)

41The notation using 𝐴1, 𝐴2, and 𝐸𝜏 is an alternative to the Γ-notation introduced in section 3.3 (see,
e.g., [57, 77]). Although the Γ-notation is predominantly used throughout this thesis, switching
temporarily to the alternative notation will prove beneficial in chapter 5.
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where the group order 𝑔 is computed according to (3.64) as follows:

𝑔 =

2𝜋∫
0

ℊ
(
𝐶𝑧 (Φ)

)
dΦ +

2𝜋∫
0

ℊ
(
𝐶2 (Φ)

)
dΦ. (3.67)

For explicit computations, the densities of group elements are required. These
can be determined by adopting the orthogonality theorem for characters (3.31)
according to (3.63):

𝑔𝛿𝑝𝑞 =

2𝜋∫
0

𝜒 (𝑝)∗ (𝐶𝑧 (Φ)
)
𝜒 (𝑞) (𝐶𝑧 (Φ)

)
ℊ

(
𝐶𝑧 (Φ)

)
dΦ

+
2𝜋∫

0

𝜒 (𝑝)∗ (𝐶2 (Φ)
)
𝜒 (𝑞) (𝐶2 (Φ)

)
ℊ

(
𝐶2 (Φ)

)
dΦ. (3.68)

For 𝑝 = 1 and 𝑞 = 2, this yields

0 =

2𝜋∫
0

ℊ
(
𝐶𝑧 (Φ)

)
dΦ −

2𝜋∫
0

ℊ
(
𝐶2 (Φ)

)
dΦ ⇔ ℊ

(
𝐶𝑧 (Φ)

)
= ℊ

(
𝐶2 (Φ)

)
,

(3.69)
i.e., the densities of both regions are equal. Next, choosing 𝑝 = 1 (or 𝑝 = 2)
and 𝑞 = 2 + 𝜏 yields

0 =

2𝜋∫
0

2 cos
(
𝜏Φ

)
ℊ

(
𝐶𝑧 (Φ)

)
dΦ ⇔ ℊ

(
𝐶𝑧 (Φ)

)
= ℊ

(
𝐶2 (Φ)

)
= 𝐾 ∈ C.

(3.70)
This condition is always fulfilled if the densities are constant. Finally, choos-
ing 𝑝 = 2 + 𝜏 and 𝑞 = 2 + 𝜐, with 𝜏,𝜐 ∈ N>0, yields

𝑔𝛿 (2+𝜏) (2+𝜐) =

2𝜋∫
0

4 cos
(
𝜏Φ

)
cos

(
𝜐Φ

)
𝐾dΦ. (3.71)

The case 𝜐 ≠ 𝜏 gives a true statement (0 = 0). The case 𝜐 = 𝜏 yields

𝑔 = 4𝐾
2𝜋∫

0

cos2 (𝜏Φ)
dΦ = 4𝜋𝐾. (3.72)
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The orthogonality is thus fulfilled for all constants 𝐾 ∈ C. For the sake of
simplicity, 𝐾 is chosen to be equal to 1, such that

ℊ
(
𝐶𝑧 (Φ)

)
= ℊ

(
𝐶2 (Φ)

)
= 1 and 𝑔 = 4𝜋. (3.73)

This example demonstrates how the methods introduced in this chapter can
be readily applied to continuous groups. As a general rule, sums are replaced
by integrals. The determination of the densities of group elements arises as an
additional computation step. The explicit forms derived in this section for the
symmetry group 𝐷∞ will be made use of in chapter 5.





4 Symmetry Analysis
of Characteristic Modes

Having established the theoretical framework of this thesis, it is time make use of
the connection between the theory of symmetry and the theory of characteristic
modes. The methods introduced in the previous chapter are applied to the
characteristic modes of a PEC object, which will henceforth be called symmetry
analysis of characteristic modes. This symmetry analysis is intended to provide
an enhanced understanding of characteristic modes and ultimately enable a
systematic multimode antenna design.

To this end, first of all, the assignment of characteristic modes to the irre-
ducible representations of the symmetry group of the underlying PEC object is
discussed, which is the basis for all subsequent analyses. Next, the phenomenon
of degenerate modes is investigated in full detail. The concept of fundamental
modes per irreducible representation can then be introduced. Finally, and based
on the preceding symmetry analysis, design guidelines for realizing orthogonal
antenna ports on multimode antennas are derived. The chapter concludes with
some representative examples.42

4.1 Assignment to Irreducible Representations

As the characteristic surface current densities are basis functions of the irreducible
representations of the symmetry group of a PEC object, the principal task of
the symmetry analysis is the assignment of the characteristic modes to the
irreducible representations. In chapter 3, this was done manually by inspecting
the basis functions of a square plate and a rectangular plate.

In this chapter, instead, an equilateral triangular PEC plate with edge length 𝑎,
circumradius 𝑅u, and inradius 𝑅i

43 as shown in Fig. 4.1(a) is chosen for
illustrating the different aspects of the symmetry analysis. Its symmetry group
is 𝐷3 consisting of the six symmetry operations (𝑔 = 6) listed in Table 4.1 [78].

42The following publications are related to the content of this chapter: [PM19a] (© 2019 IEEE),
[PM19b] (© 2019 IEEE), [PHM21] (© 2021 IEEE).

43An equilateral triangle is completely determined by its edge length 𝑎: 𝑅u = 𝑎√
3
, 𝑅i =

𝑎

2
√

3
.
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Figure 4.1 Equilateral triangular PEC plate. (a) Geometry, coordinate system, and symmetry axes. (b) An
exemplary triangular mesh reproducing the symmetry of the equilateral triangular plate. © 2021 IEEE [PHM21].

Symmetry operation Symbol

Identity 𝐸

Rotation by 120° about the 𝑧-axis 𝐶3𝑧

Rotation by 240° about the 𝑧-axis 𝐶2
3𝑧

Rotation by 180° about the 𝑥-axis 𝐶2𝑥

Rotation by 180° about the axis 𝐴 𝐶2𝐴

Rotation by 180° about the axis 𝐵 𝐶2𝐵

Table 4.1 The six elements of symmetry group 𝐷3. © 2021 IEEE [PHM21].

Although, at first sight, the equilateral triangular plate may appear to be a
rather simple example, it will become evident throughout this chapter that
the symmetry group 𝐷3 is both compact enough so that illustrations remain
concise and complex enough so that all important effects can be demonstrated.
The corresponding character table is given in Table 4.2 [78].44 There are
three irreducible representations Γ (1) , Γ (2) , and Γ (3) . The first two are one-
dimensional (𝑑1;2 = 1), whereas the third one is two-dimensional (𝑑3 = 2).

At this point, and with (3.22) in mind, it can already be predicted that
characteristic surface current densities belonging to the first irreducible represen-
tation Γ (1) (identity representation) are invariant under all symmetry operations
of the equilateral triangular plate. In contrast, characteristic surface current
densities belonging to the second irreducible representation Γ (2) are invariant

44The character table is usually the only information about the irreducible representations given in
the literature due to the arbitrariness of the representation matrices.
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𝐷3 𝐸 𝐶3𝑧 𝐶2
3𝑧 𝐶2𝑥 𝐶2𝐴 𝐶2𝐵

Γ (1) 1 1 1 1 1 1

Γ (2) 1 1 1 −1 −1 −1

Γ (3) 2 −1 −1 0 0 0

Table 4.2 Character table of symmetry group 𝐷3. © 2021 IEEE [PHM21].

Figure 4.2 Modal significances of equilateral triangular PEC plate with circumradius 𝑅u = 0.6 wavelengths.
Modes sorted according to their significance.

under the rotations about the 𝑧-axis, but inverted under the rotations about
the other axes. However, as the representation matrices are not known, similar
statements cannot be made regarding the third irreducible representation Γ (3) .

In order to compute the characteristic surface current densities, a modal
analysis of the equilateral triangular PEC plate is now conducted. A circum-
radius 𝑅u = 0.6 wavelengths is chosen arbitrarily.45 A mesh reproducing the
symmetry of the equilateral triangular plate is required. An exemplary triangular
mesh fulfilling this requirement is shown in Fig. 4.1(b).46 It can be easily checked
that the mesh is invariant under the symmetry operations of 𝐷3.

The modal analysis yields 15 characteristic modes to be taken into account,
i.e., having an eigenvalue |𝜆𝑛 | ≤ 100 (section 2.3.4). The modal significances
of these modes are shown in Fig. 4.2, where the modes are sorted according to
their significance. The corresponding characteristic surface current densities are
depicted in Fig. 4.3. It is apparent that the current distributions become more
complex with increasing mode index 𝑛.

45For the symmetry analysis, it does not matter if the characteristic modes are significant or not.
46The symmetry analysis is independent of the mesh density provided that the mesh reproduces the

symmetry correctly. Of course, in order to obtain reasonable modal results, the mesh density
should fulfill the criteria discussed in section 2.3.4.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 (e) Mode 5

(f) Mode 6 (g) Mode 7 (h) Mode 8 (i) Mode 9 (j) Mode 10

(k) Mode 11 (l) Mode 12 (m) Mode 13 (n) Mode 14 (o) Mode 15

Figure 4.3 Normalized characteristic surface current densities of equilateral triangular PEC plate with cir-
cumradius 𝑅u = 0.6 wavelengths. Principal current directions denoted by arrows. Color bar in Fig. 2.6(e).
(a)–(o) Modes 1 to 15 as sorted in Fig. 4.2. © 2021 IEEE [PHM21].

Nevertheless, those characteristic surface current densities which are invariant
under all symmetry operations of the symmetry group 𝐷3 can easily be identified
by a manual inspection. Modes 1 and 12 are found to belong to the first
irreducible representation Γ (1) . The corresponding characteristic surface current
densities (Fig. 4.3(a) and (l)) each act as a basis function of this irreducible
representation. This is due to the fact that applying any symmetry operation of
the equilateral triangular plate is equivalent to a multiplication with 1, which is
reflected by the characters of Γ (1) (Table 4.2).

In the same way, modes 6, 9, and 13 are identified to belong to the second
irreducible representation Γ (2) . Applying the identity or one of the rotations about
the 𝑧-axis to the corresponding characteristic surface current densities (Fig. 4.3(f),
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Repr. Mode 𝑛

Γ (1) 1; 12

Γ (2) 6; 9; 13

Γ (3) 2, 3; 4, 5; 7, 8; 10, 11; 14, 15

Table 4.3 Assignment of characteristic modes of equilateral triangular PEC plate to irreducible representations
of symmetry group 𝐷3.

(i), and (m)) is equal to a multiplication with 1, whereas applying one of the
rotations about the other axes is equal to a multiplication with −1, corresponding
to the characters of Γ (2) (Table 4.2).

In contrast, the assignment to the third irreducible representation Γ (3) is not
that straightforward. In order to carry out the same inspection as has been done
for the one-dimensional irreducible representations above, the two-dimensional
representation matrices would be required, which are not available yet. However,
in this special case, those modes which cannot be assigned to the first or second
irreducible representation must belong to the third irreducible representation.
This finally yields the assignment of all characteristic modes of the equilateral
triangular PEC plate to the irreducible representations of the symmetry group 𝐷3,
which is summarized in Table 4.3.

Another argument for the assignment of the characteristic modes to the
two-dimensional third irreducible representation is based on the degeneracy of
the modes. Characteristic modes belonging to this irreducible representation
must be two-fold degenerate. This means that a pair of characteristic surface
current densities with the same eigenvalue forms a basis of the two-dimensional
irreducible representation. It is found that the mode pairs 2-3, 4-5, 7-8, 10-11,
and 14-15 have the same eigenvalue (modal significance, see Fig. 4.2). Hence,
these pairs each form a basis of the third irreducible representation.

It has become apparent that the manual assignment of characteristic modes to
the irreducible representations is illustrative, but has some severe drawbacks, in
particular if only the characters are known. Only in the case of one-dimensional
irreducible representations, a systematic manual assignment is possible. How-
ever, even this may become cumbersome if a symmetry group with a large
number of elements and/or irreducible representations is examined. If irre-
ducible representations of dimension higher than 1 are considered, some other
criteria, e.g., the modal degeneracy, may be employed. However, if there is more
than one multi-dimensional irreducible representation, the assignment becomes
unfeasible without further information.
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4.1.1 Automatic Assignment

The previous paragraphs have shown that there is need for a systematic way
of assigning the characteristic modes to the irreducible representations. It is
emphasized once again that only the characters are known and it will now be
demonstrated that this information is sufficient for a complete assignment.

In section 3.5.2, the character projection operators are introduced. It is shown
in (3.56) that applying a character projection operator to a basis function yields
the basis function itself if it belongs to the same irreducible representation as
the character projection operator and 0 otherwise.

As the characteristic surface current densities are basis functions of the
irreducible representations, the character projection operator method can be
readily applied to characteristic modes in order to implement a systematic and
automatic assignment procedure. By applying all character projection operators
of the given symmetry group to one characteristic surface current density in
turn, it is identified to which irreducible representation it belongs.

According to (3.54), the three character projection operators of the symmetry
group 𝐷3 are computed as follows:

P (1) =
1
6

(
𝑃(𝐸) + 𝑃(𝐶3𝑧) + 𝑃(𝐶

2
3𝑧) + 𝑃(𝐶2𝑥) + 𝑃(𝐶2𝐴) + 𝑃(𝐶2𝐵)

)
, (4.1a)

P (2) =
1
6

(
𝑃(𝐸) + 𝑃(𝐶3𝑧) + 𝑃(𝐶

2
3𝑧) − 𝑃(𝐶2𝑥) − 𝑃(𝐶2𝐴) − 𝑃(𝐶2𝐵)

)
, (4.1b)

P (3) =
1
3

(
2𝑃(𝐸) − 𝑃(𝐶3𝑧) − 𝑃(𝐶

2
3𝑧)

)
. (4.1c)

The character projection operators are weighted sums of the transformation
operators. Thus, all that is needed, apart from the characters, are the transfor-
mation operators (3.13). These can be readily implemented for any proper or
improper rotation based on the rotation matrices as introduced in section 3.1.2.
The transformation operators of the symmetry group 𝐷3 are listed in Table 4.4.47

The character projection operators (4.1) are now applied to the characteristic
surface current densities of the equilateral triangular PEC plate (Fig. 4.3). For
example, the application to mode 2 (Fig. 4.3(b)) yields 0 for operators P (1)

and P (2) , but the characteristic surface current density itself for operator P (3) .
In particular, a correct assignment to the two-dimensional third irreducible
representation is possible based on the characters alone without further ado.

47The corresponding rotation matrices are given in Table D.1.
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Table 4.4 Transformation operators of symmetry group 𝐷3.

The character projection operator method is a systematic way of assigning
the characteristic modes to the irreducible representations. In contrast to the
manual assignment, the characteristic surface current densities do not even need
to be visualized. It can thus be implemented as a fully automatic postprocessing
without user interference directly following the modal analysis.

4.2 Degenerate Modes

In the previous section, it was shown that the assignment of the characteristic
modes to the irreducible representations of a symmetry group can be conducted
based on the characters alone. It was found, however, that multi-dimensional
representations bring some peculiarities with them. It is thus time to shed some
more light on degenerate modes.
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(a) (b) (c) (d)

Figure 4.4 Normalized characteristic surface current densities of equilateral triangular PEC plate with circum-
radius 𝑅u = 0.6 wavelengths as basis functions of the two-dimensional third irreducible representation to the
same eigenvalue. Principal current directions denoted by arrows. Color bar in Fig. 2.6(e). (a) J2 resulting from the
modal analysis. (b) J3 resulting from the modal analysis. (c) Linear combination J2 + J3. (d) Orthogonal partner
function of J2 + J3.

To a 𝑑-fold degenerate eigenvalue there belongs a set of 𝑑 linearly independent
eigenfunctions (characteristic surface current densities) [80].48 Naturally, this
degeneracy is due to the symmetry of the underlying PEC object49 and the set
of characteristic surface current densities can be assigned to a 𝑑-dimensional
irreducible representation [58].

However, the set of characteristic surface current densities is not unique as
any linear combination of 𝑑 eigenfunctions is again an eigenfunction to the
same eigenvalue [80]. As an example, the sum J2 + J3 of the characteristic
surface current densities J2 (Fig. 4.4(a)) and J3 (Fig. 4.4(b)) is considered.50

The resulting surface current density is shown in Fig. 4.4(c). It can be easily
checked by means of the character projection operator method (4.1) that this
constructed characteristic surface current density, too, is a basis function of
the third irreducible representation. It is neither orthogonal to J2 nor to J3,
though an orthogonal partner function can be constructed by means of the
procedure described at the end of section 3.5.4: A linearly independent function
is found, for instance, by applying the rotation 𝐶3𝑧 . Then, the Gram-Schmidt
orthogonalization process (appendix B.1) is used to construct the orthogonal
partner function, which is shown in Fig. 4.4(d).
48The eigenfunctions are not necessarily orthogonal, though an orthogonal set can always be found,

as explained in appendix C.2.
49According to [76], an “accidental” degeneracy, i.e., a degeneracy which is not due to symmetry,

is “expected to occur only rarely”.
50Of course, J2 + J3 does not radiate unit power. For this brief example, a normalization is not

necessary.
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The arbitrariness of the eigenfunctions is mirrored by the fact that the
representation matrices are only unique up to a similarity transformation. It
has already been shown in section 3.5.4 that different sets of orthogonal
basis functions transform according to different sets of representation matrices.
However, to one fixed set of representation matrices there belongs one fixed
set of orthogonal basis functions (characteristic surface current densities). This
means that, if a set of representation matrices is known, a fixed orthogonal basis
belonging to this set of representation matrices can be constructed using the
projection operator method (section 3.5.1).

4.2.1 Construction of Representation Matrices

It is now purposeful to construct a set of representation matrices. For the method
introduced in section 3.5.4, a set of orthogonal basis functions is required.

As the characteristic surface current densities computed in section 4.1 are
basis functions of the irreducible representations, the mode pairs 2-3, 4-5, 7-8,
10-11, and 14-15 could be used to compute a set of representation matrices of
the two-dimensional third irreducible representation numerically. However, this
approach has several drawbacks based on the following observations:

• Different mode pairs (i.e., belonging to different eigenvalues and thus
having different mode indices 𝑛) in general yield different sets of repre-
sentation matrices as they do not necessarily transform according to the
same set of representation matrices. As a matter of fact, this is the case in
Fig. 4.3, which will become clear in subsection 4.2.2.

• The same mode pair computed with different mesh densities does not
necessarily transform according to the same set of representation matrices.
An example is shown in Fig. 4.5, where the two mode pairs obviously
cannot transform according to the same set of representation matrices.51

• The computation is based on numerical results and is thus not exact.

As already hinted at, there is a lot of arbitrariness when working with degenerate
modes. However, a fixed set of representation matrices is able to eliminate this
arbitrariness as all mode pairs can then be constructed to transform according to
this set of matrices. The question arises how such a set of matrices can be found
if the computed characteristic surface current densities are not adequate.
51This is quickly checked by applying the rotation 𝐶2𝑥 .
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(a) (b) (c) (d)

Figure 4.5 Impact of different mesh densities on degenerate characteristic surface current densities of equilateral
triangular PEC plate with circumradius 𝑅u = 0.6 wavelengths. Principal current directions denoted by arrows.
Color bar in Fig. 2.6(e). (a) J2 computed using a mesh consisting of 2202 triangles. (b) J3 computed using a mesh
consisting of 2202 triangles. (c) J2 computed using a mesh consisting of 618 triangles. (d) J3 computed using a
mesh consisting of 618 triangles. Both mesh densities are chosen such that the symmetry is reproduced properly
and the mesh criterion given in section 2.3.4 is fulfilled.

As a matter of fact, any set of basis functions belonging to the third irreducible
representation is suitable for this task. It is thus purposeful to choose a set of
functions as simple as possible. Having a closer look at modes 2 and 3, the
characteristic surface current density of mode 3 (Fig. 4.5(b)) seems to be invariant
under the rotation𝐶2𝑥 by 180° about the 𝑥-axis, whereas the characteristic surface
current density of mode 2 (Fig. 4.5(a)) seems to be inverted by this operation.52

It is thus a good idea to start with a pair of simple functions possessing these
symmetry properties.

The scalar function 𝜓
(3)
1 (𝑥 ′,𝑦′) = 𝑥 ′ defined on an equilateral triangular

domain with 𝑦′ ∈
[ 1√

3
𝑥 ′ − 𝑎

3 ,−
1√
3
𝑥 ′ + 𝑎

3
]53 and 𝑥 ′ ∈

[
−𝑅i,𝑅u]54 as shown in

Fig. 4.6(a) is invariant under the rotation 𝐶2𝑥 . Correspondingly, and rather
intuitively, the scalar function 𝜓 (3)

2 (𝑥 ′,𝑦′) = 𝑦′ defined on the same domain
as shown in Fig. 4.6(b) is inverted by this operation. These two functions
are thus proposed as suitable candidates to be basis functions of the two-
dimensional irreducible representation Γ (3) . As demonstrated in appendix D.1,
the two proposed functions are orthogonal, which is a necessary condition to

52A close inspection reveals that this is not exactly true (cf. Fig. 4.8(a)), but approximately in order
to serve as motivation. Similar statements may be found for the other degenerate mode pairs
with respect to other axes, e.g., mode pair 14-15 (Fig. 4.3(n) and (o)) with respect to the axis 𝐵.

53− 1√
3
𝑥′ + 𝑎

3 and 1√
3
𝑥′ − 𝑎

3 describe the upper and the lower edge, respectively, of the equilateral
triangular plate as linear functions of 𝑥′, see Fig. 4.1(a).

54The function has to be square-integrable as the inner product needs to be computed (see
appendix B). The function must thus be confined to the triangular domain.
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Figure 4.6 Pair of scalar basis functions of two-dimensional third irreducible representation Γ (3) of symmetry
group 𝐷3. (a) 𝜓 (3)

1 (𝑥′,𝑦′) = 𝑥′. (b) 𝜓 (3)
2 (𝑥′,𝑦′) = 𝑦′.

form a basis. That the two functions indeed belong to the third irreducible
representation is now checked analytically by means of the character projection
operator method.55 The application of the character projection operators (4.1)
to 𝜓 (3)

1 yields

P (1)𝑥 ′ =
1
6
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𝑥 ′ − 1

2
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√
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2
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√
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2
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)
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2
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2
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)
= 0,

P (3)𝑥 ′ =
1
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(
2𝑥 ′ + 1

2
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√
3

2
𝑦′ + 1

2
𝑥 ′ −

√
3

2
𝑦′

)
= 𝑥 ′.

The application to 𝜓 (3)
2 yields

P (1) 𝑦′ =
1
6

(
𝑦′ +

√
3

2
𝑥 ′ − 1

2
𝑦′ −

√
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− 𝑦′ +
√

3
2
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2
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= 0,

55The required scalar transformation operators are given in Table D.1.
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𝐷3 𝐸 𝐶3𝑧 𝐶2
3𝑧

Γ (3)

(
1 0
0 1

) (
−1/2

√
3/2

−
√

3/2 −1/2

) (
−1/2 −

√
3/2

√
3/2 −1/2
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𝐷3 𝐶2𝑥 𝐶2𝐴 𝐶2𝐵

Γ (3)
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1 0
0 −1
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−1/2

√
3/2

√
3/2 1/2
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−1/2 −

√
3/2

−
√

3/2 1/2

)

Table 4.5 Representation matrices of the two-dimensional third irreducible representation Γ (3) of symmetry
group 𝐷3 computed with scalar basis functions 𝜓 (3)

1 (𝑥′,𝑦′) = 𝑥′ and 𝜓
(3)
2 (𝑥′,𝑦′) = 𝑦′. © 2021 IEEE [PHM21].

P (2) 𝑦′ =
1
6

(
𝑦′ +

√
3

2
𝑥 ′ − 1

2
𝑦′ −

√
3

2
𝑥 ′ − 1

2
𝑦′

+ 𝑦′ −
√

3
2
𝑥 ′ − 1

2
𝑦′ +

√
3

2
𝑥 ′ − 1

2
𝑦′

)
= 0,

P (3) 𝑦′ =
1
3

(
2𝑦′ −

√
3

2
𝑥 ′ + 1

2
𝑦′ +

√
3

2
𝑥 ′ + 1

2
𝑦′

)
= 𝑦′.

Consequently, a pair of basis functions of the two-dimensional third irre-
ducible representation of the symmetry group 𝐷3 is now available. In order to
compute the corresponding representation matrices, the method presented in
section 3.5.4 is employed. The detailed computation is given in appendix D.1.
The resulting representation matrices are listed in Table 4.5. It is highlighted
that all computations are performed analytically so that the results are exact.

It is observed that the representation matrices of 𝐷3 are more complicated than
those of 𝐷4 (Table 3.6). The transformation of the characteristic surface current
densities belonging to the third irreducible representation of the equilateral
triangular plate is thus not as illustrative as in the case of the square plate. This
explains why the manual assignment of the characteristic modes to the irreducible
representations as discussed in section 4.1 is in general not purposeful when
dealing with degenerate modes and the automatic assignment using character
projection operators is the better choice.

Nevertheless, the representation matrix corresponding to the rotation 𝐶2𝑥
of 𝐷3 is straightforward to interpret. In fact, it exactly represents the observations
discussed when introducing the scalar basis functions and thus validates the above-
made choice. The same argument can basically be employed if there are more
multi-dimensional irreducible representations. Alternatively, or additionally,
suitable scalar basis functions can be found in the literature, e.g., [77,78], which
is recommended in more complicated cases (see section 4.5.2).
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4.2.2 Construction of Unique Basis

Now that a set of representation matrices is known, a unique basis of the third
irreducible representation Γ (3) of 𝐷3 can be constructed out of an arbitrary
function by means of the projection operators introduced in section 3.5.1. In the
context of characteristic modes, this means that out of an arbitrary degenerate
characteristic surface current density belonging to a certain eigenvalue a pair of
unique characteristic surface current densities belonging to the same eigenvalue
can be generated. This pair forms a fixed basis, i.e., its symmetry properties are
always the same. This corresponds to the fact that the pair transforms according
to a fixed set of representation matrices.

In order to illustrate this, the sum J2 + J3 of the characteristic surface current
densities J2 (Fig. 4.4(a)) and J3 (Fig. 4.4(b)) as shown in Fig. 4.7(a) is considered
again. As this is a degenerate characteristic surface current density transforming
according to an unknown set of representation matrices, the projection operator
method is now applied to construct a unique pair of characteristic surface current
densities transforming according to the representation matrices in Table 4.5.

In order to generate the characteristic surface current density belonging to the
first row of Γ (3) , the projection operator P (3)

11 according to (3.49) is used:

P (3)
11 =

1
3

(
𝑃(𝐸)−1

2
𝑃(𝐶3𝑧)−

1
2
𝑃(𝐶2

3𝑧)+𝑃(𝐶2𝑥)−
1
2
𝑃(𝐶2𝐴)−

1
2
𝑃(𝐶2𝐵)

)
. (4.2)

Alternatively, the projection operator P (3)
12 may be used:

P (3)
12 =

1
3

(√3
2
𝑃(𝐶3𝑧) −

√
3

2
𝑃(𝐶2

3𝑧) +
√

3
2
𝑃(𝐶2𝐴) −

√
3

2
𝑃(𝐶2𝐵)

)
. (4.3)

Both operators have the same row index 𝜇 = 1 and thus produce a basis function
belonging to the first row, as explained in section 3.5.1. As any degenerate
characteristic surface current density is always a linear combination of the basis
functions to be generated, both operators yield the same result and can be used
in an equivalent manner.

By applying either P (3)
11 or P (3)

12 to the characteristic surface current density
shown in Fig. 4.7(a), the projected characteristic surface current density shown in
Fig. 4.7(b) is generated. In particular, this characteristic surface current density
is invariant under the rotation 𝐶2𝑥 about the 𝑥-axis, which is reminiscent of the
basis functions employed in subsection 4.2.1 to construct the representation
matrices. This is a distinctive property of the basis functions transforming
according to this set of representation matrices.
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(a)

⇒

(b) (c)

Figure 4.7 Application of projection operators to degenerate characteristic surface current density of equilateral
triangular PEC plate with circumradius 𝑅u = 0.6 wavelengths. Principal current directions denoted by arrows.
Color bar in Fig. 2.6(e). (a) Given degenerate characteristic surface current density (J2 + J3) belonging to Γ (3) .
(b) Projected characteristic surface current density belonging to the first row of Γ (3) by applying either P (3)

11
or P (3)

12 . (c) Projected characteristic surface current density belonging to the second row of Γ (3) by applying
either P (3)

21 or P (3)
22 .

In order to generate the characteristic surface current density belonging to the
second row of Γ (3) , the projection operator P (3)

21 according to (3.49) is used:
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)
. (4.4)

Alternatively, the projection operator P (3)
22 may be used:

P (3)
22 =

1
3

(
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2
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2
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1
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)
. (4.5)

Again, both operators can be used equivalently.
By applying either P (3)

21 or P (3)
22 to the characteristic surface current density

shown in Fig. 4.7(a), the projected characteristic surface current density shown
in Fig. 4.7(c) is generated. As a distinctive property, this characteristic surface
current density is inverted by the rotation 𝐶2𝑥 .

The projection operator method constructs out of an arbitrary degenerate
characteristic surface current density a unique basis of characteristic surface
current densities. It is now possible to resolve all modal degeneracies resulting
from the modal analysis performed in section 4.1 by constructing unique pairs
of degenerate characteristic surface current densities. To do so, the projection
operators P (3)

11 and P (3)
21

56 are applied to the first characteristic surface current

56Again, P (3)
12 and P (3)

22 may be used alternatively.
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(a)

(b)

(c)

(d)

(e)

Figure 4.8 Projection of degenerate characteristic surface current densities of equilateral triangular PEC plate
with circumradius 𝑅u = 0.6 wavelengths using the representation matrices from Table 4.5. Principal current
directions denoted by arrows. Color bar in Fig. 2.6(e). (a) Mode pair 2-3. (b) Mode pair 4-5. (c) Mode pair 7-8.
(d) Mode pair 10-11. (e) Mode pair 14-15.
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Figure 4.9 Projection of a pair of degenerate characteristic surface current densities of equilateral triangular
PEC plate with circumradius 𝑅u = 0.6 wavelengths computed using a mesh consisting of 618 triangles. Principal
current directions denoted by arrows. Color bar in Fig. 2.6(e).

density of each mode pair, i.e., mode 2, mode 4, mode 7, mode 10, and mode 14.57

The resulting projected characteristic surface current densities together with the
original characteristic surface current densities are shown in Fig. 4.8.

Obviously, there are more or less pronounced changes from the original
characteristic surface current densities to the projected ones. In particular, the
distinctive feature of all projected characteristic surface current densities is again
that the one belonging to the first row is invariant under the rotation𝐶2𝑥 , whereas
its partner function is inverted by this operation. This allows a more intuitive
interpretation of the characteristic surface current densities58 and underlines the
fact that they all belong to the same irreducible representation, even re-enabling
the manual assignment.

As a last example, and in order to emphasize that the symmetry analysis is
independent of the mesh density, the characteristic surface current density shown
in Fig. 4.5(c) computed using a mesh consisting of 618 triangles is considered
again. Applying the projection operators yields the projected characteristic
surface current densities shown in Fig. 4.9, which have the same shape as those
in Fig. 4.7(b) and (c) computed with a higher mesh density.

By means of the projection operator method, modal degeneracies can be
resolved in a systematic way. As demonstrated in subsection 4.2.1, the required
representation matrices can be constructed purposefully.59 This way, any arbi-
trariness due to degenerate modes is eliminated. In particular, the projection

57The second characteristic surface current density of each pair could be used as well. The important
fact is that a set of degenerate modes is characterized by exactly one mode as all its partners can
be generated by means of the projection operators (see section 3.5.1).

58For example, the modes 2 and 3 may be interpreted as orthogonally polarized “dipole modes”.
59Representation matrices are usually not given in the literature, apart from some examples. As a

rare case, representation matrices of the crystallographic point groups are listed in [75]. However,
some care must be taken with respect to the employed coordinate system when using them.
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operator method can be combined with the automatic assignment of modes
introduced in section 4.1.1. In the same processing run, the characteristic modes
are assigned to the irreducible representations by means of the character pro-
jection operators and, in the case of multi-dimensional representations, unique
degenerate characteristic surface current densities are constructed by means of
the projection operators. This procedure can be implemented as a fully automatic
postprocessing without user interference.

4.3 Orthogonality and Fundamental Modes

Having completed the assignment of the characteristic modes to the irreducible
representations, it is legitimate to ask how this can be made use of in the process
of multimode antenna design. The answer lies in the orthogonality of basis
functions (section 3.3.3). Applied to characteristic modes, the orthogonality
theorem states that characteristic surface current densities belonging to

• different irreducible representations,

• different rows of the same multi-dimensional irreducible representation

are orthogonal to each other. Thus, with the assignment of characteristic modes to
the irreducible representations, mutually orthogonal sets of characteristic surface
current densities are found. Based on the observations made in section 2.4, the
idea is to excite these mutually orthogonal sets separately.

The modal analysis of the equilateral triangular PEC plate carried out in
section 4.1 has yielded 15 characteristic modes to be taken into account. However,
there are only two one-dimensional and one two-dimensional irreducible rep-
resentations. Therefore, four mutually orthogonal sets of characteristic surface
current densities are expected. This is confirmed by computing the characteristic
current correlation coefficients (2.51), which are depicted in Fig. 4.10. The
mutually orthogonal sets are also listed in Table 4.6 together with the assignment
to the irreducible representations.60 Obviously, it does not matter how many
characteristic modes are taken into account. The number of mutually orthog-
onal sets of characteristic surface current densities is always governed by the
symmetry group of the underlying PEC object.

60In contrast to Table 4.3, the rows of the two-dimensional third irreducible representation are
listed separately. This distinction is enabled by resolving the modal degeneracies as done in
section 4.2.
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Figure 4.10 Characteristic current correlation coefficients of equilateral triangular PEC plate with circumra-
dius 𝑅u = 0.6 wavelengths computed using (2.51). © 2021 IEEE [PHM21].

Set Repr. Mode 𝑛

1 Γ (1) 1; 12

2 Γ (2) 6; 9; 13

3 Γ
(3)
1 2; 4; 7; 10; 14

4 Γ
(3)
2 3; 5; 8; 11; 15

Table 4.6 Mutually orthogonal sets of characteristic surface current densities of equilateral triangular PEC plate
and assignment to irreducible representations of symmetry group 𝐷3.

Characteristic surface current densities belonging to the same set are correlated
and can in general not be excited separately. It is thus sufficient to consider only
one mode per set. According to section 2.4, this one mode should be significant
so that it can potentially be excited effectively. In Fig. 2.4, it is shown that the
modal significance is a function of frequency. In more general terms, it depends
on the electrical size of the PEC object. The electrical size of the equilateral
triangular plate is characterized by the electrical circumradius 𝑘𝑅u, where 𝑘
is the angular wavenumber, which is equivalent to the radius of the minimum
circumscribed circle (Fig. 4.1(a)).61

61The electrical size of the equilateral triangular plate with the arbitrarily chosen circumra-
dius 𝑅u = 0.6 wavelengths is thus 𝑘𝑅u = 2𝜋 · 0.6 ≈ 3.77.
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Figure 4.11 Modal significances of equilateral triangular PEC plate as functions of electrical size 𝑘𝑅u.
At 𝑘𝑅u = 4.9, all four fundamental characteristic modes (1, 6, 2, and 3) are significant. The modes are
sorted according to their significance at 𝑘𝑅u = 3.77 (𝑅u ≈ 0.6 wavelengths).

The modal significances of the 15 characteristic modes identified in section 4.1
are shown in Fig. 4.11 as functions of the electrical size of the equilateral trian-
gular PEC plate. With increasing electrical size more modes become significant.
Mode 1 is the first mode belonging to the first irreducible representation Γ (1) to
become significant. Likewise, mode 6 is the first mode belonging to the second ir-
reducible representation Γ (2) to become significant. The mode pair 2-3 is the first
degenerate set of modes belonging to the third irreducible representation Γ (3) to
become significant.62

Henceforth, those characteristic modes belonging to a certain irreducible
representation that first become significant as functions of the electrical size
(frequency) are called the fundamental modes of this irreducible representation.
Accordingly, mode 1 is the fundamental mode of Γ (1) , mode 6 is the fundamental
mode of Γ (2) , and modes 2 and 3 are the fundamental modes of Γ (3) . The
remaining modes are called higher-order modes. As these modes are correlated
to the fundamental modes, they do not yield additional information for multimode
antenna design. It is thus sufficient to work only with the fundamental modes.

This finding provides a means to determine the minimum electrical size so that
all fundamental modes are significant, i.e., for each irreducible representation
(orthogonal set) there is at least one significant mode available. This would allow
to maximally exploit the orthogonality provided by the symmetry of the under-
lying PEC object. In the case of the equilateral triangular plate, Fig. 4.11 reveals

62Degenerate mode pairs have the same eigenvalue (modal significance) independent of the electrical
size as the degeneracy is due to symmetry.
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that mode 6 is the last fundamental mode to become significant at 𝑘𝑅u ≈ 4.9.
This is hence the minimum electrical size so that all four fundamental modes
are significant. However, the other fundamental modes become significant at
considerably smaller electrical sizes. There may thus be some tradeoff between
the electrical size, the modal significance of the fundamental modes, and the
number of mutually orthogonal sets of characteristic surface current densities.
This tradeoff will be discussed in more detail in chapter 5.

4.4 Symmetric Excitation of Characteristic Modes

In the previous section, it has been shown that a symmetric antenna geometry
offers a limited number of mutually orthogonal sets of characteristic surface
current densities. In section 2.4, it was demonstrated that such sets may be
excited separately in order to realize orthogonal antenna ports. The aim of this
section is to systematically design orthogonal antenna ports by exploiting the
symmetry properties of characteristic modes.

The excitation due to an antenna port is represented by the impressed electric
field strength Ei. Its coupling to a characteristic surface current density is
described by the modal excitation coefficient 𝑉i,𝑛 (2.24). As a matter of fact, the
modal excitation coefficient is an inner product between the 𝑛-th characteristic
surface current density and the impressed electric field strength.

The orthogonality of the characteristic surface current densities is due to the
orthogonality theorem (3.27), which is an inner product between basis functions
of the irreducible representations. The goal is that the impressed electric field
strength of one antenna port only couples to characteristic surface current
densities belonging to one orthogonal set. It thus suggests itself to design the
impressed electric field strength to act as a basis function of an irreducible
representation. In this case, the modal excitation coefficient is governed by the
orthogonality theorem and the impressed electric field strength only excites
those modes which belong to the same irreducible representation or the same
row of a multi-dimensional irreducible representation.

An antenna port which is supposed to act as a basis function of an irreducible
representation must fulfill certain symmetry requirements. Therefore, it generally
consists of several feed points which have to be driven simultaneously.63 These

63A feed network is required in order to distribute the input signal at the antenna port to the feed
points on the antenna surface with the correct amplitude and phase relations. The feed network
design will be discussed in chapter 6.
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Figure 4.12 Port configuration on equilateral triangular PEC plate consisting of delta-gap sources at feed points.
Positions of feed points denoted by black lines. Source voltages denoted by𝑈. Relative voltage directions denoted
by arrows. (a)–(d) Ports 1 to 4. © 2021 IEEE [PHM21].

feed points will be implemented as delta-gap sources (section 2.3.3) throughout
the remaining sections of this chapter.64

In order to illustrate this concept, the triangular PEC plate is considered
once again. Its symmetry group 𝐷3 offers four mutually orthogonal sets of
characteristic surface current densities. It is thus deduced that four orthogonal
antenna ports can be realized.

An antenna port acting as a basis function of the first irreducible representa-
tion Γ (1) must be invariant under all symmetry operations of 𝐷3. Inspired by the
characteristic surface current density of the fundamental mode 1 (Fig. 4.3(a)),
the port configuration shown in Fig. 4.12(a) is found. It consists of six feed
points placed at the half-edge centers and driven with the same source voltage𝑈.
It is easily checked that this port configuration is invariant under all symmetry
operations of the equilateral triangular plate.

In the same way, a port configuration for the second irreducible represen-
tation Γ (2) is found by inspecting the characteristic surface current density of
the fundamental mode 6 (Fig. 4.3(f)). The antenna port shown in Fig. 4.12(b)
consists of three feed points placed at the edge centers in a circular arrangement.
This port configuration is invariant under the rotations about the 𝑧-axis, but
inverted under the other rotations, as required.

However, such a straightforward argument cannot be given for the two-
dimensional third irreducible representation Γ (3) . The port configurations shown
in Fig. 4.12(c) and (d) are in fact derived by means of the method presented in
subsection 4.4.1. They transform according to the representation matrices in
64Practical excitation elements replacing the ideal delta-gap sources will be discussed in section 6.1.



102 Symmetry Analysis of Characteristic Modes

(a) (b)

Figure 4.13 Excitation parameters of equilateral triangular PEC plate with circumradius 𝑅u = 0.6 wavelengths
and port configuration according to Fig. 4.12. (a) Normalized modal weighting coefficients. (b) Envelope correlation
coefficients. © 2021 IEEE [PHM21].

Table 4.5. As a distinctive property, port 3 (Fig. 4.12(c)) is invariant under the
rotation 𝐶2𝑥 about the 𝑥-axis, whereas port 4 (Fig. 4.12(d)) is inverted by this
operation. However, the other transformations are difficult to check manually. In
particular, port 4 even has a feed point with double the source voltage of the
other feed points, which is hard to find intuitively. All in all, the ports 3 and 4
cannot be derived in a straightforward way like the ports 1 and 2, which is the
motivation for the port generation method presented in subsection 4.4.1.

Nevertheless, the antenna ports shown in Fig. 4.12 excite mutually orthogonal
sets of characteristic modes, as evidenced by the normalized modal weighting
coefficients in Fig. 4.13(a). In particular, the excited sets are exactly the sets
given in Table 4.6, as intended. Consequently, the antenna ports are orthogonal,
which is confirmed by the envelope correlation coefficients in Fig. 4.13(b).
Obviously, implementing symmetric excitations which act as basis functions of
the irreducible representations is a purposeful way to realize orthogonal antenna
ports. Based on this approach, a systematic method for generating orthogonal
antenna ports is introduced in the following subsection.

4.4.1 Systematic Port Generation

It has become apparent in the previous paragraphs that a general and systematic
port generation procedure is required. This is where the projection operators come
into play again. According to section 3.5.1, basis functions can be constructed
out of an arbitrary function by employing the appropriate projection operators.
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Applied to the port generation problem, it is possible to project out of an
arbitrarily chosen initial port configuration the desired orthogonal ports.

This method is best demonstrated by means of an example. The configurations
of the ports 3 and 4 in Fig. 4.12(c) and (d), respectively, are found to be
difficult to derive intuitively. Now, a single delta-gap source is considered. It is
placed arbitrarily at 𝑥 ′ = −𝑅i,𝑦

′ = 0 pointing in positive 𝑦-direction, as shown
in Fig. 4.14(a). The corresponding impressed electric field strength Ei,1 can be
expressed analytically (section 2.3.3):65

Ei,1 (𝑥 ′,𝑦′) = 𝑈𝛿
(
𝑥 ′ + 𝑅i,𝑦

′) (
0
1

)
. (4.6)

In order to obtain a basis function belonging to the first row of the third irreducible
representation, the projection operator P (3)

12 (4.3) with 𝑝 = 3, 𝜇 = 1 is applied
to this initial impressed electric field strength:

P (3)
12 Ei,1 (𝑥 ′,𝑦′) =

𝑈
√

3

(
𝛿
(
𝑥 ′ − 1

2
𝑅i,𝑦

′ −
√

3
2
𝑅i

) (√
3/2

−1/2
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) (√
3/2

1/2

))
, (4.7)

resulting in the port configuration of port 3 as shown in Fig. 4.14(b). In order
to obtain a basis function belonging to the second row of the third irreducible
representation, the projection operator P (3)

22 (4.5) with 𝑝 = 3, 𝜇 = 2 is applied
to the initial impressed electric field strength:

P (3)
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2
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′ +
√

3
2
𝑅i

) (√
3/2

1/2

))
, (4.8)

resulting in the port configuration of port 4 as shown in Fig. 4.14(c). The common
factors 𝑈√

3
in (4.7) and 𝑈

3 in (4.8) can be discarded in the implementation as
they do not affect the orthogonality of the ports.
65For the sake of conciseness, neither the 𝑧-dependence of the Dirac delta function nor the 𝑧-

component of the vector are displayed. As the problem is planar in the 𝑥𝑦-plane, there is no loss
of information.
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Figure 4.14 Construction of orthogonal ports on equilateral triangular PEC plate belonging to the two-
dimensional third irreducible representation Γ (3) of symmetry group 𝐷3. (a) Initial port configuration consisting
of one delta-gap source at 𝑥′ = −𝑅i ,𝑦

′ = 0. (b) Port 3 belonging to the first row constructed with projection
operator P (3)

12 . (c) Port 4 belonging to the second row constructed with projection operator P (3)
22 .

U
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⇒
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Figure 4.15 Construction of orthogonal ports on equilateral triangular PEC plate belonging to the two-
dimensional third irreducible representation Γ (3) of symmetry group 𝐷3. (a) Alternative initial port configuration
consisting of one delta-gap source at 𝑥′ = 𝑅i/2,𝑦′ =

√
3𝑅i/2. (b) Port 3 belonging to the first row constructed

with projection operator P (3)
11 or P (3)

12 . (c) Port 4 belonging to the second row constructed with projection
operator P (3)

21 or P (3)
22 . © 2021 IEEE [PHM21].

The projection operator method is obviously suitable for constructing orthog-
onal antenna ports. However, some care must be taken when choosing the initial
port configuration. In this special case, the application of P (3)

11 and P (3)
21 yields

P (3)
11 Ei,1 (𝑥 ′,𝑦′) = 0, P (3)

21 Ei,1 (𝑥 ′,𝑦′) = 0. (4.9)

This is due to the fact that the chosen initial impressed electric field strength does
not contain any part belonging to the first row (𝜈 = 1) of the third irreducible
representation (𝑝 = 3). In fact, it can be expressed as a linear combination of
the ports 2 (Fig. 4.12(b)) and 4 (Fig. 4.12(d)) alone.66 According to (3.50), the
66This can be quickly checked by adding (4.11) and (4.8), yielding (4.6).
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projection with 𝜈 = 1 yields zero as port 2 belongs to the second irreducible
representation (𝑞 = 2 ≠ 𝑝) and port 4 belongs to the second row of the third
irreducible representation (𝑞 = 3 = 𝑝, but 𝜅 = 2 ≠ 𝜈). Although at first glance
this may be confusing, the important fact is that, if at least one set of projection
operators yields a result unequal to zero, this result is a suitable port configuration.

This fact is underlined by considering an alternative initial port configuration.
The initial impressed electric field strength Ei,2 is now chosen to be

Ei,2 (𝑥 ′,𝑦′) = 𝑈𝛿
(
𝑥 ′ − 1

2
𝑅i,𝑦

′ −
√

3
2
𝑅i

) (√
3/2

−1/2

)
, (4.10)

as shown in Fig. 4.15(a). Applying either P (3)
11 or P (3)

12 yields the port configura-
tion of port 3 as shown in Fig. 4.15(b). Applying either P (3)

21 or P (3)
22 yields the

port configuration of port 4 as shown in Fig. 4.15(c). In this case, both pairs of
projection operators can be used equivalently.

The projection operator method is not only suitable for the multi-dimensional
irreducible representations. In fact, it can be used to generate all orthogonal
ports offered by a symmetric antenna. For the second irreducible representation,
the projection operator P (2) can be applied to either Ei,1 or Ei,2:

P (2)Ei,1 (𝑥 ′,𝑦′) = P (2)Ei,2 (𝑥 ′,𝑦′)
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, (4.11)

yielding the port configuration of port 2 as shown in Fig. 4.16.
In the case of the first irreducible representation, the application of P (1) to

either Ei,1 or Ei,2 yields

P (1)Ei,1 (𝑥 ′,𝑦′) = 0, P (1)Ei,2 (𝑥 ′,𝑦′) = 0. (4.12)

Obviously, both initial port configurations are not suitable to construct a port
belonging to the first irreducible representation. This result is, however, not
surprising as a basis function belonging to this irreducible representation must
be invariant under all symmetry operations and can thus not contain the given
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Figure 4.16 Construction of orthogonal port on equilateral triangular PEC plate belonging to the second
irreducible representation Γ (2) of symmetry group 𝐷3. (a) Initial port configuration consisting of one
delta-gap source at 𝑥′ = −𝑅i ,𝑦

′ = 0. (b) Alternative initial port configuration consisting of one delta-gap
source at 𝑥′ = 𝑅i/2,𝑦′ =

√
3𝑅i/2. (c) Port 2 belonging to Γ (2) constructed with projection operator P (2) .

© 2021 IEEE [PHM21].

delta-gap sources on an edge center, i.e., a symmetry axis. Instead, the initial
delta-gap source is now shifted to 𝑥 ′ = −𝑅i,𝑦

′ = 𝑎
4 =

√
3

2 𝑅i:
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)
, (4.13)

as shown in Fig. 4.17(a). Applying P (1) to this electric field strength yields
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i.e., the port configuration of port 1 as shown in Fig. 4.17(b). It should be noted
that the other ports could be generated with this initial delta-gap source as well.
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Figure 4.17 Construction of orthogonal port on equilateral triangular PEC plate belonging to the first ir-
reducible representation Γ (1) of symmetry group 𝐷3. (a) Initial port configuration consisting of one delta-
gap source at 𝑥′ = −𝑅i ,𝑦

′ = 𝑎/4. (b) Port 1 belonging to Γ (1) constructed with projection operator P (1) .
© 2021 IEEE [PHM21].

In this case, however, they would also consist of six feed points, i.e., more
than necessary. Throughout this thesis, orthogonal antenna ports are considered
optimal if they consist of as few feed points as possible.67 For this reason, only
port 1 is generated this way.

All four orthogonal antenna ports offered by the equilateral triangular plate
can be generated systematically by means of the projection operator method.
The examples above have shown that its success depends to some degree on the
choice of the initial impressed electric field strength. However, the two choices
made above, i.e., placement of a delta-gap source at an edge center (Fig. 4.14(a))
and placement of a delta-gap source at a half-edge center (Fig. 4.17(a)), are
certainly the most intuitive ones and already yield the optimal port configurations.
That these choices are not only suitable for the equilateral triangular plate, but
applicable to a wide range of geometries, will become clear in section 4.5.
Therefore, the following general guideline is proposed: A single delta-gap source
placed on a symmetry axis should be used as the initial port configuration. Those
ports which cannot be generated with this setup are subsequently constructed
from the alternative initial port configuration consisting of a single delta-gap
source placed half-way between two symmetry axes.

Finally, it should be emphasized that the results obtained above have all
been computed analytically (and checked numerically). The systematic port
generation based on projection operators is independent of any modal analysis.
It solely depends on the symmetry of the underlying PEC object. A priori
67This criterion is motivated by the fact that the complexity of the corresponding feed networks

generally grows with an increasing number of feed points (cf. section 6.2).
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knowledge about the number of orthogonal antenna ports and how to implement
them is thus gained from the symmetry analysis of a potential antenna geometry
without even conducting a modal analysis.

4.4.2 Upper Bound for Realizing Orthogonal Antenna Ports

The number of orthogonal antenna ports that can be realized on a symmetric
antenna geometry is limited. It is governed by the number and the dimensions
of the irreducible representations of the symmetry group of an antenna. In other
words, there is an upper bound for realizing orthogonal antenna ports.

The maximum number of orthogonal antenna ports is achieved if they are
designed as basis functions of the irreducible representations, as illustrated above.
In this case, each port couples to exactly one orthogonal set of characteristic
surface current densities (Fig. 4.13(a)).

An arbitrary port configuration can be expressed as a linear combination of the
optimal orthogonal port configurations.68 Such a port configuration thus couples
to more than one orthogonal set of characteristic surface current densities so
that the upper bound cannot be reached anymore.

Figure 4.18 Normalized modal weighting coefficients of equilateral triangular PEC plate with circumra-
dius 𝑅u = 0.6 wavelengths and port configuration according to Fig. 4.14(a).

As an example, the port configuration in Fig. 4.14(a) with the impressed
electric field strength Ei,1 (4.6) is considered. The normalized modal weighting
coefficients due to this excitation are shown in Fig. 4.18. Those character-
istic modes which are originally excited by either port 2 (Fig. 4.12(b)) or
port 4 (Fig. 4.12(d)) are now excited together (cf. Fig. 4.13(a)). This is due
to the fact that the chosen excitation is a linear combination of port 2 and

68An arbitrary function can be expressed as a linear combination of basis functions [75].
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Antenna geometry Symmetry
group

No. of irreducible representations No. of
ortho. ports1-D 2-D 3-D

Rectangular plate 𝐷2 4 0 0 4

Rectangular pyramid 𝐶2v 4 0 0 4

Equilateral triangular plate 𝐷3 2 1 0 4

Regular triangular pyramid 𝐶3v 2 1 0 4

Square plate 𝐷4 4 1 0 6

Square pyramid 𝐶4v 4 1 0 6

Regular hexagonal plate 𝐷6 4 2 0 8

Regular hexagonal pyramid 𝐶6v 4 2 0 8

Rectangular cuboid 𝐷2h 8 0 0 8

Regular triangular prism 𝐷3h 4 2 0 8

Regular tetrahedron 𝑇d 2 1 2 10

Square cuboid 𝐷4h 8 2 0 12

Regular hexagonal prism 𝐷6h 8 4 0 16

Cube 𝑂h 4 2 4 20

Table 4.7 Symmetry group, number of irreducible representations, and number of feasible orthogonal antenna
ports for different symmetric antenna geometries. © 2019 IEEE [PM19b].

port 4 (see subsection 4.4.1). One degree of freedom is thus lost and only three
orthogonal antenna ports may be realized yet.

The equilateral triangular plate with the symmetry group𝐷3 offers four orthog-
onal antenna ports as there are two one-dimensional and one two-dimensional
irreducible representations. The square plate with symmetry group 𝐷4 used
as an example throughout chapter 3 has four one-dimensional and one two-
dimensional irreducible representations, offering six mutually orthogonal sets
of characteristic surface current densities and thus six orthogonal antenna
ports. This simple calculation can be generalized to any symmetric antenna
geometry. All information that is needed, i.e., the number and the dimensions
of the irreducible representations, can be derived from the character tables,
which are readily available in the literature. Based on this, an exemplary list
of antenna geometries with their respective symmetry groups, numbers of
irreducible representations, and numbers of feasible orthogonal antenna ports
is given in Table 4.7. As a general guideline, geometries with high symmetry
order, i.e., whose symmetry groups have a lot of irreducible representations
or irreducible representations of higher dimension, offer a large number of
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mutually orthogonal sets of characteristic surface current densities and thus a
large number of orthogonal antenna ports.

The number of feasible orthogonal antenna ports is dictated by the symmetry
group of an antenna, i.e., it is known a priori. A suitable antenna geometry can
thus be chosen depending on the desired number of orthogonal antenna ports.
Furthermore, suitable orthogonal port configurations can be computed with
the projection operator method introduced in subsection 4.4.1.69 Still, a modal
analysis needs to be conducted in order to find an appropriate electrical size so
that the fundamental characteristic modes are significant (section 4.3). How this
can be done systematically is discussed in chapter 5.

4.5 Examples and Applications

At the end of this chapter, symmetry analyses of exemplary symmetric antenna
geometries are conducted using the methods introduced in this chapter in order
to illustrate the general procedure and hint at possible applications.

4.5.1 Square Plate

The square PEC plate as shown in Fig. 3.4 is chosen as the first example. Its
symmetry group is 𝐷4, which was thoroughly analyzed throughout chapter 3.
The symmetry group 𝐷4 has four one-dimensional and one two-dimensional
irreducible representations, whose representation matrices are given in Table 3.6.
It is thus predicted that there are six mutually orthogonal sets of characteristic
surface current densities. Therefore, six orthogonal antenna ports are expected to
be feasible. This will now be demonstrated by first conducting a modal analysis
in order to identify the fundamental modes and a suitable antenna size, and then
generating the six orthogonal antenna ports.

Repr. Γ (1) Γ (2) Γ (3) Γ (4) Γ
(5)
1 Γ

(5)
2

Mode 𝑛 6, 12 5, 15, 17 4, 11 3, 16, 18 1, 7, 9,
13, 19

2, 8, 10,
14, 20

Port 𝑢 1 2 3 4 5 6

Table 4.8 Assignment of characteristic modes and orthogonal antenna ports of square PEC plate to irreducible
representations of symmetry group 𝐷4. © 2019 IEEE [PM19b].

69If the required representation matrices are not available, they can be computed using the method
presented in section 4.2.1.
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Figure 4.19 Modal significances of square PEC plate as functions of electrical size 𝑘𝑅u. Fundamental charac-
teristic modes in color, higher-order modes in gray. At 𝑘𝑅u = 4, all six fundamental modes are significant. The
modes are sorted according to their significance at 𝑘𝑅u = 4.

Figure 4.20 Characteristic current correlation coefficients of square PEC plate with electrical size 𝑘𝑅u = 4
computed using (2.51). © 2019 IEEE [PM19b].

The modal significances of the first 20 characteristic modes as functions
of the electrical size 𝑘𝑅u are shown in Fig. 4.19.70 The modes are sorted
according to their significance at 𝑘𝑅u = 4, where all six fundamental modes are
significant. The assignment of all 20 modes to the irreducible representations is
listed in Table 4.8. The assignment is conducted using the methods introduced
70A square is completely determined by its edge length 𝑎 (Fig. 3.4). The circumradius is 𝑅u = 𝑎√

2
.
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 4.21 Normalized surface current densities of fundamental characteristic modes of square PEC plate
with electrical size 𝑘𝑅u = 4. Principal current directions denoted by arrows. Modes sorted according to their
significance. Color bar in Fig. 2.6(e). (a) Mode 1 belonging to the first row of Γ (5) . (b) Mode 2 belonging to the
second row of Γ (5) . (c) Mode 3 belonging to Γ (4) . (d) Mode 4 belonging to Γ (3) . (e) Mode 5 belonging to Γ (2) .
(f) Mode 6 belonging to Γ (1) . © 2019 IEEE [PM19b].

in section 4.1. The degenerate modes belonging to the two-dimensional fifth
irreducible representation are resolved using the methods presented in section 4.2.
The resulting orthogonality of the characteristic surface current densities is
confirmed by the characteristic current correlation coefficients shown in Fig. 4.20.

The characteristic surface current densities of the fundamental modes are
depicted in Fig. 4.21. Modes 1 and 2 (Fig. 4.21(a) and (b)) are the fundamen-
tal modes of the two-dimensional fifth irreducible representation Γ (5) . Their
surface current densities are reminiscent of orthogonally polarized dipole cur-
rents (“dipole modes”), where the surface current density of mode 1 is mainly
oriented in 𝑥-direction, whereas that of mode 2 is mainly oriented in 𝑦-direction.
Mode 3 (Fig. 4.21(c)) is the fundamental mode of Γ (4) , mode 4 (Fig. 4.21(d)) is
the fundamental mode of Γ (3) . Both modes can be interpreted as “quadrupole
modes”. They are, however, not degenerate. Mode 5 (Fig. 4.21(e)) is the fun-
damental mode of Γ (2) . It is reminiscent of a current loop (“loop mode”).
Mode 6 (Fig. 4.21(f)), finally, is the fundamental mode of Γ (1) . It is invariant
under all symmetry operations of 𝐷4 (“invariant mode”).
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(a) (b)

Figure 4.22 Initial port configurations for generating orthogonal antenna ports on square PEC plate. (a) Port con-
figuration consisting of one delta-gap source at a half-edge center for generating ports 1 and 3. (b) Port configuration
consisting of one delta-gap source at an edge center for generating ports 2, 4, 5, and 6. © 2021 IEEE [PHM21].

Based on the modal analysis, the fundamental modes have been identified and
a suitable antenna size has been found. Now, the corresponding antenna ports
are generated by means of the method presented in section 4.4.1. First of all,
suitable initial port configurations need to be found. The modes 4 (Fig. 4.21(d))
and 6 (Fig. 4.21(f)) have current nulls at the edge centers and current maxima at
the half-edge centers. Inspired by this, the initial port configuration shown in
Fig. 4.22(a) consisting of one delta-gap source at a half-edge center is chosen
for generating the ports for these two modes. The modes 1 (Fig. 4.21(a)),
2 (Fig. 4.21(b)), 3 (Fig. 4.21(c)), and 5 (Fig. 4.21(e)) have current maxima
at the edge centers. Correspondingly, the initial port configuration shown in
Fig. 4.22(b) consisting of one delta-gap source at an edge center is chosen for
generating the ports for these four modes.

The resulting antenna ports are depicted in Fig. 4.23. They are labeled
according to the irreducible representations in Table 4.8. Port 1 belonging
to Γ (1) (Fig. 4.23(a)) and port 3 belonging to Γ (3) (Fig. 4.23(c)) are generated by
means of the initial port configuration in Fig. 4.22(a). Both ports consist of eight
feed points distributed symmetrically at the half-edge centers. Port 2 belonging
to Γ (2) (Fig. 4.23(b)), port 4 belonging to Γ (4) (Fig. 4.23(d)), port 5 belonging
to the first row of Γ (5) (Fig. 4.23(e)), and port 6 belonging to the second row
of Γ (5) (Fig. 4.23(f)) are generated by means of the initial port configuration in
Fig. 4.22(b). Ports 2 and 4 each consist of four feed points at the edge centers.
Ports 5 and 6 each consist of two feed points at opposite edge centers.

The feed points of each antenna port must be driven simultaneously. The
arrows in Fig. 4.23 denote the relative voltage directions which are necessary at
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(a) Port 1 (b) Port 2 (c) Port 3

(d) Port 4 (e) Port 5 (f) Port 6

Figure 4.23 Orthogonal antenna ports on square PEC plate consisting of symmetrically distributed, simultaneously
driven feed points. Positions of feed points denoted by black lines. Relative voltage directions denoted by arrows.
All feed points are driven with the same source voltage. (a)–(f) Ports 1 to 6. © 2021 IEEE [PHM21].

the feed points in order to fulfill the symmetry requirements of the irreducible
representations. In contrast to the equilateral triangular plate, all feed points on
the square plate are driven with the same voltage.

By examining the normalized modal weighting coefficients in Fig. 4.24(a), it is
confirmed that each generated antenna port excites exactly one orthogonal set of
characteristic surface current densities (cf. Table 4.8). Some higher-order modes
are also excited to a considerable degree. This does not affect the orthogonality
of the ports as each orthogonal set is excited purely. Consequently, the antenna
ports are orthogonal, as evidenced by the envelope correlation coefficients in
Fig. 4.24(b). As all modes are excited to some extent, there is no further degree
of freedom to realize a seventh orthogonal antenna port.

Based on the square plate, it is obviously possible to design a six-port
multimode antenna. The comparatively simple square plate is thus a promising
geometry in order to realize a multimode antenna with more antenna ports than
reported so far in the literature.
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(a) (b)

Figure 4.24 Excitation parameters of square PEC plate with electrical size 𝑘𝑅u = 4 and port configuration
according to Fig. 4.23. (a) Normalized modal weighting coefficients. (b) Envelope correlation coefficients.
© 2019 IEEE [PM19b].

4.5.2 Regular Hexagonal Plate

The equilateral triangular PEC plate offers four orthogonal antenna ports, the
square PEC plate offers six orthogonal antenna ports. Both objects are regular
polygonal plates. Towards even more orthogonal antenna ports, polygonal plates
of higher order should be examined. Therefore, a more complex representative
of the regular polygonal plates, the regular hexagonal plate, is now analyzed.

x

y

AB

a

C

D

R
u

Figure 4.25 Regular hexagonal plate in 𝑥𝑦-plane with coordinate system, symmetry axes, and circumscribed
circle. © 2019 IEEE [PM19a].

The symmetry group of a regular hexagonal plate as shown in Fig. 4.25
is𝐷6 [78]. This symmetry group consists of twelve symmetry operations (𝑔 = 12),
which are listed in Table 4.9. The corresponding character table is given
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Symmetry operation Symbol Symmetry operation Symbol

Identity 𝐸 Rotation by 180° about the 𝑥-axis 𝐶2𝑥

Rotation by 120° about the 𝑧-axis 𝐶3𝑧 Rotation by 180° about the axis 𝐴 𝐶2𝐴

Rotation by −120° about the 𝑧-axis 𝐶−1
3𝑧 Rotation by 180° about the axis 𝐵 𝐶2𝐵

Rotation by 180° about the 𝑧-axis 𝐶2𝑧 Rotation by 180° about the 𝑦-axis 𝐶2𝑦

Rotation by 60° about the 𝑧-axis 𝐶6𝑧 Rotation by 180° about the axis 𝐶 𝐶2𝐶

Rotation by −60° about the 𝑧-axis 𝐶−1
6𝑧 Rotation by 180° about the axis 𝐷 𝐶2𝐷

Table 4.9 The twelve elements of symmetry group 𝐷6.

𝐷6 𝐸 𝐶3𝑧 𝐶−1
3𝑧 𝐶2𝑧 𝐶6𝑧 𝐶−1

6𝑧

Γ (1) 1 1 1 1 1 1

Γ (2) 1 1 1 1 1 1

Γ (3) 1 1 1 −1 −1 −1

Γ (4) 1 1 1 −1 −1 −1

Γ (5) 2 −1 −1 −2 1 1

Γ (6) 2 −1 −1 2 −1 −1

𝐷6 𝐶2𝑥 𝐶2𝐴 𝐶2𝐵 𝐶2𝑦 𝐶2𝐶 𝐶2𝐷

Γ (1) 1 1 1 1 1 1

Γ (2) −1 −1 −1 −1 −1 −1

Γ (3) −1 −1 −1 1 1 1

Γ (4) 1 1 1 −1 −1 −1

Γ (5) 0 0 0 0 0 0

Γ (6) 0 0 0 0 0 0

Table 4.10 Character table of symmetry group 𝐷6. © 2019 IEEE [PM19a].

in Table 4.10 [78]. There are four one-dimensional irreducible representa-
tions Γ (1;2;3;4) and two two-dimensional irreducible representations Γ (5;6) .
Therefore, eight mutually orthogonal sets of characteristic surface current
densities and thus eight orthogonal antenna ports are predicted.

The representation matrices of the two-dimensional irreducible repre-
sentations Γ (5) and Γ (6) are computed with the method presented in sec-
tion 4.2.1. The required scalar basis functions are taken from [78]. For Γ (5) ,
the already familiar basis functions 𝜓 (5)

1 (𝑥 ′,𝑦′) = 𝑥 ′ and 𝜓 (5)
2 (𝑥 ′,𝑦′) = 𝑦′ are

used. For Γ (6) , the more complex functions 𝜓 (6)
1 (𝑥 ′,𝑦′) = 𝑥 ′(𝑦′3 − 3𝑦′𝑥 ′2)

and 𝜓 (6)
2 (𝑥 ′,𝑦′) = 𝑦′(𝑦′3 − 3𝑦′𝑥 ′2) are employed. The resulting representation



4.5 Examples and Applications 117

𝐷6 𝐸 𝐶3𝑧 𝐶−1
3𝑧

Γ (5)

(
1 0

0 1

) (
−1/2

√
3/2

−
√

3/2 −1/2

) (
−1/2 −

√
3/2

√
3/2 −1/2

)
Γ (6)

(
1 0

0 1

) (
−1/2

√
3/2

−
√

3/2 −1/2

) (
−1/2 −

√
3/2

√
3/2 −1/2

)
𝐷6 𝐶2𝑧 𝐶6𝑧 𝐶−1

6𝑧

Γ (5)

(
−1 0

0 −1

) (
1/2

√
3/2

−
√

3/2 1/2

) (
1/2 −

√
3/2

√
3/2 1/2

)
Γ (6)

(
1 0

0 1

) (
−1/2 −

√
3/2

√
3/2 −1/2

) (
−1/2

√
3/2

−
√

3/2 −1/2

)
𝐷6 𝐶2𝑥 𝐶2𝐴 𝐶2𝐵

Γ (5)

(
1 0

0 −1

) (
−1/2

√
3/2

√
3/2 1/2

) (
−1/2 −

√
3/2

−
√

3/2 1/2

)
Γ (6)

(
−1 0

0 1

) (
1/2 −

√
3/2

−
√

3/2 −1/2

) (
1/2

√
3/2

√
3/2 −1/2

)
𝐷6 𝐶2𝑦 𝐶2𝐶 𝐶2𝐷

Γ (5)

(
−1 0

0 1

) (
1/2 −

√
3/2

−
√

3/2 −1/2

) (
1/2

√
3/2

√
3/2 −1/2

)
Γ (6)

(
−1 0

0 1

) (
1/2 −

√
3/2

−
√

3/2 −1/2

) (
1/2

√
3/2

√
3/2 −1/2

)

Table 4.11 Representation matrices of the two-dimensional irreducible representations Γ (5) and Γ (6) of
symmetry group 𝐷6 computed with the scalar basis functions 𝜓 (5)

1 (𝑥′,𝑦′) = 𝑥′ and 𝜓
(5)
2 (𝑥′,𝑦′) = 𝑦′ as well

as 𝜓 (6)
1 (𝑥′,𝑦′) = 𝑥′ (𝑦′3 − 3𝑦′𝑥′2) and 𝜓

(6)
2 (𝑥′,𝑦′) = 𝑦′ (𝑦′3 − 3𝑦′𝑥′2) . © 2019 IEEE [PM19a].

matrices are listed in Table 4.11. Similar to the symmetry group 𝐷3 (Table 4.5),
the representation matrices are difficult to interpret intuitively, highlighting once
again the importance of the automatic port generation and modal assignment
methods introduced in this chapter.

Having available all necessary information about the symmetry group 𝐷6, the
a priori knowledge gained from the symmetry analysis can now be made use of.
As explained in section 4.4, orthogonal antenna ports can be constructed based
on the symmetry analysis alone without conducting a modal analysis. For the
port generation method introduced in section 4.4.1, initial port configurations are
needed. Two regular polygonal plates (equilateral triangular plate, square plate)
have already been analyzed. In both cases, a delta-gap source at a half-edge
center as well as a delta-gap source at an edge center have proved to be suitable
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(a) (b)

Figure 4.26 Initial port configurations for generating orthogonal antenna ports on regular hexagonal PEC plate.
(a) Port configuration consisting of one delta-gap source at a half-edge center for generating ports 1 and 3.
(b) Port configuration consisting of one delta-gap source at an edge center for generating ports 2, 4, 5, 6, 7, and 8.
© 2021 IEEE [PHM21].

Repr. Γ (1) Γ (2) Γ (3) Γ (4) Γ
(5)
1 Γ

(5)
2 Γ

(6)
1 Γ

(6)
2

Port 𝑢 1 2 3 4 5 6 7 8

Mode 𝑛 7, 20 6, 17 8, 18 5, 19 1, 9, 13 2, 10, 14 3, 11, 15 4, 12, 16

Table 4.12 Assignment of orthogonal antenna ports and characteristic modes of regular hexagonal PEC plate to
irreducible representations of symmetry group 𝐷6. © 2019 IEEE [PM19a].

initial port configurations. It is thus purposeful to apply these configurations to
the regular hexagonal plate, yielding the initial port configurations in Fig. 4.26.

The port generation method yields the eight antenna ports as depicted in
Fig. 4.27. They are sorted according to the irreducible representations as listed
in Table 4.12. Port 1 belonging to Γ (1) (Fig. 4.27(a)) and port 3 belonging
to Γ (3) (Fig. 4.27(c)) are generated using the initial port configuration in
Fig. 4.26(a). Both ports consist of twelve feed points distributed symmetrically
at the half-edge centers. Port 2 belonging to Γ (2) (Fig. 4.27(b)), Port 4 belonging
to Γ (4) (Fig. 4.27(d)), Port 5 belonging to the first row of Γ (5) (Fig. 4.27(e)),
Port 6 belonging to the second row of Γ (5) (Fig. 4.27(f)), Port 7 belonging
to the first row of Γ (6) (Fig. 4.27(g)), and Port 8 belonging to the second
row of Γ (6) (Fig. 4.27(h)) are generated using the initial port configuration
in Fig. 4.26(b). Ports 2 and 4 each consist of six feed points distributed
symmetrically at the edge centers. Ports 5 and 7 each consist of the same six feed
points. However, four of the six feed points are driven with half the source voltage
of the other feed points, which is denoted by the small arrows in Fig. 4.27(e)
and (g).71 Ports 6 and 8, finally, each consist of four feed points.
71This also occurred on the equilateral triangular plate (port 4), cf. Fig. 4.12(d).
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(a) Port 1 (b) Port 2 (c) Port 3 (d) Port 4

(e) Port 5 (f) Port 6 (g) Port 7 (h) Port 8

Figure 4.27 Orthogonal antenna ports on regular hexagonal PEC plate consisting of symmetrically distributed,
simultaneously driven feed points. Positions of feed points denoted by black lines. Relative voltage directions
denoted by arrows. The small arrows of ports 5 and 7 denote half the source voltage compared to the large arrows.
(a)–(h) Ports 1 to 8. © 2019 IEEE [PM19a].

Similar to the equilateral triangular plate, and in contrast to the square
plate, the transformation of the antenna ports belonging to the two-dimensional
irreducible representations is not straightforward. That is why it is mandatory to
use the automatic port generation method. As the antenna ports are designed
as basis functions of the irreducible representations, they are guaranteed to be
orthogonal. Moreover, the generated port configurations are optimal in the sense
that they consist of as few feed points as possible. These results are based on the
symmetry of the regular hexagonal plate alone and are thus independent of the
actual antenna size. A modal analysis is now conducted in order to determine
the minimum antenna size and check the excitation.

The modal significances of the first 20 characteristic modes as functions
of the electrical size 𝑘𝑅u are shown in Fig. 4.28.72 The modes are sorted
according to their significance at 𝑘𝑅u = 4.4, where all eight fundamental modes
are significant. The assignment of all 20 modes to the irreducible representations
of 𝐷6 is listed in Table 4.12. The assignment is conducted using the method
72A regular hexagon is completely determined by its edge length 𝑎 (Fig. 4.25). Its circumradius 𝑅u

is equal to its edge length: 𝑅u = 𝑎.
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Figure 4.28 Modal significances of regular hexagonal PEC plate as functions of electrical size 𝑘𝑅u. Fundamental
characteristic modes in color, higher-order modes in gray. At 𝑘𝑅u = 4.4, all eight fundamental modes are
significant. The modes are sorted according to their significance at 𝑘𝑅u = 4.4.

Figure 4.29 Characteristic current correlation coefficients of regular hexagonal PEC plate with electrical
size 𝑘𝑅u = 4.4 computed using (2.51). © 2019 IEEE [PM19a].

introduced in section 4.1.1. The automatic assignment procedure based on
the character projection operators is recommended here as there are two two-
dimensional irreducible representations. The degenerate modes belonging to the
two-dimensional irreducible representations Γ (5) and Γ (6) are resolved using the
method presented in section 4.2.2 with the representation matrices in Table 4.11.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

Figure 4.30 Normalized surface current densities of fundamental characteristic modes of regular hexagonal PEC
plate with electrical size 𝑘𝑅u = 4.4. Principal current directions denoted by arrows. Modes sorted according to
their significance. Color bar in Fig. 2.6(e). (a) Mode 1 belonging to the first row of Γ (5) . (b) Mode 2 belonging to
the second row of Γ (5) . (c) Mode 3 belonging to first row of Γ (6) . (d) Mode 4 belonging to second row of Γ (6) .
(e) Mode 5 belonging to Γ (4) . (f) Mode 6 belonging to Γ (2) . (g) Mode 7 belonging to Γ (1) . (h) Mode 8 belonging
to Γ (3) . © 2019 IEEE [PM19a].

The resulting orthogonality of the characteristic surface current densities is
confirmed by the characteristic current correlation coefficients in Fig. 4.29.

The characteristic surface current densities of the fundamental modes are
depicted in Fig. 4.30. Modes 1 and 2 (Fig. 4.30(a) and (b)) are the fundamental
modes of the two-dimensional fifth irreducible representation Γ (5) . Similar to
the square plate, their surface current densities may be interpreted as orthogo-
nally polarized “dipole modes”. Modes 3 and 4 (Fig. 4.30(c) and (d)) are the
fundamental modes of the two-dimensional sixth irreducible representation Γ (6) .
A close inspection yields that they may be interpreted as “quadrupole modes”.
In contrast to the square plate, they are degenerate. Mode 5 (Fig. 4.30(e)) is
the fundamental mode of Γ (4) . It may be interpreted as a “hexapole mode”.
Such a mode is not present among the fundamental modes of the square plate.
Mode 6 (Fig. 4.30(f)) is the fundamental mode of Γ (2) . Similar to the square
plate and the equilateral triangular plate, it is reminiscent of a current loop (“loop
mode”). Correspondingly, Mode 7 (Fig. 4.30(g)) is the fundamental mode of Γ (1)

and is invariant under all symmetry operations of 𝐷6 (“invariant mode”). Finally,
mode 8 (Fig. 4.30(h)) is the fundamental mode of Γ (3) . Similar to mode 5, it
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(a) (b)

Figure 4.31 Excitation parameters of regular hexagonal PEC plate with electrical size 𝑘𝑅u = 4.4 and port
configuration according to Fig. 4.27. (a) Normalized modal weighting coefficients. (b) Envelope correlation
coefficients. © 2019 IEEE [PM19a].

may be interpreted as a “hexapole mode”. The two “hexapole modes” are not
degenerate, just like the two “quadrupole modes” of the square plate.

The evaluation of the normalized modal weighting coefficients in Fig. 4.31(a)
confirms that the eight antenna ports exactly excite the mutually orthogonal
sets of characteristic surface current densities offered by the regular hexagonal
PEC plate. Accordingly, the antenna ports are orthogonal, which is checked
by computing the envelope correlations coefficients (Fig. 4.31(b)). The regular
hexagonal PEC plate offers eight orthogonal antenna ports. It is thus expected
to be well suited for a multimode antenna design with a large number of ports.

Additionally, both symmetry analysis and modal analysis have revealed some
relations between the regular polygonal plates considered so far. These relations
will be examined more closely in chapter 5.

4.5.3 Square Pyramid

In section 3.3.5, the symmetry group 𝐶4v was introduced, which is isomorphic
to the symmetry group 𝐷4 of the square plate. 𝐶4v is the symmetry group of a
right square pyramid as shown in Fig. 4.32. It contains four rotations about the
𝑧-axis, which are already known from the square plate (𝐸 , 𝐶4𝑧 , 𝐶

−1
4𝑧 , 𝐶2𝑧), and

four reflections through planes containing the 𝑧-axis (𝜎𝑥𝑧 , 𝜎𝑦𝑧 , 𝜎𝐴𝑧 , 𝜎𝐵𝑧).73

Due to the isomorphism, 𝐶4v has the same irreducible representations as 𝐷4.
Therefore, the representation matrices of 𝐷4 as listed in Table 3.6 can be applied

73These replace the four rotations of 𝐷4 about the axes perpendicular to the 𝑧-axis.
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Figure 4.32 Square pyramid and coordinate system. (a) PEC object. (b) Schematic.

Repr. Γ (1) Γ (2) Γ (3) Γ (4) Γ
(5)
1 Γ

(5)
2

Mode 𝑛 5, 16, 20 4, 14 6, 15 3, 13, 19 1, 7, 9,
11, 17

2, 8, 10,
12, 18

Port 𝑢 1 2 3 4 5 6

Table 4.13 Assignment of characteristic modes and orthogonal antenna ports of square PEC pyramid to
irreducible representations of symmetry group 𝐶4v.

to the square pyramid as well. This has the consequence that the characteristic
surface current densities on the square pyramid transform under the symmetry
operations of𝐶4v in the same way as those on the square plate under the symmetry
operations of 𝐷4. In simple terms, it is expected that the characteristic surface
current densities on the square pyramid have the same symmetry properties as
those on the square plate. The same argument is valid for the antenna ports.

In order to illustrate this, a modal analysis is conducted. A square pyramid
as shown in Fig. 4.32 without base plate is chosen.74 There are now two
free geometry parameters: the edge length 𝑎 and the height ℎ. The height
is set to ℎ = 𝑎

2 so that the angle between the base and the sides is 45°. The
circumradius 𝑅u (radius of circumscribed sphere) is then governed by the square
base of the pyramid, i.e., it is the same as that of the square plate 𝑅u = 𝑎√

2
.75

The modal significances of the characteristic modes of the square pyramid are
shown in Fig. 4.33 as functions of the electrical size 𝑘𝑅u. The corresponding

74This allows a better comparison to the square plate as the surface of the pyramid is not closed in
this case. The square pyramid without base plate may be interpreted as a deformed square plate.

75It is emphasized once more that the antenna size only affects the modal results, but not the
symmetry. In particular, the optimal port configuration derived in this subsection is valid for all
sizes of the right square pyramid.
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Figure 4.33 Modal significances of square PEC pyramid as functions of electrical size 𝑘𝑅u. Fundamental
characteristic modes in color, higher-order modes in gray. At 𝑘𝑅u = 3.5, all six fundamental modes are significant.
The modes are sorted according to their significance at 𝑘𝑅u = 3.5.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 4.34 Normalized surface current densities of fundamental characteristic modes of square PEC pyramid
with electrical size 𝑘𝑅u = 3.5. View from above (𝑧 > ℎ). Principal current directions denoted by arrows. Modes
sorted according to their significance. Color bar in Fig. 2.6(e). (a) Mode 1 belonging to the first row of Γ (5) .
(b) Mode 2 belonging to the second row of Γ (5) . (c) Mode 3 belonging to Γ (4) . (d) Mode 4 belonging to Γ (2) .
(e) Mode 5 belonging to Γ (1) . (f) Mode 6 belonging to Γ (3) .

assignment to the irreducible representations of the symmetry group𝐶4v is listed
in Table 4.13. As the symmetry group 𝐶4v is isomorphic to 𝐷4, there are six
fundamental characteristic modes.
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(a) Port 1 (b) Port 2 (c) Port 3

(d) Port 4 (e) Port 5 (f) Port 6

Figure 4.35 Orthogonal antenna ports on square PEC pyramid consisting of symmetrically distributed, simul-
taneously driven feed points. Not all feed points are visible from this point of view. For a complete view, refer
to Fig. 4.23, which corresponds to the view from above (𝑧 > ℎ). Positions of feed points denoted by black
lines. Relative voltage directions denoted by arrows. All feed points are driven with the same source voltage.
(a)–(f) Ports 1 to 6.

Compared to the square plate (Fig. 4.19), some of the significance curves
appear to be shifted towards lower electrical sizes. This has the particular
consequence that all six fundamental modes are significant at 𝑘𝑅u = 3.5 instead
of 𝑘𝑅u = 4. Apparently, the square pyramid requires a smaller electrical size
than the square plate in order to have the six fundamental modes significant.
This reduced footprint is bought by introducing the third dimension.

The square pyramid may be interpreted as a folded square plate. This in-
terpretation of the square pyramid is corroborated by inspecting the surface
current densities of the fundamental characteristic modes as shown in Fig. 4.34.
The view from above is chosen in order to enable a direct comparison to the
characteristic surface current densities of the square plate (Fig. 4.21). Obviously,
they are very similar. This is due to the fact that the characteristic surface current
densities of the square pyramid and the square plate transform according to the
same representation matrices (Table 3.6).

Based on this group isomorphism, the antenna ports of the square plate can
be employed on the square pyramid as well. The port configurations of the
square plate as presented in Fig. 4.23 are arranged on the sides of the square
pyramid as illustrated in Fig. 4.35. Viewed from above, they look exactly like
those in Fig. 4.23. The assignment of the ports to the irreducible representations
of 𝐶4v is listed in Table 4.13. The evaluation of the excitation parameters in
Fig. 4.36 demonstrates that the antenna ports excite the mutually orthogonal
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(a) (b)

Figure 4.36 Excitation parameters of square PEC pyramid with electrical size 𝑘𝑅u = 3.5 and port configuration
according to Fig. 4.35. (a) Normalized modal weighting coefficients. (b) Envelope correlation coefficients.

sets of characteristic surface current densities offered by the square pyramid and
hence are orthogonal.

The square pyramid gives a first impression how group isomorphisms can be
exploited in order to manipulate multimode antenna properties. The symmetry-
related properties, in particular the number and the optimal configurations of the
antenna ports, are basically the same as those of the square plate and can thus
be adopted directly. However, additional geometry parameters, in this case the
height of the pyramid, can be used in order to manipulate the modal properties.
In this example, the pyramidal antenna shape, although a comparatively simple
three-dimensional geometry, results in a reduced footprint compared to the
square plate while the number of orthogonal antenna ports is preserved.

More sophisticated antenna shapes having the𝐶4v-symmetry may be conceived
in order to improve the manipulation of the modal properties. In [82], a prototype
of a three-dimensional patch antenna (one antenna port) is presented. As a
matter of fact, the symmetry group of the antenna is 𝐶4v. This work serves as a
motivation that three-dimensional multimode antennas can in fact be realized.
Exploiting group isomorphisms is thus proposed as one interesting approach for
future multimode antenna designs.

4.5.4 Square Cuboid

The symmetry group𝐷4h of a square cuboid as shown in Fig. 4.37 was introduced
in section 3.2.3 as a direct-product group. It will now be shown that this fact
greatly simplifies the symmetry analysis and the port placement.
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Figure 4.37 Square cuboid and coordinate system. (a) PEC object. (b) Schematic. © 2019 IEEE [PM19b].

As examined in section 3.3.6, the group 𝐷4h has eight one-dimensional and
two two-dimensional irreducible representations. Therefore, there is a total
of twelve mutually orthogonal sets of characteristic surface current densities.
Consequently, twelve orthogonal antenna ports can be realized.

A modal analysis is performed in order to check the results of the port
generation.76 For this purpose, the edge length of the cuboid is chosen to
be 𝑎 = 1.5 wavelengths and the height is chosen to be ℎ = 𝑎

3 . This size is
selected for the simple reason that, out of the 40 characteristic modes taken into
account, at least two belong to each irreducible representations of 𝐷4h.

The characteristic current correlation coefficients are depicted in Fig. 4.38.
It can be checked that there are in fact twelve mutually orthogonal sets of
characteristic surface current densities. Accordingly, the characteristic modes
can be sorted into these sets, though they cannot be assigned to the different
irreducible representations of 𝐷4h based on this information alone.77 However, it
will become clear in the following paragraphs that this step is not even necessary
if the focus is put solely on realizing orthogonal antenna ports.

Based on the structure of the characters and the representation matrices of 𝐷4h
(Tables 3.11 and 3.12), predictions about the characteristic surface current
densities to be expected can be made. Characteristic modes belonging to the
first five irreducible representations Γ (1;2;3;4;5) (even representations) may be
interpreted as even modes with respect to the 𝑥𝑦-plane as their respective surface
current densities transform in the same way under both proper and improper
rotations. In particular, they are invariant under the reflection through the 𝑥𝑦-
76It is recalled that a modal analysis is not necessary for the port generation as explained in

section 4.4.
77The methods introduced in section 4.1 would have to be applied.
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Figure 4.38 Characteristic current correlation coefficients of square PEC cuboid computed using (2.51).
© 2019 IEEE [PM19b].

plane. In order to illustrate this, an exemplary even characteristic surface current
density is shown in Fig. 4.39(a). It possesses the familiar circular symmetry
known from the square plate (cf. Fig. 4.21(e)). In contrast, characteristic modes
belonging to the irreducible representations Γ (6;7;8;9;10) (odd representations)
may be interpreted as odd modes with respect to the 𝑥𝑦-plane. Their respective
surface current densities are inverted by the improper rotations compared to
the proper rotations. In particular, the characteristic surface current densities
are inverted by the reflection through the 𝑥𝑦-plane. An example is shown in
Fig. 4.39(b), consisting primarily of a current loop on the top plate and a current
loop on the bottom plate with opposite directions.

The concept of even and odd representations is now made use of in order to
implement the antenna ports. The symmetry group𝐷4h of the square cuboid is the
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(a) (b)

Figure 4.39 Two characteristic surface current densities of square PEC cuboid as examples for even and odd
modes. Principal current directions denoted by arrows. Color bar in Fig. 2.6(e). (a) Mode 13 transforming according
to Γ (2) of 𝐷4h is an even mode as it is invariant under the reflection 𝜎𝑥𝑦 . (b) Mode 9 transforming according
to Γ (6) of 𝐷4h is an odd mode as it is inverted by the reflection 𝜎𝑥𝑦 .

Port 𝑢 1 2 3 4 5 6

Repr. Γ (1) Γ (2) Γ (3) Γ (4) Γ
(5)
1 Γ

(5)
2

Mode 𝑛 10, 38 13, 21 3, 37 14, 18, 39 4, 15,
29, 33

5, 16,
30, 34

Port 𝑢 7 8 9 10 11 12

Repr. Γ (7) Γ (6) Γ (9) Γ (8) Γ
(10)
2 Γ

(10)
1

Mode 𝑛 8, 17,
26, 40 9, 28, 35 6, 36 7, 27 2, 12, 20,

23, 25, 32
1, 11, 19,
22, 24, 31

Table 4.14 Assignment of orthogonal antenna ports and characteristic modes of square PEC cuboid to irreducible
representations of symmetry group 𝐷4h. © 2019 IEEE [PM19b].

direct product of the symmetry group 𝐷4 of the square plate, which characterizes
the square symmetry, and the symmetry group𝐶s, which introduces the reflection
through the 𝑥𝑦-plane. Inspired by the square symmetry due to 𝐷4, it is purposeful
to reuse the feed points on the square plate (Fig. 4.23). The additional reflection
plane due to 𝐶s requires to place the feed points on both the top face (𝑧 = ℎ

2 )
and the bottom face (𝑧 = − ℎ

2 ) of the square cuboid.
The first six antenna ports are now designed to belong to the even irreducible

representations Γ (1;2;3;4;5) (Table 4.14). Therefore, the feed points on both top and
bottom face of the cuboid are driven according to Fig. 4.23, i.e., in phase (“even
excitation”). The ports 7 to 12 are designed to belong to the odd irreducible
representations Γ (6;7;8;9;10) (Table 4.14). Hence, the feed points on the top face
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(a)

(b)

(c)

Figure 4.40 Excitation parameters of square PEC cuboid. (a)–(b) Normalized modal weighting coefficients.
(c) Envelope correlation coefficients. © 2019 IEEE [PM19b].
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of the cuboid are driven again according to Fig. 4.23, whereas those on the
bottom face are inverted, i.e., they are driven out of phase with respect to those
on the top face (all arrows in Fig. 4.23 rotated by 180°, “odd excitation”).

The assignment of the antenna ports generated this way to the irreducible
representations of 𝐷4h is given in Table 4.14. The evaluation of the excitation
parameters in Fig. 4.40 confirms once again that the antenna ports excite the
mutually orthogonal sets of characteristic surface current densities offered by the
square PEC cuboid and consequently are orthogonal. Besides, the characteristic
modes can now be assigned to the irreducible representations retrospectively
via the antenna ports by examining the normalized modal weighting coefficients
in Fig. 4.40(a) and (b), resulting in the assignment listed in Table 4.14.

This last example demonstrates once more how the symmetry analysis is able
to provide a lot of insight into the analysis and the excitation of characteristic
modes. Although the geometric structure of the PEC object is rather complex,
predictions about the properties of the characteristic surface current densities
and how to excite them can be made without even conducting a modal analysis.





5 Generalized Modal Analysis
of Regular Polygonal Plates

In the previous chapter, it was demonstrated that the number of orthogonal
antenna ports and how to realize them is totally governed by the symmetry of an
antenna. Consequently, this information is known a priori and it is independent
of the actual implementation of the antenna, i.e., the antenna size and shape,
as long as the symmetry is preserved. It is, however, mandatory that for each
antenna port the fundamental characteristic mode as defined in section 4.3
is significant. The examples considered in chapter 4 have shown that this is
where the electrical size of the antenna comes into play as it governs the modal
significance. The minimum antenna size is achieved if the fundamental modes
of each antenna port to be realized are significant.

In this chapter, the family of the regular polygonal plates is of particular
interest. The examples considered so far (triangular (Fig. 4.11), square (Fig. 4.19),
hexagonal (Fig. 4.28)) have shown that the fundamental characteristic modes
become significant at a certain electrical size and then stay significant. This
behavior ensures that the fundamental modes can all be made significant
simultaneously if the minimum electrical size is chosen or exceeded. In terms of
frequencies, a potential broadband operation of all antenna ports is thus enabled
above a certain minimum frequency.

The regular polygonal plates are characterized by exactly one geometry param-
eter, the edge length 𝑎, or alternatively, the circumradius 𝑅u. The circumradius is
the radius of the circumscribed circle of a regular polygon (see, e.g., Fig. 4.1 or
Fig. 4.25). This allows the definition of the electrical size 𝑘𝑅u, which has already
been made extensive use of in chapter 4. However, this definition also allows a
comparison of all regular polygonal plates. Going even further, a circular disk of
radius 𝑅u may be considered the generalization of the regular polygonal plates
of circumradius 𝑅u. In other words, the circular disk is the limiting case of the
regular polygonal plates with an infinite number of vertices.

Therefore, it is expected that a lot can be learned, in particular with respect to
the antenna size, by analyzing the circular disk as the representative of all regular
polygonal plates. The aim of this chapter is to derive guidelines for determining
the minimum antenna size if a certain number of orthogonal antenna ports is
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to be realized. The derivation will be conducted exemplarily for the family of
the regular polygonal plates. To this end, the circular disk as the generalization
of the regular polygonal plates is analyzed with respect to both its modal and
symmetry properties. Based on this, an estimate for the minimum electrical size
of the regular polygonal plates is derived.

5.1 Analysis of Circular Disk

The symmetry group of a circular disk as shown in Fig. 3.10 is 𝐷∞, which was
introduced in section 3.6. As this group has an infinite number of irreducible
representations, the circular disk offers an infinite number of mutually orthogonal
sets of characteristic surface current densities. In order to perform a symmetry
analysis, the methods used in chapter 4 can be applied to the circular disk in
conjunction with the modifications introduced in section 3.6.

However, due to the infinite number of symmetry axes (see section 3.6), a
triangular mesh reproducing the symmetry of a circular disk cannot be generated.
Therefore, methods relying on a symmetric mesh, in particular the projection
operators, cannot be applied to numerically computed characteristic surface
current densities. If, however, analytical solutions were available, the symmetry
analysis could be readily carried out. This is the motivation for this section.

5.1.1 Analytical Treatment

Analytical solutions for the characteristic modes of a PEC sphere are presented
in [83]. As a matter of fact, the characteristic electromagnetic fields of a PEC
sphere are properly normalized spherical wave functions [29]. For this reason,
the derivation of the spherical wave functions is now briefly outlined and then
applied to the circular disk.

Sphere

The spherical wave functions are obtained by solving the homogeneous vector
Helmholtz equation in spherical coordinates 𝑟,𝜃,𝜑 (Fig. 5.1) [65]:

ΔF(r) + 𝑘2F(r) = 0, (5.1)

where F denotes an arbitrary vector field with spherical components 𝐹𝑟 , 𝐹𝜃 ,
and 𝐹𝜑 , which may be replaced by the electric field strength E, the magnetic
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Figure 5.1 Spherical coordinates.

field strength H, or the magnetic vector potential A (appendix A.2 and A.4). The
coordinate vector r in spherical coordinates is written as

r(𝑟,𝜃,𝜑) = ©­«
𝑥(𝑟,𝜃,𝜑)
𝑦(𝑟,𝜃,𝜑)
𝑧(𝑟,𝜃,𝜑)

ª®¬ =
©­«
𝑟 sin 𝜃 cos 𝜑
𝑟 sin 𝜃 sin 𝜑
𝑟 cos 𝜃

ª®¬ ,
0 ≤ 𝑟 < ∞
0 ≤ 𝜃 ≤ 𝜋

0 ≤ 𝜑 < 2𝜋
. (5.2)

In Cartesian coordinates 𝑥,𝑦,𝑧, the vector Helmholtz equation can be de-
composed into three independent scalar Helmholtz equations in terms of the
components 𝐹𝑥 , 𝐹𝑦 , and 𝐹𝑧 , respectively (cf. (2.6)) [65]. In curvilinear coordi-
nates, however, the vector Laplace operator takes the general form

ΔF(r) = grad
(
div

(
F(r)

) )
− rot

(
rot

(
F(r)

) )
. (5.3)

This has the consequence that the vector Helmholtz equation cannot be decom-
posed into three independent scalar Helmholtz equations.

Instead, solutions to (5.1) can be constructed by equating F with the vector
wave functions L, M, or N [65]:

L(r) = grad
(
𝜁 (r)

)
, (5.4a)

M(r) = rot
(
a𝜁 (r)

)
, (5.4b)

N(r) = 1
𝑘

rot
(
M(r)

)
, (5.4c)
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where a denotes a vector to be determined below. 𝜁 is called the generating
function and it is the solution to the homogeneous scalar Helmholtz equation:

Δ𝜁 (r) + 𝑘2𝜁 (r) = 0. (5.5)

The solution to this equation is obtained by separation of variables in spherical
coordinates, yielding [84]

𝜁𝑠𝑡 (𝑟,𝜃,𝜑) =


𝑗𝑡 (𝑘𝑟)
𝑦𝑡 (𝑘𝑟)
ℎ
(1;2)
𝑡 (𝑘𝑟)

 L𝑠
𝑡 (cos 𝜃)

{
cos(𝑠𝜑)
sin(𝑠𝜑)

}
, (5.6)

where 𝑗𝑡 denotes the spherical Bessel function of the first kind, 𝑦𝑡 denotes the
spherical Bessel function of the second kind, ℎ (1)𝑡 denotes the spherical Hankel
function of the first kind, and ℎ (2)𝑡 denotes the spherical Hankel function of
the second kind, each of order 𝑡. L𝑠

𝑡 denotes the associated Legendre function
of degree 𝑡 and order 𝑠.78 The functions in braces form sets of alternative
solutions. In the context of wave propagation and, in particular, characteristic
modes, the spherical Hankel function of the second kind is chosen, denoting
outward traveling waves [29]. The trigonometric functions cos(𝑠𝜑) and sin(𝑠𝜑)
distinguish even and odd solutions, respectively [84].

Based on the scalar solution, the vector wave functions L𝑠𝑡 , M𝑠𝑡 , and N𝑠𝑡

according to (5.4) each are solutions to the vector Helmholtz equation (5.1) in
spherical coordinates. L is always irrotational, whereas M and N are always
solenoidal [87]. As the electric and magnetic field strengths of an electromagnetic
wave in free space are solenoidal, the principal goal is to determine M and N.
Setting a = r yields M transverse with respect to the radial direction (direction
of wave propagation), i.e., 𝑀𝑟 = 0. If a properly scaled M𝑠𝑡 is interpreted as
the electric field strength, the resulting N𝑠𝑡 corresponds to the magnetic field
strength, resulting in a transverse electric (TE) spherical wave mode [84]. If a
properly scaled M𝑠𝑡 is interpreted instead as the magnetic field strength, the
resulting N𝑠𝑡 corresponds to the electric field strength, resulting in a transverse
magnetic (TM) spherical wave mode. An arbitrary electromagnetic wave can
generally be expressed as a weighted sum of these spherical wave modes, where
the index pair 𝑠𝑡 distinguishes the different wave modes [65]. The corresponding
modal surface current densities on a PEC sphere with radius 𝑅u are computed

78A detailed reference to these special functions can be found in [85] and [86].
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by means of the boundary condition of the magnetic field strength:79

J𝑠𝑡 (𝜃 ′,𝜑′) = e𝑟 × H𝑠𝑡 (𝑅u,𝜃
′,𝜑′). (5.7)

In [29], it is shown that the characteristic surface current densities given in [83]
are properly normalized spherical surface current densities according to (5.7).
The characteristic surface current densities on an PEC sphere can thus be
subdivided into TE and TM modes, yielding [29, 83]80

JTE
𝑠𝑡 (𝜃 ′,𝜑′) =

1
𝑘𝑅2

u
√
𝑍0

1
𝑗𝑡 (𝑘𝑅u)

√︄
𝜖𝑠

4𝜋
2𝑡 + 1
𝑡 (𝑡 + 1)

(𝑡 − 𝑠)!
(𝑡 + 𝑠)!

·
(
𝑠L𝑠

𝑡 (cos 𝜃 ′)
sin 𝜃 ′

{
− sin(𝑠𝜑′)
cos(𝑠𝜑′)

}
e𝜃 −

𝜕L𝑠
𝑡 (cos 𝜃 ′)
𝜕𝜃 ′

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
e𝜑

)
,

(5.8)

and

JTM
𝑠𝑡 (𝜃 ′,𝜑′) = 1

𝑘𝑅2
u
√
𝑍0

1
𝜕(𝑘𝑟 𝑗𝑡 (𝑘𝑟))

𝜕𝑟

���
𝑟=𝑅u

√︄
𝜖𝑠

4𝜋
2𝑡 + 1
𝑡 (𝑡 + 1)

(𝑡 − 𝑠)!
(𝑡 + 𝑠)!

·
(
𝜕L𝑠

𝑡 (cos 𝜃 ′)
𝜕𝜃 ′

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
e𝜃 +

𝑠L𝑠
𝑡 (cos 𝜃 ′)
sin 𝜃 ′

{
− sin(𝑠𝜑′)
cos(𝑠𝜑′)

}
e𝜑

)
,

(5.9)

with

𝜖𝑠 =

{
1 𝑠 = 0
2 𝑠 ≠ 0

. (5.10)

As the characteristic electric fields are known as well from the derivation above,
the eigenvalues of a PEC sphere with radius 𝑅u can be computed analytically
via the characteristic angle (2.28), yielding [29, 83]

𝜆TE
𝑡 = − 𝑦𝑡 (𝑘𝑅u)

𝑗𝑡 (𝑘𝑅u)
and 𝜆TM

𝑡 = −
𝜕
𝜕𝑟

(
𝑘𝑟𝑦𝑡 (𝑘𝑟)

) ��
𝑟=𝑅u

𝜕
𝜕𝑟

(
𝑘𝑟 𝑗𝑡 (𝑘𝑟)

) ��
𝑟=𝑅u

. (5.11)

79Primed coordinates are employed in order to emphasize the evaluation on the surface of a sphere.
80The characteristic modes derived this way are distinguished by TE/TM, the index pair 𝑠𝑡 , as well

as even/odd. Alternatively, these distinctions may be mapped into one index 𝑛 [88] as used in
the previous chapters, e.g., in (2.14).
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Figure 5.2 Analytically computed eigenvalues of PEC Sphere as functions of electrical size 𝑘𝑅u. The first five
TE and TM eigenvalues are depicted (𝑡 = 1,2,3,4,5). The corresponding numerically computed eigenvalues are
marked by the crosses.

The eigenvalues are distinguished by TE/TM and the index 𝑡. As 𝑠 ∈ [0,𝑡],
TE and TM modes, respectively, are (2𝑡 + 1)-fold degenerate, including even
and odd modes [83]. Furthermore, the eigenvalues are functions of the electrical
size 𝑘𝑅u alone, as expected, and can even be computed analytically. The first
five TE and TM eigenvalues are shown in Fig. 5.2.81 As proposed in [88],
these results can be used in order to check the accuracy of the employed
numerical characteristic mode computation. The crosses in Fig. 5.2 denote the
corresponding numerically calculated eigenvalues of a PEC sphere discretized
with 3168 triangles (4752 RWG basis functions), showing a good agreement
between the exact analytical solutions and the numerically computed eigenvalues.

Based on the derivation outlined above, analytical forms of the characteristic
surface current densities of a PEC sphere are available so that a symmetry
analysis could now be performed with the methods introduced in chapters 3
and 4. Another advantageous outcome of the derivation is that analytical
expressions of the eigenvalues are available as well. A direct relationship
between the eigenvalues and the electrical size of the sphere is given, obviating a
time-consuming numerical simulation. This result is exactly what is desired for
the circular disk and the regular polygonal plates, as stated in the introduction of

81The behavior of the eigenvalues of the PEC sphere as functions of the electrical size differs
considerably from that of the PEC objects analyzed so far (chapter 4). This is due to the fact that
the sphere has a closed surface enabling internal resonances ( |𝜆𝑡 | → ∞) [29, 88].



5.1 Analysis of Circular Disk 139

(a) 𝜉 → ∞ (b) 𝜉 = 0.5 (c) 𝜉 = 0

Figure 5.3 Evolution of a sphere into a circular disk using oblate spheroidal coordinates. The sphere and the
circular disk are limiting cases of the oblate spheroid. (a) Sphere. (b) Oblate spheroid. (c) Circular disk.

this chapter. Motivated by this finding, it is now examined whether the same
derivation can also be applied to the circular disk.

Circular Disk

Now, the idea is to flatten the sphere at its poles until it becomes a circular
disk, as proposed in [29]. This approach is illustrated in Fig. 5.3. By flattening
the sphere (Fig. 5.3(a)), it evolves into an oblate spheroid (Fig. 5.3(b)). By
further flattening the spheroid, it finally becomes a circular disk with zero
height (Fig. 5.3(c)). Obviously, the oblate spheroid is a more general geometric
object which can evolve into either a sphere or a circular disk.

It is thus purposeful to introduce the oblate spheroidal coordinate system [86,
87]. In this coordinate system, it is possible to conduct the same derivation
for solving the vector Helmholtz equation, i.e., based on the vector wave
functions (5.4), as in spherical coordinates [29, 87]. Since the circular disk is a
limiting case of the oblate spheroid (Fig. 5.3), it is expected that solutions for
the circular disk are found by setting the height of the spheroid to zero.

The oblate spheroidal coordinates 𝜂,𝜉,𝜑 describe the surface of an arbitrary
oblate spheroid in three-dimensional Euclidean space as illustrated in Fig. 5.4(a).
The oblate spheroid (ellipsoid of revolution) is generated by rotating an ellipse
about its minor axis, which is defined to lie on the 𝑧-axis [87]. Thus, the
coordinate 𝜑 is the azimuthal angle already known from polar and spherical
coordinates. A constant 𝜑 yields a cut plane containing the 𝑧-axis, as shown
in Fig. 5.4(b) [86]. For constant 𝜉, the coordinate 𝜂 runs along the ellipsoidal
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Figure 5.4 Spheroidal coordinates. (a) Oblate spheroid and coordinate system for fixed 𝜉 . (b) Spheroidal
coordinates for constant 𝜑. The cut looks the same for all 𝜑 due to the rotational symmetry about the 𝑧-axis.

surface of a spheroid, similar to the polar angle 𝜃 in spherical coordinates. The
coordinate 𝜉 determines the shape of the spheroid, resulting in a family of
confocal ellipsoids with interfocal distance đ, as illustrated in Fig. 5.4(b) [86].
For constant 𝜂, 𝜉 runs along a hyboloidal surface. Based on these relations, the
coordinate vector r in oblate spheroidal coordinates is written as [87]

r(𝜂,𝜉,𝜑) = ©­«
𝑥(𝜂,𝜉,𝜑)
𝑦(𝜂,𝜉,𝜑)
𝑧(𝜂,𝜉,𝜑)

ª®¬ =
đ
2

©­­«
√︁
(1 − 𝜂2) (𝜉2 + 1) cos 𝜑√︁
(1 − 𝜂2) (𝜉2 + 1) sin 𝜑

𝜂𝜉

ª®®¬ ,
−1 ≤ 𝜂 ≤ 1
0 ≤ 𝜉 < ∞
0 ≤ 𝜑 < 2𝜋

.

(5.12)
The unit vectors e𝜂 ,e𝜉 ,e𝜑 are computed by differentiating r with respect to the
respective coordinate:

e𝜂 =

©­­­­«
−𝜂

√︃
𝜉 2+1
𝜉 2+𝜂2 cos 𝜑

−𝜂
√︃

𝜉 2+1
𝜉 2+𝜂2 sin 𝜑

𝜉

√︃
1−𝜂2

𝜉 2+𝜂2

ª®®®®¬
, e𝜉 =

©­­­­«
𝜉

√︃
1−𝜂2

𝜉 2+𝜂2 cos 𝜑

𝜉

√︃
1−𝜂2

𝜉 2+𝜂2 sin 𝜑

𝜂

√︃
𝜉 2+1
𝜉 2+𝜂2

ª®®®®¬
, e𝜑 =

©­«
− sin 𝜑
cos 𝜑

0

ª®¬ .
(5.13)

The size and the shape of an oblate spheroid are determined by đ and 𝜉,
respectively. The circumradius 𝑅u (radius in the 𝑥𝑦-plane) is obtained from (5.12)
by setting 𝜂 = 0:

𝑅u (đ,𝜉) =
√︃
𝑥2 (𝜂 = 0,𝜉,𝜑) + 𝑦2 (𝜂 = 0,𝜉,𝜑) = đ

2

√︃
𝜉2 + 1. (5.14)
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Figure 5.5 Circumradius 𝑅u and height ℎ of oblate spheroid as functions of đ and 𝜉 .

Accordingly, the height ℎ on the 𝑧-axis is

ℎ(đ,𝜉) = 𝑧(𝜂 = 1,𝜉,𝜑) = đ
2
𝜉. (5.15)

The circumradius and the height as functions of đ and 𝜉 are shown in Fig. 5.5.
For large 𝜉, the height approaches the circumradius. In the case 𝜉 → ∞, this
results in a spherical surface (Fig. 5.3(a)). For 𝜉 = 0, however, the height is zero,
resulting in a circular disk with radius 𝑅u = đ/2 (Fig. 5.3(c)).

Consequently, the circular disk can be described in oblate spheroidal coordi-
nates for 𝜉 = 0. In this case, the coordinate vector r (5.12) reduces to82

r′(𝜂′,𝜑′) = đ
2

√︃
1 − 𝜂′2 ©­«

cos 𝜑′
sin 𝜑′

0

ª®¬ = 𝜌′
©­«
cos 𝜑′
sin 𝜑′

0

ª®¬ = r′(𝜌′,𝜑′), (5.16)

i.e., the oblate spheroidal coordinates reduce to the polar coordinates 𝜌′,𝜑′
as depicted in Fig. 5.6 with 𝜌′ = đ

2

√︁
1 − 𝜂′2, 𝜌′ ∈ [0, đ2 ]. This behavior is also

reflected in the unit vectors:

e𝜂 (𝜉 = 0) =
{
−e𝜌 𝜂′ ∈ [0,1]
e𝜌 𝜂′ ∈ [−1,0]

, e𝜉 (𝜉 = 0) =
{

e𝑧 𝜂′ ∈ [0,1]
−e𝑧 𝜂′ ∈ [−1,0]

.

(5.17)
The unit vector e𝜂 reduces to the unit vector in radial direction e𝜌, spanning the
circular disk together with e𝜑 . The unit vector e𝜉 reduces to the unit vector in
82The use of primed coordinates emphasizes that the coordinates are now confined to the surface of

the circular disk.



142 Generalized Modal Analysis of Regular Polygonal Plates

𝑧-direction e𝑧 , i.e., the unit normal vector of the circular disk. It is noted that for
describing a disk, it is sufficient that 𝜂′ either runs from −1 to 0 or from 0 to 1.

Now that it has been understood how a circular disk is purposefully described
by means of oblate spheroidal coordinates, it is time to turn back to solving the
vector Helmholtz equation (5.1). Basically, the same procedure as used above for
spherical coordinates can be applied [29,87]. First of all, the generating function 𝜁 ,
i.e., the solution to the homogeneous scalar Helmholtz equation (5.5) in oblate
spheroidal coordinates, needs to be determined. By separation of variables, a
solution is found in terms of the so-called spheroidal wave functions [87]:

𝜁𝑠𝑡 (𝜂,𝜉,𝜑) = S𝑠𝑡 (− 𝑗𝑐,𝜂)
{
R (1;2;3;4)
𝑠𝑡 (− 𝑗𝑐, 𝑗𝜉)

} {
cos(𝑠𝜑)
sin(𝑠𝜑)

}
, (5.18)

with 𝑐 = 1
2 𝑘đ. S𝑠𝑡 are the spheroidal angular functions, which are commonly

expressed as infinite series expansions of the associated Legendre functions.
R (1)
𝑠𝑡 , R (2)

𝑠𝑡 , R (3)
𝑠𝑡 , and R (4)

𝑠𝑡 are the spheroidal radial functions of the first,
the second, the third, and the fourth kind, respectively, which are expressed
as infinite series expansions of the spherical Bessel functions of the first
kind, the spherical Bessel functions of the second kind, the spherical Hankel
functions of the first kind, and the spherical Hankel functions of the second
kind, respectively [85–87]. Corresponding to the spherical Hankel functions
of the second kind, the spheroidal radial functions of the fourth kind R (4)

𝑠𝑡

denote outward traveling waves. Again, the trigonometric functions cos(𝑠𝜑)
and sin(𝑠𝜑) distinguish even and odd solutions, respectively.

In the next step, a vector a has to be chosen in order to compute the vector
wave functions M𝑠𝑡 and N𝑠𝑡 according to (5.4). Solutions for a = e𝑥 ,e𝑦 ,e𝑧 ,𝑟e𝑟
are given in [87]. In order to give an impression what the vector wave functions
in oblate spheroidal coordinates look like, the choice a = e𝑧 , which seems to be
rather intuitive bearing in mind (5.17), yields M𝑧

𝑠𝑡 [87]:

𝑀 𝑧
𝑠𝑡 ,𝜂 (𝜂,𝜉,𝜑) =

2𝑠𝜂
đ
√︁
(𝜉2 + 𝜂2) (1 − 𝜂2)

S𝑠𝑡 (− 𝑗𝑐,𝜂)R (4)
𝑠𝑡 (− 𝑗𝑐, 𝑗𝜉)

{
sin(𝑠𝜑)
− cos(𝑠𝜑)

}
,

𝑀 𝑧
𝑠𝑡 , 𝜉

(𝜂,𝜉,𝜑) = 2𝑠𝜉
đ
√︁
(𝜉2 + 𝜂2) (𝜉2 + 1)

S𝑠𝑡 (− 𝑗𝑐,𝜂)R (4)
𝑠𝑡 (− 𝑗𝑐, 𝑗𝜉)

{
− sin(𝑠𝜑)
cos(𝑠𝜑)

}
,

𝑀 𝑧
𝑠𝑡 ,𝜑 (𝜂,𝜉,𝜑) =

2
√︁
(𝜉2 + 1) (1 − 𝜂2)
đ(𝜉2 + 𝜂2)

(
𝜂

d
d𝜂

S𝑠𝑡 (− 𝑗𝑐,𝜂)R (4)
𝑠𝑡 (− 𝑗𝑐, 𝑗𝜉)

− 𝜉S𝑠𝑡 (− 𝑗𝑐,𝜂)
d

d𝜉
R (4)
𝑠𝑡 (− 𝑗𝑐, 𝑗𝜉)

) {
cos(𝑠𝜑)
sin(𝑠𝜑)

}
. (5.19)
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For 𝜉 = 0, this reduces to

𝑀 𝑧
𝑠𝑡 ,𝜂 (𝜂′,𝜑′) =

2
đ
𝑠S𝑠𝑡 (− 𝑗𝑐,𝜂′)√︁

1 − 𝜂′2
R (4)
𝑠𝑡 (− 𝑗𝑐,0)

{
sin(𝑠𝜑′)
− cos(𝑠𝜑′)

}
,

𝑀 𝑧
𝑠𝑡 , 𝜉

(𝜂′,𝜑′) = 0,

𝑀 𝑧
𝑠𝑡 ,𝜑 (𝜂′,𝜑′) =

2
đ

√︁
1 − 𝜂′2
𝜂′

d
d𝜂′

S𝑠𝑡 (− 𝑗𝑐,𝜂′)R (4)
𝑠𝑡 (− 𝑗𝑐,0)

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
, (5.20)

where 𝜂′ ∈ [0,1], which may be replaced by 𝜌′ according to (5.16) and (5.17).
The vector wave function M𝑧

𝑠𝑡 lies on the surface of the circular disk and can
be used to compute the corresponding surface current densities, as outlined for
the sphere. It is noted that the spheroidal radial functions are now functions
of 𝑐 = 1

2 𝑘đ = 𝑘𝑅u alone, i.e., the electrical size of the circular disk.83

In contrast to the choice a = e𝑧 , [29] proposes a = 𝑟e𝑟 , which is also used
in the derivation of the spherical wave modes, though it is revealed later that
this choice does not yield characteristic modes. Unfortunately, none of the
vector wave functions given in [87] results in characteristic modes. This is found
by a thorough analysis of the solutions based on orthogonality considerations
and eigenvalue computations.84 An analytical expression for the characteristic
surface current densities and the eigenvalues of a circular disk is thus not found
in the same way as for the sphere.

A thorough analysis regarding the scattering of electromagnetic waves at a
circular PEC disk is performed in [89]. This work, too, employs spheroidal wave
functions, but includes further boundary conditions in terms of energy. The
line of thought, however, is the same as in the development of characteristic
modes [23], i.e., based on a scattering problem. The solutions in [89] may
therefore be an alternative approach for deriving analytical expressions of the
modal surface current densities and the eigenvalues. Unfortunately, the solutions
in [89] are given in terms of Debye potentials so that the electromagnetic fields
have to be computed by further curl operations.

83It is expected that the eigenvalues of the characteristic modes of a circular disk can be expressed
in terms of the spheroidal radial functions similar to the spherical wave modes. An analytical
expression for the eigenvalues could, however, not be derived within the scope of this thesis. A
direct replacement of the spherical Bessel functions in (5.11) by their spheroidal counterparts
does not yield the correct eigenvalues compared to numerical computations.

84Examining the surface current densities alone is deceiving as they may look similar to those of the
characteristic modes. This is not a coincidence since the surface current densities are governed
by the symmetry of the circular disk, as will be shown in subsection 5.1.2.



144 Generalized Modal Analysis of Regular Polygonal Plates

x

y

φʹ

ρʹ

R
u

Figure 5.6 Circular disk with radius 𝑅u in 𝑥𝑦-plane and polar coordinates.

This directly manifests another problem when working with the spheroidal
wave functions. As stated above, they are defined as infinite series expansions
of the spherical wave functions. An analytical treatment of these functions
is thus limited and computations are usually conducted numerically [86, 87].
For example, orthogonality relations, which are necessary for verifying char-
acteristic modes, are not readily available [85], in contrast to the spherical
wave functions [84]. For these reasons, a complete analytical expression of the
characteristic modes of a circular PEC disk lies beyond the scope of this thesis.

However, this finding does not render the introduction of the spheroidal wave
functions useless for the purpose of this thesis. As will be shown in the following
subsection, the important coordinate for the symmetry analysis of a circular disk
is the azimuthal angle 𝜑′. The 𝜑′-dependence of any known solution to the vector
Helmholtz equation in oblate spheroidal coordinates is expressed in terms of
the trigonometric functions cos and sin (cf. (5.19) and the solutions in [29, 87]),
which is traced back to the generating function (5.18) and the underlying scalar
Helmholtz equation in oblate spheroidal coordinates [87].

5.1.2 Symmetry Analysis

Although an analytical expression for the characteristic modes of the circular
PEC disk could not be derived, the important relations in order to conduct a
generic symmetry analysis are now available. To this end, the transformation
operators (section 3.1.3) of the symmetry group 𝐷∞ should be inspected first.
The rotation matrices of 𝐷∞ are given in Table 3.16 and it is recalled that the
group elements are functions of one parameter, the rotation angle Φ (Fig. 3.10).
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Furthermore, the symmetry group consists of two regions, one containing the
rotations 𝐶𝑧 (Φ) about the 𝑧-axis including the identity for Φ = 0, and one
containing the rotations 𝐶2 (Φ) about the axes perpendicular to the 𝑧-axis.

In the previous subsection, it was shown that functions on a circular disk
are purposefully expressed in terms of the polar coordinates 𝜌′,𝜑′ (Fig. 5.6)
so that the coordinate vector r′ has the form given in (5.16). In this case, the
product R−1 (𝑇)r′, which is required for computing the transformation operators
according to (3.12) and (3.13), can be simplified to

R−1 (𝐶𝑧 (Φ)
)
r′(𝜌′,𝜑′) = 𝜌′ ©­«

cos(𝜑′ +Φ)
sin(𝜑′ +Φ)

0

ª®¬ = r′(𝜌′,𝜑′ +Φ), (5.21a)

R−1 (𝐶2 (Φ)
)
r′(𝜌′,𝜑′) = 𝜌′ ©­«

cos(𝜑′ − 2Φ)
− sin(𝜑′ − 2Φ)

0

ª®¬ = r′(𝜌′,2Φ − 𝜑′), (5.21b)

i.e., a coordinate transformation of 𝐷∞ only affects the coordinate 𝜑′. Con-
sequently, the transformation operators of 𝐷∞ applied to an arbitrary scalar
function 𝑓 only manipulate the 𝜑′-dependence:

𝑃
(
𝐶𝑧 (Φ)

)
𝑓 (𝜌′,𝜑′) = 𝑓 (𝜌′,𝜑′ +Φ), (5.22a)

𝑃
(
𝐶2 (Φ)

)
𝑓 (𝜌′,𝜑′) = 𝑓 (𝜌′,2Φ − 𝜑′). (5.22b)

Finally, applying the transformation operators to an arbitrary vector-valued
function f yields

𝑃
(
𝐶𝑧 (Φ)

)
f (𝜌′,𝜑′) = ©­«

𝑓𝑥 (𝜌′,𝜑′ +Φ) cosΦ + 𝑓𝑦 (𝜌′,𝜑′ +Φ) sinΦ
− 𝑓𝑥 (𝜌′,𝜑′ +Φ) sinΦ + 𝑓𝑦 (𝜌′,𝜑′ +Φ) cosΦ

0

ª®¬ ,
(5.23a)

𝑃
(
𝐶2 (Φ)

)
f (𝜌′,𝜑′) = ©­«

𝑓𝑥 (𝜌′,2Φ − 𝜑′) cos(2Φ) + 𝑓𝑦 (𝜌′,2Φ − 𝜑′) sin(2Φ)
𝑓𝑥 (𝜌′,2Φ − 𝜑′) sin(2Φ) − 𝑓𝑦 (𝜌′,2Φ − 𝜑′) cos(2Φ)

0

ª®¬ .
(5.23b)

It is noted that the function needs to be expressed in terms of its Cartesian
components 𝑓𝑥 , 𝑓𝑦 in order to compute the matrix product required by (3.13).
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The analysis of the vector wave functions M and N given in [87] yields that a
generic surface current density J on a circular disk may be expressed as follows:

J𝑠𝑡 (𝜌′,𝜑′) =ℛ𝜌
𝑠𝑡 (𝑐,𝜌′)

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
e𝜌 +ℛ𝜑

𝑠𝑡 (𝑐,𝜌′)
{
− sin(𝑠𝜑′)
cos(𝑠𝜑′)

}
e𝜑 . (5.24)

The surface current density consists of a radial and an azimuthal component.
The generic functions ℛ𝜌

𝑠𝑡 and ℛ𝜑
𝑠𝑡 contain the dependence on the electrical

size 𝑐 = 𝑘𝑅u and on the radial coordinate 𝜌′ and thus, in particular, the impact of
the spheroidal wave functions (cf. (5.20)). The 𝜑′-dependence, which is required
for the symmetry analysis as derived above, in contrast, is given explicitly in terms
of the trigonometric functions, retaining the even/odd distinction. For 𝑠 ≥ 1,
there is always an even-odd pair of surface current densities. For 𝑠 = 0, however,
the general surface current density collapses into one purely radial and one
purely azimuthal surface current density:

J𝜌0𝑡 (𝜌
′,𝜑′) =ℛ𝜌

𝑠𝑡 (𝑐,𝜌′)e𝜌, (5.25)
J𝜑

0𝑡 (𝜌
′,𝜑′) =ℛ𝜑

𝑠𝑡 (𝑐,𝜌′)e𝜑 . (5.26)

These special cases have no 𝜑′-dependence.
In order to gain insight into the symmetry properties of the surface current

densities which may possibly exist on a circular disk, an assignment to the
irreducible representations of the symmetry group 𝐷∞ is now conducted by
means of the character projection operators (3.66). To this end, the transformation
operators (5.23) are required and the generic surface current density needs to be
written in terms of its Cartesian components:

𝐽𝑠𝑡 ,𝑥 (𝜌′,𝜑′) =ℛ𝜌
𝑠𝑡 (𝑐,𝜌′)

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
cos 𝜑′ −ℛ𝜑

𝑠𝑡 (𝑐,𝜌′)
{
− sin(𝑠𝜑′)
cos(𝑠𝜑′)

}
sin 𝜑′,

(5.27a)

𝐽𝑠𝑡 ,𝑦 (𝜌′,𝜑′) =ℛ𝜌
𝑠𝑡 (𝑐,𝜌′)

{
cos(𝑠𝜑′)
sin(𝑠𝜑′)

}
sin 𝜑′ +ℛ𝜑

𝑠𝑡 (𝑐,𝜌′)
{
− sin(𝑠𝜑′)
cos(𝑠𝜑′)

}
cos 𝜑′.

(5.27b)

Putting all pieces together, the character projection operators (3.66) are now
applied to the generic surface current densities. Starting with J𝜌0𝑡 (5.25), the
projection yields

P (1)J𝜌0𝑡 (𝜌
′,𝜑′) =ℛ𝜌

𝑠𝑡 (𝑐,𝜌′)e𝜌 = J𝜌0𝑡 (𝜌
′,𝜑′), (5.28a)
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P (2)J𝜌0𝑡 (𝜌
′,𝜑′) = 0, (5.28b)

P (2+𝜏)J𝜌0𝑡 (𝜌
′,𝜑′) = 0. (5.28c)

Obviously, the surface current densities J𝜌0𝑡 belong to the first irreducible
representation Γ (1) = 𝐴1 independent of 𝑡. This result is not surprising as they
have only a radial component and no 𝜑′-dependence. Accordingly, these surface
current densities are invariant under all symmetry operations of the circular
disk. The index 𝑡 only affects the radial distribution and thus distinguishes the
different modes belonging to 𝐴1.

Applying the character projection operators to J𝜑

0𝑡 (5.26) yields

P (1)J𝜑

0𝑡 (𝜌
′,𝜑′) = 0, (5.29a)

P (2)J𝜑

0𝑡 (𝜌
′,𝜑′) =ℛ𝜑

𝑠𝑡 (𝑐,𝜌′)e𝜑 = J𝜑

0𝑡 (𝜌
′,𝜑′), (5.29b)

P (2+𝜏)J𝜑

0𝑡 (𝜌
′,𝜑′) = 0. (5.29c)

The surface current densities J𝜑

0𝑡 belong to the second irreducible representa-
tion Γ (2) = 𝐴2 independent of 𝑡. Again, this result is not surprising as they have
only an azimuthal component and no 𝜑′-dependence. Accordingly, these surface
current densities are invariant under the rotations about the 𝑧-axis, but inverted
by the rotations about the other axes.

Finally, the application of the character projection operators to J𝑠𝑡 (5.24)
for 𝑠 ≥ 1 yields

P (1)J𝑠𝑡 (𝜌′,𝜑′) = 0, (5.30a)

P (2)J𝑠𝑡 (𝜌′,𝜑′) = 0, (5.30b)

P (2+𝜏)J𝑠𝑡 (𝜌′,𝜑′) =
{

J𝑠𝑡 (𝜌′,𝜑′) 𝑠 = 𝜏

0 𝑠 ≠ 𝜏
. (5.30c)

The surface current densities with 𝑠 ≥ 1 belong to the two-dimensional irre-
ducible representations 𝐸𝜏 . Obviously, an even-odd pair for a given 𝑠 belongs
to Γ (2+𝑠) = 𝐸𝑠 , forming a two-fold degenerate pair of modes. Thus, the index 𝑠
is equivalent to the index 𝜏 of the two-dimensional irreducible representations
of 𝐷∞ (cf. Table 3.17). Modes with 𝑠 = 1 belong to Γ (3) = 𝐸1, modes with 𝑠 = 2
belong to Γ (4) = 𝐸2, and so on.

This generic symmetry analysis is generally applicable to modal surface
current densities on a circular disk as they take the form (5.24) based on the
analysis of the homogeneous vector Helmholtz equation. If analytical expressions
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of the characteristic surface current densities on a circular disk were available,
the results above could be directly adopted and the modes could be assigned
to the irreducible representations by means of the index 𝑠, where the index 𝑡
would distinguish the fundamental mode from the higher-order modes and
even-odd pairs would be degenerate. Based on this knowledge, the numerically
computed characteristic modes can now be assigned manually to the irreducible
representations in a quite comfortable way.

5.2 Minimum Electrical Size

It is now possible to conduct a symmetry analysis of the numerically computed
characteristic modes of a circular PEC disk. The disk is supposed to serve as
the representative of the regular polygonal PEC plates and it will be shown how
the characteristic modes of the regular polygonal plates and the circular disk
are related. Based on these relations, it is possible to use the eigenvalues of the
circular disk for determining an estimate for the minimum electrical size of the
regular polygonal plates.

5.2.1 Symmetry Analysis of Regular Polygonal Plates

The characteristic surface current densities of the first 16 characteristic modes of
a circular PEC disk with the electrical size 𝑘𝑅u = 4 computed numerically with
a non-symmetric triangular mesh are depicted in Fig. 5.7.85 With the knowledge
gained in the previous section, the characteristic surface current densities are
now assigned to the irreducible representations of the symmetry group 𝐷∞ by
means of a manual inspection.

Mode 8 (Fig. 5.7(h)) belongs to the one-dimensional first irreducible represen-
tation Γ (1) = 𝐴1 (identity representation) as it only has a radial component which
is constant in azimuthal direction and thus is invariant under all symmetry oper-
ations of the circular disk (cf. (5.28)). In contrast, mode 7 (Fig. 5.7(g)), whose
surface current density forms a “loop”, belongs to the one-dimensional second
irreducible representation Γ (2) = 𝐴2 as it only has an azimuthal component
which is constant in azimuthal direction (cf. (5.29)).

The remaining characteristic modes in Fig. 5.7 form degenerate pairs of
orthogonal characteristic surface current densities (even-odd pairs) belonging
85Although the mesh is not symmetric, a sufficiently fine mesh (section 2.3.4) ensures that the

symmetry of the characteristic surface current densities is reproduced to a qualitatively acceptable
degree.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

Figure 5.7 Normalized surface current densities of the first 16 characteristic modes of circular PEC disk
with electrical size 𝑘𝑅u = 4. Principal current directions denoted by arrows. Modes sorted according to their
significance. Color bar in Fig. 2.6(e). (a)–(b) Modes 1 and 2 belonging to 𝐸1 (“dipole modes”). (c)–(d) Modes 3
and 4 belonging to 𝐸2 (“quadrupole modes”). (e)–(f) Modes 5 and 6 belonging to 𝐸3 (“hexapole modes”).
(g) Mode 7 belonging to 𝐴2 (“loop mode”). (h) Mode 8 belonging to 𝐴1 (“invariant mode”). (i)–(j) Modes 9
and 10 belonging to 𝐸1 (higher-order modes). (k)–(l) Modes 11 and 12 belonging to 𝐸4 (“octopole modes”).
(m)–(n) Modes 13 and 14 belonging to 𝐸2 (higher-order modes). (o)–(p) Modes 15 and 16 belonging to 𝐸1
(higher-order modes).
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to the two-dimensional irreducible representations 𝐸𝑠. In order to assign them
to the correct irreducible representations, the index 𝑠 has to be determined. A
closer inspection of the generic surface current density in (5.24) reveals that 𝑠
governs the number of nulls of both the radial and the azimuthal component
along the perimeter of the disk. Obviously, the number of nulls is equal to 2𝑠.
Therefore, the mode pair 1-2 (Fig. 5.7(a) and (b)) has the index 𝑠 = 1 and
thus belongs to the third irreducible representation (the first two-dimensional
irreducible representation) Γ (3) = 𝐸1. In the same way, it is found that the
mode pair 3-4 (Fig. 5.7(c) and (d)) belongs to the fourth irreducible repre-
sentation Γ (4) = 𝐸2, the mode pair 5-6 (Fig. 5.7(e) and (f)) belongs to the
fifth irreducible representation Γ (5) = 𝐸3, and the mode pair 11-12 (Fig. 5.7(k)
and (l)) belongs to the sixth irreducible representation Γ (6) = 𝐸4. All these
modes are the fundamental modes of their respective irreducible representations.
The mode pair 9-10 (Fig. 5.7(i) and (j)), in contrast, is a pair of higher-order
modes belonging to Γ (3) = 𝐸1. Likewise, the mode pairs 13-14 (Fig. 5.7(m)
and (n)) and 15-16 (Fig. 5.7(o) and (p)) are higher-order modes belonging to 𝐸2
and 𝐸1, respectively. The surface current densities of these higher-order modes
have a more complicated radial dependence corresponding to a higher index 𝑡.

Some of the characteristic surface current densities shown in Fig. 5.7 have
already been encountered qualitatively on the regular polygonal PEC plates
analyzed in chapter 4, i.e., the equilateral triangular plate (section 4.1), the
square plate (section 4.5.1), and the regular hexagonal plate (section 4.5.2).
For example, there is always an invariant characteristic surface current den-
sity (Fig. 4.3(a), Fig. 4.21(f), Fig. 4.30(g)) and a “loop”-like characteristic surface
current density (Fig. 4.3(f), Fig. 4.21(e), Fig. 4.30(f)). It thus suggests itself
that the irreducible representations of the different 𝐷-groups (dihedral groups)
are related.86 In fact, each dihedral group always has an identity representa-
tion Γ (1) = 𝐴1 which the invariant characteristic surface current densities belong
to. The fundamental characteristic modes of the circular PEC disk and the regular
polygonal PEC plates explicitly analyzed in chapter 4 belonging to 𝐴1 are listed in
Table 5.1(a). Furthermore, there is always a second one-dimensional irreducible
representation Γ (2) = 𝐴2 which the “loop”-like characteristic surface current
densities belong to (Table 5.1(b)). Moreover, each dihedral group has a two-
dimensional irreducible representation 𝐸1. The fundamental modes belonging to
this representation may colloquially be termed as “dipole modes” (Table 5.1(c)).

86The dihedral group 𝐷2 is not considered here as it is the symmetry group of a rectangular
plate (see section 3.4.3), which does not belong to the family of the regular polygonal plates.
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Group 𝐷∞ 𝐷3 𝐷4 𝐷6

Mode 𝑛 8 1 6 7

Figure 5.7(h) 4.3(a) 4.21(f) 4.30(g)

Γ-notation Γ (1) Γ (1) Γ (1) Γ (1)

(a) 𝐴1: “Invariant modes”

Group 𝐷∞ 𝐷3 𝐷4 𝐷6

Mode 𝑛 7 6 5 6

Figure 5.7(g) 4.3(f) 4.21(e) 4.30(f)

Γ-notation Γ (2) Γ (2) Γ (2) Γ (2)

(b) 𝐴2: “Loop modes”

Group 𝐷∞ 𝐷3 𝐷4 𝐷6

Mode 𝑛 1, 2 2, 3 1, 2 1, 2

Figure 5.7(a),(b) 4.3(b),(c) 4.21(a),(b) 4.30(a),(b)

Γ-notation Γ (3) Γ (3) Γ (5) Γ (5)

(c) 𝐸1: “Dipole modes”

Table 5.1 Fundamental characteristic modes of circular PEC disk and regular polygonal PEC plates analyzed
in chapter 4 belonging to the irreducible representations 𝐴1, 𝐴2, and 𝐸1 of the dihedral groups. For ease of
reference, the Γ-notation denotes to which Γ (𝑝) of the respective group the given representation corresponds.

In the Γ-notation predominantly used throughout this thesis, this irreducible
representation is usually the first of the two-dimensional ones following the one-
dimensional irreducible representations. The corresponding fundamental modes
are typically the first characteristic modes to become significant (cf. Fig. 4.11,
Fig. 4.19, Fig. 4.28).

The symmetry group 𝐷3 of the equilateral triangular plate only has these three
irreducible representations. The symmetry group 𝐷4 of the square plate has two
additional one-dimensional irreducible representations Γ (3) = 𝐵1 and Γ (4) = 𝐵2.
The surface current densities of the corresponding fundamental characteristic
modes may be termed as non-degenerate “quadrupole modes” (Fig. 4.21(c)
and (d)). Such “quadrupole modes” also appear on the regular hexagonal
plate. In this case, however, they are degenerate and belong to the second
two-dimensional irreducible representation Γ (6) = 𝐸2 (Fig. 4.30(c) and (d)).
As a matter of fact, the symmetry group 𝐷5 of a regular pentagonal plate
already has this second two-dimensional irreducible representation 𝐸2 instead
of 𝐵1 and 𝐵2 [77]. Obviously, the two additional one-dimensional irreducible
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Group Irreducible representations

𝐷3 𝐴1 𝐴2 𝐸1 N/A N/A N/A N/A N/A

𝐷4 𝐴1 𝐴2 𝐸1 𝐵1 ,𝐵2 N/A N/A N/A N/A

𝐷5 𝐴1 𝐴2 𝐸1 𝐸2 N/A N/A N/A N/A

𝐷6 𝐴1 𝐴2 𝐸1 𝐸2 𝐵1 ,𝐵2 N/A N/A N/A

𝐷7 𝐴1 𝐴2 𝐸1 𝐸2 𝐸3 N/A N/A N/A

𝐷8 𝐴1 𝐴2 𝐸1 𝐸2 𝐸3 𝐵1 ,𝐵2 N/A N/A

𝐷9 𝐴1 𝐴2 𝐸1 𝐸2 𝐸3 𝐸4 N/A N/A

𝐷10 𝐴1 𝐴2 𝐸1 𝐸2 𝐸3 𝐸4 𝐵1 ,𝐵2 N/A
.
.
.

.

.

.

𝐷∞ 𝐴1 𝐴2 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 · · ·

Table 5.2 Evolution of irreducible representations of symmetry groups of regular polygonal plates.

representations 𝐵1 and 𝐵2 evolve into an additional two-dimensional irreducible
representation from one dihedral group to the next higher one. This evolution
is schematically illustrated in Table 5.2. All following dihedral groups have
this second two-dimensional irreducible representation 𝐸2 until arriving at the
symmetry group 𝐷∞ of the circular disk, which consequently also offers two
degenerate “quadrupole modes” (Fig. 5.7(c) and (d)). In the same way, the
symmetry group 𝐷6 of the regular hexagonal plate has two additional one-
dimensional irreducible representations Γ (3) = 𝐵1 and Γ (4) = 𝐵2. In this case,
the surface current densities of the corresponding fundamental characteristic
modes may be termed as non-degenerate “hexapole modes” (Fig. 4.30(e)
and (h)). The next higher dihedral group 𝐷7, which is the symmetry group
of a regular heptagonal plate, instead has a third two-dimensional irreducible
representation 𝐸3 (Table 5.2), which a pair of degenerate “hexapole modes”
belongs to. This pair is also present on the circular disk (Fig. 5.7(e) and (f)).87

Table 5.2 depicts the evolution of the irreducible representations of the dihedral
groups. It illustrates how one-dimensional irreducible representations are added
with increasing group order and how they evolve into a two-dimensional irre-
ducible representation, finally arriving at𝐷∞ having exactly two one-dimensional

87It is noteworthy that “hexapole modes”, for instance, can also be identified on the regular
polygonal plates of lower order, e.g., the equilateral triangular plate (Fig. 4.3(i) and (l)). In
these cases, however, they belong to the higher-order modes of one of the respective irreducible
representations and are thus not of interest for the purpose of this thesis.
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and an infinite number of two-dimensional irreducible representations. Further-
more, it becomes evident why it has been purposeful to temporarily switch to the
alternative notation using 𝐴1, 𝐴2, 𝐵1, 𝐵2, and 𝐸𝑠 instead of the Γ-notation as the
alternative notation better reflects the evolution of the irreducible representations
of the dihedral groups.

The symmetry group 𝐷∞ (infinite dihedral group) of the circular disk is the
generalization of the finite dihedral groups, i.e., the symmetry groups of the
regular polygonal plates. As a consequence, the circular PEC disk qualitatively
offers all possible characteristic surface current densities which may be found on
an arbitrary regular polygonal PEC plate. Therefore, a priori knowledge about
what characteristic surface current densities to expect is gained by analyzing
the circular PEC disk alone. This knowledge can then be applied directly to a
given regular polygonal plate taking into account the relationships between the
dihedral groups in Table 5.2.

This chapter focuses on the family of the regular polygonal plates whose
symmetry groups are the dihedral groups. Nevertheless, the methods introduced
so far can be applied to other families of geometric objects as well. For example,
the symmetry group of the family of the regular pyramids are the 𝐶v-groups
(cf. section 3.3.5). The generalization of the regular pyramids is the right
circular cone whose symmetry group is 𝐶∞v [77]. A generalized analysis of this
family of geometric objects can thus be conducted by analyzing the circular
cone. Moreover, the 𝐶v-groups are isomorphic to the respective 𝐷-groups. In
particular, the irreducible representations are the same (Table 5.2). Therefore, the
isomorphism can be exploited in order to derive the symmetry properties of the
characteristic modes of the regular pyramids from their polygonal counterparts,
as was done in section 4.5.3 for the square pyramid.

As another example, the symmetry groups of the family of the regular prisms
are the 𝐷h-groups. The generalization of the regular prisms is the circular
cylinder whose symmetry group is 𝐷∞h [77]. As introduced in section 3.2.3,
the 𝐷h-groups are direct-products of the group 𝐶s and the respective 𝐷-groups.
Again, this relationship can be exploited in order to derive the symmetry
properties of the characteristic modes of the regular prisms from their polygonal
counterparts, as was done in section 4.5.4 for the square cuboid.

Such relations between the different families of symmetry groups allow to
directly build upon the knowledge about the regular polygonal plates gained in
this chapter and apply it to more complicated geometries.88

88For a list of examples, refer to Table 4.7.
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5.2.2 Modal Significances of Regular Polygonal Plates

Having extensively analyzed the characteristic surface current densities, it is
time to turn the attention towards the modal significances. The numerically
computed modal significances of the circular PEC disk are shown in Fig. 5.8.
Each characteristic mode becomes significant at a certain electrical size 𝑘𝑅u and
then stays significant. This behavior is already known from the regular polygonal
plates analyzed in chapter 4 (Fig. 4.11, Fig. 4.19, Fig. 4.28).

Figure 5.8 Modal significances of circular PEC disk as functions of electrical size 𝑘𝑅u. Fundamental character-
istic modes in color, higher-order modes in gray. The modes are sorted according to their significance at 𝑘𝑅u = 4.

It is thus purposeful to directly compare the modal significances of the circular
disk and the regular polygonal plates. In order to determine the minimum
electrical size, only the fundamental modes of each irreducible representation
are of interest, as discussed in section 4.3. In Fig. 5.9, the modal significances
of the fundamental modes of the irreducible representations 𝐴1, 𝐴2, 𝐸1, 𝐸2,
𝐸3, and 𝐸4 are shown. The results are extracted from the modal analyses of the
equilateral triangular PEC plate (𝐷3), the square PEC plate (𝐷4), the regular
pentagonal PEC plate (𝐷5), the regular hexagonal PEC plate (𝐷6), the regular
octagonal PEC plate (𝐷8), the regular decagonal PEC plate (𝐷10), and the
circular PEC disk (𝐷∞). It has to be noted that not all of these groups have all
the irreducible representations taken into account in Fig. 5.9 (cf. Table 5.2).

At first sight, it is evident that the significance curves of the circular disk and
the regular polygonal plates are very similar. It is thus deduced that not only
the characteristic surface current densities of the regular polygonal plates are
generalized by the circular disk, but also the modal significances (eigenvalues).
In other words, the fundamental behavior of the modal significances of the
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(a) 𝐴1 (b) 𝐴2

(c) 𝐸1 (d) 𝐸2

(e) 𝐸3 (f) 𝐸4

Figure 5.9 Modal significances of the fundamental characteristic modes of different irreducible representations
of selected dihedral groups as functions of electrical size 𝑘𝑅u. (a) 𝐴1. (b) 𝐴2. (c) 𝐸1. (d) 𝐸2 (𝐵1 and 𝐵2 in the
case of 𝐷4). (e) 𝐸3 (𝐵1 and 𝐵2 in the case of 𝐷6) (f) 𝐸4 (𝐵1 and 𝐵2 in the case of 𝐷8). Dashed lines denote 𝐵1,
solid lines of the same color denote 𝐵2.
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regular polygonal plates can be deduced from the circular disk, as has also been
the case for the characteristic surface current densities.

Another important observation is that in most cases the characteristic mode of
the circular disk is the first to become significant. With decreasing group order,
the modes tend to become significant at larger electrical sizes. As the circular
disk is the limiting case of the regular polygonal plates, the electrical size at
which a fundamental mode of the circular disk becomes significant can thus
be considered a good estimate for the minimum electrical size of the regular
polygonal plates that are supposed to excite this fundamental mode. Hence, the
radius of the circular disk which ensures that a certain set of fundamental modes
is significant serves as a guideline to find the minimum circumradius of a regular
polygonal plate supporting the same set of fundamental modes.

In Fig. 5.9(d), (e), and (f), the two fundamental modes of 𝐷4, 𝐷6, and 𝐷8,
respectively, belong to the irreducible representations 𝐵1 and 𝐵2 (Table. 5.2) and
are thus non-degenerate. Notably, the fundamental modes belonging to 𝐵2 (solid
lines) become significant at slightly smaller electrical sizes than the correspond-
ing modes of the circular disk. Nevertheless, the corresponding significance
curve of the circular disk still serves as a good estimate. In contrast, the funda-
mental modes belonging to 𝐵1 (dashed lines) become significant at considerably
larger electrical sizes. If the number of orthogonal antenna ports to be realized is
less than the number of mutually orthogonal sets of characteristic surface current
densities offered by an antenna geometry, i.e., the upper bound for orthogonal
antenna ports as defined in section 4.4.2 is not to be reached, it is decisive
for the electrical size of the antenna which sets of modes are used in order to
realize the ports. If this freedom of choice exists, it is deduced from Fig. 5.9
that the fundamental modes belonging to 𝐵1 (dashed lines) should be avoided
in order to minimize the electrical antenna size. For higher symmetry orders,
however, these differences become less pronounced as the regular polygonal
plates approach the circular disk.

5.2.3 Application Example

In order to illustrate how the observations made in the previous subsections
can be applied purposefully to a multimode antenna design, an example is
considered. The goal is to design a six-port multimode antenna, i.e., an antenna
with six orthogonal antenna ports, each exciting a different set of characteristic
modes. The antenna is intended to have a low profile, such that the family of
the regular polygonal plates is chosen in order to find a suitable basic antenna
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(a) (b)

Figure 5.10 Modal significances of fundamental characteristic modes of square PEC plate and regular hexagonal
PEC plate as functions of electrical size 𝑘𝑅u. Minimum electrical size for realizing six orthogonal antenna ports
marked by vertical black line. Modes sorted according to the analyses conducted in sections 4.5.1 and 4.5.2,
respectively. (a) Square PEC plate with minimum electrical circumradius 𝑘𝑅u ≈ 3.9. (b) Regular hexagonal PEC
plate with minimum electrical circumradius 𝑘𝑅u ≈ 3.4.

geometry. A look at Table 4.7 reveals that the square plate (𝐷4) is the antenna
geometry of lowest symmetry order within the family of the regular polygonal
plates that offers six orthogonal antenna ports. In this case, the upper bound of
orthogonal antenna ports offered by the square plate has to be reached. However,
the regular polygonal plates of higher symmetry order (𝐷5, 𝐷6, . . .) also offer
six orthogonal antenna ports (actually, even more). For example, the regular
hexagonal plate offers eight orthogonal antenna ports, but there is nothing to
be said against realizing only six. Therefore, the question arises which antenna
geometry is better suited for the given task.

With respect to the electrical antenna size, this question can now be answered
based on the knowledge gained in this chapter. As a first step, an estimate for
the minimum electrical size of a six-port multimode antenna using regular
polygonal plates is determined based on the modal analysis of the circular
disk. A close inspection of Fig. 5.8 reveals that six fundamental modes are
significant at a minimum electrical size of 𝑘𝑅u ≈ 3.5. Coincidentally, a total of
eight fundamental modes is significant at this electrical size as the degenerate
mode pair 5-6 as well as mode 8 become significant at approximately the same
electrical size. It is thus deduced that the fundamental modes belonging to
the irreducible representations 𝐸1 (“dipole modes”), 𝐸2 (“quadrupole modes”),
𝐸3 (“hexapole modes”), 𝐴1 (“invariant mode”), and 𝐴2 (“loop mode”) have to
be taken into account and a subset of these modes has to be selected.
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13 %

Figure 5.11 Comparison of square PEC plate and regular hexagonal PEC plate for realizing six orthogonal
antenna ports with minimum size each. At a given frequency, the circumradius of the regular hexagonal plate is by
approximately 13 % smaller than that of the square plate (true to scale).

In the case of the square plate, all six fundamental modes have to be used
in order to realize six orthogonal antenna ports. Fig. 5.10(a) shows that its
electrical size is governed by mode 6 belonging to 𝐴1. Thus, the minimum
achievable electrical circumradius is 𝑘𝑅u ≈ 3.9 (vertical black line), which is
equivalent to a minimum electrical edge length 𝑘𝑎 ≈ 5.5. As expected, the
minimum electrical size is greater than the estimate derived from the circular
disk. The port configuration shown in Fig. 4.23, which is independent of the
actual antenna size, can be used to realize the six orthogonal antenna ports.

In the case of the regular hexagonal plate, six out of the eight fundamental
modes have to be selected. As is obvious from Fig. 5.10(b), mode 8 belonging
to 𝐵1 is not suitable for minimizing the electrical size as it is the last fundamental
mode to become significant. This is the typical behavior of the fundamental
modes belonging to 𝐵1 already observed in subsection 5.2.2. Mode 7 belonging
to 𝐴1 should not be used, either, as it is the second last fundamental mode
to become significant. Using the remaining six fundamental modes allows to
reduce the electrical size to 𝑘𝑅u = 𝑘𝑎 ≈ 3.4. In particular, since the fundamental
mode 5 belonging to 𝐵2 is employed as the last mode to become significant, the
minimum electrical size is slightly smaller than that predicted by the circular
disk, as observed in subsection 5.2.2. The corresponding port configuration
consists of the antenna ports shown in Fig. 4.27(b), (d), (e), (f), (g), and (h),
which, in particular, all use the same feed points.

As a result, a six-port multimode antenna based on the regular hexagonal plate
can be realized with an electrical circumradius by approximately 13 % smaller
than that of a six-port multimode antenna based on the square plate. A scale
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drawing of the two antenna geometries and their respective circumscribed circles
is shown in Fig. 5.11. This example demonstrates how the antenna size can be
minimized for a given number of orthogonal antenna ports and a given set of
available antenna geometries by means of the methods introduced in this chapter.
The relative size reduction achieved in this example is bought by choosing an
antenna geometry of higher symmetry order without exploiting its full port
potential. For an actual multimode antenna design, however, other considerations
have to be taken into account as well. Increasing the symmetry order generally
comes at the cost of more feed points per antenna port (cf. Fig. 4.12, Fig. 4.23, and
Fig. 4.27) and thus a more complex feed network. Such practical considerations
to be taken into account for a complete multimode antenna design will be
discussed in the following chapter.





6 Systematic Multimode Antenna Design

Towards the systematic design of multimode antennas with more antenna ports
than reported so far in the literature, it has been shown up to this point, among
many other things, that there is an upper bound for the number of orthogonal
antenna ports. Guidelines on which antenna geometry to choose and how to
realize orthogonal antenna ports for a given antenna geometry have been derived
based on symmetry analyses. Now, it is time to put the theory into practice.

The aim of this chapter is the systematic design of a multimode antenna that
serves as a prototype reaching the upper bound for orthogonal antenna ports. The
literature review conducted in section 1.1 has found that multimode antennas
with up to four antenna ports are well-established. For example, a four-port
multimode antenna based on a square plate is presented in [46]. The square
plate has been analyzed rather extensively throughout this thesis. Although
it is a comparatively simple geometry, the symmetry analysis performed in
section 4.5.1 has revealed that it offers a maximum of six orthogonal antenna
ports, i.e., two more ports than reported in the literature. The square plate is
thus chosen as the basic antenna geometry for designing a six-port multimode
antenna reaching its upper bound for orthogonal antenna ports.

To this end, first of all, the antenna element itself is designed based on a
square plate. In the next step, a feed network for driving the feed points of the
antenna element is realized. Both parts are then assembled and simulations and
measurements of the complete multimode antenna are conducted in order to
demonstrate its performance.89

6.1 Antenna Element

As demonstrated in section 4.5.1, the square plate offers six mutually orthogonal
sets of characteristic surface current densities and thus six orthogonal antenna
ports. An ideal port configuration consisting of delta-gap sources is depicted in
Fig. 4.23. Of course, delta-gap sources cannot be realized in practice. Therefore,
they have to be replaced by practical excitation elements in order to enable
89The following publications are related to the content of this chapter: [PM19c] (© 2019 IEEE),

[PHM21] (© 2021 IEEE).
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impedance matching. Furthermore, a feed network is needed which distributes
the input signals from the antenna ports to the respective feed points on the
antenna element with the correct amplitude and phase relations required by the
irreducible representations of the symmetry group. Such a feed network has to
be placed somewhere close to the antenna element, which is why a ground plane
will be introduced.

First of all, however, the size of the square plate should be determined. Accord-
ing to section 4.3, the minimum electrical size is achieved if the fundamental
characteristic modes of each irreducible representation are significant. Based on
the modal analysis in Fig. 4.19, the electrical size is chosen to be 𝑘𝑅u = 4.90 With
respect to the frequency range of interest from 6 GHz to 8.5 GHz (section 1.1),
this electrical size corresponds to the lowest frequency of the frequency band,
i.e., 6 GHz, yielding the edge length 𝑎 = 45 mm. As the fundamental charac-
teristic modes stay significant above the minimum electrical size, this choice
enables a potential broadband operation over the whole desired frequency range.

6.1.1 Ground Plane

So far, all antenna geometries have been analyzed in free space, i.e., without
any objects within their proximity. As stated above, however, a feed network
is mandatory in order to realize the orthogonal antenna ports, which consist
of several feed points in order to fulfill the symmetry requirements. A ground
plane is an appropriate way of accommodating a planar feed network and, if
necessary, other circuitry (see, e.g., [46, 48]).

x

z

a = 45 mm

hGND

Antenna
element

Ground plane

Figure 6.1 Square plate with edge length 𝑎 = 45 mm at height ℎGND above ground plane (𝑥𝑦-plane).

However, it is well known that a ground plane in close proximity to an antenna
compromises its bandwidth. It is thus purposeful to examine the effect of a
ground plane on the modal significances of the fundamental characteristic modes.

90This is not exactly the minimum size found in section 5.2.3, but allows for some safety margin.
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Figure 6.2 Modal significances of fundamental characteristic modes of square PEC plate with edge
length 𝑎 = 45 mm for different heights above ground ℎGND as functions of electrical size 𝑘𝑅u. The verti-
cal black lines denote the frequency range from 6 GHz (𝑘𝑅u ≈ 4) to 8.5 GHz (𝑘𝑅u ≈ 5.7). The modes are sorted
according to their significance in free space at 𝑘𝑅u = 4 (Fig. 4.19).

To this end, an infinite ground plane is introduced in the 𝑥𝑦-plane and the square
plate is placed at a height ℎGND above this ground plane, as illustrated in Fig. 6.1.

The symmetry group of this setup is not 𝐷4 as it is not invariant under
the rotations about the axes perpendicular to the 𝑧-axis (𝐶2𝑥 , 𝐶2𝑦 , 𝐶2𝐴, 𝐶2𝐵).
Instead, the symmetry group is 𝐶4v, which is the already familiar symmetry
group of the square pyramid (section 4.5.3), and the aforementioned rotations
are replaced by reflections through planes containing the 𝑧-axis (𝜎𝑥𝑧 , 𝜎𝑦𝑧 , 𝜎𝐴𝑧 ,
𝜎𝐵𝑧; Table 3.9). The group 𝐶4v is isomorphic to 𝐷4 so that the characteristic
surface current densities are qualitatively the same as those on the square plate
in free space and the port configuration according to Fig. 4.23 is still optimal.91

Now, a modal analysis of the square PEC plate above the infinite ground plane
is conducted. The resulting modal significances of the fundamental characteristic
modes for different heights above ground are shown in Fig. 6.2. If the plate is
relatively close to the ground plane (ℎGND = 5 mm, dotted lines), the regions
where the modes are significant are narrow. Most of these regions do not overlap,
i.e., the modes are significant at different electrical sizes. In particular, none of
the modes is significant over the complete desired frequency range from 6 GHz
to 8.5 GHz, which corresponds to the electrical size ranging from 𝑘𝑅u ≈ 4
to 𝑘𝑅u ≈ 5.7 (vertical black lines). Increasing the height of the square plate, the
modes become significant over a larger region. For ℎGND = 15 mm, all modes
recover their broadband behavior, i.e., the fundamental modes become significant
91The same conclusion can be drawn for finite ground planes which fulfill the square symmetry,

e.g., a square, octagonal, or circular ground plane.
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(a) (b)

Figure 6.3 Modal significances of fundamental characteristic modes of square PEC plate with edge
length 𝑎 = 45 mm as functions of electrical size 𝑘𝑅u. The vertical black lines denote the frequency range
from 6 GHz (𝑘𝑅u ≈ 4) to 8.5 GHz (𝑘𝑅u ≈ 5.7). (a) Square PEC plate in free space. (b) Square PEC plate at
height ℎGND = 16 mm above infinite ground plane. The modes are sorted according to their significance in free
space at 𝑘𝑅u = 4. © 2019 IEEE [PM19c].

at a certain electrical size and then stay significant. In contrast to the free-space
case, mode 5 is now the critical mode determining the minimum electrical size.

Based on this analysis, the height above ground is chosen to be ℎGND = 16 mm
in order to allow for some safety margin. The corresponding modal significances
are shown in Fig. 6.3(b). Compared to the free-space case (Fig. 6.3(a)), the
effect of the ground plane on the modal significances is still visible. In the
desired frequency range marked by the vertical black lines, however, all six
fundamental characteristic modes are significant and behave similar to their
respective counterparts in free space.

6.1.2 Excitation Elements and Feed Network

In the next step, the ideal delta-gap sources in Fig. 4.23 have to be replaced by
practical excitation elements. In antenna designs based on characteristic modes,
capacitive or inductive coupling elements are typically employed [42, 90, 91].
A capacitive coupling element is a metallic structure which is placed in close
proximity to the antenna element. It is usually electrically small so that the
coupling takes place predominantly via the electric field. An inductive coupling
element, in contrast, is some kind of slot cut into the antenna element. Such a
coupling element, too, is typically electrically small so that small current loops
are formed and the coupling takes place predominantly via the magnetic field.
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Figure 6.4 Square PEC plate with excitation slots and feed network. (a) Antenna element with symmetrically
placed excitation slots. The feed points within the excitation slots are denoted by the arrows and the primed
numbers. (b) Ideal feed network consisting of Wilkinson power dividers and 180° hybrid couplers. Dimensions
in mm. © 2019 IEEE [PM19c].

These coupling elements have the disadvantage that additional matching circuits
are needed in order to perform impedance matching.

The delta-gap sources employed so far can be visualized as electrically very
small slots cut into the antenna element (section 2.3.3). It is thus legitimate to
interpret them as inductive coupling elements. The input impedance of such an
electrically small inductive coupling element consists of a low real part and a
high positive (inductive) imaginary part. In order to increase the input resistance
and decrease the input reactance, the inductive coupling element should be
enlarged. As a matter of fact, there is no reason for restricting the electrical size
of the coupling element, apart from the size of the antenna element, of course.

Following this argument, a natural choice for replacing the delta-gap sources
is using excitation slots as illustrated in Fig. 6.4(a). The slots are placed at
the edge centers and the half-edge centers according to Fig. 4.23 and reach
towards the interior of the antenna element. The feed points denoted by the black
arrows can be positioned somewhere along the slot length and correspond to a
voltage applied across the slot width.92 The excitation slots are not electrically
small. This offers the advantage that the input impedance can be tuned flexibly
by adjusting the slot length and the position of the feed point within the slot,
allowing inherent impedance matching without need for a matching circuit [46].

92This kind of excitation is known from slot antennas [5].
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When introducing the excitation slots, it is important to preserve the symmetry
of the antenna. Although the characteristic modes will in general be modified by
the slots, the orthogonality of the characteristic surface current densities and thus
the orthogonality of the antenna ports is still governed by the symmetry group
of the antenna. Therefore, the symmetry group 𝐶4v has to be preserved and the
excitation slots have to be placed symmetrically, as illustrated in Fig. 6.4(a). If
this condition is fulfilled, it is known a priori that the antenna element with
symmetrically placed excitation slots offers six orthogonal antenna ports even
though the actual characteristic modes are unknown.

In order to distribute the input signals from the actual antenna ports 1, 2, 3, 4,
5, and 6 as defined in section 4.5.1 to the feed points on the antenna element,
which are denoted by the primed numbers in Fig. 6.4, a feed network is required.
The ports 1 and 3 use the feed points within the slots at the half-edge centers (1′

to 8′), whereas the ports 2, 4, 5, and 6 use the feed points within the slots at the
edge centers (9′ to 12′) (cf. Fig. 4.23). Hence, there have to be two separate feed
networks, one for ports 1 and 3 and one for ports 2, 4, 5, and 6.

The arrows in Fig. 6.4(a) denote the (arbitrarily chosen) reference voltage
directions of the feed points. Based on this reference, the feed network for port 1
has to distribute the port signal to the respective feed points with the same
phase (cf. Fig. 4.23(a)). In contrast, the feed network for port 3 has to distribute
the port signal to the feed points 2′, 3′, 6′, and 7′ with a 180° phase difference
compared to the feed points 1′, 4′, 5′, and 8′ (cf. 4.23(c)). These considerations
result in the feed network on the left of Fig. 6.4(b) consisting of one 180° hybrid
coupler93 and six Wilkinson power dividers94. Since both ports share the same
feed network, the 180° hybrid coupler does not only provide the phase difference
of 180° for port 3, but also ensures that the two ports are decoupled [93].

In the same way, the feed network for ports 2, 4, 5, and 6 is derived, consisting
of three 180° hybrid couplers as shown on the right of Fig. 6.4(b). Again, the
hybrid couplers are employed for decoupling the antenna ports that use the
same feed points as well as providing the correct phase relations between the
feed points as required by Fig. 4.23(b), (d), (e), and (f), taking into account the
reference voltage directions in Fig. 6.4(a).

93The input signal at the Σ-port of an ideal 180° hybrid coupler is split into two output signals at the
0°-port and the 180°-port which are in phase and have equal amplitude (−3 dB). The input signal
at the Δ-port, in contrast, is split into two output signals which have equal amplitude (−3 dB),
but a phase difference of 180°. The input ports are perfectly decoupled [92].

94The ideal Wilkinson power divider splits the input signal into two output signals which are in
phase and have equal amplitude (−3 dB) [92].
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In summary, the ideal feed network95 in Fig. 6.4(b) ensures that the feed points
on the antenna element are driven with the correct amplitude and phase relations
as required by the irreducible representations of the symmetry group 𝐶4v in
order to realize the six orthogonal antenna ports. Furthermore, it guarantees that
the antenna ports are decoupled although they share the same feed points.

6.1.3 Impedance Matching

As stated in the previous subsection, impedance matching can be performed by
adjusting the lengths of the slots as well as the positions of the feed points within
the slots. However, this task is in general intricate as several antenna ports share
the same feed points. Nevertheless, a systematic optimization of the antenna
ports is feasible based on symmetry considerations so that the following design
guidelines can be derived.

First of all, the symmetry of the antenna must be preserved in order to ensure
the orthogonality of the antenna ports, as explained in the previous subsection,
resulting in symmetrically placed excitation slots (Fig. 6.4(a)). As an additional
consequence, the excitation slots must not be modified independently as this
would destroy the symmetry. This greatly simplifies the optimization space as
there remain only two optimization parameters per port: The slot length and the
feed point position.

Moreover, ports 1 and 3 should be optimized first. This is due to the fact that
these ports are symmetric with respect to the 𝑥- and 𝑦-axis. Correspondingly, the
surface current densities excited by these ports, too, are symmetric with respect
to these axes (cf. Fig. 4.21(d) and (f)) and hence are not affected by the presence
of the excitation slots 9′ to 12′ of ports 2, 4, 5, and 6. Only after optimizing
ports 1 and 3, the ports 2, 4, 5, and 6 should be considered since the surface
current densities excited by these ports (cf. Fig. 4.21(a), (b), (c), and (e)) and
thus the input impedances are affected by the presence of the excitation slots of
ports 1 and 3. A further complexity reduction due to symmetry results from the
fact that ports 5 and 6 have the same input impedance as they excite degenerate
surface current densities. As a consequence, only one of these two ports needs
to be optimized actively.

The input impedances of the individual antenna ports are controlled by
adjusting the slot lengths and the feed point positions. The slot length principally
affects the frequency behavior of the input impedance. Lengthening the slots
leads to a shift of the input impedance to lower frequencies. The positions of
95An ideal feed network is perfectly matched, does not allow mutual coupling, and has no losses.
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(a) (b)

(c) (d)

Figure 6.5 Input parameters of square PEC plate with excitation slots and feed network according to Fig. 6.4
located 16 mm above infinite ground plane. (a) Real parts of input impedances. (b) Imaginary parts of input
impedances. (c) Absolute values of input reflection coefficients. (d) Absolute values of transmission coefficients
from specified ports to all other ports. © 2019 IEEE [PM19c].

the feed points within the slots determine the actual values of the impedance.
Shifting the feed points towards the open ends of the slots increases the input
resistance and adds capacitance. Moving the feed points towards the short circuit
ends of the slots decreases the resistance and adds inductance.

Based on these guidelines, the antenna ports can be optimized systematically
in order to achieve an impedance match to 50Ω within the desired frequency
range from 6 GHz to 8.5 GHz. For this purpose, the antenna element according
to Fig. 6.4(a) is modeled and simulated using Empire XPU [94].96 The ideal

96Empire XPU is used for all electromagnetic simulations in this chapter except the modal analyses.
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(a) 6 GHz (b) 7.25 GHz (c) 8.5 GHz

Figure 6.6 Envelope correlation coefficients of square PEC plate with excitation slots and feed network
according to Fig. 6.4 located 16 mm above infinite ground plane. (a) 6 GHz. (b) 7.25 GHz. (c) 8.5 GHz.
© 2019 IEEE [PM19c].

feed network according to Fig. 6.4(b) is taken into account by means of a
circuit co-simulation. The optimization yields the slot dimensions depicted in
Fig. 6.4(a). The slots 1′ to 8′ are bent in order to accommodate their lengths.

The corresponding simulated input parameters are shown in Fig. 6.5. The
input impedances (Fig. 6.5(a) and (b)) of ports 1 and 3 show a comparatively flat
behavior from 6 GHz to 8.5 GHz close to 50Ω. This has the consequences that
the input reflection coefficients (Fig. 6.5(c)) of these ports are below −10 dB
within the frequency range of interest and well beyond. Obviously, the slot
excitation is capable of achieving a sufficient impedance match to 50Ω over the
desired frequency range.97 In contrast, the input impedances (Fig. 6.5(a) and (b))
of ports 2, 4, 5, and 6 show a steeper behavior. As a consequence, these ports are
not matched to 50Ω over the whole frequency range of interest. This is due to the
fact that the surface current densities excited by these ports are affected by the
presence of the excitation slots of ports 1 and 3. Nevertheless, each of the four
ports provides input reflection coefficients (Fig. 6.5(c)) less than −10 dB around
the center frequency 7.25 GHz with a reasonable bandwidth. For example, ports 5
and 6 offer a bandwidth of approximately 1.5 GHz from 6.5 GHz to 8 GHz. In
summary, all six antenna ports can be sufficiently matched to 50Ω around the
center frequency, demonstrating the basic feasibility of the antenna concept.

Furthermore, the transmission coefficients shown in Fig. 6.5(d) demonstrate
that all six antenna ports are highly decoupled.98 As the feed network is ideal,

97In this thesis, a port is considered sufficiently matched if the input reflection coefficient is less
than or equal to −10 dB ( |𝑆𝑢𝑢 | ≤ −10 dB).

98In this thesis, two ports are considered sufficiently decoupled if their mutual transmission
coefficient is less than or equal to −20 dB ( |𝑆𝑢𝑣 | ≤ −20 dB).
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(a) 6 GHz (b) 7.25 GHz (c) 8.5 GHz

Figure 6.7 Normalized modal weighting coefficients of square PEC plate with excitation slots according to
Fig. 6.4(a) located 16 mm above infinite ground plane. The modes are sorted at each frequency according to their
significance. (a) 6 GHz. (b) 7.25 GHz. (c) 8.5 GHz. © 2019 IEEE [PM19c].

mutual coupling may only be introduced by the antenna element. However, since
the symmetry requirements of the irreducible representations of the symmetry
group 𝐶4v are fulfilled by the antenna ports, the antenna element does not allow
mutual coupling. This observation is confirmed by examining the envelope
correlation coefficients in Fig. 6.6, proving that the antenna ports are orthogonal.
In particular, the decoupling and the orthogonality of the ports is independent
of frequency as both effects are governed by the symmetry of the antenna.

These conclusions can be further corroborated by conducting a modal analysis
of the square PEC plate with excitation slots. In Fig. 6.7, the normalized modal
weighting coefficients of the first 18 characteristic modes are shown at three
different frequencies. At each frequency, the modes are sorted independently
according to their significance. For this reason, the mode indices cannot be
mapped from frequency to frequency. The purpose of Fig. 6.7 is to illustrate
that the antenna ports excite mutually exclusive sets of characteristic modes
independent of frequency, causing their orthogonality. Each mode is excited
by exactly one port so that no more modes are left to be excited separately,
demonstrating that the maximum number of orthogonal antenna ports is reached.

Now, the question arises whether a sufficient impedance match to 50Ω over
the complete desired frequency range can be achieved for ports 2, 4, 5, and 6 as
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Figure 6.8 Square PEC plate with stepped excitation slots and modified feed network. Dimensions in mm.
© 2019 IEEE [PM19c].

well by taking some additional measures. One suitable measure is to modify the
excitation slots by introducing a step in width as proposed in [46, 48] in order to
enable an enhanced control of the input impedance. Thus, such a step in width
is added to the excitation slots of ports 2, 4, 5, and 6 as depicted in Fig. 6.8.99 It
is observed that the stepped excitation slots exhibit smoother impedance curves
at the cost of increased input resistance and capacitance. In order to compensate
for the capacitance, the slot lengths and the feed point positions are adjusted.
This way, a sufficient impedance match over the desired frequency range is
achieved, though to a reference impedance of 100Ω. In order to connect the
antenna element to the feed network with a reference impedance of 50Ω, quarter
wavelength transformers with a characteristic impedance of 70.7Ω are added
between the feed points and the respective feed network as shown in Fig. 6.8.

With these measures, a sufficient impedance match to 50Ω is achieved for all
six antenna ports over the complete frequency range of interest, as evidenced
in Fig. 6.9. In particular, all input impedances now show a comparatively flat
behavior close to 50Ω (Fig. 6.9(a) and (b)) and the input reflection coefficients of
99Although the increased slot width has in general an impact on the surface current densities excited

by ports 1 and 3, only a slight shift of the respective feed point positions is required compared to
Fig. 6.4(a) in order to retain the impedance behavior (cf. Fig. 6.5).
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(a) (b)

(c) (d)

Figure 6.9 Input parameters of square PEC plate with stepped excitation slots and modified feed network
according to Fig. 6.8 located 16 mm above infinite ground plane. (a) Real parts of input impedances. (b) Imaginary
parts of input impedances. (c) Absolute values of input reflection coefficients. (d) Absolute values of transmission
coefficients from specified ports to all other ports. © 2019 IEEE [PM19c].

all ports are below −10 dB from 6 GHz to 8.5 GHz (Fig. 6.9(c)). Moreover, the
antenna ports are still highly decoupled (Fig. 6.9(d)) and orthogonal (Fig. 6.10)
independent of frequency. Again, this is due to the fact that the symmetry of the
antenna element is not altered by introducing the stepped excitation slots.

The stepped excitation slots are used to increase the impedance bandwidth of
the respective antenna ports. This comes at the cost of additional impedance
transformers in the corresponding feed network which, at first glance, may
seem to be a disadvantage of the chosen concept. Quite the contrary, it will
become evident with the introduction of the baluns in section 6.3.1 connecting
the antenna element and the feed network that the flexibility of the antenna
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(a) 6 GHz (b) 7.25 GHz (c) 8.5 GHz

Figure 6.10 Envelope correlation coefficients of square PEC plate with stepped excitation slots and modified feed
network according to Fig. 6.8 located 16 mm above infinite ground plane. (a) 6 GHz. (b) 7.25 GHz. (c) 8.5 GHz.
© 2019 IEEE [PM19c].

element with respect to the input impedances is in fact an advantage of the
chosen concept. Hence, one of the important features of the antenna element to
be highlighted is that it allows a flexible setting of the input impedances without
losing the orthogonality of the antenna ports.

In conclusion, an antenna element with six sufficiently matched antenna ports
from 6 GHz to 8.5 GHz is now available. In particular, the ports are decoupled
and orthogonal independent of frequency due to the symmetry of the antenna
element and the ideal feed network.

6.2 Feed Network Design

In the next step, the feed network schematically depicted in Fig. 6.4(b) is realized.
To this end, first, a suitable technology is chosen. Then, the components of the
network, i.e., the 180° hybrid couplers and the Wilkinson power dividers are
designed. Finally, the components are assembled according to Fig. 6.4(b) and the
performance of the resulting feed networks is checked by means of simulations.

6.2.1 Technology

As the complete feed network consists of two sub-networks, one for ports 1 and 3
and one for ports 2, 4, 5, and 6, it suggests itself to use multilayer technology and
realize the two sub-networks on different layers. A suitable layer setup consisting
of six metal layers, each with a thickness of 35 µm, is illustrated in Fig. 6.11.
Layer 1 (top-layer) is the ground plane for the antenna element (section 6.1.1).
Simultaneously, it shields the feed network from the electromagnetic fields of
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Figure 6.11 Layer setup of feed network consisting of six metal layers, three substrate cores and two prepregs.
Layer 5 is the network layer for ports 1 and 3. Blind vias are used for connecting the 100Ω-SMD resistors of the
Wilkinson power dividers placed on layer 6. Layer 2 is the network layer for ports 2, 4, 5, and 6. Layers 1, 3, 4,
and 6 are ground layers interconnected by means of through-hole vias.

the antenna element. Layer 2 is the network layer for ports 2, 4, 5, and 6; layer 5
is the network layer for ports 1 and 3. The two network layers are separated
by the ground layers 3 and 4.100 Layer 6 (bottom-layer), finally, is the lower
ground plane for shielding the network. Furthermore, it is used for placing the
SMD (surface-mount device) resistors of the Wilkinson power dividers, which
are connected to the network layer 5 by means of blind vias with a diameter
of 500 µm. The four ground layers 1, 3, 4, and 6 are interconnected by means of
through-hole vias with a diameter of 200 µm. The connections to the antenna
element as well as connectors for the input ports will be added in section 6.3 as
the focus of this section lies on examining the feed network alone.

The layer setup in Fig. 6.11 consists of six metal layers. Accordingly, there are
three double-layered substrate cores. The substrate material is Rogers RO4350B
with a relative permittivity 𝜀r = 3.66 [95]. The inner core 2 carries the two inner
ground layers 3 and 4. Therefore, its height is chosen to be the minimum height
available, i.e., 168 µm. The height of the other two cores is chosen to be 508 µm
in order to ensure that the stripline widths on the network layers do not become to
small (see below). The three substrate cores are joined together by two prepregs

100For the feed network layout, one ground layer between the two network layers would be sufficient,
resulting in five layers. However, only an even number of layers can be fabricated. For this reason,
the inner ground layer is realized by the two layers 3 and 4, resulting in a total of six layers.
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Figure 6.12 Stripline on network layers 2 and 5. (a) Cross section of stripline with characteristic impedance
of 50Ω. (b) List of relevant design parameters.

(preimpregnated fibers). The prepreg material is Rogers RO4450F, whose relative
permittivity is approximately the same as that of the core material [96]. Again,
in order to make sure that the stripline widths on the network layers do not
become to small, the maximum available height of 300 µm is chosen.

Based on the layer setup in Fig. 6.11, the two network layers are realized in
stripline technology [92]. As the substrate core and the prepreg approximately
have the same relative permittivity 𝜀r = 3.66, the stripline supports the propa-
gation of transverse electromagnetic (TEM) waves. The corresponding wave-
length 𝜆g is the free space wavelength divided by √

𝜀r [92], i.e., 𝜆g ≈ 21.6 mm
at the center frequency 7.25 GHz. Thanks to this, the wavelength-dependent
network components, like the Wilkinson power divider and the 180° hybrid
coupler, realized in stripline technology are smaller if compared, for example,
to microstrip technology, yielding an overall size reduction.

The only stripline parameter left is the line width, which is used for determining
the characteristic impedance of the stripline. Based on simulations, the line width
for a characteristic impedance of 50Ω is found to be 354 µm. Additionally, a
characteristic impedance of 50

√
2Ω ≈ 70.7Ω is required for the Wilkinson power

dividers and the 180° hybrid couplers. The corresponding line width is 149 µm.
The distance between the stripline and the through-hole vias connecting the
ground planes is set to 900 µm so that the effect of the vias on the electromagnetic
fields of the stripline, and thus its characteristic impedance, is negligible. The
cross section of the 50Ω-stripline is depicted in Fig. 6.12(a). The design
parameters of the stripline are summarized in Table 6.12(b).
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6.2.2 Components

The feed network for ports 1 and 3 consists of one 180° hybrid coupler and
six Wilkinson power dividers, the feed network for ports 2, 4, 5, and 6 consists of
three 180° hybrid couplers (Fig. 6.4(b)). Hence, there are two main components:
The Wilkinson power divider and the 180° hybrid coupler. It is thus purposeful
to begin the network design by examining these two components separately.

Port 1

Port 2

Port 3

Stripline 50 Ω

Stripline 70.7 Ω

SMD resistor 100 Ω

Blind vias

Figure 6.13 Simulation model of Wilkinson power divider in stripline technology on layer 5.

The Wilkinson power dividers are designed according to the guidelines given
in [92]. The simulation model of one power divider on layer 5 is depicted in
Fig. 6.13. Port 1 is considered the input port, whereas ports 2 and 3 are considered
the output ports.101 The input line is split into the two dividing arms whose length
is equivalent to a quarter wavelength of the stripline and whose characteristic
impedance is 50

√
2Ω ≈ 70.7Ω. The 100Ω resistor between the two dividing

arms is realized as an SMD resistor of size 0402 on layer 6 connected to the
stripline by means of blind vias. The through-hole vias connecting the ground
planes on layers 4 and 6 are idealized as solid walls.

The simulated S-parameters of one Wilkinson power divider are shown in
Fig. 6.14. It is evident that all three ports are well matched to the reference
impedance 50Ω (𝑆11, 𝑆22, 𝑆33). The output ports 2 and 3 are highly decoupled
around the center frequency (𝑆32). Towards the limits of the frequency range of
interest, the coupling becomes slightly more pronounced and the transmission
coefficient becomes greater than −20 dB. Nevertheless, the input signal is split
equally by −3 dB and in phase over the complete frequency range (𝑆21, 𝑆31). All
in all, the designed Wilkinson power divider is suitable for the feed network.

101Of course, the Wilkinson power divider can also operate as a power combiner in receive mode.
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(a) (b)

Figure 6.14 Simulated S-parameters of Wilkinson power divider depicted in Fig. 6.13. (a) Absolute value of
reflection and transmission coefficients. (b) Phase of transmission coefficients from input port to output ports.

Port 1
( -Port)Σ

Port 2
( -Port)Δ

Port 3
(0°-Port)

Stripline 50 Ω

Stripline 70.7 Ω

Port 4
(180°-Port)

Figure 6.15 Simulation model of 180° hybrid coupler (rat-race coupler) in stripline technology on layer 2 or 5.

The 180° hybrid couplers are designed as ring hybrids (rat-race couplers) in
stripline technology according to the guidelines given in [92]. The simulation
model of one coupler on layer 2 or layer 5 is depicted in Fig. 6.15. Port 1
corresponds to the Σ-port, whereas port 2 corresponds to the Δ-port (input ports).
Port 3 (0°-port) and port 4 (180°-port) are the output ports (cf. Fig. 6.4(b)).102

The length of the ring section is equivalent to 1.5 wavelengths of the stripline
and its characteristic impedance is 50

√
2Ω ≈ 70.7Ω. Again, the through-hole

vias connecting the ground layers are modeled as solid walls.

102In receive mode, the sum of the signals of ports 3 and 4 is output at port 1 (sum port), whereas
the difference is output at port 2 (difference port).
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(a) (b)

Figure 6.16 Simulated S-parameters of 180° hybrid coupler depicted in Fig. 6.15. (a) Absolute value of reflection
and transmission coefficients. (b) Phase of transmission coefficients from input ports to output ports.

The simulated S-parameters of the 180° hybrid coupler are shown in Fig. 6.16.
All four ports are well matched over the desired frequency range (𝑆11, 𝑆22,
𝑆33, 𝑆44). The input ports 1 and 2 as well as the output ports 3 and 4 are
highly decoupled (𝑆21, 𝑆43). Similar to the Wilkison power divider, however,
the transmission coefficients increase towards the limits of the frequency range
and become greater than −20 dB. The input signals of both input ports are
split equally by −3 dB around the center frequency (𝑆31, 𝑆41, 𝑆32, 𝑆42). At the
limits of the frequency range, the split becomes unequal, reaching a maximum
deviation of about ±1 dB from the ideal −3 dB. The output signals at ports 3
and 4 are in phase around the center frequency if port 1 is driven (𝑆31, 𝑆41),
whereas they have a phase difference of 180° if port 2 is driven (𝑆32, 𝑆42). At
the limits of the frequency range, a maximum phase error of 10° occurs. All in
all, the designed 180° hybrid coupler operates as intended and is thus suitable
for the feed network.

In summary, both feed network components are basically suitable for the
given task. Towards the limits of the frequency range of interest, however, the
decoupling behavior of both components as well as the splitting behavior of
the 180° hybrid coupler with respect to both amplitude and phase become
critical. This is not surprising since the Wilkinson power divider as well as the
180° hybrid coupler are in fact narrowband RF circuits [92]. It is thus expected
that the complete multimode antenna will perform worse at the band limits
compared to the center frequency. For the purpose of this thesis, however, this
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is not detrimental at all as the feed network is just a means to put the theory
into a practical antenna design. If the multimode antenna can be shown to
operate as predicted around the center frequency, it will also work properly over
a broader frequency range if a broadband feed network is employed since the
decorrelation and the decoupling of the antenna element alone are governed by
its symmetry and are thus independent of frequency (section 6.1.3). However,
the feed network design should be considered a mere engineering task which,
although it may be intricate, does not provide further insight for a systematic
multimode antenna design and is thus covered only on a basic level within this
thesis.103 Nevertheless, it is important to note that the feed network is expected
to be the principal bandwidth limiting component of the multimode antenna.

6.2.3 Networks

Now, the network components need to be connected according to Fig. 6.4(b).
The principal challenge of the network design is the compact arrangement of
the components. With respect to this, there is one hard boundary condition: The
positions of the feed points are dictated by the antenna element (section 6.1.3).
As an additional design goal, the feed network is supposed to fit completely
below the antenna element in order to realize the complete multimode antenna
as compact as possible.104

The simulation model of the feed network for ports 1 and 3 is depicted in
Fig. 6.17. The two antenna ports as well as the eight feed points are modeled as
stripline ports in Empire XPU (denoted by the black arrows). The 180° hybrid
coupler is placed centrally. All striplines from the central coupler to the feed
points including the Wilkinson power dividers must have the same lengths in
order to make sure that no additional phase differences are added over the whole
frequency range of interest. The lengths are dictated by the longest path, which
is that from the central coupler to the feed points 6′ and 7′. The stripline paths to
the other feed point pairs thus have to be lengthened, resulting in the additional
bends. Simultaneously, it is ensured that the network fits entirely below the
antenna element, as outlined in Fig. 6.17. It should be emphasized that the
absolute phase at the feed points does not matter as long as the phase relations
between the feed points are correct. This has the consequence that the stripline
lengths from the individual antenna ports to the central 180° hybrid coupler

103For example, a feed network for a four-port multimode antenna using broadband components is
presented in [48].

104Such a compact design is particularly beneficial for a potential array arrangement [46].
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Figure 6.17 Simulation model of feed network for ports 1 and 3 on layer 5. The antenna ports and the feed points
denoted by the black arrows are modeled as stripline ports in Empire XPU.

can be adjusted at will, which will be important for the placement of the input
connectors in section 6.3.2.

The absolute values of the simulated S-parameters are shown in Fig. 6.18. The
antenna ports 1 and 3 are sufficiently matched to the reference impedance 50Ω
over the entire frequency range of interest (𝑆11; 𝑆33). A sufficient decoupling is
achieved from approximately 6.5 GHz to 8 GHz (𝑆31; 𝑆13). Beyond this range, the
transmission coefficients are greater than −20 dB, which is due to the coupling
added by the individual network components in succession. This confirms the
prediction made in the previous subsection that the feed network is the principal
cause for a bandwidth limitation.

The input signals of both ports are split equally by a total of −9 dB around the
center frequency, as expected due to the three-stage architecture (𝑆1′1, 𝑆2′1, 𝑆3′1,
𝑆4′1, 𝑆5′1, 𝑆6′1, 𝑆7′1, 𝑆8′1; 𝑆1′3, 𝑆2′3, 𝑆3′3, 𝑆4′3, 𝑆5′3, 𝑆6′3, 𝑆7′3, 𝑆8′3). The split
becomes unequal towards the limits of the frequency range with a maximum
deviation of about ±1 dB, which is due to the 180° hybrid coupler (Fig. 6.16(a)).

The phase at the feed points is shown in Fig. 6.19. The signals excited by port 1
are well in phase at the feed points around the center frequency (Fig. 6.19(a)). A
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(a) (b)

Figure 6.18 Simulated S-parameters (absolute values) of feed network for ports 1 and 3 as depicted in Fig. 6.17.
(a) Port 1 active. (b) Port 3 active.

(a) (b)

Figure 6.19 Simulated S-parameters (phase) of feed network for ports 1 and 3 as depicted in Fig. 6.17. (a) Port 1
active. (b) Port 3 active.

maximum deviation of 10° occurs at the limits of the frequency range. Again, this
can be attributed to the coupler (Fig. 6.16(b)). The signal distribution of port 3
behaves similarly. As intended, the feed points 1′, 4′, 5′, and 8′ have a phase
difference of 180° compared to the feed points 2′, 3′, 6′, and 7′ (Fig. 6.19(b)).105

105This is just the opposite of the phase relations resulting from the schematic in Fig. 6.4(b) and
corresponds to the case that the feed points 1′, 4′, 5′, 8′ and 2′, 3′, 6′, 7′ have swapped places in
the schematic. This is done in order to enable an easier network layout. Of course, this has no
impact on the functionality of the multimode antenna as the phase relations remain the same.
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Figure 6.20 Simulation model of feed network for ports 2, 4, 5, and 6 on layer 2. The antenna ports and the feed
points denoted by the black arrows are modeled as stripline ports in Empire XPU.

The simulation model of the feed network for ports 2, 4, 5, and 6 is depicted
in Fig. 6.20. The 180° hybrid coupler only used by ports 2 and 4 is placed
exactly below the center of the antenna element. The other two couplers are
placed accordingly and, again, the stripline lengths are adjusted in such a way
that no additional phase differences are added. Compared to the feed network
for ports 1 and 3 (Fig. 6.17), the layout is more relaxed as there are only three
network components and four feed points to be driven.

The absolute values of the simulated S-parameters are shown in Fig. 6.21.
All four antenna ports are well matched to the reference impedance 50Ω over
the entire frequency range of interest (𝑆22; 𝑆44; 𝑆55; 𝑆66). Ports 5 and 6 can be
considered almost perfectly decoupled as their mutual transmission coefficients
are well below −40 dB (𝑆65; 𝑆56; not visible within the range of Fig. 6.21). The
two ports are also sufficiently decoupled from ports 2 and 4 over the entire
frequency range (𝑆52, 𝑆62; 𝑆54, 𝑆64; 𝑆25, 𝑆45; 𝑆26, 𝑆46). In contrast, ports 2 and 4
are only sufficiently decoupled up to about 8 GHz, beyond which their mutual
transmission coefficients become greater than −20 dB (𝑆42; 𝑆24). This diverse
decoupling behavior of the four ports can be attributed to the fact that ports 2
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(a) (b)

(c) (d)

Figure 6.21 Simulated S-parameters (absolute values) of feed network for ports 2, 4, 5, and 6 as depicted in
Fig. 6.20. (a) Port 2 active. (b) Port 4 active. (c) Port 5 active. (d) Port 6 active.

and 4 are decoupled only by the central 180° hybrid coupler, whereas ports 5
and 6 are separated from ports 2 and 4 by two couplers each, and separated from
each other by all three couplers of the network. In conclusion, the decoupling of
ports 2 and 4 is the critical bandwidth limiting parameter of this network.

As intended, the signals from ports 2 and 4 are equally split by −6 dB as they
pass two couplers (𝑆9′2, 𝑆10′2, 𝑆11′2, 𝑆12′2; 𝑆9′4, 𝑆10′4, 𝑆11′4, 𝑆12′4), whereas those
of ports 5 and 6 are equally split by −3 dB as they pass only one coupler (𝑆9′5,
𝑆10′5; 𝑆11′6, 𝑆12′6). Towards the limits of the frequency range, the split becomes
unequal, with the already familiar maximum deviation of ±1 dB for ports 5
and 6 due to one coupler, but a maximum deviation of approximately ±2 dB
for ports 2 and 4 since the effect of two couplers is accumulated. Furthermore,
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(a) (b)

(c) (d)

Figure 6.22 Simulated S-parameters (phase) of feed network for ports 2, 4, 5, and 6 as depicted in Fig. 6.20.
(a) Port 2 active. (b) Port 4 active. (c) Port 5 active. (d) Port 6 active.

it should be recalled that ports 5 and 6 only drive two feed points each (𝑆9′5,
𝑆10′5; 𝑆11′6, 𝑆12′6). The transmission coefficients to the other feed points are well
below −40 dB over almost the entire frequency range so that these feed points
are highly decoupled from the respective antenna ports (𝑆11′5, 𝑆12′5; 𝑆9′6, 𝑆10′6;
only visible at the limits of the frequency range within the range of Fig. 6.21).

The phase at the feed points is shown in Fig. 6.22. As expected, the phase
relations are reproduced exactly around the center frequency, whereas deviations
due to the 180° hybrid couplers occur at the limits of the frequency range. For
ports 5 (Fig. 6.22(c)) and 6 (Fig. 6.22(d)), the two respective feed points are
driven in phase. For ports 2 (Fig. 6.22(a)) and 4 (Fig. 6.22(b)), there are two pairs
of feed points which are driven in phase, respectively (feed points 9′ and 11′
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as well as 10′ and 12′ for port 2; feed points 9′ and 12′ as well as 10′ and 11′

for port 4). The two respective pairs of feed points have a phase difference
of 180° (cf. Fig. 6.4(b)).

In summary, both feed networks operate as intended. The decoupling between
ports 1 and 3 as well as ports 2 and 4 is identified as the principal bandwidth
limiting parameter. Furthermore, the 180° hybrid couplers are found to introduce
amplitude and phase deviations at the limits of the frequency range. As already
discussed in subsection 6.2.2, these limitations can be overcome by a more
sophisticated design of the network components (e.g., cf. [48]). For the purpose
of this thesis, however, the important result of this section is that a practical feed
network is now available which sufficiently reproduces the properties of the
ideal feed network as schematically depicted in Fig. 6.4(b): All six antenna ports
are well matched and well decoupled and drive the feed points with the correct
amplitude and phase relations as required by the irreducible representations of
the symmetry group 𝐶4v over a reasonable frequency range.

6.3 Assembly and Layout

Up to now, it has been shown how the antenna element and the feed network can
be designed and optimized separately, enabling a modular design approach. In
this section, the two parts are joined together. To this end, a connection between
the antenna element and the feed network needs to be realized. This requires
some further modifications of both the antenna element and the feed network,
resulting in the final layouts for fabrication.

6.3.1 Baluns and Antenna Element Layout

For the connection between the antenna element and the feed network, different
technologies come into question. A microstrip transition as employed in [48]
can be fabricated comparatively easily. However, its electromagnetic fields are
expected to interfere with the electromagnetic near fields of the antenna element.
Using stripline technology instead should mitigate the interference, but comes
at the cost of a complicated assembly to both the antenna element and the feed
network as the inner conductor is difficult to connect (cf. Fig. 6.12). A coaxial
line as used in [46] is expected to offer shielding against the near fields of
the antenna as well as good connectivity since both inner and outer conductor
are accessible. Based on these considerations, semi-rigid coaxial cables with
an outer diameter of 3.6 mm, an inner conductor diameter of 0.91 mm, and a
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Figure 6.23 Coaxial Balun. (a) Semi-rigid coaxial cable with symmetrically slotted outer conductor and
protruding inner conductor. (b) Connection to antenna element at feed point and feed network (here: layer 2, refer
to Fig. 6.11 for layer setup). Dimensions in mm.

characteristic impedance of 50Ω [97] are chosen for connecting the antenna
element and the feed network.

The excitation slots of the antenna element (Fig. 6.8) act as symmetric
terminations for the coaxial lines. A balun (balanced to unbalanced transformer)
is thus needed in order to realize the transition from the asymmetric coaxial
line to the symmetric excitation slot [5]. The balun is formed by symmetrically
cutting two slots into the outer conductor and letting the inner conductor protrude,
as depicted in Fig. 6.23(a). The protruding inner conductor is connected to one
side of the excitation slot, whereas the slotted outer conductor is connected
to both sides of the excitation slot as illustrated in Fig. 6.23(b) [5]. For this
purpose, the antenna element is mounted on a Rogers RO4350B substrate with
the height 508 µm (top layer). The inner conductor of the coaxial balun is passed
through the substrate and connected to one side of the excitation slot on the
top layer. The outer conductor is connected to solder pads on both sides of
the excitation slot on the bottom layer of the substrate. These are linked to the
antenna element on the top layer by means of through-hole vias. The other end of
the coaxial balun is connected to the feed network, as detailed in subsection 6.3.2.

The chosen balun performs a 4 : 1 impedance transformation. Thus, it has to
be taken into account as an impedance transformer between the antenna element
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Figure 6.24 Final layout of the antenna element. The actual antenna surface derived from the square plate
is placed on the top layer and is located approximately 12.5 mm above the ground plane. The feed points for
connecting the coaxial baluns and the feed network are denoted by the primed numbers. The solder pads on the
bottom layer connect the slotted outer conductors of the coaxial baluns to the top layer by means of through-hole
vias. The cross-shaped copper sheet choke wall of 11 mm height connected to the ground plane is located below
the element center. Dimensions in mm. © 2021 IEEE [PHM21].

and the feed network. As a matter of fact, this architecture has already been
in use for ports 2, 4, 5, and 6 in Fig. 6.8. Using the design guidelines given
in section 6.1.3, the antenna element is now adjusted such that the ports have
input impedances of around 200Ω. This is primarily achieved by widening the
excitation slots and increasing the steps in width. Nevertheless, the slot lengths
and feed point positions are adjusted as well in order to compensate for the
additional reactance. The baluns transform the increased input impedance to
the reference impedance 50Ω. During the optimization of the excitation slots,
it was found that the height of the antenna element above the ground plane
can be reduced to approximately 12.5 mm without significantly compromising
the impedance bandwidth of the ports, resulting in a lower profile of the
antenna. The lengths of the coaxial baluns are thus 12 mm and the optimal slot
lengths are found to be 7 mm (Fig. 6.23(a)). The slot widths have a negligible
impact on the input impedance and a width of 1.6 mm is chosen for mechanical
reasons as the slots are fabricated by milling. The resulting final layout of the
antenna element and the corresponding dimensions are depicted in Fig. 6.24.
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Figure 6.25 Cross-shaped copper sheet choke wall below the center of the antenna element in the 𝑥𝑧- or 𝑦𝑧-plane.
The choke wall suppresses a resonant electromagnetic field excited by port 1 at approximately 6.83 GHz between
the coaxial baluns below the antenna element. Dimensions in mm.

It is emphasized once again that the symmetry is preserved after optimizing
the dimensions of the excitation slots. At the feed point positions, holes are
introduced for connecting the inner conductors of the coaxial baluns to one side
of the excitation slots (cf. Fig. 6.23(b)).106

Unfortunately, simulations show that port 1 excites a resonant electromagnetic
field at approximately 6.83 GHz due to the presence of the coaxial baluns
which severely compromises its impedance bandwidth. The resonant field
distribution arises between the coaxial baluns below the antenna element and has
its maximum at the coordinate center. In order to prevent this resonant field, a
cross-shaped copper sheet choke wall with dimension 10 mm × 10 mm × 11 mm
connected to the ground plane is introduced below the center of the antenna
element, as shown in Fig. 6.24 and Fig. 6.25. The additional boundary condition
set up by the choke wall successfully suppresses the resonant field distribution
without significantly affecting the desired near fields of port 1 and the other
ports. This is due to the central positioning of the choke wall as the dominant
surface currents flow at the edges of the antenna element (cf. Fig. 4.21). The
cross shape is chosen in order to preserve the symmetry of the antenna so that
the port orthogonality is not affected.

It should be noted that for the design steps described in this subsection, the
layout of the feed network as introduced in section 6.2 does not need to be
known. The antenna element can still be optimized independently of the feed

106Strictly speaking, the connections at the central excitation slots destroy the symmetry. Such minor
modifications, however, have a negligible impact on the port orthogonality (cf. [98]).
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Figure 6.26 Final layout of the feed network. The network layers 2 and 5 as well as the ground layer 6 and all
vias are displayed. © 2021 IEEE [PHM21].

network if the baluns (and the choke wall) are included into the process. With
this amendment, the proposed modular design approach is still applicable.

6.3.2 Network Layout and Assembly

The final network layout with the feed network for ports 1 and 3 on layer 5 and
the feed network for ports 2, 4, 5, and 6 on layer 2 is depicted in Fig. 6.26. As
the feed point positions of the antenna element have slightly changed due to the
introduction of the coaxial baluns, the stripline lengths of the feed networks
from section 6.2 are adjusted accordingly. Through-hole vias interconnect the
four ground layers. Due to the partial overlap of the two feed networks, it is not
possible to place vias at all spots where they would be required by the individual
networks in order to separate adjacent striplines (cf. Fig. 6.17 and 6.20).

The antenna ports are realized as surface-mount SMA connectors [99] placed
on layer 6. The outer conductor is soldered to the ground plane on layer 6,
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Figure 6.27 Photograph of the fabricated six-port multimode antenna showing the antenna element, the coaxial
baluns, and layer 1 of the feed network. The depicted coordinate system serves as reference for the far field
radiation patterns. The inset shows layer 6 of the feed network with the antenna ports realized as surface-mount
SMA connectors. © 2021 IEEE [PHM21].

whereas the inner conductor is soldered to a circular pad on layer 6 which is
connected to the respective network layer by means of a through-hole via. The
coaxial-to-stripline transitions are designed to minimize signal reflections. This
is achieved by optimizing the solder pad size on layer 6, the pad size on the
respective network layer, the counter-pad size on layer 1, and adding electrically
small stripline portions acting as reactances. In order to accommodate all six
SMA connectors on layer 6, the stripline lengths from the antenna ports to
the 180° hybrid couplers are adjusted accordingly without affecting the phase
relations at the feed points as explained in section 6.2.3.

Up to this point, both the antenna element and the feed network have been
optimized independently. Now, both parts are joined together. To this end, the
outer conductors of the coaxial baluns are soldered to the ground plane on layer 1.
The inner conductors are passed through the feed network and connected to the
respective network layer by means of through-hole vias, as exemplarily illustrated
for a connection to layer 2 in Fig. 6.23(b). The resulting coaxial-to-stripline
transitions are optimized in the same way as those of the SMA connectors.

A photograph of the fabricated six-port multimode antenna is shown in
Fig. 6.27. The antenna element, the coaxial baluns, and the ground plane on
layer 1 are visible. The inset shows the SMA connectors serving as the antenna
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ports mounted on layer 6. For the measurements and the final simulations, a
finite square ground plane of dimensions 90 mm × 90 mm is realized.

6.4 Simulation and Measurement Results

In order to check the performance of the fabricated six-port multimode antenna,
S-parameters and radiation patterns are evaluated from simulations and measure-
ments. The simulations are carried out in Empire XPU yielding S-parameters,
radiation patterns, and surface current densities. For the measurement of the
S-parameters, a vector network analyzer is employed. The 3D radiation pat-
terns (realized gains) are obtained from measurements in an anechoic chamber.
The envelope correlation coefficients and the total efficiencies are computed
from the simulation and measurement results.

The simulated and measured S-parameters are shown in Fig. 6.28. As a
general observation, it is found that all six antenna ports are sufficiently matched
to 50Ω (|𝑆𝑢𝑢 | ≤ −10 dB) and sufficiently decoupled (|𝑆𝑢𝑣 | ≤ −20 dB) over
almost the entire frequency range of interest. Deviations arise towards the limits
of the frequency range. These can be attributed chiefly to the narrowband
nature of the feed network, as has been discussed extensively in section 6.2.
The most pronounced coupling occurs between ports 1 and 3 (Fig. 6.28(a)
and (c)). The transmission coefficients |𝑆31 | and |𝑆13 | are less than −20 dB
from approximately 6.7 GHz to 7.8 GHz, yielding a bandwidth of 1.1 GHz. A
comparison with Fig. 6.18 confirms that this coupling originates from the feed
network and is due to the fact that the two antenna ports are decoupled by only
one 180° hybrid coupler (see Fig. 6.4(b) and Fig. 6.26). For the same reason, the
coupling between ports 2 and 4 (Fig. 6.28(b) and (d)), too, is a critical parameter
limiting the bandwidth (cf. Fig. 6.21). In contrast, the coupling between the other
ports is more relaxed. In particular, ports 5 and 6 are well decoupled as they
are separated by three 180° hybrid couplers (see Fig. 6.4(b) and Fig. 6.26). In
conclusion, the network models from section 6.2 turn out to yield good estimates
for the coupling to be expected. Additional coupling may be introduced by the
network layout (Fig. 6.26), especially by missing vias between adjacent striplines
due to the overlapping networks. Coupling between the two different network
layers is mainly generated by the coaxial-to-stripline transitions. However, this
coupling is negligible as the corresponding transmission coefficients are well
below −20 dB. Furthermore, it is found that the simulated and the measured
S-parameters agree quite well. Consequently, the simulation model yields a
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(a) Port 1 active (𝑣 = 1) (b) Port 2 active (𝑣 = 2)

(c) Port 3 active (𝑣 = 3) (d) Port 4 active (𝑣 = 4)

(e) Port 5 active (𝑣 = 5) (f) Port 6 active (𝑣 = 6)

Port 1 ( = 1)u Port 2 ( = 2)u Port 3 ( = 3)u Port 4 ( = 4)u Port 5 ( = 5)u Port 6 ( = 6)u

Measurement Simulation

(g)

Figure 6.28 Measured and simulated S-parameters 𝑆𝑢𝑣 (absolute values) from 𝑣-th port to 𝑢-th port of the
fabricated six-port multimode antenna. (a)–(f) Port 1 to 6 (active port). (g) Legend. © 2021 IEEE [PHM21].
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(a) (b) 𝜑 = 0°,𝜑 = 90° (c) 𝜃 = 90°

(d) (e) 𝜑 = 0°,𝜑 = 90° (f) 𝜃 = 90°

(g) (h) 𝜑 = 0°,𝜑 = 90° (i) 𝜃 = 90°

θ-component φ = 0°; = 90°θ φ = 90° φ-component φ = 0°; = 90°θ φ = 90°

Measurement Simulation

(j)

Figure 6.29 Realized gains of ports 1, 2, and 3 of the fabricated six-port multimode antenna at 7.25 GHz. The
figure shows the 3D patterns (from measurement) as well as the 2D cuts (from measurement and simulation) in
the 𝑥𝑧-plane (𝜑 = 0°), the 𝑦𝑧-plane (𝜑 = 90°), and the 𝑥𝑦-plane (𝜃 = 90°). The reference coordinate system is
given in Fig. 6.27. All plots are limited to the maximum realized gain of the respective port and display a dynamic
range of 30 dB. (a)–(c) Port 1. (d)–(f) Port 2. (g)–(i) Port 3. (j) Legend for 2D cuts. © 2021 IEEE [PHM21].
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(a) (b) 𝜑 = 0°,𝜑 = 90° (c) 𝜃 = 90°

(d) (e) 𝜑 = 0°,𝜑 = 90° (f) 𝜃 = 90°

(g) (h) 𝜑 = 0°,𝜑 = 90° (i) 𝜃 = 90°

θ-component φ = 0°; = 90°θ φ = 90° φ-component φ = 0°; = 90°θ φ = 90°

Measurement Simulation

(j)

Figure 6.30 Realized gains of ports 4, 5, and 6 of the fabricated six-port multimode antenna at 7.25 GHz. The
figure shows the 3D patterns (from measurement) as well as the 2D cuts (from measurement and simulation) in
the 𝑥𝑧-plane (𝜑 = 0°), the 𝑦𝑧-plane (𝜑 = 90°), and the 𝑥𝑦-plane (𝜃 = 90°). The reference coordinate system is
given in Fig. 6.27. All plots are limited to the maximum realized gain of the respective port and display a dynamic
range of 30 dB. (a)–(c) Port 4. (d)–(f) Port 5. (g)–(i) Port 6. (j) Legend for 2D cuts. © 2021 IEEE [PHM21].
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(a) (b)

Figure 6.31 Envelope correlation coefficients of the fabricated six-port multimode antenna at 7.25 GHz. (a) Com-
puted from simulated radiation patterns. (b) Computed from measured radiation patterns. © 2021 IEEE [PHM21].

(a) 6 GHz (b) 7.25 GHz (c) 8.5 GHz

Figure 6.32 Envelope correlation coefficients of the fabricated six-port multimode antenna computed from
simulated radiation patterns. (a) 6 GHz. (b) 7.25 GHz. (c) 8.5 GHz.

good estimate for the antenna performance. Deviations can be attributed to
imperfections due to the fabrication process (e.g., solder contacts). All in all, it
is concluded that the six antenna ports are well matched and decoupled around
the center frequency with a reasonable bandwidth.

The simulated and measured realized gains of the far field radiation patterns
excited by the six antenna ports at 7.25 GHz are shown in Fig. 6.29 and Fig. 6.30.
The most important observation is that the simulated and measured patterns agree
very well. In other words, the simulation model is well suited for predicting the
far field patterns with regard to both shape and polarization as well as magnitude.
Moreover, the symmetry of the radiation patterns is clearly visible. In particular,
pattern nulls are well resolved.

For the purpose of this thesis, the most important parameter is the port
correlation. Therefore, a more detailed analysis of the radiation patterns is
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(a) Port 1 (b) Port 2 (c) Port 3

(d) Port 4 (e) Port 5 (f) Port 6

−40−60 −30−50 −20 −10 0

Current density (dB)

(g)

Figure 6.33 Normalized simulated surface current densities on the antenna element of the fabricated six-port
multimode antenna. Principal current directions and current directions at feed points denoted by arrows. (a) Port 1.
(b) Port 2. (c) Port 3. (d) Port 4. (e) Port 5. (f) Port 6. (g) Color bar.

not conducted. Instead, the envelope correlation coefficients computed from
the simulated and measured far field radiation patterns at 7.25 GHz according
to (2.46) as shown in Fig. 6.31 are inspected. Evidently, the antenna ports are
only weakly correlated. The maximum measured correlation occurs between
ports 1 and 2 as well as ports 3 and 6 with an envelope correlation coefficient of
approximately 0.05. From a practical point of view, the ports can thus be termed
uncorrelated at the center frequency. Turning back to the radiation patterns
in Fig. 6.29 and Fig. 6.30, it is deduced that the antenna ports offer pattern
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and polarization diversity. In order to evaluate the port correlation at different
frequencies, the simulated envelope correlation coefficients are inspected as the
simulation model has been found to be well suited for predicting the antenna
performance. In Fig. 6.32, the simulated envelope correlation coefficients
at the center frequency and at the limits of the frequency range are shown,
demonstrating that a low port correlation is achieved over the whole frequency
range of interest. The maximum correlation occurs at 8.5 GHz between ports 1
and 5 with an envelope correlation coefficient of approximately 0.09. It is thus
deduced that the port correlation is principally governed by the symmetry of
the antenna element, which is a frequency-independent property (section 6.1.3).
Again, deviations can be attributed mainly to the feed network.

As the antenna ports are practically uncorrelated (orthogonal), it is expected
that the surface current densities on the antenna element fulfill the symmetry
requirements of the irreducible representations of the symmetry group 𝐶4v to
a high degree. This is confirmed by examining the simulated surface current
densities as shown in Fig. 6.33. A manual inspection of the symmetry properties
of the surface current densities shows that they transform according to the
irreducible representations of 𝐶4v (Table 3.6). It is recalled that this is the
fundamental fact enabling the port orthogonality. Although the excited surface
current densities are more complex than the characteristic surface current
densities of the original fundamental characteristic modes (Fig. 4.21), their
symmetry is the decisive property.

Additionally, the symmetry of the surface current densities demonstrates
that the feed network operates as intended, i.e., the input signals at the antenna
ports are distributed to the feed points with the correct amplitude and phase
relations. This is best illustrated in Fig. 6.33 by the arrows at the feed points.
Furthermore, it can be seen that the surface current densities of ports 2, 4, 5,
and 6 (Fig. 6.33(b), (d), (e), and (f)) couple to the feed points of ports 1 and 3
to some extent. This behavior is expected and the so excited signals would be
suppressed by the ideal feed network (Fig. 6.4(b)) and could thus not reach
ports 1 and 3. As discussed above, the real feed network allows some (practically
negligible) coupling between the two network layers (Fig. 6.28) which can be
attributed to this effect.

Finally, the total efficiencies [5] of the fabricated six-port multimode antenna
computed from the measured realized gains (Fig. 6.29 and 6.30) are listed in
Table 6.1. Ports 1 and 3, which share the feed network on layer 5, each have
an efficiency of more than 60 %. Ports 2, 4, 5, and 6, which share the feed
network on layer 2, have an average efficiency of approximately 50 %. As the
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Antenna port 1 2 3 4 5 6

Total efficiency (%) 62.3 50.5 63.3 44.0 51.1 52.8

Table 6.1 Total efficiencies of the fabricated six-port multimode antenna computed from the measured realized
gains at 7.25 GHz. © 2021 IEEE [PHM21].

antenna ports are sufficiently matched, the total efficiencies primarily describe
the dielectric and ohmic losses of the antenna, which occur within the feed
network, the coaxial baluns, and the antenna element. The feed network is
identified as the main contributor to the total losses due to the stripline lengths.

In summary, the six ports of the fabricated multimode antenna are shown
to be sufficiently matched, decoupled, and, in particular, uncorrelated over a
reasonable frequency range. It is thus demonstrated that the upper bound for
orthogonal antenna ports (section 4.4.2) can be reached based on the design
guidelines derived from the symmetry analysis of characteristic modes (chapter 4)
with a practical antenna design. Furthermore, the modular design approach,
i.e., designing the antenna element (including baluns and choke wall) and the
feed network separately, is shown to be appropriate.

The feed network has been identified as the principal source for complexity.
Whereas the antenna element is designed using strict guidelines based on
symmetry considerations, the feed network layout offers more degrees of freedom
(choice of technology, components, layout) and is thus more challenging. These
design choices have a direct impact on bandwidth, coupling, and losses. For
these reasons, the feed network complexity is a limiting parameter in practical
multimode antenna designs. According to Table 4.7, antenna geometries with
a higher symmetry order offer more orthogonal antenna ports. However, the
complexity of the feed networks will grow as well, potentially limiting the
practically feasible number of orthogonal antenna ports.



7 Asymmetric Multimode Antennas

Having presented a complete and systematic design procedure for symmetric
multimode antennas, the question arises what can be done if the antenna geometry
does not possess any symmetry. This could, for instance, be the case if the
metallic housing or chassis of a device (e.g., an IoT sensor node [55]) is supposed
to be used as a multimode antenna. In such a scenario, the antenna geometry
is fixed and must not be altered significantly. Naturally, the design guidelines
introduced for symmetric antennas are not applicable in this case.

Even if a symmetric antenna design were potentially possible, e.g., the ground
plane of a rectangular printed circuit board of a smart phone (cf. section 2.4.2),
space for RF components may be strictly limited as other components have to be
accommodated as well. However, the symmetry-centered design requires spatially
distributed feed points and thus a space consuming feed network stretching over
the complete geometry (cf. section 6.2). In scenarios as mentioned above, this
is most likely to be prohibitive. In order to avoid bulky feed networks, each
antenna port should consist of as few feed points as possible, ideally only one,
leading again to an asymmetric antenna design.

Although this thesis is focused on leveraging symmetries for the systematic
design of multimode antennas, at least some light should be shed on the above-
mentioned problems. To this end, the consequences of antenna asymmetry are
analyzed in this chapter. Based on this, a port placement procedure is developed
which places antenna ports consisting of only one feed point each with the aim
to minimize the envelope correlation coefficients. The basic feasibility of this
approach is demonstrated by means of numerical examples.107

7.1 Consequences of Asymmetry

As there are no symmetry transformations under which an asymmetric object
is invariant, the symmetry group of any asymmetric object consists of the
identity 𝐸 alone. This group is called 𝐶1 of order 𝑔 = 1 [78]. It has exactly one
irreducible representation, the identity representation Γ (1) = 𝐴, whose represen-
tation matrix (character) is 𝚪 (1) = 𝜒 (1) = 1. Every characteristic surface current

107The following publication is related to the content of this chapter: [PM20] (© 2020 IEEE).
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𝐶1 𝐸

𝐴 1

Table 7.1 Character table of symmetry group 𝐶1. © 2020 IEEE [PM20].

density on an asymmetric PEC object is a basis function of this one irreducible
representation. Applying the identity transformation to any characteristic surface
current density is equal to a multiplication with 1, i.e., the current density
remains unaltered. The trivial character table is given in Table 7.1.

As there is only one irreducible representation, the orthogonality theo-
rem (3.27) states that all characteristic surface current densities are correlated
(𝑝 = 𝑞 ∧ 𝜈 = 𝜅 ∀ 𝑛). There are no mutually orthogonal sets. Furthermore, any
impressed electric field also belongs to this one irreducible representation so
that it, too, will be correlated to every characteristic surface current density,
yielding nonzero modal excitation coefficients (2.24) for all 𝑛. Consequently,
it is in general not possible to excite mutually exclusive sets of characteristic
modes and thus realize orthogonal ports on an asymmetric antenna.

7.2 Port Placement Procedure
for Asymmetric Antennas

In the previous section, it has been shown in a general way that it is not possible
to realize perfectly uncorrelated ports on an asymmetric antenna. However, the
actual amount of correlation between two ports cannot be predicted. Therefore,
it should be possible to minimize the envelope correlation coefficients (2.46).
According to (2.50), these can be expressed in terms of the normalized modal
weighting coefficients alone. The objective is thus to place the antenna ports
(consisting each of only one feed point) in such a way that the products of the
resulting modal weighting coefficients add up destructively.

Of course, it would be rather cumbersome to do this manually, especially
in a straightforward way. Instead, an automated port placement procedure
is needed in order to find the port configuration which yields the minimum
envelope correlation coefficients. An intuitive approach towards this goal is an
exhaustive search. Although this is certainly not an efficient algorithm, it is easy
to implement and able to find the global minimum. This property is important in
order to investigate whether asymmetric multimode antennas with a reasonable
number of only weakly correlated ports are feasible.
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As the proposed method relies on modal parameters, a modal analysis of the
antenna has to be conducted first. After that, delta-gap sources (section 2.3.3)
can be placed on arbitrary edges of the triangular mesh (section 2.3.2). The
corresponding modal weighting coefficients are computed using (2.45), (2.39),
(2.22), and (2.26). It should be highlighted that the delta-gap sources do not
really need to be placed physically. Instead, the MoM excitation vector according
to (2.45) is simply permuted.

An advantage of the proposed port placement procedure is the fact that it
works with modal parameters alone. Only one full simulation run of the antenna
object is needed in order to perform the modal analysis. The computation of the
modal weighting coefficients is then a mere post-processing step. As this is the
principal computation step of the proposed method, it is comparatively fast.

In order to find a suitable starting point for the exhaustive search, the first
delta-gap source is placed in such a way that it maximizes the normalized modal
weighting coefficient of the most significant mode. This step is motivated by
the fact that the most significant mode is expected to be the mode which can
be excited most effectively and thus should be considered first. Simultaneously,
maximizing the normalized modal weighting coefficient of one mode will
minimize the normalized modal weighting coefficients of all other modes
according to (2.26).

Next, a second delta-gap source is placed at every other remaining mesh edge
and the position yielding the minimum correlation to the first delta-gap source
computed according to (2.50) is selected. This procedure is repeated by adding
further delta-gap sources as long as a predefined maximum envelope correlation
coefficient ECCmax is not exceeded by any pair of delta-gap sources. The steps
of the port placement procedure are summarized as follows:

1. Mesh the asymmetric antenna object.

2. Conduct a modal analysis of the asymmetric antenna object.

3. Choose a maximum allowed envelope correlation coefficient ECCmax.

4. Place the first delta-gap source at every mesh edge.

5. Compute the normalized modal weighting coefficients of the most signifi-
cant mode.

6. Choose the position yielding the maximum normalized modal weighting
coefficient.
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7. Place another delta-gap source at every remaining mesh edge.

8. Compute the ECC to all other delta-gap sources placed before according
to (2.50).

9. Choose the position yielding the minimum ECC.

10. If all ECC are below the chosen maximum ECCmax, repeat steps 7 to 9.

11. Else, stop the procedure and discard the last delta-gap source.

The steps 4 to 11 are post-processing steps operating only on the modal results.

7.3 Numerical Examples

In this section, two exemplary asymmetric antenna geometries are analyzed in
order to demonstrate that it is basically possible to realize asymmetric multimode
antennas with weakly correlated antenna ports.

7.3.1 Two-Dimensional Plate

As a first example, a two-dimensional L-shaped PEC plate as depicted in
Fig. 7.1(a) is analyzed. Its outer dimensions are chosen so that it has approximately
the same electrical size at 7.25 GHz as the rectangular PEC plate examined in
section 2.4.2 at 2.5 GHz. The L-shaped PEC plate is discretized with a triangular
mesh consisting of 3122 triangles. A modal analysis conducted at 7.25 GHz
yields the modal significances shown in Fig. 7.1(b). The modes are sorted
according to their significance. Three modes are found to be significant.

The resulting characteristic current correlation coefficients computed accord-
ing to (2.51) are shown in Fig. 7.2. All characteristic surface current densities
taken into account are correlated, confirming the general statements made in
section 7.1. Although there are some modes that are only weakly correlated,
there is no systematic pattern as known from symmetric objects.

Now, the port placement procedure introduced in section 7.2 is applied to the
L-shaped PEC plate. The maximum allowed envelope correlation coefficient is
set to ECCmax = 0.2,108 resulting in the port configuration depicted in Fig. 7.1(a).
Four antenna ports consisting each of one delta-gap source are found.

108This value is derived from [55], where the maximum tolerable correlation is given based on the
evaluation of a complete MIMO system employing multimode antennas.
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(a) (b)

Figure 7.1 Two-dimensional asymmetric L-shaped PEC plate. (a) Plate with optimized port configuration. The
four antenna ports each consist of one delta-gap source which are denoted by the black lines and the colored
arrows. (b) Modal significances at 7.25 GHz. © 2020 IEEE [PM20].

Figure 7.2 Characteristic current correlation coefficients of asymmetric L-shaped PEC plate according to
Fig. 7.1(a) at 7.25 GHz computed using (2.51).

The corresponding normalized modal weighting coefficients are shown in
Fig. 7.3(a). As intended, the normalized modal weighting coefficient of mode 1,
the most significant mode (Fig. 7.1(b)), is close to 1, i.e., maximized by port 1.
Accordingly, the other normalized modal weighting coefficients of port 1 are
low, but not zero. This result corroborates that the modal weighting coefficients
can in general not be made zero, as predicted in section 7.1. Port 2, in contrast,
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(a) (b)

Figure 7.3 Excitation parameters of asymmetric L-shaped PEC plate with port configuration according to
Fig. 7.1(a) at 7.25 GHz. (a) Normalized modal weighting coefficients. (b) Envelope correlation coefficients.
© 2020 IEEE [PM20].

excites two dominant modes (modes 4 and 6), whereas ports 3 and 4 excite a
mixture of several modes. Obviously, this is not an intuitive result which could
have been found manually in a systematic way. All in all, it is observed that each
mode is excited by each port at least to some extent.

The inspection of the envelope correlation coefficients in Fig. 7.3(b) confirms
that the four antenna ports are only weakly correlated, as intended. The max-
imum correlation occurs between ports 2 and 3 with an envelope correlation
coefficient of approximately 0.12, i.e., below the chosen threshold. Apparently,
the successful strategy does not consist of exciting one dominant mode, but a
combination of modes so that the products of the normalized modal weighting
coefficients in (2.50) add up destructively.

The example demonstrates that the port placement procedure is capable of
finding weakly correlated antenna ports. The question remains whether the port
configuration can be realized in practice. As discussed in section 6.1.2, the
delta-gap sources can be readily replaced by excitation slots. On a symmetric
antenna, the placement and the form of the slots is subject to strict rules as the
symmetry must be preserved. On an asymmetric antenna, in contrast, the actual
form of the excitation slots is another degree of freedom. As discussed in the
introduction of this chapter, the antenna object should not be altered significantly.
For this reason, the excitation slots should be made electrically small.

Therefore, the delta-gap sources of ports 1 and 2 are replaced by simple short
excitation slots as depicted in Fig. 7.4(a), whose orientations are inherited from
the respective delta gaps (cf. Fig. 7.1(a)). Likewise, the positions of the feed
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Figure 7.4 Two-dimensional asymmetric L-shaped PEC plate with excitation slots. (a) Placement of excitation
slots derived from Fig. 7.1(a). The feed points within the excitation slots are denoted by the primed numbers and
the colored arrows. (b) Two-component matching circuits between the antenna ports and the respective feed points
derived by means of the bandwidth potential method. © 2020 IEEE [PM20].

points, which are denoted by the arrows corresponding to a voltage applied
across the slot width, are inherited from the positions of the original delta-gap
sources. As the delta-gap sources of ports 3 and 4 are close to the edge of the
plate, they are replaced by the electrically small inductive coupling elements
introduced in [42]. These offer the advantage that they do not extend towards
the interior of the plate, allowing a compact implementation [43]. They consist
of a short slot portion at the plate edge which is inherited from the delta gap and
contains the feed point, and a long slot portion parallel to the plate edge.

As all four excitation slots are electrically small, inherent impedance matching
by controlling the slot dimensions as was done in section 6.1.3 is not possible.
Therefore, a matching circuit between each antenna port and its respective
feed point is required [43] in order to realize a sufficient impedance match
to the reference impedance 50Ω. For the purpose of this chapter, simple two-
component matching circuits consisting of ideal capacitors and/or inductors are
sufficient. By means of the bandwidth potential method [100,101], the matching
circuit topologies and components offering the largest bandwidth are found.109

The resulting matching circuits are listed in Fig. 7.4(b).
The L-shaped PEC plate with excitation slots is now simulated in Empire XPU.

The matching circuits are taken into account by means of a circuit co-simulation.

109The bandwidth potential is the maximum bandwidth that can be obtained by means of a two-
component matching circuit [100]. It can be computed for all possible circuit topologies. This
way, different topologies can be compared and the optimum can be selected.
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(a) (b)

Figure 7.5 Input and excitation parameters of asymmetric L-shaped PEC plate with excitation slots and two-
component matching circuits according to Fig. 7.4. (a) S-parameters (absolute values). (b) Envelope correlation
coefficients at 7.25 GHz. © 2020 IEEE [PM20].

The resulting S-parameters are shown in Fig. 7.5(a). Thanks to the bandwidth
potential method, all four antenna ports are sufficiently matched to 50Ω around
the center frequency 7.25 GHz with a reasonable bandwidth. Moreover, the
mutual coupling between most ports is sufficiently low. However, the transmission
coefficients between ports 2 and 4 (𝑆42, 𝑆24) as well as ports 2 and 3 (𝑆32, 𝑆23)
are greater than −20 dB around the center frequency, indicating comparatively
strong mutual coupling.

Nevertheless, the inspection of the envelope correlation coefficients in
Fig. 7.5(b) confirms that all four antenna ports are still only weakly corre-
lated. The maximum correlation occurs again between ports 2 and 3 with an
envelope correlation coefficient of 0.18, having increased only slightly. This can
be attributed to the fact that the antenna shape has not been altered significantly.
It is thus concluded that the port placement procedure is basically suitable for
practical asymmetric multimode antenna designs. It is found, however, that the
mutual coupling between ports is more critical than the correlation and may
become a limiting factor.

7.3.2 Three-Dimensional Object

In order to gain further insight and corroborate the results from the previous
example, a more complex example is analyzed next. The three-dimensional
asymmetric PEC object as depicted in Fig. 7.6(a) and (b) is considered. It
is based on a rectangular cuboid with dimensions 40 mm × 20 mm × 10 mm
whose bottom face is removed. Furthermore, a rectangular portion of the cuboid
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Figure 7.6 Three-dimensional asymmetric PEC object with excitation slots. The feed points within the excitation
slots of the six antenna ports are denoted by the primed numbers and the colored arrows. (a) Isometric view.
(b) Reversed view. (c) Two-component matching circuits between the antenna ports and the respective feed points
derived by means of the bandwidth potential method. © 2020 IEEE [PM20].

with dimensions 20 mm × 10 mm × 5 mm is removed in order to introduce
asymmetry. A modal analysis of the object without the excitation slots conducted
at 7.25 GHz with a mesh consisting of 2974 triangles yields 31 characteristic
modes to be taken into account, including six significant modes.

The port placement procedure from section 7.2 is applied to this object
allowing a maximum envelope correlation coefficient ECCmax = 0.2, yielding
six weakly correlated antenna ports. As explained in the previous subsection,
the resulting delta-gap sources are replaced by electrically small excitation slots
as illustrated in Fig. 7.6(a) and (b). By means of the bandwidth potential method,
the two-component matching circuits listed in Fig. 7.6(c) are determined.

The corresponding simulated S-parameters are shown in Fig. 7.7. All
six antenna ports are sufficiently matched to 50Ω around the center fre-
quency (Fig. 7.7(a)). However, several ports exhibit strong mutual cou-
pling (Fig. 7.7(b)). Nevertheless, the six ports are only weakly correlated
as evidenced by Fig. 7.8. The maximum correlation occurs between ports 2
and 5 as well as ports 5 and 6, reaching the given threshold ECCmax = 0.2.



208 Asymmetric Multimode Antennas

(a) (b)

Figure 7.7 S-parameters (absolute values) of asymmetric PEC object with excitation slots and two-component
matching circuits according to Fig. 7.6. (a) Input reflection coefficients. (b) Transmission coefficients from specified
ports to all other ports. © 2020 IEEE [PM20].

Figure 7.8 Envelope correlation coefficients of asymmetric PEC object with excitation slots and two-component
matching circuits according to Fig. 7.6 at 7.25 GHz. © 2020 IEEE [PM20].

This second example demonstrates that the proposed port placement procedure
can be readily applied to more complex asymmetric antenna objects. However, it
also confirms that the mutual coupling is more critical than the port correlation
and can become prohibitively high despite a low port correlation.

In conclusion, the two examples corroborate that it is basically possible to
realize weakly correlated antenna ports on asymmetric antenna geometries. In
particular, the complexity of the feed networks is greatly reduced to single match-
ing circuits per port and feed point, which are not interconnected (cf. section 6.2).
These results are facilitated by exploiting the characteristic modes and their
connection to the envelope correlation coefficients. This way, the simulation
effort is reduced even though an exhaustive search is employed.
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The proposed port placement procedure can definitely be termed systematic
as it takes into account the basic cause for the correlation of antenna ports,
i.e., ports exciting the same characteristic modes, and tries to minimize it.
Future work should focus on improving the procedure, e.g., by employing a
more sophisticated search algorithm and taking into account mutual coupling.
A disadvantage of the procedure is that it does not provide deeper insight.
Gaining a priori knowledge and deriving systematic design guidelines as has
been done in this thesis for symmetric multimode antennas, apart from the fact
that perfectly uncorrelated antenna ports cannot be realized, is not possible. For
example, the maximum number of weakly correlated antennas ports offered by
a given antenna geometry cannot be predicted. Nevertheless, this knowledge
can now quickly be gained by performing a modal analysis and conducting the
port placement procedure. Therefore, such considerations should not hide the
potential of the proposed method. It should rather be considered as another
building block of a general design environment for multimode antennas.





8 Conclusion

The analysis and the design of multimode antennas for MIMO applications based
on the theory of characteristic modes are investigated. The foremost objective of
this thesis is the design of orthogonal antenna ports in order enable the diversity
required for good MIMO performance. Antenna ports which excite mutually
exclusive sets of characteristic modes are perfectly orthogonal to each other.

However, the characteristic surface current densities of an antenna are in
general not orthogonal to each other. An antenna port will thus generally
excite all modes whose respective characteristic surface current densities are
correlated. It is found, though, that symmetric antenna geometries offer mutually
orthogonal sets of characteristic surface current densities. This observation
is rooted in the fact that the theory of characteristic modes is fundamentally
connected to the theory of symmetry. The characteristic surface current densities
are basis functions of the irreducible representations of the symmetry group
of an antenna. Due to the fundamental orthogonality theorem, characteristic
surface current densities belonging to different irreducible representations or
belonging to different rows of a multi-dimensional irreducible representation
are orthogonal to each other. Consequently, the number of mutually orthogonal
sets of characteristic surface current densities is determined by the number and
the dimensions of the irreducible representations of the symmetry group.

These mutually orthogonal sets can be excited separately by antenna ports
which are designed as basis functions of the irreducible representations. Each
antenna port thus consists of several feed points placed symmetrically on the
antenna element which are driven by means of a feed network in such a way that
the symmetry requirements of the irreducible representations are fulfilled. This
way, one port only excites those modes which belong to the same row of the
same irreducible representation as the port. As the number and the dimensions
of the irreducible representations of a given symmetry group are limited, there
is an upper bound for realizing orthogonal antenna ports which is governed by
the symmetry group of the given antenna geometry.

All optimal orthogonal antenna ports offered by a given antenna geometry can
be generated automatically by means of the projection operator method, yielding
the minimum number of feed points per port. These optimal port configurations
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are only governed by the symmetry group of the antenna and independent of the
actual antenna size. However, the projection operator method does not only enable
an automatic port placement for multimode antennas, but also an automatic
symmetry analysis of characteristic modes. In particular, the characteristic modes
can be assigned systematically to the irreducible representations. This allows the
definition of the fundamental modes per irreducible representation, i.e., those
modes which first become significant as functions of frequency. For the design
of multimode antennas, it is sufficient that only the fundamental modes are
significant and the antenna size can be minimized accordingly.

The findings of this thesis are valid for all finite antenna geometries, i.e., whose
symmetry groups are point groups. The structure of group theory allows to
advantageously utilize various relationships between symmetry groups for ana-
lyzing and designing potential multimode antennas. More complex geometries
may be described by means of group isomorphisms or as direct-product groups,
enabling the reuse of results previously derived for simpler geometries. Moreover,
related symmetry groups may be collected into a family which is generalized by
an infinite symmetry group. The modal results of the corresponding generalized
geometry can be used to predict the modal behavior of all members of the
family. The numerous examples considered within this thesis demonstrate how
the introduced concepts can be readily applied.

In conclusion, the symmetry analysis of characteristic modes and its applica-
tion to the design of multimode antennas yield valuable a priori knowledge. The
maximum number of orthogonal antenna ports and their optimal configurations
are determined from the symmetry of the antenna alone without even conducting
a modal analysis. The generalized modal analysis allows predictions about the
minimum antenna size. Based on the structure of symmetry groups, the diversity
potential of completely different geometries can be compared. This knowledge
enables the systematic design of multimode antennas with more orthogonal
antenna ports than reported so far in the literature.

The design guidelines derived in this thesis can be readily put into practice,
as demonstrated by means of the realized prototype. It is based on a square
geometry which is optimized systematically starting from the symmetry analysis
in conjunction with the generalized modal analysis. The feed network is identified
as a major source of complexity from a practical point of view. The modular
design approach results in a compact and low-profile implementation. The
realized six-port multimode antenna confirms the theoretical findings of this
thesis and proves that the upper bound for orthogonal antenna ports can be
reached with a practical design.
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A Time-Harmonic Electromagnetic Fields

In this appendix, a detailed compilation of the field quantities and equations
employed in chapter 2 is provided. They are all based on the general Maxwell’s
equations in time domain [64]:

rot
(
ℋ(r,𝑡)

)
= 𝒥(r,𝑡) + 𝜕

𝜕𝑡
𝒟(r,𝑡), (A.1a)

rot
(
ℰ(r,𝑡)

)
= − 𝜕

𝜕𝑡
ℬ (r,𝑡) , (A.1b)

div
(
ℬ(r,𝑡)

)
= 0, (A.1c)

div
(
𝒟(r,𝑡)

)
= 𝓆(r,𝑡). (A.1d)

The script-style symbols of the field quantities introduced in (2.1) are used to
emphasize a general time dependence, with 𝑡 denoting time. The continuity
equation expressing the conservation of charge is given by [64]

div𝒥(r,𝑡) = − 𝜕
𝜕𝑡
𝓆(r,𝑡). (A.2)

This equation is implicitly included in Maxwell’s equations and can be derived
by applying the divergence to (A.1a) and then inserting (A.1d).

A.1 Harmonic Time Dependence

It is now assumed that all field quantities in (A.1) have harmonic time dependence.
Any field quantity can then be expressed in the following way, e.g., the electric
field strength [64]:

ℰ(r,𝑡) = ©­«
ℰ𝑥 (r,𝑡)
ℰ𝑦 (r,𝑡)
ℰ𝑧 (r,𝑡)

ª®¬ =
©­«
𝐸̂𝑥 (r) cos

(
𝜔𝑡 + 𝜑𝐸𝑥

(r)
)

𝐸̂𝑦 (r) cos
(
𝜔𝑡 + 𝜑𝐸𝑦

(r)
)

𝐸̂𝑧 (r) cos
(
𝜔𝑡 + 𝜑𝐸𝑧

(r)
) ª®¬ = Re

(
E(r)𝑒 𝑗𝜔𝑡

)
, (A.3)

where 𝐸̂𝑥;𝑦;𝑧 is the real amplitude and 𝜑𝐸𝑥;𝑦;𝑧 the phase of the respective
componentℰ𝑥;𝑦;𝑧 of the time-harmonic electric field strength. The operator Re
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denotes the real part of a complex function. The harmonic time dependence can
be expressed by the complex exponential function, whereas the space dependent
amplitude and phase are collected into the complex amplitude E:

E(r) = ©­«
𝐸̂𝑥 (r)𝑒 𝑗 𝜑𝐸𝑥 (r)

𝐸̂𝑦 (r)𝑒 𝑗 𝜑𝐸𝑦 (r)

𝐸̂𝑧 (r)𝑒 𝑗 𝜑𝐸𝑧 (r)

ª®¬ . (A.4)

This way, the time and the space dependence are separated. As the time
dependence is deterministic, the important information is completely contained
in the complex amplitude.

If all field quantities are expressed in this form and inserted into (A.1),
Maxwell’s equations can be written in terms of complex amplitudes alone. This
is exemplarily shown for (A.1a):

rot
(
Re

(
H(r)𝑒 𝑗𝜔𝑡

) )
= Re

(
J(r)𝑒 𝑗𝜔𝑡

)
+ 𝜕

𝜕𝑡

(
Re

(
D(r)𝑒 𝑗𝜔𝑡

) )
. (A.5)

Due to the linearity of the operator Re [64], this can be rewritten as follows:

Re
(
rot

(
H(r)𝑒 𝑗𝜔𝑡

) )
= Re

(
J(r)𝑒 𝑗𝜔𝑡 + 𝜕

𝜕𝑡

(
D(r)𝑒 𝑗𝜔𝑡

) )
. (A.6)

In this form, it is obvious that the equation also holds for the argument of Re.
Furthermore, the derivative with respect to time can be carried out explicitly
and the time dependence can be dropped, finally yielding

rot
(
H(r)

)
= J(r) + 𝑗𝜔D(r). (A.7)

Applying this derivation to the other equations in (A.1) yields the time-harmonic
Maxwell’s equations in (2.1)

If in addition the constitutive relationships (2.2) are taken into account, the
time-harmonic Maxwell’s equations can be expressed in terms of the field
strengths alone:

rot
(
H(r)

)
= J(r) + 𝑗𝜔𝜀E(r), (A.8a)

rot
(
E(r)

)
= − 𝑗𝜔𝜇H(r), (A.8b)

div
(
H(r)

)
= 0, (A.8c)

div
(
E(r)

)
=
𝑞(r)
𝜀
, (A.8d)

which forms the basis for the subsequent derivations.
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A.2 Homogeneous Helmholtz Equation

The homogeneous Helmholtz equation describes the propagation of time-
harmonic electromagnetic waves in a homogeneous, source-free region (J(r) = 0,
𝑞(r) = 0). It is derived by applying the curl to (A.8a) and (A.8b) [64]:

rot
(
rot

(
H(r)

) )
= 𝑗𝜔𝜀rot

(
E(r)

)
, (A.9a)

rot
(
rot

(
E(r)

) )
= − 𝑗𝜔𝜇rot

(
H(r)

)
. (A.9b)

Inserting (A.8b) into (A.9a) and (A.8a) into (A.9b) yields

rot
(
rot

(
H(r)

) )
= 𝑘2H(r), (A.10a)

rot
(
rot

(
E(r)

) )
= 𝑘2E(r), (A.10b)

with 𝑘2 = 𝜔2𝜀𝜇. Using rot
(
rotF

)
= grad

(
divF

)
− ΔF, where F is an arbitrary

vector field, and exploiting the divergencelessness of the magnetic and the
electric field strength yields the homogeneous vector Helmholtz equation:

ΔH(r) + 𝑘2H(r) = 0, (A.11a)

ΔE(r) + 𝑘2E(r) = 0, (A.11b)

which is the same for both the magnetic and the electric field strength.

A.3 Potentials

As the magnetic flux density is divergenceless (2.1c), it can be expressed as the
curl of some other vector field [64]:

B(r) = 𝜇H(r) = rot
(
A(r)

)
. (A.12)

The vector field A is called the magnetic vector potential. This definition is now
inserted into (A.8b), yielding

rot
(
E(r) + 𝑗𝜔A(r)

)
= 0. (A.13)

Any curl-free vector field can be expressed as the gradient of some scalar
function [64]:

E(r) + 𝑗𝜔A(r) = −grad
(
𝜙(r)

)
. (A.14)
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The scalar function 𝜙 is called the electric scalar potential. The electric and
magnetic field quantities can now be expressed in terms of the magnetic vector
potential and the electric scalar potential, as given in (2.3) and (2.4).

A.4 Inhomogeneous Helmholtz Equation

The potentials are introduced in order to treat the radiation of electromagnetic
waves by a source region (J(r) ≠ 0, 𝑞(r) ≠ 0) [5]. To this end, (2.3) and (2.4)
are inserted into (A.8a) [64], yielding

rot
(
rot

(
A(r)

) )
= 𝜇J(r) + 𝜔2𝜀𝜇A(r) − 𝑗𝜔𝜀𝜇grad

(
𝜙(r)

)
. (A.15)

With rot
(
rotA

)
= grad

(
divA

)
− ΔA and 𝑘2 = 𝜔2𝜀𝜇, this can be rewritten as

ΔA(r) + 𝑘2A(r) = −𝜇J(r) + grad
(
div

(
A(r)

)
+ 𝑗𝜔𝜀𝜇𝜙(r)

)
. (A.16)

The divergence of the magnetic vector potential is now chosen to be [64]

div
(
A(r)

)
= − 𝑗𝜔𝜀𝜇𝜙(r), (A.17)

which is known as Lorenz gauge. Applying this to (A.16) yields the inhomoge-
neous vector Helmholtz equation for the magnetic vector potential (2.5):

ΔA(r) + 𝑘2A(r) = −𝜇J(r). (A.18)

Next, (2.4) is inserted into (A.8d) [65]:

− div
(
grad

(
𝜙(r)

) )
− 𝑗𝜔div

(
A(r)

)
=
𝑞(r)
𝜀
. (A.19)

With div
(
grad𝜙

)
= Δ𝜙, the Lorenz gauge (A.17), and 𝑘2 = 𝜔2𝜀𝜇, this reduces to

Δ𝜙(r) + 𝑘2𝜙(r) = −𝑞(r)
𝜀
, (A.20)

which is the inhomogeneous scalar Helmholtz equation for the electric scalar
potential (2.6). The Green’s function method [66] is employed in order to find
a solution to the inhomogeneous Helmholtz equation, yielding the integral
equations (2.8) and (2.9).
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A.5 Complex Poynting Theorem

The complex Poynting theorem describes the power flow of time-harmonic
electromagnetic fields. The derivation of the complex Poynting theorem is based
on the first two time-harmonic Maxwell’s equations ((A.8a) and (A.8b)) as they
completely characterize the dynamic behavior of electromagnetic fields. As a
first step, the electric current density J is split into an impressed current density Ji
and a conduction current density J𝜅 = 𝜅E due to a finite conductivity 𝜅 [64]:

rot
(
H(r)

)
= Ji (r) + 𝜅E(r) + 𝑗𝜔𝜀E(r), (A.21a)

rot
(
E(r)

)
= − 𝑗𝜔𝜇H(r). (A.21b)

In order to convert the field quantities into power-related quantities (power
densities with unit W m−3), the complex conjugate of (A.21a) is multiplied
by 1

2 E and (A.21b) is multiplied by 1
2 H∗ [64]:110

1
2

E(r) · rot
(
H∗ (r)

)
=

1
2

E(r) · J∗i (r) +
𝜅

2


E(r)



2 − 𝑗
𝜔𝜀

2


E(r)



2
, (A.22a)

1
2

H∗ (r) · rot
(
E(r)

)
= − 𝑗 𝜔𝜇

2


H(r)



2
. (A.22b)

Next, (A.22b) is subtracted from (A.22a) [64]:

1
2

E(r) · rot
(
H∗ (r)

)
− 1

2
H∗ (r) · rot

(
E(r)

)
=

=
1
2

E(r) · J∗i (r) +
𝜅

2


E(r)



2 + 𝑗 𝜔𝜇
2



H(r)


2 − 𝑗

𝜔𝜀

2


E(r)



2
. (A.23)

By means of the divergence theorem, the left-hand side of (A.23) is simplified
to − 1

2 div
(
E × H∗) [64], yielding the differential form of the complex Poynting

theorem in terms of power densities:

0 =
1
2

E(r)·J∗i (r)+
𝜅

2


E(r)



2+ 𝑗 𝜔
2

(
𝜇


H(r)



2−𝜀


E(r)



2
)
+1

2
div

(
E(r)×H∗ (r)

)
.

(A.24)

110The factor 1
2 is due to the use of complex amplitudes. Power quantities are computed using root

mean square (RMS) field quantities, with ERMS = 1√
2
E in the time-harmonic case.
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Integrating this equation over a volume 𝑉 enclosing a source region eventually
yields the integral form of the complex Poynting theorem in terms of powers:

0 =
1
2

∭
𝑉

(
E(r) · J∗i (r)

)
d𝑉 + 𝜅

2

∭
𝑉



E(r)


2d𝑉 +

+ 𝑗
𝜔

2

∭
𝑉

(
𝜇


H(r)



2 − 𝜀


E(r)



2
)
d𝑉 + 1

2

∯
𝜕𝑉

(
E(r) × H∗ (r)

)
dS, (A.25)

where Gauss’s law is used to convert the volume integral containing div
(
E × H∗)

into a surface integral. The first integral on the right-hand side of A.25 can be
interpreted as the total complex power, which is impressed into the volume by a
power source. In the context of characteristic modes, however, there are no sources
and the term should be simply referred to as the total complex power (cf. (2.19)).
The second integral in (A.25) denotes the real power dissipated due to conduction
losses (finite conductivity). In the context of characteristic modes for perfect
electric conductors, this term is irrelevant. The third integral in (A.25), in
contrast, is related to reactive power due to magnetic and electric energy storage.
The last integral in A.25, finally, describes the complex power leaving or entering
the volume through its surface by means of an electromagnetic wave. In the far
field (𝜕𝑉 → 𝑆∞), this term is purely real and denotes the radiated power [5],
which is due to the fact that E and H are in phase. Furthermore, the direction of
wave propagation is perpendicular to 𝑆∞ [5] so that

𝑃rad =
1
2

∯
𝑆∞

(
E(r) × H∗ (r)

)
dS =

1
2

∯
𝑆∞



E(r) × H∗ (r)


d𝑆. (A.26)

Additionally, it can be exploited that E and H are perpendicular in the far field
(transverse electromagnetic wave) [5]:

𝑃rad =
1
2

∯
𝑆∞



E(r) × H∗ (r)


d𝑆 =

1
2

∯
𝑆∞



E(r)




H∗ (r)



 sin
(
∠
(
E,H

)︸  ︷︷  ︸
𝜋/2

)
d𝑆

=
1
2

∯
𝑆∞



E(r)




H(r)



d𝑆. (A.27)

Finally, ∥E∥ and ∥H∥ are related by the wave impedance 𝑍0 [5], yielding

𝑃rad =
1
2

∯
𝑆∞



E(r)




H(r)



d𝑆 =
1

2𝑍0

∯
𝑆∞



E(r)


2d𝑆. (A.28)



B Inner Product

The functions considered in this thesis, e.g., surface current densities,
belong to the space of complex vector-valued square-integrable func-
tions. This function space is called the Hilbert space 𝐿2 [79]. Any func-
tion f (r) = ( 𝑓𝑥 (r), 𝑓𝑦 (r), 𝑓𝑧 (r))T : R3 → C3 of this space satisfies [75]

∞∫
−∞

∞∫
−∞

∞∫
−∞



f (r)

2d𝑥d𝑦d𝑧 =
∞∫

−∞

∞∫
−∞

∞∫
−∞

(�� 𝑓𝑥 (r)��2+�� 𝑓𝑦 (r)��2+�� 𝑓𝑧 (r)��2)d𝑥d𝑦d𝑧 < ∞.

(B.1)
Physically, this can be interpreted as a power limiting property, i.e., the power
cannot become infinite (cf. appendix A.5).

In this Hilbert space, the inner product of two vector-valued functions f and g
is defined as follows [75, 79]:〈

f (r),g(r)
〉
=

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
f∗ (r) · g(r)

)
d𝑥d𝑦d𝑧

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
𝑓 ∗𝑥 (r)𝑔𝑥 (r) + 𝑓 ∗𝑦 (r)𝑔𝑦 (r) + 𝑓 ∗𝑧 (r)𝑔𝑧 (r)

)
d𝑥d𝑦d𝑧

=

〈
𝑓𝑥 (r),𝑔𝑥 (r)

〉
+

〈
𝑓𝑦 (r),𝑔𝑦 (r)

〉
+

〈
𝑓𝑧 (r),𝑔𝑧 (r)

〉
. (B.2)

The inner product of two vector-valued functions can also be written as the sum
of the inner products of their scalar components.

The norm of a vector-valued function f results directly from the definition of
the inner product [75]:111

〈
f (r),f (r)

〉
=

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
f∗ (r) · f (r)

)
d𝑥d𝑦d𝑧 =

∞∫
−∞

∞∫
−∞

∞∫
−∞



f (r)

2d𝑥d𝑦d𝑧.

(B.3)
111In order to avoid confusion, the symbol ∥ · ∥ is reserved for the norm of a vector throughout this

thesis, e.g., ∥v∥2 = |𝑣𝑥 |2 + |𝑣𝑦 |2 + |𝑣𝑧 |2.
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Based on its definition, the inner product has the following properties [75]:〈
f1 (r),f2 (r)

〉
=

〈
f2 (r),f1 (r)

〉∗
, (B.4a)〈

𝑎1f1 (r),𝑎2f2 (r)
〉
= 𝑎∗1𝑎2

〈
f1 (r),f2 (r)

〉
, (B.4b)〈

f1 (r) + f2 (r), g(r)
〉
=

〈
f1 (r),g(r)

〉
+

〈
f2 (r),g(r)

〉
, (B.4c)〈

g(r),f1 (r) + f2 (r)
〉
=

〈
g(r),f1 (r)

〉
+

〈
g(r),f2 (r)

〉
, (B.4d)〈

f (r),f (r)
〉
≥ 0, (B.4e)〈

f (r),f (r)
〉
= 0 if and only if f (r) = 0, (B.4f)

with 𝑎1,𝑎2 ∈ C and f,f1,f2,g ∈ 𝐿2.

B.1 Gram-Schmidt Orthogonalization Process

Now, it is assumed that a finite set of 𝑑 linearly independent vector-valued
functions f1,f2, . . . ,f𝑑 spans a subspace of 𝐿2. A set of 𝑑 mutually orthogonal
basis functions ψ1,ψ2, . . . ,ψ𝑑 spanning the same subspace is constructed
from the given functions by means of the Gram-Schmidt orthogonalization
process [75, 79]. The 𝜈-th basis function ψ𝜈 is generated in the following way:

ψ𝜈 (r) = f𝜈 (r) −
𝜈−1∑︁
𝜇=1

〈
ψ𝜇 (r),f𝜈 (r)

〉〈
ψ𝜇 (r),ψ𝜇 (r)

〉ψ𝜇 (r). (B.5)

For the first three basis functions, the procedure is conducted as follows:

ψ1 (r) = f1 (r), (B.6a)

ψ2 (r) = f2 (r) −
〈
ψ1 (r),f2 (r)

〉〈
ψ1 (r),ψ1 (r)

〉ψ1 (r), (B.6b)

ψ3 (r) = f3 (r) −
〈
ψ1 (r),f3 (r)

〉〈
ψ1 (r),ψ1 (r)

〉ψ1 (r) −
〈
ψ2 (r),f3 (r)

〉〈
ψ2 (r),ψ2 (r)

〉ψ2 (r). (B.6c)

The generated mutually orthogonal basis functions can be normalized after the
orthogonalization process if an orthonormal set of basis functions is desired.



C Generalized Eigenvalue Problem

The beneficial properties of characteristic modes are due to the choice of the
operators in the generalized eigenvalue problem (2.14). In this appendix, it is
shown how these properties are derived in a general way.

The following generalized eigenvalue problem with the arbitrary linear
operators 𝐴 and 𝐵 is considered:112

𝐴J𝑛 (r) = 𝜆𝑛𝐵J𝑛 (r). (C.1)

The 𝑛-th eigenfunction J𝑛 corresponding to the 𝑛-th eigenvalue 𝜆𝑛 is in general
a complex vector-valued function J𝑛 (r) : R3 → C3.

Now, the operators 𝐴 and 𝐵 are given some properties.113 First of all, the
operators are assumed to be real:

𝐴f ∈ R3, 𝐵f ∈ R3, if f ∈ R3, (C.2)

i.e., the result of the operations 𝐴f or 𝐵f is real if the arbitrary function f is
real [68]. Furthermore, the operators are assumed to be symmetric (self-adjoint).
In this case, the following identity holds for the inner product with two arbitrary
functions f and g [68, 75]:〈

f (r), 𝐴g(r)
〉
=

〈
𝐴f (r), g(r)

〉
, (C.3a)〈

f (r), 𝐵g(r)
〉
=

〈
𝐵f (r), g(r)

〉
. (C.3b)

Finally, 𝐵 is assumed to be positive definite [68]:〈
f (r), 𝐵f (r)

〉
> 0 ∀ f ≠ 0. (C.4)

i.e., the inner product with some arbitrary function f is always greater than 0.

112The simple eigenvalue problem 𝐴J𝑛 (r) = 𝜆𝑛J𝑛 (r) arises if 𝐵 is equal to the identity operator 𝐸.
113These are the properties of the real part 𝑅 and the imaginary part 𝑋 of the impedance operator 𝑍

as discussed in section 2.2 so that 𝐴 may be replaced by 𝑋 and 𝐵 by 𝑅.
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C.1 Real Eigenvalues and Eigenfunctions

An inner product with the eigenfunction J𝑛 is applied to (C.1) in order to obtain
an expression containing the complex conjugate eigenvalue [75]:〈

𝐴J𝑛 (r),J𝑛 (r)
〉
=

〈
𝜆𝑛𝐵J𝑛 (r),J𝑛 (r)

〉
= 𝜆∗𝑛

〈
𝐵J𝑛 (r),J𝑛 (r)

〉
= 𝜆∗𝑛

〈
J𝑛 (r),𝐵J𝑛 (r)

〉
, (C.5)

where the symmetry of 𝐵 is exploited. Due to the symmetry of 𝐴, this can also
be written as〈

𝐴J𝑛 (r),J𝑛 (r)
〉
=

〈
J𝑛 (r),𝐴J𝑛 (r)

〉
=

〈
J𝑛 (r),𝜆𝑛𝐵J𝑛 (r)

〉
= 𝜆𝑛

〈
J𝑛 (r),𝐵J𝑛 (r)

〉
. (C.6)

Both equations must be equal. As J𝑛 ≠ 0 by definition, ⟨J𝑛,𝐵J𝑛⟩ > 0 due to the
positive definiteness of 𝐵. Therefore

𝜆∗𝑛 = 𝜆𝑛, i.e., 𝜆𝑛 ∈ R. (C.7)

As both the eigenvalue and the operators in (C.1) are real, the eigenfunctions,
too, can be chosen to be real [25].

C.2 Orthogonality of Eigenfunctions

An inner product with another eigenfunction J𝑚 corresponding to the eigen-
value 𝜆𝑚 ≠ 𝜆𝑛 if 𝑚 ≠ 𝑛 is applied to (C.1) [75]:〈

J𝑚 (r),𝐴J𝑛 (r)
〉
=

〈
J𝑚 (r),𝜆𝑛𝐵J𝑛 (r)

〉
= 𝜆𝑛

〈
J𝑚 (r),𝐵J𝑛 (r)

〉
. (C.8)

Due to the symmetry of 𝐴 and 𝐵, this can also be written as〈
J𝑚 (r),𝐴J𝑛 (r)

〉
=

〈
𝐴J𝑚 (r),J𝑛 (r)

〉
=

〈
𝜆𝑚𝐵J𝑚 (r),J𝑛 (r)

〉
= 𝜆∗𝑚

〈
J𝑚 (r),𝐵J𝑛 (r)

〉
. (C.9)

As both equations must be equal, it follows that(
𝜆𝑚 − 𝜆𝑛

) 〈
J𝑚 (r),𝐵J𝑛 (r)

〉
= 0. (C.10)
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If 𝑚 ≠ 𝑛, 𝜆𝑚 ≠ 𝜆𝑛 and it follows immediately that〈
J𝑚 (r),𝐵J𝑛 (r)

〉
= 0, for 𝑚 ≠ 𝑛. (C.11)

In the case 𝑚 = 𝑛, ⟨J𝑛,𝐵J𝑛⟩ > 0 due to the positive definiteness of 𝐵. Without
loss of generality, the eigenfunctions are normalized so that

1
2

〈
J𝑛 (r),𝐵J𝑛 (r)

〉
= 1. (C.12)

In the case of a degenerate eigenvalue, 𝜆𝑚 = 𝜆𝑛 although 𝑚 ≠ 𝑛 and no direct
statement regarding orthogonality can be derived. However, the eigenfunctions
belonging to a 𝑑-fold degenerate eigenvalue span a closed subspace and linear
combinations of eigenfunctions are again eigenfunctions to the same eigenvalue.
Therefore, a set of 𝑑 orthogonal eigenfunctions can always be found [76], e.g., by
means of the Gram-Schmidt orthogonalization process (appendix B.1).

The orthogonality of the normalized eigenfunctions with respect to 𝐵 can be
written in a compact form using the Kronecker delta:

1
2

〈
J𝑚 (r),𝐵J𝑛 (r)

〉
= 𝛿𝑚𝑛. (C.13)

The orthogonality with respect to 𝐴 is now easily derived by applying the inner
product to (C.1) and exploiting the orthogonality with respect to 𝐵:

1
2

〈
J𝑚 (r),𝐴J𝑛 (r)

〉
=

1
2
𝜆𝑛

〈
J𝑚 (r),𝐵J𝑛 (r)

〉
= 𝜆𝑛𝛿𝑚𝑛. (C.14)

C.3 Rayleigh Quotient

An eigenvalue 𝜆𝑛 of a generalized eigenvalue problem can also be written as
the Rayleigh quotient containing the operators 𝐴 and 𝐵 and the corresponding
eigenfunction J𝑛 [102]:

𝜆𝑛 =

〈
J𝑛 (r),𝐴J𝑛 (r)

〉〈
J𝑛 (r),𝐵J𝑛 (r)

〉 . (C.15)

This notation is especially suitable for the physical interpretation of the eigenvalue.
The eigenvalue of a characteristic mode, for example, denotes the ratio of reactive
power to radiated power.



226 Generalized Eigenvalue Problem

C.4 Modal Decomposition

An arbitrary function J is now written as a linear combination of eigenfunc-
tions [24]:

J(r) =
∞∑︁
𝑛=1

𝑎𝑛J𝑛 (r). (C.16)

In order to determine the weighting coefficients 𝑎𝑛, first, the operators of the
generalized eigenvalue problem are applied to the function:

𝐴J(r) =
∞∑︁
𝑛=1

𝑎𝑛𝐴J𝑛 (r), (C.17a)

𝐵J(r) =
∞∑︁
𝑛=1

𝑎𝑛𝐵J𝑛 (r). (C.17b)

Next, the inner product is formed with an arbitrary eigenfunction:〈
J𝑚 (r),𝐴J(r)

〉
=

∞∑︁
𝑛=1

𝑎𝑛

〈
J𝑚 (r),𝐴J𝑛 (r)

〉
, (C.18a)

〈
J𝑚 (r),𝐵J(r)

〉
=

∞∑︁
𝑛=1

𝑎𝑛

〈
J𝑚 (r),𝐵J𝑛 (r)

〉
. (C.18b)

Exploiting the orthogonality of the eigenfunctions with respect to the operators
yields 〈

J𝑚 (r),𝐴J(r)
〉
= 2𝜆𝑚𝑎𝑚, (C.19a)〈

J𝑚 (r),𝐵J(r)
〉
= 2𝑎𝑚. (C.19b)

Therefore, the weighting coefficients can in general be written as

𝑎𝑛 =
1
2

〈
J𝑛 (r),𝐵J(r)

〉
=

〈
J𝑛 (r),𝐴J(r)

〉
2𝜆𝑛

. (C.20)

In the special case of characteristic modes, the weighting coefficients can also
be expressed in terms of the impedance operator 𝑍 and thus directly related to
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the impressed electric field strength Ei:

𝑎𝑛 =
1
2

〈
J𝑛 (r),𝑅J(r)

〉
=

1
2

〈
J𝑛 (r),

(
𝑍 − 𝑗 𝑋

)
J(r)

〉
=

1
2

〈
J𝑛 (r),𝑍J(r)

〉
− 𝑗

1
2

〈
J𝑛 (r),𝑋J(r)

〉
=

1
2

〈
J𝑛 (r),𝑍J(r)

〉
− 𝑗𝜆𝑛𝑎𝑛. (C.21)

Therefore:

𝑎𝑛 =

1
2

〈
J𝑛 (r),𝑍J(r)

〉
1 + 𝑗𝜆𝑛

=

1
2

〈
J𝑛 (r),Ei (r)

〉
1 + 𝑗𝜆𝑛

. (C.22)

C.5 Consequences of Operator Invariance

It is now assumed that the operators 𝐴 and 𝐵 are invariant under the symmetry
operations 𝑇 of a given symmetry group. In this case, the operators commute
with the corresponding transformation operators 𝑃(𝑇) [66, 77]:

𝑃(𝑇)
(
𝐴J𝑛 (r)

)
= 𝐴

(
𝑃(𝑇)J𝑛 (r)

)
, 𝑃(𝑇)

(
𝐵J𝑛 (r)

)
= 𝐵

(
𝑃(𝑇)J𝑛 (r)

)
. (C.23)

Applying a transformation operator to both sides of the eigenvalue problem (C.1)
thus yields

𝐴
(
𝑃(𝑇)J𝑛 (r)

)
= 𝜆𝑛𝐵

(
𝑃(𝑇)J𝑛 (r)

)
. (C.24)

As explained in section 3.4.2, 𝑃(𝑇)J𝑛 is an eigenfunction belonging to the in
general 𝑑-fold degenerate eigenvalue 𝜆𝑛 for any 𝑇 of the symmetry group. It can
thus be expressed as a linear combination of 𝑑 eigenfunctions J𝑛,1,J𝑛,2, . . . ,J𝑛,𝑑
belonging to the same eigenvalue:

𝑃(𝑇)J𝑛,𝜈 (r) =
𝑑∑︁

𝜇=1
Γ𝜇𝜈 (𝑇)J𝑛,𝜇 (r), 𝜈 = 1,2, . . . ,𝑑, (C.25)

i.e., the eigenfunctions transform under symmetry operations in the same
way as basis functions of the irreducible representations according to (3.22).
The weighting coefficients Γ𝜇𝜈 can be collected into 𝑑 × 𝑑 representation
matrices 𝚪(𝑇) which must form a homomorphic mapping according to (3.18). In
order to prove this, the action of two transformation operators in succession (3.15)
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is examined [77]. On the one hand, this can be written as follows with (C.25)
and using (3.15) and (3.14) [75, 77]:

𝑃(𝑇1𝑇2)J𝑛,𝜈 (r) = 𝑃(𝑇1)
(
𝑃(𝑇2)J𝑛,𝜈 (r)

)
= 𝑃(𝑇1)

( 𝑑∑︁
𝜇=1

Γ𝜇𝜈 (𝑇2)J𝑛,𝜇 (r)
)

=

𝑑∑︁
𝜇=1

Γ𝜇𝜈 (𝑇2)𝑃(𝑇1)J𝑛,𝜇 (r)

=

𝑑∑︁
𝜇=1

𝑑∑︁
𝜅=1

Γ𝜇𝜈 (𝑇2)Γ𝜅𝜇 (𝑇1)J𝑛,𝜅 (r)

=

𝑑∑︁
𝜅=1

[𝚪(𝑇1)𝚪(𝑇2)]𝜅𝜈 J𝑛,𝜅 (r), (C.26)

where [·]𝜅𝜈 denotes the element of the 𝜅-th row and the 𝜈-th column of the
matrix product. On the other hand, this can also be written as [77]

𝑃(𝑇1𝑇2)J𝑛,𝜈 (r) =
𝑑∑︁
𝜅=1

Γ𝜅𝜈 (𝑇1𝑇2)J𝑛,𝜅 (r). (C.27)

Comparing the weighting coefficients in both equations finally yields

𝚪(𝑇1𝑇2) = 𝚪(𝑇1)𝚪(𝑇2), (C.28)

i.e., a homomorphic mapping, proving that (C.25) indeed describes the transfor-
mation of eigenfunctions according to a representation. The representation is
irreducible since the dimension of the representation is dictated by the degeneracy
of the respective eigenvalue and thus minimal.

The derivation conducted in section 3.4.2 in the context of characteristic
modes is applicable to arbitrary eigenvalue problems. If the operators of the
eigenvalue problem are invariant under symmetry operations, the eigenfunctions
are basis functions of the irreducible representations of the symmetry group.



D Computation of Representation Matrices

In this appendix, the computation of representation matrices is carried out
explicitly for the sake of illustration by means of two examples. For this purpose,
the symmetry group 𝐷3 (equilateral triangular plate) and the symmetry group 𝐷4
(square plate) are chosen as they are most extensively discussed in this thesis.

D.1 Representation Matrices of Triangular Plate

The representation matrices of the two-dimensional third irreducible representa-
tion Γ (3) of the symmetry group 𝐷3 presented in Table 4.5 are computed. The
computation is based on the two scalar basis functions

𝜓
(3)
1 (𝑥 ′,𝑦′) = 𝑥 ′, 𝜓

(3)
2 (𝑥 ′,𝑦′) = 𝑦′, (D.1)

defined on an equilateral triangular domain with 𝑦′ ∈
[ 1√

3
𝑥 ′ − 𝑎

3 ,−
1√
3
𝑥 ′ + 𝑎

3
]114

and 𝑥 ′ ∈
[
−𝑅i,𝑅u]115, as shown in Fig. 4.6.

First, it is checked that the two basis functions are indeed orthogonal:

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝜓 (3)

2 (𝑥 ′,𝑦′)
〉
=

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′𝑦′d𝑦′d𝑥 ′ = 0. (D.2)

Additionally, the basis functions need to be normalized:116

𝐾 =

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝜓 (3)

1 (𝑥 ′,𝑦′)
〉
=

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝜓 (3)

2 (𝑥 ′,𝑦′)
〉

=

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′2d𝑦′d𝑥 ′ =
𝑎/

√
3∫

−𝑎/(2
√

3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′2d𝑦′d𝑥 ′ =
𝑎4

32
√

3
.

(D.3)

114− 1√
3
𝑥′ + 𝑎

3 and 1√
3
𝑥′ − 𝑎

3 describe the upper and the lower edge, respectively, of the equilateral
triangular plate as linear functions of 𝑥′, see Fig. 4.1(a).

115𝑅i =
𝑎

2
√

3
, 𝑅u = 𝑎√

3
.

116In this case, both functions yield the same normalization constant.



230 Computation of Representation Matrices

𝑇 R(𝑇) 𝑃 (𝑇) 𝑓 (r′)

𝐸

©­­­«
1 0 0
0 1 0
0 0 1

ª®®®¬ 𝑓
(
𝑥′,𝑦′,𝑧′

)

𝐶3𝑧

©­­­«
− 1

2

√
3

2 0
−

√
3

2 − 1
2 0

0 0 1

ª®®®¬ 𝑓
(
− 1

2 𝑥
′ −

√
3

2 𝑦′,
√

3
2 𝑥′ − 1

2 𝑦
′,𝑧′

)

𝐶2
3𝑧

©­­­«
− 1

2 −
√

3
2 0

√
3

2 − 1
2 0

0 0 1

ª®®®¬ 𝑓
(
− 1

2 𝑥
′ +

√
3

2 𝑦′,−
√

3
2 𝑥′ − 1

2 𝑦
′,𝑧′

)

𝐶2𝑥

©­­­«
1 0 0
0 −1 0
0 0 −1

ª®®®¬ 𝑓
(
𝑥′,−𝑦′,−𝑧′

)

𝐶2𝐴

©­­­«
− 1

2

√
3

2 0
√

3
2

1
2 0

0 0 −1

ª®®®¬ 𝑓
(
− 1

2 𝑥
′ +

√
3

2 𝑦′,
√

3
2 𝑥′ + 1

2 𝑦
′,−𝑧′

)

𝐶2𝐵

©­­­«
− 1

2 −
√

3
2 0

−
√

3
2

1
2 0

0 0 −1

ª®®®¬ 𝑓
(
− 1

2 𝑥
′ −

√
3

2 𝑦′,−
√

3
2 𝑥′ + 1

2 𝑦
′,−𝑧′

)
Table D.1 Rotation matrices and scalar transformation operators of symmetry group 𝐷3.

The elements of the representation matrices are now computed systematically
using (3.60). The required scalar transformation operators computed according
to (3.12) are provided in Table D.1. In order to obtain unitary representation
matrices, the results are divided by the normalization constant 𝐾:

Γ
(3)
11 (𝐸) = 1

𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐸)𝜓 (3)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′𝑥 ′d𝑦′d𝑥 ′ = 1, (D.4a)

Γ
(3)
12 (𝐸) = 1

𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐸)𝜓 (3)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′𝑦′d𝑦′d𝑥 ′ = 0, (D.4b)
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Γ
(3)
21 (𝐸) = 1

𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐸)𝜓 (3)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′𝑥 ′d𝑦′d𝑥 ′ = 0, (D.4c)

Γ
(3)
22 (𝐸) = 1

𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐸)𝜓 (3)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′𝑦′d𝑦′d𝑥 ′ = 1. (D.4d)

Γ
(3)
11 (𝐶2𝑥) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝑥)𝜓 (3)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′𝑥 ′d𝑦′d𝑥 ′ = 1, (D.5a)

Γ
(3)
12 (𝐶2𝑥) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝑥)𝜓 (3)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′(−𝑦′)d𝑦′d𝑥 ′ = 0, (D.5b)

Γ
(3)
21 (𝐶2𝑥) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝑥)𝜓 (3)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′𝑥 ′d𝑦′d𝑥 ′ = 0, (D.5c)

Γ
(3)
22 (𝐶2𝑥) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝑥)𝜓 (3)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′(−𝑦′)d𝑦′d𝑥 ′ = −1. (D.5d)
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Γ
(3)
11 (𝐶3𝑧) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶3𝑧)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−1

2
𝑥 ′ −

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
, (D.6a)

Γ
(3)
12 (𝐶3𝑧) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶3𝑧)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(√

3
2
𝑥 ′ − 1

2
𝑦′

)
d𝑦′d𝑥 ′ =

√
3

2
, (D.6b)

Γ
(3)
21 (𝐶3𝑧) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶3𝑧)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−1

2
𝑥 ′ −

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −

√
3

2
, (D.6c)

Γ
(3)
22 (𝐶3𝑧) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶3𝑧)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(√

3
2
𝑥 ′ − 1

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
. (D.6d)

Γ
(3)
11 (𝐶2

3𝑧) =
1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2

3𝑧)𝜓
(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−1

2
𝑥 ′ +

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
, (D.7a)

Γ
(3)
12 (𝐶2

3𝑧) =
1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2

3𝑧)𝜓
(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−
√

3
2
𝑥 ′ − 1

2
𝑦′

)
d𝑦′d𝑥 ′ = −

√
3

2
, (D.7b)
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Γ
(3)
21 (𝐶2

3𝑧) =
1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2

3𝑧)𝜓
(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−1

2
𝑥 ′ +

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ =

√
3

2
, (D.7c)

Γ
(3)
22 (𝐶2

3𝑧) =
1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2

3𝑧)𝜓
(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−
√

3
2
𝑥 ′ − 1

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
. (D.7d)

Γ
(3)
11 (𝐶2𝐴) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝐴)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−1

2
𝑥 ′ +

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
, (D.8a)

Γ
(3)
12 (𝐶2𝐴) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝐴)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(√

3
2
𝑥 ′ + 1

2
𝑦′

)
d𝑦′d𝑥 ′ =

√
3

2
, (D.8b)

Γ
(3)
21 (𝐶2𝐴) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝐴)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−1

2
𝑥 ′ +

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ =

√
3

2
, (D.8c)

Γ
(3)
22 (𝐶2𝐴) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝐴)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(√

3
2
𝑥 ′ + 1

2
𝑦′

)
d𝑦′d𝑥 ′ =

1
2
. (D.8d)
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Γ
(3)
11 (𝐶2𝐵) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝐵)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−1

2
𝑥 ′ −

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −1

2
, (D.9a)

Γ
(3)
12 (𝐶2𝐵) =

1
𝐾

〈
𝜓
(3)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝐵)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑥 ′
(
−
√

3
2
𝑥 ′ + 1

2
𝑦′

)
d𝑦′d𝑥 ′ = −

√
3

2
, (D.9b)

Γ
(3)
21 (𝐶2𝐵) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝐵)𝜓

(3)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−1

2
𝑥 ′ −

√
3

2
𝑦′

)
d𝑦′d𝑥 ′ = −

√
3

2
, (D.9c)

Γ
(3)
22 (𝐶2𝐵) =

1
𝐾

〈
𝜓
(3)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝐵)𝜓

(3)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/
√

3∫
−𝑎/(2

√
3)

−𝑥′/
√

3+𝑎/3∫
𝑥′/

√
3−𝑎/3

𝑦′
(
−
√

3
2
𝑥 ′ + 1

2
𝑦′

)
d𝑦′d𝑥 ′ =

1
2
. (D.9d)

D.2 Representation Matrices of Square Plate

The representation matrices of the two-dimensional fifth irreducible representa-
tion Γ (5) of the symmetry group 𝐷4 presented in Table 3.15 are computed. The
computation is based on the two vector-valued basis functions

ψ
(5)
1 (𝑥 ′,𝑦′) =

(
|𝑥 ′ |
|𝑦′ |

)
, ψ

(5)
2 (𝑥 ′,𝑦′) =

(
|𝑥 ′ |
−|𝑦′ |

)
, (D.10)

defined on a square domain with 𝑥 ′,𝑦′ ∈
[
− 𝑎

2 ,
𝑎
2
]
, as shown in Fig. 3.9.



D.2 Representation Matrices of Square Plate 235

First, it is checked that the two basis functions are indeed orthogonal:

〈
ψ

(5)
1 (𝑥 ′,𝑦′),ψ(5)

2 (𝑥 ′,𝑦′)
〉
=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′

=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
𝑥 ′2 − 𝑦′2

)
d𝑥 ′d𝑦′ = 0. (D.11)

Additionally, the basis functions need to be normalized:117

𝐾 =

〈
ψ

(5)
1 (𝑥 ′,𝑦′),ψ(5)

1 (𝑥 ′,𝑦′)
〉
=

〈
ψ

(5)
2 (𝑥 ′,𝑦′),ψ(5)

2 (𝑥 ′,𝑦′)
〉

=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ =

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′

=

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
𝑥 ′2 + 𝑦′2

)
d𝑥 ′d𝑦′ =

𝑎4

6
. (D.12)

The results below are divided by the normalization constant 𝐾 in order to obtain
unitary representation matrices.

The elements of the representation matrices are now computed systematically
using (3.60) and the transformation operators in Table 3.7:

Γ
(5)
11 (𝐸) = 1

𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐸)ψ(5)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = 1, (D.13a)

Γ
(5)
12 (𝐸) = 1

𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐸)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.13b)

117In this case, both functions yield the same normalization constant.
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Γ
(5)
21 (𝐸) = 1

𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐸)ψ(5)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.13c)

Γ
(5)
22 (𝐸) = 1

𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐸)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 1. (D.13d)

Γ
(5)
11 (𝐶4𝑧) =

1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶4𝑧)ψ(5)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.14a)

Γ
(5)
12 (𝐶4𝑧) =

1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶4𝑧)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
−|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = −1, (D.14b)

Γ
(5)
21 (𝐶4𝑧) =

1
𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐶4𝑧)ψ(5)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 1, (D.14c)

Γ
(5)
22 (𝐶4𝑧) =

1
𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐶4𝑧)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
−|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 0. (D.14d)

Γ
(5)
11 (𝐶2𝑧) =

1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝑧)ψ(5)

1 (𝑥 ′,𝑦′)
〉
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=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
−|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = −1, (D.15a)

Γ
(5)
12 (𝐶2𝑧) =

1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶2𝑧)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
−|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.15b)

Γ
(5)
21 (𝐶2𝑧) =

1
𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝑧)ψ(5)

1 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
−|𝑥 ′ |
−|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.15c)

Γ
(5)
22 (𝐶2𝑧) =

1
𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐶2𝑧)ψ(5)

2 (𝑥 ′,𝑦′)
〉

=
1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
−|𝑦′ |

)
·
(
−|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = −1. (D.15d)

Γ
(5)
11 (𝐶−1

4𝑧 ) =
1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶−1

4𝑧 )ψ
(5)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
−|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = 0, (D.16a)

Γ
(5)
12 (𝐶−1

4𝑧 ) =
1
𝐾

〈
ψ

(5)
1 (𝑥 ′,𝑦′),𝑃(𝐶−1

4𝑧 )ψ
(5)
2 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
−𝑎/2

(
|𝑥 ′ |
|𝑦′ |

)
·
(
|𝑥 ′ |
|𝑦′ |

)
d𝑥 ′d𝑦′ = 1, (D.16b)

Γ
(5)
21 (𝐶−1

4𝑧 ) =
1
𝐾

〈
ψ

(5)
2 (𝑥 ′,𝑦′),𝑃(𝐶−1

4𝑧 )ψ
(5)
1 (𝑥 ′,𝑦′)

〉
=

1
𝐾

𝑎/2∫
−𝑎/2

𝑎/2∫
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