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Abstract: Physically motivated models of electromechanical motion systems are required
in several applications related to control design, model-based fault detection and simply
interpretation. Often, however, the high effort of modelling prohibits these model-based
methods in industrial applications. Therefore, all approaches of automatic modelling
/ model selection are naturally appealing. An intuitive approach is to identify the
parameters of several model candidates and to select the one with the best fit on unseen
data. A shortcoming of this approach is that the chosen model may be one with high
complexity in which some of the physically interpretable parameters are not practically
identifiable and uncertain. Also, ambiguities in selecting the model structure would not
be disguised resulting in false confidence in a chosen model. Designing a reasonable set of
candidate models requires that distinguishability of models can be checked prior to the
identification procedure.

This paper proposes a strategy for frequency domain model selection. The resulting
model is tailored to ensure practical identifiability of all parameters for the given
excitation. The analysis is based on local sensitivity calculated for the frequency domain
cost function. Also, the paper describes distinguishability analysis of candidate models
utilizing transfer function coefficients and Markov parameters. Model selection and
distinguishability analysis are applied to a class of models as they are commonly used to
describe servo control systems. It is shown in experiments on an industrial stacker crane
that model selection works with little user interaction, except from defining normalized
hyperparameters and ensuring that the resulting model is sound. Distinguishability is
analysed systematically for all models that result from rearranging actuator, sensor and
spring-damper elements along a chain of discrete masses. It can be proved or disproved
for almost all combinations of potential models.

Keywords: model selection; structure and parameter identification; frequency domain;
distinguishability analysis; equivalence of structures; multiple mass resonators; servo
control system; electromechanical motion systems; transfer function approach; Markov
parameter approach.

Reference to this paper should be made as follows: Tantau, M. et al. (2020)
‘Model Selection for Servo Control Systems’, International Journal of Mechatronics and
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1 Introduction

Physically motivated models of servo control systems are
the basis of several applications that require knowledge
of the system’s internal structure. Examples are

control design and auto-tracking, feed-forward, model-
based fault diagnosis, Kalman-filtering, and simulations.
Sometimes the inner structure of a given system is also
quested for understanding and interpretation.

Copyright c© 201X Inderscience Enterprises Ltd.
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Because modelling is time-consuming and requires
considerable expert knowledge and expertise in multi-
disciplinary fields (Lakhoua et al. (2020)), the usage of
model-based methods is difficult, especially in products
of automation industry that are built only in small
quantities, e.g. storage and retrieval systems, positioning
systems. Approaches towards automatic modelling are
of interest as they could leverage these problems and
provide objective decisions. Automatic model selection
is also called structure and parameter identification or
model structure identification (Stigter and Beck (1994)).

While many previous works on servo system
identification in the sense of identifying the parameters
of a given model exist, e.g. Chen et al. (2002); Villwock
(2007), works on model selection are mainly limited to
data-driven, static models (Hoeting et al. (1999)) of
other disciplines such as biology (Volinsky et al. (1996))
and finance (Draper (1995)). Here, transfer function
models of servo systems are identified in frequency
domain allowing an intuitive comparison with the
measurements and avoiding the difficulty to automatize
time domain simulations, see Tantau et al. (2019, 2020).
The challenge with these models is that linearity in
the physical parameters is generally not maintained.
Extensions of identifiability tests to nonlinear models
exist (Brun et al. (2001); Gábor et al. (2017)), but they
have rarely been applied to the frequency domain.

An analysis of practical identifiability in frequency
domain can be found in Bizeray et al. (2018), where
contour lines of the cost function are interpreted. A
limited model selection in the field of dynamic models for
servo control applications is performed in Schütte et al.
(1997), but the process is not fully automatic and leaves
the final decision for the commissioning engineer.

As a first step in this direction we intend to
search for the model structure that best describes the
input-output behaviour of a system measured against
unseen data, while considering exclusion criteria of
practical identifiability in frequency domain. The latter
ensures that only those models are included, that allow
identification of model parameters with some certainty
so that interpretability is not compromised by randomly
interspersed extra parameters without physical meaning.
This approach can be seen as a counterpart to optimizing
the excitation for a given model, see for example
Pronzato and Pázman (2013), which has limitations
for nonlinear models in combination with limited prior
knowledge. Here, the model is tailored to a given
excitation.

A problem with selecting the model with the lowest
residual, as described by Burnham and Anderson (1998),
is that of indistinguishability / indiscriminability of
structures, i.e. different models show the exactly same
input-output behaviour for certain parameterizations,
while the internal structure is different. No experiments
exist to discriminate between them. If this problem
is ignored, the model selection algorithm will output
only one model although others could be equally true,

leading to false interpretations, inappropriate feed-
forward design, etc.

There are two approaches to handle the
indistinguishability problem. One is to identify all
models and then to compare the model predictions.
Two models with similar predictions in a stochastic
framework can be judged indistinguishable (Diard
(2009); Burnham and Anderson (1998)). The second
approach is to perform an a-priori analysis of the
model equations in order to prove (in)distinguishability
deterministically. Only the latter is followed in
this paper. The advantage is a reduced number of
identification runs in the structure and parameter
identification. Additionally, false certainty in the model
selection can be avoided.

Definitions of indistinguishability are not reviewed
but can be found in Vajda (1981); Walter et al. (1984);
Godfrey and Chapman (1989); Chapman and Godfrey
(1989); Avdeenko and Kargin (2000); Rosa and Silvestre
(2011). Here, the term structural indistinguishability is
understood as follows: Two model structures M(·) and
M̂(·) with parameter values p0 ∈ Ω and p̂0 ∈ Ω̂ and the
same number of inputs and outputs are called equivalent
if the corresponding system outputs are identical for all
admissible input trajectories. Ω and Ω̂ are sets of possible
parameter values, not necessarily of the same dimension.
If for all p0 ∈ Ω there is at least one equivalent parameter
value p̂0 ∈ Ω̂ and vice versa, except possibly for a
set of zero measure, then the two systems M(p) and
M̂(p̂) are structurally indistinguishable (Vajda (1981)).
For notational simplicity we call systems, which are
not structurally indistinguishable, distinguishable. Note
that strictly speaking systems can be nether of them
(Raksanyi et al. (1985)).

Methodologically, one determines a minimal
representation of the system called the exhaustive
summary (Walter et al. (1984)) or the structural
invariant vector (Vajda (1981)) of the model. This set
of algebraic or differential equations is then investigated
for the existence of solutions by the help of elimination
theory and computer algebra (Raksanyi et al. (1985);
Godfrey et al. (1994)). For example in Zhang et al. (1991)
necessary and sufficient conditions for the existence of
solution in equations are given that have recently been
integrated into a web application for distinguishability
studies (Davidson et al. (2017)).

Methods for generating the exhaustive summary
include the transfer function or Laplace transform
approach (Vajda (1981)) and the similarity transform
approach (Avdeenko and Kargin (2000)) for linear
systems, as well as the time-power series or Taylor series
approach (Pohjanpalo (1978)), and the generating series
approach (Raksanyi et al. (1985); Walter and Pronzato
(1996); Motchon et al. (2017)) for nonlinear systems.
For nonlinear but rational models differential algebra has
been used in Meshkat et al. (2018).

In this work the Markov parameter approach
for generating the exhaustive summary which has
been applied to strict distinguishability investigations



4 M. Tantau et al.

Figure 1: Class of candidate models

in Motchon et al. (2016) will be applied to the
distinguishability question as defined above, utilizing the
conditions from Vajda and Rabitz (1988); Zhang et al.
(1991); Davidson et al. (2017), see below. Its effectiveness
is compared with the transfer function approach in
the application of model selection for servo systems.
Existing works are mainly limited to compartmental
models (Yates et al. (2009)) in biomedicine (Godfrey
et al. (1994); Walter and Pronzato (1996); Evans et al.
(2004)), although the question is important in many
fields.

2 MODEL SELECTION AND
PRACTICAL IDENTIFIABILITY

In sections 2 and 3 the objective is to carry out a
model selection for a limited set of candidate models
as explained next. In sections 4 and 5 the set of
candidate models is broadened in order to analyse
alternative possible formulations of the problem in view
of distinguishability.

2.1 Candidate models

Only a limited variety of multiple-mass models is chosen
as candidate models as shown in Fig. 1. In general,
the candidate models are composed of submodels as
indicated by the dashed lines with 0 or more estimation
parameters. Only the purely translational case is shown
in the figure but the purely rotary case would work
equivalently. All models consist of a chain of NB

elastically coupled masses m1,m2, · · · ,mNB
of which

the first element is actuated. The force of the driving
motor FM may be subject to input delay time Tdead.
In addition, the torque control dynamics are either
neglected or modelled as a PT1 element. As the number
of masses in the chain varies the spring-damper elements
between adjacent masses will also appear / disappear,
but there is never a spring-damper element in front of the
first mass. In order to incorporate the effect of bearing
and guideway friction dampers between masses and the
environment can be included for each existing mass.

What results is a single input single output (SISO)
transfer function (TF) model so that in the following
only the SISO case is considered. This set of candidate
models could be extended easily, e.g. by springs between
distant masses, but including a large set of candidate
models without justification through experience and
prior knowledge could be seen critically as data dredging
/ mining) (Burnham and Anderson (1998); Chatfield
(1995)), even if distinguishability is generally given. The
question of structural distinguishability will be discussed
in Sec. 5.

2.2 Model selection

In the process of model selection an exhaustive search
over all combinations of submodels is carried out. More
elegant procedures such as genetic programming are
avoided here in order to reduce the complexity and the
effect of coincidence. For each model the parameters
are optimized by matching the calculated and measured
frequency response in an equation error formulation. The
exact cost function is given in the next section. Then,
the best model is chosen based on its merit as explained
next.

Depending on the intended purpose of a model
different ways to determine its merit can be defined.
Reasonable criteria are the minimization of the
Kullback-Leibler distance to the ’true model’ by means
of the Akaike information criterion or cross validation,
a test for whiteness of the residuals, a test for cross-
correlation between the inputs and the residuals, a
χ2 significance test of the cost function and others
(Pintelon and Schoukens (2012)). However, the problem
with all these approaches is that they are based on the
stochastic nature of measurements and they seek for
the true model. If the repeatability is high, which can
always be achieved by averaging several measurements
under similar conditions (Chatfield (1995)), very
complex models would result with possibly superfluous
parameters. Since physical interpretability of model
parameters is the prerequisite in this work, it is
reasonable to check practical identifiability of all model
parameters. Practical identifiability means that all
model parameters can be identified accurately from
sparce, noisy data for a given excitation (Vu (2015)).
Criteria for checking practical identifiability are given
below. Only models with all parameters practically
identifiable are kept in the set of candidate models, see
next sections. Among the models that fulfill these criteria
the one with the best fit on an independent test data set
is chosen.

2.3 Sensitivity calculation

The notion of practical identifiability based on sensitivity
comes from the parameter-linear model

Slinp = y (1)

with sensitivity matrix Slin ∈ RNy×Np , parameter vector
p ∈ RNp×1, and system outputs y ∈ RNy×1. In the
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least-squares sense the cost function Jlin = (Slinp −
ym)T(Slinp − ym) is minimized in order to determine
optimal parameters, where ym is the measured output.
In the study of practical identifiability the sensitivity
matrix Slin is checked for (multi-)collinearity and
sensitivity of the parameters as explained later.

Transfer function models are not in general linear in
the parameters. In the nonlinear case g : RNp → RNy

y = g(p) (2)

the cost function J ∈ R is of the form:

J = (y − ym)TW (y − ym) = ||Λ(y − ym)||22 . (3)

W ∈ RNy×Ny is a weighting matrix, often chosen as the
inverse covariance matrix of the measurements assuming
zero mean, Gaussian noise, maximum the likelihood.
The decomposition ΛTΛ = W exists if W is positive
definite (Pintelon and Schoukens (2012)). Motivated by
the Taylor series expansion (Brun et al. (2001))

g(p) = g(p0) +
∂g(p)

∂pT

∣∣∣∣
p=p0

(p − p0) + · · · (4)

a substitute for Slin can be found:

Snl = Λ
∂g(p)

∂pT

∣∣∣∣
p=p0

. (5)

The weighting Λ should be considered in the analysis
of practical identifiability in agreement with the penalty
function (3) as the weights also influence the result. Snl ∈
RNy×Np characterizes the effect of changing a parameter
locally.

In frequency domain identification of dynamical
systems the output vector elements are associated to
the set of measured frequency components and possibly
also to several elements in the transfer function matrix
of a MIMO system. Here, only SISO systems are
considered. The observations and the noise are complex,
which gives several options to formulate the penalty
function. In the sequel, different exemplary formulations
are given together with the implications for calculating
the sensitivity matrix.

Case 1: The cost function is the distance in the
complex plane between model G(p) ∈ RNf×1 and
measurement GM ∈ RNf×1 for each of the Nf frequency
components (Pintelon and Schoukens (2012); Galarza
et al. (1995)). This can be written in complex notation:

J = (G(p)−GM)
H
W (G(p)−GM), (6)

with W ∈ RNy×Ny or in real notation:

J =

∣∣∣∣∣∣∣∣Λr/i

[
Re {G(p)−GM}
Im {G(p)−GM}

]∣∣∣∣∣∣∣∣2
2

. (7)

Λr/i ∈ R2Nf×2Nf can be defined by the square root
of the inverse sample covariance matrix of the real
measurement vector or if not available as the unity
matrix. Assuming that real and imaginary part at each

spectral line of the observation are uncorrelated having
equal variances, matrix Λr/i has the form(

Λr 0
0 Λi

)
with Λr = Λi ∈ RNf×Nf (8)

and matrix W is given by 2ΛT
r Λr due to variance

summation of uncorrelated variables (Pintelon and
Schoukens (2012)).

The latter cost function formulation is favoured here
because the resulting sensitivity matrix S1 ∈ R2Nf×Np is
real and all criteria of practical identifiability can readily
be applied:

S1 = Λr/i

[
Sr

Si

]
, (9)

Sr =
dRe {G(p)}

dp
= Re

{
dG(p)

dp

}
, (10)

Si =
dIm {G(p)}

dp
= Im

{
dG(p)

dp

}
. (11)

It can easily be verified that exchanging the
decomposition into real and imaginary part, and the
derivative operator in (10,11) is possible, because
the complex unit can be treated as a prefactor in
the derivative. The right side of (10,11) allows to
calculate the real and imaginary part of the sensitivity
numerically after the complex derivative has been
calculated symbolically by the help of computer algebra,
which simplifies the calculations. Still, for very complex
models even dG/dp cannot be calculated symbolically.

Case 2: In Schütte (2003) the following cost function
is used for multiple mass systems because of its superior
robustness:

J =

∣∣∣∣∣∣∣∣ΛA/P

[
|G(p)| − |GM|

∠ {G(p)} − ∠ {GM}

]∣∣∣∣∣∣∣∣2
2

. (12)

The problem is the arbitrary weighting of amplitude and
phase if the inverse covariance is not used for weighting.

The sensitivity matrix is given by:

S2 = ΛA/P

[
SA2

SP2

]
, (13)

SA2,kj =
1

|Gk|
[
Im {Gk}Si,kj +Re {Gk}Sr,kj

]
,

SP2,kj =
1

|Gk|2
[
Re {Gk}Si,kj − Im {Gk}Sr,kj

]
.

Gk denotes the k-th spectral component of the modelled
TF. As it turns out, it is possible to write this Jacobian
matrix in terms of Sr,Si. So, whenever these two can be
calculated from analytic expressions in case 1, numeric
differentiation is not necessary for S2 either.

Case 3: In the third case to consider the logarithm
of the amplitude is evaluated instead of the amplitude
itself:

J =

∣∣∣∣∣∣∣∣ΛA/P

[
log10 {|G(p)|} − log10 {|GM|}

∠ {G(p)} − ∠ {GM}

]∣∣∣∣∣∣∣∣2
2

. (14)
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The advantage is that in the log scale a reasonable
weighting of amplitude and phase can be defined.
The penalty depends less on the absolute size of the
amplitudes, which eliminates the dependence on testbed
properties. For example π and 1 can be chosen as
weightings for amplitude and phase, respectively. Then
20 dB difference in the amplitude has an equivalent effect
as 180◦ in the phase.

The sensitivity matrix can be calculated symbolically,
if analytic expressions exist for Sr,Si:

S3 = ΛA/P

[
SA3

SP3

]
, (15)

SA3,kj =
1/ln(10)

|Gk|2
[Im {Gk}Si,kj + Re {Gk}Sr,kj ] ,

SP3,kj =
1

|Gk|2
[Re {Gk}Si,kj − Im {Gk}Sr,kj ] .

As said before, cases 2 and 3 tend to find the correct
model parameters for multiple mass models easier and
weighting is more robust in the third case. Therefore, in
the following only the third case, (14) is used. A potential
problem is, however, that the measured and simulated
phase must be interpolated continuous beyond ±2π.

2.4 Assessing practical identifiability

Criteria for assessing practical identifiability are not
reviewed here but can be found in Farrar and Glauber
(1967); Marquardt (1970); Stewart et al. (1987); Belsley
(1991); Burnham and Anderson (1998); Brun et al.
(2001); Kovács et al. (2005); Niena ltowski et al. (2015);
Gábor et al. (2017). Only the criteria actually used to
exclude models form the model selection are introduced
briefly.

For a model structure to be valid all parameters
must have a certain minimal importance according to
the msqr parameter importance index (PII) given
by Brun et al. (2001):

δmsqr
j =

∣∣∣∣Sj∆pj
∣∣∣∣
2
, (16)

with Sj the column of the sensitivity matrix
corresponding to parameter j. If this criterion is violated,
at least one of the parameters is of little importance
and cannot be identified precisely. Also, the model
is not parsimonious. The normalization constant ∆pj
is supposed to be in the unit of parameter pj , for
example the nominal value or a quarter of the range
of reasonable values (Brun et al. (2001)). Here, the
previously identified parameter value is chosen for ∆pj .
Defining the threshold for δmsqr

j is somewhat arbitrary.
Gábor et al. (2017) set it to four orders of magnitude
below the maximum PII.

Furthermore, the collinearity index γk:

γk =
1√
λk
, (17)

reveals (multi-)collinearity among parameters. λk is the
smallest singular value of S̃ , that is the matrix S with all

columns normalized to unit length. This normalization
ensures a clear separation of collinearity and sensitivity,
measured by the PIIs. Collinearity is critical if γk exceeds
5...20 (Brun et al. (2001)).

Alternatively, collinearity can be measured by the
scaled condition indices by Belsley (1991):

η̃k =
µmax

µk
. (18)

µk and µmax are the k-th and the maximal singular value
of S̃ , respectively. According to Belsley (1991) large
values are critical, above 10...30.

In the experiments of the next section a combination
of these three exclusion criteria is used for model
selection. The exact thresholds will be given together
with the results.

3 Experimental results on model selection

Two testbeds serve the experimental validation of
the structure and parameter identification. Since these
results are highly dependent on the chosen thresholds,
the subsequent section focusses on these dependencies.

3.1 Structure and parameter optimization

The structure optimization is applied to the two testbeds
shown in Fig. 2. Testbed 1 is a stacker crane with 5.6 m
mast height and 5 m length of the horizontal axis (x)
along the shelf. All experiments are carried out on x with
the vertical axis in a position of 2 m. Testbed 2 has only
one axis which is driven in direct drive. In Figs. 3 and 4
the FRFs of training and test are shown. They have both
been recorded with stepped sine excitation, but different
amplitudes.

Parameter ranges have been chosen 0...1000
for stiffnesses, and 0...0.1 for damping constants
and moments of inertias (physical units). If more
prior knowledge is available, the ranges can be
narrowed. Parameters are identified with particle swarm
optimization which is parameterized with a number of
particles that equals 200 times the number of parameters
of the current model. In the structure identification
a maximum of 4 masses are considered (120 different
models) for which the calculation takes approx. seven
hours (for a maximum of 3 masses it takes only 35 min),
implemented in Matlab on an i7 4-core computer,
running at 3.7 GHz with 16 GB DDR4 RAM. The
overproportionally long calculation time for 4-mass
models can be explained by the fact that they often
require numerical sensitivity matrix calculation due to
TF complexity.

In Figs. 3 and 4 the best model is also shown,
including asymptotes. The chosen thresholds for the
three criteria are given in the first row of each section in
Tab. 1. For testbed 1 a 3-mass system with additional
damper to the base at mass 2 and delay time results,
9 estimation parameters. For testbed 2 it is a 4-mass
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(a) 1: Stacker
crane

(b) 2: Linear positioning system

Figure 2: Experimental testbeds

Figure 3: Frequency response functions of testbed 1,
measurement and best model

system with additional damper at mass 1 and delay time,
12 estimation parameters.

The effect of changing the thresholds has been studied
for two alternative settings, see rows two and three in
Tab. 1. Testbed 1 is always assigned the same model,
while for testbed 2 different models result (3-mass
system with additional damper at mass 3 and delay
time, 9 estimation parameters, for the second set of
thresholds and a 2-mass system with additional damper
at mass 2 and delay time, 6 estimation parameters, for
the third set). The corresponding FRFs are not shown.
So especially for testbed 2, which cannot be categorized
visually very clearly, the algorithmic result also depends
strongly on the thresholds.

3.2 Threshold dependencies

To further investigate the dependence on thresholds of
the identifiability criteria each of the three criteria is
applied once exclusively in Figs. 5 and 6. Its threshold is
varied in steps from 1 to 10000. For each step the model
with the lowest cost J is selected among all models that
fulfil this criterion. The number of estimation parameters
of the best model for this threshold is plotted. For

Figure 4: Frequency response functions of testbed 2,
measurement and best model

Table 1 Three chosen settings for the identifiability
criteria and corresponding best model for both
testbeds. The first row in each section corresponds
to the first set of settings and so on.

Criterion Threshold Testbed 1 Testbed 2

Max. scaled
condition

index

30 6.4 11.3
10 6.4 10.3
10 6.4 2.6

Max. PII
Min. PII

1000 10.2 12.0
1000 10.2 7.7
1000 10.2 7.5

Max. 20 4.0 7.0
collinearity 10 4.0 7.0

index 5 4.0 1.9

Figure 5: Number of estimation parameters of the best
model for a given threshold of the one current criterion,
testbed 1

reference, the thresholds of the first setting in Tab. 1 are
indicated by dashed lines.

Clearly, a strong dependence on the thresholds exists
and mostly the number of parameters increases as the
threshold increases. Exceptions exist where models with
fewer parameters are more critical regarding one of the
criteria than models with one or two more parameters.
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Figure 6: Number of estimation parameters of the best
model for a given threshold of the one current criterion,
testbed 2

What is disguised by this figure is the interplay
between the three criteria. E.g. a model may be highly
collinear, while all parameters have approx. the same
sensitivity or vice versa. Thus, it can happen that
the resulting model is very simple although all criteria
applied exclusively allow for more complex models. The
combined result would be hard to visualize in a 2D plane.
Also, it is not known how many models are ruled out
by a certain criterion and a given threshold. In order to
investigate this Figs. 7 and 8 show the number of models
that fulfil a certain criterion depending on the chosen
threshold out of all 120 models.

The graphs of testbed 1 show a clear edge at approx.
60 models. Only if the thresholds are chosen below
that, the number of valid models diminishes steeply. As
expectable from Tab. 1, testbed 2 shows a more gradual
slope, making the choice of a threshold more critical.

Figure 7: Number of models that suffice the considered
criterion depending on the threshold, testbed 1

4 Distinguishability analysis

The second part of this work deals with distinguishability
analysis in order to investigate if the set of candidate
models is chosen well so that a unique structure
identification is possible and if it could even be extended
to a larger set of models (Sec. 5). In this section the
general methodology is explained.

Figure 8: Number of models that suffice the considered
criterion depending on the threshold, testbed 2, legend
as in Fig. 7

Starting point is the SISO state space form:

ẋ = ASx + BSu, y = CSx +DSu. (19)

Here, u is the input, x ∈ RNS are the states and y is the
output. AS, BS, CS and DS are analytic functions in
the parameters p ∈ RNp . Initial conditions are assumed
to be zero so that models cannot be discriminated from
these.

The state space form for an NB mass system can be
obtained from the mass matrix M , the damping matrix
D and the stiffness matrix C:

AS =

(
0NB×NB

INB×NB

−M−1C −M−1D

)
, (20)

B
′

S =

(
0NB×NB

M−1

)
, (21)

C
′

S =

(
I2NB×2NB(

0NB×NB INB×NB

)
A

′

S

)
, (22)

D
′

S =

(
02NB×NB(

0NB×NB INB×NB

)
B

′

S

)
. (23)

The symbol 0 stands for the zero matrix. So far,
the input of the resulting MIMO system consists of
NB forces. The output vector contains NB positions,
NB velocities and NB accelerations. The actual
actuator location, resp. sensor type (position, velocity,
acceleration) and location are defined by input and
output multiplication, leading to the desired matrices
without prime ′ in (19). Here, only SISO system are
considered.

For distinguishability analysis of these models it
seems that the transfer function approach is the most
straightforward method to generate the exhaustive
summary, because it natively eliminates irrelevant
information related to the non-unique representation via
states. Their arbitrary assignment can lead to a large
number of equivalent models (Zhang et al. (1991)). The
similarity transform approach could become infeasible
for models with many states (Godfrey and Chapman
(1989)). Furthermore, the Markov parameter approach
can be applied as outlined below.

In this section necessary and sufficient conditions
for distinguishability analysis of linear SISO state space
models based on the TF are reviewed. Additional criteria
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and considerations for MIMO systems can be found in
Zhang et al. (1991); Davidson et al. (2017).

4.1 Criteria for structural indistinguishability
based on the TF

For the transfer function approach (TFA) the state
space representation of each system is reduced to a TF
assuming zero initial conditions (I is the unity matrix):

G(s) = CS(Is−AS)−1BS +DS. (24)

It has the general form:

G(s) =
b0 + b1s

1 + · · ·+ bns
n

a0 + a1s1 + · · ·+ am−1sm−1 + sm
. (25)

The coefficients a0, a1, . . . , am−1 are analytic functions of
the model parameters p. All common factors have been
cancelled and one of the coefficients is fixed, for example
the denominator coefficient corresponding to the highest
power of s can be normalized to 1. Then the coefficients
define the finite set of moment invariants Φ for the
given system and can be used as structural invariant
vector (Zhang et al. (1991)). The constant coefficient can
optionally be included into the moment invariants, but
it has no use. So, the number of moment invariants NMI

is either n+m+ 1 or n+m+ 2.
Distinguishability of two models could be checked

by equating the complete set of moment invariants
of both systems. The resulting set of equations can
be complex to solve, but the following necessary and
sufficient conditions for structural indistinguishability
supercede these calculations in many cases. Conditions 1
to 5 are necessary, i.e. whenever one of them is violated,
distinguishability is proved and the remaining conditions
can be skipped. The conditions should be evaluated in
the given order because they are sorted in increasing
computational complexity and because dependencies
exist:

• Cond. 1: The same number of moment invariants
NMI exist.

• Cond. 2: The same number of coefficients exist in
numerator n and denominator m in both models.

• Cond. 3: Both sets of moment invariants have
the same symbolic form. The symbolic form is a
representation of the moment invariants with zeros
for constant elements and ones for non-constant
(depending on p, resp. p̂) elements (Vajda (1984)).

• Cond. 4: The rank NR of the Jacobian matrix J =
∂Φ/∂p of the moment invariants with respect to
the parameters is the same for both models (Zhang
et al. (1991); Vajda and Rabitz (1988)).

• Cond. 5: The same linear dependencies among
moment invariants exist (Zhang et al. (1991)).
These are determined by creating all possible
combinations of NR rows of J , leading to as many

as

(
NMI

NR

)
submatrices. Those combinations of

rows with a full row rank of the resulting reduced
matrix in symbolic form are noted as largest sets
of linearly independent rows and must be identical
for the compared systems.

As a note to condition 5: The largest sets of
linearly independent rows define the linear dependencies
among moment invariants fully. Searching for linear
dependencies among smaller subsets of J with less
than NR rows would not reveal any new information:
If a smaller subset is included in a larger set of
linearly independent rows, it will be linearly independent
because eliminating rows will maintain independence
of the remaining rows. If a smaller subset is not
contained in any of the known larger sets, it will
be linearly dependent. This is because the set of NR

rows contains all combinations, except those with linear
dependencies. Consequently, if a subset is not included,
it must be linearly dependent. Simplifications can be
made by excluding constant moment invariants (which
correspond to zero rows).

For two model that satisfy the above necessary
conditions, the following sufficient conditions for
structural indistinguishability can be checked.

• Cond. 6: A renaming and permutation scheme for
the parameters of the first model exists so that
the moment invariants are identical to those of the
second model in symbolic form and vice versa.

• Cond. 7: The two models have as many
determinable parameters as non-constant moment
invariants and the constant moment invariants are
identical across the two models. The number of
determinable parameters equals the generic rank
of the Jacobian J (Vajda (1984)).

Strictly speaking, these conditions are valid only for
certain open sets of the parameter space. Possible
parameter values are not explicitly considered in this
paper. Examples are non-negative parameters or prior
knowledge on possible ranges of physical parameters.

4.2 The applicability of (in)distinguishability
criteria depends on the system’s
representation

If none of the above conditions can be applied, no
statement can be made in the given representation of
the model, but there is a chance that transforming the
model into a different representation helps to answer
the question of distinguishability. This is shown in the
following minimal example with complex number models
z1, z2 ∈ C:

z1 = a1b1 + 0 · b1i, z2 = a2b2(1 + 1i) (26)

with the model parameters a1, b1, a2, b2 ∈ R+ and
the complex unit i. Clearly, these two models are
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distinguishable. Magnitude and phase are now chosen
for the moment invariants, as they describe a complex
number uniquely:

Φ1 : |z1| = a1b1, ∠z1 = 0,

Φ2 : |z2| =
√

2a2b2, ∠z2 = π/4.
(27)

Cond 1, 3, 4, 5, 6, 7 are applied to the example
(cond. 2 works only with TFs). Both models have a
total of NMI = 2 moment invariants (cond. 1) with the
symbolic form

[
1 0
]

(cond 3). The Jacobian matrices are:

J1 =

[
b1 a1
0 0

]
,J2 =

[√
2b2
√

2a2
0 0

]
. (28)

The rank of each Jacobian matrix is NR1 = NR2 = 1
(cond. 4). So, for cond. 5 sets of linearly independent
rows of size one row must be found. In both models this
is the first row only. Cond. 6, 7 cannot be applied. As a
result, distinguishability could not be proved.

Next the representation in real and imaginary part
is tested. With this set of moment invariants cond. 3 is
not satisfied, because symbolic form

[
1 0
]

for model z1
differs from

[
1 1
]

for model z2. The Jacobian matrices
are:

J1 =

[
b1 a1
0 0

]
,J2 =

[
b2 a2
b2 a2

]
. (29)

It follows that evaluating cond. 5 for z1 will result in a
set of rows consisting only of row 1, while for z2 both
row 1 and 2 have a rank of 1. So, the models can be
distinguished by this rule.

The fact that it depends on the chosen representation
if distinguishability can be shown with cond. 1 to 7
motivates the analysis of other formulations than the
TF for dynamic systems. In the next section the Markov
parameter approach (MPA) is introduced and in Sec. 5
its benefit is investigated.

4.3 Markov parameter approach

For system (19) an alternative representation is based on
an expansion of the TF as a complex power series in s
with infinitely many terms. This is a structural invariant
vector of infinite length (Vajda (1981)):

G(s) = G0 +G1s
−1 +G2s

−2 + . . . . (30)

The set of {Gi}i=0,1,2,... can be referred to the step
response h(t), resp. to the impulse response of the system
g(t) and its time derivatives (Hatakeyama et al. (1999)):

G0 = h(t)|t=0+ , Gi =
di−1

dti−1
g(t)

∣∣∣∣
t=0+

, i = 1, 2, . . . . (31)

{Gi}i=1,2,3... are called Markov parameters. From the
model (19) these terms can be calculated leading to
analytic functions in p, p̂ (Hatakeyama et al. (1999)):

G0 = DS, Gi = CSA
i−1
S BS, i = 1, 2, . . . . (32)

For distinguishability analysis of two models of the
kind (19) with NS1, resp. NS2 states it is sufficient to
consider the first NS1 +NS2 Markov parameters plus
the term G0 as moment invariants. If they are identical,
then the higher-degree Markov parameters must also be
identical. This can be explained as follows.

An augmented system is defined (Motchon et al.
(2016)):

ẋa = Aaxa + Bau, y = Caxa +Dau (33)

with

xa =

[
x1

x2

]
, Aa =

[
AS1 0
0 AS2

]
, Ba =

[
BS1

BS2

]
,

Ca =
[
CS1 −CS2

]
, Da = DS1 −DS2.

As a change of notation indices 1 and 2 stand for the
two systems to compare with NS1, resp. NS2 states.
Note that matrix Aa is of dimension NS1 +NS2 ×NS1 +
NS2. Clearly, the output of the augmented system is the
difference between the two single systems and the same
holds for the structural invariants, as defined in (32):

Ga,k = G1,k −G2,k ∀k ≥ 0. (34)

According to the Cayley-Hamilton theorem for any
square matrix X of size m×m, k ∈ N it holds that

Xm + λm−1X
m−1 + · · ·+ λ1X + λ0I = 0, (35)

in which λi are the coefficients of the characteristic
polynomial of X. This can be applied to the
system matrix, while also premultiplying Ca and
postmultiplying Ba (Phan et al. (1998)):

CaA
n
aBa + λn−1CaA

n−1
a Ba + . . .

+λ1CaABa + λ0CaBa = 0.

Accordingly, CaA
n
aBa and higher orders can be

written as a linear combination of lower-order Markov
parameters. This means that CaA

k
aBa = 0 ∀ k ∈

[0, NS1 +NS2 − 1] implies CaA
k
aBa = 0 ∀ k ≥ NS1 +

NS2 and according to (32), (34) it implies that both
systems have identical Markov parameters.

Often, only the first few Markov parameters, less
than NS1 +NS2, can be calculated due to computational
complexity.

Utilizing cond. 1 to 7 from above to investigate
distinguishability with the MPA, it must be noted
that cond. 1 is obsolete, since the number of Markov
parameters, resp. G1,i, G2,i terms should be chosen
identical. Cond. 2 is not applicable because the
distinction between numerator and denominator does
not exist. The sufficient conditions (6, 7) cannot be used
if only a subset of the Markov parameters has been
calculated, less than NS1 +NS2. It will be investigated
in section 5.2 if the MPA can make worthy contributions
to the analysis in spite of these limitations.
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4.4 Criteria based on submodels

Two sufficient conditions for structural
indistinguishability on certain open sets of the parameter
space are given in Vajda and Rabitz (1988) that can be
evaluated without calculation by inspecting the model
structures visually:

• Cond 8: One model is a submodel of the
other and both have the same number of
determinable parameters. Submodel means that
model structures are identical except for missing
elements such as springs, dampers and masses.

• Cond 9: The two models are submodels of a third
model and all three models have the same number
of determinable parameters.

Further easy to evaluate criteria based on the model
structure are the often cited geometrical rules. They
are not applied here, because they make restrictive
assumptions, e.g. controllability, observability, invariant
matrices BS,CS over the compared models, ... (Godfrey
and Chapman (1990)). The servo system models
considered in this paper are observable only in the case
of position sensors and often the matrices BS and CS

have different structures.

5 Results of the distinguishability analysis

Rather than directly investigating the distinguishability
of the candidate models from Fig. 1 a more general class
of multiple mass models is considered as they are created
by placing actuator and sensor in different positions.
Figure 1 represents a special case with single-sided force
input and collocated measurement. However, depending
on the construction it might be necessary in some cases
to consider elasticity of the base and at other positions.
So, the aim of the structure identification could be
to determine at which point structural compliances
and masses are significant, or can be neglected. This
information is useful for detecting weaknesses in the
construction and faults that occur in operation. The
more general class of models is derived in Sec. 5.1, before
the criteria for distinguishability are applied in Sec. 5.2.

5.1 Combinatory generation of multiple mass
models

Attention is restricted to linear chains of masses without
loops or branching and with only one actuator and one
sensor. An example is shown in Fig. 9. Translational
elements are displayed, but the chain could equally well
consist of rotary elements.

For a given number NB of masses the complete
set of possible models can be created by rearranging
the sensor, the actuator and the position in the chain
where the spring is missing (gap), representing the
degree of freedom of the positioner/motion system.

Figure 9: Example of multipe mass model with NB = 3,
ngap = 1, nact+ = 3, nact− = 1, nmeas+ = 2, nmeas− = 0

It is located between masses ngap ∈ N and ngap + 1.
Actuator and sensor have one point of actuation nact+ ∈
N, resp. measurement nmeas+ ∈ N and a reference point
nact− ∈ N, nmeas− ∈ N. An index of 0 refers to the rigid
environment instead of a mass. The set of possible
models can be constructed by varying these five indices
under the following constraints:

0 ≤ ngap ≤ NB − 1,

0 ≤ nact− ≤ ngap,
ngap + 1 ≤ nact+ ≤ NB,

0 ≤ nmeas− ≤ ngap,
ngap + 1 ≤ nmeas+ ≤ NB.

(36)

In addition, two restrictions are necessary to exclude
models with unexcited masses or states that have
no output sensitivity for any type of sensor. Such
models would depict a degradation to a simpler model,
independent of the parameters:{

ngap = 0 ∨ nact− > 0,

ngap = 0 ∨ nmeas− > 0.
(37)

The first condition ensures excitability of all masses,
while the second ensures sensitivity of the measurement
to all masses. In the example in Fig. 9 the second
condition is violated: Mass 1 has no effect on the position
measurement.

Finally, models are excluded that are created
from other models by renaming/renumbering of some
elements. This trivial way of generating additional
models is prevented by demanding the following
restrictions:{

nact+ ≤ nmeas+,

nact+ ≤ ngap + d(NB − ngap)/2e.
(38)

The symbol d e means rounding up to full integers. In
Fig. 9 both rules are violated. Table 2 states the resulting
number of models for a given number of masses.

Table 2 Number of possible models for different numbers
of masses

Masses NB 1 2 3 4 5

Number of models 1 3 11 29 73

For three masses the eleven systems are given in
Tab. 3. Collocated systems, i.e. sensor and actuator at
the same position, are marked with an asterisk.
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Table 3 Complete set of 3-mass models to be considered
in the analysis. Collocated systems are marked by
an asterisk *.

ID Sketch

A1*

A2

A3

A4*

A5

B1*

B2

C1*

C2

C3*

C4

5.2 Distinguishability analysis

Distinguishability of the eleven 3 mass models is
investigated by the help of the necessary and sufficient
conditions from section 4. The sensors are assumed to
measure accelerations. For velocity (position) sensors,
the same results can be obtained, except that the
Markov parameters and TF coefficients are shifted by

Figure 10: Distinguishability analysis without
damping. Left: TFA, right: MPA with 8 Markov
parameters

one (two) with no difference in the computational
effort. Firstly, damping is neglected. The resulting
pattern of distinguishable and indistinguishable model
combinations is shown in Fig. 10 for the TFA and for the
MPA with 8 Markov parameters. The number in each
field indicates the rule from section 4 that caused the
decision.

It can be seen that without damping a conclusive
result is obtained for all model combinations with the
TFA. The MPA with 8 Markov parameters produces no
contradictions but it cannot prove indistinguishability
of the indistinguishable models: Condition 6 is not
applicable because only a subset of the NS,1 +NS,2 = 12
Markov parameters are calculated. Condition 7 is not
applicable because there are typically more non-constant
moment invariants than the 5 determinable parameters
given that the overall number of Markov parameters is
12. For the case of calculating fewer Markov parameters
than 8 the unknown area expands and for significantly
more than 8, up to 12 the computation time would
be formidable. From this comparison the TFA seems
more powerful and the MPA provides no additional
information.

Now, damping is included, see Fig. 11. In this
case, neither the TFA, nor the MPA with 7 Markov
parameters can derive an answer to the distinguishability
question for all combinations. The reason is that
condition 7 is not applicable in the case with damping,
here. This is because the number of non-constant TF
coefficients (7 . . . 9, 7 only for model A3) is almost
always larger than the number of model parameters (7).
Indeterminate areas result. Without damping the
number of non-constant TF coefficients (3 . . . 5) is less
than or equal to the number of model parameters (5).
For the other conditions the situation is the same with
and without damping in these areas: Conditions 1 to 5
are satisfied and 6 is not applicable.

It is important to note that in some cases the MPA
proves indistinguishability that cannot be proved with
the TFA. One such case is shown in Fig. 12, where
system A4 has been optimized to resemble the TF of A1.
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Figure 11: Distinguishability analysis incl. damping.
Left: TFA, right: MPA with 7 Markov parameters

While the frequencies of resonances and antiresonances
are in agreement, it is not possible to match the damping
at all four (anti)resonances simultaneously. This result
suggests that the evaluation of the criteria for the MPA
is a valuable additional test. For 8 Markov parameters
the same pattern results and for much higher numbers
the computational complexity gets excessively large. 6 or
fewer Markov parameters lead to larger unknown areas.

Figure 12: System A4 fitted against A1 with arbitrary
parametrization, including damping

Now, the criteria based on submodels are considered,
see Sec. 4.4. For the comparison of two models with the
same complexity only the condition 9 is relevant. For
the considered class of models it is applicable if the two
models have the same actuator and sensor location, but
a different position of the gap. For three masses there is
no such occurrence, for four masses the criterion proves
indistinguishability of one combination (not covered by
any other criterion), see below and for five masses this
is true for six combinations.

For the 29 4-mass models the resulting pattern
considering all criteria is shown in Fig. 13. Damping
is neglected because otherwise similarly to the 3-mass
systems condition 6 could never be applied. In eight cases
the MPA proved indistinguishability which could not be

Figure 13: Combined TFA and MPA for 4-mass system,
8 Markov parameters, without damping

proved by the TFA. Equivalence of models 11 and 13 was
shown by cond. 9.

Coming back to the candidate models from Fig. 1
the effect of delay time, the first-order hold model and
the base dampers remains to be investigated. It is clear
that delay time cannot be confused with a fractional
polynomial TF, unless the order is very high. Further,
the first-order hold model leads to augmented models
that are distinguishable from the original models in
all eleven cases. The inclusion of dampers has been
investigated for the damped systems, see Fig. 14. For
each of the eleven 3-mass systems it is shown which
combinations of dampers are distinguishable, e.g. 0-
1 means system 1 has no damper, system 2 has a
base damper at mass 1. It can be seen that in the
structure and parameter identification from above the
set of candidate models was chosen appropriately with
distinguishable models only, but that for other system,
e.g. A3 it would not be possible to determine the correct
positions of dampers.

6 Discussion

Our approach towards structure and parameter
identification in frequency domain maximized the fit
of the model while considering criteria of practical
identifiability based on local sensitivity analysis. In the
experiment the chosen model seems intuitively plausible,
but the result depends strongly on the chosen thresholds.
Especially when different interpretations of the data are
admitted by visual inspection the algorithm will also
suggest different models depending on the thresholds. It
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Figure 14: Distinguishability analysis of systems
without additional damper (0) and damper positions 1,2
and 3

is questionable if it is possible to choose the thresholds
in advance without carefully analysing all criteria for a
given model, also all scaled condition indices, not only
the maximum.

The selected model is not necessarily the best choice
for a certain intended purpose such as feed-forward or
control design, but it can be used with confidence as a
practically identifiable model with good fit. Any results
obtained by this method should be reviewed carefully
regarding integrity.

It was chosen to include only those submodels
that have exclusively identifiable parameters. Although
this is sound, it sometimes leads to unintuitive
conclusions, e.g. when an elastically coupled mass is not
included only because the damping parameter cannot
be identified securely. Here, different strategies could be
further investigated for the transition from parameter
investigations to submodel inclusion/exclusion decisions.

Distinguishability of the candidate models and of a
broader class of multiple mass models has been analysed
with the help of different necessary and sufficient criteria.
The chosen composition of testing criteria is probably
not complete and could be further extended to eliminate
the unknown areas.

Conditions 2 and 8 never appeared to be pivotal.
In the analysed setting with equally many masses of
both systems the number of denominator coefficients
was the same and the number of moment invariants was
determined fully by the numerator. Nevertheless, these
rules should not be skipped in the comparison of models
with different complexity.

Future works should also consider parameter ranges.
If equivalent sets of parameters include non-admissible
parameter values, this can be utilized to decide in
favour of one model. Furthermore, model uncertainty in
the case of structurally distinguishable models should
be investigated. The Akaike weights Burnham and
Anderson (1998) can assess if the difference in the cost
function is significant or lies in the order of measurement
noise.

7 Conclusions

A procedure for model selection in frequency domain
has been proposed that minimizes the Kullback-Leibler
distance while also maintaining practical identifiability
of all estimation parameters. It aims at mechanical
models of servo systems including multiple-mass
resonators. Criteria for practical identifiability are
derived locally from the sensitivity matrix. Furthermore,
the problem of distinguishability of model structures,
which immediately arises, has been dealt with.

In experiments with two industry-like testbeds the
model selection proves to reveal the characteristic
mechanical properties of the two setups. Due to
normalization thresholds for the criteria of practical
identifiability can be chosen almost independently of
the testbed properties but the results are still highly
depended on the exact choices.

The set of models investigated in the
distinguishability analysis is defined by structures
that could describe servo positioning systems with a
predefined number of elastically coupled masses. Most
of the criteria are based on structural invariant vectors
obtained from the transfer function approach and from
the Markov parameter approach.

The transfer function approach is mostly superior
over the Markov parameter approach, mainly because
not all the required Markov parameters can be
computed due to computational complexity. However,
there are cases where the latter gives additional insights.
Conditions based on the model structure helped to
answer the distinguishability question for more complex
models.
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