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For service life tests, a shifted Weibull distribution, also known as the trans-

lated or three-parameter Weibull distribution, is commonly used. The shifted

Weibull distribution promises completely fault-free operation until time t =

L0, meaning that the process is deterministic in the early stage. Only af-

ter this phase does the distribution allow random behavior, ı.e. from the

time t = L0 on, the process is stochastic. This model, which is based on

two consecutive time periods of quite different nature, is at odds with the

idea of a continuously progressing fatigue, wear, or decay process as long as

there are no influences from outside. To replace this arguably inconsistent

model, variants of the Weibull distribution of purely stochastic nature are

proposed and investigated that start with a reduced probability of failure

before transitioning to normal Weibull behavior.

1 Introduction

Materials wear and fatigue, and, as a result, failures occur. Individual failures as a

consequence of fatigue or wear occur at unpredictable, statistically distributed times.

It is often assumed that the service lifetimes are distributed according to the Weibull

distribution, as this is the distribution that yields the highest target values in parameter
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estimation using optimization methods such as the maximum likelihood procedure. The

original Weibull distribution is defined by two parameters.

Attempts have been made to develop a modified variant of the Weibull distribution by

introducing a third parameter in order to describe failure behavior that is initially in-

frequent. This variant is in constant use, which is clear from some of the first entries

from an internet search for the term ’Weibull distribution’. The additional third pa-

rameter, also known as the threshold, accounts for a minimum initial operating time,

during which an (alleged) absolute and total absence of failure is guaranteed. In the

following, we consider whether this assumption is justified or should be replaced by a

more stringent approach.

2 The problem

2.1 The Weibull distribution with two parameters

For many service life tests, the original Weibull distribution with two parameters can

suitably represent the observed values. In general, F (t) denotes the cumulative distri-

bution function of a time-dependent random variable and W (t) specifically denotes the

Weibull cumulative distribution function:

F(t) = W(t) =

{
1− e−(t/T)

β

, t ≥ 0, β > 0, T > 0

0, t < 0

(1)

An important characteristic is that, in the exponential function, the time t itself is raised

to the power β. The parameter T is called the characteristic time; regardless of the value

of β, one has W (T ) = 1− 1/e ≈ 0.632.

At t = 0, the cumulative distribution function W (t) is equal to zero and begins to

increase monotonically as a function of t, approaching the value 1 for large t. From the

values of the cumulative distribution function, one attains the probability that a failure

occurs at or before time t. With W (t) = 0 for t < 0, the distribution shows that the

effect cannot occur before the cause, ı.e. a failure can only be expected after the start

of the damage-inducing loading; this fundamentally excludes the possibility of failure
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before the damage-inducing loading, and, indeed, the probability of a negative service

lifetime is zero.

Instead of the characteristic value T , one commonly uses the L10-lifetime and alge-

braically manipulates Eqn. (1) into:

F(t) = W(t) =

{
1− e

ln(0.9)

[
t

L10

]β
, t≥ 0, β > 0, L10> 0,

0, t< 0.

(2)

Once again, there is a value independent from β that the cumulative distribution function

depends on: by definition, W (L10) = 0.1 and L10 gives the time up to which 10% of

failures are to be expected.

2.2 The shifted Weibull distribution

(translated or 3-parameter Weibull distribution)

For certain applications, one discovers that the initial number of failures is lower than

predicted by the standard Weibull distribution. This deviation is attributed to processes

such as wear, deterioration, or fatigue, which usually require a certain amount of time for

damage to develop into failure. For this reason, Snare [1] and later on Bergling [2], used

a third parameter L0, also known as the threshold, in the evaluation of roller bearing

lifetimes to shift the cumulative distribution function to the right, according to

F(t) = W(t) =

{
1− e

ln(0.9)

[
t−L0

L10−L0

]β
,

{
t ≥ L0,

β > 0, L10 > 0,

0 ≤ L0 < L10

0, t < L0

(3)

to optain a ’better’ fit to the data points for early failures. When plotted, this correction

can be visually judged to be adequate. Also, if the superiority of a parameter set is to be

judged using the target value that arises from the optimization of an estimation process

such as the maximum likelihood method, then the three-parameter Weibull distribution

should indeed be preferred to the two-parameter Weibull distribution. On the one hand,

this is the argumentation in favor of the three-parameter Weibull distribution.
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2.3 The conflict

On the other hand, however, shifting the original Weibull distribution to get the curve

of Eqn. (3) introduces a new phase into the model. It is valid for t < L0 and is of

purely deterministic nature; the second phase, valid for t ≥ L0, is stochastic. These two

domains of fundamentally different nature share the predefined, non-random border at

t = L0.

In the first part, the model ensures that there are no failures before t = L0. An event in

this region representing a failure cannot occur and is labeled as ’impossible’ by definition

in Eqn. (3). Strictly spoken, such a fundamental statement cannot be deduced or vali-

dated purely from observation, regardless of the number of data points. Even though an

estimator L̂0 for a sample exists and can be computed according to Park [3], this does

not on its own prove the existence of a failure-free period of time L0.

From a numerical point of view, one hardly notices a difference between ’exactly zero’

and very, very small, say one billionth or even less. Qualitatively, on the other hand,

the ’impossible event’ is fundamentally different from one with a low probability. The

first is based on abstract definition, the other is a matter of the real world; in the first

case, one can be completely unconcerned, in the other one, precautionary measures may

become necessary.

Additionally, this model necessitates an exogenous ’timer setting’ that triggers the tran-

sition to the second phase after which the ongoing fatigue or wear processes are allowed

to develop into a failure.

This is an unsatisfactory situation as there is a conflict. On the one hand, one has

the best distribution (among the ones tested), while on the other hand, the statement

and core assumptions of the distribution do not apply to the continuously progressing

process that generates the observed values. A pragmatic way to resolve this issue would

be to consider the Weibull distribution with L0 > 0 an approximation. Nevertheless,

one must be prepared to fend off any outside claims that one has guaranteed safety

from premature failures. There is a dilemma with only one possible resolution: to find a

distribution that yields even higher target values in parameter estimation, that can also

be interpreted without any problems.
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3 New approach

3.1 A Hyperbola instead of the straight lines

The question therefore becomes whether it is possible to find an intermediate solution

that preserves the Weibull character and allows for delayed failure behavior without

permitting any misinterpretation. It is useful to simplify the equations by using the

(L10 − L0)-normalized variables t′ = t/(L10−L0) and L′0 = L0/(L10−L0). We then can

write what is diffferent in each distribution as auxiliary functions of t′ as g2(t
′) = t′ and

g3(t
′) = t′ − L′0, respectively; the index is counting the parameters. The functions g(t′)

are both the basis which is taken to the power β in the cumulative distribution function

of Weibull.

These two functions that depend on t′ and L′0 are shown in Fig. 1 as two parallel lines

with g2 on the left as a dashed line, and shifted by L′0 = 0.05 to the right as g3, which
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Fig. 1: g(t′) over t′, L′0 = 0.05

is represented by a dotted line. In the area between the two lines, we may draw another

curve. This curve should increase monotonically from the value 0 at t′ = 0 and approach

the line g3 for large t′. By taking the same name L′0 for a similar parameter an obvious

choice would be the branch of a hyperbola, ı.e.

gh(t′) = −L′0 +
√
t′ 2 + L′

2
0 , t′ ≥ 0, L′

0 ≥ 0 (4)

which is represented by the continuous line in Fig. 1. Near t′ = 0 the function gh(t′)

behaves like t′2/2L′0, ı.e. it begins with a horizontal tangent.1

1If, on the other hand, one wants to represent particularly frequent early failures rather than delayed

ones, one may use gh(t′) =
√

t′ 2 + 2t′L′
0, a different hyperbola branch that increases quickly at

t′ = 0, just like the square root function.
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3.2 Comparison of the distribution functions

The three versions of g(t′) lead to three Weibull distribution functions via W (g(t′)),

where each g(t′) replaces the original t′; we apply the notation W2 to mean W (g2(t
′))

for each g(t′). Figures 2 and 3 show the curves with linear coordinates on the left,
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Fig. 2: W (g(t′)) over t′,
linear coordinates, L′0 = 0.05
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Fig. 3: W (g(t′)) over t′,
linear coordinates, L′0 = 0.05

and Weibull coordinates on the right, which shows the original Weibull distribution as

a straight line. For these calculations, β = 1.35 was chosen.

The desired sensible behavior is clearly visible. On the left in Fig. 2, Wh remains close to

0 longer than the original W2 and in the further course it approaches W3 more and more.

In the Weibull diagram on the right, Wh begins steeper than W2 but not as abruptly as

W3, which starts at the fixed value t′ = L′0.

Thus, early failures are less likely under the hyperbola approach according to Eqn. (4)

than for the original Weibull distribution, which is given by W2, but, in contrast to W3,

not completely impossible before t′ = L′0. For larger values of t′, the curves Wh and W3

merge as a consequence of Eqn. (4), which can also be seen in the representation with

Weibull axes. Fig. 2 shows only the section for small t′ with undistorted axes; when

these axes are expanded to t′ = 10 as was done for the Weibull coordinates, one would

not be able to distinguish the curves, especially for large t′.
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The stated goal has been achieved since a useful replacement has been found. It is of

continuously stochastic nature without a deterministic portion. Using initially small

probabilities, it can represent delayed failures. There is no necessity for assumptions of

a guaranteed lifetime L0.

4 Extension of the hyperbola

4.1 Further replacement of the straight lines

Is the potential of the first approach now exhausted or can it be pursued further and

expanded? The characteristic course of the hyperbola branch should be preserved; how

can it be varied? By generalizing the square root and the second power, we arrive at

gc(t
′) = −L′0 +

[
(t′)

c
+ (L′0)

c
]1/c

, t′ ≥ 0, L′
0 ≥ 0, c ≥ 1 (5)

with the new Parameter c, the name of which is also used as an index for gc(t
′), denoting

the modified approach2. The curve of gc(t
′) increases monotonically with t′, as was the

case with the first hyperbola in Eqn. (4); by replacing t′ with gc(t
′) in the Weibull

formula, the definition of a distribution is still fulfilled.

Figure 4 shows a sheath of continuous curves between the original straight lines, which are
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Fig. 4: g(t′) over t′, L′0 = 0.05

2Values in the range 0 < c < 1 generate more frequent early failures
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represented by dashed line and dotted line, respectively. The list shows the corresponding

values for c, where the arrow is pointing in the direction of increasing values. For t′ = 0,

the curves increase with t′, with almost horizontal tangent lines, like t′
c
/cL′

c-1
0 , and with

increasing c they thus lie along the time axis more closely and for a longer duration.

The new formula does not just fill the area between the first two straight lines, it also

has the nice property of including the original Weibull distribution for c = 1, while the

other shifted one is a boundary case for c→∞.

4.2 Comparison of the cumulative distribution functions

The appearance of the corresponding cumulative distribution functions, on the left in

linearly divided coordinates and on the right with Weibull axes, now turns out as one

might expect; between the two original curves, there are arbitrarily many intermediate

possibilities. In Fig. 6 on the right, the curves run from the bottom almost vertically
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Fig. 5: W (g(t′)) over t′,
linear coordinates, L′0 = 0.05
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Fig. 6: W (g(t′)) over t′,
linear coordinates, L′0 = 0.05

towards the Weibull line W2 with varying curvature. Because the series expansion of

gc(t
′) begins with order t′

c
for small times t′, the initial slope of the Wc in the Weibull

coordinates is cβ.
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4.3 Special properties

As an example, Fig. 7 repeats the representation of the first hyperbola approach accord-

ing to Eqn. (4). Additionally, a series of small circles shows the nearly linear initial slope
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Fig. 7: W (g(t′)) and asymptote over t′,
Weibull coordinates, L′0 = 0.05

of 2β and continues it to larger values. We see that this line, together with W2, can be

pieced together to conservatively approximate Wh. This is reminiscent of the old rule

for the design of ball bearings, according to which the value of β should be increased to

1.5 for service lifetimes below L10.
3

4.4 A short look at parameter estimation

For the original Weibull distribution with two parameters, one calculates the estimators

β̂ and L̂10 from measured service lifetimes. Every measurement has an influence on

each of those two values. At most, the extreme failure times with low and high values

have more influence on the result of the slope β̂ in the Weibull coordinates and the

intermediate values have more weight in the calculation of L̂10.

This changes for the four parameters of the extended approach. The new values L0

and c arise on their own as the influence and efficacy in the initial range; as a result,

their estimation L̂0 and ĉ depend mainly on the times of the first early failure cases.

This is related to a reduced dependence of both estimators β̂ and L̂10 on the first early

3This modification is taken into account in the calculation of the reliability factor a1 acording to ISO
281 (2007 and previous versions) [4].
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failure cases. A sufficiently large number of early failure cases is therefore necessary in

order to estimate the new parameters accurately and reliably. If so far the number of

early failures apeared to be sufficient to calculate the estimate L̂0 of the shifted Weibull

distribution alone, such a number might now also be good enough to get usable values for

L̂0 and ĉ for the proposal. Moreover, typical values for certain special applications can

be considered, such as the typical values of β equal to 1.11 for roller bearings primarily

with point contacts versus β equal to 1.35 for cases with point and line contacts.

5 Conclusion

For continuously progressing wear and fatigue processes, the Weibull distribution with

three parameters is not a suitable model for the distribution of service lifetimes as long as

there are no external influences; it can only be viewed as a pragmatic approximation. In

the approach presented here, the linear dependence on time t is replaced by a hyperbolic

dependence. This new variant can represent delayed failure behavior in a fully stochastic

model while avoiding difficulties with interpretation of the parameters, in particular with

respect to guaranteed service lifetimes.
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