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Abstract
The 0-Hecke algebra Hn(0) over a field K is a deformation of the group algebra KSn of
the symmetric group Sn. In this thesis we study the center of Hn(0) and Hn(0)-modules
that are associated to quasisymmetric Schur functions.
The quasisymmetric Schur functions Sα are analogues of the Schur functions in the

algebra of quasisymmetric functions QSym. An algebra isomorphism from the Gro-
thendieck groups of the finitely generated modules of the 0-Hecke algebras Hn(0) to
QSym is given by the quasisymmetric characteristic Ch. Tewari and van Willigenburg
constructed Hn(0)-modules Sα that are mapped to the quasisymmetric Schur functions
Sα by Ch. Moreover, they used an equivalence relation in order to decompose Sα into
submodules Sα = ⊕

E Sα,E . Analogously, they defined and decomposed skew modules
Sα//β corresponding to skew quasisymmetric Schur functions Sα//β.
In Chapter 3 we consider these modules. We show that the modules Sα,E are inde-

composable. The skew modules Sα//β,E on the other hand can be decomposable. For a
certain family of skew modules Sα//β, which we call pacific, we describe a decomposition
into indecomposable submodules. From this we obtain combinatorial formulas for top
and socle of the pacific modules. These formulas are then generalized to all skew modules
Sα//β,E . This includes the straight modules Sα,E . We close the chapter by discussing
how the results on the modules Sα,E can be transferred to permuted versions of them
which were also introduced by Tewari and van Willigenburg.
Chapter 4 is concerned with the center Z(Hn(0)) of Hn(0). A K-basis of Z(Hn(0))

was defined by He. This basis is given by certain equivalence classes (Sn)max�≈ of Sn.
For Σ ∈ (Sn)max�≈ the basis element π̄≤Σ indexed by Σ corresponds to the order ideal in
Bruhat order generated by Σ. We provide two sets of representatives of (Sn)max�≈ and
obtain a parametrization of the elements of (Sn)max�≈ by certain kinds of compositions
called maximal. These compositions have the property that their odd parts are weakly
decreasing. We give a combinatorial characterization of the Σα ∈ (Sn)max�≈ in the case
where α is a hook and a recursion rule for Σα that allows us to deal with the even parts
of α. As a consequence, we obtain a description of Σα for all maximal compositions α
whose odd parts form a hook.
In Chapter 5 we study the action of the elements of He’s basis π̄≤Σα on the simple

Hn(0)-modules. For n ≥ 3 the 0-Hecke algebra Hn(0) has three blocks: one nontrivial
block B and two blocks of dimension one. Based on computer experiments, we conjecture
that if π̄≤Σα 6= 1 then π̄≤Σα annihilates all simple Hn(0)-modules belonging to the block
B. Using the results of Chapter 4, we confirm this conjecture in the case where the odd
parts of α form a hook.

Keywords: 0-Hecke algebra, center, quasisymmetric Schur function
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1 Introduction

For a finite Coxeter groupW with Coxeter generators S, the 0-Hecke algebraHW (0) over
a field K is a deformation of the group algebra KW which can be obtained by replacing
the involutions s ∈ S by projections πs satisfying the same homogeneous relations as
the s ∈ S. These algebras appear in the modular representation theory of finite groups
of Lie type [Nor79, CL76]. The adjacent transpositions (i, i + 1) for i = 1, . . . , n − 1
generate the symmetric group Sn as a Coxeter group. We write Hn(0) for the 0-Hecke
algebra of the symmetric group Sn.
This thesis is concerned with Hn(0)-modules that are associated to quasisymmetric

Schur functions and the center of Hn(0). Chapter 2 contains the background material
on combinatorial concepts, Coxeter groups and 0-Hecke algebras.
The representation theory of HW (0) was first considered by Norton [Nor79]. Further

results on Hn(0) were obtained by Carter [Car86]. Duchamp, Hivert and Thibon showed
that Hn(0) has infinite representation type for n ≥ 4 [DHT02]. Deng and Yang deter-
mined the representation type of HW (0) for irreducible finite Coxeter groups W [DY11].
They showed that in most cases HW (0) has infinite and (if K is algebraically closed)
wild representation type. In particular, the latter is true for Hn(0) with n ≥ 5.
Let G := ⊕

n≥0 G0 (Hn(0)) where G0 (Hn(0)) denotes the Grothendieck group of the
finitely generated Hn(0)-modules. Duchamp, Krob, Leclerc and Thibon introduced an
algebra isomorphism Ch from G to the algebra of quasisymmetric functions QSym called
quasisymmetric characteristic [DKLT96, KT97]. This mirrors the connection between
the representation theory of the symmetric groups over C and the algebra Sym of sym-
metric functions given by the characteristic map ch which sends the irreducible character
χλ to the Schur function sλ [Sag01, Sta99]. The algebra QSym is a generalization of Sym
that was defined by Gessel [Ges84]. For an introduction to QSym refer to [Sta99, GR14].
Haglund, Luoto, Mason and van Willigenburg defined the quasisymmetric Schur func-

tions Sα [HLMvW11]. The Sα form a basis of QSym and share many properties with the
Schur functions sλ. Bessenrodt, Luoto and van Willigenburg generalized them to skew
quasisymmetric Schur functions Sα//β [BLvW11]. For each quasisymmetric Schur func-
tion Sα, Tewari and van Willigenburg constructed a 0-Hecke module Sα that is mapped
to Sα by Ch [TvW15]. Furthermore, they showed that the module Sα admits a natural
decomposition into submodules Sα = ⊕

E Sα,E given by an equivalence relation on its
defining K-basis. Similarly, they constructed and decomposed skew modules Sα//β that
are preimages of the skew quasisymmetric Schur functions Sα//β under Ch.
In Chapter 3 we consider these modules. We first show in Theorem 3.3.11 that the

modules Sα,E are indecomposable. This part of the author’s PhD research has already
been published in [Kön19]. Skew modules Sα//β,E however can be decomposable. In
Theorem 3.4.17 we give a decomposition of certain skew modules Sα//β, which we call
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1 Introduction

pacific, into indecomposable submodules. From this we obtain combinatorial rules for
the top and the socle of pacific modules Sα//β in Corollary 3.4.21. The rules are then
generalized to all skew modules Sα//β,E in Theorem 3.5.42 for the top and in Corol-
lary 3.6.41 for the socle. Via the direct sum decomposition, this also yields formulas for
the top and the socle of Sα//β. These results hold in particular for the straight modules
Sα. Tewari and van Willigenburg also introduced permuted versions Sσ

α and Sσ
α,E of the

straight modules [TvW19]. At the end of Chapter 3 we briefly discuss how our results on
the straight modules can be transferred to the permuted ones. For the indecomposability
of Sσ

α,E this already has be done in a slightly different way by Choi, Kim, Nam and Oh
[CKNO21].
Let Z(HW (0)) denote the center of HW (0). Brichard determined the dimension of

Z(Hn(0)) [Bri08]. Yang and Li obtained a lower bound for the dimension of Z(HW (0))
in several types other than A [YL15]. A K-basis of Z(HW (0)) for arbitraryW depending
on certain equivalence classes Wmax�≈ of W was defined by He [He15]. For Σ ∈Wmax�≈
the basis element π̄≤Σ indexed by Σ corresponds to the order ideal in Bruhat order
generated by Σ.
In Chapter 4 we study Z(HW (0)) and its basis given by He with focus on the case

W = Sn. We give two sets of representatives of (Sn)max�≈ in Proposition 4.2.10 and
Proposition 4.2.14. The second set consists of elements in stair form, which were defined
by Kim [Kim98]. Both sets are indexed by certain kinds of compositions called maximal.
The defining property of these compositions is that their odd parts are weakly decreasing
and appear after the even parts (see Definition 4.2.4). Using the elements in stair form,
we parametrize the elements of (Sn)max�≈ by maximal compositions. In addition, we
use results of Gill [Gil00] in order to determine the dimension of Z(HW (0)) in types Bn
and D2n in Subsection 4.2.4.
We proceed by giving a combinatorial characterization of the elements of the equiva-

lence class Σα ∈ (Sn)max�≈ in the cases where the maximal composition α has only one
part (Theorem 4.3.20) or is a hook (k, 1n−k) with odd k (Theorem 4.3.40). Moreover,
we obtain a recursive rule for Σα which allows us to deal with the even parts of α in
Corollary 4.3.56. This results in a description of the elements of Σα for each maximal
composition α whose odd parts form a hook.
In Chapter 5 we consider the action of He’s basis of Z(Hn(0)) on the simple Hn(0)-

modules. For n ≥ 3 the 0-Hecke algebra Hn(0) has exactly three blocks: Two blocks
of dimension 1 and one nontrivial block B. Computer experiments suggest that apart
from the identity element of Hn(0), the basis elements annihilate all the simple modules
belonging to the block B. Building on our results from Chapter 4, we confirm this
in Corollary 5.4.10 for the basis elements corresponding to the maximal compositions
whose odd parts form a hook.
At the beginning of each chapter, we give a more detailed introduction of its content.
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2 Background

In this chapter we introduce the basic definitions relevant to all parts of the thesis.
The first topics are compositions and composition diagrams in Section 2.1. Section 2.2
deals with finite Coxeter groups and related concepts. This will mostly be applied to
the symmetric group Sn. Other Coxeter groups will only appear in Section 4.1 and
Subsection 4.2.4.

In Section 2.3 we define the 0-Hecke algebras of finite Coxeter groups. Moreover,
we describe the simple and indecomposable projective modules as well as the block
decomposition of the 0-Hecke algebras. This includes the central object of this thesis:
the 0-Hecke algebra Hn(0) of the symmetric group Sn.

Throughout the thesis K denotes an arbitrary field. We set N := {1, 2, . . .} and
always assume that n ∈ N. For a, b ∈ Z we define the discrete interval [a, b] :=
{c ∈ Z | a ≤ c ≤ b} and use the shorthand [a] := [1, a]. For a set X, spanKX is the
formal K-vector space with basis X.

Let A be a ring and M be a (left) A-module. With rad(M) we denote the radical of
M which is the intersection of all maximal submodules of M . The top of M is the factor
module top(M) := M / rad(M). The socle of M is the sum of all simple submodules of
M and denoted by soc(M). We call M projective if M is a direct summand of a free
A-module.
We recall some notions related to partially ordered sets. For an introduction to the

subject refer to [Sta12]. Let (P,≤) be a poset. For x, y ∈ P we say that y covers x and
write x l y if all z ∈ P with x ≤ z ≤ y are either equal to x or y. A subset O of P is
called order ideal of P if for all x ∈ O and y ∈ P we have that x ≥ y implies y ∈ O.
Dually, a subset F of P is called filter of P if for all x ∈ F and y ∈ P we have that
x ≤ y implies y ∈ F . For two subsets X and Y of P we write X ≤ Y (resp. X < Y ) if
x ≤ y (resp. x < y) for all x ∈ X and y ∈ Y .
Let x, y ∈ P . Then z ∈ P is called a lower bound of x and y if z ≤ x and z ≤ y. We

call z ∈ P the meet (or greatest lower bound) of x and y if z is a lower bound of x and y
and w ≤ z for all lower bounds w of x and y. If there is a meet of x and y, it is denoted
by x ∧ y.

2.1 Compositions and diagrams

A composition α = (α1, . . . , αl) is a finite sequence of positive integers. The length and
the size of α are given by `(α) := l and |α| := ∑l

i=1 αi, respectively. The αi are called
parts of α. If α has size n, α is called composition of n and we write α � n. A weak
composition of n is a finite sequence of nonnegative integers that sum up to n. We
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2 Background

write α �0 n if α is a weak composition of n. The empty composition ∅ is the unique
composition of length and size 0. A partition is a composition whose parts are weakly
decreasing. We write λ ` n if λ is a partition of size n. Partitions of n of the form
(k, 1n−k) with k ∈ [n] are called hooks. For a composition α we denote the partition
obtained by sorting the parts of α in decreasing order by α̃.

Example 2.1.1. For α = (1, 4, 3) � 8, we have α̃ = (4, 3, 1) ` 8.

For α = (α1, . . . , αl) � n define the set associated to α as the subset of [n− 1]

Set(α) := {d1, d2, . . . , dl−1}

where dk := ∑k
j=1 αj . Conversely, for D = {d1 < d2 < · · · < dm} ⊆ [n− 1] define

comp(D) := (d1, d2 − d1, . . . , dm − dm−1, n− dm)

the composition of n associated to D. Then α 7→ Set(α) is a bijection from the composi-
tions of n to the subsets of [n− 1] with inverse map given by D 7→ comp(D). For α � n
define the complementary composition of α as αc := comp([n− 1] \ Set(α)).

Example 2.1.2. For α = (1, 4, 3) � 8 we have D(α) = {1, 5} and αc = (2, 1, 1, 2, 1, 1).

A cell (i, j) is an element of N × N. A finite set of cells is called diagram. Dia-
grams are visualized in English notation. That is, for each cell (i, j) of a diagram we
draw a box at position (i, j) in matrix coordinates. The diagram of α � n is the set
{(i, j) ∈ N× N | i ≤ `(α), j ≤ αi}. We display the diagram of α by putting αi boxes in
row i where the top row has index 1. We often identify α with its diagram.

Example 2.1.3.

(1, 4, 3) =

Let D be a diagram. We call D a horizontal strip if it has at most one cell per column.
The diagram D is a vertical strip if it has at most one cell per row. We say that D is
connected if the interior of D viewed as a union of solid squares is a connected open set.
The components of D are the maximal connected subdiagrams of D. The two diagrams

and

are examples for a horizontal and a vertical strip, respectively. Both diagrams are not
connected. Note that a connected horizontal strip is a one-row diagram which contains

10



2.2 Coxeter groups

all cells between its leftmost and rightmost cell, i.e. it looks like

· · · .

Let D be a diagram. A tableau T of shape D is a map T : D → N. It is visualized by
filling each (i, j) ∈ D with T (i, j).
In Section 3.1 we will define standard composition tableaux as fillings of composition

diagrams. In Section 5.1 we will associate a tableau of size n to each element of the
symmetric group Sn. These tableaux are used in Theorem 5.1.5 for a characterization
of the Bruhat order of Sn which we define in the next section.

2.2 Coxeter groups

Basic definitions

We review basic concepts of Coxeter groups. This includes Bruhat and left weak order,
descent sets, parabolic subgroups and the longest element. Our main motivation is the
application to the symmetric groups. Comprehensive treatments of the subject can be
found in [BB05, Hum90]. We mainly follow [BB05].
Let S be a set. A Coxeter matrix is a map m : S × S → N ∪ {∞} such that for all

s, s′ ∈ S
(1) m(s, s′) = 1 if and only if s′ = s,
(2) m(s, s′) = m(s′, s).
The corresponding Coxeter graph is the undirected graph with vertex set S containing

the edge {s, s′} if and only if m(s, s′) ≥ 3. If m(s, s′) ≥ 4 then the edge {s, s′} is labeled
with m(s, s′).
A group W is called Coxeter group with Coxeter generators S if W is generated by S

subject to the relations

(ss′)m(s,s′) = 1 for all s, s′ ∈ S with m(s, s′) <∞

where m is a Coxeter matrix with domain S × S and 1 denotes the identity element.
The relations can be rephrased as
(1) s2 = 1 for all s ∈ S,
(2) (ss′s · · · )m(s,s′) = (s′ss′ · · · )m(s,s′) for all s, s′ ∈ S with s 6= s′ and m(s, s′) <∞

where (ss′s · · · )p denotes the the alternating product of s and s′ with p factors. The
relations (2) are called braid relations or homogeneous relations. A Coxeter group W
with Coxeter generators S is called irreducible if its Coxeter graph is connected. The
irreducible finite Coxeter groups are classified and we use the notation from [BB05,
Appendix A1] in order to reference their types.
For a finite set X we define S(X) to be the group formed by all bijections from X to

itself. The symmetric group Sn is the groupS([n]). Its elements are called permutations.
A permutation σ ∈ Sn can be represented in cycle notation where cycles of length one

11



2 Background

s1 s2 s3 sn−2 sn−1

Figure 2.1: The Coxeter graph of Sn.

may be omitted. The cycle type (or simply type) of a permutation σ ∈ Sn is the partition
of n whose parts are the sizes of all the cycles of σ. If σ has cycle type (k, 1n−k) for
a k ∈ [n] we also call it a k-cycle. A k-cycle is trivial if k = 1. Writing σ in cycle
notation is the same as expanding σ into a product σ1 · · ·σr of disjoint cycles where the
trivial cycles may be omitted in the expansion. On the other hand, in order to describe
the cycle notation of a permutation combinatorially, it can be useful to include them.
In Section 4.3 we will characterize the elements of certain equivalence classes of Sn by
considering them in cycle notation.
Let S be the set of adjacent transpositions si := (i, i + 1) ∈ Sn for i = 1, . . . , n − 1.

The elements of S satisfy the relations

s2
i = 1,

sisi+1si = si+1sisi+1,

sisj = sjsi if |i− j| ≥ 2.

Then Sn together with the generators S is a Coxeter group [BB05, Proposition 1.5.4].
The Coxeter graph of Sn is shown in Figure 2.1. For n ≥ 2, Sn is an irreducible Coxeter
group of type An−1. While considering the symmetric group Sn as a Coxeter group, we
always assume that S is the corresponding set of adjacent transpositions.

Words and partial orders

For the remainder of the section let W be a finite Coxeter group with set of Coxeter
generators S. In this thesis we only encounter finite Coxeter groups.
Each w ∈ W can be written as a product w = s1 · · · sk with si ∈ S. Then s1 · · · sk is

called a word for w. If k is minimal among all words for w, s1 · · · sk is a reduced word
for w and `(w) := k is the length of w. One assertion of the word property of Coxeter
groups [BB05, Theorem 3.3.1] is that a reduced word for w can be transformed into any
other reduced word for w by applying a sequence of braid relations.
We now introduce two partial orders on W : the Bruhat order ≤ and the left weak

order ≤L. Let s1 · · · sk be a word over the alphabet S. A subword of s1 · · · sk is a word
si1 · · · sir with 1 ≤ i1 < i2 < · · · < ir ≤ k. A suffix of s1 · · · sk is a word of the form
sjsj+1 · · · sk with j ≥ 1.

Let u,w ∈ W . The Bruhat order ≤ is the partial order on W given by u ≤ w if
and only if there exists a reduced word for w which contains a reduced word of u as a
subword. Equivalently, one can demand that each reduced word for w contains a reduced
word for u as a subword [BB05, Corollary 2.2.3]. The left weak order ≤L is the partial
order on W given by u ≤L w if and only if there are s1, . . . , sk ∈ S such that
(1) w = sk · · · s1u,

12



2.2 Coxeter groups

(2) `(sr · · · s1u) = `(u) + r for r = 1, . . . , k.
Equivalently, we have u ≤L w if and only if a reduced word of w contains a reduced
word of u as a suffix. As a consequence,

u ≤L w =⇒ u ≤ w.

Since 1 ∈ W is the unique element of length 0, it is the least element in Bruhat and
in left weak order. The interval in Bruhat order between u and w is given by

[u,w] := {x ∈W | u ≤ x ≤ w} .

Analogously, we define the interval in left weak order [u,w]L.
The following proposition gathers some immediate consequences of the definition of

the left weak order. It is used in Theorem 3.1.18. Recall that we use the notation lL
to indicate covering relations.

Proposition 2.2.1 ([BB05, Proposition 3.1.2]). Let u,w ∈W .
(1 ) We have u ≤L w if and only if `(wu−1) = `(w)− `(u).
(2 ) If u ≤L w then the reduced words for wu−1 are in bijection with saturated chains

in the left weak order poset (W,≤L) from u to w via

sk · · · s1 ←→ ulL s1ulL s2s1ulL · · ·lL sk · · · s1u = w.

(3 ) The poset (W,≤L) is graded by the length function.

Theorem 2.2.2 ([BB05, Corollary 3.2.2]). Let u,w ∈ W . The interval in left weak
order [u,w]L is a graded lattice with rank function x 7→ `(xu−1).

Each interval in Bruhat order [u,w] is also graded by the length function. However,
in general it is not a lattice. For example, consider the Bruhat order on S3. Then s1s2
and s2s1 have no meet since s1, s2 l s1s2 and s1, s2 l s2s1.

Descents and parabolic subgroups

Let w ∈W . The left and the right descent set of w are given by

DL(w) := {s ∈ S | `(sw) < `(w)}

and

DR(w) := {s ∈ S | `(ws) < `(w)} ,

respectively. It follows that DL(w) = DR(w−1). Moreover, we have for s ∈ S that
s ∈ DR(w) if and only if w has a reduced word ending with s. The analogous statement

13



2 Background

is true for DL. Given σ ∈ Sn we have

DL(σ) =
{
si ∈ S | σ−1(i) > σ−1(i+ 1)

}
,

DR(σ) = {si ∈ S | σ(i) > σ(i+ 1)}
(2.1)

by [BB05, Proposition 1.5.3]. For I ⊆ J ⊆ S we define the (right) descent class DJI as

DJI := {w ∈W | I ⊆ DR(w) ⊆ J}

and set DI := DII . We will use descent classes as index sets of bases of projective modules
of 0-Hecke algebras.

Let I ⊆ S. We write Ic for the complement S \ I. The parabolic subgroup WI is the
subgroup of W generated by I. It is a Coxeter group with Coxeter generators I. The
associated set of quotients is given by W I := DIc∅ . By the following result, each element
of W has a unique factorization as a product of elements of W I and WI .
Proposition 2.2.3 ([BB05, Proposition 2.4.4]). Let I ⊆ S and w ∈W . Then there are
unique wI ∈W I and wI ∈WI such that w = wI · wI . Moreover, `(w) = `(wI) + `(wI).

The parabolic subgroups of Sn are often called Young subgroups [Sag01, Sta99]. Com-
monly, they are indexed by compositions and defined as follows. For α = (α1, . . . , αl) � n
let the Young subgroup Sα be given by

Sα := S([1, d1])×S([d1 + 1, d2])× · · · ×S([dl−1, n])

where dk := ∑k
j=1 αj . Then Sα is isomorphic to

Sα1 ×Sα2 × · · · ×Sαl .

For α � n we have that Sα = (Sn)I where I = {si ∈ S | i 6∈ Set(α)}.
In this thesis we will usually index parabolic subgroups with subsets of S. Given

I ⊆ S, we may use the shorthand SI for the parabolic subgroup (Sn)I if n is clear from
the context.
The next result describes the maximal parabolic subgroups of Sn as stabilizer of

subsets of [n]. For a group G acting on a set X and Y ⊆ X we denote the stabilizer
of Y by Stab(Y ).
Lemma 2.2.4 ([BB05, Lemma 2.4.7]). Let S be the set of adjacent transpositions of
Sn, k ∈ [n− 1] and I = S \ {sk}. Then (Sn)I = Stab([k]).

The longest element

Recall that we assumed thatW is a finite Coxeter group with Coxeter generators S. Since
W is finite, there exists a greatest element in Bruhat order on W [BB05, Proposition
2.2.9]. This element is called the longest element of W and is denoted by w0. It is the
unique element of maximal length inW . Proposition 2.3.2 and Corollary 2.3.3 of [BB05]
prove the following.

14



2.2 Coxeter groups

Proposition 2.2.5. Let w0 be the longest element of W . Then we have
(1 ) w2

0 = 1,
(2 ) `(ww0) = `(w0w) = `(w0)− `(w) for all w ∈W ,
(3 ) `(w0ww0) = `(w) for all w ∈W .

It follows by Proposition 2.2.1 (1) that w0 is also the greatest element of W in left
weak order.
In the upcoming proposition we consider the maps from W to itself given by multipli-

cation and conjugation with w0. The main ingredient of its proof is Proposition 2.2.5.
See Propositions 2.3.4 and 3.1.5 of [BB05] for details.

Proposition 2.2.6. For the Bruhat order and the left weak order on W , we have the
following:
(1 ) w 7→ ww0 and w 7→ w0w are antiautomorphisms,
(2 ) w 7→ w0ww0 is an automorphism.

We continue with an application of Proposition 2.2.6 on descent classes which we
prepare for the proof of Theorem 2.3.5.

Lemma 2.2.7. For I ⊆ S we have |DI | = |DIc |.
Proof. From Proposition 2.2.6 we know that ϕ : W → W , w 7→ w0w is an antiautomor-
phism in Bruhat order. For all w ∈W we have

s ∈ DR(w) ⇐⇒ `(ws) < `(w)
⇐⇒ `(w0ws) > `(w0w) ⇐⇒ s ∈ S \DR(w0w).

Now restrict ϕ to DI .

For I ⊆ S we denote the longest element of the parabolic subgroup WI by w0(I). The
next proposition characterizes w0(I) in WI in terms of descent sets.

Proposition 2.2.8. Let I ⊆ S and w ∈WI . The following are equivalent.
(1 ) w = w0(I).
(2 ) DL(w) = I.
(3 ) DR(w) = I.

Proof. In [BB05, Proposition 2.3.1] the equivalence of (1) and (2) is shown. From
Proposition 2.2.5 we obtain that w0(I)−1 = w0(I). Moreover, for w ∈ W we have
that DR(w) = I if and only if DL(w−1) = I because DR(w) = DL(w−1). Hence, the
equivalence of (1) and (2) implies the claim.

Example 2.2.9. We determine the longest element w0 of Sn. From Proposition 2.2.8
it follows that DR(w0) = S. Thus, the description of DR for elements of Sn from (2.1)
yields that w0(i) > w0(i+ 1) for all i ∈ [n− 1]. Hence,

w0(i) = n− i+ 1 for all i ∈ [n].
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The next result shows that the parabolic subgroup WI and the interval [1, w0(I)]
coincide. This will be important in Section 5.1.

Lemma 2.2.10. For I ⊆ S and w ∈W we have w ≤ w0(I) if and only if w ∈WI .

Proof. The implication from left to right is easy to see. Since w0(I) is the greatest
element of WI in Bruhat order, we also have the other direction.

Let I ⊆ J ⊆ S. We now express the descent class DJI as an interval in left weak order.
We are mostly interested in the descent class DSI . It will be important in Theorem 3.4.17,
the main result of Section 3.4. Note that since W is finite, each quotient W I has a
greatest element in Bruhat order [BB05, Corollary 2.5.3].

Theorem 2.2.11 ([BW88, Theorem 6.2]). For I ⊆ J ⊆ S we have DJI = [w0(I), wJc0 ]L
where wJc0 is the greatest element of W Jc.

Corollary 2.2.12. Let I ⊆ S. Then DSI = [w0(I), w0]L where w0 is the longest element
of W .

Proof. By definition W ∅ = W . Hence, w0 is the greatest elements of W ∅. Now use
Theorem 2.2.11.

2.3 0-Hecke algebras
In this section we introduce the main object of this thesis, the 0-Hecke algebra Hn(0)
of the symmetric group Sn. Chapter 3 deals with modules of Hn(0) associated to
quasisymmetric Schur functions. In Chapter 4 we study the center of Hn(0) and finally
in Chapter 5 the action of the center on the simple Hn(0)-modules. Therefore, we also
consider the representation theory of Hn(0) in this section.
As before let W be a finite Coxeter group with Coxeter generators S and Coxeter

matrix m. Norton introduces the 0-Hecke algebra HW (0) and studies its representation
theory in [Nor79]. Most of the results of the section go back to this source. The textbook
[Mat99] provides some background on the 0-Hecke algebras in its first chapter.
We now define the 0-Hecke algebraHW (0) ofW . We use the presentation as in [Fay05].

Definition 2.3.1. The 0-Hecke algebra HW (0) of W is the unital associative K-algebra
generated by the elements πs for s ∈ S subject to the relations
(1 ) π2

s = πs,

(2 ) (πsπs′πs · · · )m(s,s′) = (πs′πsπs′ · · · )m(s,s′) for all s, s′ ∈ S with s 6= s′.

Note that the πs for s ∈ S are projections satisfying the same braid relations as the
s ∈ S themselves. Another set of generators is given by π̄s := πs − 1 for s ∈ S. Then
π̄2
s = −π̄s and in [Fay05, Lemma 3.1] it is shown that the π̄s satisfy the same braid

relations as the πs. Note that π̄sπs = πsπ̄s = 0 for all s ∈ S.
As in [TvW15] we denote the 0-Hecke algebra of the symmetric group Sn with

Hn(0) := HSn(0). For i ∈ [n − 1] we use the shorthands πi and π̄i for the genera-
tors πsi and π̄si of Hn(0).
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Let w ∈ W . We define πw := πs1 · · ·πsk where s1 · · · sk is a reduced word for w. The
word property ensures that this is well defined. Multiplication is given by

πsπw =
{
πsw if `(sw) > `(w)
πw if `(sw) < `(w)

for s ∈ S. As a consequence, {πw | w ∈W} spans HW (0) over K. We will see in a
moment that this set is a K-basis of HW (0). The elements π̄w for w ∈W can be defined
analogously. Their multiplication rule is

π̄sπ̄w =
{
π̄sw if `(sw) > `(w)
−π̄w if `(sw) < `(w)

for s ∈ S. Thus, they span HW (0) over K as well. By [Mat99, Theorem 1.13],
{π̄w | w ∈W} is a K-basis of HW (0).
We now consider the expansion of the πw in terms of the π̄w and vice versa. Lascoux

proved the following result in the case W = Sn. The proof, however, works for all finite
Coxeter groups. From this we obtain bases of the projective 0-Hecke modules which are
expressed entirely by the elements πw in Corollary 2.3.8.

Lemma 2.3.2 ([Las90, Lemma 1.13]). Let w ∈W . Then

πw =
∑
u≤w

π̄u and π̄w =
∑
u≤w

(−1)`(w)−`(u)πu.

Since {π̄w | w ∈W} is a K-basis of HW (0), Lemma 2.3.2 implies that {πw | w ∈W}
is a K-basis of HW (0) too.

Remark 2.3.3. We give some background information on the relation between the 0-
Heck algebras and the Iwahori-Hecke algebras which were introduced by Iwahori [Iwa64].
Define the Iwahori-Hecke algebra HW (qs, s ∈ S) of the finite Coxeter group W as the
associative and unitary K-algebra generated by the elements π̄s for s ∈ S subject to the
same homogeneous relations as the s ∈ S and the quadratic relations

π̄2
s = (qs − 1)π̄s + qs

where qs ∈ K for s ∈ S are parameters with qs = qs′ whenever s, s′ ∈ S are conjugate in
W . If we choose qs = 0 for all s ∈ S, the generators satisfy π̄2

s = −π̄s so that we obtain
the 0-Hecke algebra HW (0). We recover the group algebra KW by setting qs = 1 for all
s ∈ S. In this way, HW (qs, s ∈ S) is a deformation of KW . This can be described more
formally in terms of generic algebras (see e.g. [Car86, CR87, GP00]).
The Iwahori-Hecke algebras HW (qs, s ∈ S) arise as follows in the representation theory

of finite groups of Lie type (cf. [CR87, GP00]). Suppose that W is the Weyl group of a
finite group G with BN -pair and the qs are the corresponding index parameters. Then
by Iwahoris theorem HW (qs, s ∈ S) is isomorphic to the Hecke algebra H(G,B), the
endomorphism ring of the KG-module affording the representation of G induced from
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the trivial representation of B. If K = C then the index parameters are invertible and
HW (qs, s ∈ S) is isomorphic to the group algebra KW and semi-simple. This is the case
in which the Iwahori-Hecke first appeared in [Iwa64]. If the characteristic of K divides all
the index parameters then HW (qs, s ∈ S) is the 0-Hecke algebra HW (0) [Nor79, Example
1.2].

Modules of the 0-Hecke algebras

In the following we describe the simple and the indecomposable projective modules as
well as the block decomposition of HW (0). These results are due to [Nor79]. We merely
rephrase them in a way suitable for this thesis and add an expansion of a basis for
the projective modules. For algebraically closed K and irreducible W , Deng and Yang
show in [DY11] that HW (0) has wild representation type if and only if the type of W is
different from A1, A2, A3, B2 and I2(m). Therefore, we do not consider indecomposable
HW (0)-modules in general.

For I ⊆ S we define F I to be the one dimensional HW (0)-module generated by the
vector vI equipped with the 0-Hecke action given by

πsvI =
{

0 if s ∈ I
vI if s /∈ I

for s ∈ S. By [Nor79, Section 3], the modules F I for I ⊆ S form a complete list of
pairwise non-isomorphic representatives of the isomorphism classes of the simple modules
of HW (0).

In the case of Hn(0) we also use an alternative notation for the simple modules. For
D ⊆ [n− 1] set FD := F I and vD := vI where I = {si ∈ S | i ∈ D}. Then

πivD =
{

0 if i ∈ D
vD if i 6∈ D

for all i ∈ [n− 1].

Remark 2.3.4. For a Coxeter groupW and I ⊆ S, F I corresponds to the representation
λS\I used in [Nor79]. For D ⊆ [n − 1], the Hn(0)-module FD coincides with Fcomp(D)
from [TvW15].

We now decompose HW (0) into indecomposable submodules, i.e. we classify the fi-
nite dimensional indecomposable projective HW (0)-modules. The decomposition will be
applied in Section 3.4. Moreover, we use the summands in order to describe the block
structure of HW (0) at the end of this section.

Recall that for I ⊆ S, w0(I) denotes the longest element of the parabolic subgroupWI

of W . Define πI := πw0(I) and π̄I := π̄w0(I) for I ⊆ S. Decompositions of HW (0) into
indecomposable submodules were given by Norton [Nor79, Section 4]. The following
theorem rephrases some of her results. For I ⊆ S the module P I defined below is
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2.3 0-Hecke algebras

denoted by HeIoÎ in [Nor79]. Huang describes a more combinatorial approach to the
finite dimensional projective modules of HW (0) in types A, B and D [Hua16].
Let w0 be the longest element of W . From Propositions 2.2.5 and 2.2.6 it follows

that ν : W → W , w 7→ w0ww
−1
0 is an automorphism of Bruhat order. In particular,

ν(S) = S. Below we use this map in order to describe the socles of the P I .

Theorem 2.3.5. (1 ) Let I ⊆ S. The HW (0)-module P I := HW (0)πI π̄Ic has a K-
basis

{πwπ̄Ic | w ∈ DI} .

In particular, dim P I = |DI |. Moreover,

top(P I) ∼= F Ic and soc(P I) ∼= F ν(Ic)

as HW (0)-modules where ν : W → W,w 7→ w0ww
−1
0 with the longest element w0

of W .
(2 ) The modules P I for I ⊆ S form a complete list of non-isomorphic projective

indecomposable HW (0)-modules. They decompose HW (0) as an HW (0)-module as
HW (0) = ⊕

I⊆S P I .

Proof. Let I ⊆ S and w ∈ W . Recall that πsπ̄s = 0 for all s ∈ S. Moreover,
DL(w0(Ic)) = Ic by Proposition 2.2.8. Hence,

πwπ̄Ic = 0 ⇐⇒ DR(w) ∩DL(w0(Ic)) 6= ∅
⇐⇒ DR(w) ∩ Ic 6= ∅
⇐⇒ DR(w) 6⊆ I.

Let s ∈ S and assume DR(w) = I. Then

πsπwπ̄Ic =


πwπ̄Ic if `(sw) < `(w),
0 if `(sw) > `(w) and DR(sw) 6⊆ I,
πswπ̄Ic if `(sw) > `(w) and DR(sw) ⊆ I.

In the third case, prefixing s to a reduced word for w yields a reduced word for sw.
Thus DR(w) ⊆ DR(sw) and hence DR(sw) = I.

It follows that P I is the K-span of B := {πwπ̄Ic | w ∈ DI}. In [Nor79, Theorem
4.12] it is shown that the dimension of P I is given by |DIc |. Since |DIc | = |DI | by
Lemma 2.2.7, B is a basis.

The top and the socle of P I are determined in Theorem 4.22 and Lemma 4.23 of
[Nor79], respectively. Since the top is simple, P I is indecomposable.

In [Nor79, Theorem 4.12] the decomposition HW (0) = ⊕
I⊆S P I is shown. Because

the tops of the P I for I ⊆ S are pairwise non-isomorphic, it follows that the P I form a
complete list of non-isomorphic projective indecomposable HW (0)-modules.
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Remark 2.3.6. In Section 4.1 we will see that HW (0) is a Frobenius algebra with
Nakayama automorphism ν. The correspondence between top(P I) and soc(P I) given
by ν from Theorem 2.3.5 can be traced back to a general property of Frobenius alge-
bras: Given an indecomposable projective module P of a Frobenius algebra A, soc(P )
is isomorphic to top(P ) twisted by the Nakayama automorphism of A. See for instance
Lemma III.5.1 and Proposition IV.3.13 of [SY11].

In Section 3.4 we consider Hn(0)-modules on which the 0-Hecke action is defined in
terms of the generators πi. Therefore, we want to expand the basis elements πwπ̄Ic of
P I in terms of the basis {πu | u ∈W} of HW (0).

Lemma 2.3.7. Let I ⊆ S and w ∈W I . Then

πwπ̄I =
∑

u∈wWI

(−1)`(ww0(I))−`(u)πu.

Proof. Let w ∈ W I . By Proposition 2.2.3 we have `(wu) = `(w) + `(u) and wu 6= wu′

for all u, u′ ∈ WI with u 6= u′. Thus, πwπu = πwu and πwπu′ 6= πwu for all u, u′ ∈ WI

with u 6= u′. We conclude

πwπ̄I =
∑
u∈WI

(−1)`(w0(I))−`(u)πwπu

=
∑
u∈WI

(−1)`(w0(I))−`(u)πwu

=
∑

u∈wWI

(−1)`(w0(I))−`(w−1u)πu, (2.2)

where the first equality uses Lemma 2.3.2 combined with Lemma 2.2.10 and the second
equality follows from the discussion above.
Given u ∈ wWI we have u = w · w−1u with w−1u ∈ WI and `(u) = `(w) + `(w−1u).

In particular, this is true for ww0(I) ∈ wWI . Therefore,

`(w0(I))− `(w−1u) = `(w0(I))− `(u) + `(w) = `(ww0(I))− `(u).

Hence, (2.2) yields the claim.

Let I ⊆ S. Then DI ⊆ W Ic by definition. Thus, we can use Lemma 2.3.7 in order to
expand the elements of the basis {πwπ̄Ic | w ∈ DI} of P I from Theorem 2.3.5. Therefore
we have the following.

Corollary 2.3.8. Let I ⊆ S. The HW (0)-module P I has a K-basis ∑
u∈wWIc

(−1)`(ww0(Ic))−`(u)πu | w ∈ DI

 .
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Example 2.3.9. We use Corollary 2.3.8 in order to compute K-bases of the modules
P I of H3(0).

I ⊂ S Ic DI (S3)Ic Basis of P I

∅ s1, s2 1 S3 −∑σ∈S3(−1)`(σ)πσ
s1 s2 s1, s2s1 1, s2 π1π2 − π1, π1π2π1 − π2π1
s2 s1 s2, s1s2 1, s1 π2π1 − π2, π1π2π1 − π1π2

s1, s2 ∅ s1s2s1 1 π1π2π1

We end this Section with the block decomposition of HW (0) for irreducible W . It will
be relevant in Chapter 5.

Theorem 2.3.10 ([Nor79, Theorem 5.2]). Let W be an irreducible Coxeter group with
Coxeter generators S 6= ∅. Then the block decomposition of HW (0) is given by

HW (0) = P ∅ ⊕ P S ⊕B

where B is the direct sum of HW (0)-submodules
⊕
∅(I(S P I .

Let W be irreducible. We consider the block decomposition from Theorem 2.3.10.
From Theorem 2.3.5 it follows that P ∅ ∼= F S and P S

∼= F ∅ as HW (0)-modules. Hence,
if |S| = 1 then HW (0) has only these two one-dimensional blocks. If |S| > 1 then HW (0)
has an additional nontrivial block B. Note that then all the simple modules F I with
I 6= ∅, S belong to the block B.

21





3 0-Hecke modules associated to
quasisymmetric Schur functions

Since the 19th century mathematicians have been interested in the Schur functions sλ
and their various properties. For example, the sλ form an orthonormal basis of Sym,
the algebra of symmetric functions, are the images of the irreducible complex characters
of the symmetric groups under the characteristic map and play an important role in
Schubert calculus [Sta99].
As Sym is contained in the algebra of quasisymmetric functions QSym, it is interest-

ing to find bases of QSym that share properties with the Schur functions. A classical
one is given by the fundametal quasisymmetric functions of Gessel [Ges84]. More re-
cently, other Schur-like families of quasisymmetric functions that form bases of QSym
have been discovered: the quasisymmetric Schur functions of Haglund, Luoto, Mason
and van Willigenburg [HLMvW11], the dual immaculate functions of Berg, Bergeron,
Saliola, Serrano and Zabrocki [BBS+14] and the dual Shin functions of Campbell, Feld-
man, Light, and Xu [CFL+14]. The dual Shin functions are also called extended Schur
functions [AS19] since the dual Shin basis contains the Schur functions [CFL+14].
This chapter is related to the quasisymmetric Schur functions Sα. The following prop-

erties of Sα go back to [HLMvW11]. While the Schur functions sλ are naturally indexed
by partitions, the quasisymmetric Schur functions Sα are indexed by compositions (see
Section 2.1 for definitions). Haglund et al. define composition tableaux as a composition
shaped analogue of semistandard Young tableaux. In the same way as the Schur func-
tion sλ is the generating function of the semistandard Young tableaux of shape λ, the
quasisymmetric Schur function Sα is the generating function of the composition tableaux
of shape α. The Sα also refine the expansion into fundamental quasisymmetric functions
and the Pieri rule of the Schur functions. Finally, the Schur functions expand nicely in
the quasisymmetric Schur basis via

sλ =
∑
α̃=λ
Sα

where the sum runs over all compositions α that rearrange the partition λ.
Bessenrodt, Luoto and van Willigenburg define skew quasisymmetric Schur functions
Sα//β and prove a Littlewood–Richardson rule for expressing them in the basis of qua-
sisymmetric Schur functions in [BLvW11]. Other variants of the Sα such as Young qua-
sisymmetric Schur functions [LMvW13] and row-strict quasisymmetric Schur functions
[MR14] have also been considered.
Allen, Hallem and Mason show that the dual immaculate functions expand positively

into Young quasisymmetric functions and interpret the expansion coefficients as the
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3 0-Hecke modules associated to quasisymmetric Schur functions

number of certain tableaux [AHM18]. Mason and Searles obtain a similar result for
the transition from the reversed dual immaculate functions to the quasisymmetric Schur
functions in [MS21] which involves a variant of the dual immaculate functions. It relies
on lifts of quasisymmetric bases to the polynomial ring. Such lifts are also motivated
by Schubert calculus and were constructed for all Schur-like bases [AS17, AS18, AS19,
MS21].
Recall that the quasisymmetric characteristic Ch is an isomorphism from the di-

rect sum of the Grothendieck groups of the 0-Hecke algebras of the symmetric groups
G = ⊕

n≥0 G0 (Hn(0)) to QSym. As the Schur functions are the images of simple modules
of the complex group algebras of the symmetric groups, it is natural to ask for Hn(0)-
modules that are mapped to the Schur-like bases of QSym by Ch. From this viewpoint,
the fundamental quasisymmetric functions are the best analogue of the Schur functions
because they are the images of the simple Hn(0)-modules under Ch [DKLT96]. Never-
theless, modules that are preimages of the other Schur-like bases have also been found:
for the dual immaculate functions by Berg et al. [BBS+15], for the quasisymmetric Schur
functions by Tewari and van Willigenburg [TvW15] and for the extended Schur functions
by Searles [Sea20]. In addition, Bardwell and Searles define modules that are mapped
to Young row-strict quasisymmetric Schur functions in [BS20].
We denote the module corresponding to the quasisymmetric Schur function Sα by

Sα. By definition it has a K-basis formed by the standard composition tableaux of
shape α (see Definition 3.1.4). These tableaux have the property that the entries in
the first column increase from top to bottom. Tewari and van Willigenburg generalize
the modules Sα in two ways by altering the underlying combinatorics. First, they
use skew composition tableaux of shape α//β in order to define skew modules Sα//β

with characteristic Sα//β [TvW15]. Second, they define standard permuted composition
tableaux of shape α and type σ by letting the relative order of the entries in the first
column be given by an arbitrary permutation σ [TvW19] (see Definition 3.7.1). With
these tableaux as K-basis, they define Hn(0)-modules which we denote with Sσ

α and call
permuted. The modules Sσ

α are also studied in [CKNO21].
This chapter is mainly concerned with the modules Sα and Sα//β. However, many of

our results also hold for the permuted modules Sσ
α. We discuss the necessary adjustments

in the argumentation at the end of the chapter.
By the Krull–Schmidt theorem, each of the aforementioned Hn(0)-modules decom-

poses as a direct sum of indecomposable submodules. For the modules of the dual
immaculate and the extended Schur functions, the decomposition is trivial since the
modules themselves are indecomposable [BBS+15, Sea20]. The modules Sα however
can be decomposable. Tewari and van Willigenburg give a decomposition as follows. By
using an equivalence relation, they divide the K-basis of standard composition tableaux
of Sα into equivalence classes, obtain a submodule Sα,E of Sα for each such equivalence
class E and decompose Sα as Sα = ⊕

E Sα,E [TvW15]. In the same vein, the modules
Sα//β and Sσ

α as well as those corresponding to the Young row-strict quasisymmetric
Schur functions can be decomposed (see [TvW15], [TvW19] and [BS20], respectively).
In [TvW15] Tewari and van Willigenburg characterize the case where Sα is indecom-

posable. Moreover, they show for a special canonical equivalence class Eα that Sα,Eα

24



is indecomposable. Yet, the question of the indecomposability of the modules Sα,E in
general remained open. The first goal of the chapter is to answer this question. For
each Sα,E we consider the Hn(0)-endomorphisms of Sα,E and show in Theorem 3.3.11
that EndHn(0)(Sα,E) = K id which implies that Sα,E is indecomposable.

This result is a part of the author’s PhD research that has already been published
in [Kön19]. Choi, Kim, Nam and Oh show that the proof can easily be adapted to the
permuted modules Sσ

α,E [CKNO21]. Bardwell and Searles employ similar techniques in
order to obtain the analogue result for the modules corresponding to the Young row-strict
quasisymmetric Schur functions [BS20].

The skew modules Sα//β,E on the other hand can be decomposable. In Section 3.4 we
consider a certain class of skew modules Sα//β which we call pacific. For these modules
we give a decomposition into indecomposable submodules in Theorem 3.4.17. It turns
out that the submodules, and thus the Sα//β themselves, are projective. In particular,
they are their own projective covers. Choi et al. describe projective covers of the modules
of the dual immaculate and the extended Schur functions as well as for the permuted
modules Sσ

α,E [CKNO20]. We exploit the projectivity of the pacific modules Sα//β in
order to obtain combinatorial formulas for their tops and socles in Corollary 3.4.21.
We then generalize the formulas for top and socle to all skew modules Sα//β,E in

Theorem 3.5.42 and Corollary 3.6.41, respectively. On the way, we construct a K-basis
of the radical (see Proposition 3.5.41) and the simple submodules (see Theorem 3.6.39)
of Sα//β,E . Via the direct sum decomposition, we then obtain formulas for the top and
the socle of Sα//β in Corollary 3.5.46 and Corollary 3.6.45, respectively. The results hold
in particular for the straight modules.
Finally, we briefly discuss how the results of the chapter pertaining the modules Sα

can be generalized to the permuted modules Sσ
α. This includes the indecomposability of

Sσ
α,E and the formulas for top and socle. Our approach is slightly different to that Choi

et al. use in [CKNO21] in order to prove the indecomposability of Sσ
α,E .

The chapter is structured as follows. Section 3.1 contains the necessary background
material on the modules Sα//β. Let T1, T2 ∈ Sα//β be two skew standard compo-
sition tableaux such that T1 can be transformed into T2 via the 0-Hecke action on
Sα//β. The purpose of Section 3.2 is to give a characterization of the set of elementary
Hn(0)-operators involved in this transformation by comparing the shapes of certain sub
tableaux of T1 and T2 in Proposition 3.2.9. This is a valuable tool which we apply in
all subsequent sections. In Section 3.3 we show that Sα,E is indecomposable. The de-
composition of the pacific skew modules Sα//β is the topic of Section 3.4. We consider
the top and the socle of arbitrary skew modules Sα//β in Section 3.5 and Section 3.6,
respectively. Section 3.7 deals with the permuted modules Sσ

α.
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3.1 0-Hecke modules of standard composition tableaux
In this section we introduce the modules Sα//β and Sα//β,E , the related combinatorics of
standard composition tableaux and further preliminary results which are used through-
out the chapter.

Standard composition tableaux

We begin with a poset of compositions which is related to standard composition tableaux
and first arose in [BLvW11].

Definition 3.1.1. The composition poset Lc is the set of all compositions together with
the partial order ≤c given as the transitive closure of the following covering relation. For
compositions α and β = (β1, . . . , βl)

β lc α ⇐⇒
α = (1, β1, . . . , βl) or
α = (β1, . . . , βk + 1, . . . , βl) and βi 6= βk for all i < k.

In other words, β is covered by α in Lc if and only if the diagram of α can be obtained
from the diagram of β by adding a box as the new first row or appending a box to a row
which is the topmost row of its length in β.

Example 3.1.2.

lc lc lc lc lc

Let α and β be two compositions such that β ≤c α. In this situation we always assume
that the diagram of β is moved to the bottom of the diagram of α, and we define the
skew composition diagram (or skew shape) α//β to consist of all cells of α which are not
contained in β. Moreover, we define osh(α//β) := α and ish(α//β) := β as the outer and
the inner shape of α//β, respectively.
The size of a skew shape is |α//β| := |α| − |β|. We call α//β straight if β = ∅. In

this case the skew composition diagram α//β is nothing but the ordinary composition
diagram α.

Example 3.1.3. The skew composition diagram (1, 4, 3)//(1, 2) looks as follows.

Note that β ≤c α implies β`(β)−i ≤ α`(α)−i for i = 0, . . . , `(β) − 1. One could define
skew shapes for all pairs of compositions fulfilling this containment condition. Anyway,
we demand ≤c rather than containment since with the latter one allows skew shapes
for which standard composition tableaux (which we will define next) do not exist. For
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3.1 0-Hecke modules of standard composition tableaux

instance, the compositions β = (1, 1) and α = (1, 2) satisfy the containment condition
but β 6≤c α. Even if α//β were a skew shape, there would be no standard composition
tableau of this shape (because of the triple rule stated below).

Definition 3.1.4. Let α//β be a skew shape of size n. A standard composition tableau
(SCT ) of shape α//β is a bijective filling T : α//β → [n] satisfying the following condi-
tions:
(1 ) The entries are decreasing in each row from left to right.
(2 ) The entries are increasing in the first column from top to bottom.
(3 ) (Triple rule). Set T (i, j) :=∞ for all (i, j) ∈ β. If (j, k) ∈ α//β and (i, k − 1) ∈ α

such that j > i and T (j, k) < T (i, k − 1) then (i, k) ∈ α and T (j, k) < T (i, k).

The plural form of the acronym SCT is SCTx. Let a := T (j, k), b := T (i, k − 1) be
two entries of an SCT T occurring in adjacent columns. Then the triple rule can be
visualized as follows by considering the positions of entries in T :

b

a

and a < b
triple rule=⇒ ∃c ∈ T :

b c

a

and a < c.

Let SCT(α//β) denote the set of SCTx of shape α//β. For an SCT T we write sh(T )
for its shape. The notions of outer and inner shape are carried over from sh(T ) to T .
We call T straight if its shape is straight.

Example 3.1.5. An SCT is shown below.

T =
2

5 4 1
3

We have osh(T ) = (1, 4, 3) and ish(T ) = (1, 2).

Standard composition tableaux encode saturated chains of Lc in the following way.

Proposition 3.1.6 ([BLvW11, Proposition 2.11]). Let α//β be a skew composition of
size n. For T ∈ SCT(α//β),

β = αn lc αn−1 lc · · ·lc α0 = α

given by

αn = β, αk−1 = αk ∪ T−1(k) for k = 1, . . . , n (3.1)

is a saturated chain in Lc. Moreover, we obtain a bijection from SCT(α//β) to the set
of saturated chains in Lc from β to α by mapping each tableau of SCT(α//β) to its
corresponding chain given by (3.1).
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3 0-Hecke modules associated to quasisymmetric Schur functions

Example 3.1.7. The SCT from Example 3.1.5 corresponds to the chain from Exam-
ple 3.1.2.

From the perspective of Proposition 3.1.6, the triple rule reflects the fact that by
adding a cell to a row of a composition diagram, a covering relation in Lc is established
if and only if the row in question is the topmost row of its length.
Some of the upcoming notions already played a role in [TvW15]. Let (i, j) and (i′, j′) be

two cells. Define r(i, j) := i and c(i, j) := j the row and the column of (i, j), respectively.
We say that (i, j) attacks (i′, j′) and write (i, j) (i′, j′) if j = j′ and i 6= i′ or j = j′−1
and i < i′. That is, the two cells are distinct and either they appear in the same column
or they appear in adjacent columns such that (i′, j′) is located strictly below and right
of (i, j). We call (i, j) the left neighbor of (i′, j′) and write (i, j) o (i′, j′) if i = i′ and
j = j′ − 1.
Let T be an SCT and i, j ∈ T be two entries. We refer to the row and the column of i

in T by rT (i) := r(T−1(i)) and cT (i) := c(T−1(i)), respectively. We say that i attacks j
in T and write i T j if T−1(i) T−1(j). Note that i T j implies i 6= j. If T−1(i) is
the left neighbor of T−1(j) then we also call i the left neighbor of j in T and write i oT j.
The index T may be omitted if it is clear from the context.
For two sets of cells C1, C2 ⊆ N2 we say C1 attacks C2 and write C1  C2 if there

are cells c1 ∈ C1 and c2 ∈ C2 such that c1  c2. If c(c1) ≤ c(c2) for all c1 ∈ C1, c2 ∈ C2
then C1 is called left of C2. If c(c1) < c(c2) for all c1 ∈ C1, c2 ∈ c2, C1 is strictly left
of C2. To simplify notation we may replace singletons by their respective element. For
instance, given a cell c1 we may write c1  C2 instead of {c1}  C2. In the same way
we use these notions for sets of entries of an SCT and o.

Example 3.1.8. Consider the standard composition tableau T from Example 3.1.5.
We have 2  T 5, 3  T 4, 4  T 3, 5  T 3 and i 6 T j for all other pairs of entries.
Moreover, 3 is left of {1, 4} in T , 2 T {3, 5} and 5 oT 4.

Let T be an SCT of size n. An entry i of T is called descent if i appears weakly left
of i+ 1 in T . We distinguish between attacking and non-attacking descents. The entry i
is called ascent of T if it appears strictly right of i+ 1 in T . If i is an ascent of T which
has i+ 1 as a neighbor then i+ 1 must be the left neighbor of i. We distinguish between
ascents i that have i + 1 as left neighbor and those which have not. More formally, we
have the following.

Definition 3.1.9. Let T be an SCT of size n.
(1 ) D(T ) := {i ∈ [n− 1] | cT (i) ≤ cT (i+ 1)} is the descent set of T .
(2 ) AD(T ) := {i ∈ D(T ) | i T i+ 1} is the set of attacking descents of T .
(3 ) nAD(T ) := {i ∈ D(T ) | i /∈ AD(T )} is the set of non-attacking descents of T .
(1’) Dc(T ) := {i ∈ [n− 1] | cT (i+ 1) < cT (i)} = [n− 1] \D(T ) is the ascent set of T .
(2’) NDc(T ) := {i ∈ Dc(T ) | i+ 1 oT i} is the set of neighborly ascents of T .
(3’) nNDc(T ) := {i ∈ Dc(T ) | i /∈ NDc(T )} is the set of non-neighborly ascents of T .
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3.1 0-Hecke modules of standard composition tableaux

Example 3.1.10. Let T be the tableau from Example 3.1.5. Then D(T ) = {2, 3},
AD(T ) = {3}, Dc(T ) = {1, 4} and NDc(T ) = {4}.

0-Hecke modules of standard composition tableaux

We now come to the 0-Hecke modules Sα//β and Sα//β,E .

Theorem 3.1.11 ([TvW15, Theorem 9.8]). Let α//β be a skew composition of size n.
Then Sα//β := spanK SCT(α//β) is an Hn(0)-module with respect to the following action.
For T ∈ SCT(α//β) and i = 1, . . . , n− 1,

πiT =


T if i /∈ D(T )
0 if i ∈ AD(T )
siT if i ∈ nAD(T )

where siT is the tableau obtained from T by interchanging i and i+ 1.

The module Sα is called straight if α = α//β is a composition.

Example 3.1.12. Consider the SCT T =
1
6 5 4 3
8 7 2

. Then D(T ) = {1, 2, 6},

πiT =


T for i = 3, 4, 5, 7
0 for i = 6
siT for i = 1, 2,

s1T =
2
6 5 4 3
8 7 1

and s2T =
1
6 5 4 2
8 7 3

.

We now decompose Sα//β as in [TvW15]. To do this we use an equivalence relation.
Let α//β be a skew composition of size n and T1, T2 ∈ SCT(α//β). The equivalence
relation ∼ on SCT(α//β) is given by

T1 ∼ T2 ⇐⇒ in each column the relative orders of entries in T1 and T2 coincide.

For example, the straight tableaux shown in Figure 3.1 form an equivalence class under
∼. The same is true for the skew tableaux from Figure 3.3. We denote the set of
equivalence classes under ∼ on SCT(α//β) by E(α//β).

For E ∈ E(α//β) define Sα//β,E := spanKE. It is easy to see that the definition of the
0-Hecke action on standard composition tableaux in Theorem 3.1.11 implies that Sα//β,E

is an Hn(0)-submodule of Sα//β. Thus, we have the following.

Proposition 3.1.13 ([TvW15, Lemma 6.6]). Let α//β be a skew composition. Then we
have that Sα//β = ⊕

E∈E(α//β) Sα//β,E as Hn(0)-modules.

In this chapter we will work mostly with the modules Sα//β,E and transfer the results
to Sα//β via the above decomposition. For example, the main result of Section 3.3 is that
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3 0-Hecke modules associated to quasisymmetric Schur functions

T0,E =
1
6 5 4 3
8 7 2

2
6 5 4 3
8 7 1

1
6 5 4 2
8 7 3

3
6 5 4 2
8 7 1

2
6 5 4 1
8 7 3

4
6 5 3 2
8 7 1

3
6 5 4 1
8 7 2

T1,E =
4
6 5 3 1
8 7 2

π1 π2

π2 π1

π3 π1 π2

π1 π3

Figure 3.1: A poset given by an equivalence class of standard composition tableaux and
the corresponding partial order �. Each covering relation is labeled with the
0-Hecke generator πi realizing it.

the Hn(0)-endomorphism ring of each straight module Sα,E is K id and, therefore, we
obtain a decomposition of Sα into indecomposable submodules from Proposition 3.1.13.
Let α//β be a skew composition of size n and E ∈ E(α//β). We continue by studying E

and its module Sα//β,E more deeply. First, we consider a partial order � on E. It will
turn out that (E,�) is a graded lattice. Afterwards, we prepare two technical results,
Corollary 3.1.19 and Proposition 3.1.20, on the 0-Hecke action on standard composition
tableaux for later use.

Suppose T1, T2 ∈ E. In [TvW15, Section 4] it is shown that a partial order � on E is
given by

T1 � T2 ⇐⇒ ∃σ ∈ Sn such that πσT1 = T2.

We refer to the poset (E,�) simply by E. Two examples are shown in Figure 3.1 and
Figure 3.3. The following theorem summarizes results of [TvW15, Section 6].
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3.1 0-Hecke modules of standard composition tableaux

Theorem 3.1.14. Let α//β be a skew composition, E ∈ E(α//β) and T ∈ E.
(1 ) The tableau T is minimal according to � if and only if Dc(T ) = NDc(T ). There

is a unique tableau T0,E ∈ E which satisfies these conditions called source tableau
of E.

(2 ) The tableau T is maximal according to � if and only if D(T ) = AD(T ). There is a
unique tableau T1,E ∈ E which satisfies these conditions called sink tableau of E.

In particular, Sα//β,E is a cyclic module generated by T0,E.

A source and a sink tableau can be observed in Figure 3.1. We now establish a
connection between E and an interval of the left weak order. To do this we use the
notion of column words. Given T ∈ SCT(α//β) and j ≥ 1, let wj be the word obtained
by reading the entries in the jth column of T from top to bottom. Then colT := w1w2 · · ·
is the column word of T . Clearly, colT can be regarded as an element of Sn (in one-line
notation).

Example 3.1.15. The column word of the tableau T0,E from Figure 3.1 is given by
colT0,E = 16857423 ∈ S8.

Lemma 3.1.16 ([TvW15, Lemma 4.4]). Let T1 be an SCT, i ∈ nAD(T1) and T2 := πiT1.
Then colT2 = si colT1 and `(colT2) = `(colT1) + 1. That is, colT2 covers colT1 in left weak
order.

The following statement is similar to [TvW15, Lemma 4.3].

Lemma 3.1.17. Let T1 and T2 be two standard composition tableaux and ip, . . . , i1 ∈
[n − 1] such that πip · · ·πi1T1 = T2. Then there is a subsequence jq, . . . , j1 of ip, . . . , i1
such that
(1 ) T2 = πjq · · ·πj1T1,
(2 ) sjq · · · sj1 is a reduced word for colT2 col−1

T1
.

In particular, T2 = πcolT2 col−1
T1
T1.

Proof. It follows from the definition of the 0-Hecke operation that we can find a subse-
quence jq, . . . , j1 of ip, . . . , i1 of minimal length such that T2 = πjq · · ·πj1T1. If q = 0
then T2 = T1 and the result is trivial. If q = 1 set i := j1. Then by the minimality of q,
T2 6= T1 and thus i ∈ nAD(T1). Now Lemma 3.1.16 shows that si is a reduced word for
colT2 col−1

T1
. If q > 1 use the case q = 1 iteratively.

Theorem 3.1.18 ([TvW15, Theorem 6.18]). Let α//β be a skew composition, E ∈
E(α//β) and I := [colT0,E , colT1,E ]L be an interval in left weak order. Then the map
col : E → I, T 7→ colT is a poset isomorphism. In particular, E is a graded lattice with
rank function δ : T 7→ `(colT col−1

T0,E
).

Actually, Theorem 3.1.14, Lemma 3.1.16 and Lemma 3.1.17 are everything needed to
prove Theorem 3.1.18 as in [TvW15]. They imply that col (and its inverse) map maxi-
mal chains to maximal chains. Note that it follows from Theorem 3.1.18 and Proposi-
tion 2.2.1 that for T1 � T2 saturated chains from T1 to T2 correspond to reduced words
for colT2 col−1

T1
.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Corollary 3.1.19. Let T1 and T2 be two standard composition tableaux of size n and
σ ∈ Sn such that T2 = πσT1. Then T1 and T2 belong to the same equivalence class under
∼. Let δ be the rank function of that class. Then

δ(T2)− δ(T1) ≤ `(σ)

and we have equality if and only if σ = colT2 col−1
T1

.
Proof. Since T2 = πσT1, T2 ∼ T1. As saturated chains from T1 to T2 correspond to
reduced words for colT2 col−1

T1
, we have

δ(T2)− δ(T1) = `(colT2 col−1
T1

).

Now Lemma 3.1.17 implies the claim.

We finish this section by preparing another consequence of Lemma 3.1.16 for Sec-
tions 3.3 and 3.5.
Proposition 3.1.20. Let T be an SCT, i, j ∈ T be such that i < j, � := T−1(i) and
C := T−1([i+ 1, j]). If i is located left of [i+ 1, j] and does not attack [i+ 1, j] in T then
(1 ) T ′ := πj−1 · · ·πi+1πiT is an SCT,
(2 ) sj−1 · · · si+1si is a reduced word for colT ′ col−1

T ,
(3 ) T ′(�) = j.
(4 ) T ′(C) = [i, j − 1].

Proof. Assume that i is located left of [i + 1, j] and i 6 [i + 1, j] and set T ′ :=
πj−1 · · ·πi+1πiT .
We first show (1) – (3) by induction on m := j − i. If m = 1 then i ∈ nAD(T ) and

T ′ = πiT . Thus, (1) and (3) hold by the definition of the 0-Hecke action and (2) is a
consequence of Lemma 3.1.16.
Now, let m > 1. Since by assumption i is located left of [i+1, j] and i 6 [i+1, j], we

can apply the induction hypothesis on i and j−1 and obtain that T ′′ := πj−2 · · ·πi+1πiT
is an SCT, sj−2 · · · si+1si is a reduced word for colT ′′ col−1

T and T ′′(�) = j − 1. Since
the operators πj−2, . . . , πi+1, πi are unable to move j, we have T ′′−1(j) = T−1(j). By
choice of i and j, � 6 T−1(j) = T ′′−1(j) and � is left of T ′′−1(j). Thus, j − 1 ∈
nAD(T ′′) so that T ′ = πj−1πj−2 · · ·πiT = πj−1(T ′′) is an SCT and T ′(�) = j. It
follows from Lemma 3.1.16 that colT ′ col−1

T = sj−1 colT ′′ col−1
T = sj−1sj−2 · · · si and that

sj−1sj−2 · · · si is a reduced word. This finishes the induction.
Now we show (4). In T the elements of [i, j] occupy � and the cells of C. As the

operators πi, . . . , πj−1 only move the elements of [i, j], it follows that these elements
occupy the same set of cells in T ′. Moreover, T ′(�) = j. Thus, T ′(C) = [i, j − 1].

3.2 A 0-Hecke action on chains of the composition poset
In Proposition 3.1.6 a bijection between saturated chains in the composition poset Lc and
standard composition tableaux was given. In this section we study the 0-Hecke action
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3.2 A 0-Hecke action on chains of the composition poset

on these chains induced by this bijection. The goal is to provide in Proposition 3.2.9 a
characterization of the operators πi appearing in the saturated chains of SCTx connecting
two SCTx T1 and T2. This result is essential for the argumentation in Sections 3.3, 3.5
and 3.6.

Definition 3.2.1. Let T be an SCT of shape α//β and size n, m ∈ [0, n] and

β = αn lc αn−1 lc · · ·lc α0 = α

be the chain in Lc corresponding to T . The SCT of shape αm//β corresponding to the
chain αn lc αn−1 lc · · ·lc αm is denoted by T>m.

Example 3.2.2. For T =
1

3
2

we have T>2 = 1 where the cells of the inner

shape are shaded.

The following lemma shows how we can obtain T>m directly from T .

Lemma 3.2.3. Let T be an SCT of size n and shape α//β, β = αnlcαn−1lc· · ·lcα0 = α
the chain in Lc corresponding to T and m ∈ [0, n].
(1 ) αm = osh(T>m).
(2 ) We obtain T>m from T by removing the cells containing 1, . . . ,m and subtracting m

from the remaining entries.

Proof. Part (1) is a immediate consequence of Definition 3.2.1. By Proposition 3.1.6, we
obtain T>m by successively adding cells with entries n −m, . . . , 1 to the inner shape β
at exactly the same positions where we would add n, . . . ,m+1 to β in order to obtain T
from its corresponding chain. This implies Part (2).

With the first part of Lemma 3.2.3 we can access the compositions within a chain of
a given SCT. We use the following preorder to describe how the 0-Hecke action affects
these compositions.

Definition 3.2.4. (1 ) For a composition α = (α1, . . . , αl) of n and j ∈ N we define
|α|j := |{i ∈ [l] | αi ≥ j}|.

(2 ) On the set of compositions of size n we define the preorder E by

α E β ⇐⇒
k∑
j=1
|β|j ≤

k∑
j=1
|α|j for all k ≥ 1.

Moreover, set α C β ⇐⇒ α E β and α 6= β.

Note that |α|j is the number of cells in the jth column of the diagram of α. Obviously
E is reflexive and transitive. It is not antisymmetric since for example (2, 1) E (1, 2)
and (1, 2) E (2, 1). In general, for α, β � n we have

α E β and β E α ⇐⇒ |α|j = |β|j for all j = 1, 2, . . . ⇐⇒ α̃ = β̃.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Example 3.2.5.

C C

If we restrict E to partitions, we obtain the well known dominance order appearing, for
example, in [Sta99]. However, E on partitions may seem to be reversed to the dominance
order. This is because in the definition above we are considering the number of cells in
columns rather then in rows as usual.

Lemma 3.2.6. Let α//β be a skew composition of size n and T1, T2 ∈ SCT(α//β) be
such that T2 = πiT1 for an i ∈ nAD(T1). Then

osh(T>i2 ) C osh(T>i1 ),
osh(T>m2 ) = osh(T>m1 ) for all m ∈ [0, n] with m 6= i.

Proof. We obtain T2 from T1 by swapping the entries i and i+ 1 of T1. Let m ∈ [0, n].
If m 6= i then either {i, i+ 1} ⊆ [1,m] or {i, i+ 1} ∩ [1,m] = ∅. Hence, T−1

1 ([1,m]) =
T−1

2 ([1,m]), i.e. from the perspective of Lemma 3.2.3 we remove the same set of cells
from T1 to obtain T>m1 as we remove from T2 to obtain T>m2 . That is, sh(T>m1 ) =
sh(T>m2 ).
If m = i, set (rk, ck) := T−1

1 (k) for k = i, i + 1, γ1 := osh(T>i1 ) and γ2 := osh(T>i2 ).
We assume that all composition diagrams appearing here are moved to the bottom of
α. Observe that as T2 = siT1, one obtains sh(T>i2 ) from sh(T>i1 ) by moving the cell
(ri+1, ci+1) to the position (ri, ci). Since ish(T>i2 ) = β = ish(T>i1 ), we obtain γ2 from
γ1 by this movement. Moreover, i ∈ nAD(T1) implies ci < ci+1. That is, we obtain γ2
from γ1 by moving a cell strictly to the left. By the definition of E, this means that
γ2 C γ1.

Example 3.2.7. The Hn(0)-action on tableaux and the corresponding chains of the
composition poset is shown below.

T osh(T>3) − osh(T>2) − osh(T>1) − osh(T>0)
1

3
2

− − −

↓ π2 ↓ π2
1

2
3

− − −

↓ π1 ↓ π1
2

1
3

− − −
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3.3 The decomposition of straight modules

Definition 3.2.8. Let σ ∈ Sn. We define the content of σ as

cont(σ) := {i1, . . . , ik}

where si1 · · · sik is a reduced word for σ.

Let σ ∈ Sn. Note that the word property ensures that cont(σ) is well defined. More-
over, i ∈ cont(σ) if and only if si ≤ σ.

Let α//β be a skew composition, E ∈ E(α//β) and T1, T2 ∈ E be such that T1 � T2.
From Theorem 3.1.18 it follows that for each saturated chain from T1 to T2 in E the
index set of the 0-Hecke operators establishing the covering relations within the chain is
cont(colT2 col−1

T1
). As a consequence of Lemma 3.2.6 we obtain a criterion for determining

whether an operator πi appears in the saturated chains from T1 to T2 or not.

Proposition 3.2.9. Let α//β be a skew composition of size n, i ∈ [n− 1], E ∈ E(α//β)
and T1, T2 ∈ E be such that T1 � T2. Then

i ∈ cont(colT2 col−1
T1

) if and only if sh(T>i2 ) 6= sh(T>i1 ).

Proof. Lemma 3.2.6 applied to each covering relation in a saturated chain from T1 to T2
in E and the fact that E is a preorder imply

i ∈ cont(colT2 col−1
T1

) if and only if osh(T>i2 ) 6= osh(T>i1 ).

From this we obtain the claim since ish(T>i1 ) = β = ish(T>i2 ).

3.3 The decomposition of straight modules
For each α � n there is an equivalence class Eα ∈ E(α) such that for all T ∈ Eα the
entries increase in each column from top to bottom [TvW15, Section 8]. In [TvW15]
Tewari and van Willigenburg show that Sα,Eα is indecomposable.
The objective of this section is to show for all E ∈ E(α) that EndHn(0)(Sα,E) = K id

and hence Sα,E is indecomposable; this extends the result of Tewari and vanWilligenburg
to the general case. As a consequence, Proposition 3.1.13 yields a decomposition of Sα

with indecomposable summands. In contrast, skew modules Sα//β,E can be decomposable
(see Example 3.3.13). Section 3.4 is concerned with the decomposition of skew modules
Sα//β,E of a certain type.
We fix some notation that we use in the entire section unless otherwise stated. Let

α � n, E ∈ E(α) and T0 := T0,E be the source tableau of E. Moreover, let f ∈
EndHn(0)(Sα,E), v := f(T0) and v = ∑

T∈E aTT be the expansion of v in the K-basis E.
Since Sα,E is cyclically generated by T0, f is determined by v. The support of v is given
by supp(v) := {T ∈ E | aT 6= 0}. Our goal is to show that T0 is the only tableau that
may occur in supp(v) since then f = aT0 id ∈ K id. We begin with a property holding
for supp(v) that also appeared in the proof of [TvW15, Theorem 7.8].

Lemma 3.3.1. If T ∈ supp(v) then D(T ) ⊆ D(T0).
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Proof. Let T∗ ∈ E be such that D(T∗) 6⊆ D(T0). Then there is an i ∈ D(T∗) ∩ Dc(T0).
Because i ∈ Dc(T0), πiv = f(πiT0) = v. Thus, aT∗ is the coefficient of T∗ in πiv =∑
T∈E aTπiT . But this coefficient is 0 since πiT 6= T∗ for all T ∈ E. To see this, assume

that there is a T ∈ E such that πiT = T∗. Then we obtain a contradiction as

T∗ 6= πiT∗ = π2
i T = πiT = T∗.

Thanks to Lemma 3.3.1 it remains to show aT = 0 for all T ∈ E such that T 6= T0
and D(T ) ⊆ D(T0). Thus, fix such a tableau T . In order to determine aT , we will use a
0-Hecke operator πσ where σ := sj−1 · · · si and i and j are given by

i := max
{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
,

j := min
{
k ∈ [n] | k > i and i T0 k

}
.

(3.2)

That is, i is the greatest entry whose position in T differs from that in T0 and j is the
smallest entry in T0 which is greater than i and attacked by i in T0. At this point it
is not clear that j is well defined since the defining set could be empty. However, the
following two lemmas will show that there always exists an element in this set.

Example 3.3.2. Consider the equivalence class E from Figure 3.1. Then T0 = T0,E and
there is exactly one other tableau T in E with D(T ) ⊆ D(T0):

T0 =
1
6 5 4 3
8 7 2

π1−→ T =
2
6 5 4 3
8 7 1

Defining i and j for T as in (3.2), we obtain i = 2 and j = 4. Note that 2 ∈ D(T0). This
property holds in general by the following result.

Lemma 3.3.3. Let T ∈ E be such that T 6= T0 and D(T ) ⊆ D(T0) and set

i := max
{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
.

Then i ∈ D(T0).

Proof. We introduce integers dj such that D(T0) = {d1 < d2 < · · · < dm}, d0 = 0 and
dm+1 = n. Moreover, define Ik := [dk−1 +1, dk] for k = 1, . . . ,m+1. Recall that since T0
is a source tableau, Dc(T0) = NDc(T0) by Theorem 3.1.14. That is, a + 1 is the left
neighbor of a for each ascent a of T0. Therefore, we have Ik \ {dk} ⊆ NDc(T0) and
conclude that T−1

0 (Ik) is a connected horizontal strip for k = 1, . . . ,m+ 1.
Set �k := T−1

0 (k) for k = 1, . . . , n and let x be the index such that T (�x) = i.
Since T0 and T are straight, the ordering conditions of standard composition tableaux
imply T−1(n) = (`(α), 1) = T−1

0 (n). Therefore i 6= n and we now show i /∈ Dc(T0).
Assume for the sake of contradiction that i ∈ Dc(T0). Let l ∈ [m+1] be such that i ∈ Il.
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dl

dl

. . . i + 1

i + 1

< i

i

. . .

< i

dl−1

< i

dl−1 + 1

i

dp

< i

y

Figure 3.2: An example for the positions of cells and entries in the tableau T from Case
2 of the proof of Lemma 3.3.3.

Since i ∈ Dc(T0), we have i < dl and i + 1 ∈ Il. The horizontal strip T−1
0 (Il) looks as

follows:

�dl�dl−1 · · ·�i+1�i · · ·�dl−1+1. (3.3)

By choice of i, we have

T (�k) = k for k = i+ 1, . . . , n and T (�i) < i. (3.4)

Since entries decrease in rows of T , (3.3) implies

T (�k) < i for k = dl−1 + 1, . . . , i. (3.5)

By combining (3.4) and (3.5), we obtain

x ≤ dl−1. (3.6)

We deal with two cases depending on cT (i). In both cases we will end up with a contra-
diction.
Case 1 cT (i) ≤ cT0(dl−1 + 1). It follows from D(T ) ⊆ D(T0) and i ∈ Dc(T0) that

i ∈ Dc(T ) and thus cT (i + 1) < cT (i). Using cT0(i) = cT0(i + 1) + 1 = cT (i + 1) + 1,
we obtain that cT0(i) ≤ cT (i) ≤ cT0(dl−1 + 1). Then there is a y ∈ [dl−1 + 1, i] such
that �x and �y are in the same column. On the one hand, we obtain from (3.5) that
T (�y) < i = T (�x). On the other hand, the choice of y and (3.6) imply y > dl−1 ≥ x
and hence T0(�y) = y > x = T0(�x). That is, in the column of �x and �y the relative
order of entries in T differs from that in T0. Hence, T 6∼ T0 which contradicts the
assumption T, T0 ∈ E.
Case 2 cT (i) > cT0(dl−1 + 1). This case is illustrated in Figure 3.2. Since by (3.6)

x ≤ dl−1, there is a 1 ≤ p ≤ l − 1 such that x ∈ Ip. The leftmost cell of the connected
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horizontal strip T−1
0 (Ip) is �dp . As entries decrease in rows of T from left to right, we

have T (�dp) ≥ T (�x) = i. In addition, the choice of p and (3.4) imply that T (�dp) ≤ i.
Thus, dp = x.
From dp = x we obtain dp 6= dl−1 since

cT0(dl−1) ≤ cT0(dl−1 + 1) < cT (i) = cT0(dp)

where we use dl−1 ∈ D(T0) for the first inequality.
We claim that there exists an index y ∈ [dp + 1, dl−1 − 1] such that �y and �dp are

located in the same column. To prove the claim, assume for the sake of contradiction
that this is not the case. We show by induction that

cT0(dp) < cT0(z) for all z ∈ [dp + 1, dl−1 − 1]. (3.7)

First, dp ∈ D(T0) implies cT0(dp) ≤ cT0(dp + 1). Since cT0(dp) 6= cT0(dp + 1) by assump-
tion, it follows that cT0(dp) < cT0(dp+1). Let z ∈ [dp+2, dl−1−1] and assume that (3.7)
is true for z − 1. If z − 1 ∈ D(T0) then

cT0(dp) < cT0(z − 1) ≤ cT0(z).

If z − 1 ∈ Dc(T0) then z − 1 ∈ NDc(T0) so that

cT0(dp) ≤ cT0(z − 1)− 1 = cT0(z)

and hence cT0(dp) < cT0(z) since cT0(dp) 6= cT0(z) by assumption. This proves (3.7).
As a consequence,

cT0(dl−1) < cT0(dp) < cT0(dl−1 − 1).

In other words, dl−1 − 1 is an ascent of T0 but dl−1 is not the left neighbor of dl−1 − 1.
This is a contradiction to the fact that T0 is a source tableau and finishes the proof of
the claim.
Now, let y be as claimed above. Then y ∈ [dp+1, dl−1−1] and in particular y 6= dp = x.

Hence, (3.4) implies T (�y) < i and therefore T (�y) < i = T (�dp) . On the other hand,
y ∈ [dp + 1, dl−1 − 1] yields T0(�y) = y > dp = T0(�dp). As in Case 1, this is a
contradiction to T, T0 ∈ E.

Note that the i appearing in the following lemma is not the same as in (3.2).
Lemma 3.3.4. For all i ∈ D(T0) there exists k ∈ T0 such that k > i and i T0 k.
Proof. Let i ∈ D(T0). Then cT0(i) ≤ cT0(i+ 1) and thus rT0(i) 6= rT0(i+ 1). Since T0 is
straight by assumption, the cell (rT0(i+ 1), cT0(i)) is contained in the shape of T0. Let k
be the entry of T0 in that cell. Then i T0 k and k ≥ i+ 1 because entries decrease in
rows.

Let T , i and j be as in (3.2). Lemma 3.3.3 and Lemma 3.3.4 show that j is well
defined. We proceed by considering the relative positions of i and [i + 1, j] first in T0
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and then in T . This will allow us to deduce useful properties of the operator πσ to be
defined in Lemma 3.3.9. In the following lemma, i is slightly more general than in (3.2).

Lemma 3.3.5. Let i ∈ D(T0) and set j := min{k ∈ [n] | k > i and i T0 k}. Then j is
well defined and i is located strictly left of [i+1, j−1] and does not attack [i+1, j−1]in T0.

We illustrate Lemma 3.3.5 before we prove it.

Example 3.3.6. For the source tableau from above

T0 =
1
6 5 4 3
8 7 2

and i = 2 ∈ D(T0) we have j = 4 = min{k ∈ [n] | k > i and i  T0 k} and {3} =
[i+ 1, j − 1]. Note 2 T0 4 but 2 6 T0 3.

Proof of Lemma 3.3.5. It follows from Lemma 3.3.4 that j is well defined. We set I :=
[i + 1, j − 1] and cl := cT0(l) for l ∈ T0. By the minimality of j, we have i 6 T0 I. It
remains to show that i is strictly left of I or equivalently that ci < cl for all l ∈ I. We
may assume I 6= ∅ and use an induction argument to show this.

We begin with i+1, the minimum of I. Since i ∈ D(T0), ci ≤ ci+1. Moreover, i+1 ∈ I
implies i 6 T0 i+ 1 and consequently ci < ci+1.
Now, let l ∈ I be such that l > i+1 and ci < cl−1. If l−1 ∈ D(T0) then ci < cl−1 ≤ cl.

If l− 1 ∈ Dc(T0) then l− 1 ∈ NDc(T0) as T0 is a source tableau. Thus cl = cl−1− 1 and
ci ≤ cl. Furthermore ci 6= cl since i 6 T0 I 3 l. Hence, ci < cl.

Let T, i and j be as in (3.2). By definition, i attacks j in T0. In contrast, the next
lemma shows that i does not attack j in T . Here, i and j are defined as in (3.2).

Lemma 3.3.7. Let T ∈ E be such that T 6= T0 and D(T ) ⊆ D(T0). Define

i := max
{
k ∈ [n] | T−1(k) 6= T−1

0 (k)
}
,

j := min
{
k ∈ [n] | k > i and i T0 k

}
.

Then i and j are well defined and i appears strictly left of [i+ 1, j] and does not attack
[i+ 1, j] in T .

We first give an example and then the proof of Lemma 3.3.7.

Example 3.3.8. Recall that in our running example i = 2 and j = 4 when defined for

T =
2
6 5 4 3
8 7 1

as in Lemma 3.3.7. Then [i+ 1, j] = {3, 4} and 2 6 T {3, 4}.
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Proof of Lemma 3.3.7. Lemma 3.3.3 yields i ∈ D(T0). Therefore, Lemma 3.3.4 implies
that j is well defined. Set σ := colT col−1

T0
, �k := T−1

0 (k) for k = 1, . . . , n and let x be
the index such that T (�x) = i.
By choice of i, we have T>i = T>i0 . Thus, sh(T>k) = sh(T>k0 ) for k = i, . . . , n. Hence,

Proposition 3.2.9 yields

cont(σ) ⊆ [i− 1]. (3.8)

Let sip · · · si1 be a reduced word for σ. Then T = πip · · ·πi1T0. From (3.8) it follows
that iq 6= i for q = 1, . . . , p. Moreover, at least one πiq has to move i because the position
of i in T differs from its position in T0. Hence, there is a q such that iq = i−1 since πi−1
and πi are the only operators that are able to move i. For two standard composition
tableaux T1 and T2 such that T2 = πi−1T1 = si−1T1 we have that i− 1 ∈ nAD(T1) and
thus T−1

2 (i) is left of T−1
1 (i) and T−1

2 (i) 6 T−1
1 (i). Hence, by applying πip · · ·πi1 to T0, i

is moved (possibly multiple times) strictly to the left into a cell that does not attack �i.
That is,

�x is located strictly left of �i and �x 6 �i. (3.9)

It follows from the choice of i that the elements of [i+ 1, j − 1] have the same position
in T and T0. By combining (3.9) and Lemma 3.3.5 we obtain:

i is located strictly left of [i+ 1, j − 1] in T and i 6 T [i+ 1, j − 1]. (3.10)

Recall that j has the same position in T and T0. It follows from (3.9) and i T0 j that
cT (i) < cT0(i) ≤ cT0(j). Thus, i is strictly left of j in T .
It remains to show i 6 T j. We have either cT0(j) = cT0(i) + 1 or cT0(j) = cT0(i) since

i T0 j.
Case 1 cT0(j) = cT0(i) + 1. Then (3.9) implies cT (i) < cT0(i) < cT0(j) = cT (j) and

hence i 6 T j.
Case 2 cT0(j) = cT0(i). If cT (i) < cT0(i)− 1 then cT (i) < cT (j)− 1 and thus i 6 T j.

If cT (i) = cT0(i) − 1 then i and j appear in adjacent columns of T and for i 6 T j we
have to show that rT (j) < rT (i). On the one hand, we have 1 ≤ cT (i) < cT0(i) so that i
has a left neighbor t > i in T0. In addition, i being strictly left of [i+ 1, j − 1] in T0 by
Lemma 3.3.5 and cT0(j) = cT0(i) imply that i is weakly left of [i+1, j] in T0. Thus, t > j
and hence rT0(j) < rT0(i) because otherwise t, i and j would violate the triple rule in T0.
On the other hand, cT (i) = cT0(i) − 1 and i 6 T �i imply rT0(i) < rT (i). Therefore,
rT (j) = rT0(j) < rT0(i) < rT (i) and thus i 6 T j.

We now come to the useful properties of the operators πσ mentioned in (3.2).

Lemma 3.3.9. Keep the notation of Lemma 3.3.7 and set σ := sj−1 · · · si+1si. Then
(1 ) πσT0 = 0,
(2 ) πσT ∈ E,
(3 ) σ = colπσT col−1

T .
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Proof. First observe that sj−1 · · · si+1si is a reduced word, i.e.

πσ = πj−1 · · ·πi+1πi.

Set �k := T−1
0 (k) for k = 1, . . . , n.

We consider T0. Set T ′ := πj−2 · · ·πi+1πiT0. We can apply Proposition 3.1.20 in T0
to i and [i + 1, j − 1] because of Lemma 3.3.3 and Lemma 3.3.5. By doing this, we
obtain that T ′ ∈ E and T ′(�i) = j − 1. In addition, T ′(�j) = T0(�j) = j as none of
the operators πj−2, . . . , πi+1 moves j. Recall that j is defined such that �i  �j . Thus
j − 1 ∈ AD(T ′) and πσT0 = πj−1T ′ = 0.

Now consider T . Because of Lemma 3.3.7, we can apply Proposition 3.1.20 in T to i
and [i+ 1, j]. This immediately gives us (2) and (3).

Example 3.3.10. Continuing our running example, we have i = 2, j = 4 and πσ = π3π2.
Moreover,

T0 =
1
6 5 4 3
8 7 2

π2−→
1
6 5 4 2
8 7 3

π3−→ 0,

T =
2
6 5 4 3
8 7 1

π2−→
3
6 5 4 2
8 7 1

π3−→
4
6 5 3 2
8 7 1

.

We are ready to prove the main result of this section now.

Theorem 3.3.11. Let α � n and E ∈ E(α). Then EndHn(0)(Sα,E) = K id. In particu-
lar, Sα,E is an indecomposable Hn(0)-module.

Proof. For the second part, note that if EndHn(0)(Sα,E) = K id then Sα,E is indecom-
posable.
To prove the first part, let f ∈ EndHn(0)(Sα,E), v := f(T0) and v = ∑

T∈E aTT as at
the beginning of Section 3.3. We show supp(v) ⊆ {T0} since this and the fact that Sα,E

is cyclically generated by T0 imply f = aT0 id ∈ K id.
If v = 0, this is clear. Hence, we can assume v 6= 0. Recall that E is a graded poset by

Theorem 3.1.18. We denote its rank function with δ. Let T∗ ∈ supp(v) be of maximal
rank in supp(v). Assume for the sake of contradiction that T∗ 6= T0. Lemma 3.3.1
yields D(T∗) ⊆ D(T0). Thus, Lemma 3.3.9 provides the existence of a σ ∈ Sn such that
πσT∗ ∈ E, πσT0 = 0 and σ = colπσT∗ col−1

T∗ .
We claim that if T ∈ supp(v) and πσT = πσT∗ then T = T∗. To see this, let T ∈

supp(v) be such that πσT = πσT∗. Then

`(σ) ≥ δ(πσT )− δ(T ) = δ(πσT∗)− δ(T ) ≥ δ(πσT∗)− δ(T∗) = `(σ),

where Corollary 3.1.19 is used to establish the first and the last equality. Hence, `(σ) =
δ(πσT )− δ(T ) and another application of Corollary 3.1.19 yields that colπσT∗ col−1

T = σ.
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But then

colπσT∗ col−1
T = σ = colπσT∗ col−1

T∗

so that colT = colT∗ and thus T = T∗ as claimed.
The claim implies that the coefficient of πσT∗ in πσv = ∑

T∈supp(v) aTπσT is aT∗ . Yet,
πσv = f(πσT0) = 0 and hence aT∗ = 0 which contradicts the assumption T∗ ∈ supp(v)
and therefore completes the proof of supp(v) ⊆ {T0}.

Combining Theorem 3.3.11 with Proposition 3.1.13, we obtain the desired decompo-
sition of Sα.

Corollary 3.3.12. Let α � n. Then Sα = ⊕
E∈E(α) Sα,E is a decomposition into

indecomposable submodules.

Example 3.3.13. In general, Theorem 3.3.11 does not hold for skew modules Sα//β,E .
The two SCTx of shape α//β = (1, 3)//(2) and size n = 2

T0 = 1
2

π1−→ T1 = 2
1

form an equivalence class E. We obtain an idempotent Hn(0)-endomorphism ϕ by
setting ϕ(T0) := ϕ(T1) := T1. Clearly, ϕ is none of the trivial idempotents 0, id ∈
EndHn(0)(Sα//β,E). Thus, EndHn(0)(Sα//β,E) 6= K id. Moreover, we obtain a decomposi-
tion

Sα//β,E = ϕ(Sα//β,E)⊕ (id−ϕ)(Sα//β,E) = spanK(T1)⊕ spanK(T1 − T0)

into two submodules of dimension 1. The module Sα//β,E is an example of a type of
skew modules which we call pacific and decompose in Section 3.4. It also illustrates how
the argumentation of this section can fail when it is applied to skew modules. Note that
D(T1) ⊆ D(T0). We may try to set

i := max
{
k ∈ [n] | T−1

1 (k) 6= T−1
0 (k)

}
,

j := min
{
k ∈ [n] | k > i and i T0 k

}
.

as before. But then i = 2 so that j does not exist.

3.4 The decomposition of pacific modules
In the last section we decomposed the straight Hn(0)-modules Sα into a direct sum
of indecomposable submodules. In this section we determine such a decomposition for
a certain class of skew Hn(0)-modules Sα//β which we call pacific. This is done in
Theorem 3.4.17. The summands of the decomposition are isomorphic to projective
indecomposable Hn(0)-modules P I . Thus, the pacific skew modules Sα//β are projective.
From the decomposition we also obtain combinatorial formulas for the top and the socle
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of the pacific skew module Sα//β in Corollary 3.4.21. These rules for top and socle will
be generalized to all skew modules Sα//β in Section 3.5 and Section 3.6, respectively.

As the pacific skew module Sα//β is projective, it is its own projective cover. In
[CKNO20] Choi, Kim, Nam and Oh construct projective covers for Hn(0)-modules
Sσ
α,E formed by standard permuted composition tableaux of shape α. This includes

the straight modules Sα,E .
The notation related to Coxeter groups from Sections 2.2 and 2.3 used in this section

always refers to the symmetric group Sn where n is the size of the skew composition or
tableaux in question. For instance, S denotes the set of simple reflections of Sn.

Definition 3.4.1. A skew composition α//β is called pacific if for each pair of cells
�1,�2 ∈ α//β we have �1 6 �2. Likewise, a tableau T is pacific if for all pairs of
entries i, j ∈ T we have i 6 j. The module Sα//β is called pacific if α//β is pacific.

Example 3.4.2. The skew composition α//β = (5, 4, 3)//(4, 3, 1) is pacific. Its diagram
looks as follows:

Note that the first column is empty. The SCTx of shape α//β are shown in Figure 3.3.

Example 3.4.3. Let T0 and T1 be the tableaux of shape α//β = (1, 3)//(2) from Ex-
ample 3.3.13 and E be the equivalence class formed by them. Then T0, T1, α//β and
Sα//β are pacific. Moreover, α//β has at most one cell per column, so that E is the only
equivalence class of SCT(α//β) under ∼. Hence, E = SCT(α//β) and Sα//β = Sα//β,E .
From Example 3.3.13 we have the decomposition

Sα//β = spanK(T1)⊕ spanK(T1 − T0).

An application of Corollary 2.3.8 yields that the indecomposable projective H2(0)-
modules P ∅ and P S have K-bases given by π1−1 and π1, respectively. As a consequence,

P ∅T0 = spanK(T1 − T0), P ST0 = spanK(T1)

and

Sα//β = P ∅T0 ⊕ P ST0. (3.11)

Moreover, we have P ∅T0 ∼= P ∅ and P ST0 ∼= P S .

In this section we will generalize the decomposition from (3.11) to arbitrary pacific
modules Sα//β. The method for obtaining it, however, will be different.
We proceed as follows. Let α//β be a pacific skew composition of size n. First, we

consider basic properties of α//β and SCT(α//β). In particular, we show that SCT(α//β)
is a single equivalence class under ∼ so that there is only one source tableau T0 and one
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sink tableau T1 of shape α//β. Then we describe T0 and thereby the diagram of α//β.
Recall that the components of a diagram are its maximal connected subdiagrams. It
will turn out that the components of the diagram of α//β are horizontal strips which do
not attack each other. With this we can identify colT0 and colT1 as maximal elements
of certain parabolic subgroups of Sn. This is a central argument in the poof of the
decomposition of Sα//β in the main result, Theorem 3.4.17.
We will see in Proposition 3.4.23 that most of the pacific modules Sα//β are decom-

posable. Since Sα//β = Sα//β,E for E = SCT(α//β) if α//β is pacific, we obtain a class of
decomposable modules Sα//β,E . This is a difference to the case of straight modules Sα,E

which are always indecomposable by Theorem 3.3.11.
Let α//β be a skew composition and T be a SCT of shape α//β. Recall that for i, j ∈ T

we have by definition that i T j if and only if T−1(i) T−1(j). With this in mind we
can directly deduce the next lemma from Definition 3.4.1.

Lemma 3.4.4. Let α//β be a skew composition. Then the following are equivalent.
(1 ) α//β is pacific.
(2 ) Each T ∈ SCT(α//β) is pacific.
(3 ) There is a T ∈ SCT(α//β) which is pacific.

By Figure 3.3, all SCTx of pacific shape (5, 4, 3)//(4, 3, 1) are equivalent with respect
to ∼. Now we show that this is true for all pacific skew compositions.

Lemma 3.4.5. Let α//β be a pacific skew composition. Then SCT(α//β) is the only
element of E(α//β).

Proof. Since two distinct cells in the same column attack each other, the pacific skew
composition α//β has at most one cell per column. Hence, each T ∈ SCT(α//β) has at
most one entry per column. By the definition of the equivalence relation ∼, this means
that all elements of SCT(α//β) are equivalent with respect to ∼.

Let α//β be a pacific skew composition. Because of Lemma 3.4.5, we do not obtain a
decomposition of Sα//β from Proposition 3.1.13. It only yields that Sα//β = Sα//β,E for
E = SCT(α//β). Nonetheless, we can exploit the fact that SCT(α//β) is an equivalence
class under ∼. For example, this means that there is only one source tableau and only
one sink of shape α//β. Thus, we can speak of the source tableau and the sink tableau
of shape α//β. Our next goal is to describe the source tableau of α//β.
Given an arbitrary source tableau T0 of size n, we use the following notation which

already appeared in the proof of Lemma 3.3.3. Recall that by Theorem 3.1.14, T0
being a source tableau means that T0 is a SCT with Dc(T0) = NDc(T0). We introduce
integers m := |D(T0)| and dk ∈ [0, n] for k = 0, . . . ,m + 1 such that d0 = 0, D(T0) =
{d1 < d2 < · · · < dm} and dm+1 = n. Define Ik := [dk−1 + 1, dk] for k = 1, . . . ,m + 1.
Then for each k ∈ [m + 1] and i ∈ Ik \ {dk}, i + 1 is the left neighbor of i. That is, Ik
forms a connected horizontal strip in T0 that looks as follows:

dk dk − 1 · · · dk−1 + 1
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T0 =
4

3
2 1

4
2

3 1

3
4

2 1

4
1

3 2

3
2

4 1

2
4

3 1

3
1

4 2

1
4

3 2

2
3

4 1

2
1

4 3

1
3

4 2

T1 =
1

2
4 3

π2 π3

π1 π3 π2

π3 π1 π2 π1π3

π2 π3π1

π1 π2

Figure 3.3: The 0-Hecke action on SCT(α//β) for the pacific skew composition α//β =
(5, 4, 3)//(4, 3, 1). The tableaux T0 and T1 are the only source and sink
tableau of shape α//β, respectively.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Example 3.4.6. Let T0 be the source tableau from Figure 3.3. Then we have D(T0) =
{d1 = 2, d2 = 3} and d3 = 4, i.e. I1 = {1, 2} , I2 = {3} and I3 = {4}.

Lemma 3.4.7. Let T0 be a source tableau of size n and k ∈ [m]. If Ik 6 Ik+1 in T0
then Ik is strictly left of Ik+1 in T0.

Proof. Assume Ik 6 T0Ik+1. We consider the positioning of entries in T0. Let i ∈ Ik
and j ∈ Ik+1. Then i and j appear in different columns since otherwise i j. Thus, Ik
is positioned either strictly right or strictly left of Ik+1. Moreover, dk ∈ Ik must be left
of dk + 1 ∈ Ik+1 since dk ∈ D(T0). This implies the claim.

The next lemma characterizes pacific source tableaux.

Lemma 3.4.8. Let T0 be a source tableau. Then T0 is pacific if and only if Ik 6 T0Ik+1
and Ik is strictly left of Ik+1 for k = 1, . . . ,m.

Proof. The implication from left to right is an application of Lemma 3.4.7.
For the converse direction assume that the intervals Ik of T0 satisfy the condition on

the right hand side. Let k ∈ [m+ 1]. Since the entries of Ik form a connected horizontal
strip in T0 they do not attack each other. Hence, consider another interval Il with
l ∈ [m+ 1] and l 6= k. Without loss of generality suppose k < l. Then Ik is strictly left
of Il. If l > k+ 1 then Ik+1 is located between Ik and Il. Hence, Ik and Il are separated
by at least one column and thus Ik 6 T0Il in that case. If l = k + 1 then Ik 6 T0Il by
assumption. Hence, the entries of Ik do not attack the entries of Il in T0. Therefore, T0
is pacific.

Let α//β be a pacific skew composition and T0 be the source tableau of shape α//β.
From Lemma 3.4.8 it follows that there is an m ∈ N0 and connected horizontal strips
B1, . . . , Bm+1 such that Bk 6 Bk+1, Bk is strictly left of Bk+1 for k = 1, . . . ,m and the
Bk are the components of the diagram of α//β. The Bk are nothing but the preimages
of the intervals Ik associated with T0 under T0.
That is, we obtain T0 from α//β by setting d0 := 0 and dk = ∑k

i=1 |Bk| for k =
1, . . . ,m + 1 and then filling Bk from left to right with dk, dk − 1, . . . , dk−1 + 1 for
k = 1, . . . ,m+ 1. One may check that we obtain T0 from Figure 3.3 in this way.

Let T1 be the sink tableau of α//β. From Theorem 3.1.18 it follows that SCT(α//β) is
isomorphic to the interval in left weak order [colT0 , colT1 ]L via the map T 7→ colT . We
now want to determine this interval. To do this, we use the following definition.

Definition 3.4.9. Let T be a SCT of size n and S be the set simple reflections of Sn.
Define the set of simple reflections associated to T as

JT := {si ∈ S | i ∈ Dc(T )} .

Example 3.4.10. Consider the pacific skew composition α//β = (5, 4, 3)//(4, 3, 1) of
size 4, T0 the source and T1 the sink tableau of shape α//β. The tableaux are shown in
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3.4 The decomposition of pacific modules

Figure 3.3. We have Dc(T0) = {1}. Thus, JT0 = {s1}. Moreover, we read colT0 = 2134
and colT1 = 4321. That is

colT0 = s1 = w0(JT0) and colT1 = w0

where w0(JT0) and w0 are the longest elements of (S4)JT0
and S4, respectively. In other

words,

[colT0 , colT1 ]L = [w0(JT0), w0]L.

We need the following lemma in order to generalize Example 3.4.10.

Lemma 3.4.11. Let T be a SCT and i ∈ T .
(1 ) If i ∈ nAD(T ) then si /∈ DL(colT ).
(2 ) If i ∈ Dc(T ) then si ∈ DL(colT ).

Proof. In both cases i and i + 1 appear in different columns of T . If i ∈ nAD(T ) then
i is located in a column strictly left of i + 1 in T . Thus, i appears left of i + 1 in colT ,
i.e. col−1

T (i) < col−1
T (i + 1). Hence, si 6∈ DL(colT ) by Equation (2.1). If i ∈ Dc(T ) then

i+ 1 is located in a column strictly left of i in T and thus i+ 1 appears left of i in colT .
Hence, (2.1) implies si ∈ DL(colT ).

Now we determine [colT0 , colT1 ]L for the source and the sink tableau T0 and T1 of a
pacific shape. Note that by Corollary 2.2.12 the interval [w0(JT0), w0]L is the descent
class DSJT0

.

Proposition 3.4.12. Let α//β be a pacific skew composition of size n, T0 the source
and T1 the sink tableau of shape α//β. Then
(1 ) colT0 = w0(JT0),
(2 ) colT1 = w0

where w0(JT0) and w0 refer to elements of Sn. That is, SCT(α//β) is isomorphic as a
poset to the interval [w0(JT0), w0]L.

Proof. Set J := JT0 .
(1) First we show that colT0 is an element of the parabolic subgroup (Sn)J . For

1 ≤ k ≤ m+ 1 the entries of Ik in T0 form a horizontal strip which looks as follows:

dk dk − 1 · · · dk−1 + 1

Moreover, since α//β is pacific, T0 is. Thus, Lemma 3.4.8 implies that Ik is located
strictly left of Ik+1 for 1 ≤ k ≤ m. As a consequence,

colT0 = d1 d1 − 1 · · · 1 d2 d2 − 1 · · · d1 + 1 · · · n n− 1 · · · dm + 1.
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In particular, colT0([dk]) = [dk] for k = 1, . . . ,m. Consider the natural action of Sn on
[n]. Then it follows that colT0 ∈ Stab([dk]) for k = 1, . . . ,m. Hence

colT0 ∈
m⋂
k=1

Stab([dk]) =
m⋂
k=1

(Sn)S\{sdk} = (Sn)⋂m

k=1 S\{sdk}
= (Sn)J

where the first equality is an application of Lemma 2.2.4 and the second equality is a
consequence of [BB05, Proposition 2.4.1].
As T0 is pacific, Lemma 3.4.11 implies DL(colT0) = J . Furthermore, Proposition 2.2.8

states that the only element of (Sn)J which has left descent set J is w0(J). Thus
colT0 = w0(J).
(2) We have D(T1) = nAD(T1) since α//β is pacific. But T1 is a sink tableau and

hence it follows from Theorem 3.1.14 that D(T1) = ∅. Then Lemma 3.4.11 yields that
DL(colT1) = S. Therefore, Proposition 2.2.8 implies colT1 = w0.
(3) Because α//β is pacific, we can apply Lemma 3.4.5 and obtain that SCT(α//β) is

an equivalence class under ∼. Then Theorem 3.1.18 yields that SCT(α//β) is as a poset
isomorphic to the interval [colT0 , colT1 ]L = [w0(J), w0]L.

It is interesting that pacific modules are in fact characterized by Proposition 3.4.12.
Although this is not important for their decomposition, we prove it in the next lemma.

Lemma 3.4.13. Let α//β be a skew composition of size n, E ∈ E(α//β), T0 be the source
and T1 the sink tableau of E. If colT0 = w0(JT0) and colT1 = w0 then α//β is pacific and
E = SCT(α//β).

Proof. Assume that colT0 = w0(JT0) and colT1 = w0. We want to show that T0 is pacific.
Then α//β is pacific by Lemma 3.4.4 and therefore E = SCT(α//β) by Lemma 3.4.5.
Define m, the dk and the Ik according to T0 as before. Because of Lemma 3.4.8, we

have to show that Ik 6 T0Ik+1 for k = 1, . . . ,m. Recall that since T0 is a source tableau,
the elements dk, dk − 1, . . . , dk−1 + 1 of Ik form a connected horizontal strip in T0. For
the sake of contradiction assume that there exists an index k such that Ik  T0 Ik+1. In
addition, suppose that k is the smallest index with this property. Set a0 := dk−1 + 1 and
b0 := dk+1. Moreover let a1 and b1 be the entries of T1 in the cells filled with a0 and b0
in T0, respectively. An application of Lemma 3.4.7 yields that Il is strictly left of Ik in
T0 for all l < k. By assumption, we have

colT0 = w0(J)
= d1 d1 − 1 · · · 1 · · · dk dk − 1 · · · dk−1 + 1 dk+1 dk+1 − 1 · · · dk + 1 · · · .

Recall that for obtaining the column word, we read each column from top to bottom
starting with the leftmost column. Hence, it follows that Ik is weakly left of Ik+1 in T0.
Therefore, a0  T0 b0 since in T0 a0 is the rightmost entry of Ik, b0 is the leftmost entry
of Ik+1 and Ik attacks Ik+1. Then in T0 either a0 and b0 are in the same column or
a0 and b0 are in adjacent columns with a0 strictly above and left of b0. We distinguish
these two cases.
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3.4 The decomposition of pacific modules

Assume that the first one is true. Because a0 precedes b0 in colT0 , we then have that
a0 is above of b0 in T0. Moreover, colT1 = w0 = n n − 1 · · · 1. Since columns are read
from top to bottom in the column word, it follows that a1 > b1. Yet, a0 < b0 so that we
obtain the contradiction T0 6∼ T1.
Assume that the second case is true. Then a1 is left of b1 in colT1 . Hence, colT1 = w0

implies a1 > b1. Since a1 and b1 appear in T1 in adjacent columns with a1 strictly above
and left of b1, we can apply the triple rule which demands the existence of a c1 ∈ T1
which is the right neighbor of a1. Then a0 has a right neighbor c0 in T0 too. Since entries
decrease in rows of SCTx, it follows that a0 > c0. But all entries which are smaller than
a0 = dk−1 + 1 are elements of ⋃k−1

i=1 Ik and these entries are strictly left of a0 in T0. That
is, we end up with a contradiction again.

The next two lemmas are the last ingredients needed for the proof of our main result.

Lemma 3.4.14. Let T be a standard composition tableau of size n, S be the set of simple
reflections of Sn and J ⊆ S. If there is an i ∈ Dc(T ) such that si ∈ Jc then π̄JcT = 0.

Proof. Assume that there is an i ∈ Dc(T ) with si ∈ Jc. Then Proposition 2.2.8 provides
the existence of a reduced word sip · · · si2si of w0(Jc). Furthermore, π̄iT = (πi−1)T = 0
as i ∈ Dc(T ). Thus, π̄JcT = π̄ip · · · π̄i2 π̄iT = 0.

Lemma 3.4.15. Let α//β be a skew composition of size n, S be the simple reflections
of Sn and E ∈ E(α//β) with source tableau T0. Then Sα//β,E = ∑

JT0⊆J⊆S P JT0.

Proof. From Theorem 2.3.5 we have the decomposition Hn(0) = ⊕
J⊆S P J . Thus,

Sα//β,E = Hn(0)T0 =
∑
J⊆S

P JT0.

Let J ⊆ S such that JT0 6⊆ J . Then there is an i ∈ Dc(T0) such that si ∈ Jc and from
Lemma 3.4.14 we obtain

P JT0 = Hn(0)πJ π̄JcT0 = 0.

We will see in the proof of Theorem 3.4.17 that the sum from Lemma 3.4.15 is direct
if α//β is pacific. The following example shows that in general this is not the case and
that summands can be zero.

Example 3.4.16. Consider the equivalence class E

T0 =
3
2

1

π1−→
3
1

2

π2−→ T1 =
2
1

3

of SCTx of size 3 and shape α//β = (3, 3, 2)//(2, 2, 1) which are not pacific. Then JT0 = ∅.
Lemma 3.4.15 yields that Sα//β,E = ∑

J⊆S P JT0 where S is the set of simple reflections
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of S3 and the P J are the indecomposable projective modules of H3(0). On the other
hand, from Example 2.3.9 we have that

−π2π1π2 + π2π1 ∈ P {s1} and π2π1 − π2 ∈ P {s2}.

Thus,

T1 = (−π2π1π2 + π2π1)T0 ∈ P {s1}T0 and T1 = (π2π1 − π2)T0 ∈ P {s2}T0.

Hence, the intersection of the modules P {s1}T0 and P {s2}T0 is not trivial which means
that ∑J⊆S P JT0 is not a direct sum. Moreover, P {s1,s2}T0 = Hn(0)π1π2π1T0 = 0.

We now come to the main result of the section: The decomposition of pacific modules
Sα//β into indecomposable submodules. Recall that DSJ = {σ ∈ Sn | J ⊆ DR(σ)} and
that DSJ = [w0(J), w0]L by Corollary 2.2.12 for J ⊆ S.

Theorem 3.4.17. Let α//β be a pacific skew composition of size n with source tableau
T0, S be the set of simple reflections of Sn and P J = Hn(0)πJ π̄Jc for J ⊆ S.
(1 ) Let JT0 ⊆ J ⊆ S. The Hn(0)-modules P J and P JT0 are isomorphic via the map

a 7→ aT0. The module P JT0 is generated by πJ π̄JcT0 and it has a K-basis ∑
σ∈ρ(Sn)Jc

(−1)`(ρw0(Jc))−`(σ)πσT0 | ρ ∈ DJ


In particular, dim P JT0 = |DJ |. Moreover,

top(P JT0) ∼= F Jc and soc(P JT0) ∼= F ν(Jc)

where w0 is the longest element of Sn and ν : Sn → Sn, σ 7→ w0σw
−1
0 .

(2 ) Sα//β = ⊕
JT0⊆J⊆S P JT0 is a decomposition into indecomposable submodules.

(3 ) Sα//β is projective and has dimension
∣∣∣DSJT0

∣∣∣.
Proof. Assume that Sα//β is pacific. Throughout this proof ⊕ refers to the outer direct
sum, all homomorphisms are Hn(0)-homomorphisms and all (direct) sums indexed by J
run over the set {J | JT0 ⊆ J ⊆ S}.
There are natural epimorphisms

φJ : P J → P JT0, a 7→ aT0

for JT0 ⊆ J ⊆ S. Let

φ :
⊕
J

P J →
⊕
J

P JT0, (aJ)J 7→ (φJ(aJ))J

be the corresponding epimorphism of direct sums. Since α//β is pacific, Lemma 3.4.5
yields that SCT(α//β) is an equivalence class under ∼. Thus, Lemma 3.4.15 implies that
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3.4 The decomposition of pacific modules

Table 3.1: Dimensions and generators of the modules P JT0 decomposing the pacific
module Sα//β for α//β from Figure 3.3.

J dim P JT0 Generator πJ π̄JcT0 of P JT0

{s1} 3
1

3
4 2

−
1

4
3 2

−
3

1
4 2

+
3

4
2 1

+
4

1
3 2

−
4

3
2 1

{s1, s2} 3
1

4
3 2

−
4

1
3 2

{s1, s3} 5
3

1
4 2

−
3

4
2 1

{s1, s2, s3} 1
1

2
4 3

Sα//β = ∑
JT0⊆J⊆S P JT0. Therefore, ψ : ⊕J P JT0 → Sα//β, (xJ)J 7→

∑
J xJ is another

epimorphism. We have

dim Sα//β ≤ dim
⊕
J

P JT0 (ψ is an epimorphism)

≤ dim
⊕
J

P J (φ is an epimorphism)

=
∑
J

dim P J

=
∑
J

|DJ | (Theorem 2.3.5)

=
∣∣∣DSJT0

∣∣∣
= |[w0(JT0), w0]L| (Corollary 2.2.12)
= |SCT(α//β)| (Proposition 3.4.12)
= dim Sα//β.

That is, dim Sα//β = dim⊕
J P JT0 = dim⊕

J P J . Consequently ψ, φ and all the φJ are
isomorphisms.
Let JT0 ⊆ J ⊆ S. We obtain the claimed basis of P JT0 by applying φJ on the basis

of P J from Corollary 2.3.8. The statements about top, socle and indecomposability are
transferred from Theorem 2.3.5 by φJ as well. As Sα//β is the direct sum of projective
modules, it is projective too. We have seen above that dim Sα//β =

∣∣∣DSJT0

∣∣∣.
Remark 3.4.18. Let Sα//β be pacific. Then it is projective and by [KT97, Proposition
5.9] the quasisymmetric characteristic of Sα//β, Ch(Sα//β), is a symmetric function. That
is, the quasisymmetric Schur function Sα//β is a symmetric function if α//β is pacific.

Example 3.4.19. Consider the pacific skew composition α//β = (5, 4, 3)//(4, 3, 1) and
its source tableau T0. The SCTx of shape α//β are shown in Figure 3.3. Then JT0 = {s1}
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and Theorem 3.4.17 yields that

Sα//β = P {s1}T0 ⊕ P {s1,s2}T0 ⊕ P {s1,s3}T0 ⊕ P {s1,s2,s3}T0

is a decomposition into indecomposable H4(0)-modules. The dimension and a generator
for each of them is shown in Table 3.1.
Let J = {s1, s2}. We determine a basis of P JT0. We have Jc = {s3},

DJ = {ρ1 = s1s2s1, ρ2 = s3s1s2s1, ρ3 = s2s3s1s2s1} and (S4)Jc = {1, s3} .

From Corollary 2.3.8 it follows that the elements

b1 := πρ1 π̄Jc = π1π2π1π3 − π1π2π1,

b2 := πρ2 π̄Jc = π3π1π2π1π3 − π3π1π2π1,

b3 := πρ3 π̄Jc = π2π3π1π2π1π3 − π2π3π1π2π1

form a basis of P J . By Theorem 3.4.17, a basis of P JT0 is given by the elements

b1T0 =
1

4
3 2

−
4

1
3 2

,

b2T0 =
1

3
4 2

−
3

1
4 2

,

b3T0 =
1

2
4 3

−
2

1
4 3

.

Note that

b1T0
π3−→ b2T0

π2−→ b3T0.

One may check that we obtain the decomposition of S(3,1)//(2) given in (3.11) also from
an application of Theorem 3.4.17.
We can reformulate the decomposition of the pacific module Sα//β from Theorem 3.4.17

in a more combinatorial fashion. We call i ∈ [n−1] a descent of σ ∈ Sn if σ(i) > σ(i+1).

Corollary 3.4.20. Let α//β be a pacific skew composition of size n with source tableau
T0. For D ⊆ [n− 1] we set PD := P J where J = {si ∈ S | i 6∈ D}.
(1 ) For D ⊆ D(T0) the Hn(0)-modules PDT0 is isomorphic to PD. Its dimension is

the number of σ ∈ Sn with descent set [n− 1] \D. Furthermore,

top(PDT0) ∼= FD and soc(PDT0) ∼= F n−D
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as Hn(0)-modules where F n−D is the simple Hn(0)-module indexed by the set

n−D := {n− d | d ∈ D} .

(2 ) Sα//β = ⊕
D⊆D(T0) PDT0 is a decomposition into indecomposable submodules. The

dimension of Sα//β is the number of σ ∈ Sn whose descent set contains Dc(T0).

Proof. Recall that JT0 = {si ∈ S | i ∈ Dc(T0)}. Hence,

D ⊆ D(T0) if an only if JT0 ⊆ {si ∈ S | i 6∈ D}. (3.12)

Now fix an D ⊆ D(T0) and let J := {si ∈ S | i 6∈ D}, w0 be the longest element of Sn

and ν : Sn → Sn, σ 7→ w0σw
−1
0 . Then PD = P J and Theorem 3.4.17 yields that PDT0

is isomorphic to PD, has dimension |DJ |, top isomorphic to F Jc and socle isomorphic
to F ν(Jc). Recall from Section 2.2 that DR(σ) = {si ∈ S | σ(i) > σ(i+ 1)} for σ ∈ Sn.
Therefore,

DJ = {σ ∈ Sn | J = DR(σ)}
= {σ ∈ Sn | σ(i) > σ(i+ 1) if and only if i ∈ [n− 1] \D} .

This yields the claim on the dimension of PDT0.
By the definition of FD in Section 2.3, we have F Jc = FD and therefore top(PDT0) =

FD. Regarding soc(PDT0), it remains to show that F ν(Jc) = F n−D. Recall that
w0(i) = n− i+ 1 for each i ∈ [n]. Thus,

ν(si) = w0(i, i+ 1)w−1
0 = (n− i+ 1, n− i) = sn−i

for all i ∈ [n− 1]. As a consequence,

ν(Jc) = {sn−i | si ∈ Jc} = {sn−i | i ∈ D} = {si | i ∈ n−D}

Therefore, F ν(Jc) = F n−D as desired.
From (3.12) and Theorem 3.4.17 we obtain the decomposition

Sα//β =
⊕

D⊆D(T0)
PDT0

and that dim Sα//β =
∣∣∣DSJT0

∣∣∣. In addition,

DSJT0
= {σ ∈ Sn | JT0 ⊆ DR(σ)}
= {σ ∈ Sn | σ(i) > σ(i+ 1) for all i ∈ Dc(T0)} .

Thus, we also get the statement on dim Sα//β.

From Corollary 3.4.20 we obtain combinatorial rules for top and socle of pacific mod-
ules Sα//β.
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Corollary 3.4.21. Let Sα//β be pacific with source tableau T0 and n = |α//β|. Then

top(Sα//β) ∼=
⊕

D⊆D(T0)
FD and soc(Sα//β) ∼=

⊕
D⊆D(T0)

F n−D

as Hn(0)-modules where n−D = {n− d | d ∈ D}.
Proof. From Corollary 3.4.20 it follows that

top(Sα//β) = top(
⊕

D⊆D(T0)
PDT0) =

⊕
D⊆D(T0)

top (PDT0) ∼=
⊕

D⊆D(T0)
FD,

where we use for the second equality that the operator top is compatible with direct
sums. In the same way we obtain the formula for the socle.

The topic of Section 3.5 is to generalize the formula for the top from Corollary 3.4.21
to arbitrary modules Sα//β. In Section 3.6 we do the same for the socle.
Example 3.4.22. Consider the pacific H4(0)-module Sα//β with source tableau

T0 =
4

3
2 1

.

Then D(T0) = {2, 3} and Corollary 3.4.21 yields

top(Sα//β) ∼= F ∅ ⊕ F {2} ⊕ F {3} ⊕ F {2,3},

soc(Sα//β) ∼= F ∅ ⊕ F {1} ⊕ F {2} ⊕ F {1,2}.

We end this section with two consequences of Theorem 3.4.17. First we characterize
the indecomposable pacific modules Sα//β and second the modules Sα//β,E which are
isomorphic to Hn(0). Recall that the components of the diagram of a pacific skew
composition are connected horizontal strips that do not attack each other.
Proposition 3.4.23. Let α//β be a pacific skew composition of size n. Then the follow-
ing are equivalent.
(1 ) α//β is a single connected horizontal strip.
(2 ) Sα//β is indecomposable.
(3 ) Sα//β is isomorphic to the simple Hn(0)-module F ∅.

Proof. Let T0 be the source tableau of pacific shape α//β, m := |D(T0)| and Ik for
k = 1, . . . ,m+ 1 be the intervals associated to T0. Then

Sα//β is indecomposable⇐⇒ D(T0) = ∅ (Corollary 3.4.20)
⇐⇒ m = 0 and I1 = [n]
⇐⇒ α//β is a single (α//β = sh(T0))

connected horizontal strip.
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That is, (1) is equivalent to (2). Moreover, if D(T0) = ∅ then πiT0 = T0 for i =
1, . . . , n−1. Hence, Sα//β is isomorphic to F ∅ in this case. Thus (2) implies (3). Clearly,
(3) also implies (2).

Let α//β be a pacific skew composition and E := SCT(α//β). By Lemma 3.4.5,
Sα//β = Sα//β,E . From Proposition 3.4.23 we know that apart from the case where α//β
is a single connected horizontal strip, Sα//β,E is decomposable. In contrast, the straight
modules Sα,E for α � n and E ∈ E(α) are always indecomposable by Theorem 3.3.11.

From Theorem 3.4.17 we obtain a characterization of the modules Sα//β,E which are
isomorphic to Hn(0).

Proposition 3.4.24. Let α//β be a skew composition of size n and E ∈ E(α//β) with
source tableau T0. Then Sα//β,E

∼= Hn(0) as Hn(0)-modules if and only if nAD(T0) =
[n− 1].

Proof. Let T1 be the sink tableau of E.
Assume first that Hn(0) ∼= Sα//β,E . Since E is a basis of Sα//β,E and Hn(0) has

a K-basis indexed by Sn, it follows that |E| = |Sn|. Thus, Theorem 3.1.18 implies
[colT0 , colT1 ]L = Sn and that the map Sn → E, σ 7→ πσT0 is well defined and injective.
In particular, πiT0 ∈ E \ {T0} for all i ∈ [n− 1], i.e. nAD(T0) = [n− 1].
Assume now that nAD(T0) = [n− 1]. Then we have that Ik = {dk} for the interval Ik

of T0 and k = 1, . . . , n. Thus, nAD(T0) = [n− 1] implies Ik 6 Ik+1 for k = 1, . . . , n− 1.
Hence, it follows from Lemma 3.4.7 and Lemma 3.4.8 that T0 is pacific. As a consequence,
α//β is pacific and Sα//β,E = Sα//β. In addition, nAD(T0) = [n − 1] implies JT0 = ∅.
Thus, Theorem 3.4.17 yields

Sα//β,E
∼=
⊕
J⊆S

P J .

Lastly, ⊕J⊆S P J = Hn(0) by Theorem 2.3.5.

Example 3.4.25. Let α//β be the shape of size 3 of the source tableau

T0 =
3

2
1

.

Then nAD(T0) = {1, 2} and the H3(0)-modules Sα//β and H3(0) are isomorphic.

3.5 The top of skew modules

Let α//β be a skew composition of size n. In this section we seek a combinatorial
formula for top(Sα//β). This formula is stated in Corollary 3.5.46. It generalizes the one
for pacific modules from Corollary 3.4.21.
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From Proposition 3.1.13 we have that Sα//β = ⊕
E∈E(α//β) Sα//β,E . It follows that

top(Sα//β) = ⊕
E∈E(α//β) top(Sα//β,E). Therefore, our main objective is to determine

top(Sα//β,E) for E ∈ E(α//β). This is done in Theorem 3.5.42.
The section can be divided in two parts. In the first part we develop the combinatorics

that we use in the second part in order to determine the radical and the top of Sα//β,E .
Note that a fraction of the new terms of this section is sufficient for only formulating

Theorem 3.5.42: the horizontal strips Bk which we will introduce below and Defini-
tion 3.5.10.
Let E ∈ E(α//β). As in Section 3.4, we will use the descents of the source tableau

T0 of E in order to decompose [n] into intervals I1, . . . , Im+1. The preimages under T0
of these intervals B1, . . . , Bm+1 then form a set partition of the diagram of α//β. The
relative positions of the Bk play an crucial role in the determination of top(Sα//β,E). In
particular, for k ∈ [m] it is important whether Bk  Bk+1 or not. We fix some notation
for the entire section.

Notation 3.5.1. Let α//β be a skew composition of size n, E ∈ E(α//β), T0 be the
source tableau of E and d0 = 0 < d1 < · · · < dm+1 = n be integers such that

D(T0) = {d1, d2, . . . , dm} .

For k, l ∈ [m+ 1] with k ≤ l define integer intervals

Ik,l := [dk−1 + 1, dl], I̊k,l := Ik,l \ {dl} and Ik := Ik,k.

Then Ik,l = ⋃l
j=k Ij and Ik = [dk−1 + 1, dk]. Set Bk,l := T−1

0 (Ik,l) and Bk := T−1
0 (Ik).

Note that m, the dk and the Ik are defined as in Section 3.4. Recall that because T0 is
a source tableau, we have Dc(T0) = NDc(T0) and therefore Bk is a connected horizontal
strip. As Bk,l is the union of the connected horizontal strips Bk, Bk+1 . . . , Bl, we call
it (horizontal) strip sequence. Note that Bk,l can be realized as the diagram of a skew
composition. Accordingly, we call Bk,l pacific if no cell of Bk,l attacks another cell of
Bk,l.

Example 3.5.2. Consider

T0 =
1
6 5 4 3
8 7 2

where the descents of T0 are printed boldface. This is the source tableau from Figure 3.1.
Then d0 = 0, d4 = 8 and D(T0) = {d1 = 1, d2 = 2, d3 = 6}. Moreover, I1 = {1},
I2 = {2}, I3 = {3, 4, 5, 6} and I4 = {7, 8}. The cells of the same connected horizontal
strip Bk are filled with the same shade of gray for k = 1, . . . , 4. Observe B1 6 B2,
B2  B3 and B3  B4. Hence, B1,2 is the only pacific strip sequence Bk,l with k < l.

56



3.5 The top of skew modules

Horizontal strip sequences

We begin with some basic lemmas on pacific strip sequences Bk,l. The first is an imme-
diate consequence of the definitions.

Lemma 3.5.3. Let Bk,l be a pacific strip sequence and T ∈ E with T (Bk,l) = Ik,l. Then
each descent of T contained in I̊k,l is non-attacking.

In Example 3.5.2 we have that B1,2 is pacific, T0(B1,2) = I1,2, 1 ∈ D(T0) and 1 ∈ I̊1,2.
Indeed, 1 is non-attacking. Moreover, B1 is strictly left of B2 which is a consequence of
the next result.

Lemma 3.5.4. Let Bk,l be a pacific strip sequence. For j = k, . . . , l − 1 we have that
Bj 6 Bj+1 and Bj is strictly left of Bj+1.

Proof. Let j ∈ [k, l − 1]. As Bk,l is pacific, we have Bj 6 Bj+1. Now, Lemma 3.4.7
yields that Bj is strictly left of Bj+1.

Definition 3.5.5. For T ∈ E and a strip sequence Bk,l, define colBk,l,T to be the column
word of the tableau obtained by restricting T to Bk,l. We say that T is Bk,l-sorted if

colBk,l,T = dl dl − 1 · · · dk−1 + 1.

Example 3.5.6. (1) We show that T0 is Bk-sorted for each k ∈ [m + 1]. Let k ∈
[m+ 1]. By definition, Bk is a single connected horizontal strip. In T0 this strip is filled
from left to right with dk, dk − 1, . . . , dk−1 + 1. Thus, colBk,T0 = dkdk − 1 . . . dk−1 + 1,
i.e. T0 is Bk-sorted.

(2) In the situation of Example 3.5.2, we have

colB1,T0 = 1, colB2,T0 = 2 and colB1,2,T0 = 12.

That is, T0 is B1- and B2-sorted but not B1,2-sorted.
(3) Let E be the equivalence class from Figure 3.3. Its source and sink tableau are

T0 =
4

3
2 1

and T1 =
1

2
4 3

,

respectively. We have I1 = {1, 2}, I2 = {3} and I3 = {4}. The cells of Bk have the same
shade for k = 1, 2, 3. Then

colB1,3,T0 = 2134,
colB1,3,T1 = 4321.

Thus, T1 is B1,3-sorted but T0 is not.

If Bk,l is pacific then it has at most one cell per column. Therefore, Lemma 3.5.4
implies the following.
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Lemma 3.5.7. Let Bk,l be a pacific strip sequence and T ∈ E. The column word
colBk,l,T is the concatenation of the words colBk,T , colBk+1,T , . . . , colBl,T . That is, we
obtain colBk,l,T by reading the entries of T in Bk,l from left to right.

We characterize the property of being Bk,l sorted for a pacific strip sequence Bk,l.
Recall that for two sets of integers A and B we write A < B if a < b for all a ∈ A and
b ∈ B.

Lemma 3.5.8. Let T ∈ E and Bk,l be a pacific strip sequence such that T (Bk,l) = Ik,l.
Then the following are equivalent.
(1 ) T is Bk,l-sorted.
(2 ) D(T ) ∩ I̊k,l = ∅.
(3 ) T (Bk) > T (Bk+1) > · · · > T (Bl).

Proof. We show (1) =⇒ (3) =⇒ (2) =⇒ (1).
The first implication is a consequence of Lemma 3.5.7.
In order to show the implication from (3) to (2), suppose that (3) holds and let i ∈ I̊k,l.

Then i+ 1 ∈ Ik,l. Thus, both i and i+ 1 are entries of T in Bk,l. If i and i+ 1 appear in
the same connected horizontal strip then i + 1 is strictly left of i since entries decrease
in rows of SCTx from left to right. Thus, i is an ascent of T .

If i and i + 1 appear in different connected horizontal strips Br and Bt, respectively
then we have t < r by assumption. An application of Lemma 3.5.4 now yields that Bt
is strictly left of Br. Hence, i is an ascent again.
Lastly, we show that (2) implies (1). Assume that (2) holds. Then I̊k,l ⊆ Dc(T ). Thus

i+ 1 ∈ T (Bk,l) and i+ 1 is strictly left of i for each i ∈ I̊k,l. Since Bk,l is pacific, it has
at most one cell per column. Therefore, it follows that the entries of T in Bk,l read from
left to right are

dl dl−1 · · · dk−1 + 1.

By Lemma 3.5.7 this is colBk,l,T . Thus, T is Bk,l-sorted.

Example 3.5.9. Let

T0 =
4

3
2 1

and T1 =
1

2
4 3

be the skew tableaux from Example 3.5.6. The cells of Bk have the same shade for
k = 1, 2, 3. Note that I̊1,3 = {1, 2, 3}. We have already checked that T1 is B1,3-sorted.
Moreover,

D(T1) ∩ I̊1,3 = ∅ and T1(B1) > T1(B2) > T1(B3)

in accordance with Lemma 3.5.8.

58



3.5 The top of skew modules

Offensive descents and D-sortable tableaux

We generalize the concept of attacking descents of T0.

Definition 3.5.10. The set of offensive descents of T0 is given by

OD(T0) := {dk ∈ D(T0) | Bk  Bk+1} .

We write

OD := {D ⊆ [n− 1] | OD(T0) ⊆ D ⊆ D(T0)}

for the subsets of D(T0) containing OD(T0).

If we have dk ∈ AD(T0) then dk  T0 dk + 1 so that Bk  Bk+1. That is, each
attacking descent of T0 indeed is an offensive descent of T0. The set OD is the main
datum in the formula for top(Sα//β,E) in Theorem 3.5.42. We emphasize that the set
OD has nothing to do with the right descent classes DJI of a Coxeter group W defined
in Section 2.2.

Example 3.5.11. Let T0 be the straight source tableau from Example 3.5.2. There we
have already noted that D(T0) = {1, 2, 6}, B1 6 B2, B2  B3 and B3  B4. Therefore
OD(T0) = {2, 6} and OD = {{2, 6} , {1, 2, 6}}.

Recall that for the set partitions I1, . . . Im+1 of [n] and B1, . . . , Bm+1 of the diagram
of α//β we have that T0(Br) = Ir for each r ∈ [m+ 1]. This set partitions are associated
to D(T0) as we divided [n] according to the elements of D(T0). We now consider pairs
of coarser set partitions Ikr,lr and Bkr,lr for r ∈ [p] with p ∈ [m + 1] and pacific strip
sequences Bkr,lr each given by a D ∈ OD. For each such pair, we are interested in the
T ∈ E satisfying T (Bkr,lr) = Ikr,lr for all r ∈ [p].

Notation 3.5.12. Let D ∈ OD. We associate the following notation to D. Let p ∈
[m+ 1] and indices l0 < l1 < · · · < lp be such that

dl0 = 0, D =
{
dl1 , dl2 , . . . , dlp−1

}
and dlp = n.

In addition, set kr := lr−1 + 1 for r ∈ [p].
Then for r ∈ [p] we have Ikr,lr = [dlr−1 + 1, dlr ]. Thus, the Ikr,lr for r ∈ [p] form a set

partition of [n]. That is, the strip sequences Bkr,lr for r ∈ [p] form a set partition of the
diagram of α//β. Moreover, the Bkr,lr are pacific since OD(T0) ⊆ D.

Example 3.5.13. Let T0 be the source tableau from Example 3.5.11 and E be its
equivalence class. Recall d0 = 0, d1 = 1, d2 = 2, d3 = 6, d4 = 8, D(T0) = {1, 2, 6},
OD(T0) = {2, 6} and OD = {OD(T0),D(T0)}.

We illustrate Notation 3.5.12 regarding D = OD(T0). Then p = 3. The other param-
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eters are shown in the table below.

r 0 1 2 3
lr 0 2 3 4
kr − 1 3 4
dlr − 2 6 8
Ikr,lr − {1, 2} {3, 4, 5, 6} {7, 8}
Bkr,lr − B1,2 B3 B4

Note that we obtain the set partition {Ikr,lr | r ∈ [3]} of [8] by splitting the list 1, 2, . . . , 8
behind the elements of D, dl1 = 2 and dl2 = 6. The strip sequences Bkr,lr are depicted
in Example 3.5.16.

Definition 3.5.14. For D ∈ OD define

ED := {T ∈ E | T (Bkr,lr) = Ikr,lr for all r ∈ [p]}

the set of D-sortable tableaux of E.

Let D,D′ ∈ OD. We may consider ED as a poset with the partial order � inherited
from E. Note that T0 is always and element of ED because T0(Bk,l) = Ik,l for all
k ≤ l. From the definition it also follows that if D ⊆ D′ then ED′ ⊆ ED. In particular,
ED(T0) ⊆ ED ⊆ EOD(T0).

The purpose of the next lemma merely is to illustrate the new notation.

Lemma 3.5.15. The only element of ED(T0) is T0.

Proof. Let D = D(T0). Then p = m + 1 and lr = kr = r for r = 1, . . . , p. That is
Bkr,lr = Br and Ikr,lr = Ir for r = 1, . . . , p. Let T ∈ ED. Then T (Br) = Ir = T0(Br) for
r = 0, . . . ,m+ 1. Moreover, Br is a connected horizontal strip. Thus, there is only one
way to fill Ir into Br in a SCT. Hence T = T0.

Example 3.5.16. Let T0 be the source tableau from Example 3.5.11 and E be its equiv-
alence class. Recall D(T0) = {1, 2, 6}, OD(T0) = {2, 6} and OD = {OD(T0),D(T0)}.
We determine ED for each D ∈ OD.

Regarding D(T0), Lemma 3.5.15 implies that ED(T0) = {T0}.
For OD(T0) the Ikr,lr and Bkr,lr are given in the table from Example 3.5.13. It follows

that EOD(T0) consists of the elements T ∈ E with T (B1,2) = {1, 2}, T (B3) = {3, 4, 5, 6}
and T (B4) = {7, 8}. Thus, EOD(T0) consists of the following two tableaux

T0 =
1
6 5 4 3
8 7 2

and π1T0 =
2
6 5 4 3
8 7 1

where we draw the cells of B1,2, B3 and B4 with the same shade, respectively.

Example 3.5.17. For the equivalence class E of skew tableaux from Figure 3.3 the sets
ED and elements TD are given in the table in Example 3.5.28.
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Let D ∈ OD. We will see in Lemma 3.5.26 that there is a unique tableau TD ∈ E
such that TD is Bkr,lr -sorted for each r ∈ [p]. Moreover, it will turn out that TD is the
greatest element of ED. Thus, for each T ∈ ED there are operators πij , . . . , πi1 such
that TD = πij · · ·πi1T . The operators can be thought of sorting the entries in Bkr,lr of
T for each r ∈ [p] in order to obtain TD. Therefore, the naming of the set ED.
We now come to a characterization of the elements of ED in terms of the content of

column words. Recall that for T ∈ E, cont(colT col−1
T0

) is the index set of operators πi
establishing the covering relations in each saturated chain from T0 to T in E.
For D ∈ OD, define Dc := [n− 1] \D. Then Dc = ⋃p

r=1 I̊kr,lr .

Lemma 3.5.18. Let T ∈ E and D ∈ OD. Then the following are equivalent.
(1 ) T (Bkr,lr) = Ikr,lr for all r ∈ [p].
(2 ) cont(colT col−1

T0
) ⊆ Dc.

That is,

ED =
{
T ∈ E | cont(colT col−1

T0
) ⊆ Dc

}
.

Proof. Let σ := colT col−1
T0

. Since

Dc = [n− 1] \
{
dl1 , . . . , dlp−1

}
,

we have that cont(σ) ⊆ Dc if and only if

cont(σ) ⊆ [n− 1] \
{
dl1 , . . . , dlp−1

}
.

From Proposition 3.2.9 it follows that this is equivalent to

sh(T>dlr ) = sh(T>dlr0 ) for all r ∈ [p− 1]. (3.13)

Let r ∈ [p− 1]. By definition lr = kr+1 − 1. Therefore,

[dlr + 1, n] = [dkr+1−1 + 1, n] = Ikr+1,m+1.

Hence,

sh(T>dlr ) = T−1(Ikr+1,m+1).

Moreover, Ik1,m+1 = I1,m+1 = [n] so that T−1(Ik1,m+1) = α//β. Since this also holds for
T0, it follows that (3.13) is equivalent to

T−1(Ikr,m+1) = T−1
0 (Ikr,m+1) for all r ∈ [p]. (3.14)

For r ∈ [p− 1] we have

Ikr,lr = Ikr,m+1 \ Ilr+1,m+1 = Ikr,m+1 \ Ikr+1,m+1
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so that

T−1(Ikr,lr) = T−1(Ikr,m+1) \ T−1(Ikr+1,m+1).

In addition,

Ikp,lp = Ilp−1+1,lp = [n] \
p−1⋃
r=1

Ikr,lr .

Therefore, (3.14) is equivalent to

T−1(Ikr,lr) = T−1
0 (Ikr,lr) for all r ∈ [p]. (3.15)

As Bkr,lr = T−1
0 (Ikr,lr), it follows that (3.15) is equivalent to

T (Bkr,lr) = Ikr,lr for all r ∈ [p].

By combining all the equivalences, we get the equivalence from the claim. The set
equality is a reformulation of this equivalence.

Example 3.5.19. In Example 3.5.16 we have OD = {OD(T0),D(T0)} with OD(T0) =
{2, 6} and D(T0) = {1, 2, 6}.
Consider D = D(T0). Then Dc = Dc(T0). The only tableau T ∈ E which satisfies

cont(colT col−1
T0

) ⊆ Dc is T0. This is also the only element of ED.
Now consider D = OD(T0). Then Dc = {1, 3, 4, 5, 7}. We can see in Figure 3.1 that

the elements of T ∈ E with cont(colT col−1
T0

) ⊆ {1, 3, 4, 5, 7} are T0 and π1T0. These are
the elements of ED.
We obtain the following properties of the subposet ED of E from Lemma 3.5.18. Order

ideals and filters were defined at the beginning of Chapter 2.
Lemma 3.5.20. Let D ∈ OD.
(1 ) ED is an order ideal of E,
(2 ) E \ ED is a filter of E.

Proof. For T ∈ E set σT := colT col−1
T0

. We show Part (1). Part (2) is a direct conse-
quence of Part (1).
Let T ∈ ED and T ′ ∈ E such that T ′ � T . Then by Theorem 3.1.18 we have

colT0 ≤L colT ′ ≤L colT .

Therefore, we have σT ′ ≤L σT . Hence,

cont(σT ′) ⊆ cont(σT ) ⊆ Dc

where the left inclusion is a consequence of the definition of the left weak order and
the second inclusion an application of Lemma 3.5.18. Hence T ′ ∈ ED by Lemma 3.5.18
again.
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Let D ∈ OD and T ∈ ED. We want to show that AD(T ) ⊆ D ⊆ D(T ). It its easy to
see that these inclusions hold if T = T0. In order to prove them in general, we compare
the positions of certain entries in T0 with their positions in T . The main idea is that for
i ∈ D the operators πj used to go up from T0 to T in ED are only able of moving i to
the left and i+ 1 to the right.

Lemma 3.5.21. Let D ∈ OD and T ∈ ED.
(1 ) The cell T−1(i) is weakly left of the cell T−1

0 (i) for all i ∈ D ∪ {n}.
(2 ) The cell T−1

0 (i+ 1) is weakly left of the cell T−1(i+ 1) for all i ∈ D.

Proof. Set σ := colT col−1
T0

. For Part (1) let i ∈ D ∪ {n}. If T−1(i) = T−1
0 (i) the

statement is clear. Thus, assume T−1(i) 6= T−1
0 (i). Let sik · · · si1 be a reduced word for

σ. Then T = πik · · ·πi1T0. By Lemma 3.5.18, cont(σ) ⊆ Dc. Thus, i 6= ij for all j ∈ [k].
On the other hand, T−1(i) 6= T−1

0 (i) so that at least one of the πij has to move i. Since
πi−1 and πi are the only operators among the πr with r ∈ [n − 1] that are capable of
moving i, it follows that at least one of the ij equals i − 1 (of course πi−1 and πi are
only defined for 1 < i and i < n, respectively). That is, in order to obtain T from T0
by applying πσ, i is moved strictly to the left. In other words, T−1(i) is strictly left of
T−1

0 (i).
Part (2) is proven similarly.

We now consider the descents of the elements of ED for D ∈ OD.

Lemma 3.5.22. Let D ∈ OD and T ∈ ED. Then

AD(T ) ⊆ D ⊆ D(T ).

Proof. Let σ := colT col−1
T0

. Recall that we denote the index of the column of the entry
i in T by cT (i). Thus, we have i ∈ D(T ) if and only if cT (i) ≤ cT (i+ 1).

First we show D ⊆ D(T ). Let i ∈ D. Since D ∈ OD, we have i ∈ D(T0). Therefore
cT0(i) ≤ cT0(i+ 1). Furthermore, Lemma 3.5.21 yields

cT (i) ≤ cT0(i) and cT0(i+ 1) ≤ cT (i+ 1)

for all i ∈ D. Hence,

cT (i) ≤ cT0(i) ≤ cT0(i+ 1) ≤ cT (i+ 1),

i.e. i ∈ D(T ).
We now show AD(T ) ⊆ D. Because D ⊆ D(T ), this is equivalent to

D(T ) \D ⊆ nAD(T ).

We prove the latter. Let i ∈ D(T ) \ D. Then i ∈ Dc = ⋃p
r=1 I̊kr,lr . Thus, there is an

r ∈ [p] such that i, i+ 1 ∈ Ik,l where k := kr and l=lr. Since OD(T0) ⊆ D, Bk,l is pacific.
Moreover, Ik,l = T (Bk,l) as T ∈ ED. Therefore i 6 T i+ 1, i.e. i ∈ nAD(T ).
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Example 3.5.23. We consider D := OD(T0) = {2, 6} and T := π1T0 from Exam-
ple 3.5.16. Then T ∈ ED, AD(T ) = {6} and D(T ) = {2, 6}. Hence,

AD(T ) ⊆ D ⊆ D(T ).

Let D ∈ OD. We now show that ED has a greatest element which we call the D-sorted
tableau TD. We begin with defining TD in terms of sorted horizontal strip sequences.

Definition 3.5.24. Let D ∈ OD. Define the D-sorted tableau TD to be the α//β-tableau
such that TD is Bkr,lr -sorted for all r ∈ [p].

We show in Lemma 3.5.26 that TD ∈ ED. Clearly, TD(Bkr,lr) = Ikr,lr for each r ∈ [p].
However, TD ∈ E or even TD ∈ SCT(α//β) is less obvious.

From OD(T0) ⊆ D it follows that each Bkr,lr is pacific. Hence, Lemma 3.5.7 implies
that we obtain TD by filling Bkr,lr from left to right with

dlr , dlr − 1, . . . , dlr−1 + 1

for all r ∈ [p].
Note that if D = D(T0) then p = m + 1 and Bkr,lr = Br for all r ∈ [p]. Therefore

TD(T0) = T0.

Example 3.5.25. We continue Example 3.5.16. Recall that we have D(T0) = {1, 2, 6},
OD(T0) = {2, 6}, OD = {OD(T0),D(T0)}, ED(T0) = {T0} and EOD(T0) = {T0, π1T0}.
Then, by definition,

TD(T0) = T0 =
1
6 5 4 3
8 7 2

and TOD(T0) = π1T0 =
2
6 5 4 3
8 7 1

,

where for D ∈ OD and r ∈ [p] the cells of Bkr,lr in TD are equally shaded. For both
D ∈ OD we have that D(TD) = D and that TD is the greatest element of ED. The
following result proves this in general.

Lemma 3.5.26. Let D ∈ OD. Then TD is the greatest element of ED. Moreover, TD
is the unique element of ED with descent set D.

Proof. Let T ∈ ED. We consider the following statements.
(1) T is maximal in ED.
(2) D(T ) = D.
(3) T = TD.

We show (1) =⇒ (2) =⇒ (3). In addition, because T0 ∈ ED, there exists a maximal
element in ED. Thus, it follows that TD is the greatest element of ED and D(TD) = D.
We begin by proving that (1) implies (2). Assume that T is maximal. Lemma 3.5.22

yields that

AD(T ) ⊆ D ⊆ D(T ).
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Therefore, in order to show that D(T ) = D it suffices to show that nAD(T ) ⊆ D.
Assume instead that there is an i ∈ nAD(T ) ∩Dc. Then πiT ∈ ED by Lemma 3.5.18.
This contradicts the maximality of T since T ≺ πiT .
For the proof of the implication from (2) to (3) assume that D(T ) = D. We have

to show that T is Bkr,lr sorted for each r ∈ [p]. Let r ∈ [p], k := kr and l := lr. As
I̊k,l ⊆ Dc, we have that

D(T ) ∩ I̊k,l = ∅.

Now, we can apply Lemma 3.5.8 and obtain that T is Bk,l-sorted.

Note that from Lemma 3.5.26, Lemma 3.5.20 and the fact that T0 is the least element
of E it follows that ED is the �-interval [T0, TD] for all D ∈ OD.
Let D ∈ OD. Because the D-sorted tableau TD is the greatest element of ED, there

is an operator πσ with σ ∈ Sn so that πσT = TD for each D-sortable tableau T . One
can think of πσ as sorting the entries in T .
Definition 3.5.27. The set of horizontally sorted tableaux of E is given by

Ehsort := {TD | D ∈ OD} .

Note that Ehsort ⊆ EOD(T0). For the equivalence class of straight tableaux E from
Example 3.5.25 we even have Ehsort = EOD(T0). But this is merely a coincidence as can
be seen in the next example.
Example 3.5.28. Let E be the equivalence class of skew tableaux from Figure 3.3 and
Example 3.5.9 with source tableau

T0 =
4

3
2 1

.

We have OD(T0) = ∅ and D(T0) = {2, 3}. For D ∈ OD we write ED and TD in the
table below. For each D ∈ OD and each r ∈ [p] the cells of the strip sequence Bkr,lr
associated to D are equally shaded in TD.

As TOD(T0) is the sink tableau of E, we have that E = EOD(T0). We can see in
Figure 3.3 that |E| = 12. Hence Ehsort ( EOD(T0).

D ∅ {2} {3} {2, 3}
ED E T0, π3T0 T0, π2T0, π1π2T0 T0
TD T1 π3T0 π1π2T0 T0

TD

1
2

4 3

3
4

2 1

4
1

3 2

4
3

2 1

Observe that for eachD ∈ OD we have D(TD) = D andD(TD)∩cont(colTD col−1
T0

) = ∅.
By the next result, these properties characterize Ehsort in E.
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Corollary 3.5.29. Let T ∈ E. Then T ∈ Ehsort if and only if

D(T ) ∈ OD and D(T ) ∩ cont(colT col−1
T0

) = ∅.

Proof. Let σT := colT col−1
T0

.
For the implication from left to right assume that T = TD for some D ∈ OD. Then

T ∈ ED and D(T ) = D by Lemma 3.5.26. As T ∈ ED, Lemma 3.5.18 implies cont(σT ) ⊆
Dc. Hence D(T ) ∩ cont(σT ) = ∅.

For the converse direction assume that D := D(T ) ∈ OD and D(T ) ∩ cont(σT ) = ∅.
Then cont(σT ) ⊆ Dc so that T ∈ ED. But by Lemma 3.5.26, TD is the only element of
ED with descent set D. Thus T = TD, i.e. T ∈ Ehsort.

Example 3.5.30. We continue Example 3.5.28. The element of E

T := π3π1π2T0 =
3

1
4 2

has descent set {2} so that D(T ) ∈ OD. Moreover, T 6∈ Ehsort by Example 3.5.28.
Therefore, Corollary 3.5.29 demands that D(T ) ∩ cont(colT col−1

T0
) 6= ∅ which is true

since 2 is an element of this intersection.

Radical and top

So far, we focused on combinatorics related to D-sortable tableaux. Now we use our
previous results in order to describe the radical and the top of Sα//β,E . We begin with
defining an Hn(0)-epimorphism from Sα//β,E to the simple module FD for each D ∈ OD.

Proposition 3.5.31. Let D ∈ OD. The K-linear map given by

ϕD : Sα//β,E → FD

T 7→
{
vD if T ∈ ED
0 if T 6∈ ED

for T ∈ E is an Hn(0)-epimorphism.

Proof. Let ϕ := ϕD. For each T ∈ E set σT := colT col−1
T0

. Since T0 ∈ ED, ϕ is a
surjective map. It remains to show that ϕ is a homomorphism of Hn(0)-modules. Let
T ∈ E and i ∈ [n− 1].

We consider the case where T 6∈ ED first. Then πiϕ(T ) = πi0 = 0. Thus, we have
to show that ϕ(πiT ) = 0. Since E \ ED is a filter of E by Lemma 3.5.20, πiT 6∈ ED if
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i ∈ nAD(T ). It follows that

ϕ(πiT ) =


ϕ(πiT ) = 0 if i ∈ nAD(T )
ϕ(0) = 0 if i ∈ AD(T )
ϕ(T ) = 0 if i ∈ Dc(T )

as desired.
We now suppose that T ∈ ED. Then ϕ(T ) = vD and by Lemma 3.5.22 we have that

D ⊆ D(T ).
Assume first that i ∈ Dc(T ). Then D ⊆ D(T ) implies i 6∈ D so that πivD = vD.

Hence,

ϕ(πiT ) = ϕ(T ) = vD = πiϕ(T ).

Assume now that i ∈ D(T ). We distinguish two cases.
Case 1. Suppose i ∈ D. Then πivD = 0 and we have to show that ϕ(πiT ) = 0.

If i ∈ AD(T ) then ϕ(πiT ) = ϕ(0) = 0. Hence, assume i ∈ nAD(T ). Then πiT ∈ E
and i ∈ cont(σπiT ). Thus, Lemma 3.5.18 yields πiT 6∈ ED. Therefore, we also have
ϕ(πiT ) = 0.
Case 2. Suppose i 6∈ D. Then πivD = vD and we have to show that ϕ(πiT ) = vD.

As i ∈ D(T ) \D, Lemma 3.5.22 yields that i ∈ nAD(T ). Thus, πiT ∈ E and

cont(colπiT ) = {i} ∪ cont(colT ) ⊆ Dc

where the inclusion is a consequence of i ∈ Dc, T ∈ ED and the description of ED from
Lemma 3.5.18. That is, πiT ∈ ED by the same result. Hence ϕ(πiT ) = vD.

Example 3.5.32. We continue Example 3.5.25. Recall that the elements of OD are
OD(T0) = {2, 6} and D(T0) = {1, 2, 6}. Moreover, we have seen that E{1,2,6} = {T0}
and E{2,6} = {T0, π1T0}. From Proposition 3.5.31 we obtain that the K-linear maps
given by

ϕ{1,2,6}(T ) =
{
v{1,2,6} if T = T0

0 otherwise
and ϕ{2,6}(T ) =

{
v{2,6} if T ∈ {T0, π1T0}
0 otherwise

for T ∈ E are Hn(0)-epimorphisms from Sα//β,E to F {1,2,6} and F {2,6}, respectively.

The radical of a module M over a ring A is given by the intersection ⋂U ⋂ε ker ε
where U runs over all simple A-modules and ε runs over all A-epimorphisms from M to
U [AF92, Proposition 9.13].

Let ϕ : Sα//β,E →
⊕
D∈OD FD, x 7→ (ϕD(x))D∈OD be the direct sum of the Hn(0)-

epimorphisms ϕD from Proposition 3.5.31. Then ⋂D∈OD kerϕD = kerϕ. In addition,
from the above description of the radical, we obtain that rad(Sα//β,E) ⊆ ⋂D∈OD kerϕD.
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Hence,

rad(Sα//β,E) ⊆ kerϕ. (3.16)

We will show that rad(Sα//β,E) = kerϕ with a dimension argument. It then follows
that top(Sα//β,E) ∼= ⊕

D∈OD FD by factoring ϕ through rad(Sα//β,E). This is our main
result on the top of Sα//β,E , Theorem 3.5.42. As ϕ is a K-linear map, we have

dim kerϕ = dim Sα//β,E − dim
⊕

D∈OD
FD = |E| − |OD |. (3.17)

Therefore, dim rad(Sα//β,E) ≤ |E| − |OD | and our aim is to show that we actually have
equality. We do this by constructing a K-linear independent subset of rad(Sα//β,E) of
size |E| − |OD |.
This is based on a description of the radical of Hn(0) due to Schocker [Sch08]. To

state it, we define cont on the basis {πσ | σ ∈ Sn} of Hn(0). For i1, . . . , ik ∈ [n − 1]
define

cont(πi1πi2 · · ·πik) = {i1, i2, . . . ik} .

Since applying the braid relations or the relation π2
i = πi on an element πi1πi2 · · ·πik

does not change the set of indices, this map is well defined. Recall that for each prod-
uct πi1πi2 · · ·πik there exists a unique σ ∈ Sn such that πi1πi2 · · ·πik = πσ. Then
cont(πi1 · · ·πik) = cont(πσ) . It is not hard to see that
(1) cont(πσ) = cont(σ) for all σ ∈ Sn,
(2) cont(πσπτ ) = cont(πσ) ∪ cont(πτ ) for all σ, τ ∈ Sn.
Note that [Sch08] considers a map from Hn(0) to the K-vector space spanned by the

subsets of [n − 1] that linearly extends cont. This extension is not necessary for our
purposes.

Theorem 3.5.33 ([Sch08, Theorem 3.2]). The radical of Hn(0) is given by

rad(Hn(0)) = spanK {πσ1 − πσ2 | σ1, σ2 ∈ Sn and cont(πσ1) = cont(πσ2)} .

For example, π2π1−π1π2π1 is an element of rad(H3(0)) by Theorem 3.5.33. We exploit
the theorem in the following way.

Lemma 3.5.34. Let α//β be a skew composition of size n and E ∈ E(α//β) with source
tableau T0. Then

rad(Sα//β,E) = rad(Hn(0))T0.

As a consequence,

rad(Sα//β,E) = spanK {(πσ1 − πσ2)T0 | σ1, σ2 ∈ Sn and cont(πσ1) = cont(πσ2)} .
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Proof. As Hn(0) is artinian, we have that rad(Sα//β,E) = rad(Hn(0))Sα//β,E . Moreover,
Sα//β,E = Hn(0)T0. Hence,

rad(Sα//β,E) = rad(Hn(0))Hn(0)T0 = rad(Hn(0))T0,

where we use that rad(Hn(0)) is a two sided ideal of Hn(0). Theorem 3.5.33 now implies
the second statement.

Since E is a K-basis of Sα//β,E , E\EOD(T0) is a K-linear independent subset of Sα//β,E .
We now show that E \EOD(T0) is contained in rad(Sα//β,E). To do this, we write certain
T ∈ E \ EOD(T0) as T = (πσ1 − πσ2)T0 with σ1, σ2 ∈ Sn and cont(πσ1) = cont(πσ2). In
order to obtain the elements πσ1 and πσ2 we use the following result, which is illustrated
in Example 3.5.36.

Lemma 3.5.35. Let k ∈ [m] be such that dk ∈ OD(T0). Then there is a σ ∈ Sn such
that
(1 ) dk ∈ cont(σ),
(2 ) cont(σ) ⊆ I̊k,k+1,
(3 ) πσ(T0) = 0.

Proof. Set �i := T−1
0 (i) for i = 1, . . . , n and d := dk. By assumption, Ik  T0 Ik+1.

Define

a := max {i ∈ Ik | i Ik+1} ,
b := min {i ∈ Ik+1 | a i}

and B := T−1
0 ([d+ 1, b]). Moreover for j = 0, 1, . . . , d− a− 1 we set

σj := sb−j−1sb−j−2 · · · sd−j ,
Tj+1 := πσjTj .

We claim that for j = 0, . . . , d− a we have that
(i) Tj ∈ E,
(ii) colTj col−1

T0
= σj−1σj−2 · · ·σ0.

(iii) Tj(�i) = i for all i ≤ d− j,
(iv) Tj(B) = [d− j + 1, b− j].
We prove the claim by induction on j. For j = 0 we are dealing with the source

tableau T0 which satisfies (i) – (iv). Thus, assume that the claim holds for a j such that
0 ≤ j < d − a. Then a < d − j ≤ d so that d − j ∈ Ik. First, as the entries of Ik in T0
form a connected horizontal strip, d−j is strictly left of a in T0. Second, from the choice
of a and b it follows that a is weakly left of B in T0. Third, d − j > a and the choice
of a imply that d− j does not attack B in T0. Therefore, �d−j is strictly left of B and
does not attack B. Moreover, from (iii) we obtain that Tj(�d−j) = d − j so that (iv)
implies d− j 6 Tj [d− j + 1, b− j]. Hence, we can apply Proposition 3.1.20 and obtain
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that Tj+1 ∈ E, Tj+1(B) = [d − (j + 1) + 1, b − (j + 1)] and colTj+1 col−1
Tj

= σj . From
the latter it follows that we obtain Tj+1 from Tj without moving any of the elements of
[1, d− (j + 1)]. That is, T−1

j+1(i) = T−1
j (i) = �i for all i ≤ d− (j + 1). We have that

colTj+1 col−1
T0

= colTj+1 col−1
Tj

colTj col−1
T0

= σjσj−1 · · ·σ0

since (ii) holds for Tj . This finishes the proof of the claim.
Now consider Td−a and set c := a+ b− d. The claim yields that

Td−a ∈ E, Td−a(�a) = a and Td−a(B) = [a+ 1, c].

As B ⊆ Bk+1, B is an connected horizontal strip. Since the entries decrease in the
rows of T0, B looks like

�b�b−1 · · ·�d+1.

Hence, Td−a(�b) = c since Td−a(B) = [a + 1, c] and the entries decrease in the rows of
Td−a too. Moreover, by choice of b, �b is the only element of B that is attacked by
�a. From Td−a(�a) = a, Td−a(�b) = c and Td−a(B) = [a + 1, c] it now follows that
a 6 Td−a [a + 1, c − 1]. In addition, recall that �a is weakly left of B. Thus, from
Proposition 3.1.20 we obtain a σ′ := sc−2sc−3 · · · sa and a T ∈ E such that
(i) T = πσ′Td−a and σ′ = colT col−1

Td−a ,
(ii) T (�a) = c− 1,
(iii) T (�b) = c.
From �a  �b it follows that c− 1 ∈ AD(T ) and thus πc−1T = 0. Set

σ := sc−1σ
′σd−a−1σd−a−2 · · ·σ0.

Note that from πc−1T = 0 it follows that `(σ) > `(σ′σd−a−1 · · ·σ0). By construction
we have cont(σ) ⊆ [a, b − 1] ⊆ I̊k,k+1 and πσT0 = 0. Hence, σ satisfies Properties (2)
and (3). In order to show that σ has Property (1), assume for the sake of contradiction
that d 6∈ cont(σ). Then cont(σ) ⊆ I̊k,k+1 \ {dk} ⊆ Dc(T0). Hence, πσT0 = T0. But this
contradicts πσT0 = 0 which we have by Property (3).

Example 3.5.36. We illustrate Lemma 3.5.35 including the notation used in its proof.
(1) For the source tableau from our running example

T0 =
1
6 5 4 3
8 7 2

and its offensive descent d = d2 = 2 we have a = 2, b = 4, σ′ = s2 and σ = s3s2.
Hence, d ∈ cont(σ) and cont(σ) ⊆ I̊2,3 = {2, 3, 4, 5}. In Example 3.3.10 we applied
πσ on T0 with the result πσT0 = 0.
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(2) Consider the source tableau

T0 = 3 2 1
5 4

and its offensive descent d = 3.
Then a = 2 and b = 5. We have σ0 = s4s3, σ′ = s2 and σ = s3σ′σ0 = s3s2s4s3.
That is, d ∈ cont(σ) and cont(σ) ⊆ I̊1,2 = {1, 2, 3, 4} . Moreover,

T0 = 3 2 1
5 4

π3−→ 4 2 1
5 3

π4−→ T1 = 5 2 1
4 3

π2−→ T = 5 3 1
4 2

and π3T = 0 so that πσT0 = 0 as well.

Lemma 3.5.37. The set E \ EOD(T0) is contained in rad(Sα//β,E).

Proof. Let T ∈ E \EOD(T0). If T ∈ rad(Sα//β,E) then πσT ∈ rad(Sα//β,E) for all σ ∈ Sn

since rad(Sα//β,E) is an Hn(0)-module. Hence, we can assume that T is minimal in
E \ EOD(T0) according to �. Since T0 ∈ EOD(T0) and therefore T 6= T0, there exists a
T ′ ∈ E and an i ∈ nAD(T ′) such that πiT ′ = T . By the minimality of T , T ′ ∈ EOD(T0).
As πiT ′ 6∈ EOD(T0), Lemma 3.5.18 implies that i ∈ OD(T0).

Let k ∈ [m] be such that i = dk. Then Lemma 3.5.35 provides a σ ∈ Sn such that
i ∈ cont(σ) ⊆ I̊k,k+1 and πσT0 = 0. Set σT := colT col−1

T0
and σ′ := sj1sj2 · · · sjr where

j1 < j2 < · · · < jr are the elements of cont(σ) unequal to i. Since the jq are distinct,
sj1sj2 · · · sjr is a reduced word. Hence,

cont(σ′) = cont(σ) \ {i} ⊆ I̊k,k+1 \ {dk} ⊆ Dc(T0). (3.18)

We show that T = (πσT πσ′ − πσT πσ)T0 and cont(πσT πσ′) = cont(πσT πσ). Then
Lemma 3.5.34 implies that T ∈ rad(Sα//β,E). By (3.18), cont(σ′) ⊆ Dc(T0) and hence
πσ′T0 = T0. Thus,

πσT πσ′T0 = πσT T0 = T.

Furthermore, πσT πσT0 = πσT 0 = 0. That is,

T = (πσT πσ′ − πσT πσ)T0.

We have cont(σ′) = cont(σ) \ {i} from (3.18). Moreover, i ∈ cont(σT ) because πiT ′ =
T . Therefore,

cont(σT ) ∪ cont(σ′) = cont(σT ) ∪ cont(σ).

In addition,

cont(πσT πσ′) = cont(σT ) ∪ cont(σ′) and cont(πσT πσ) = cont(σT ) ∪ cont(σ).
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Hence,

cont(πσT πσ′) = cont(πσT πσ)

as desired.

Example 3.5.38. Let T0 be the straight source tableau from Example 3.5.36, E its
equivalence class and α its shape. We consider the element of E \ EOD(T0)

T := π2T0 =
1
6 5 4 2
8 7 3

and show T ∈ rad(Sα,E) by using the argumentation and notation of the the proof
of Lemma 3.5.37. We have σT = s2. For the offensive descent 2 of T0 we obtain the
permutation σ = s3s2 from Example 3.5.36 and thus σ′ = s3. Then

(πσT πσ′ − πσT πσ)T0 = π2π3T0 − π2π3π2T0 = T − π2π3T = T

where we use that 3 ∈ Dc(T0) and 3 ∈ AD(T ). Moreover,

cont(π2π3) = cont(π2π3π2).

Therefore, T ∈ rad(Sα,E) by Lemma 3.5.34.

Lemma 3.5.37 provides us with a K-linear independent subset of rad(Sα//β,E) with
cardinality |E| − |EOD(T0)|. We will use the following lemma to extend this set by
additional |EOD(T0)|−|OD | elements of rad(Sα//β,E) preserving the linear independence.

Lemma 3.5.39. Let T ∈ EOD(T0) \ Ehsort. Then there exists i ∈ nAD(T ) such that
πiT ∈ EOD(T0) and T − πiT ∈ rad(Sα//β,E).

Proof. For T ∈ E set σT := colT col−1
T0

. Let D := OD(T0) and fix a T ∈ ED \Ehsort. We
distinguish two cases.
Case 1. D(T ) 6⊆ D(T0). Then there exists an i ∈ D(T ) such that i 6∈ D(T0). As

D ⊆ D(T0), it follows that i 6∈ D. Moreover, from T ∈ ED and Lemma 3.5.22 we
obtain that AD(T ) ⊆ D. Hence, i ∈ nAD(T ). Thus, πiT ∈ E and cont(σπiT ) =
{i} ∪ cont(σT ). As T ∈ ED, Lemma 3.5.18 yields that cont(σT ) ⊆ Dc. Further i ∈ Dc

so that cont(σπiT ) ⊆ Dc and thus πiT ∈ ED by the same lemma.
We have

(πσT πi − πiπσT )T0 = πσT πiT0 − πiπσT T0 = πσT T0 − πiπσT T0 = T − πiT

where the second equality holds since i ∈ Dc(T0). Moreover, cont(πσT πi) = cont(πiπσT ).
Thus, Lemma 3.5.34 implies T − πiT ∈ rad(Sα//β,E).
Case 2. D(T ) ⊆ D(T0). Since T ∈ ED we have D ⊆ D(T ) by Lemma 3.5.22. Thus,

D(T ) ∈ OD. As T 6∈ Ehsort, Corollary 3.5.29 yields that there is i ∈ D(T ) ∩ cont(σT ).
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On the one hand, from T ∈ ED and Lemma 3.5.18 it follows that cont(σT ) ⊆ Dc. On
the other hand, AD(T ) ⊆ D by Lemma 3.5.22. Hence, i ∈ nAD(T ), πiT ∈ E and

cont(σπiT ) = {i} ∪ cont(σT ) = cont(σT ).

Thus, πiT ∈ ED by Lemma 3.5.18. Further

(πσT − πiπσT )T0 = T − πiT

is an element of rad(Sα//β,E) by Lemma 3.5.34.

Example 3.5.40. We illustrate Lemma 3.5.39. Let E be the equivalence class from
Example 3.5.28, T0 be its source tableau and α//β = sh(T0). Recall D(T0) = {2, 3}.
(1) Consider the elements of E

T = π2T0 =
4

2
3 1

and π1T =
4

1
3 2

.

Then T ∈ EOD(T0) \ Ehsort, 1 ∈ nAD(T ) and 1 6∈ D(T0). This is the situation in Case 1
of the proof of Lemma 3.5.39. Then

T − π1T = π2π1T0 − π1π2T0.

Hence, Lemma 3.5.34 yields T − π1T ∈ rad(Sα//β,E).
(2) Consider the elements of E

T = π3π1π2T0 =
3

1
4 2

and π2T =
2

1
4 3

.

In Example 3.5.30 we have seen that T ∈ EOD(T0) \ Ehsort and D(T ) = {2} ⊆ D(T0).
Hence, we are in the situation of Case 2 of the proof of Lemma 3.5.39 and

T − π2T = (π3π1π2 − π2π3π1π2)T0.

Thus, T − π2T ∈ rad(Sα//β,E) by Lemma 3.5.34. We have taken advantage of the fact
that 2 ∈ D(T ) ∩ cont(colT col−1

T0
). Corollary 3.5.29 ensures that such an element exists.

We now determine the dimension of rad(Sα//β,E). We do this by constructing a basis
from Lemma 3.5.37 and Lemma 3.5.39.

Proposition 3.5.41. A K-basis of rad(Sα//β,E) is given by

(E \ EOD(T0)) ∪
{
T − πiT T | T ∈ EOD(T0) \ Ehsort

}
where iT is the integer provided by Lemma 3.5.39 for each T ∈ EOD(T0) \ Ehsort. In
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particular, we have

dim rad(Sα//β,E) = |E| − |OD |.

Proof. Let F :=
{
T − πiT T | T ∈ EOD(T0) \ Ehsort

}
and B := (E \ EOD(T0)) ∪ F . Then

|B| = |E| − |EOD(T0)|+ |EOD(T0)| − |Ehsort| = |E| − |OD |.

We have to show that B is a K-basis of rad(Sα//β,E). From (3.16) and (3.17) it follows
that

dim rad(Sα//β,E) ≤ |E| − |OD| .

Hence, it remains to check that B is a K-linear independent subset of rad(Sα//β,E).
That E \ EOD(T0) and F are subsets of rad(Sα//β,E) was shown in Lemmas 3.5.37

and 3.5.39, respectively. In order to prove the linear independence of B, consider the
K-endomorphism ψ of Sα//β,E given by

ψ(T ) =
{
T − πiT T if T ∈ EOD(T0) \ Ehsort

T otherwise

for T ∈ E. Let M be the transition matrix of ψ associated to the basis E ordered
by a total order extending �. Then M is an unitriangular matrix and therefore ψ a
K-automorphism. As B is a subset of the image of ψ, it follows that B is K-linear
independent.

We now combine Propositions 3.5.31 and 3.5.41 to obtain the main result of this
section. Recall that given an equivalence class E with source tableau T0 we have

OD = {D ⊆ [n− 1] | OD(T0) ⊆ D ⊆ D(T0)}

with the set of offensive descents OD(T0) from Definition 3.5.10.

Theorem 3.5.42. Let α//β be a skew composition of size n and E ∈ E(α//β). Then

top(Sα//β,E) ∼=
⊕

D∈OD
FD

as Hn(0)-modules.

Proof. Let T0 be the source tableau of E. For D ∈ OD let ϕD : Sα//β,E → FD be the
Hn(0)-epimorphism from Proposition 3.5.31. Define the Hn(0)-epimorphism

ϕ : Sα//β,E →
⊕

D∈OD
FD, x 7→ (ϕD(x))D∈OD.
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as in the discussion after the proposition. On the one hand, we have

rad(Sα//β,E) ⊆ kerϕ and dim kerϕ = |E| − |OD |

by (3.16) and (3.17), respectively. On the other hand, dim rad(Sα//β,E) = |E| − |OD |
by Proposition 3.5.41. Therefore, rad(Sα//β,E) = kerϕ. This means that by factor-
ing ϕ through rad(Sα//β,E) we get an Hn(0)-isomorphism between top(Sα//β,E) and⊕
D∈OD FD.

Example 3.5.43. Let α = (1, 4, 3) and E ∈ E(α) be the equivalence class from our
running example with source tableau

T0 =
1
6 5 4 3
8 7 2

.

We have OD = {{2, 6} , {1, 2, 6}} so that

top(Sα,E) ∼= F {2,6} ⊕ F {1,2,6}

by Theorem 3.5.42.

We directly obtain the following from Corollary 3.5.46. Note that for the last part we
use that a module with simple top is always indecomposable.

Corollary 3.5.44. Let α//β be a skew composition of size n and E ∈ E(α//β) and T0
be the source tableau of E. Then we have the following.
(1 ) dim top(Sα//β,E) = |OD|.
(2 ) top(Sα//β,E) is simple if and only if OD(T0) = D(T0).
(3 ) If OD(T0) = D(T0) then Sα//β,E is indecomposable.

The sufficient condition for the indecomposability of Sα//β,E from Corollary 3.5.44 is
not a necessary condition: Let E be the equivalence class of tableaux of straight shape
α from our running example. Then we have OD(T0) ( D(T0). Nevertheless, Sα,E is
indecomposable by Theorem 3.3.11 as it is a straight module.

Remark 3.5.45. Let α � n and Eα be the equivalence class of SCT(α) in which the
entries of each column of each tableau increase from top to bottom. As mentioned
before, in [TvW15] Tewari and van Willigenburg show that Sα,Eα is indecomposable.
From Part (3) of Corollary 3.5.44 we get an alternative proof for this result as follows.
Let e0 < · · · < el be such that e0 = 0, {e1, e2, . . . , el−1} = Set(α) and el = n. We

obtain the source tableau T0 of Eα by filling row i of the diagram of α from left to right
with

ei, ei − 1, . . . , ei−1 + 1.
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This tableau is called the canonical tableau of shape α. For example,

1
5 4 3 2
8 7 6

is the canonical tableau of shape (1, 4, 3). It follows that e1, . . . , el−1 are the descents of
T0 and they all appear in the first column of T0. Thus, each descent of T0 is an offensive
descent and therefore Sα,Eα is indecomposable by Corollary 3.5.44.

Putting together the tops of the Sα//β,E for E ∈ E(α//β) yields the formula for
top(Sα//β). Obtaining this formula was the initial motivation of the section.

Corollary 3.5.46. Let α//β be a skew composition of size n. Then

top(Sα//β) ∼=
⊕

E∈E(α//β)

⊕
D∈ODE

FD

as Hn(0)-modules where ODE = {D ⊆ [n− 1] | OD(T0,E) ⊆ D ⊆ D(T0,E)}.

Proof. Proposition 3.1.13 yields that top(Sα//β) = top
(⊕

E∈E(α//β) Sα//β,E

)
. As the top

is compatible with direct sums we additionally have that

top

 ⊕
E∈E(α//β)

Sα//β,E

 ∼= ⊕
E∈E(α//β)

top(Sα//β,E).

Now apply Theorem 3.5.42.

We conclude the section by showing how the formula for the top of pacific modules
from Corollary 3.4.21 can be derived from Corollary 3.5.46.
Let α//β be a pacific skew composition. Then Lemma 3.4.5 yields that SCT(α//β) is

the only element of E(α//β). Let T0 be the source tableau of SCT(α//β). Since α//β is
pacific OD(T0) = ∅. Hence, Corollary 3.5.46 yields

top(Sα//β) ∼=
⊕

D⊆D(T0)
FD.

Indeed, this is the formula from Corollary 3.4.21. The top of our running example of
skew modules was determined by this formula in Example 3.4.22.

3.6 The socle of skew modules

Let α//β be a skew composition of size n. In Corollary 3.5.46 of Section 3.5 we gave a
combinatorial formula for the top of Sα//β. The aim of this section is to provide a similar
formula for the socle of Sα//β in Corollary 3.6.45. Moreover, we show that this formula
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generalizes the one for the socle of pacific modules from Corollary 3.4.21. Again we con-
centrate on the modules Sα//β,E for E ∈ E(α//β) since from the decomposition of Sα//β in
Proposition 3.1.13 it follows that soc(Sα//β) = ⊕

E∈E(α//β) soc(Sα//β,E). Theorem 3.6.39
determines soc(Sα//β,E).
Let E ∈ E(α//β). The socle of Sα//β,E is the direct sum of the simple submodules

of Sα//β,E . One of them is easy to identify. Let T1 be the sink tableau of E. From
Theorem 3.1.14 it follows that each descent of T1 is attacking. Therefore,

πiT1 =
{

0 if i ∈ D(T1)
T1 if i 6∈ D(T1)

for each i ∈ [n− 1]. That is, KT1 is a simple Hn(0)-submodule of Sα//β,E isomorphic to
F D(T1). From Example 3.4.22 we know that there can be other simple submodules as
well. We will construct them explicitly using an approach similar to that of Section 3.5.
There we divided the diagram of α//β into horizontal strips using the descents of the
source tableau of E. Here we divide the diagram of α//β into vertical strips according
to the the ascents of the sink tableau T1 of E. The relative positions of these vertical
strips will again be crucial. As before, the section can be roughly divided in two parts.
First we develop the necessary combinatorics and then consider the simple modules and
the socle of Sα//β,E . We begin with fixing notation for the entire section.

Notation 3.6.1. Let α//β be a skew composition of size n, E ∈ E(α//β), T1 be the
corresponding sink tableau and a0 = 0 < a1 < · · · < am+1 = n be integers such that the
ascent set of T1 is given by

Dc(T1) = {a1, a2, . . . , am} .

For k, l ∈ [m+ 1] with k ≤ l define the integer intervals

Jk,l := [ak−1 + 1, al], J̊k,l := Jk,l \ {al} and Jk := Jk,k.

Then Jk,l = ⋃l
j=k Jj and Jk = [ak−1 + 1, ak]. Note that since T1 is a sink tableau, we

have D(T1) = AD(T1) by Theorem 3.1.14. Hence, each element of J̊k is an attacking
descent.
Define Ck,l := T−1

0 (Jk,l) and Ck := T−1
0 (Jk). From Lemma 3.6.3 below it follows that

each Ck has at most one cell per row, i.e. it is a vertical strip. The Ck,l are therefore
called vertical strip sequences.
We often use the notation introduced in Section 3.1 before Definition 3.1.9. In par-

ticular, recall that for two sets of cells A and B we write A o B if there are a ∈ A and
b ∈ B such that a o b, i.e. a is the left neighbor of b. We call the vertical strip sequence
Ck,l separated if Cj+1 6 o Cj for all j = k, . . . , l − 1.
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1
3 2
5 4

8 7 6

1
3 2
6 4

8 7 5

1
3 2
6 5

8 7 4

1
3 2
7 4

8 6 5

1
4 2
6 5

8 7 3

1
3 2
7 5

8 6 4

1
4 3
6 5

8 7 2

T3 =

1
4 2
7 5

8 6 3

2
4 3
6 5

8 7 1

T2 =

1
4 3
7 5

8 6 2

T1 =

2
4 3
7 5

8 6 1

π5

π4π6

π3π6π4

π2π6π3

π1π6π2

π6π1

Figure 3.4: An equivalence class of SCTx with sink tableau T1.
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Example 3.6.2. (1) For the sink tableau

T1 =

2
4 3
7 5

8 6 1

.

of the equivalence class from Figure 3.4 we have

Dc(T1) = {a1 = 1, a2 = 3, a3 = 6} ,

J1 = {1}, J2 = {2, 3}, J3 = {4, 5, 6} and J4 = {7, 8}. The cells of the vertical strip Ck
are filled with the same shade of gray for k = 1, . . . , 4. Observe C2 6 o C1 and Ck+1 o Ck
for k = 2, 3. Hence, C1,2 is the only separated strip sequence among the strip sequences
Ck,l with k < l associated to T1.
(2) The vertical strips Ck can be more complicated as those of Part (1). For instance,

all the cells occupied by entries of the sink tableau

T1 =

1
2

7
5
4

6
3

belong to the one vertical strip C1 associated to T1.

Vertical strip sequences

We consider the vertical strip sequences Ck,l associated to the sink tableau T1. Our main
goal is to show in Lemma 3.6.5 that if Ck,l is a separated vertical strip sequence then Cj
is strictly left of Ci and Cj 6 o Ci for all k ≤ i < j ≤ l.

We begin describing the geometry of a vertical strip Ck. In the case of the horizontal
strips Bk assoiciated to source tableaux from Section 3.6 this was easy: Each Bk is
a connected horizontal strip, that is, a horizontal line of cells. As we have seen in
Example 3.6.2, the Ck are more complicated and in general not connected.

In the lemma below we describe the vertical strip Ck in terms of the entries of Jk in
T1. Given two entries i, j ∈ Jk of T1 with i < j we show that i and j appear in different
rows of T1 and that i is weakly left of j. This implies that Ck indeed is a vertical strip.
Moreover, we show that c(Ck), the set of indices of the columns containing a cell of Ck,
is an integer interval.

Lemma 3.6.3. Let k ∈ [m + 1]. For i ∈ [n] we write c(i) := cT1(i) and r(i) := rT1(i)
for the column and row of i in T1, respectively.
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(1 ) Let i, j ∈ Jk with i < j. Then

c(i) ≤ c(j) and r(i) 6= r(j).

In particular, Ck is a vertical strip.
(2 ) We have

c(Jk) = [c(ak−1 + 1), c(ak)] .

Proof. Let i ∈ J̊k. Then i ∈ D(T1) = AD(T1), i.e. i  i + 1. Thus, c(i + 1) = c(i) or
c(i+ 1) = c(i) + 1. Using this argument iteratively yields that

c(ak−1 + 1) ≤ c(ak−1 + 2) ≤ · · · ≤ c(ak)

and c(Jk) = [c(ak−1 + 1), c(ak)] .
Now let i, j ∈ Jk with i < j. We have already shown that then i is weakly left of j

in T1, i.e. c(i) ≤ c(j). Since the entries of SCTx decrease in rows from left to right, it
follows that j cannot appear in the same row as i. In other words, r(i) 6= r(j).

One may check the statements of Lemma 3.6.3 in Example 3.6.2.
We now want to show that for two vertical strips Ci and Cj with i < j of a separated

vertical strip sequence Ck,l, we have Cj 6 o Ci. That is, there are no two cells �i ∈ Ci and
�j ∈ Cj such that �j is the left neighbor of �i. As a first step, we consider consecutive
vertical strips and show that Ck+1 attacking Ck is sufficient for Ck+1 neighboring Ck.

Lemma 3.6.4. Let k ∈ [m]. If Ck+1  Ck then Ck+1 o Ck.

Proof. We prove the corresponding statement for entries of T1. That is, we assume
Jk+1  Jk and have to show that Jk+1 o Jk (in T1). By assumption there are i ∈ Jk and
j ∈ Jk+1 such that j  i. Then i and j are located either in the same column or in two
adjacent columns. We distinguish three cases.
Case 1. Assume that i and j occupy different columns. Then j  i implies that

i is located in the column to the immediate right of j and in a row strictly below j,
Therefore, the triple rule applied on i and j yields that j has a right neighbor t such
that j > t > i. That is, t ∈ Jk ∪ Jk+1. By Lemma 3.6.3, T1 has at most one entry of
Jk+1 per row. Therefore, t ∈ Jk. Since j o t, it follows that Jk+1 o Jk.
Case 2. Assume that i and j occupy the same but not the first column. Since by

Lemma 3.6.3 c(i) ≤ c(i′) for all i′ ∈ Jk with i < i′, we can assume without loss of
generality that i is the greatest element of Jk sharing a column with an element of Jk+1
and j is the minimal element of Jk+1 in the column of i.
First assume that i is above of j. Let l be the left neighbor of i in T1 (setting l :=∞

if the cell left of i is part of the inner shape of T1). Then l < j since otherwise the
triple rule applied to i, j and l would yield the contradiction i > j. Thus, i < l < j,
i.e. l ∈ Jk ∪ Jk+1. In addition, l 6∈ Jk by Lemma 3.6.3. Hence, l ∈ Jk+1 and therefore
Jk+1 o Jk.

Assume now that i is below of j, i.e. r(i) > r(j).
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• Suppose i = ak. Then ak ∈ Dc(T1) implies c(ak + 1) < c(ak). By definition
Jk+1 = [ak + 1, ak+1]. Since c(ak + 1) 6= c(j), it follows that j − 1 ∈ Jk+1 and
thus j − 1 j. As j is by assumption the smallest element on Jk+1 in its column,
it follows that c(j − 1) = c(j) − 1 and r(j − 1) < r(j). Moreover, we supposed
r(j) < r(i). Therefore, r(j − 1) < r(i) and c(i) = c(j − 1) + 1. That is, j − 1  i
and j − 1 and i occupy different columns. Case 1 now implies that Jk+1 o Jk.

• Suppose i < ak. Then i+1 ∈ Jk and by the maximality of i we have c(i+1) 6= c(i).
Moreover, i i+ 1 so that c(i+ 1) = c(i) + 1 and r(i) < r(i+ 1). Now c(j) = c(i)
and r(j) < r(i) imply c(i + 1) = c(j) + 1 and r(j) < r(i + 1). In other words
j  i+ 1 and j and i+ 1 are located in different columns. By Case 1, we then have
Jk+1 o Jk.

Case 3. Assume that i and j appear in the first column. Let both i and j be maximal
with this property in Jk and Jk+1, respectively. As ak and ak+1 are ascents of T1, they
cannot appear in the first column. Hence i ∈ J̊k and j ∈ J̊k+1. Consequently, i+ 1 ∈ Jk
and i  i + 1 as well as j + 1 ∈ Jk+1 and j  j + 1. Now the maximality of i and
j implies that i + 1 and j + 1 are located in the second column. Then we also have
j + 1  i + 1. That is, j + 1 and i + 1 meet the prerequisites of Case 2 which in turn
yields Jk+1 o Jk.

The next lemma shows that in a separated strip sequence Ck,l no two cells are hori-
zontal neighbors.

Lemma 3.6.5. Let Ck,l be a separated strip sequence. For i, j ∈ [k, l] with i < j we
have that Cj is strictly left of Ci, Cj 6 o Ci and Cj 6 Ci.

Proof. Let Ck,l be a separated strip sequence and i, j with k ≤ i < j ≤ l be as above.
First, we consider the case where j = i + 1. As Ck,l is separated, we have Ci+1 6 o Ci

and therefore can apply Lemma 3.6.4 in order to obtain Ci+1 6 Ci. Because two cells in
the same column attack each other, it follows that c(Ci+1) and c(Ci) are disjoint. Since
cT1(ai + 1) < cT1(ai) as ai ∈ Dc(T1) and

c(Cr) = [cT1(ar−1) + 1, cT1(ar)] for r = i, i+ 1

by Lemma 3.6.3, we then have that max c(Ci+1) < min c(Ci), i.e. Ci+1 is strictly left of
Ci. This settles the case where j = i+ 1.

Suppose now j > i + 1. Recall that for two sets of integers we write A < B if a < b
for all a ∈ A and b ∈ B. Using the first case iteratively yields

c(Cj) < c(Ci+1) < c(Ci).

Thus, Cj is strictly left of Ci. Moreover, c(Cj) < c(Ci) − 1 ensures that Cj 6 o Ci and
Cj 6 Ci.

Flanking ascents and A-sortable tableaux

We introduce the set of flanking ascents of T1.
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Definition 3.6.6. The set of flanking ascents of T1 is given by

FDc(T1) := {ak ∈ Dc(T1) | Ck+1 o Ck}

We write

FDc := {A ⊆ [n− 1] | FDc(T1) ⊆ A ⊆ Dc(T1)}

for the subsets of D(T1) containing FDc(T1).

We proceed as follows. Let A ∈ FDc. To A we associate set partitions {Jkr,lr | r ∈ [p]}
of [n] and {Ckr,lr | r ∈ [p]} of α//β. With them we define the set of A-sortable tableaux
EA. Then we consider two properties of EA. We first give in Lemma 3.6.13 a character-
ization of the elements of EA in terms of contents of column words . We then show that
NDc(T ) ⊆ A ⊆ Dc(T ) for all T ∈ EA in Lemma 3.6.19. These results will then be used
in order to construct a simple submodule of Sα//β,E from EA. Moreover, it will turn out
that up to isomorphism soc(Sα//β,E) is determined by FDc.

Note that the concept of flanking ascents of T1 generalizes that of neighborly ascents of
T1 since NDc(T1) ⊆ FDc(T1). To see this let ak ∈ NDc(T1). Then ak + 1 oT1 ak. Because
ak ∈ T1(Ck) and ak + 1 ∈ T1(Ck+1), it follows that Ck+1 o Ck so that ak ∈ FDc(T1) as
desired.

Example 3.6.7. Let T1 be the sink tableau from Example 3.6.2. Recall

Dc(T1) = {a1 = 1, a2 = 3, a3 = 6} and C4 o C3 o C2 6 o C1.

Thus, FDc(T1) = {3, 6} and FDc = {{3, 6} , {1, 3, 6}}.
We now relate each A ∈ FDc to a partition of [n] and a corresponding partition of

α//β into separated vertical strip sequences. The idea is that we separate [n] according
to the elements of A. We fix some more notation for the remainder of the section.

Notation 3.6.8. Let A ∈ FDc. We associate the following objects to A. Since A ⊆
Dc(T1) there are p ∈ [m+ 1] and indices l0 < l1 < l2 < · · · < lp such that

al0 = 0, A =
{
al1 , al2 , . . . , alp−1

}
and alp = n.

In addition, set kr := lr−1 +1 for r ∈ [p]. Then Jkr,lr = [alr−1 +1, alr ] for r ∈ [p]. That is,
the sets Jkr,lr for r ∈ [p] form a set partition of [n]. Since Ckr,lr = T−1

1 (Jkr,lr), the Ckr,lr
form a set partition of the diagram of α//β. As FDc(T1) ⊆ A, each Ckr,lr is a separated
vertical strip sequence. Lastly we define Ac := [n− 1] \A. Then ⋃pr=1 J̊kr,lr = Ac.

Example 3.6.9. We continue Example 3.6.7 considering the sink tableau

T1 =

2
4 3
7 5

8 6 1

.
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Recall that

Dc(T1) = {a1 = 1, a2 = 3, a3 = 6}, FDc(T1) = {3, 6} and FDc = {Dc(T1),FDc(T1)}.
We illustrate Notation 3.6.8 by regarding A = FDc(T1). Then p = 3. The other
parameters are shown below.

r 1 2 3
lr 2 3 4
kr 1 3 4
alr 3 6 8
Jkr,lr {1, 2, 3} {4, 5, 6} {7, 8}
Ckr,lr C1,2 C3 C4

Note that we obtain the partition {Jkr,lr | r ∈ [3]} of [8] by splitting the list 1, 2, . . . , 8
behind the elements of A. In the picture above, the cells of Ckr,lr have the same shade
of gray for r = 1, 2, 3.

Definition 3.6.10. For A ∈ FDc define

EA := {T ∈ E | T (Ckr,lr) = Jkr,lr for all r ∈ [p]}

the set of A-sortable tableaux of E.

The definition implies that EA′ ⊆ EA for all A,A′ ∈ FDc with A ⊆ A′. In particular,
EDc(T1) ⊆ EA ⊆ EFDc(T1) for each A ∈ FDc.
We have T1 ∈ EA for all A ∈ FDc since T1(Ck,l) = Jk,l for all k ≤ l. In Corollary 3.6.16

we will show that the only element of EDc(T1) is T1.

Remark 3.6.11. Let A ∈ FDc. The definition of the set of A-sortable tableaux EA is
dual to that of the set of D-sortable tableaux ED for D ∈ OD from Definition 3.5.14.
They are therefore called A-sortable. In fact, one can show that EA has a least element
TA which also can be regarded as being dual to the D-sorted tableau TD for D ∈ OD.
The idea of the proof the same as the one for TD from Lemma 3.5.26. However, it relies
on the combinatorics of separated vertical strip sequences instead of pacific horizontal
strip sequences which is more tedious. In order to construct the socle of Sα//β,E this is
not necessary and therefore not carried out in this thesis.

Example 3.6.12. We consider the tableaux

T3 =

1
4 2
7 5

8 6 3

π2−→ T2 =

1
4 3
7 5

8 6 2

π1−→ T1 =

2
4 3
7 5

8 6 1

from Figure 3.4 and denote their equivalence class with E. We emphasize that T1 is the
sink tableau of E. Recall from Example 3.6.9 that Dc(T1) = {1, 3, 6}, FDc(T1) = {3, 6}
and FDc = {Dc(T1),FDc(T1)}. We determine EA for A ∈ FDc.
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For A = Dc(T1) we have EA = {T1} by Corollary 3.6.16.
Now consider A = FDc(T1). In this case the corresponding sets Ikr,lr and Ckr,lr for

r ∈ [3] have been determined in Example 3.6.9. From this it follows that EA consists of
the elements T ∈ E with

T (C1,2) = {1, 2, 3} , T (C3) = {4, 5, 6} and T (C4) = {7, 8} .

The cells of T1, T2 and T3 above are shaded accordingly to the partition of the diagram
of α//β given by the Ckr,lr . One can check in Figure 3.4 that T1, T2 and T3 are the only
elements of E that satisfy the above conditions. Hence, EA = {T1, T2, T3}.

Recall from Notation 3.6.8 that given A ∈ FDc we use the shorthand Ac = [n−1]\A.
In the following result we characterize the elements T ∈ EA in terms of cont(colT1 col−1

T ).
Recall that this is the index set of the operators πi establishing the covering relations
in the saturated chains from T to T1 in E. The result will play an important role in
the identification of the simple submodules of Sα//β,E . It is dual to Lemma 3.5.18. The
proof is completely analogous and therefore omitted. It is mainly an application of
Proposition 3.2.9.

Lemma 3.6.13. Let T ∈ E and A ∈ FDc. Then the following are equivalent.
(1 ) T (Ckr,lr) = Jkr,lr for all r ∈ [p].
(2 ) cont(colT1 col−1

T ) ⊆ Ac.
In other words,

EA =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ Ac
}
.

Example 3.6.14. Let T1, T2 and T3 be the tableaux with corresponding equivalence
class E from Figure 3.4 and Example 3.6.12. Recall

Dc(T1) = {1, 3, 6} , FDc(T1) = {3, 6} and FDc = {Dc(T1),FDc(T1)} .

By Lemma 3.6.13, we have

EDc(T1) =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ {2, 4, 5, 7}
}
,

EFDc(T1) =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ {1, 2, 4, 5, 7}
}
.

Using the fact that cont(colT1 col−1
T ) is the index set of the operators πi in the satu-

rated chains from T to T1 in E, we can read from Figure 3.4 that EDc(T1) = {T1} and
EFDc(T1) = {T1, T2, T3} in accordance with Example 3.6.12.

The following result on the poset structure of EA is dual to Lemma 3.5.20. It is a
consequence of Lemma 3.6.13. The proof is left out as it is almost literally the one of
Lemma 3.5.20.

Lemma 3.6.15. For each A ∈ FDc, EA is a filter of E
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3.6 The socle of skew modules

As a consequence of Lemma 3.6.13 and Lemma 3.6.15, we can determine EDc(T1).

Corollary 3.6.16. The sink tableau T1 is the only element of EDc(T1).

Proof. Clearly Dc(T1) ∈ FDc. Then from Lemma 3.6.13 it follows that

EDc(T1) =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ D(T1)
}
.

Thus, colT1 col−1
T1

= 1 implies T1 ∈ EDc(T1).
Suppose that T ∈ E is an element covered by T1. Then there is an i ∈ nAD(T ) such

that πiT = T1 and thus cont(colT1 colT ) = {i}. Since i ∈ nAD(T ), i is strictly left of i+1
in T . Because we obtain T1 from T by swapping i and i+ 1, it follows that i ∈ Dc(T1).
That is, cont(colT1 col−1

T ) 6⊆ D(T1) and hence T 6∈ EDc(T1). Now we can use that EDc(T1)
is a filter by Lemma 3.6.15 and obtain that EDc(T1) = {T1}.

Let A ∈ FDc and T ∈ EA. Our next goal is to show that NDc(T ) ⊆ A ⊆ Dc(T ). In
order to prove this, we consider the position of the elements of A in T1 relative to their
positions in T in the following lemma. This result is dual to Lemma 3.5.21 and again
the proof can easily be adapted. The main idea is the same: for i ∈ A the operators πj
corresponding to an arbitrary saturated chain in EA from T to T1 are only capable of
moving i to the left and i+ 1 to the right.

Lemma 3.6.17. Let A ∈ FDc and T ∈ EA.
(1 ) The cell T−1

1 (i) is weakly left of the cell T−1(i) for all i ∈ A ∪ {n}.
(2 ) The cell T−1(i+ 1) is weakly left of the cell T−1

1 (i+ 1) for all i ∈ A.

Example 3.6.18. Let again

T3 =

1
4 2
7 5

8 6 3

π2−→ T2 =

1
4 3
7 5

8 6 2

π1−→ T1 =

2
4 3
7 5

8 6 1

.

From Example 3.6.12 we have that these tableaux form EA for A = FDc(T1) = {3, 6}.
(1) Observe that 3 ∈ A and T−1

1 (3) is located weakly left of T−1(3) for each T ∈ EA
as predicted by Lemma 3.6.17.
(2) We consider the ascents and neighborly ascents of the tableaux.

T NDc(T ) Dc(T )
T1 3 1, 3, 6
T2 3 2, 3, 6
T3 3, 6

Hence, NDc(T ) ⊆ A ⊆ Dc(T ) for each T ∈ EA. This property is generalized in the next
lemma.
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3 0-Hecke modules associated to quasisymmetric Schur functions

We now come to the second important result on the A-sortable tableaux. It is dual
to Lemma 3.5.22.

Lemma 3.6.19. Let A ∈ FDc and T ∈ EA. Then

NDc(T ) ⊆ A ⊆ Dc(T ).

Proof. Let σ := colT1 col−1
T . Recall that cT (i) denotes the column of the entry i in T

and that i ∈ Dc(T ) if and only if cT (i+ 1) < cT (i).
We begin with showing A ⊆ Dc(T ). Let i ∈ A. Since A ∈ FDc, we have i ∈ Dc(T1)

and thus cT1(i + 1) < cT1(i). In addition, since i ∈ A, we can apply Lemma 3.6.17 and
obtain

cT1(i) ≤ cT (i) and cT (i+ 1) ≤ cT1(i+ 1).

Therefore,

cT (i+ 1) ≤ cT1(i+ 1) < cT1(i) ≤ cT (i),

that is, i ∈ Dc(T ). This proves A ⊆ Dc(T ).
Now we show NDc(T ) ⊆ A. As A ⊆ Dc(T ), we have NDc(T ) ⊆ A if and only if

Dc(T ) \A ⊆ nNDc(T ).

That is, we have to show that each ascent of T that is not contained in A is not neighborly.
Let i ∈ Dc(T ) \A. We have [n− 1] \A = ⋃p

r=1 J̊kr,lr . Hence, there is r ∈ [p] such that
i, i+ 1 ∈ Jk,l for k := kr and l := lr.
Since T ∈ EA, we have Jk,l = T (Ck,l). Thus, we can define v(j) ∈ [k, l] such that

j ∈ T (Cv(j)) for j = i, i + 1, the index of the vertical strip containing j in T . If
v(i) = v(i + 1) then i + 1 6 o T i because Cv(i) is a vertical strip by Lemma 3.6.3. Hence,
i ∈ nNDc(T ) in this case.

Assume v(i) 6= v(i+1). As i ∈ Dc(T ), i+1 is strictly left of i in T . In addition, Ck,l is
a separated vertical strip sequence because A ∈ FDc. Thus, we can apply Lemma 3.6.5
on Ck,l and obtain that v(i+ 1) > v(i). But then the same lemma yields Cv(i+1) 6 o Cv(i).
Hence, i+ 1 6 o T i.

Simple submodules

The socle of Sα//β,E is the direct sum of the simple submodules of Sα//β,E . For each
A ∈ FDc we now define a K-subspace UA of Sα//β,E . It will turn out that each UA is a
simple submodule of Sα//β,E . We will also see that we obtain all simple submodules of
Sα//β,E in this way.

Definition 3.6.20. (1 ) Let U denote the set of simple Hn(0)-submodules of Sα//β,E.
(2 ) For A ∈ FDc define uA := ∑

T∈EA(−1)δ(T )T where δ is the rank function of E
and UA := KuA.
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3.6 The socle of skew modules

We proceed as follows. First, we show that UA is a simple Hn(0)-submodule of Sα//β,E

for each A ∈ FDc. The proof is based on the combinatorics of A-sorted tableaux we
developed so far. Second, we show that for each U ∈ U there is a A ∈ FDc such
that U = UA. This will require most of the remaining work. Third, we conclude that
soc(Sα//β,E) = ⊕

A∈FDc UA in Theorem 3.6.39. From this we obtain in Corollary 3.6.41
a combinatorial formula that determines soc(Sα//β,E) up to isomorphism. This formula
only depends on FDc. Lastly, we derive such a rule for soc(Sα//β) in Corollary 3.6.45.
Example 3.6.21. (1) Consider Dc(T1) ∈ FDc. Then EDc(T1) = {T1} by Corol-
lary 3.6.16. Thus, UDc(T1) is the simple submodule KT1 of Sα//β,E isomorphic to F D(T1)
mentioned in the introduction of the section.
(2) Let

T3 =

1
4 2
7 5

8 6 3

π2−→ T2 =

1
4 3
7 5

8 6 2

π1−→ T1 =

2
4 3
7 5

8 6 1

be the tableaux and E be the equivalence class from the running example. In Exam-
ple 3.6.7 we have seen that the set FDc associated to the sink tableau T1 of E is formed
by the two elements Dc(T1) = {1, 3, 6} and FDc(T1) = {3, 6}. From Example 3.6.12 we
have EDc(T1) = {T1} and EFDc(T1) = {T1, T2, T3}. Moreover, we obtain from Figure 3.4
that (−1)δ(T1) = 1. Hence,

uDc(T1) = T1 and uFDc(T1) = T1 − T2 + T3.

Observe that for i ∈ [7]

πiuDc(T1) =
{

0 if i 6∈ Dc(T1)
uDc(T1) if i ∈ Dc(T1)

and πiuFDc(T1) =
{

0 if i 6∈ FDc(T1)
uFDc(T1) if i ∈ FDc(T1).

Thus for each A ∈ FDc, the K-vector space UA = KuA is in fact an Hn(0)-submodule of
Sα//β,E isomorphic to FAc . Showing this in general is the purpose of Proposition 3.6.24.
In order to show that UA is a simple Hn(0)-submodule of Sα//β,E we need two basic

results on the Hn(0)-operation on Sα//β,E .
Lemma 3.6.22 ([TvW15, Lemma 3.7]). Let T be an SCT. If i ∈ nNDc(T ) then there
exists an SCT T ′ such that T 6= T ′ and πiT ′ = T .

Lemma 3.6.23. Let T ∈ E and i ∈ D(T ). Then πiT ′ 6= T for all T ′ ∈ E.
Proof. As i ∈ D(T ), we have πiT ∈ {0, siT}. In any case πiT 6= T . Assume that there
is an T ′ ∈ E with πiT ′ = T . Then we obtain the contradiction

T 6= πiT = πiπiT
′ = πiT

′ = T

using π2
i = πi.

87



3 0-Hecke modules associated to quasisymmetric Schur functions

We now show that UA ∈ U for all A ∈ FDc.

Proposition 3.6.24. Let A ∈ FDc. Then UA is a simple Hn(0)-submodule of Sα//β,E

isomorphic to FAc.

Proof. Let U := UA and u := uA. We show for i ∈ [n − 1] that πiu = 0 if i 6∈ A and
πiu = u if i ∈ A. Then it follows that U is a simple submodule of Sα//β,E isomorphic to
FAc .

Fix an i ∈ [n− 1]. We deal with two cases. If i ∈ A then Lemma 3.6.19 implies that
i ∈ Dc(T ) for each T ∈ EA and thus

πiu =
∑
T∈EA

(−1)δ(T )πiT =
∑
T∈EA

(−1)δ(T )T = u

as desired.
Now suppose i 6∈ A. We have to show πiu = 0. As Ac = ⋃p

r=1 J̊kr,lr there exists an
r ∈ [p] such that i, i+1 ∈ Jk,l for k := kr and l := lr. Let T ∈ EA. We show that [T ]πiu,
the coefficient of T in πiu, is zero. Again we have two cases.

Assume first that i ∈ D(T ). Then Lemma 3.6.23 yields that T ′ 6= T for all T ′ ∈ E.
Hence, [T ]πiu = 0.
Now assume that i ∈ Dc(T ). Since i ∈ Ac and NDc(T ) ⊆ A by Lemma 3.6.19, we

then have that i ∈ nNDc(T ). Therefore, from Lemma 3.6.22 it follows that there is a
T ′ ∈ E \ {T} such that πiT ′ = T . Then

cont(colT1 col−1
T ′ ) = {i} ∪ cont(colT1 col−1

T ) ⊆ Ac,

where we use i ∈ Ac, T ∈ EA and the characterization of EA from Lemma 3.6.13 for
the inclusion. That is, T ′ ∈ EA by the same lemma. If T̃ ∈ E \ {T} with πiT̃ = T
then siT̃ = T = siT

′ and thus T̃ = T ′. Hence T ′ is the only element of E \ {T} that is
mapped to T by πi. As a consequence,

[T ]πiu = [T ]
∑
T̃∈EA

(−1)δ
(
T̃
)
πiT̃ = (−1)δ(T ) + (−1)δ(T ′) = 0

where we use that δ(T ) = δ(T ′) + 1 since T covers T ′ in E.

We emphasize that Proposition 3.6.24 implies that the modules UA for A ∈ FDc are
pairwise non-isomorphic and thus distinct.
The next step is to show that the simple submodules UA for A ∈ FDc are in fact

all the simple sumbmodules of Sα//β,E . We therefore now consider the elements of U in
general.
Let v ∈ Sα//β,E . Then we can expand v K-linearly in the basis E of Sα//β,E . Recall

that the support of v, supp(v), is the set of T ∈ E appearing in this expansion with
nonzero coefficient.
Consider U ∈ U . Then U 6= 0 and hence there is an u ∈ U\{0}. Recall from Section 2.3

that the simple Hn(0)-modules are one dimensional. Thus U = Ku. Moreover, if
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3.6 The socle of skew modules

u′ ∈ U \ {0} then u′ = au with a ∈ K and a 6= 0. Hence supp(u) = supp(u′). Therefore,
the following is well defined.

Definition 3.6.25. Let U ∈ U .
(1 ) The support of U is denoted by EU and given by supp(u) for any u ∈ U \ {0}.
(2 ) The descent set of U is given by D(U) := ⋃

T∈EU D(T ).
(3 ) The ascent set of U is given by Dc(U) := [n− 1] \D(T ).

Example 3.6.26. (1) Let A ∈ FDc. As UA = KuA with uA = ∑
T∈EA(−1)δ(T )T , it

follows that the support EUA of UA is the set of A-sortable tableaux EA.
(2) The modules UDc(T1) and UFDc(T1) from Example 3.6.21 have support {T1} and
{T1, T2, T3}, respectively. Moreover, one can check in Example 3.6.21 that

Dc(UDc(T1)) = Dc(T1) and Dc(UFDc(T1)) = FDc(T1).

Let U ∈ U . We proceed with the study of U . In Lemma 3.6.28 we will show that U is
isomorphic to F D(U). We will further see in Lemma 3.6.31 that U is already determined
by its support EU . The next lemma is a simple but useful property of the action of the
πi on U .

Lemma 3.6.27. Let U ∈ U and u ∈ U . Then πiu ∈ {0, u} for all i ∈ [n− 1].

Proof. Let i ∈ [n − 1]. Because πi0 = 0, we can assume u 6= 0. Then U = Ku as all
simple Hn(0)-modules are one-dimensional. Thus, there is an a ∈ K such that πiu = au.
Since π2

i = πi, it follows that

a2u = πiπiu = πiu = au.

Hence a ∈ {0, 1}, i.e. πiu ∈ {0, u}.

We now show that the descent set D(U) determines the simple submodule U ∈ U up
to isomorphism.

Lemma 3.6.28. Let U ∈ U and u ∈ U \ {0}. Then for i ∈ [n− 1]

πiu =
{

0 if i ∈ D(U)
u if i 6∈ D(U).

That is, U and F D(U) are isomorphic as Hn(0)-modules.

Proof. Let i ∈ [n − 1]. Suppose first that i ∈ D(U). Then there is a T ∈ EU such that
i ∈ D(T ) and Lemma 3.6.23 implies πiT ′ 6= T for each T ′ ∈ E. Therefore, [T ]πiu = 0
which means πiu 6= u. In addition, πiu ∈ {0, u} by Lemma 3.6.27. Hence πiu = 0.
Suppose now that i ∈ Dc(U). Let u = ∑

T∈EU aTT be the expansion of u into the
K-basis E of Sα//β,E . Since by definition Dc(U) = ⋂

T∈EU Dc(T ), we have i ∈ Dc(T ) for
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3 0-Hecke modules associated to quasisymmetric Schur functions

all T ∈ EU . As a consequence,

πiu =
∑
T∈EU

aTπiT =
∑
T∈EU

aTT = u

as desired.

Example 3.6.29. Let UA with A ∈ FDc = {Dc(T1),FDc(T1)} be a simple module from
Example 3.6.21. There we have seen that UDc(A) ∼= FAc as Hn(0)-modules. Further from
Example 3.6.26 we have D(UA) = Ac. Thus UA ∼= FD(UA).

Our next objective is to show that the support EU completely determines U . To do
this we need the following result.

Lemma 3.6.30. Let U ∈ U , u ∈ U \ {0} and T ′, T ′′ ∈ E be arbitrary. For T ∈ E let
aT ∈ K be such that u = ∑

T∈E aTT . If aT ′ 6= 0 and T ′′ covers T ′ in E then aT ′′ = −aT ′.

Proof. Let T ′ ∈ EU and T ′′ ∈ E be such that T ′′ covers T ′ in E. Then there is an
i ∈ nAD(T ′) such that πi(T ′) = T ′′ and πiT ′′ = T ′′. It is easy to see that πiT 6= T ′′ for
all T ∈ E \ {T ′, T ′′}. In addition, from Lemma 3.6.28 it follows that πiu = 0 because
i ∈ D(U). Therefore,

aT ′′ + aT ′ = [T ′′]πiu = [T ′′]0 = 0

as desired.

Let A ∈ FDc. By Lemma 3.6.15, EA is a filter. The simple submodule UA is generated
by an element uA which is an alternating sum of the elements of EA. We now show for
each simple submodule U of Sα//β,E that the support EU is a filter as well and that
U is generated by a similar element. As a consequence, we obtain that U is uniquely
determined in U by EU .

Lemma 3.6.31. Let U ∈ U .
(1 ) EU is a filter in E. In particular, T1 ∈ EU .
(2 ) We have U = Ku for u := ∑

T∈EU (−1)δ(T )T where δ is the rank function of E.
(3 ) U is the only simple submodule of Sα//β,E with support EU .

Proof. Let U ∈ U . Then U 6= 0 and hence EU 6= ∅. Moreover, Lemma 3.6.30 implies
that EU is a filter. As the sink tableau T1 is the greatest element of E, it follows that
T1 ∈ EU . This shows (1).

Let u := ∑
T∈EU (−1)δ(T )T ∈ Sα//β,E and v ∈ U \ {0}. Then we can write v as a

K-linear combination v = ∑
T∈EU aTT . Fix a T ∈ EU and consider a saturated chain

from T to T1 is E. Applying Lemma 3.6.30 to each covering relation in such a chain
yields aT = (−1)δ(T1)−δ(T )aT1 . Therefore, v = (−1)δ(T1)aT1u and we have (2). Lastly
note that (3) is a direct consequence of (2).
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Recall that we want show that U = {UA | A ∈ FDc} where only the inclusion ⊆
remains by Proposition 3.6.24. From Lemma 3.6.31 we know that U ∈ U is already
determined by its support EU . In addition, we have seen in Example 3.6.26 that the
support of UA is EA for A ∈ FDc. Therefore, our task is to find an A ∈ FDc such that
EU = EA for each U ∈ U . This will be A = Dc(U).
We do this as follows. Let U ∈ U . We first show in Lemma 3.6.35 that for T ∈ E

we have T ∈ EU if and only if cont (colT1 col−1
T ) ⊆ D(U). This result is similar to the

characterization of the A-sortable tableaux EA from Lemma 3.6.13. Second, we show
in Lemma 3.6.37 that Dc(U) ∈ FDc. The two results then imply that EU = EA for
A = Dc(U).

We continue with the study of EU . The next result is analogous to Lemma 3.6.19

Lemma 3.6.32. Let U ∈ U and T ∈ EU . Then

NDc(T ) ⊆ Dc(U) ⊆ Dc(T )

Proof. By definition Dc(U) = ⋂
T∈EU Dc(T ). Therefore we have the right inclusion.

For the left one, let u ∈ U \ {0}, T ∈ EU and i ∈ NDc(T ). Then πiT = T . Moreover
πiT

′ 6= T for all T ′ ∈ E \ {T}. Since if there were a T ′ ∈ E \ {T} with πiT ′ = T then we
would obtain T ′ from T by interchanging i and i+ 1 in T . But i+ 1 is the left neighbor
of i in T so that in T ′ the entries would not decrease from left to right in the row of i
and i+ 1. Thus, T ′ would not be an SCT and this would contradict T ′ ∈ E.
From πiT = T and πiT ′ 6= T for T ′ ∈ E\{T} it follows that [T ]πiu = [T ]u 6= 0. Hence,

Lemma 3.6.27 implies that πiu = u and thus Lemma 3.6.28 yields i ∈ Dc(U).

Example 3.6.33. Let UA = K(T1 − T2 + T3) with A = FDc(T1) = {3, 6} be one of
the two simple submodules from Example 3.6.21. In Example 3.6.26 we have seen that
EUA = EA = {T1, T2, T3} and Dc(UA) = A. Moreover, from Example 3.6.18 we have
that NDc(T ) ⊆ A ⊆ Dc(T ) for each T ∈ EA. Thus, NDc(T ) ⊆ Dc(UA) ⊆ Dc(T ) for all
T ∈ EA as well.

Let U ∈ U and T ∈ EU . In Lemma 3.6.30 we have seen that if i ∈ nAD(T ) then
πiT ∈ EU . We now show that we have the dual statement for i ∈ nNDc(T ) ∩D(U).

Lemma 3.6.34. Let U ∈ U and T ∈ EU such that there is an i ∈ nNDc(T ) ∩ D(U).
Then there exists a unique T ′ ∈ EU such that πiT ′ = T and T ′ 6= T .

Proof. Let u ∈ U with u 6= 0 and ∑T∈EU aTT be the K-expansion of u in E. Fix a
T ∈ EU and assume that there is an i ∈ nNDc(T ) ∩ D(U). Because i ∈ nNDc(T ),
Lemma 3.6.22 yields that there is a T ′ ∈ E \ {T} such that πiT ′ = T . Then T ′ = siT ,
which means that T ′ is unique in E. Hence,

[T ]πiu = aT + aT ′ .

In addition, Lemma 3.6.27 implies that πiu = 0 since i ∈ D(U). Therefore,

aT + aT ′ = [T ]πiu = [T ]0 = 0,
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i.e. aT ′ = −aT . Moreover, we have T ∈ EU by assumption which means that aT 6= 0.
Hence, aT ′ 6= 0 and T ′ ∈ EU as desired.

Let U ∈ U . We now come to the characterization of the elements of EU which
is similar to Lemma 3.6.13. This is one of the two major arguments in the proof of
U ⊆ {UA | A ∈ FDc}.

Lemma 3.6.35. Let U ∈ U . For each T ∈ E the following are equivalent.
(1 ) T ∈ EU .
(2 ) cont(colT1 col−1

T ) ⊆ D(U).
In other words,

EU =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ D(U)
}
.

Proof. Let T ∈ E and

T = Tk � Tk−1 � · · · � T1

be a saturated chain from T to the sink tableau T1 in E. Then for each j ∈ [2, k] there
is a ij ∈ nAD(Tj) such that πijTj = Tj−1. That is, cont(colT1 col−1

T ) = {i2, . . . , ik}.
In order to show (1) =⇒ (2) assume that T ∈ EU . From Lemma 3.6.31 we have

that EU is a filter. Therefore, T ∈ EU implies that Tj ∈ EU for each j ∈ [k] and hence
D(Tj) ⊆ D(U) for each j ∈ [k]. As ij ∈ D(Tj) for all j ≥ 2, it follows that

cont(colT1 col−1
T ) = {i2, . . . , ik} ⊆ D(U)

as desired.
For (2) =⇒ (1) assume that cont(colT1 col−1

T ) ⊆ D(U). Then we also have that
cont(colT1 col−1

Tj
) ⊆ D(U) for all j ∈ [k].

We show Tj ∈ EU for each j ∈ [k] by induction on j. From Lemma 3.6.31 we know
that T1 ∈ EU . Thus, we can assume that Tj−1 ∈ EU for a j > 1. Set i := ij . Then
i ∈ nAD(Tj) and πiTj = Tj−1. Moreover, i ∈ cont(colT1 col−1

T ) so that i ∈ D(U).
We show that i ∈ nNDc(Tj−1). Because i ∈ nAD(Tj), i is strictly left of i + 1 in Tj .

In addition, i+ 1 cannot be the right neighbor of i in Tj since entries decrease in rows of
SCTx from left to right. As we obtain Tj−1 from Tj by swapping i and i+ 1, it follows
that i ∈ nNDc(Tj−1).

Because Tj−1 ∈ EU , i ∈ nNDc(Tj−1) and i ∈ D(U), Lemma 3.6.34 implies that
Tj ∈ EU .

Example 3.6.36. We consider the simple submodule UA = K(T1 − T2 + T3) with
A = FDc(T1) from Example 3.6.21. By Example 3.6.26, EUA = EA and D(U) = Ac. In
Example 3.6.14 we have seen for T ∈ E that T ∈ EA if and only if cont(colT1 col−1

T ) ⊆ Ac.
As D(UA) = Ac, the latter is equivalent to cont(colT1 col−1

T ) ⊆ D(UA).
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For A ∈ FDc and U ∈ U we have

EA =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ Ac
}
,

EU =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ D(U)
}
.

by Lemma 3.6.13 and Lemma 3.6.35, respectively. Thus, in order to show that for U ∈ U
there is an A ∈ FDc with EU = EA, it remains to show that Dc(U) ∈ FDc. This is the
purpose of the next lemma. Example 3.6.38 serves as an illustration for the result and
its rather technical proof.

Lemma 3.6.37. If U ∈ U then Dc(U) ∈ FDc.

Proof. Let U ∈ U and T1 be the sink tableau of E. We use the definitions associated to
the ascents of T1 in Notation 3.6.1. By definition, Dc(U) ∈ FDc if and only if

FDc(T1) ⊆ Dc(U) ⊆ Dc(T1).

By Lemma 3.6.31, we have that T1 ∈ EU . Therefore the second inclusion holds by
definition of Dc(U). We will now prove the first inclusion.
From Lemma 3.6.32 we have that

NDc(T ) ⊆ Dc(U) (3.19)

for each T ∈ EU . Since T1 ∈ EU and NDc(T1) ⊆ FDc(T1), it thus remains to show that

FDc(T1) ∩ nNDc(T1) ⊆ Dc(U).

We prove this by contradiction and thus assume that there exists a k such that

ak ∈ FDc(T1) ∩ nNDc(T1) ∩D(U).

Our strategy is to infer the existence of a T∗ ∈ EU and an i ∈ NDc(T∗) ∩D(U) contra-
dicting (3.19).
In order to obtain T∗ we need some notation. Since ak ∈ FDc(T1), we have Jk+1 oT1 Jk.

Hence the maximal element of Jk having a left neighbor from Jk+1 in T1

a := max {j ∈ Jk | Jk+1 oT1 j}

is well defined. Let b ∈ Jk+1 be this left neighbor of a. Moreover, we define

J ′k := [a, ak], J ′k+1 := [ak + 1, b], J ′k,k+1 := [a, b] and J̊ ′k,k+1 := [a, b− 1].

Note that J ′j ⊆ Jj for j = k, k + 1 and J ′k,k+1 ⊆ Jk,k+1. The corresponding sets of cells
are denoted by C ′j := T−1

1 (J ′j) for j = k, k + 1 and C ′k,k+1 := T−1
1 (J ′k,k+1). We further
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set �j := T−1
1 (j) for j ∈ [n]. Similar to the filters EA associated to A ∈ FDc, we define

F :=
{
T ∈ E | cont(colT1 col−1

T ) ⊆ J̊ ′k,k+1
}
.

Clearly T1 ∈ F which means F 6= ∅. Therefore, there exists a T∗ ∈ F which is minimal
in F . Lastly set i := T∗(�a).

Our goal is to show that T∗ ∈ EU and i ∈ NDc(T∗) ∩D(U). This yields the desired
contradiction. The remainder of the proof is divided into seven parts.

(1) We show T∗ ∈ EU .
Recall that by definition, ak and ak+1 are the only ascents of T1 in Jk,k+1. Therefore,

J̊ ′k,k+1 \ {ak} ⊆ Jk,k+1 \ {ak, ak+1} ⊆ D(T1) ⊆ D(U)

where we use T1 ∈ EU for the rightmost inclusion. Moreover, we have ak ∈ D(U)
by assumption. Hence, J̊ ′k,k+1 ⊆ D(U) and Lemma 3.6.35 implies that F ⊆ EU . In
particular T∗ ∈ EU .

The next three parts are preparations for proving i ∈ D(U) and i ∈ NDc(T1).

(2) We consider the geometry of C ′k,k+1. For x ∈ J ′k and y ∈ J ′k+1 we show the
following.

(a) �y is located strictly left of �x.
(b) �y o�x =⇒ x = a and y = b.

The chain of inequalities

c(�y) ≤ c(�b) < c(�a) ≤ c(�x)

implies (a). The outer inequalities are consequences of Lemma 3.6.3. In addition, by
choice of a and b we have �b o �a so that c(�b) = c(�a) − 1. Hence, c(�b) < c(�a) as
well.

From the definitions of a and C ′k it follows that �a is the only element of C ′k that has
an element of Ck+1 as left neighbor. As the left neighbor of �a is �b, we obtain (b).
(3) We show T∗(C ′k,k+1) = J ′k,k+1.
Recall that for an SCT T of size n and j ∈ [0, n] we have sh(T>j) = T−1([j + 1, n]).

From T∗ ∈ F and J̊ ′k,k+1 = [a, b−1] it follows that a−1, b 6∈ cont(colT1 col−1
T ). Therefore,

Proposition 3.2.9 implies that

sh(T>a−1
∗ ) = sh(T>a−1

1 ) and sh(T>b∗ ) = sh(T>b1 ).

Consequently,

T−1
∗ (J ′k,k+1) = T−1

∗ ([a, b]) = sh(T>a−1
∗ ) \ sh(T>b∗ )

= sh(T>a−1
1 ) \ sh(T>b1 ) = T−1

1 ([a, b]) = C ′k,k+1.

That is, T∗(C ′k,k+1) = J ′k,k+1.
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(4) We show that nNDc(T∗) ∩ J̊ ′k,k+1 = ∅.
For the sake of contradiction, assume that there is a j ∈ nNDc(T∗) ∩ J̊ ′k,k+1. Set

σT := colT1 col−1
T for T ∈ E. Then T∗ ∈ F implies cont(σT∗) ⊆ J̊ ′k,k+1. Lemma 3.6.22

provides the existence of a T ∈ E such that πjT = T∗. It follows that

cont(σT ) = {j} ∪ cont(σT∗) ⊆ J̊ ′k,k+1

where we use j ∈ J̊ ′k,k+1 and cont(σT∗) ⊆ J̊ ′k,k+1 for the inclusion. Thus, T ∈ F . But
this contradicts the minimality of T∗ in F . Therefore, we have nNDc(T∗) ∩ J̊ ′k,k+1 = ∅
as claimed.
(5) We show that i ∈ J̊ ′k,k+1 and i ∈ D(U).
Define b∗ := T∗(�b). From Part (3) we have that T∗(C ′k,k+1) = J ′k,k+1. Thus, i, b∗ ∈

J ′k,k+1. Moreover, T being an SCT implies b∗ > i so that i ∈ J̊ ′k,k+1. In Part (1) we have
seen that J̊ ′k,k+1 ⊆ D(U). Hence, i ∈ D(U) as well.

(6) We show that i ∈ NDc(T∗).
Let b∗ = T∗(�b) still be the left neighbor of i in T∗. We will show that b∗ = i + 1.

Define

t := max
{
j ∈ T∗(C ′k) | j < b∗

}
.

As i ∈ T∗(C ′k) and i < b∗, the set is not empty and thus t is well defined. Since
T∗(C ′k,k+1) = J ′k,k+1, we have that t + 1 ∈ T∗(C ′k,k+1) and from the maximality of t it
follows that t + 1 ∈ T∗(C ′k+1) (if t = b∗ − 1 then this also holds since b∗ = T∗(�b) ∈
T∗(C ′k+1)). Because t ∈ T∗(C ′k) and t + 1 ∈ T∗(C ′k+1), we obtain from (a) that t + 1 is
strictly left of t in T∗ and thus t ∈ Dc(T∗). Since nNDc(T∗) ∩ J̊ ′k,k+1 = ∅ by Part (4), it
follows that t ∈ NDc(T∗). Then (b) implies

t+ 1 = T∗(�b) and t = T∗(�a).

Consequently, t = i and b∗ = i+ 1, i.e. i ∈ NDc(T∗).
(7) We summarize our results. On the one hand, we have T∗ ∈ EU from Part (1) so

that (3.19) implies

NDc(T∗) ⊆ Dc(U).

On the other hand, Parts (5) and (6) provide the existence of an i ∈ NDc(T∗) ∩D(U)
contradicting the formula above. Recall that we deduced this contradiction from the
assumption FDc(T1)∩nNDc(T1)∩D(U) 6= ∅. Therefore, this intersection must be empty
which means by the discussion from the beginning of the proof that Dc(U) ∈ FDc.
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Example 3.6.38. Consider the tableaux

T∗ =

2
5 4
3 1

6

π3−→ T2 =

2
5 3
4 1

6

π2−→ T1 =

3
5 2
4 1

6

.

Let E be their equivalence class and Sα//β,E be the corresponding module. We illustrate
the proof of Lemma 3.6.37 by directly showing that Dc(U) ∈ FDc for each simple
submodule U of Sα//β,E . We also use its notation. In addition, it may be instructive to
check that Statements (1) – (6) from the proof hold in this example.
Let U ∈ U . We have Dc(T1) = FDc(T1) = {a1 = 2}. Thus {2} is the only element

of FDc. Moreover, note that 2 is an non-neighborly ascent of T1. We show 2 ∈ Dc(U).
From this it follows that Dc(U) ∈ FDc as described in the beginning of the proof of
Lemma 3.6.37. We proceed accordingly.
Assume for the sake of contradiction that a1 = 2 ∈ D(U). We have J1 = [1, 2],

J2 = [3, 6] and J2 oT1 J1. In the tableaux above, the cells of C1 and C2 respectively have
the same shade of gray. The maximal element of J1 with a left neighbor from J2 is a = 2.
Its left neighbor is b = 5. Then

J ′1 = {2} , J ′2 = [3, 5], J ′1,2 = [2, 5], J̊ ′1,2 = [2, 4]

and

F =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ {2, 3, 4}
}
.

In the picture the elements of {1, 6} = J1,2 \J ′1,2 are printed in gray. Let i = T∗(�a) = 4
where �a = T−1

1 (a) is the cell containing a = 2 in T1. We show that T∗ ∈ EU and
4 ∈ NDc(T∗) ∩ D(U). Note that we obtain T1 from T∗ by shuffling elements of J ′1,2
around using operators πj with j ∈ J̊ ′1,2. The other elements 1 and 6 are not affected.
From the picture we obtain that T1, T2, T∗ ∈ F . Besides, we remark that T∗ is minimal

in F since nNDc(T∗) = {1} which is disjoint to J̊ ′1,2 (cf. Lemma 3.6.22). Since 3, 4 ∈
D(T1), the definition of D(U) yields 3, 4 ∈ D(U). Furthermore 2 ∈ D(U) by assumption.
Hence, Lemma 3.6.35 implies that F ⊆ EU . In particular T∗ ∈ EU .

We can directly check that 4 ∈ NDc(T∗). Moreover, we have already seen that 4 ∈
D(U). Hence, 4 ∈ NDc(T∗)∩D(U). Yet, T∗ ∈ EU and thus Lemma 3.6.32 demands that
NDc(T∗) ⊆ Dc(U). We therefore have a contradiction which tells us that 2 ∈ Dc(U) as
desired.

We are now in the position to determine the socle of Sα//β,E . Recall that for A ∈ FDc

we have uA = ∑
T∈EA(−1)δ(T )T where δ is the rank function of E and UA = KuA.

Theorem 3.6.39. Let α//β be a skew composition of size n and E ∈ E(α//β).
(1 ) For A ∈ FDc, UA is a simple Hn(0)-submodule of Sα//β,E is isomorphic to FAc.
(2 ) We have soc(Sα//β,E) = ⊕

A∈FDc UA.
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Proof. Part (1) is a repetition of Proposition 3.6.24 which we have included for conve-
nience. For Part (2) we first show that

U = {UA | A ∈ FDc} . (3.20)

Let U ∈ U and A := Dc(U). From Lemma 3.6.37 we have that A ∈ FDc. Then
Part (1) yields that UA is a simple submodule of Sα//β,E . As UA = KuA, it follows
that the support EUA of UA is the set of A-sortable tableaux EA. On the other hand,
Lemma 3.6.35 implies that the support of U is given by

EU =
{
T ∈ E | cont(colT1 col−1

T ) ⊆ Ac
}
.

Thus, Lemma 3.6.13 yields that the support EU is the set of A-sorted tableaux EA as
well. That is, EU = EUA . But by Lemma 3.6.31 there is only one simple submodule of
Sα//β,E with support EU . Therefore, U = UA. This proves (3.20).
Part (1) ensures that the Hn(0)-submodules UA of Sα//β,E for A ∈ FDc are all pair-

wise non-isomorphic. Moreover, we have that soc(Sα//β,E) = ∑
U∈U U by definition.

Therefore, (3.20) implies (2).

Example 3.6.40. Let T1, T2 and T3 be as in Figure 3.4, E be their equivalence class
and Sα//β,E the corresponding Hn(0)-module. Then FDc = {Dc(T1),FDc(T1)} where
FDc(T1) = {3, 6} and Dc(T1) = {1, 3, 6}. by Example 3.6.7. Therefore, Theorem 3.6.39
implies

soc(Sα//β,E) = UDc(T1) ⊕ UFDc(T1).

In addition, we have seen in Example 3.6.21 that

UDc(T1) = KT1 and UFDc(T1) = K(T1 − T2 + T3).

Thus,

soc(Sα//β,E) = KT1 ⊕K(T1 − T2 + T3).

From Theorem 3.6.39 we have that, up to isomorphism, the socle of Sα//β,E only
depends on the ascents and the flanking ascents of the sink tableau of E. We thus
obtain the following formula for the socle dual to that for the top from Theorem 3.5.42.
Recall that in this section we always assumed that α//β is a skew composition of size

n, E ∈ E(α//β) and T1 is the sink tableau of E. Under this assumptions we associated
the set

FDc = {A ⊆ [n− 1] | FDc(T1) ⊆ A ⊆ Dc(T1)} .

to T1 where FDc(T1) is the set of flanking ascents of T1 from Definition 3.6.6. This is
the main ingredient in the following formula.
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Corollary 3.6.41. Let α//β be a skew composition of size n and E ∈ E(α//β). Then

soc(Sα//β,E) ∼=
⊕

A∈FDc
FAc

as Hn(0)-modules.

Example 3.6.42. Let Sα//β,E be the Hn(0)-modules of the equivalence class E from
Figure 3.4. By Example 3.6.7 we then have FDc = {{3, 6} , {1, 3, 6}}. Thus, Corol-
lary 3.6.41 yields that

soc(Sα//β,E) ∼= F {2,4,5,7} ⊕ F {1,2,4,5,7}

as H8(0)-modules.

We gather some direct consequences of Corollary 3.6.41. For Part (3) we use that a
module with simple socle is always indecomposable.

Corollary 3.6.43. Let α//β be a skew composition of size n and E ∈ E(α//β) with sink
tableau T1. Then we have the following.
(1 ) dim soc(Sα//β,E) = |FDc|.
(2 ) soc(Sα//β,E) is simple if and only if FDc(T1) = Dc(T1).
(3 ) If FDc(T1) = Dc(T1) then Sα//β,E is indecomposable.

In Corollary 3.5.44 we have seen that a module Sα//β,E is indecomposable if each
descent of the source tableau T0,E is offensive. By Part (3) of Corollary 3.6.41 we now
have a similar condition depending on the flanking ascents of the sink tableau T1,E .
Yet, even combining Corollary 3.5.44 and Corollary 3.6.43 does not result in a necessary
condition for Sα//β,E to be indecomposable. In other words, there are modules Sα//β,E

which are indecomposable despite having nonsimple top and socle. An example is given
below.

Example 3.6.44. We consider α = (2, 2, 4, 4) and the module Sα,E whose equivalence
class E has source and sink tableau

T0 =

2 1
4 3
9 8 7 6
12 11 10 5

and T1 =

4 3
7 5
10 8 6 2
12 11 9 1

,

respectively. The cells of T0 and T1 are shaded according to the associated decomposition
of the diagram of α in horizontal strips and vertical strips, respectively. Then

D(T0) = {2, 4, 5, 9}
OD(T0) = {2, 5, 9} and

Dc(T1) = {2, 3, 6, 9, 11}
FDc(T1) = {3, 6, 9, 11} ,
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that is, OD(T0) ( D(T0) and FDc(T1) ( Dc(T1). Thus, top and socle of Sα,E are
not simple by Corollary 3.5.44 and Corollary 3.6.43, respectively. However, the straight
module Sα,E certainly is indecomposable by Theorem 3.3.11.
Using the decomposition Sα//β = ⊕

E∈E(α//β) Sα//β,E from Proposition 3.1.13 and the
compatibility of soc with direct sums, we infer from Corollary 3.6.41 the following formula
for soc(Sα//β). Recall that for E ∈ E(α//β), T1,E denotes the sink tableau of E.
Corollary 3.6.45. Let α//β be a skew composition of size n. Then

soc(Sα//β) ∼=
⊕

E∈E(α//β)

⊕
A∈FDcE

FAc

as Hn(0)-modules where FDcE := {A ⊆ [n− 1] | FDc(T1,E) ⊆ A ⊆ Dc(T1,E)}.
We end the section by showing that the formula for the socle of pacific modules from

Corollary 3.4.21 is a special case of Corollary 3.6.45 above. Let α//β be a pacific skew
composition of size n. Recall from Lemma 3.4.5 that then all SCTx of shape α//β form
a single equivalence class. Thus, let T0 be the source and T1 be the sink tableau of
shape α//β. We use the shorthand n − D = {n− d | d ∈ D} for D ⊆ [n − 1]. From
Corollary 3.4.21 we have that

soc(Sα//β) ∼=
⊕

D⊆D(T0)
F n−D (3.21)

as Hn(0)-modules. On the other hand, Corollary 3.6.45 yields that

soc(Sα//β) ∼=
⊕

A∈FDc
FAc

with FDc associated to T1. Hence, in order to infer (3.21) from Corollary 3.6.45, it
remains to show that FDc = {n−Dc | D ⊆ D(T0)} in the pacific case. This is done in
Lemma 3.6.47 which we state after giving an example.
Example 3.6.46. Let Sα//β be the pacific module formed by the tableaux from Fig-
ure 3.3. The source and the sink tableau of shape α//β are

T0 =
4

3
2 1

and T1 =
1

2
4 3

,

respectively. We have D(T0) = {2, 3}, Dc(T1) = {1, 2, 3}, FDc(T1) = {3} and

FDc = {{3} , {1, 3} , {2, 3} , {1, 2, 3}} .

By applying Corollary 3.6.45 we get

soc(Sα//β) ∼=
⊕

A∈FDc
FAc = F ∅ ⊕ F {1} ⊕ F {2} ⊕ F {1,2}.
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As in Example 3.4.22, we obtain from (3.21) that

soc(Sα//β) ∼=
⊕

D⊆D(T0)
F n−D = F ∅ ⊕ F {1} ⊕ F {2} ⊕ F {1,2}.

Thus, we can directly see that both sums run over the same index set.

We now state the result that allows to derive Corollary 3.4.21 from Corollary 3.6.45.

Lemma 3.6.47. Let α//β be a pacific skew composition of size n and T0 be the source
tableau of shape α//β. Then

FDc = {n−Dc | D ⊆ D(T0)} .

Proof. Let T1 be the sink tableau of the pacific shape α//β. On the one hand, T1
is a sink tableau so that D(T1) = AD(T1) by Theorem 3.1.14. On the other hand,
T1 is pacific and therefore AD(T1) = ∅. Hence, Dc(T1) = [n − 1] and thus FDc =
{A ⊆ [n− 1] | FDc(T1) ⊆ A} . We show

FDc(T1) = n−Dc(T0)

since then it follows for all D ⊆ [n− 1] that

D ⊆ D(T0) ⇐⇒ n−Dc(T0) ⊆ n−Dc ⇐⇒ FDc(T1) ⊆ n−Dc ⇐⇒ n−Dc ∈ FDc

which yields the claim.
Let let m0 := |D(T0)| and m1 := |Dc(T1)|. We also use the definitions associated to

T0 and T1 in Notations 3.5.1 and 3.6.1, respectively. Because Dc(T1) = [n− 1], we have
ak = k and Jk = {k} for all k ∈ [m1 + 1]. Thus for each k ∈ [m1] we have that Ck+1 oCk
if and only if k + 1 oT1 k. That is, FDc(T1) = NDc(T1). By Proposition 3.4.12,

colT1 = n n− 1 · · · 1.

Moreover, Lemma 3.4.8 yields that the horizontal strip Bk is strictly left of Bk+1 for
each k ∈ [m0]. In addition, |B1,k| = |I1,k| = dk for all k ∈ [m0 + 1]. Therefore, the
definition of the column word implies

T1(B1,k) = [n− dk + 1, n]

for all k ∈ [m0 + 1]. As a consequence,

T1(Bk) = T1(B1,k) \ T1(B1,k−1)
= [n− dk + 1, n] \ [n− dk−1 + 1, n]
= [n− dk + 1, n− dk−1].

for all k ∈ [m0 + 1].
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Fix a k ∈ [m0]. Because

T1(Bk+1) = [n− dk+1 + 1, n− dk],

the connected horizontal strip Bk+1 is filled as follows in T1.

n− dk n− dk − 1 · · · n− dk+1 + 1

Thus, we have [n− dk+1 + 1, n− dk − 1] ⊆ NDc(T1). We claim that n− dk 6∈ NDc(T1).
This can be seen as follows. First, note that T0(Bk) = Ik < Ik+1 = T0(Bk+1). Second,
we have seen above that Bk is strictly left of Bk+1. As entries decrease from left to right
in the rows of the SCT T0, we therefore have that Bk and Bk+1 cannot occupy the same
row of the diagram α//β. Because n− dk ∈ T1(Bk+1) and n− dk + 1 ∈ T1(Bk), it follows
that n− dk + 1 oT1 n− dk is impossible. That is, n− dk 6∈ NDc(T1).
Since k ∈ [m0] was chosen arbitrarily, it finally follows that

FDc(T1) = NDc(T1) = [n− 1] \ {n− dk | k ∈ [m0]} = n−Dc(T0)

as desired.

3.7 Modules of permuted composition tableaux

Tewari and van Willigenburg generalize in [TvW19] standard straight compositions
tableaux to standard permuted compositions tableaux. Let α � n and σ ∈ S`(α). A
standard permuted composition tableau (SPCT) of shape α and type σ is defined as an
SCT of shape α in Definition 3.1.4 except that the relative order of the entries in the
first column when read from top to bottom is now demanded to be that of σ. We write
SPCTσ(α) for the SPCTx (plural form of SPCT) of shape α and type σ. Tewari and
van Willigenburg show that the K-span of SPCTσ(α) can be endowed with a 0-Hecke
action which yields an Hn(0)-module which we denote with Sσ

α. The modules Sσ
α and

Sα share many properties. In particular Sσ
α can be decomposed as Sσ

α = ⊕
E∈Eσ(α) Sσ

α,E

where Eσ(α) is the set of equivalence classes of SPCTσ(α) with respect to the equivalence
relation ∼.
The purpose of this section is to transfer the main results of this chapter on the

modules Sα,E to the modules Sσ
α,E . In particular, we will describe how the arguments of

the chapter can be adapted for E ∈ Eσ(α) in order to show that Sσ
α,E is indecomposable

and to obtain formulas for the top and the socle of Sσ
α,E . As for Sα, one can then obtain

the corresponding results on Sσ
α by using the decomposition from above.

The proof of the indecomposability of Sα,E has already been published as the article
[Kön19] by the author. The contents of [Kön19] correspond to Sections 3.1 to 3.3 of this
chapter. Choi, Kim, Nam and Oh show in [CKNO21] how the arguments from [Kön19]
can be adapted to obtain the indecomposability of Sσ

α,E . Mainly, they substitute [Kön19,
Proposition 3.8] (corresponding to Proposition 3.2.9 of this thesis) by [CKNO21, Lemma
A.3]. In this section however, we will generalize Proposition 3.2.9 to SPCTx instead. This
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is also necessary for the generalization of the formulas for top and socle. We begin with
introducing the permuted modules.

0-Hecke modules of standard permuted composition tableaux

Let w = w1 · · ·wn be a word with letters in N. The standardization of w is the unique
element σ ∈ Sn such that σ(i) > σ(j) if and only if wi > wj .

Definition 3.7.1. Let α � n and σ ∈ S`(α). A standard permuted composition tableau
(SPCT ) of shape α and type σ is a bijective filling T : α → [n] satisfying the following
conditions:
(1 ) The entries are decreasing in each row from left to right.
(2 ) The standardization of the word obtained by reading the first column from top to

bottom is σ.
(3 ) (Triple rule). If (i, k − 1), (j, k) ∈ α such that j > i and T (j, k) < T (i, k − 1) then

(i, k) ∈ α and T (j, k) < T (i, k).

For α � n and σ ∈ S`(α) we denote the set of standard permuted composition tableaux
of shape α and type σ with SPCTσ(α). Note that we have only defined straight SPCTx.
This is the reason why the triple rule above is simpler than the one of Definition 3.1.4.
We also remark that for α � n and id ∈ S`(α) we have SCT(α) = SPCTid(α). We do
not associate SPCTx with chains of a composition poset as we have done with SCTx in
Proposition 3.1.6. But all other notation introduced for SCTx in Section 3.1 up to and
including Definition 3.1.9 can be used for SPCTx as well.

Example 3.7.2. The SPCT

T0 =

7 6 5
1
8 4 3
2

has shape α = (3, 1, 3, 1) and type σ = 3142. Moreover, D(T0) = {1, 2, 4, 7} and
AD(T0) = {1, 7}.

We can define Hn(0)-modules Sσ
α formed by SPCTx as we have defined the modules

Sα in Theorem 3.1.11.

Theorem 3.7.3 ([TvW19, Theorem 3.1]). Let α � n and σ ∈ S`(α). Then Sσ
α :=

spanK SPCTσ(α) is an Hn(0)-module with respect to the following action. For T ∈
SPCTσ(α) and i ∈ [n− 1],

πiT =


T if i /∈ D(T )
0 if i ∈ AD(T )
siT if i ∈ nAD(T )

where siT is the tableau obtained from T by interchanging i and i+ 1.
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Example 3.7.4. Let T0 be the SPCT from Example 3.7.2. Then

πiT0 =


T0 for i = 3, 5, 6
0 for i = 1, 7
siT0 for i = 2, 4.

Let α � n and σ ∈ S`(α). All the results on the modules Sα from Section 3.1 succeeding
Theorem 3.1.11 generalize to SPCTx. The most important ones are the following.
(1) We can use the equivalence relation ∼ on SPCTσ(α) and define Eσ(α) as the set

of equivalence classes of SPCTσ(α) with respect to ∼.
(2) For each E ∈ Eσ(α), Sσ

α,E := spanKE is an Hn(0)-module. The Hn(0)-module Sσ
α

decomposes as

Sσ
α =

⊕
E∈Eσ(α)

Sσ
α,E .

(3) Each E ∈ Eσ(α) can be endowed with the partial order �. The resulting poset
E = (E,�) has a smallest element T0,E and a greatest element T1,E which are
characterized in E by Dc(T0,E) = NDc(T0,E) and D(T1,E) = AD(T1,E) and called
source and sink tableau of E, respectively.

(4) To each SPCT T of size n we can associate the column word colT which can be
regarded as an element of Sn. For E ∈ Eσ(α) the poset E is isomorphic to the left
weak order interval [colT0,E , colT1,E ]L via the map T 7→ colT .

Most of the proofs for the results of Section 3.1 (including those cited from [TvW15])
can directly be applied on SPCTx. There are two exceptions also mentioned in [TvW19].
First, a basic result on the operation of the πi on SCTx [TvW15, Lemma 3.7] has to be
substituted by [TvW19, Lemma 3.2]. Second, the proof of the uniqueness of the source
and the sink tableau has to be altered as described in [TvW19, Remark 3.8].

A 0-Hecke action on subdiagrams

In Section 3.2 we considered a 0-Hecke action on chains of the composition poset Lw
that lead to a characterization of cont(colT2 col−1

T1
) for two SCTx T1 � T2 in Proposi-

tion 3.2.9. This result was essential for our results on the indecomposability, the top
and the socle of the modules Sα,E from Theorem 3.3.11, Corollary 3.5.46 and Corol-
lary 3.6.41, respectively. As said before, for the SPCTx we do not have a correspondence
to chains of a poset of compositions and we do not intend to give one. Nevertheless,
Proposition 3.2.9 was proven by considering osh(T>m), the outer shape of the tableau
corresponding to the enties > m of the SCT T . The connection to chains in Lw was
provided by Lemma 3.2.3. Since we do not have such chains for SPCTx, we simply use
Lemma 3.2.3 as a definition.
Recall that a diagram is a finite set of cells and that a tableau is a filling of a diagram

with elements of N.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Definition 3.7.5 (cf. Lemma 2.2.3). Let α � n, σ ∈ S`(α), T ∈ SPCTσ(α) and m ∈
[0, n].
(1 ) Define T>m to be the tableau obtained from T by removing the cells containing

1, . . . ,m and subtracting m from the remaining entries.
(2 ) Let sh(T>m) be the diagram formed by the cells occupied by entries of T>m.

As for ordinary compositions, we define the diagram of a weak composition α =
(α1, . . . , α`(α)) �0 n as {(i, j) ∈ N× N | i ≤ `(α), j ≤ αi} and may identify α with its
diagram.
Let α � n, m ∈ [0, n] and T be a SPCT of shape α. Because the entries in the rows

of T decrease from left to right, the cells of T>m are left aligned. That is, sh(T>m) is
the diagram of a weak composition αm of n −m. However, in general sh(T>m) is not
a composition and therefore sh(T>m) is not an SPCT as can be seen in the following
example.

Example 3.7.6. Consider the SPCT

T0 =

7 6 5
1
8 4 3
2

from Example 3.7.2. Then

T>3
0 =

4 3 2

5 1

is a tableau of shape (3, 0, 2) and therefore not an SPCT. The sequence of diagrams
sh(T>m0 ) for m = 8, 7, . . . , 0 associated to T0 is shown below.

∅, , , , , , , ,

In Definition 3.2.4 we introduced |α|j = |{i ∈ [l] | αi ≥ j}| for α � n and j ≥ 1 and
the preorder E on the set compositions of size n. These definitions directly generalize to
weak compositions. Moreover, |α|j still is the number of cells in column j of the diagram
of the weak composition α.

With these generalized notions, the proof of Proposition 3.2.9 goes trough for SPCTx
as well.
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3.7 Modules of permuted composition tableaux

Proposition 3.7.7 (cf. Proposition 3.2.9). Let α � n, σ ∈ S`(α), i ∈ [n− 1], E ∈ Eσ(α)
and T1, T2 ∈ E be such that T1 � T2. Then

i ∈ cont(colT2 col−1
T1

) if and only if sh(T>i2 ) 6= sh(T>i1 ).

The decomposition of permuted modules

Let α � n and σ ∈ S`(α). In Theorem 3.3.11 of Section 3.3 we proved that the module
Sα,E is indecomposable for all E ∈ E(α). Choi, Kim, Nam and Oh show in [CKNO21]
how the argumentation can be adapted in order to make it work for Sσ

α,E with E ∈ Eσ(α)
as well.
Here we present a slightly different approach using the generalized version of Propo-

sition 3.2.9, Proposition 3.7.7. Choi et al. do not generalize Proposition 3.2.9 in their
approach.
The argumentation of Section 3.3 leading to Theorem 3.3.11 has to be adapted on

two occasions in order to make it work for Sσ
α,E with E ∈ Eσ(α) as well. First, the

proof of Lemma 3.3.3 exploits the fact that all elements of SCT(α) have the entry n
at position (`(α), 1). This however can be generalized to the result that all elements
of SPCTσ(α) have the entry n at position (σ−1(`(α)), 1) which can then be applied
instead. The result is a direct consequence of the ordering conditions of SPCTx. This
slight alteration is not mentioned in [CKNO21]. Second, Proposition 3.7.7 has to be
used instead of Proposition 3.2.9 in Lemma 3.3.7.
Therefore, we have the following.

Theorem 3.7.8 ([CKNO21, Theorem 4.11]). Let α � n, σ ∈ S`(α) and E ∈ Eσ(α).
Then EndHn(0)(Sσ

α,E) = K id. In particular, Sσ
α,E is an indecomposable Hn(0)-module.

Corollary 3.7.9 (cf. Corollary 3.3.12). Let α � n and σ ∈ S`(α). Then

Sσ
α =

⊕
E∈Eσ(α)

Sσ
α,E

is a decomposition into indecomposable submodules.

Top and socle

In Theorem 3.5.42 of Section 3.5 we gave a combinatorial formula for the top of Sα//β,E

for each skew composition α//β and E ∈ E(α//β). From this we obtained a formula for
top(Sα//β) in Corollary 3.5.46. All results of the section hold for the modules Sσ

α,E as
well. There is one minor exception. In the preface of Example 3.5.2 it is noted that
the horizontal strip sequence Bk,l can be realized as skew composition. In the case of
standard permuted composition tableaux, this can be wrong. However, this note is not
important for the further argumentation. The only necessary adjustment in the proofs
from Section 3.5 is to replace Proposition 3.2.9 by Proposition 3.7.7 again. This has to
be done in Lemma 3.5.18. In particular, Theorem 3.5.42 generalizes to SPCTx.
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3 0-Hecke modules associated to quasisymmetric Schur functions

Theorem 3.7.10 (cf. Theorem 3.5.42). Let α � n, σ ∈ S`(α) and E ∈ Eσ(α). Then

top(Sσ
α,E) ∼=

⊕
D∈OD

FD

as Hn(0)-modules.

Example 3.7.11. Let

T0 =

7 6 5
1
8 4 3
2

be the SPCT from Example 3.7.2 and α, σ and E be its shape, type and equivalence
class, respectively. Recall D(T0) = {1, 2, 4, 7}. Since Dc(T0) = NDc(T0), T0 is the source
tableau of E. The cells are shaded according to the set partition of the diagram of α
given by the descents of T0 (cf. Notation 3.5.1). We have OD(T0) = {1, 4, 7}. Therefore,
Theorem 3.7.10 yields

top(Sσ
α,E) ∼= F {1,4,7} ⊕ F {1,2,4,7}.

as H8(0)-modules.

The formula for the socle of Sα//β,E from Corollary 3.6.41 also generalizes to Sσ
α,E . In

fact, we have again that all results of Section 3.6 hold to the permuted case as well. The
necessary alterations are the following. First, in order to obtain Lemma 3.6.13 on has to
use Proposition 3.2.9 instead of Proposition 3.7.7. The same is true for Lemma 3.6.37.
Second, one has to cite [TvW19, Lemma 3.2] instead of [TvW15, Lemma 3.7] in order
to justify Lemma 3.6.22. Therefore we have the following.

Theorem 3.7.12 (cf. Corollary 3.6.41). Let α � n, σ ∈ S`(α) and E ∈ Eσ(α). Then

soc(Sσ
α,E) ∼=

⊕
A∈FDc

FAc

as Hn(0)-modules.

Example 3.7.13. Consider the SPCT of shape α = (3, 2, 2) and type σ = 213

T1 =
6 5 1
3 2
7 4

.

It is the sink tableau of its equivalence class E. We have Dc(T1) = {1, 2, 5}. The cells
above are shaded according to the set partition of the diagram of α given by the ascents
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3.7 Modules of permuted composition tableaux

of T1 (cf. Notation 3.6.1). Observe FDc(T1) = {2, 5}. Hence, Theorem 3.7.12 yields

soc(Sσ
α,E) ∼= F {3,4,6} ⊕ F {1,3,4,6}

as H7(0)-modules.
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4 Centers and cocenters of 0-Hecke
algebras

Let W be a finite Coxeter group with Coxeter generators S. Fayers asks in [Fay05] for
the center Z(HW (0)) of the 0-Hecke algebra HW (0) of W . Brichard gives a formula for
the dimension of the center in type A [Bri08]. In [He15] He describes a basis of Z(HW (0))
in arbitrary type indexed by certain equivalence classes of W . These classes are rather
subtle. In fact, [He15] contains no result on the number of these classes which is the
dimension of the center. Yang and Li give a lower bound for the dimension of Z(HW (0))
for irreducible W in several types other than A [YL15]. Moreover, they specify the
dimension in type I2(n) for n ≥ 5. This thesis is mainly concerned with the center of
the 0-Hecke algebra Hn(0) of the symmetric group Sn and deals with the approaches of
Brichard and He.
Let ` be the length function of W and define Wmin and Wmax to be the set of elements

of W whose length is minimal and maximal in their conjugacy class, respectively. Geck
and Pfeiffer introduce in [GP93] a relation → on W known as cyclic shift relation. It is
the reflexive and transitive closure of the relations s→ for s ∈ S where we have w s→ w′

if w′ = sws and `(w′) ≤ `(w).
In the case whereW is a Weyl group, Geck and Pfeiffer show thatWmin in conjunction

with → has remarkable properties and how these properties can be used in order to
define a character table for Hecke algebras of W with invertible parameters [GP93].
Since then their results have been generalized to finite [GHL+96], affine [HN14] and
finally to all Coxeter groups [Mar21]. The relation → can also be used to describe
the conjugacy classes of Coxeter groups [GP00, Mar20] in particular for computational
purposes [GHL+96, GP00]. Geck, Kim and Pfeiffer introduce a twisted version →δ of
the relation belonging to twisted conjugacy classes of W in [GKP00].
By setting w ≈ w′ if and only if w → w′ and w′ → w one obtains an equivalence

relation ≈ on W . The ≈-equivalence classes of W are known as cyclic shift classes.
For an element Σ of the quotient set Wmax�≈, He defines the element π̄≤Σ := ∑

x π̄x
where x runs over all the elements of the order ideal in Bruhat order of W generated
by Σ [He15]. Then he shows that the elements π̄≤Σ for Σ ∈ Wmax�≈ form a basis of
Z(HW (0)). Moreover, he defines a basis of the cocenter of HW (0) indexed by Wmin�≈.
We review the approach of He together with further preliminary results in Section 4.1.
Motivated by the above connection to Z(Hn(0)), the main subject of this chapter is

the study of Wmax�≈ in the case where W is the symmetric group Sn. To be precise,
we determine its cardinality, obtain sets of representatives for (Sn)max�≈ and develop a
combinatorial description for certain elements of (Sn)max�≈.
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4 Centers and cocenters of 0-Hecke algebras

Cardinalities, parametrizations and sets of representatives are the subject of Sec-
tion 4.2. Brichard provides the dimension of Z(Hn(0)) and thus the cardinality of
(Sn)max�≈ [Bri08]. Her argumentation is based on a calculus on altered braid diagrams
on the Möbius strip which we call crossing diagrams. Brichard shows that there is a
basis of Z(Hn(0)) indexed by certain crossing diagrams. By counting the diagrams, she
obtains the dimension of Z(Hn(0)). In contrast to that of He, the expansion of Brichards
basis elements into a basis of Hn(0) is involved and no explicit description is given in
[Bri08]. As in [Kim98] we call a composition of n α � n maximal and write α �e n if
there is a k ≥ 0 such that the first k parts of α are even and the remaining parts are
odd and weakly decreasing. In Proposition 4.2.10 we give a system of representatives
for (Sn)max�≈ which corresponds to Brichards diagrams and is indexed by the maximal
compositions of n.

We obtain another set of representatives for Wmax�≈ from the work of Geck, Kim and
Pfeiffer [GKP00]. For each composition α � n, Kim defines the element in stair form
σα ∈ Sn in [Kim98]. Geck, Kim and Pfeiffer show that σα ∈ (Sn)max if and only if α
is a maximal composition [GKP00]. We show in that the elements in stair form σα for
α �e n form a system of representatives of (Sn)max�≈ in Proposition 4.2.14.

Besides (Sn)max�≈ we briefly consider other quotient sets. On W�≈ the relation →
gives rise to a partial order. Gill considers the corresponding subposets O�≈ where O is
a conjugacy class of W and determines the cardinality of Omin�≈ in types A, B and D
[Gil00]. We infer a parametrization of Wmin�≈ based on compositions, the cardinality
of Wmin�≈ and the dimension of the cocenter of HW (0) in these types. In types Bn
and D2n we transfer the results to Wmax�≈. This allows to determine the dimension of
Z(HW (0)) in types Bn and D2n. Moreover, we describe a system of representatives of
(Sn)min�≈ given by Coxeter elements. This is the content of Subsections 4.2.3 and 4.2.4.
In Section 4.3 we strife for a description of the elements in Σ for Σ ∈ (Sn)max�≈.

Via the elements in stair form, these equivalence classes can be indexed by maximal
compositions. For α �e n let Σα ∈ (Sn)max�≈ denote the equivalence class of the
element in stair form σα under ≈. Then the elements π̄≤Σα for α �e n form a basis of
Z(Hn(0)). Since π̄≤Σα is the sum over all π̄x where x is an element of the order ideal
generated by Σα, a description of the elements of Σα is desirable.
The main results of Section 4.3 are combinatorial characterizations of the equivalence

classes Σ(n) (Theorem 4.3.20) and Σ(k,1n−k) with k odd (Theorem 4.3.40) and a decom-
position rule Σ(α1,...,αl) = Σ(α1) � Σ(α2,...,αl) if α1 is even given by an injective operator
� which we call the inductive product (Corollary 4.3.56). This allows us to describe Σα

for all α �e n whose odd parts form a hook. Moreover, we will see how these Σα can
be computed recursively. The results of Section 4.3 will be applied in Chapter 5 whose
topic is the action of the elements π̄≤Σα on the simple Hn(0)-modules.
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4.1 Centers and cocenters with a twist

Throughout the section let W be a finite Coxeter group with Coxeter generators S and
δ be a W -automorphism that fixes S. We also use the shorthand H := HW (0) for the
0-Hecke algebra of W . The purpose of this section is to introduce the center and the
cocenter of H twisted by δ and K-bases of them which are due to He [He15]. These
bases are indexed by certain equivalence classes of W under an equivalence relation ≈δ
depending on δ. At the end of the section we consider a way of parametrizing these
index sets which also goes back to [He15]. We are particularly interested in the center
of Hn(0) which results from setting W = Sn and δ = id. In Section 4.2 we will discuss
further and more explicit parametrizations in types A, B and D.
The following exposition is mainly based on [He15]. We begin with clarifying which

choices for δ are possible. Of course, δ = id is a valid choice. Another example is given
by the conjugation with w0. Recall that w0 denotes the longest element of W . For
u,w ∈ W we use the shorthand wu = uwu−1. Define ν : W → W , w 7→ ww0 . Then
ν is a group automorphism and by Proposition 2.2.6 it is also an automorphism of the
Bruhat order. Consequently, `(ν(w)) = `(w) for all w ∈ W so that ν(S) = S. Hence, ν
is another possibility for δ. In general, each graph automorphism of the Coxeter graph
of W gives rise to a W -automorphism that fixes S. By the next lemma, the converse
direction is also true. The result is not new. For instance, it was already used implicitly
in [GKP00, Section 2.10].

Lemma 4.1.1. Let δ be a group automorphism of W with δ(S) = S.
(1 ) δ is an automorphism of the Coxeter graph of W .
(2 ) δ is an automorphism of the Bruhat order of W .

Proof. For w ∈W denote the order of w with ord(w). Let m be the Coxeter matrix and
Γ be the Coxeter graph of W . Then m(s, s′) = ord(ss′) for all s, s′ ∈ S. Since δ is a
group automorphism, we have ord(δ(w)) = ord(w) for all w ∈W . Hence for all s, s′ ∈ S

m(δ(s), δ(s′)) = ord(δ(s)δ(s′)) = ord(ss′) = m(s, s′). (4.1)

Consequently, {s, s′} is an edge of Γ (labeled with m(s, s′)) if and only if {δ(s), δ(s′)} is
an edge of Γ (labeled with m(s, s′)). That is, δ is an automorphism of Γ.

By a comment following [BB05, Proposition 2.3.4], from each graph automorphism ϕ
of Γ we obtain a automorphism in Bruhat order by extending multiplicatively toW . The
reason for this is that ϕ only relabels the generators of W leaving the Coxeter relations
intact. Thus, δ is also an automorphism of the Bruhat order of W .

Remark 4.1.2. We determine all automorphism δ of Sn with δ(S) = S. The Coxeter
graph of Sn is shown below.

s1 s2 s3 sn−2 sn−1
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This graph has at most two automorphisms: the identity and the mapping given by
si 7→ sn−i. For n ≥ 3 these maps are distinct. Let w0 be the longest element of Sn.
Then w0(j) = n − j + 1 for all j ∈ [n] and therefore sw0

i = (n − i + 1, n − i) = sn−i.
Hence the second map is ν. Now Lemma 4.1.1 and the fact that ν(S) = S imply that
δ ∈ {id, ν} if W = Sn.

Since δ is an automorphism of the Bruhat order by Lemma 4.1.1, it follows that we
obtain an algebra automorphism of H by setting πs 7→ πδ(s) for all s ∈ S and extending
multiplicatively and linearly. This algebra automorphism is also denoted by δ. Note
that we have δ(π̄s) = π̄δ(s) for all s ∈ S as well.
For a, b ∈ H define [a, b]δ := ab−bδ(a) the δ-commutator of a and b. The δ-commutator

of H is the K-linear subspace [H,H]δ spanned by all δ-commutators of elements of H.
We define the δ-cocenter of H as the quotient of K-vector spaces Hδ := H�[H,H]δ. The
δ-center of H is given by

Z(H)δ := {z ∈ H | az = zδ(a) for all a ∈ H} .

In the case δ = id we may omit the index δ.
Let δ′ := ν ◦ δ. Our next goal is to prove a correspondence between Z(H)δ and the

dual of H(δ′)−1 which is quite natural in terms of Frobenius algebras. Afterwards, we
continue with He’s construction of bases ofHδ and Z(H)δ. Note that the correspondence
is not necessary for the construction of the bases.
We first review some basics of Frobenius algebras and then identify H as an algebra

of this kind. Details on Frobenius algebras can be found in textbooks such as [CR62,
Lam99]. In [DHT02] Duchamp, Hivert and Thibon use the Frobenius algebra structure
of Hn(0) in order to define a comultiplication on Hn(0).
Let A be a finite dimensional K-algebra. We write A∗ := HomK(A,K) for its dual

space. Then A∗ becomes a left A-module by setting (af)(b) = f(ba) for all f ∈ A∗ and
a, b ∈ A. We call A Frobenius algebra if there is a K-linear map χ : A → K such that
χ(J) 6= 0 for each left or right ideal J 6= 0 of A. If A is a Frobenius algebra then the
map A→ A∗, a 7→ aχ is an isomorphism of A-modules. In other words, χ is an A-basis
of A∗.
Let’s get back to H. In [Fay05, Proposition 4.1] it is shown that the map χ : H → K

given by

πw 7→
{

1 if w = w0

0 if w 6= w0

for w ∈ W and linear extension makes H a Frobenius algebra. We remark that from
Lemma 2.3.2 it follows that χ(π̄w) = χ(πw) for all w ∈ W . Proposition 4.2 of [Fay05]
yields that

χ(ab) = χ(ν(b)a)

for all a, b ∈ H. In general, if A together with χ is a Frobenius algebra then there exists
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a unique algebra automorphism of A satisfying the above equation called the Nakayama
automorphism of A. In the case of H, we additionally have ν2 = id so that

χ(bν(a)) = χ(ν2(a)b) = χ(ab)

as well.
In [Bri08, Claim 1.2] Brichard relates Z(H)δ with

(
H(δ′)−1

)∗
by a K-isomorphism in

the case W = Sn. Since there are some flaws in the proof we give a proof of an even
more general result.

Theorem 4.1.3. The K-vector spaces Z(H)δ and
(
H(δ′)−1

)∗
are isomorphic via the

map

Ψ: Z(H)δ →
(
H(δ′)−1

)∗
, z 7→ zχ

where π : H → H(δ′)−1 is the canonical projection and zχ : H(δ′)−1 → K is the unique
K-linear map satisfying zχ = zχ ◦ π.

Proof. Let δ� = (δ′)−1. Then for z ∈ Z(H)δ, zχ is given by setting

zχ(a+ [H,H]δ�) = zχ(a)

for all a ∈ H. We have to show that Ψ is well defined, K-linear and bijective. The
linearity should be clear. For all a, b, c ∈ H we have

χ(b[a, c]δ) = −cχ([δ′(a), b]δ�) (4.2)

because

−cχ ([δ′(a), b]δ�
)

= −cχ(δ′(a)b− bδ�(δ′(a)))
= −χ(δ′(a)bc− bac)
= χ(bac)− χ(δ′(a)bc)
= χ(bac)− χ(bcν(δ′(a)))
= χ(b(ac− cδ(a))
= χ(b[a, c]δ)

where we use that χ(xy) = χ(yν(x)) for the forth and δ′ = ν ◦ δ for the fifth equality.
For all c ∈ H we have

c ∈ Z(H)δ ⇐⇒ [a, c]δ = 0 ∀a ∈ H
⇐⇒ χ(b[a, c]δ) = 0 ∀a, b ∈ H
⇐⇒ cχ([a, b]δ�) = 0 ∀a, b ∈ H
⇐⇒ [H,H]δ� ⊆ ker(cχ)

(4.3)

where the second equivalence holds because χ(J) 6= 0 for each left ideal J 6= 0 of H
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and the third equivalence is a consequence of (4.2) and the fact that −δ′ is an H-
automorphism.
Given z ∈ Z(H)δ, Equation (4.3) implies that zχ factors through [H,H]δ� . Thus,

there exists a unique zχ as claimed and Ψ is well defined.
Now we show that Ψ is surjective. Let π∗ : (Hδ�)∗ → H∗, f 7→ f ◦ π be the dual map

of the canonical projection. Consider f ∈ (Hδ�)∗. Since χ is an H-basis of H∗, there is
a c ∈ H such that cχ = π∗(f) = f ◦ π. Then

[H,H]δ� = ker(π) ⊆ ker(cχ)

and from (4.3) it follows that c ∈ Z(H)δ. Moreover cχ ◦ π = cχ = f ◦ π. Hence, cχ = f
by the uniqueness of cχ. Consequently, Ψ is surjective.
Lastly, we show that Ψ is injective. Let z ∈ Z(H)δ such that zχ = 0. Then zχ = 0

since zχ = zχ ◦ π. Moreover, χ is an H-basis of H∗. Therefore z = 0.

If δ ∈ {id, ν} then δ−1 = δ and we obtain the following result from Theorem 4.1.3.
For W = Sn this is [Bri08, Claim 1.2].

Corollary 4.1.4. If δ ∈ {id, ν} then

Z(H) ∼=
(
Hν

)∗
and Z(H)ν ∼=

(
H
)∗

as K-vector spaces.

If W = Sn then by Remark 4.1.2 we have δ ∈ {id, ν}. Hence, Corollary 4.1.4 covers
all possibilities for δ in this case.
We need some more notions from [He15] in order to introduce bases for Hδ and

Z(H)δ. Two elements w,w′ ∈ W are called δ-conjugate if there is an x ∈ W such that
w′ = xwδ(x)−1. The set of δ-conjugacy classes of W is denoted by cl(W )δ.

Example 4.1.5. The ν-conjugacy classes of S3 are

{1, (1, 2, 3), (1, 3, 2)} , {(1, 2), (2, 3)} and {(1, 3)} .

For O ∈ cl(W )δ the set of elements of minimal length in O and the set of elements of
maximal length in O is denoted by Omin and Omax, respectively. We want to decompose
these sets using an equivalence relation.
Let w,w′ ∈ W . For s ∈ S we write w s→δ w

′ if w′ = swδ(s) and `(w′) ≤ `(w). We
write w →δ w

′ if there is a sequence w = w1, w2, . . . , wk+1 = w′ of elements of W such
that for each i ∈ [k] there exists an s ∈ S such that wi s→δ wi+1. If w →δ w

′ and
w′ →δ w we write w ≈δ w′.

Clearly, ≈δ is an equivalence relation. For w ∈W let [w]δ denote its equivalence class
in W with respect to ≈δ. If w ≈δ w′ then `(w) = `(w′). Thus, for all O ∈ cl(W )δ, Omin
and Omax decompose in equivalence classes of ≈δ. Define Wδ,min := ⋃

O∈cl(W )δ Omin

and Wδ,min�≈δ to be the quotient set of Wδ,min by ≈δ. Analogously, define the sets
Wδ,max := ⋃

O∈cl(W )δ Omax andWδ,max�≈δ. As before, we may omit the index δ if δ = id.
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4.1 Centers and cocenters with a twist

Example 4.1.6. We consider S3.

(1) We have (1, 2) (1,2)→ ν (2, 3) (1,2)→ ν (1, 2) so that (1, 2) ≈ν (2, 3). Thus, from Exam-
ple 4.1.5 it follows that the elements of (S3)ν,min�≈ν are

{1} , {(1, 2), (2, 3)} and {(1, 3)} .

(2) We have (1, 2, 3) (1,2)→ (1, 3, 2) (1,2)→ (1, 2, 3) so that (1, 2, 3) ≈ (1, 3, 2). Hence, the
elements of (S3)max�≈ are

{1} , {(1, 2, 3), (1, 3, 2)} and {(1, 3)} .

We now come to the bases of Hδ and Z(H)δ found by He.

Theorem 4.1.7 ([He15, Theorem 6.5]). Let w1, . . . , wk ∈ Wδ,min be a system of repre-
sentatives of Wδ,min�≈δ. The elements π̄wi + [H,H]δ for i = 1, . . . , k form a basis of
Hδ.

We remark that by [He15, Proposition 3.1] for all Σ ∈ Wδ,min�≈δ the element π̄w +
[H,H]δ of Hδ does not depend on the choice of the representative w ∈ Σ.
For Σ ∈Wδ,max�≈δ set

W≤Σ := {x ∈W | x ≤ w for some w ∈ Σ}

and

π̄≤Σ :=
∑

x∈W≤Σ

π̄x.

Theorem 4.1.8 ([He15, Theorem 5.4]). The elements π̄≤Σ for Σ ∈ Wδ,max�≈δ form a
basis of Z(H)δ.

Example 4.1.9. We consider H3(0).
(1) From Example 4.1.6 and Theorem 4.1.7 it follows that

{π̄w + [H3(0), H3(0)]ν | w = 1, (1, 2), (1, 3)}

is a basis of H3(0)ν .
(2) We use Theorem 4.1.8 in order to determine a basis of Z(H3(0)). In Example 4.1.6

the index set (S3)max�≈ is given. In addition,

(1, 2, 3) = s1s2, (1, 3, 2) = s2s1 and (1, 3) = w0.

115



4 Centers and cocenters of 0-Hecke algebras

Thus, Theorem 4.1.8 yields that the elements

1, 1 + π̄1 + π̄2 + π̄1π̄2 + π̄2π̄1 and
∑
w∈S3

π̄w

form a basis of Z(H3(0)).

Remark 4.1.10. Regarding the roles played by Wδ,min�≈δ and Wδ,max�≈δ in Theo-
rems 4.1.7 and 4.1.8 it is natural to ask for the description of a system of representatives
or at least the cardinalities of these sets. This is the subject of Section 4.2. There the
question is answered for W = Sn. Also the cardinalities of the quotient sets are given
in type B and in some cases in type D. In [He15] He does not discuss these matters.

We have seen in Proposition 2.2.6 that w 7→ ww0 is an antiautomorphism of the
Bruhat order of W . This map gives rise to a bijection from Wδ,min�≈δ to Wδ′,max�≈δ′ as
follows. This bijection will often be used in Section 4.2.

Lemma 4.1.11. Let w,w′ ∈W and Σ ⊆W .
(1 ) w →δ w

′ if and only if w′w0 →δ′ ww0.
(2 ) w ∈Wδ,min if and only if ww0 ∈Wδ′,max.
(3 ) Σ ∈Wδ,min�≈δ if and only if Σw0 ∈Wδ′,max�≈δ′.

Proof. The proofs of (1) and (2) are slight generalizations of the argumentation at the
beginning of [GKP00, Section 2.9]. For Part (3) let Σ ∈ Wδ,min�≈δ and w ∈ Σ. Then
w ∈ Wδ,min and by Part (2), ww0 ∈ Wδ′,max. Hence, there is a T ∈ Wδ′,max�≈δ′ such
that ww0 ∈ T. From Part (1) and the definition of ≈δ we infer that for all w′ ∈W

w′ ≈δ w ⇐⇒ w′w0 ≈δ′ ww0.

In addition, the map from W to W given by right multiplication with w0 is bijective.
Therefore it follows that Σw0 = T. Thus, Σw0 ∈ Wδ′,max�≈δ′ . Analogously, we obtain
Tw0 ∈Wδ,min�≈δ if we start with an arbitrary T ∈Wδ′,max�≈δ′ .

Combining Theorem 4.1.7, Theorem 4.1.8 and Lemma 4.1.11 we get a result similar
to Theorem 4.1.3. Note that this result depends on the K-bases given in the theorems
whereas the proof of Theorem 4.1.3 is K-basis-free.

Corollary 4.1.12. The K-vector spaces Z(H)δ and Hδ′ are isomorphic.

Elliptic conjugacy classes

We now come to a parametrization of the sets Wδ,min�≈δ and Wδ,max�≈δ which is due
to He. This parametrization is valid for all choices of W and δ. We first state the
parametrization in Proposition 4.1.14 and then infer some results that are of use in
Section 4.3 and Chapter 5. In Section 4.2 we consider more explicit parametrizations in
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4.1 Centers and cocenters with a twist

the cases where W is the symmetric group and make some remarks about the situation
in types B and D.

A δ-conjugacy class O ∈ cl(W )δ is called elliptic if O ∩WI = ∅ for all I ( S such
that δ(I) = I. Elliptic conjugacy classes are also called cuspidal in the literature (e.g. in
[GP00]).
Define

Γδ := {(I, C) | I ⊆ S, I = δ(I) and C ∈ cl(WI)δ is elliptic} .

Note Γδ has a recursive structure. If all elliptic δ-conjugacy classes of all parabolic
subgroups WI of W with δ(I) = I are known then the problem of determining Γδ
reduces to the elliptic δ-conjugacy classes of W itself.

Example 4.1.13. We determine the set Γν associated to S3. The simple reflections
of S3 are S = {s1, s2}. Since ν(s1) = s2, the subsets of S that are stable under ν are
∅ and S. The sole ν-equivalence class of (S3)∅ is {1}. Trivially, this class is elliptic.
The ν-equivalence classes of (S3)S = S3 are given in Example 4.1.5. Observe that
{1, (1, 2, 3), (1, 3, 2)} is the only element of cl(S3)ν that is not elliptic. Hence,

Γν = {(∅, {1}) , (S, {(1, 2), (2, 3)}) , (S, {(1, 3)})} .

Proposition 4.1.14 ([He15, Corollaries 4.2 and 4.3]). The maps

Γδ →Wδ,min�≈δ
(I, C) 7→ Cmin

and
Γδ′ →Wδ,max�≈δ

(I, C) 7→ Cminw0

are bijections.

One may check that by applying Proposition 4.1.14 on Example 4.1.13, we obtain the
sets (S3)ν,min�≈ν and (S3)max�≈ from Example 4.1.6. We continue with consequences
of Proposition 4.1.14 which we prepare for later use.

Lemma 4.1.15.
(1 ) For all Σ ∈Wδ,min�≈δ we have δ(Σ) = Σ.

(2 ) For all Σ ∈Wδ,max�≈δ we have δ′(Σ) = Σ.

Proof. (1) Let Σ ∈ Wδ,min�≈δ and w ∈ Σ. By Proposition 4.1.14 there exists a tuple
(I, C) ∈ Γδ such that C ∈ cl(WI)δ and Σ = Cmin. Hence w ∈ WI and therefore
w−1 ∈WI . It follows that

δ(w) = w−1wδ(w−1)−1 ∈ C.

Moreover, `(δ(w)) = `(w) because δ is a Bruhat order automorphism. Therefore, δ(w) ∈
Cmin = Σ. Hence, δ(Σ) = Σ.
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4 Centers and cocenters of 0-Hecke algebras

(2) Let Σ ∈ Wδ,max�≈δ. From Lemma 4.1.11 it follows that Σw0 ∈ Wδ′,min�≈δ′ .
Hence,

δ′(Σ)w0 = δ′(Σw0) = Σw0

where we use that δ′ is a group homomorphism with δ′(w0) = w0 for the first and Part (1)
for the second equality. Now multiply from the right with w0.

The following result will be used repeatedly in Section 4.3 and Chapter 5 forW = Sn.
We obtain it by setting δ = id in the second part of Lemma 4.1.15.

Corollary 4.1.16. For all Σ ∈Wmax�≈ we have ν(Σ) = Σ.

A similar result on parabolic subgroups will also be handy in Chapter 5.

Lemma 4.1.17. For all I ⊆ S we have ν(WI) = Wν(I).

Proof. Let I ⊆ S and w ∈W . Recall that ν is an Bruhat order automorphism. In partic-
ular, ν(I) ⊆ S. Let u1 · · ·uk with uj ∈ S be a reduced word for w. Then ν(u1) · · · ν(uk)
is a reduced word for ν(w). Thus,

w ∈WI ⇐⇒ uj ∈ I for all 1 ≤ j ≤ k
⇐⇒ ν(uj) ∈ ν(I) for all 1 ≤ j ≤ k ⇐⇒ ν(w) ∈Wν(I).

4.2 Parametrizations in classical types

Let W be a finite Coxeter group with Coxeter generators S, H := HW (0) its 0-Hecke
algebra and δ be an W -automorphism with δ(S) = S. Theorems 4.1.7 and 4.1.8 intro-
duced bases of the δ-cocenter Hδ and the δ-center Z(H)δ that are indexed by Wδ,min�≈δ
and Wδ,max�≈δ, respectively. In this section we consider parametrizations of these quo-
tient sets in types A, B and D. We focus on (Sn)max�≈ since this set indexes the basis
of the center of the 0-Hecke algebra of Sn.
We often use the following correspondence. Recall that δ′ = ν ◦ δ where ν is the

W -automorphism given by conjugating with w0. From Lemma 4.1.11 it follows that
Σ 7→ Σw0 is a bijection from Wδ,min�≈δ to Wδ′,max�≈δ′ . Hence, a parametrization of the
one set entails a parametrization of the other.
The section is structured as follows. In Subsection 4.2.1 and Subsection 4.2.2 we

consider parametrizations of (Sn)max�≈. In both cases we obtain a parametrization by
certain compositions of n and a set of representatives for (Sn)max�≈. Subsection 4.2.1 is
based on the calculus on crossing diagrams done by Brichard [Bri08]. It allows to deter-
mine the dimension of Z(Hn(0)). In Subsection 4.2.2 we consider certain permutations
called elements in stair form which were introduced by Kim [Kim98].
In Subsection 4.2.3 we introduce a parametrization of (Sn)min�≈ given by Coxeter

elements which is based on the results of Gill from [Gil00]. Recall from Remark 4.1.2
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4.2 Parametrizations in classical types

π1 = π1π2 =

Figure 4.1: Two crossing diagrams on four strands

that we have δ ∈ {id, ν} if W = Sn. Hence the findings of Subsections 4.2.1 to 4.2.3
cover all possibilities for (Sn)δ,min�≈δ and

(Sn)δ,max�≈δ.
Finally, in Subsection 4.2.4 we briefly discuss results concerning Wmin�≈ and Wmax�≈

in types B and D which are also consequences of [Gil00]. We obtain dimension formulas
for the cocenter of H in type Bn and Dn and the center of H in type Bn and D2n.

Subsection 4.2.2 is the only part of this section which is significant for the subsequent
argumentation in Section 4.3 and Chapter 5. It can be read independently from the
other subsections.

4.2.1 Crossing diagrams

In this and the following two subsections we consider the symmetric group Sn with
its set of simple reflections S and 0-Hecke algebra Hn(0). Our goal is to obtain a
parametrization of (Sn)max�≈ and we use a calculus on topological diagrams due to
Brichard [Bri08] to achieve it. We call these diagrams crossing diagrams. Each πw for
w ∈ Sn can be represented by a crossing diagram. Brichard uses them in order to obtain
a basis of Hn(0)ν and determine the dimensions of Hn(0)ν and Z(Hn(0)).
Crossing diagrams are similar to the braid diagrams associated with the Artin braid

groups. For a textbook treatment of the braid groups and braid diagrams we refer to
[KT08]. In the present subsection we first review the findings related to Hn(0) of [Bri08]
and then use them to obtain new parametrizations of (Sn)ν,min�≈ν and (Sn)max�≈.
The following definition of crossing diagrams is based on the definition of braid dia-

grams from [KT08, Section 1.2.2]. Let J be the real interval [0, 1]. A topological interval
is a topological space homeomorphic to J .

Definition 4.2.1. A crossing diagram on n strands D ⊆ R × J is the union of n
topological intervals called strands of D such that the following holds.
(1 ) The projection R× J → J maps each strand homeomorphically onto J .
(2 ) Every point of {1, 2, . . . , n} × {0, 1} is the endpoint of a unique strand of D.
(3 ) Every point of R × J belongs to at most two strands of D. At each intersection

point of two strands, the strands meet transversely.

The intersection points are also called crossings. The difference to the definition of
usual braid diagrams in [KT08, Section 1.2.2] is that at a crossing we do not care which
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4 Centers and cocenters of 0-Hecke algebras

π1π3 = = = π3π1

Figure 4.2: Isotopic diagrams

strand is overgoing and which is undergoing. Two diagrams on four strands are shown
in Figure 4.1.
Two crossing diagrams D and D′ are called isotopic if there is a continuous map

F : D × J → R × J such that F (D × {s}) is a crossing diagram for each s ∈ J (see
Figure 4.2). It follows that the number of crossings is invariant under isotopy. Note
that Brichard uses another notion of isotopy in [Bri08]. Equality of crossing diagrams is
considered up to isotopy.
For two diagrams D1 and D2 the product D1D2 is the diagram obtained by writing

D2 under D1 and resizing the result to R × J . For i = 1, . . . , n − 1 we identify the
generator πi of Hn(0) with the diagram on n strands where exactly strand i and i + 1
cross. The diagrams on four strands π1 and π1π2 are shown in Figure 4.1. The diagram
on n strands without crossings is denoted by 1.
Let D be a crossing diagram on n strands. Then we can use an isotopy to slightly

move the crossings of D so that the second coordinates of all crossings are distinct.
Then there are i1, . . . , ik ∈ [n− 1] such that we can expand D as a product of diagrams
πi1 · · ·πik . Note that isotopies that preserve the relative order of the second coordinates
of the crossings do not change this expansion. Conversely, if a isotopy does changes this
order then πiπj is substituted by πjπi for some i, j ∈ [n− 1] such that |i− j| ≥ 2 within
the expansion. Therefore, the expansion of D is unique up to this braid relation.

In order to obtain the other defining relations of Hn(0), we introduce the following
two manipulations of sub diagrams of D, which we call moves.

(1) Replace two consecutive crossings of the same strands with one crossing or vice
versa.

↔

(2) Move a strand completely over or under a crossing.

↔
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4.2 Parametrizations in classical types

π1π2 = = = π2π3

Figure 4.3: Two diagrams on the Möbius strip which are the same. We pushed the first
crossing of the left diagram upward in order to move it around the Möbius
strip.

Moves 1 and 2 correspond to the relations π2
i = πi and πiπi+1πi = πi+1πiπi+1 of

Hn(0), respectively. The second move is known as the third Reidemeister move.
We say that two diagrams are equivalent if we can transform one diagram into the

other by a series of moves (and of course isotopies). That is, the equivalence classes of
the crossing diagrams corresponding to πi satisfy the same relations as the πi themselves.

Therefore, mapping each πi ∈ Hn(0) to the equivalence class of its crossing diagram
yields a surjective algebra homomorphism from Hn(0) to the K-algebra generated by
the equivalence classes of crossing diagrams. This map is also injective: Assume that
πi1 · · ·πik and πj1 · · ·πjk correspond to equivalent diagramsD andD′, respectively. Then
we can transform D into D′ by a series of isotopies and moves. But since πi1 · · ·πik and
πj1 · · ·πjk are the expansions of D and D′ we can transform πi1 · · ·πik into πj1 · · ·πjk by
applying the defining relations of Hn(0) corresponding to the isotopies and moves. Hence
πi1 · · ·πik = πj1 · · ·πjk as elements in Hn(0). Therefore, Hn(0) and the the K-algebra
generated by the equivalence classes of crossing diagrams are isomorphic K-algebras.
For each w ∈ Sn we can represent πw by the crossing diagram πi1 · · ·πik where

si1 · · · sik is a reduced word of w. Since two reduced words of w can be transformed
into each other by a series of braid moves, the diagram πw is unique up to the applica-
tion of the third Reidemeister move.
From using the isomorphism from above and the fact that the πw for w ∈ Sn form a

basis of Hn(0), it follows that the diagrams πw for w ∈ Sn form a system of representa-
tives of the equivalence classes of crossing diagrams.
A diagram is called reduced if its number of crossings is minimal in its equivalence

class. Let si1 · · · sik be a word in Sn and D := πi1 · · ·πik the corresponding diagram.
Then si1 · · · sik is a reduced word if and only if D is reduced. The reason for this is that
both statements are equivalent to

k = min {l | sj1 , . . . , sjl ∈ Sn such that πj1 · · ·πjl = πi1 · · ·πik in Hn(0)} .

It follows that for all w ∈ Sn the reduced diagrams of the equivalence class of πw are
those whose expansions are given by reduced words of w.
So far, we related Hn(0) to crossing diagrams on n strands in the plane. In order

to obtain diagrams that correspond to Hn(0)ν , we consider diagrams on the Möbius
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P1 = P2 = P3 = P4 = P5 =

Figure 4.4: Some prime diagrams

strip. That is, we still draw diagrams in the plane but we identify the top position (i, 1)
with the bottom position (n − i + 1, 0) for i = 1, . . . , n. Let πiπw with w ∈ Sn be a
diagram with topmost crossing between strand i and strand i+ 1. Then we can use an
isotopy to push this crossing upward and move it around the Möbius strip so that we
obtain a crossing between strand n− i+ 1 and n− i below πw (see Figure 4.3). Hence,
πiπw = πwπn−i, i.e. [πi, πw]ν = 0.
From this it follows that the equivalence classes of the diagrams on the Möbius

strip corresponding to πw for w ∈ Sn satisfy the same relations as the elements πw +
[Hn(0), Hn(0)]ν of Hn(0)ν . Thus, the K-vector space formed by these equivalence classes
is isomorphic to Hn(0)ν . As a consequence, maximal sets of pairwise nonequivalent re-
duced diagrams on the Möbius strip correspond to bases of Hn(0)ν .
From now on we understand all diagrams as diagrams on the Möbius strip. Since we

have identified top and bottom positions the strands of of an n-strand diagram now form
circles around the Möbius strip. Let c be the number of these circles. Then c ≤ n. A
single circle is called component of the diagram. The thickness of a component is the
number of top positions contained in the component. In other words, the thickness is
the number of times the circle goes around the Möbius strip. A diagram is called prime
if it has only one component.
Brichard shows in [Bri08, Section 3.1] for each n that Pn := π1π2 · · ·πbn−1

2 c
is the only

reduced prime diagram of thickness n. Some prime diagrams are shown in Figure 4.4.
We now add a prime component to a diagram. The following is a reformulation of results
from [Bri08, Section 3.2].

Definition 4.2.2. Let m ∈ N, k := bm−1
2 c and D := πi1 · · ·πil be a diagram with n

strands. Then we define the composite diagram of Pm and D to be the crossing diagram
with m+ n strands

Pm ◦D := π1π2 · · ·πk · πi1+k+1πi2+k+1 · · ·πil+k+1 · η

where

η :=
{

1 if m is even
πk+1πk+2 · · ·πk+n if m is odd.

See Figure 4.5 for examples. Geometrically, we obtain Pm◦D by splitting Pm vertically
(almost if m is odd) in the middle and attach the two parts right and left to D. If m ≥ 2
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D(1,2) = P1 ◦ P2 = 1 · 1 · π1π2 =

D(3,1) = P3 ◦ P1 = π1 · 1 · π2 =

D(4,3,1) = P4 ◦D(3,1) = π1 · π3π4 · 1 =

Figure 4.5: The crossing diagrams of some compositions. In each composite diagram
Pm ◦D the dashed strands belong to Pm.

then Pm occupies the outer top and bottom positions andD the inner positions in Pm◦D.
If m is odd, then Pm has the top positions

([k + 1] ∪ [n+m− k + 1, n+m])× {1}

and the bottom positions

([k] ∪ [n+m− k, n+m])× {0} .

Therefore, the strand of Pm ending in (k + 1, 0) corresponds to the strand of Pm ◦ D
ending in (m + n − k, 0). That is, the latter strand has to cross each strand of D in
Pm ◦D which results in the factor η. If m is even then this does not occur since Pm can
symmetrically be split in the middle and has no crossing πm

2
.

Definition 4.2.3. Let α = (α1, . . . , αl) � n. Inductively, we define

Pα1 ◦ Pα2 ◦ · · · ◦ Pαl := Pα1 ◦ (Pα2 ◦ · · · ◦ Pαl) .

This crossing diagram on the Möbius strip is called the crossing diagram of α and denoted
by Dα.

Some crossing diagrams of compositions are shown in Figure 4.5. Note that the
diagram Dα is not necessarily reduced. For example, D(1,2) = π1π2 is equivalent to π1
and therefore not reduced (see Figure 4.6). We want to characterize the compositions α
for which Dα is reduced.
Definition 4.2.4 ([Kim98]). Let α = (α1, . . . , αl) � n. We call α maximal and write
α �e n if there exists a k with 0 ≤ k ≤ l such that αi is even for i ≤ k, αi is odd for
i > k and αk+1 ≥ αk+2 ≥ · · · ≥ αl.
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D(1,2) = π1π2 = = ↔ = π1

Figure 4.6: These diagrams on the Möbius strip are equivalent. We obtain the second
from the first diagram by pushing the lower crossing around the Möbius strip.
Thus, the diagram D(1,2) is not reduced.

We write α �e n if α is a maximal composition of n to indicate, that only the order
of the even parts matters. We emphasize that if α is a composition with only odd parts
that are weakly decreasing then it is maximal. In other words, each partition λ with
only odd parts is a maximal composition. Regarding the compositions from Figure 4.5,
we get that (3, 1) and (4, 3, 1) are maximal whereas (1, 2) is not.
Section 3.2 of [Bri08] deals with the composition of prime diagrams. Brichard does not

use the notions of maximal compositions or crossing diagrams of compositions. However,
her results can be rephrased as follows.

Lemma 4.2.5 ([Bri08, Section 3.2]).
(1 ) Let α � n. The diagram Dα is reduced if and only if α is maximal.
(2 ) Let α, β �e n with Dα equivalent to Dβ. Then α = β.
(3 ) Each diagram on n strands is equivalent to Dα for some α �e n.

Let α �e n and Dα = πi1 · · ·πik . Define dα := si1 · · · sik ∈ Sn. Since Dα is reduced by
Lemma 4.2.5, si1 · · · sik is a reduced word for dα and therefore πdα = Dα as diagrams.
Note that by using Definitions 4.2.2 and 4.2.3, we can recursively compute dα.

Lemma 4.2.5 implies that {Dα | α �e n} is a system of representatives of the equiv-
alence classes of diagrams with n strands on the Möbius strip. Therefore, we have the
following.

Theorem 4.2.6 ([Bri08, Section 5.1]). The elements πdα + [Hn(0), Hn(0)]ν for α �e n
form a basis of Hn(0)ν .

Example 4.2.7. Let n = 3. The maximal compositions of 3 are (3), (2, 1) and (1, 1, 1).
The corresponding diagrams are

D(3) = P3 = π1,

D(2,1) = P2 ◦ P1 = 1,
D(13) = P1 ◦ (P1 ◦ P1) = P1 ◦ π1 = π2π1π2.

Hence, {πw + [H3(0), H3(0)]ν | w = 1, (1, 2), (1, 3)} is a basis of H3(0)ν .
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Since the basis of Hn(0)ν of Theorem 4.2.6 is indexed by maximal compositions, it is
easy to determine the dimension of Hn(0)ν . Recall that by Corollary 4.1.4 this is also
the dimension of Z(Hn(0)).

Corollary 4.2.8 ([Bri08, Section 5.1]). The dimensions of Z(Hn(0)) and Hn(0)ν both
equal

∑
λ`n

nλ!
mλ

where for λ = (1k1 , 2k2 , . . . ) ` n, mλ := ∏
i≥1 k2i! and nλ := ∑

i≥1 k2i is the number of
even parts of λ.

Proof. Each summand is the number of maximal compositions that rearrange the par-
tition λ ` n. Hence, the sum is the number of maximal compositions of n. By Theo-
rem 4.2.6 this is the dimension of Hn(0)ν .

From Theorem 4.1.7 we already know a basis of Hn(0)ν . It yields that

{π̄wi + [Hn(0), Hn(0)]ν | i = 1, . . . , k}

is a basis of Hn(0)ν where w1, . . . , wk is a system of representatives of (Sn)ν,min�≈ν .
Alternatively, by Proposition 4.1.14 one can use a system of representatives of

{Cmin | (I, C) ∈ Γν}

with the Γν corresponding to Sn.
In Remark 4.1.10 we raised the question for the cardinality and the description of a sys-

tem of representatives of (Sn)ν,min�≈ν . Our next aim is to show that with {dα | α �e n}
we have found such a system. Its cardinality is given by Corollary 4.2.8. This leads to
our desired parametrization and extends the findings of Brichard [Bri08] and He [He15].

Lemma 4.2.9. Let α �e n. Then dα ∈ (Sn)ν,min.

Proof. Let O ∈ cl(Sn)ν such that dα ∈ O. We have to show that dα ∈ Omin, i.e. that
`(dα) is minimal in O. Assume that `(dα) is not minimal. Then by [He15, Theorem 2.2]
there are w ∈ O and si ∈ S such that dα

si−→ν w and `(w) < `(dα). Thus, dα = siwsn−i
and `(w) = `(dα)− 2. Let sj1 · · · sjr be a reduced word for w. Then in Hn(0)ν we have

πdα = πiπj1 · · ·πjrπn−i = πiπiπj1 · · ·πjr .

That is, the diagram of Dα contains two consecutive crossings of the same strands. Thus
we can apply Move 1 and obtain a diagram equivalent to Dα with one crossing less then
Dα. But this is a contradiction since Dα is reduced by Lemma 4.2.5.

We now come to the parametrization of (Sn)max�≈.
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Proposition 4.2.10. The maps

{α �e n} → (Sn)ν,min�≈ν
α 7→ [dα]ν

and {α �e n} → (Sn)max�≈
α 7→ [dαw0]

are bijections.
Proof. Let α �e n, f be the first and g be the second map. From Lemma 4.2.9 we
have that dα ∈ (Sn)ν,min. Hence, [dα]ν ∈ (Sn)ν,min�≈ν as claimed. Since {α �e n} and
(Sn)ν,min�≈ν both parametrize bases of Hn(0)ν by Theorem 4.2.6 and Theorem 4.1.7,
respectively, the two sets have the same cardinality. Therefore, in order to show that f
is a bijection, it suffices to prove its injectivity.
Let β �e n be such that [dα]ν = [dβ]ν . Then dα ≈ν dβ and from [He15, Proposition

3.1] it follows that πdα + [Hn(0), Hn(0)]ν = πdβ + [Hn(0), Hn(0)]ν . Now Theorem 4.2.6
implies α = β. Hence, f is a bijection.

Now consider g. Lemma 4.1.11 provides the bijection

h : (Sn)ν,min�≈ν → (Sn)max�≈, Σ 7→ Σw0.

Then g = h ◦ f and hence g is a bijection too.

By Proposition 4.2.10 we have that the dα and dαw0 for α �e n form a system of
representatives for (Sn)ν,min�≈ν and (Sn)max�≈, respectively. Moreover, with Proposi-
tion 4.1.14 it follows that the dα form such a system for {Cmin | (I, C) ∈ Γν}.
Example 4.2.11. Consider n = 3. From Example 4.2.7 we obtain that

α �e 3 (3) (2, 1) (13)
dα (1, 2) 1 (1, 3)

dαw0 (1, 3, 2) (1, 3) 1

where w0 = (1, 3). One may check with Example 4.1.6 that the dα and the dαw0 form
systems of representatives of (S3)ν,min�≈ν and (S3)max�≈, respectively.

From Proposition 4.2.10 and Theorem 4.1.8 we deduce the following.
Corollary 4.2.12. The elements π̄≤[dαw0] for α �e n form a basis of Z(Hn(0)).
Let α �e n. Recall that π̄≤[dαw0] = ∑

x∈(Sn)≤[dαw0]
π̄x where

(Sn)≤[dαw0] = {x ∈ Sn | x ≤ w for some w ∈ [dαw0]} .

That is, we have an explicit description of the expansion of elements of the basis of
Z(Hn(0)) into a basis of Hn(0). In Section 5.1 of [Bri08] Brichard describes how one
can use the inverse of the isomorphism from Theorem 4.1.3 in order to obtain a basis
of Z(Hn(0)) from the basis {πdα + [Hn(0), Hn(0)]ν | α �e n} of Hn(0)ν . In comparison
with the description above, her procedure is less explicit. Indeed, [Bri08] contains no
formula for the expansion of the basis elements of the center in terms of a basis of Hn(0).
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4.2.2 Elements in stair form

Recall from Definition 4.2.4 that a composition α is called maximal if there is a k ≥ 0
such that the first k parts of α are even and the remaining parts are odd and weakly
decreasing. We mentioned in the introduction of the chapter that Kim defined the
elements in stair form σα ∈ Sn for α � n [Kim98]. Geck, Kim and Pfeiffer showed that
these elements have maximal length in their respective conjugacy class if and only if α
is a maximal composition in [GKP00]. In this subsection we show that the σα for α �e n
form a system of representatives of (Sn)max�≈ and by that give another parametrization
of (Sn)max�≈. This is the foundation of Section 4.3 and Chapter 5.

Definition 4.2.13. Let α = (α1, . . . , αl) � n. Define the list (x1, x2, . . . , xn) by setting
x2i−1 := i and x2i := n− i+ 1. The element in stair form σα ∈ Sn corresponding to α
is given by

σα := σα1σα2 · · ·σαl

where σαi is the αi-cycle

σαi :=
(
xα1+···+αi−1+1, xα1+···+αi−1+2, . . . , xα1+···+αi−1+αi

)
.

For instance, σ(4,2) = (1, 6, 2, 5)(3, 4). We obtain σα for α = (α1, . . . , αl) � n as follows.
Let di := ∑i

j=1 αi for i = 1, . . . , l and consider the list (x1, x2, . . . , xn) given as above.
Then split the list between xdi and xdi+1 for i = 1, . . . , l − 1. The resulting sublists are
the cycles of σα. In particular, if α and β are compositions with σα = σβ then α = β.

This following parametrization of (Sn)max�≈ is the main result of this subsection.

Proposition 4.2.14. The map

{α �e n} → (Sn)max�≈
α 7→ [σα]

is a bijection.

Before we begin with the proof of Proposition 4.2.14 we discuss some immediate
consequences. First of all, using Lemma 4.1.11 as in Proposition 4.2.10 we obtain the
corresponding parametrization of (Sn)ν,min�≈ν .

Corollary 4.2.15. The map

{α �e n} → (Sn)ν,min�≈ν
α 7→ [σαw0]ν

is a bijection.
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Example 4.2.16. Consider n = 3. Then we have

α �e 3 (3) (2, 1) (13)
σα (1, 3, 2) (1, 3) 1

σαw0 (1, 2) 1 (1, 3)

One may check against Example 4.1.6 that the σα and the σαw0 form a system of
representatives of (S3)max�≈ and (S3)ν,min�≈ν , respectively.

By comparing with Example 4.2.11, we obtain that σα = dαw0 for all α �e 3. Hence,
one might be tempted to conjecture that this is always the case. However, α = (3, 3)
provides the smallest counter example:

σ(3,3) = (1, 6, 2)(3, 4, 5) whereas d(3,3)w0 = (1, 6, 2)(3, 5, 4).

Let α �e n. In comparison with the permutation dα corresponding to the crossing
diagram Dα, the element in stair form σα is defined in cycle notation, whereas dα is
given by a reduced word defined by a recursion. In Section 4.3 and Chapter 5 we
will only work with elements in stair form exploiting the fact that we know their cycle
notation. Therefore, we introduce the following notation.

Definition 4.2.17. For α �e n define Σα ∈ (Sn)max�≈ to be the equivalence class of
the element in stair form σα with respect to ≈.

From Proposition 4.2.14 and Theorem 4.1.8 we obtain the following.

Corollary 4.2.18. The elements π̄≤Σα for α �e n form a basis of Z(Hn(0)).

Now we come to the proof of Proposition 4.2.14. The first result in this direction goes
back to [Kim98]. See [GKP00, Theorem 3.3] for a proof.

Lemma 4.2.19. Let α � n. Then σα ∈ (Sn)max if and only if α is a maximal compo-
sition.

Because of the Lemma 4.2.19, it remains to show the following in order to prove
Proposition 4.2.14.
(a) For each Σ ∈ (Sn)max�≈ there is an α �e n such that σα ∈ Σ.
(b) If α, β �e n and σα ≈ σβ then α = β.

From Proposition 4.2.10 we know that |{α �e n}| =
∣∣∣(Sn)max�≈

∣∣∣ and therefore it suffices
to prove either (a) or (b). However, we show both statements here as both proofs involve
intermediate results that will be useful in later sections. By doing so, we also get an
alternative proof of the dimension formula given in Corollary 4.2.8.
In order to prove Statement (a) we need the following result.

Lemma 4.2.20. Let W be a finite Coxeter group and w,w′ ∈ W be such that w → w′

and `(w) = `(w′). Then w ≈ w′.
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Proof. Let S be the set of Coxeter generators of W . It suffices to consider the case
where w s→ w′ for some s ∈ S because by definition → is the transitive closure of all the
relations t→ with t ∈ S. Then w′ = sws. Thus, w = sw′s and since `(w) = `(w′), we
have w′ s→ w. Hence w ≈ w′.

Proof of Statement (a). Let Σ ∈ (Sn)max�≈ and σ ∈ Σ. In [Kim98, Section 3] it is
shown that there is a β � n such that σβ → σ. Moreover, Statement (a′′) of Section 3.1
in [GKP00] provides the existence of an α �e n such that σα → σβ. Therefore, σα → σ.
Hence, σα and σ are conjugate and `(σα) ≥ `(σ). But the length of σ is maximal in its
conjugacy class. Hence, `(σα) = `(σ) and Lemma 4.2.20 yields σα ≈ σ.

We begin working towards Statement (b). As before, we will trace the relation ≈ back
to the elementary steps si→ with i ∈ [n − 1]. Consider σ ∈ Sn and τ = siσsi. Then we
have τ si→ σ or σ si→ τ depending on `(siσsi) − `(σ). Moreover σ ≈ τ if and only if the
difference vanishes. Thus our first goal is to determine `(siσsi) − `(σ) depending on σ
and si.
Recall that for all σ ∈ Sn and i ∈ [n− 1]

si ∈ DR(σ) ⇐⇒ σ(i) > σ(i+ 1),
si ∈ DL(σ) ⇐⇒ σ−1(i) > σ−1(i+ 1).

Lemma 4.2.21. Let σ ∈ Sn and i, j ∈ [n−1]. Then {σ(i), σ(i+ 1)} 6= {j, j + 1} if and
only if (sj ∈ DL(σ) ⇐⇒ sj ∈ DL(σsi)).

Proof. We consider all permutations in one-line notation. Note that for all σ ∈ Sn we
have that j ∈ DL(σ) if and only if j + 1 is left of j in σ.
Now fix a σ ∈ Sn. Observe that we obtain σsi from σ by swapping σ(i) and σ(i+ 1).

Since these are two consecutive characters in the the one-line notation of σ, the relative
positioning of j and j + 1 is affected by this interchange if and only if {σ(i), σ(i+ 1)} =
{j, j + 1}. Now use the note on left descents from the beginning to deduce the claim.

Lemma 4.2.22. Let σ ∈ Sn and i ∈ [n− 1].
(1 ) If {σ(i), σ(i+ 1)} 6= {i, i+ 1} then

`(siσsi) =


`(σ)− 2 if σ(i) > σ(i+ 1) and σ−1(i) > σ−1(i+ 1),
`(σ) + 2 if σ(i) < σ(i+ 1) and σ−1(i) < σ−1(i+ 1),
`(σ) else.

(2 ) If {σ(i), σ(i+ 1)} = {i, i+ 1} then either i and i+1 are fixpoints or form a 2-cycle
in σ. In particular, siσsi = σ.

Proof. Part (2) should be clear. For Part (1) assume that {σ(i), σ(i+ 1)} 6= {i, i+ 1}.
We have

`(siσsi)− `(σ) = `(siσsi)− `(σsi) + `(σsi)− `(σ)
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where each of the two differences on the right hand side is −1 or 1 depending the truth
value of the statements si ∈ DL(σsi) and si ∈ DR(σ), respectively. From Lemma 4.2.21
we have that si ∈ DL(σsi) if and only if si ∈ DL(σ). That is, the first difference depends
on whether si ∈ DL(σ) or not. Thus, the description of DL(σ) and DR(σ) preceding
Lemma 4.2.21 implies the claim.

We now show that for α �e n all elements of Σα have the same orbits of even length
on [n].

Lemma 4.2.23. Let α �e n and σ ∈ Sn such that σα ≈ σ. Then we have the following.
(1 ) The orbits of even length of σ and σα on [n] coincide.
(2 ) Let O be an σ-orbit on [n] of even length. Then the orbits of σ2 and σ2

α on O
coincide.

Proof. Since σα ≈ σ, we have σα → σ and `(σα) = `(σ). Using induction on the minimal
number of elementary steps w s→ w′ (with some w,w′ ∈ Sn and s ∈ S) necessary to relate
σα to σ, we may assume that there is a τ ∈ Sn and an si ∈ S such that σα → τ

si→ σ
and τ satisfies properties (1) and (2) (σα certainly does). Then `(σα) ≥ `(τ) ≥ `(σ) so
that in fact `(σα) = `(τ) = `(σ) and σα ≈ τ ≈ σ.
It remains to show that si→ transfers properties (1) and (2) from τ to σ. Because

σ = siτsi, we obtain σ from τ by interchanging i and i + 1 in the cycle notation of τ .
If i and i+ 1 both appear in orbits of uneven length of τ then properties (1) and (2) are
not affected by this interchange. Thus, we are left with two cases.
Case 1. Assume that i and i+ 1 appear in different orbits of τ , say O1 and O2 such

that at least one of them, say O1, has even length. We show that this case does not
occur. To do this, let m1 and m2 be the minimal elements of O1 and O2, respectively.
If O2 also has even length, we assume m1 < m2.
For w ∈ Sn and j ∈ [n] let 〈w〉 denote the subgroup of Sn generated by w and 〈w〉j

be the orbit of j under the natural action of 〈w〉 on [n]. Since τ satisfies property (2)
and O1 has even length, there is a p1 ≥ m1 such that

O<1 := 〈τ2〉m1 = 〈σ2
α〉m1 = {m1,m1 + 1, . . . , p1} ,

O>1 := 〈τ2〉τ(m1) = 〈σ2
α〉σα(m1) = {n−m1 + 1, n−m1, . . . , n− p1 + 1} .

(4.4)

Claim. Let a ∈ O<1 , b ∈ O2 and c ∈ O>1 . Then a < b < c.

To prove the claim consider the positions of elements of [n] in the cycle notation
σα = σα1 · · ·σαl given by the definition. The elements on odd positions 1, 2, 3, . . . form an
strictly increasing sequence. The elements on even positions n, n−1, . . . form an strictly
decreasing sequence but they are always greater than the entries on odd positions.
We want to show that the elements of O2 all appear right of the cycle consisting of

the elements of O1. If O2 has even length this is clear. If O2 has odd length, we can use
that by property (1), the unions of odd orbits of τ and σα coincide and that in σα the
elements of odd orbits are all located right of the elements of the even orbits.
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Let a ∈ O<1 . Then a is on an odd position and thus it is smaller than any entry right
of it. On the other hand, c ∈ O>1 implies that c is on an even position and thus is greater
then any entry right of it. Finally, in the last paragraph we have shown that each b ∈ O2
is located right of a and c. This establishes the claim.
Now, we have to deal with two cases.
If i ∈ O1 and i+1 ∈ O2 then the claim implies i ∈ O<1 . Then τ−1(i), τ(i) ∈ O>1 . Since

τ−1(i + 1), τ(i + 1) ∈ O2, our claim yields τ−1(i) > τ−1(i + 1) and τ(i) > τ(i + 1). In
addition, since O1 has even length and i+ 1 6∈ O1, τ(i) 6= i, i+ 1. Thus, we obtain from
Lemma 4.2.22 that `(σ) < `(τ), a contradiction to `(τ) = `(σ).

If i+ 1 ∈ O1 and i ∈ O2 then the claim implies i+ 1 ∈ O>1 and similarly as before we
obtain τ−1(i) > τ−1(i + 1) and τ(i) > τ(i + 1) and thus the same contradiction using
Lemma 4.2.22. That is, we have shown that i and i + 1 cannot appear in two different
orbits if one of the latter has even length.
Case 2. Assume that i and i+ 1 appear in the same orbit with even length O1 of τ .

Then (1) also holds for σ.
To show (2), assume i+ 1 ∈ 〈τ2〉i first. Then both elements appear in the same cycle

of τ2. As we obtain σ2 from τ2 by swapping i and i+ 1 in cycle notation, (2) also holds
for σ.
Lastly, we show that i+1 ∈ 〈τ2〉i is always true. For the sake of contradiction, assume

i+ 1 6∈ 〈τ2〉i.
Suppose in addition that |O1| = 2. Then {τ(i), τ(i+ 1)} = {i, i+ 1} and from

Lemma 4.2.22 we obtain σ = siτsi = τ . This contradicts the minimality of the se-
quence of arrow relations from σα to σ.

Now suppose |O1| > 2. Then {τ(i), τ(i+ 1)} 6= {i, i+ 1}. Since i+1 6∈ 〈τ2〉i, it follows
from (4.4) that i = maxO<1 and i + 1 = minO>1 . Consequently, τ−1(i), τ(i) ∈ O>1 and
τ−1(i+ 1), τ(i+ 1) ∈ O<1 . But this means that

τ−1(i) > τ−1(i+ 1) and τ(i) > τ(i+ 1).

Because {τ(i), τ(i+ 1)} 6= {i, i+ 1}, we can now apply Lemma 4.2.22 and obtain that
`(σ) < `(τ). Again, we end up with a contradiction.

Let σ ∈ Sn. Then the set of orbits of σ on [n] is a set partition of [n]. We denote this
partition by P (σ). The set of even orbits of σ is given by

Pe(σ) := {O ∈ P (σ) | |O| is even}

If P (σ) = P (σ′) for σ, σ′ ∈ Sn then σ and σ′ have the same type, i.e. they are
conjugate.

Lemma 4.2.24. Let α, β �e n such that σα and σβ are conjugate. If Pe(σα) = Pe(σβ)
then α = β.

Proof. Let α = (α1, . . . , αl), β = (β1, . . . , βl′) �e n and (x1, x2, . . . , xn) be the sequence
with x2i−1 = i and x2i = n − i + 1. Since α is maximal, there is a k ∈ [0, l] such that
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αi is even for i ≤ k and odd for i > k. Assume that σα and σβ are conjugate and
Pe(σα) = Pe(σβ).
Because σα and σβ are conjugate, α and β have the same multiset of parts. In

particular, l = l′. Since α and β are maximal, the odd parts of α and β form an weakly
decreasing sequence at the end of α and β, respectively. As both compositions have the
same length and multiset of parts, it follows that αi = βi for i = k + 1, . . . , l.
We show that αi = βi for i = 1, . . . , k with induction. Assume that i ∈ [k] and αj = βj

for all 1 ≤ j < i. Define d := ∑i−1
j=1 αi. Then by assumption d = ∑i−1

j=1 βi. Moreover, let
Oαi and Oβi be the orbits of xd+1 under σα and σβ, respectively. From the definition of
elements in stair form it follows that

Oαi = {xd+1, xd+2, . . . , xd+αi} ,
Oβi = {xd+1, xd+2, . . . , xd+βi} .

In particular |Oαi | = αi and |Oβi | = βi. Since i ≤ k, αi and βi are even. Consequently,
Oαi and Oβi both have even length. Moreover, they have the element xd+1 in common.
Hence, Pe(σα) = Pe(σβ) implies Oαi = Oβi . Thus, αi = |Oαi | = |Oβi | = βi.

We are now in the position to prove Statement (b). This finishes the proof of Propo-
sition 4.2.14.

Proof of Statement (b). Let α, β �e n such that σα ≈ σβ. Then σα and σβ are conjugate.
Moreover, Lemma 4.2.23 implies Pe(σα) = Pe(σβ). Hence α = β by Lemma 4.2.24.

We use some of the intermediary results that lead to Proposition 4.2.14 in order to
prepare a result for later use in Subsection 4.3.3.

Proposition 4.2.25. Let α �e n and σ ∈ Sn. Then σ ∈ Σα if and only if
(1 ) σ and σα are conjugate in Sn,
(2 ) `(σ) = `(σα),
(3 ) Pe(σ) = Pe(σα).

Proof. First, assume σ ∈ Σα. Because σα ∈ Σα and Σα ∈ (Sn)max�≈, σ satisfies (1) and
(2). By Lemma 4.2.23, (3) holds as well.

Second, assume that σ satisfies (1)− (3). By (1), σ is in the same conjugacy class as
σα. From (2) it follows, that σ is maximal in its conjugacy class. Then Proposition 4.2.14
provides the existence of a β �e n such that σ ∈ Σβ. Using the already proven implication
from left to right, we obtain that σ and σβ are conjugate and Pe(σ) = Pe(σβ). But as
σ satisfies (1) and (3), it follows that σβ and σα are conjugate and Pe(σβ) = Pe(σα).
Thus, Lemma 4.2.24 yields β = α as desired.

We end this subsection with a remark on conjugacy classes.

Remark 4.2.26. The conjugacy classes of Sn are parametrized by the partitions of
n via the cycle type. Let λ ` n and O be the conjugacy class whose elements have
cycle type λ. From Definition 4.2.13 it follows that for α �e n the element in stair
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form σα is contained in O if and only if α̃ = λ. Hence, Proposition 4.2.14 implies that
{σα | α �e n, α̃ = λ} is a system of representatives for Omax�≈. In particular, we have
that ∣∣∣Omax�≈

∣∣∣ = 1 if and only if the even parts of λ are all equal.

4.2.3 Coxeter elements

We introduce a set of representatives of (Sn)min�≈ which is due to Gill [Gil00]. From
this we obtain parametrizations of the bases of the cocenter Hn(0) and the twisted center
Z(Hn(0))ν of Hn(0) from Section 4.1 by the compositions of n.

Definition 4.2.27. Let W be a finite Coxeter group with generators S. A Coxeter
element of W is a product of all s ∈ S in arbitrary order.

For each α � n we now fix a Coxeter element cα of the parabolic subgroup Sα of Sn.
Gill showed in [Gil00] that the elements cα are transversal for (Sn)min�≈. This leads
to the following parametrization of (Sn)min�≈. Recall that for w ∈ Sn its equivalence
class in Sn with respect to ≈δ is denoted by [w]δ.

Proposition 4.2.28 ([Gil00, Theorem 5]). The map {α � n} → (Sn)min�≈, α 7→ [cα] is
a bijection.

With Lemma 4.1.11 we obtain the corresponding parametrization of (Sn)ν,max�≈ν .

Corollary 4.2.29. The map {α � n} → (Sn)ν,max�≈ν , α 7→ [cαw0]ν is a bijection where
w0 is the longest element of Sn.

Example 4.2.30. For n = 3 we obtain the following representatives for (Sn)min�≈ and
(Sn)ν,max�≈ν which we represent via a reduced word and in cycle notation.

α � 3 (1, 1, 1) (1, 2) (2, 1) (3)
cα 1 s2 s1 s1s2

1 (2, 3) (1, 2) (1, 2, 3)
cαw0 s1s2s1 s1s2 s2s1 s2

(1, 3) (1, 2, 3) (1, 3, 2) (2, 3)

Remark 4.2.31. Let α = (α1, . . . , αl) � n. In [Gil00, Lemma 4] Gill showed that the ≈-
equivalence class [cα] is exactly the set of Coxeter elements ofSα and that the cardinality
of this set is ∏i 2αi−2 where the product runs over all i ∈ [l] such that αi ≥ 2. The reason
for the latter is that the Coxeter elements of Sα are in one to one correspondence with
the orientations of the Coxeter graph of Sα (see [Shi97, Theorem 1.5]).

We obtain the following bases of Hn(0) and Z(Hn(0))ν parametrized by the composi-
tions of n.
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Bn
4

Dn

Figure 4.7: The Coxeter graphs of type Bn and Dn each with n vertices.

Theorem 4.2.32. For each α � n let cα be a Coxeter element of the parabolic subgroup
Sα of Sn.
(1 ) The elements π̄cα + [Hn(0), Hn(0)] for α � n form a basis of Hn(0).
(2 ) The elements π̄≤[cαw0]ν for α � n form a basis of Z(Hn(0))ν .

In particular, Hn(0) and Z(Hn(0))ν both have dimension 2n−1.

Proof. For Part (1) combine Theorem 4.2.6 and proposition 4.2.28. For Part (2) do the
same with Theorem 4.1.8 and Corollary 4.2.29. The number of compositions of n is 2n−1

since via α 7→ Set(α) we have a bijection between the compositions of n and the subsets
of [n− 1]. This yields the dimensions.

4.2.4 Remarks on types B and D

In [Gil00] Gill determines the the cardinality of Omin�≈ for O ∈ cl(W ) in types A, B
and D. We translated his results in type A to Proposition 4.2.28. We now briefly discuss
the types B and D and infer dimension formulas for the cocenter and (in types Bn and
D2n) for the center of the related 0-Hecke algebras. The Coxeter graphs of types Bn
and Dn are shown in Figure 4.7. For background information on these Coxeter groups
we refer to [BB05, GP00].
Let n ≥ 2 and Bn be an irreducible Coxeter group of type Bn with Coxeter generators

S (that is |S| = n). From [Gil00, Theorem 10] it follows that (Bn)min�≈ is parametrized
by the pairs (α, β) such that α and β are compositions, β is (weakly) increasing and
|α|+ |β| = n.

Let w0 be the longest element of Bn. By [Fay05, Proposition 2.4] w0 is central and
thus ν is the identity on Bn. Hence, Lemma 4.1.11 implies that Σ 7→ Σw0 is a bijection
from (Bn)min�≈ to (Bn)max�≈. Using Theorem 4.1.8 and Theorem 4.2.6, we now obtain
that

dimZ(HBn(0)) = dimHBn(0) =
n∑

m=0
c(m)p(n−m)

where c(m) and p(m) are the numbers of compositions of m and partitions of m, respec-
tively. Of course, c(0) = 1 and c(m) = 2m−1 for m ≥ 1.
Regarding Figure 4.7 it is clear that id is the only graph automorphism of the Cox-

eter graph of Bn if n ≥ 3. Hence, it follows from Lemma 4.1.1 that the only Bn-
automorphism δ with δ(S) = S is the identity. That is, we treated (Bn)δ,min�≈δ and
(Bn)δ,max�≈δ for n ≥ 3 and all possibilities of δ.

134



4.3 Equivalence classes of (Sn)max under ≈

Let n ≥ 4 and Dn be an irreducible Coxeter group of type Dn (with n Coxeter gen-
erators). Then one can infer from [Gil00, Theorem 10] that (Dn)min�≈ is parametrized
by the pairs of compositions (α, β) such that β is increasing and has even length and
|α|+ |β| = n together with the pairs (α,−) such that α � n and α1 > 1. However, note
that in [Gil00, Theorem 10] there is an error in type D (see Remark 4.2.33 below).
Using Theorem 4.2.6, it follows that

dimHDn(0) =
n∑

m=0
c(m)pe(n−m) + 2n−2

where pe(n−m) is the number of partitions of even length of m. The number of α � n
with α1 > 1 is the number of compositions of n − 1 and therefore 2n−2. If n is even,
then by [Fay05, Proposition 2.4] the longest element of Dn is central and it follows as in
type B that also dimZ(HDn(0)) is given by the above formula.

Remark 4.2.33. In [Gil00, Theorem 10] there is a flaw in type D. It occurs in the case
where O is a conjugacy class of Dn which is labeled by the pair (∅, λ) (in the notation
of [Gil00]) where λ ` n has an odd part. In this case it can be deduced from the proof
that the cardinality of Omin�≈ is the number of α � n with α̃ = λ plus the number of
α � n with α̃ = λ and α1 > 1.
Let l := `(λ) and consider λ = (1l1 , 2l2 , . . . , nln) in exponential notation, i.e. li is the

number of parts of λ that are equal to i. Then

|{α � n | α̃ = λ, α1 > 1}| =
(

1− l1
l

)(
l

l1, l2, . . . , ln

)

where the second factor is a multinomial coefficient. However, in [Gil00, Theorem 10] it
is claimed that this cardinality is l2 + · · · + ln which is wrong in general (for instance,
consider λ = (2, 2, 1, 1)).

4.3 Equivalence classes of (Sn)max under ≈
Recall that by Definition 4.2.4 we call α � n maximal and write α �e n if there is a k ≥ 0
such that the first k parts of α are even and the remaining parts are odd and weakly
decreasing. For α �e n we defined Σα ∈ (Sn)max�≈ to be the equivalence class of the
element in stair form σα under ≈. From Proposition 4.2.14 we have that the elements
of (Sn)max�≈ are precisely the Σα with α �e n. In Corollary 4.2.18 we concluded that
the elements π̄≤Σα for α �e n form a basis of Z(Hn(0)). The subject of this section is
the description of the sets Σα and bijections between them.
In Subsection 4.3.1 we consider the case where α has only one part. The first result is

the characterization of the elements of Σ(n) by properties of their cycle notation. From
this we obtain bijections relating Σ(n−1) with Σ(n) for n ≥ 4 and a closed formula for
the cardinality of Σ(n).
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Table 4.1: The elements of Σ(n) for small n. The respective topmost element is the
element in stair form σ(n).

α (1) (2) (3) (4) (5) (6)

Σα

(1) (1, 2) (1, 3, 2) (1, 4, 2, 3) (1, 5, 2, 4, 3) (1, 6, 2, 5, 3, 4)
(1, 2, 3) (1, 3, 2, 4) (1, 5, 2, 3, 4) (1, 6, 2, 4, 3, 5)

(1, 5, 3, 2, 4) (1, 6, 3, 4, 2, 5)
(1, 4, 2, 3, 5) (1, 5, 2, 4, 3, 6)
(1, 4, 3, 2, 5) (1, 5, 3, 4, 2, 6)
(1, 3, 4, 2, 5) (1, 4, 3, 5, 2, 6)

In Subsection 4.3.2 we generalize the characterization of Σ(n) to odd hooks, where a
hook α := (k, 1n−k) is called odd if k is odd and even otherwise. Moreover, we define a
bijection Σ(k) × [m + 1, n −m] → Σ(k,1n−k) where m := k−1

2 . From this we obtain the
cardinality of Σ(k,1n−k).
In Subsection 4.3.3 we consider the inductive product � that allows the decomposition

Σ(α1,...,αl) = Σ(α1)�Σ(α2,...,αl) if α1 is even. Using the results of the previous subsections,
we infer a description of Σα for all α �e n whose odd parts form a hook

In Subsection 4.3.4 we use the inductive product in order to obtain necessary condi-
tions and sufficient conditions for σ ∈ Sn to be an element of Σα for arbitrary α �e n.
A maximal compositions with at most one odd part or all odd parts equal to 1 is called
mild. We show that the conditions from above are both necessary and sufficient for
σ ∈ Σα if and only if α is mild. Even hooks are mild and therefore treated in this
subsection.
In Chapter 5 we use results of Subsections 4.3.1 to 4.3.3 in order to study the operation

of π̄≤Σα on the simple modules of Hn(0) for certain α.

4.3.1 Equivalence classes of n-cycles

In this subsection we seek a combinatorial description of the elements of Σ(n). Examples
are given in Table 4.1. The description is given by two properties: being oscillating and
having connected intervals. We begin with the property of being oscillating.

Definition 4.3.1. We call the n-cycle σ ∈ Sn oscillating if there exists a positive integer
m ∈

{
n−1

2 , n2 ,
n+1

2

}
such that σ([m]) = [n−m+ 1, n].

In Corollary 4.3.7 we will obtain a more descriptive characterization of oscillating n-
cycles. It turns out that the n-cycle σ of Sn (represented in cycle notation) is oscillating
if n is even and the entries of σ alternate between the sets [1, n2 ] and [n2 + 1, n] or n is
odd and after deleting the entry n+1

2 from σ the remaining entries alternate between the
sets [n−1

2 ] and [n+3
2 , n].
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Example 4.3.2. (1) Recall that for n ∈ N the element in stair form σ(n) is an n-cycle
of Sn. For

σ(5) = (1, 5, 2, 4, 3), σ−1
(5) = (1, 3, 4, 2, 5) and σ(6) = (1, 6, 2, 5, 3, 4)

we have

σ(5)([2]) = [4, 5], σ−1
(5)([3]) = [3, 5] and σ(6)([3]) = [4, 6].

Hence, they are oscillating and the integer m used in Definition 4.3.1 is given by

m = 2 = 5− 1
2 , m = 3 = 5 + 1

2 and m = 3 = 6
2 ,

respectively. Note that the entries in the cycles alternate as described after Defi-
nition 4.3.1.

(2) All the elements shown in Table 4.1 are oscillating.

We explicitly write down the three cases for m in Definition 4.3.1.

Remark 4.3.3. Let σ be an oscillating n-cycle σ ∈ Sn with parameter m from Defini-
tion 4.3.1. Then we have
(1) n is even and σ([n2 ]) = [n2 + 1, n] if m = n

2 ,
(2) n is odd and σ([n−1

2 ]) = [n+3
2 , n] if m = n−1

2 ,
(3) n is odd and σ([n+1

2 ]) = [n+1
2 , n] if m = n+1

2 .

Our next aim is to give a characterization of the term oscillating in Lemma 4.3.6. By
considering complements in [n] we obtain the following.

Lemma 4.3.4. Let σ ∈ Sn be an n-cycle and m ∈ [n]. Then σ([m]) = [n−m+ 1, n] if
and only if σ([m+ 1, n]) = [n−m].

Lemma 4.3.4 implies that an n-cycle σ ∈ Sn is oscillating with parameter m if and
only if σ([m+ 1, n]) = [n−m].

Lemma 4.3.5. Let σ ∈ Sn be an n-cycle. Then σ is oscillating if and only if σ−1 is
oscillating.

Proof. Let M := N ∩
{
n−1

2 , n2 ,
n+1

2

}
. If n = 1 then σ = id = σ−1 (which is oscillating).

Thus assume n ≥ 2. It suffices to show the implication from left to right. Suppose that
σ is oscillating. Then there is an m ∈M such that σ([m]) = [n−m+1, n]. Consequently,
σ([m+ 1, n]) = [n−m] by Lemma 4.3.4 and hence

σ−1([n−m]) = [m+ 1, n].

Moreover, m + 1 = n − (n −m) + 1 and we have n −m ∈ M since m ∈ M and n ≥ 2.
Therefore, σ−1 is oscillating.
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4 Centers and cocenters of 0-Hecke algebras

In the following we rephrase Definition 4.3.1 from a more local point of view.

Lemma 4.3.6. Let σ ∈ Sn be an n-cycle. We consider the four implications for all
i ∈ [n]

(i) i < n+1
2 =⇒ σ(i) ≥ n+1

2 ,
(ii) i < n+1

2 =⇒ σ−1(i) ≥ n+1
2 ,

(iii) i > n+1
2 =⇒ σ(i) ≤ n+1

2 ,
(iv) i > n+1

2 =⇒ σ−1(i) ≤ n+1
2 ,

and if n is odd the statement
(A) either σ−1(n+1

2 ) > n+1
2 or σ(n+1

2 ) > n+1
2 .

Then the following are equivalent.
(1 ) σ is oscillating.
(2 ) One of (i) – (iv) is true and if n is odd and n ≥ 3 then also (A) is true.
(3 ) Each one of (i) – (iv) is true and if n is odd and n ≥ 3 then also (A) is true.

Proof. First suppose that n is odd. If n = 1 then σ = id is oscillating and the implications
(i) – (iv) are trivially satisfied.
Assume n ≥ 3. We show for each of the implications (x) that (A) and (x) is true if

and only if σ is oscillating. As n is odd and n ≥ 3, Statement (A) can be expanded as

either σ−1(n+1
2 ) > n+1

2 and σ(n+1
2 ) < n+1

2
or σ−1(n+1

2 ) < n+1
2 and σ(n+1

2 ) > n+1
2 .

Moreover, (i) can be rephrased as σ([n−1
2 ]) ⊆ [n+1

2 , n]. Hence, we have (A) and (i) if and
only if

either σ([n−1
2 ]) = [n+3

2 , n] (if σ−1(n+1
2 ) > n+1

2 and σ(n+1
2 ) < n+1

2 )
or σ([n+1

2 ]) = [n+1
2 , n] (if σ−1(n+1

2 ) < n+1
2 and σ(n+1

2 ) > n+1
2 ).

In other words, σ([m]) = [n − m + 1, n] for either m = n−1
2 or m = n+1

2 , i.e. σ is
oscillating.
Similarly, we have (A) and (iii) if and only if

either σ([n+1
2 , n]) = [n+1

2 ] or σ([n+3
2 , n]) = [n−1

2 ].

That is, σ([m + 1, n]) = [n −m] for either m = n−1
2 or m = n+1

2 . This is equivalent to
σ being oscillating by Lemma 4.3.4.

So far we have shown that

(A) and (i) ⇐⇒ σ is oscillating ⇐⇒ (A) and (iii). (4.5)

By Lemma 4.3.5 we therefore also have

(A) and (ii) ⇐⇒ σ is oscillating ⇐⇒ (A) and (iv). (4.6)

This finishes the proof for odd n.
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Suppose now that n is even. Note that n+1
2 6∈ [n] as it is not an integer. It is not hard

to see that the equivalences from (4.5) and therefore those from (4.6) hold if we drop
Statement (A).

We continue with two consequences of Lemma 4.3.6. First, we infer the description of
oscillating n-cycles mentioned at the beginning of the subsection.

Corollary 4.3.7. Let σ ∈ Sn be an n-cycle. We consider σ in cycle notation. Then σ
is oscillating if and only if one of the following is true.
(1 ) n is even and the entries of σ alternate between the sets

[
n
2
]
and

[
n
2 + 1, n

]
.

(2 ) n is odd and after deleting the entry n+1
2 from σ, the remaining entries alternate

between the sets
[
n−1

2

]
and

[
n+3

2 , n
]
.

Proof. With (A), (i) and (iii) we refer to the statements of Lemma 4.3.6.
Suppose that n is even. By Lemma 4.3.6, σ is oscillating if and only if the implications

(i) and (iii) are satisfied which is the case if and only if the entries of σ alternate between
[n2 ] and [n2 + 1, n].
Suppose that n is odd. If n ≥ 3 then property (A) states that one of the neighbors

σ−1(n+1
2 ) and σ(n+1

2 ) of n+1
2 in σ is an element of [n−1

2 ] and the other one is an element
of [n+3

2 , n]. Therefore, σ satisfies (A), (i) and (iii) if and only if after deleting n+1
2

from the cycle notation of σ, the remaining entries alternate between the sets [n−1
2 ] and

[n+3
2 , n]. Thus, Lemma 4.3.6 yields that the latter property is satisfied if and only if σ

is oscillating.

By considering σ in cycle notation beginning with 1, we can rephrase Corollary 4.3.7
in a more formal way.

Corollary 4.3.8. Let σ ∈ Sn be an n-cycle. If n is odd, let 0 ≤ l ≤ n − 1 be such
that σl(1) = n+1

2 . If n is even, set l := ∞. Then σ is oscillating if and only if for all
0 ≤ k ≤ n− 1 we have

σk(1) < n+ 1
2 if k < l and k is even or k > l and k is odd,

σk(1) > n+ 1
2 if k < l and k is odd or k > l and k is even.

We now consider the second property in the characterization of Σ(n): the property of
having connected intervals. Roughly speaking, an n-cycle of Sn has connected intervals
if in its cycle notation for each 1 ≤ k ≤ n

2 the elements of the interval [k, n− k + 1] are
grouped together.

Definition 4.3.9. (1 ) Let σ ∈ Sn and M ⊆ [n]. We call M connected in σ if there
is an m ∈M such that

M =
{
m,σ(m), σ2(m), . . . , σ|M |−1(m)

}
.
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(2 ) Let σ ∈ Sn be an n-cycle. We say that σ has connected intervals if the interval
[k, n− k + 1] is connected in σ for all integers k with 1 ≤ k ≤ n

2 .

Example 4.3.10. All elements shown in Table 4.1 have connected intervals. In particu-
lar, the element in stair form σ(6) = (1, 6, 2, 5, 3, 4) has connected intervals. In contrast,
in (1, 5, 2, 6, 3, 4) the set [2, 5] is not connected.

The main result of this subsection is that an n-cycle σ ∈ Sn is an element of Σ(n) if
and only if σ is oscillating and has connected intervals. We now begin working towards
this result.

Lemma 4.3.11. The element in stair form σ(n) ∈ Sn is oscillating and has connected
intervals.

Proof. By Definition 4.2.13,

σ(n) =
{

(1, n, 2, n− 1, . . . , n2 , n− n
2 + 1) if n is even

(1, n, 2, n− 1, . . . , n−1
2 , n− n−1

2 + 1, n+1
2 ) if n is odd.

Thus, σ(n)([n2 ]) = [n2 + 1, n] if n is even and σ(n)([n−1
2 ]) = [n+3

2 , n] if n is odd. That is,
σ(n) is oscillating.

For all k ∈ N with 1 ≤ k ≤ n
2 the rightmost |[k, n− k + 1]| elements in the cycle of

σ(n) from above form [k, n− k + 1]. Thus, σ(n) has connected intervals.

Let σ ∈ Sn. Sometimes it will be convenient to consider σw0 instead of σ. We will
now show that conjugation with the longest element w0 of Sn preserves the properties
of being oscillating and having connected intervals.

Lemma 4.3.12. Let σ ∈ Sn be an n-cycle.
(1 ) If σ is oscillating then σw0 is oscillating.
(2 ) If σ has connected intervals then σw0 has connected intervals.

Proof. If n = 1 the result is trivial. Thus suppose n ≥ 2.
(1) Set M := N ∩

{
n−1

2 , n2 ,
n+1

2

}
and assume that σ is oscillating. Then there is

an m ∈ M such that σ([m]) = [n − m + 1, n] and from Lemma 4.3.4 it follows that
σ([m+ 1, n]) = [n−m]. Using w0(i) = n− i+ 1 for i ∈ [n], we obtain

σw0([n−m]) = w0σw0([n−m])
= w0σ([m+ 1, n])
= w0([n−m])
= [n− (n−m) + 1, n].

As n−m ∈M , it follows that σw0 is oscillating.
(2) Let I := [k, n− k + 1] be given by an integer k with 1 ≤ k ≤ n

2 . Then w0(I) = I.
Hence, if I is connected in σ then it is also connected in σw0 .
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In the following result we study the interplay between the conjugation with w0 and
the relation ≈. The generalization to all finite Coxeter groups is straight forward.

Lemma 4.3.13. Let w,w′ ∈ Sn and ν be the automorphism of Sn given by x 7→ xw0.
(1 ) If w si→ w′ then ν(w) sn−i→ ν(w′).
(2 ) If w ≈ w′ then ν(w) ≈ ν(w′).

Proof. Assume w si→ w′. Then w′ = siwsi and `(w′) ≤ `(w). Since ν(si) = sn−i, we
have ν(w′) = sn−iν(w)sn−i. Moreover, `(ν(w′)) ≤ `(ν(w)) because `(x) = `(ν(x)) for all
x ∈ Sn. Thus, ν(w) sn−i→ ν(w′). Now, use the definition of ≈ to obtain (2) from (1).

Consider n = 5, the oscillating n-cycle σ = (1, 4, 2, 3,5) and its connected interval
I = {2, 3, 4}. In the cycle notation of σ, this interval is enclosed by the two elements
a = 1 and b = 5. Note that n+1

2 = 3, a < 3 and b > 3. This illustrates a property of
oscillating n-cycles addressed by the next lemma.

Lemma 4.3.14. Assume that σ ∈ Sn is an oscillating n-cycle with a connected interval
I := [i, n − i + 1] such that i ∈ N and 2 ≤ i ≤ n+1

2 . Let r := |I| and m ∈ I be such
that I =

{
σk(m) | k = 0, . . . , r − 1

}
. Moreover, set a := σ−1(m) and b := σr(m). Then

a, b 6= n+1
2 and

a <
n+ 1

2 ⇐⇒ b >
n+ 1

2 .

Proof. Let p ∈ [n − 1] be such that σp(1) = a. Then σp+r+1(1) = b. Since i > 1, 1 6∈ I
and thus p+ r+ 1 ≤ n− 1. We have r = n− 2i+ 2. Hence, r has the same parity as n.

We want to apply Corollary 4.3.8. If n is odd, let l ∈ [0, n−1] be such that σl(1) = n+1
2 .

Then n+1
2 ∈ I so that p < l < p + r + 1. In particular, a, b 6= n+1

2 . Clearly, if n is even
then a, b 6= n+1

2 .
Therefore,

a = σp(1) < n+ 1
2 ⇐⇒ p is even

⇐⇒
{
p+ r + 1 is odd if n even
p+ r + 1 is even if n odd

⇐⇒ b = σp+r+1(1) > n+ 1
2 .

where we use Corollary 4.3.8 (and p < l < p + r + 1 if n is odd) for the first and third
equivalence.

Since the → relation is the transitive closure of the si→ relations, we are interested in
the circumstances under which the conjugation with si preserves the property of being
oscillating with connected intervals.
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Lemma 4.3.15. Let σ ∈ Sn be an oscillating n-cycle with connected intervals, i ∈ [n−1]
with i ≤ n+1

2 and σ′ := siσsi. Then σ′ is oscillating and has connected intervals if and
only if
(1 ) if i = n

2 then n = 2,
(2 ) if i = n−1

2 or i = n+1
2 then σ(i) = i+ 1 or σ−1(i) = i+ 1,

(3 ) if i < n−1
2 then

σ(i) ∈ I and σ(i+ 1) 6∈ I or σ−1(i) ∈ I and σ−1(i+ 1) 6∈ I

where I := [i+ 1, n− i].
Proof. We will use Lemma 4.3.6 without further reference. Note that σ′ = siσsi means
that we obtain σ′ from σ by interchanging i and i + 1 in cycle notation. We show the
equivalence case by case, depending on i.
Case 1. Suppose i = n

2 . In this case n is even. If n = 2 then (1, 2) is the only 2-cycle
in Sn. Thus, σ = σ′ = (1, 2). This element is oscillating and has connected intervals.

Assume now that n > 2. Since σ is oscillating,

σ(i) > n

2 and σ−1(i) > n

2 .

Moreover as n > 2, at most one of σ(i) and σ−1(i) equals i+ 1. Since we obtain σ′ from
σ by swapping i and i+ 1 in cycle notation we infer

σ′(i+ 1) > n

2 or σ′−1(i+ 1) > n

2 .

As i+ 1 > n
2 , this means that σ′ is not oscillating

Case 2. Suppose i = n−1
2 or i = n+1

2 . In this case n is odd and n ≥ 3. Moreover,
i, i+1 ∈ [k, n−k+1] for k = 1, . . . , n−1

2 . Hence, each of the intervals remains connected
if we interchange i and i + 1. Therefore, σ′ has connected intervals. It remains to
determine in which cases σ′ oscillates. We do this for i = n−1

2 . The proof for i = n+1
2 is

similar.
For i = n−1

2 we have i+ 1 = n+1
2 . Since σ is oscillating,

σ(i) ≥ n+ 1
2 and σ−1(i) ≥ n+ 1

2 .

Because n ≥ 3, there is at most one equality among these two inequalities. Assume that
there is no equality at all. Then

σ′
(
n+ 1

2

)
>
n+ 1

2 and σ′−1
(
n+ 1

2

)
>
n+ 1

2

since σ′ = siσsi. Hence, σ′ is not oscillating.
Conversely, assume that σ(i) = i+ 1 or σ−1(i) = i+ 1. In other words, there exists an

ε ∈ {−1, 1} such that σε(i) = i+ 1. Since i+ 1 = n+1
2 and σ is oscillating, we then have

a := σ−ε(i) > n+1
2 . Moreover, σ−ε(i + 1) = i < n+1

2 . Thus σ being oscillating implies
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that b := σε(i+ 1) > n+1
2 . By definition of a and b,

σε = (a, i, i+ 1, b, . . . ).

As a consequence,

σ′ε = (a, i+ 1, i, b, . . . )

and σε and σ′ε coincide on the part represented by the dots because σ′ = siσsi. From
a > n+1

2 , i+ 1 = n+1
2 , i < n+1

2 and b > n+1
2 it now follows that σ′ is oscillating.

Case 3. Suppose i < n−1
2 . Note that then n ≥ 4. Define I := [i + 1, n− i] as in the

theorem and set r := |I|. Since i + 1 < n+1
2 , we have r > 1. We show the implication

from left to right first. Assume that σ′ is oscillating and has connected intervals. Note
that

τ ε(j) 6= i, i+ 1 for all τ ∈ {σ, σ′} , ε ∈ {−1, 1} and j ∈ {i, i+ 1}

since σ and σ′ are oscillating and i, i+ 1 < n+1
2 . Because I is connected in σ′, i+ 1 ∈ I

and r > 1, we have that

∃ε ∈ {−1, 1} such that σ′ε(i+ 1) ∈ I.

Therefore,

∃ε ∈ {−1, 1} such that σε(i) ∈ I

as σ′ = siσsi and σ′ε(i+ 1) 6= i, i+ 1. In fact, the statement

∃ε ∈ {−1, 1} such that σε(i) ∈ I and σ−ε(i) 6∈ I (4.7)

is true since otherwise we would have

σ = (n+ i− 1, . . . , σ−1(i), i, σ(i), . . . )

with σ−1(i), σ(i) ∈ I and i, n+ i− 1 6∈ I in which case I would not be connected in σ.
By interchanging the roles played by σ and σ′ in the argumentation leading to (4.7),

we get that

∃ε ∈ {−1, 1} such that σ′ε(i) ∈ I and σ′−ε(i) 6∈ I.

From this we obtain that

∃ε ∈ {−1, 1} such that σε(i+ 1) ∈ I and σ−ε(i+ 1) 6∈ I (4.8)

by swapping i and i+ 1 in cycle notation and using that σ′(i), σ′−1(i) 6= i, i+ 1.
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Now, let ε ∈ {−1, 1} be such that σε(i) ∈ I and σ−ε(i) 6∈ I. Then

I =
{
σεk(i) | k = 1, . . . , r

}
(4.9)

since I is connected in σ and i 6∈ I. From (4.8) it follows that i+1 appears at the border
of I in the cycle notation of σ. Hence, (4.9) implies that

σε(i) = i+ 1 or σεr(i) = i+ 1.

As σε(i) 6= i + 1, it follows that i + 1 = σεr(i). Thus, (4.9) yields that σ−ε(i + 1) ∈ I
and σε(i+ 1) 6∈ I. Therefore, we have σε(i) ∈ I and σε(i+ 1) 6∈ I for an ε ∈ {−1, 1} as
desired.
Lastly, we prove the direction from right to left of the equivalence. We are still in

the case i < n−1
2 . Thus, assume that there is an ε ∈ {−1, 1} such that σε(i) ∈ I and

σε(i+ 1) 6∈ I. Since σ is oscillating and we interchange two elements i, i+ 1 < n+1
2 in σ

in order to obtain σ′ from σ, σ′ is also oscillating.
It remains to show that σ′ has connected intervals. Since i 6∈ I, σε(i) ∈ I and I is

connected in σ, we have (4.9). Moreover, from i + 1 ∈ I, σε(i + 1) 6∈ I and I being
connected in σ, it follows that σεr(i) = i+ 1. Thus,

I =
{
σ′εk(i+ 1) | k = 0, . . . , r − 1

}
because σ′ = siσsi. That is, I is connected in σ′. Let J := [k, n− k + 1] for k ∈ N with
1 ≤ k ≤ n

2 and k 6= i + 1 be an interval different from I. Then either i, i + 1 ∈ J or
i, i+ 1 6∈ J . As J is connected in σ and σ′ = siσsi, it follows that J is connected in σ′.
Therefore, σ′ has connected intervals.

Example 4.3.16. Consider σ = σ(6) = (1, 6, 2, 5, 3, 4) and σi := siσsi for i = 1, 2. Then
σ is oscillating with connected intervals.

Since σ−1(1) ∈ [2, 5] and σ−1(2) 6∈ [2, 5], Lemma 4.3.15 yields that σ1 is oscillating with
connected intervals. In contrast, σ2 is not oscillating with connected intervals because
of σ(2), σ−1(2) 6∈ [3, 4] and Lemma 4.3.15. This can also be checked directly. We have

σ1 = (1, 5, 3, 4, 2, 6) and σ2 = (1, 6, 3, 5, 2, 4).

For instance, [3, 4] is not connected in σ2.

In the next result we show that the relation ≈ is compatible with the concept of
oscillating n-cycles with connected intervals.

Lemma 4.3.17. Let σ ∈ Sn be an oscillating n-cycle with connected intervals, i ∈ [n−1]
and σ′ := siσsi. If σ ≈ σ′ then σ′ is oscillating and has connected intervals.

Proof. We do a case analysis depending on i.
Case 1. Suppose i = n

2 . Then n is even. By Lemma 4.3.15, σ′ is oscillating with
connected intervals if and only if n = 2. Thus, we have to show that σ 6≈ σ′ if n ≥ 4. In
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this case we have σ(i), σ−1(i) > n
2 and σ(i+ 1), σ−1(i+ 1) ≤ n

2 because σ is oscillating.
But then Lemma 4.2.22 yields `(σ′) < `(σ) so that σ′ 6≈ σ.
Case 2. Suppose i = n−1

2 or i = n+1
2 . We only do the case i = n−1

2 . The other one
is similar. Let I := [i, n − i + 1] = {i, i+ 1, i+ 2}. We show the contraposition and
assume that σ′ is not oscillating or that it does not have connected intervals. Then from
Lemma 4.3.15 it follows that σ(i) 6= i+ 1 and σ−1(i) 6= i+ 1. Furthermore, there is an
m ∈ I such that

I =
{
σ−1(m),m, σ(m)

}
since I is connected in σ. Thus, m = i + 2. Assume σ−1(i + 2) = i and σ(i + 2) = i
(the proof of the other case with σ(i + 2) = i is analogous). Then σ−1(i) > i + 2 as σ
is oscillating and σ−1(i) 6= i + 1, i + 2. Moreover, Lemma 4.3.14 applied to I in σ and
σ−1(i) > n+1

2 yields σ(i+ 1) < n+1
2 = i+ 1. Therefore,

σ(i) = i+ 2 > σ(i+ 1) and σ−1(i) > i+ 2 = σ−1(i+ 1)

so that `(σ′) < `(σ) by Lemma 4.2.22 and hence σ′ 6≈ σ.
Case 3. Suppose i < n−1

2 . Then for all j ∈ {i, i+ 1} we have σ(j), σ−1(j) ≥ n+1
2 since

j < n+1
2 and σ is oscillating. We assume σ ≈ σ′ and show that σ′ is oscillating and has

connected intervals. Define Ik := [k, n−k+1] for all k ≤ n+1
2 and I := Ii+1 = [i+1, n−i].

Thanks to Lemma 4.3.15 it suffices to show

σ(i) ∈ I and σ(i+ 1) 6∈ I or σ−1(i) ∈ I and σ−1(i+ 1) 6∈ I.

Since σ ≈ σ′, `(σ) = `(σ′). Hence, Lemma 4.2.22 implies that either σ(i) < σ(i + 1) or
σ−1(i) < σ−1(i + 1). We assume σ(i) < σ(i + 1) and σ−1(i) > σ−1(i + 1). The other
case is similar.
First we show σ(i) ∈ I. Assume σ(i) 6∈ I instead. Then σ(i) ≥ n+1

2 implies σ(i) >
max I. Now we use that σ(i) < σ(i+ 1) to obtain σ(i+ 1) 6∈ I. From this it follows that

I =
{
σ−k(i+ 1) | k = 0, . . . , r − 1

}
where r := |I| since I is connected in σ and i + 1 ∈ I. Now we consider the interval
Ii = [i, n − i + 1] in σ. Because σ is oscillating, σ(i + 1) > n+1

2 . An application of
Lemma 4.3.14 to I in σ yields σ−r(i + 1) < n+1

2 . In particular, σ−r(i + 1) 6= n − i + 1.
But we also have i 6= σ−r(i + 1) because σ(i) 6∈ I. That is σ−r(i + 1) 6∈ Ii. As a
consequence,

Ii =
{
σ−k(i+ 1) | k = 0, . . . , r − 1

}
∪
{
σ(i+ 1), σ2(i+ 1)

}
since I ⊆ Ii and Ii is connected in σ. Hence{

σ(i+ 1), σ2(i+ 1)
}

= {i, n− i+ 1} .
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As σ(i+ 1) > n+1
2 , it follows that σ(i+ 1) = n− i+ 1 and σ2(i+ 1) = i. Consequently,

σ(i) > max Ii = n− i+ 1 = σ(i+ 1).

This is a contradiction to σ(i) < σ(i+ 1) and shows that σ(i) ∈ I.
It remains to show that σ(i+ 1) 6∈ I. Because i 6∈ I, σ(i) ∈ I and I is connected,

I =
{
σk(i) | k = 1, . . . , r

}
.

We can apply Lemma 4.3.14 to I in σ and i < n+1
2 to obtain σr+1(i) > n+1

2 . Thus
σr(i) ≤ n+1

2 . In particular, σr(i) 6= n− i.
If i = n

2 − 1 then I = {i+ 1, n− i} and it follows that σ(i) = n− i and σ2(i) = i+ 1.
That is, σ(i+ 1) 6∈ I as desired.
Now suppose i < n

2 − 1. Then i + 2 ≤ n+1
2 and we consider Ii+2 = [i + 2, n − i − 1].

Assume for the sake of contradiction that σ(i + 1) ∈ I. This means that σr(i) 6= i + 1.
In addition, we have already seen that σr(i) 6= n− i. Therefore, σr(i) ∈ Ii+2. Since Ii+2
is connected in σ and Ii+2 ⊆ I, we have

Ii+2 =
{
σk(i) | k = 3, . . . , r

}
.

and hence
{
σ(i), σ2(i)

}
= {i+ 1, n− i}. As i < n+1

2 , it follows that σ(i) = n − i and
σ2(i) = i+ 1. But then

σ(i) = n− i > n− i− 1 = max Ii+2 ≥ σ(i+ 1)

which again contradicts the assumption σ(i) < σ(i+1) and thus shows that σ(i+1) 6∈ I.
Case 4. Suppose i > n+1

2 . Assume σ ≈ σ′ and let ν : Sn → Sn, x 7→ xw0 , τ := ν(σ)
and τ ′ := ν(σ′). Since σ is oscillating and has connected intervals, Lemma 4.3.12 implies
that τ is oscillating and has connected intervals. In addition, from Lemma 4.3.13 we
have τ ≈ τ ′. Because τ ′ = sn−iτsn−i with n− i < n+1

2 , we now obtain from the already
proven cases that τ ′ is oscillating and has connected intervals. Hence, σ′ = ν(τ ′) and
Lemma 4.3.12 yield that σ′ is oscillating with connected intervals.

In order to show that each oscillating n-cycle with connected intervals is ≈-equivalent
to σ(n), we use an algorithm that takes an oscillating n-cycle σ ∈ Sn with connected
intervals as input and successively conjugates σ with simple reflections until we obtain
σ(n). This algorithm has the property that all permutations appearing as interim results
are oscillating with connected intervals and ≈-equivalent to σ. Eventually, it follows
that σ ≈ σ(n).

The mechanism of the algorithm is due to Kim [Kim98]. She used it in order to show
that for each α �e n the element in stair form σα has maximal length in its conjugacy
class. The next lemma corresponds to one step of the algorithm.

Lemma 4.3.18. Let α = (n) and σ ∈ Sn be an oscillating n-cycle with connected
intervals which is different from the element in stair form σα. Then there exists a

146



4.3 Equivalence classes of (Sn)max under ≈

minimal integer p such that 1 ≤ p ≤ n−1 and σp(1) 6= σpα(1). Set a := σp(1), b := σpα(1)
and

σ′ :=
{
sa−1σsa−1 if a > b

saσsa if a < b.

Then σ′ ≈ σ and σ′ is oscillating and has connected intervals.

Proof. Set Ik := [k, n − k + 1] for all k ∈ N with k ≤ n+1
2 . Because σ 6= σα and both

permutations are n-cycles, we have p ≤ n− 2. Recall that by Definition 4.2.13,

σα =
{

(1, n, 2, n− 1, . . . , n2 ,
n
2 + 1) if n is even

(1, n, 2, n− 1, . . . , n−1
2 , n+3

2 , n+1
2 ) if n is odd.

If n is odd then n+1
2 = σn−1(1) and hence p ≤ n−2 implies b 6= n+1

2 . If n is even then
b 6= n+1

2 anyway.
We assume b < n+1

2 . The proof in the case b > n+1
2 is similar and therefore omitted.

By the choice of p, we have b 6= 1 so that 1 < b < n+1
2 . The definition of σα implies{

σkα(1) | k = 0, . . . , p− 1
}

= [n] \ Ib,{
σkα(1) | k = p, . . . , n− 1

}
= Ib.

(4.10)

Again by the choice of p, the same equalities hold for σ. Hence, b < a as a ∈ Ib
and b = min Ib. Therefore, we consider σ′ = sa−1σsa−1 and show that σ ≈ σ′. Then
Lemma 4.3.17 implies that σ′ also is oscillating and has connected intervals.
It follows from the definition of σα and b < n+1

2 that

σ−1(a) = σ−1
α (b) = n− b+ 2 > n+ 1

2 . (4.11)

As σ is oscillating, we obtain that a ≤ n+1
2 from Lemma 4.3.6. Since (4.10) holds for σ

and p > 0,

σ−1(a) 6∈ Ib ⊇ Ia−1 ⊇ Ia.

Let r := |Ia|. Because Ia is connected in σ, a ∈ Ia and σ−1(a) 6∈ Ia, we have{
σk(a) | k = 0, . . . , r − 1

}
= Ia.

Now we can use that Ia−1 = Ia ∪{a− 1, n− a+ 2} is connected in σ and that σ−1(a) 6∈
Ia−1 to obtain {

σk(a) | k = 0, . . . , r + 1
}

= Ia−1
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The descriptions of Ia and Ia−1 imply that{
σr(a), σr+1(a)

}
= {a− 1, n− a+ 2} .

Lemma 4.3.14 applied to Ia in σ and σ−1(a) > n+1
2 now imply that σr(a) < n+1

2 . Thus,
σr(a) = a− 1 and σr+1(a) = n− a+ 2. That is,

σ(a− 1) = n− a+ 2 (4.12)

Moreover, σ−1(a− 1) ∈ Ia implies

σ−1(a− 1) ≤ n− a+ 1. (4.13)

We now show

σ(a) ≤ n− a+ 1. (4.14)

and deal with two cases. If a = n+1
2 then n − a + 1 = a. Furthermore, we then have

r = 1 and therefore σ(a) = a− 1 < n− a + 1. If a < n+1
2 then r > 1 so that σ(a) ∈ Ia

and thus σ(a) ≤ n− a+ 1 as desired.
From (4.11) and (4.13) it follows that

σ−1(a− 1) ≤ n− a+ 1 < n− b+ 2 = σ−1(a).

Moreover, (4.12) and (4.14) imply

σ(a− 1) = n− a+ 2 > n− a+ 1 ≥ σ(a).

Since σ′ = sa−1σsa−1, Lemma 4.2.22 now yields `(σ′) = `(σ). Hence, σ′ ≈ σ by
Lemma 4.2.20.

Example 4.3.19. Let n = 5 and α = (n). The n-cycle σ = (1, 3, 4, 2, 5) ∈ Sn is
oscillating and has connected intervals. We can successively use Lemma 4.3.18 in order
to obtain the sequence

σ = σ(0) = (1, 3, 4, 2, 5),
σ(1) = (1, 4, 3, 2, 5) = s3σ

(0)s3,

σ(2) = (1, 5, 3, 2, 4) = s4σ
(1)s4,

σ(3) = (1, 5, 2, 3, 4) = s2σ
(2)s2,

σα = σ(4) = (1, 5, 2, 4, 3) = s3σ
(3)s3.

Moreover, Lemma 4.3.18 ensures that each σ(j) is oscillating with connected intervals
and all σ(j) are ≈-equivalent. Therefore, σ ∈ Σα by Proposition 4.2.14.

We now come to the characterization of Σ(n).
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(1, 3, 4, 2, 5) (1, 4, 3, 2, 5) (1, 4, 2, 3, 5)

(1, 3, 2, 4)

(1, 2, 3)

del3
del3

del3

del3

ins3,1
ins3,2

ins3,3

ins3,1

Figure 4.8: Examples for the operators delk and insk,p appearing in Theorem 4.3.21 and
its proof. The lower part of the picture serves as an example for the operators
used in the case when n is even. The upper part is an example for those used
in the case when n is odd. Note that for the integer m from the theorem we
have m = n

2 + 1 = 3 if n = 4 and m = n+1
2 = 3 if n = 5.

Theorem 4.3.20. Let σ ∈ Sn be an n-cycle. Then σ ∈ Σ(n) if and only if σ is oscillating
and has connected intervals.

Proof. Let σ ∈ Sn be an n-cycle. Recall that σ ∈ Σ(n) if and only if σ ≈ σ(n) by
Proposition 4.2.14. Assume that σ ∈ Σ(n). Then σ ≈ σ(n) which by definition of
≈ implies that there are sequences σα = σ(0), σ(1), . . . , σ(m) = σ ∈ Sn and i1, . . . , im ∈
[n−1] such that σ(j−1) ≈ σ(j) and σ(j) = sijσ

(j−1)sij for j ∈ [m]. From Lemma 4.3.11 we
have that σ(n) is oscillating and has connected intervals. Moreover, Lemma 4.3.17 yields
that σ(j) is oscillating with connected intervals if σ(j−1) is oscillating with connected
intervals. Hence, σ is oscillating and has connected intervals by induction.

Conversely, assume that σ is oscillating and has connected intervals. Then we can use
Lemma 4.3.18 iteratively to obtain a sequence of ≈-equivalent n-cycles starting with σ
and eventually ending with σα. Thus σ ≈ σα.

The goal of the remainder of this subsection is to find bijections that relate Σ(n−1)
to Σ(n). From this we will obtain a recursive description of Σ(n) and a formula for the
cardinality of Σ(n). To achieve our goal, we define two operators ins and del.
Assume that the n-cycle σ ∈ Sn is given in cycle notation starting with 1. Then for

k ∈ [2, n+ 1] insk,p(σ) ∈ Sn+1 is the (n+ 1)-cycle obtained from σ by adding 1 to each
element greater or equal to k in σ and then inserting k behind the pth element in the
resulting cycle. Likewise, for k ∈ [2, n], delk(σ) ∈ Sn−1 is the (n − 1)-cycle obtained
by first deleting k from σ and then decreasing each element greater than k by 1. See
Figure 4.8 for examples.
We now define ins and del more formally. Let σ ∈ Sn be an n-cycle and k ∈ N. Set

εr :=
{

0 if σr(1) < k

1 if σr(1) ≥ k
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for r = 0, . . . , n − 1. In the following we will assume k > 1. The operators could also
be defined for k = 1 but this is not necessary for our purposes and would only make the
exposition less transparent.
For k ∈ [2, n+ 1] and p ∈ [n], define insk,p(σ) to be the (n+ 1)-cycle of Sn+1 given by

insk,p(σ)r(1) :=


σr(1) + εr if r < p

k if r = p

σr−1(1) + εr−1 if r > p

for r = 0, . . . , n. For k ∈ [2, n], define delk(σ) to be the (n− 1)-cycle of Sn−1 given by

delk(σ)r(1) :=
{
σr(1)− εr if r < p

σr+1(1)− εr+1 if r ≥ p

for r = 0, . . . , n− 2 where p is the element of [0, n− 1] with σp(1) = k.
The next results relates Σ(n) with Σ(n−1) via a bijection for n ≥ 4.

Theorem 4.3.21. Suppose n ≥ 4. If n is even then set m := n
2 + 1 and

ψ : Σ(n−1) → Σ(n), σ 7→ insm,p(σ)

where p is the element of [n − 1] with σp−1(1) = min
{
σ−1(n2 ), n2

}
. If n is odd then set

m := n+1
2 and

ψ : Σ(n−1) × {0, 1, 2} → Σ(n), (σ, q) 7→ insm,p+q(σ)

where p is the element of [n − 3] with σp−1(1) 6∈ {m− 1,m} and σp(1) ∈ {m− 1,m}.
Then ψ is a bijection.

Corollary 4.3.22. Suppose n ≥ 4. Then

∣∣∣Σ(n)
∣∣∣ =


∣∣∣Σ(n−1)

∣∣∣ if n is even
3
∣∣∣Σ(n−1)

∣∣∣ if n is odd.

Proof of Theorem 4.3.21. Theorem 4.3.20 states that for all n ∈ N, Σ(n) is the set of
oscillating n-cycles of Sn with connected intervals. In this proof we repeatedly use this
result without further notice.

Let n ≥ 4. We consider all permutations in the cycle notation where 1 is the leftmost
entry in its cycle. In particular, deleting an entry from a permutation or inserting
an entry into a permutation means that we do this in the chosen cycle notation. We
distinguish two cases depending on the parity of n.
Case 1. Assume that n is even. Then m = n

2 + 1. For τ ∈ Σ(n−1) let p be given as
in the definition of ψ. Then min

{
τ−1(n2 ), n2

}
is the pth element in the cycle notation of

τ . Hence, we obtain ψ(τ) by increasing each element in τ greater or equal to m by one
and then inserting m behind the element at position p.
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Set ϕ : Σ(n) → Σ(n−1), σ 7→ delm(σ). That is, for σ ∈ Σ(n) we obtain ϕ(σ) by first
deleting m from σ and then decreasing each entry greater than m by 1.
We show that ϕ and ψ are well defined and inverse to each other.
(1) We prove that ϕ is well defined. Let σ ∈ Σ(n) and τ := ϕ(σ). We have to show

that τ ∈ Σ(n−1). That is, we have to prove that τ is oscillating and has connected
intervals.
To show the latter, let 1 ≤ i ≤ n−1

2 < n
2 . As [i, n− i+ 1] is connected in σ there is a

0 ≤ q ≤ n− 1 such that {
σq+1(1), . . . , σq+r(1)

}
= [i, n− i+ 1]

where r := |[i, n− i+ 1]|. Moreover, m ∈ [i, n− i+ 1]. Thus, τ = delm(σ) implies{
τ q+1(1), . . . , τ q+r−1(1)

}
= [i, n− i].

Hence, [i, (n− 1)− i+ 1] is connected in τ . It follows that τ has connected intervals.
We now show that τ is oscillating. Note that n − 1 is odd and (n−1)+1

2 = n
2 . By

Lemma 4.3.6, it suffices to show that τ(i) ≥ n
2 for all i ∈ [n2 − 1] and that either

τ−1 (n
2
)
> n

2 or τ
(
n
2
)
> n

2 .
Let i ∈ [n2 − 1]. Since i < n

2 and σ is oscillating, we infer σ(i) > n
2 from Lemma 4.3.6.

If σ(i) 6= m then τ(i) = σ(i) − 1 ≥ n
2 . If σ(i) = m then σ2(i) = n

2 since m = n
2 + 1,{

n
2 ,

n
2 + 1

}
is connected in σ and i 6∈ {n2 , n2 + 1

}
. Thus, τ(i) = n

2 .
We now show that either τ−1 (n

2
)
> n

2 or τ
(
n
2
)
> n

2 . Since
{
n
2 ,

n
2 + 1

}
is connected in

σ there is a 0 ≤ q ≤ n− 1 such that{
σq(1), σq+1(1)

}
=
{
n

2 ,
n

2 + 1
}
.

Hence, τ = deln
2 +1(σ) implies τ q(1) = n

2 . Because n ≥ 4, we can apply Lemma 4.3.14 to{
n
2 ,

n
2 + 1

}
in σ and obtain that there are a < n

2 and b > n
2 + 1 such that

{
σq−1(1), σq(1), σq+1(1), σq+2(1)

}
=
{
a, b,

n

2 ,
n

2 + 1
}
.

Therefore, τ q(1) = n
2 and τ = deln

2 +1(σ) yield
{
τ−1 (n

2
)
, τ
(
n
2
)}

= {a, b− 1} . That is,
either τ−1 (n

2
)
> n

2 or τ
(
n
2
)
> n

2 . Thus, τ is oscillating.
(2) We check that ψ is well defined. Let τ ∈ Σ(n−1) and σ := ψ(τ). We have to show

σ ∈ Σ(n).
The definition of ψ implies that n

2 + 1 is a neighbor of n
2 in σ. In addition, [i, n − i]

is connected in τ for i ∈ [n2 − 1]. Therefore, [i, n − i + 1] is connected in σ for i ∈ [n2 ].
That is, σ has connected intervals.
We now show that σ is oscillating. By Lemma 4.3.6, it suffices to show that σ(i) > n

2
for all i ∈ [n2 ]. For i < n

2 this can be done as before. Thus, we only consider i = n
2 . As τ

is oscillating, Lemma 4.3.6 implies that one of the neighbors of n2 is smaller than n
2 and

the other one is greater than n
2 . Let a be the smaller and b be the bigger neighbor of
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n
2 . In the definition of ψ, p is chosen such that n

2 + 1 is inserted in τ between a and n
2 .

Thus, n2 has neighbors n
2 + 1 and b+ 1 in σ. Consequently, σ

(
n
2
)
> n

2 .
(3) We now show that ψ ◦ ϕ = id. Let σ ∈ Σ(n). Since

{
n
2 ,

n
2 + 1

}
is connected in σ,

these two elements are neighbors in σ. As σ is oscillating, there is an a < n
2 such that

n
2 + 1 has neighbors a and n

2 . We obtain ϕ(σ) from σ by deleting n
2 + 1 so that a and

n
2 are neighbors in ϕ(σ). On the other hand, we obtain ψ(ϕ(σ)) from ϕ(σ) by inserting
n
2 + 1 between a and n

2 . Thus ψ(ϕ(σ)) = σ.
(4) Finally, we show that ϕ ◦ψ = id. Let τ ∈ Σ(n−1). Then we obtain ψ(τ) from τ by

inserting n
2 + 1 at some position and get ϕ(ψ(τ)) from ψ(τ) by deleting it again. Hence,

ϕ(ψ(τ)) = τ .
Case 2. Assume that n is odd. Then m = n+1

2 . For τ ∈ Σ(n−1) the set {m− 1,m}
is connected. Thus, there is a unique integer p with 1 ≤ p ≤ n− 3 such that τp−1(1) 6∈
{m− 1,m} and τp(1) ∈ {m− 1,m}. That is, the integer p from the definition of ψ in
the theorem is well defined. Note that p is the position of the left neighbor of the set
{m− 1,m} in τ .

Conversely, for σ ∈ Σ(n), I := {m− 1,m,m+ 1} is connected in σ. Hence, there is a
unique 0 ≤ p ≤ n − 1 such that I =

{
σp+k(1) | k = 0, 1, 2

}
and a unique q ∈ {0, 1, 2}

such that σp+q(1) = m. We define the map ϕ : Σ(n) → Σ(n−1) × {0, 1, 2} by setting
ϕ(σ) := (delm(σ), q). Again, we show that ϕ and ψ are well defined and inverse to each
other.
(1) First we show that the two maps are inverse to each other. Let σ ∈ Σ(n) and

ϕ(σ) = (τ, q). Then we have

q =


0 if m is the left neighbor of {m− 1,m+ 1} in σ,
1 if m is located between m− 1 and m+ 1 in σ,
2 if m is the right neighbor of {m− 1,m+ 1} in σ.

Conversely, let τ ∈ Σ(n−1), q ∈ {0, 1, 2} and σ = ψ(τ, q) then

m is


the left neighbor of {m− 1,m+ 1} in σ if q = 0,
located between m− 1 and m+ 1 in σ if q = 1,
the right neighbor of {m− 1,m+ 1} in σ if q = 2.

(4.15)

From this it follows that ϕ and ψ are inverse to each other.
(2) In order to prove that ϕ is well defined one has to show that delm(σ) ∈ Σ(n−1).

This can be done similarly as in Case 1.
(3) To see that ψ is well defined, let τ ∈ Σ(n−1), q ∈ {0, 1, 2} and σ := ψ(τ, q). We

first show that σ has connected intervals. Recall that m = n+1
2 . Let i ≤ n−1

2 = m − 1.
Then [i, n− i] is connected in τ since τ has connected intervals. By the definition of ψ,
we obtain the entries [i, n − i + 1] in σ by adding 1 to each entry ≥ m of [i, n − i] in τ
and then inserting m such that by (4.15) at least one of the neighbors of m is m− 1 or
m+ 1. Since m− 1,m,m+ 1 ∈ [i, n− i+ 1] it follows that [i, n− i+ 1] is connected in
σ. Therefore, σ has connected intervals.
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In order to show that σ is oscillating, let τ ′ be the (n − 1)-cycle of Sn obtained by
adding 1 to each entry of τ which is greater or equal than m. Since τ is oscillating,
the entries in τ ′ alternate between the sets [m − 1] and [m + 1, n]. Furthermore, we
obtain σ from τ ′ by inserting m somewhere in τ ′. Thus, Corollary 4.3.7 implies that σ
is oscillating.

From Table 4.1 we know Σ(n) for n = 1, 2, 3. That is, Theorem 4.3.21 allows us to
compute Σ(n) recursively for each n ∈ N. This is illustrated in the following.

Example 4.3.23. We want to compute Σ(n) for n = 4, 5. To do this we use the bijections
ψ and the related notation introduced in Theorem 4.3.21.

(1) Consider n = 4. We have

Σ(4) =
{
ψ(σ) | σ ∈ Σ(3)

}
by Theorem 4.3.21. From Table 4.1 we obtain Σ(3) = {(1, 3, 2), (1, 2, 3)}.
For σ = (1, 3, 2) we have p = 3 since

σ3−1(1) = 2 = min {2, 3} = min
{
σ−1

(4
2

)
,
4
2

}
.

Thus,

ψ(σ) = ins3,3((1, 3, 2)) = (1, 3 + 1, 2, 3) = (1, 4, 2, 3).

For σ = (1, 2, 3) we have p = 1 and

ψ(σ) = ins3,1((1, 2, 3)) = (1, 3, 2, 3 + 1) = (1, 3, 2, 4).

Therefore, Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)}.
(2) Consider n = 5. Theorem 4.3.21 yields

Σ(5) =
{
ψ(σ, q) | σ ∈ Σ(4), q ∈ {0, 1, 2}

}
. (4.16)

Let m = 5+1
2 = 3 and I = {m− 1,m} = {2, 3}.

For σ = (1, 4, 2, 3) we have p = 2 since σ2−1(1) = 4 6∈ I and σ2(1) = 2 ∈ I. Thus, for
instance we have

ψ(σ, 1) = ins3,3((1, 4, 2, 3)) = (1, 4 + 1, 2, 3, 3 + 1) = (1, 5, 2, 3, 4).

For σ = (1, 3, 2, 4) we have p = 1. Computing ψ(σ, q) for all σ ∈ Σ(4) and q ∈ {0, 1, 2},
we obtain the following table. By (4.16), it lists all elements of Σ(5).

ψ(σ, q) 0 1 2
(1, 4, 2, 3) (1, 5, 3, 2, 4) (1, 5, 2, 3, 4) (1, 5, 2, 4, 3)
(1, 3, 2, 4) (1, 3, 4, 2, 5) (1, 4, 3, 2, 5) (1, 4, 2, 3, 5)
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Corollary 4.3.24. Let n ∈ N. Then

∣∣∣Σ(n)
∣∣∣ =

1 if n ≤ 2
2 · 3bn−3

2 c if n ≥ 3.

Proof. Let xn := |Σ(n)| for n ≥ 1, y1 := y2 := 1 and yn := 2 · 3bn−3
2 c for n ≥ 3. We

show that both sequences have the same initial values and recurrence relations. First
note that

(x1, x2, x3) = (1, 1, 2) = (y1, y2, y3).

where we obtain the xi from Table 4.1. Now let n ≥ 4. By Corollary 4.3.22 we have to
show that yn = yn−1 if n is even and yn = 3yn−1 if n is odd. If n is even, we have⌊

n− 3
2

⌋
=
⌊
n− 4

2 + 1
2

⌋
= n− 4

2 =
⌊
n− 1− 3

2

⌋
and thus yn = yn−1. If n is odd, we have⌊

n− 3
2

⌋
= n− 3

2 = n− 5
2 + 1 =

⌊
n− 5

2 + 1
2

⌋
+ 1 =

⌊
n− 4

2

⌋
+ 1

and hence yn = 3yn−1.

4.3.2 Equivalence classes of odd hook type

Let α = (k, 1n−k) � n be a hook. Then α is a maximal composition. Recall that a
hook α is called odd if k is odd and called even otherwise. The main result of this
subsection is a combinatorial characterization of Σα provided that α is an odd hook in
Theorem 4.3.40.
Subsection 4.3.4 deals with a characterization of Σα for a certain family of maximal

compositions called mild (see Definition 4.3.68). Since even hooks belong to this fam-
ily, the characterization of Σα in the case where α is an even hook is postponed until
Theorem 4.3.72 of Subsection 4.3.4.
We want to generalize the concept of being oscillating and having connected intervals

from n-cycles to arbitrary permutations. In order to do this, we standardize cycles in
the following way. Let σ := (c1, . . . , ck) ∈ Sn be a k-cycle. Replace the smallest element
among c1, . . . , ck by 1, the second smallest by 2 and so on. The result is a k-cycle with
entries 1, 2, . . . , k which can be regarded as an element Sk. This permutation is called
the cycle standardization cst(σ) of σ.

Example 4.3.25. Consider σ = (3, 11, 4, 10, 5) ∈ S11. Then cst(σ) = (1, 5, 2, 4, 3) ∈ S5
which is oscillating with connected intervals.

We formally define the cycle standardization as follows.
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4.3 Equivalence classes of (Sn)max under ≈

Definition 4.3.26. (1 ) Given σ ∈ Sn and i ∈ [n], there is a cycle (c1, . . . , ck) of σ
containing i. Then we define

ρσ(i) := |{j ∈ [k] | cj ≤ i}| .

(2 ) Let σ = (c1, . . . , ck) ∈ Sn be a k-cycle. The cycle standardization of σ is the k-
cycle of Sk given by

cst(σ) := (ρσ(c1), ρσ(c2), . . . , ρσ(ck)).

Note that the permutation cst(σ) is independent from the choice of the cycle notation
σ = (c1, c2, . . . , ck) in Definition 4.3.26.

Remark 4.3.27. Let σ = (c1, c2, . . . , ck) ∈ Sn be a k-cycle.
(1) The anti-rank of i ∈ [n] among the elements in its cycle in σ is ρσ(i).
(2) For all i, j ∈ [k] we have ci < cj if and only if ρσ(ci) < ρσ(cj).
(3) Let i be an element appearing in the cycle (c1, c2, . . . , ck). Then we have

cst(σ)(ρσ(i)) = ρσ(σ(i)).

We now generalize the notions of being oscillating and having connected intervals
to arbitrary permutations via the cycle decomposition and the cycle standardization.
Recall that trivial cycles are those of length 1.

Definition 4.3.28. Let σ ∈ Sn and write σ as a product σ = σ1 · · ·σl of disjoint cycles
including the trivial ones.
(1 ) We say that σ is oscillating if cst(σi) is oscillating for each cycle σi.
(2 ) We say that σ has connected intervals if cst(σi) has connected intervals for each

cycle σi

Let (c) ∈ Sn be a trivial cycle. Then cst((c)) = (1) ∈ S1 which is oscillating and has
connected intervals. Therefore, in order to show that a permutation σ is oscillating (has
connected intervals) it suffices to consider the nontrivial cycles.

Example 4.3.29. Let α = (4, 5, 3, 1) �e 13 and

σα = (1, 13, 2, 12)(3, 11, 4, 10, 5)(9, 6, 8)(7).

The cycle standardizations of the nontrivial cycles of σα are

(1, 4, 2, 3), (1, 5, 2, 4, 3) and (1, 2, 3).

Each of these three permutations is oscillating and has connected intervals (cf. Table 4.1).
Thus, σα is oscillating and has connected intervals.

Assume that σ ∈ Sn is an n-cycle. Then σ has only one cycle σ in cycle notation and
cst(σ) = σ. Thus, for n-cycles our new notion of being oscillating (having connected
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intervals) from Definition 4.3.28 is equivalent to the old concept from Definition 4.3.1
(Definition 4.3.9).
We now prove some general results on oscillating permutations with connected inter-

vals. As in the last subsection, we are interested in the effect of swapping entries i and
i+ 1 in cycle notation (that is, conjugating with si). This will in particular be useful to
prove our results on odd hooks. We consider the case where i and i + 1 appear in the
same cycle first.

Lemma 4.3.30. Let σ ∈ Sn and write σ as a product σ = σ1 · · ·σl of disjoint cycles.
Assume that there is an i ∈ [n− 1] and a k ∈ [l] such that i and i+ 1 both appear in the
cycle σk. Set i′ := ρσ(i) and τ := cst(σk). Then we have
(1 ) cst(siσksi) = si′τsi′,
(2 ) siσsi ≈ σ if and only if si′τsi′ ≈ τ .

Proof. By the definition of ρσ, we have that ρσ(j) = ρσk(j) for all entries j in the cycle
σk.

(1) We obtain siσksi from σk by interchanging i and i + 1 in cycle notation. Since i
and i + 1 appear in σk, we have ρσk(i + 1) = i′ + 1. Thus, we obtain cst(siσksi) from
τ = cst(σk) by interchanging i′ and i′+ 1 in cycle notation. That is, cst(siσsi) = si′τsi′ .

(2) We have siσsi ≈ σ if and only if `(siσsi) = `(σ). By Lemma 4.2.22, this is the
case if and only if either σ(i) < σ(i + 1) or σ−1(i) < σ−1(i + 1). From the definition
of the cycle standardization we obtain that τ(ρσ(j)) = ρσ(σ(j)) for each entry j in σk
(cf. Remark 4.3.27). Moreover, by the definition of ρσ and the fact that i and i + 1
appear in the same cycle of σ,

σ(i) < σ(i+ 1) ⇐⇒ ρσ(σ(i)) < ρσ(σ(i+ 1)).

Hence,

σ(i) < σ(i+ 1) ⇐⇒ τ(i′) < τ(i′ + 1).

Similarly, one shows that this equivalence is also true for σ−1 and τ−1. Therefore, we
have siσsi ≈ σ if and only if either τ(i′) < τ(i′ + 1) or τ−1(i′) < τ−1(i′ + 1). As for σ,
the latter is equivalent to si′τsi′ ≈ τ .

We now infer from Lemma 4.3.30 that swaps of i and i+1 within a cycle that preserve
≈ also preserve the properties of being oscillating with connected intervals.

Corollary 4.3.31. Let σ ∈ Sn be oscillating with connected intervals, i ∈ [n− 1] such
that i and i + 1 appear in the same cycle of σ and σ′ := siσsi. If σ ≈ σ′ then σ′ is
oscillating with connected intervals.

Proof. We write σ as a product σ = σ1 · · ·σl of disjoint cycles and choose k such that i
and i+ 1 appear in the cycle σk. Moreover, we set τ := cst(σk), τ ′ := cst(siσksi) and m
to be the length of the cycle σk.
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As i and i+1 only appear in σk, σ′ = σ1 · · ·σk−1(siσksi)σk+1 · · ·σl is the decomposition
of σ′ in disjoint cycles. Since σ is oscillating with connected intervals, cst(σj) is oscillating
with connected intervals for all j ∈ [l]. Therefore, it remains to show that τ ′ has these
properties. Since σ ≈ σ′, Lemma 4.3.30 yields that τ ≈ τ ′. In addition, τ is an
oscillating m-cycle with connected intervals and thus τ ∈ Σ(m) by Theorem 4.3.20.
Hence, also τ ′ ∈ Σ(m), i.e. τ ′ is oscillating with connected intervals.

The next result is concerned with the interchange of i and i+ 1 between two cycles.

Lemma 4.3.32. Let σ ∈ Sn be oscillating with connected intervals, i ∈ [n − 1] such
that i and i + 1 appear in different cycles of σ and σ′ := siσsi. Then σ′ is oscillating
and has connected intervals.

Proof. We obtain σ′ from σ by interchanging i and i + 1 between two cycles in cycle
notation. It is easy to see that this does not affect the cycle standardization of the
cycles in question. In addition, all other cycles of σ′ appear as cycles of σ. Since σ
is oscillating with connected intervals, it follows that the standardization of each cycle
of σ′ is oscillating with connected intervals. That is, σ′ is oscillating with connected
intervals.

We now come to the hooks.

Example 4.3.33. Let α = (3, 1, 1) �e 5. The elements of Σα are

(1, 5, 2), (1, 2, 5), (1, 5, 3), (1, 3, 5), (1, 5, 4), (1, 4, 5).

Note that 1 and 5 always appear in the cycle of length 3.

Recall that we use type as a short form for cycle type.

Definition 4.3.34. Let α = (k, 1n−k) �e n be a hook, σ ∈ Sn of type α, m := k−1
2 if k

is odd and m := k
2 if k is even. We say that σ satisfies the hook properties if

(1 ) σ is oscillating,
(2 ) σ has connected intervals,
(3 ) if k > 1 then i and n− i+ 1 appear in the cycle of length k of σ for all i ∈ [m].

The permutations from Example 4.3.33 satisfy the hook properties. The main result
of this subsection is to show that for an odd hook α, the elements of Σα are characterized
by the hook properties. In Theorem 4.3.72 of Subsection 4.3.4 we will see that the same
is true for even hooks.

Example 4.3.35. (1) Let σ ∈ Sn be of type (1n). Then σ = id and σ satisfies the
hook properties. Moreover, Σ(1n) = {σ}.
(2) Let σ ∈ Sn be of type (n). That is, σ is an n-cycle. Then the third hook

property is satisfied by σ since all elements of [n] appear in the only cycle of σ. Thus,
σ has the hook properties if and only if σ is oscillating with connected intervals. By
Theorem 4.3.20, this is equivalent to σ ∈ Σ(n).
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(3) Let α = (3, 1, 1) � n. We want to determine all permutations in Sn of type α that
satisfy the hook properties. Let σ ∈ Sn be of type α, σ1 be the cycle of length 3 of σ
and O1 be the set of elements in σ1.

Since σ1 is the only nontrivial cycle of σ, σ is oscillating and has connected intervals if
and only if τ := cst(σ1) has these properties. The type of τ is (3). By Theorem 4.3.20, the
oscillating permutations of type (3) with connected intervals form Σ(3). From Table 4.1
we read Σ(3) = {(1, 3, 2), (1, 2, 3)}.

Let

M = {{1, 5} ∪ {j} | j ∈ [2, 4]} = {{1, 2, 5} , {1, 3, 5} , {1, 4, 5}}

The third hook property is satisfied by σ if and only if O1 ∈M .
Therefore, σ fulfills the hook properties if and only if there is a τ ∈ Σ(3) and an
O1 ∈ M such that we obtain σ1 by writing O1 in a cycle such that the relative order
of entries matches that one in τ . For instance, from τ = (1, 3, 2) and O1 = {1, 4, 5} we
obtain σ = (1, 5, 4). Going through all possibilities for τ and O1 we obtain the desired
set of permutations. These are the ones shown in Example 4.3.33.

For the proof of the characterization of Σα when α is an odd hook, we follow the
same strategy as in in the case of compositions with one part from Subsection 4.3.1: For
any odd hook α we show that σα satisfies the hook properties, ≈ is compatible with
the hook properties and there is an algorithm that computes a sequence of ≈-equivalent
permutations starting with σ and ending up with σα for each permutation σ of type α
satisfying the hook properties.

Lemma 4.3.36. Let α �e n be an odd hook. Then the element in stair form σα ∈ Sn

satisfies the hook properties.

Proof. Let α = (α1, . . . , αl) = (k, 1n−k) �e n be an odd hook. If k = 1 then σα is
the identity which satisfies the hook properties. Assume k > 1 and set m := k−1

2 . By
definition, the cycle of length k of σα is given by

σα1 = (1, n, 2, n− 1, . . . ,m, n−m+ 1,m+ 1).

Hence, σα satisfies the third hook property. In order to show that σα is oscillating and
has connected intervals, it suffices to consider σα1 because the other cycles of σα are
trivial. From the description of σα1 we obtain its cycle standardization

cst(σα1) = (1, k, 2, k − 1, . . . ,m, k −m+ 1,m+ 1).

That is, cst(σα1) is the element in stair form σ(k) which is oscillating and has connected
intervals by Lemma 4.3.11.

Let α �e n be an odd hook and σ ∈ Sn be of type α satisfying the hook properties. In
order to show σα ≈ σ we will successively interchange elements i and i+ 1 in the cycle
notation of σ. The next lemma considers the case where at least one of i and i+ 1 is a
fixpoint of σ.
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Lemma 4.3.37. Let α = (k, 1n−k) �e n be an odd hook, m := k−1
2 and σ ∈ Sn of type α

satisfying the hook properties. Furthermore, assume that there are i, i+1 ∈ [m+1, n−m]
such that i or i + 1 is a fixpoint of σ. Then siσsi ≈ σ and siσsi satisfies the hook
properties.

Proof. If both i and i+ 1 are fixpoints of σ then siσsi = σ and there is nothing to show.
Therefore, we assume that either i or i+ 1 is not a fixpoint and call this element j. By
choice of i and i+ 1, m < j < n−m+ 1. Since σ satisfies the hook properties, the cycle
of length k of σ consists of the elements 1, . . . ,m, j, n−m+ 1, . . . , n.

First we show that siσsi satisfies the hook properties. As σ is oscillating with con-
nected intervals and i and i+ 1 appear in different cycles of σ, Lemma 4.3.32 yields that
siσsi is oscillating with connected intervals too. As we obtain siσsi by interchanging i
and i+ 1 in cycle notation of σ and

i, i+ 1 6∈ {1, . . . ,m, n−m+ 1, . . . , n} ,

siσsi satisfies the third hook property.
In order to show siσsi ≈ σ, we assume that i+ 1 is a fixpoint of σ and i is not. The

other case is proven analogously. Let τ := cst(σ) and i′ := ρσ(i). Then i′ = m+1 = k+1
2

by the description of the cycle of length k from above. Since σ is oscillating, τ is
oscillating. Thus, Lemma 4.3.6 implies that there is an ε ∈ {−1, 1} such that

τ ε(i′) > m+ 1 and τ−ε(i′) < m+ 1.

Now we use that τ δ(i′) = ρσ(σδ(i)) for δ = −1, 1 and obtain that

σε(i) ≥ n−m+ 1 and σ−ε(i) ≤ m.

As σ(i+ 1) = i+ 1 ∈ [m+ 2, n−m], it follows that

σε(i) > σε(i+ 1) and σ−ε(i) < σ−ε(i+ 1).

Hence, Lemma 4.2.22 implies `(siσsi) = `(σ). Therefore, siσsi ≈ σ.

The following lemma shows that ≈ preserves the hook properties. It is an analogue
to Lemma 4.3.17.

Lemma 4.3.38. Given an odd hook α = (k, 1n−k) �e n, σ ∈ Sn of type α satisfying
the hook properties and σ′ := siσsi with σ ≈ σ′, we have that also σ′ satisfies the hook
properties.

Proof. We show that σ′ has the hook properties. If k = 1 then σ = σ′ = id so that
σ′ satisfies the hook properties. Hence, assume k > 1. Set m := k−1

2 , τ := cst(σ) and
τ ′ := cst(σ′). We deal with three cases.

First, assume that neither i nor i+1 is a fixpoint of σ. Then i and i+1 both appear in
the cycle of length k of σ. Since σ satisfies the hook properties, it is oscillating and has
connected intervals. Therefore, Corollary 4.3.31 yields that also σ′ has these properties.

159



4 Centers and cocenters of 0-Hecke algebras

The elements 1, . . . ,m, n−m+ 1, . . .m all appear in the cycle of length k of σ because
σ satisfies the hook properties. Since we interchange two entries in this cycle to obtain
σ′ from σ, all the elements also appear in the cycle of length k of σ′.
Second, assume that i + 1 is a fixpoint of σ but i is not. Since σ ≈ σ′, we have

`(σ) = `(σ′) and by Lemma 4.2.22

either σ(i) > i+ 1 and σ−1(i) < i+ 1
or σ(i) < i+ 1 and σ−1(i) > i+ 1

(4.17)

where we used σ(i + 1) = i + 1. The elements of the cycle of length k of σ are
1, . . . ,m, j, n − m + 1, . . . , n where j ∈ [m + 1, n − m]. We now show that i, i + 1 ∈
[m+ 1, n−m].
As i+ 1 is a fixpoint, we have i+ 1 ≤ n−m and it remains to show that i ≥ m+ 1.

Assume that i ≤ m instead and set i′ := ρσ(i). Then i′ < k+1
2 . Since τ ∈ Sk is an

oscillating k-cycle, Lemma 4.3.6 yields that τ−1(i′), τ(i′) ≥ k+1
2 . Because ρσ(j) = k+1

2 ,
it follows that σ−1(i), σ(i) ≥ j. Moreover, i + 1 being a fixpoint and i ≤ m imply that
i+ 1 < j. Hence, σ−1(i), σ(i) > i+ 1 which contradicts (4.17).
Since i, i+ 1 ∈ [m+ 1, n−m] and i+ 1 is a fixpoint of σ, we can apply Lemma 4.3.37

which implies that σ′ satisfies the hook properties.
In the same vein, one proves the remaining case where i is a fixpoint but i + 1 is

not.

We now extend Lemma 4.3.18 to the case of odd hooks. That is, we consider one step
of the algorithm mentioned earlier.

Lemma 4.3.39. Let α = (k, 1n−k) �e n be an odd hook and σ ∈ Sn such that σ is of
type α, σ satisfies the hook properties and σ 6= σα. Then there exists a minimal integer
p such that 1 ≤ p ≤ k − 1 and σp(1) 6= σpα(1). Set a := σp(1), b := σpα(1) and

σ′ :=
{
sa−1σsa−1 if a > b

saσsa if a < b.

Then σ′ ≈ σ and σ′ satisfies the hook properties.

Proof. Set m := k−1
2 . If α = (1n) then the only permutation of type α is the identity

and there is nothing to show. If α = (n) then this is Lemma 4.3.18. Therefore, assume
1 < k < n. Since σ satisfies the hook properties, 1 appears in the cycle of length k of σ.
By definition, σα has the form

σα =
{

(1, n, 2, n− 1, . . . ,m+ 1)(n−m)(m+ 2) · · · (n+3
2 )(n+1

2 ) if n is odd
(1, n, 2, n− 1, . . . ,m+ 1)(n−m)(m+ 2) · · · (n2 )(n2 + 1) if n is even.

In particular, [m+2, n−m] is the set of fixpoints of σα and 1 also appears in the cycle of
length k of σα. Thus, from σ 6= σα it follows that there exists p as claimed. In particular,
we can define a, b and σ′ as in the theorem.
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If n is odd, k < n implies that n+1
2 is a fixpoint of σα and hence b 6= n+1

2 . If n is even,
we have b 6= n+1

2 anyway. Let τ := cst(σ) and note that cst(σα) is just the element in
stair form σ(k). Moreover set a′ := ρσ(a).

Assume b < n+1
2 . The proof for b > n+1

2 is similar and hence omitted. If b < n+1
2 then

b ≤ m+ 1 by the description of σα from above. The choice of p and 1 < b ≤ m+ 1 imply

σ−1(a) = σ−1
α (b) = n− b+ 2 > m+ 1

and

{1, 2, . . . , b− 1} ⊆ {σrα(1) | r = 0, . . . , p− 1} = {σr(1) | r = 0, . . . , p− 1} .

The last equality and a 6= b imply b < a. Thus, we consider σ′ := sa−1σsa−1. From
the hook properties, we obtain that the elements in the cycle of length k of σ are
1, . . . ,m, j, n − m + 1, . . . n where j ∈ [m + 1, n − m]. Thus, σ−1(a) > m + 1 implies
τ−1(a′) > m + 1. But since σ is oscillating, τ is oscillating and therefore Lemma 4.3.6
implies a′ ≤ m + 1. From the description of the elements in the k-cycle of σ, it now
follows that a ≤ n−m.

To sum up, we have b < a ≤ n − m and σ′ = sa−1σsa−1. Now we have two cases
depending on a− 1. If a− 1 is a fixpoint of σ then because of a ≤ n−m, we can apply
Lemma 4.3.37 and obtain that σ′ ≈ σ and σ′ satisfies the hook properties.
If a− 1 is not a fixpoint of σ then ρσ(a− 1) = a′ − 1. Moreover, interchanging a− 1

and a in σ does not affect the third part of the hook property. Therefore, we obtain from
Lemma 4.3.30 that σ′ ≈ σ and σ′ satisfies the hook properties if τ ′ := sa′−1τsa′−1 ≈ τ
and τ ′ is oscillating with connected intervals. By Lemma 4.3.18, τ ′ has these properties
if τ r(1) = σr(k)(1) for 0 ≤ r ≤ p−1, τp(1) > σp(k)(1) and τp(1) = a′. This is what remains
be shown.
As σr(1) = σrα(1) for 0 ≤ r ≤ p− 1, we have the following equality of tuples

(τ0(1), τ1(1), . . . , τp−1(1)) = (ρσ(1), ρσ(n), ρσ(2), ρσ(n− 1), . . . , ρσ(n− b+ 2))
= (1, k, 2, k − 1, . . . , k − b+ 2)
= (σ0

(k)(1), σ1
(k)(1), . . . , σp−1

(k) (1)).

Since the cycle of length k of σ contains exactly one element of [m + 1, n −m], a − 1
and a appear in this cycle and a ≤ n−m, we have that a ≤ m+ 1. Moreover, 1, . . . ,m
appear in the cycle of length k of σ and σα. Since b < a ≤ m+ 1, this implies

σp(k)(1) = ρσα(b) = b and τp(1) = ρσ(a) = a.

In particular, a′ = τp(1). Moreover, we have b < a so that σp(k)(1) < τp(1) as desired.

We now come to the main result of this subsection.

Theorem 4.3.40. Let α �e n be an odd hook and σ ∈ Sn of type α. Then σ ∈ Σα if
and only if σ satisfies the hook properties.
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Proof. Let α = (k, 1n−k) �e n be an odd hook and σα be the element in stair form. The
proof is analogous to the one of Theorem 4.3.20. First, σα satisfies the hook properties
by Lemma 4.3.36. Let σ ∈ Sn.
For the direction from left to right assume that σ ∈ Σα. Then σ ≈ σα. From the

definition of ≈ and Lemma 4.3.38 it follows that ≈ transfers the hook properties from
σα to σ.
For the converse direction, assume that σ satisfies the hook properties. By using

Lemma 4.3.39 iteratively, we obtain a sequence of ≈-equivalent permutations starting
with σ and ending in σα. Hence σ ∈ Σα.

We continue with a rule for the construction of Σ(k,1n−k) from Σ(k) in the case where k
is odd and k ≥ 3. The rule can be sketched as follows. Given a τ ∈ Σ(k) we can choose
a subset of [n] of size k in accordance with the third hook property. Arranging the
elements of this subset in a cycle of length k such that its cycle standardization is τ (and
letting the other elements of [n] be fixpoints) then results in an element of Σ(k,1n−k). See
Part (3) of Example 4.3.35 for an illustration.

Corollary 4.3.41. Let α = (k, 1n−k) �e n be an odd hook with k ≥ 3. Set m := k−1
2 . For

τ ∈ Σ(k) and j ∈ [m+1, n−m] define ϕ(τ, j) to be the element σ ∈ Sn of type α such that
cst(σ) = τ and the entries in the cycle of length k of σ are 1, . . . ,m, j, n−m+ 1, . . . , n.
Then

ϕ : Σ(k) × [m+ 1, n−m]→ Σα, (τ, j) 7→ ϕ(τ, j)

is a bijection.

Proof. Given a τ ∈ Σ(k) and a j ∈ [m + 1, n −m] there is only one way (up to cyclic
shift) to write the elements 1, 2, . . . ,m, j, n − m + 1, . . . , n in a cycle of length k such
that the standardization of the corresponding k-cycle in Sn is τ . This k-cycle is ϕ(τ, j).
By construction, ϕ(τ, j) satisfies the hook properties. Hence, Theorem 4.3.40 yields
ϕ(τ, j) ∈ Σα. That is, ϕ is well defined.
Let σ ∈ Σα. Then by Theorem 4.3.40, σ satisfies the hook properties. The third

hook property yields that there is a unique j ∈ [m + 1, n −m] such that the elements
in the cycle of length k of σ are 1, 2, . . . ,m, j, n−m+ 1, . . . , n. From the first two hook
properties it follows that τ := cst(σ) is oscillating and has connected intervals. Thus,
τ ∈ Σ(k) by Theorem 4.3.20. By definition of ϕ, the cycles of length k of ϕ(τ, j) and
σ contain the same elements. Moreover, they have the same cycle standardization τ .
Consequently, ϕ(τ, j) = σ. That is, ϕ is surjective. Since τ and j uniquely depend on
σ, ϕ is also injective.

In the last result of the subsection we determine the cardinality of Σα for each odd
hook α.
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Corollary 4.3.42. If α = (k, 1n−k) �e n is an odd hook then

|Σα| =
{

1 if k = 1
2(n− k + 1)3 k−3

2 if k ≥ 3.

Proof. Let σ ∈ Σα. If k = 1 then Σα = {1}. Now suppose that k ≥ 3 and set m := k−1
2 .

The cardinality of [m + 1, n − m] is n − k + 1. Hence, Corollary 4.3.41 yields that
|Σα| = (n−k+ 1)|Σ(k)|. In addition, we have |Σ(k)| = 2 · 3 k−3

2 from Corollary 4.3.24.

4.3.3 The inductive product

In this subsection we define the inductive product � and use it to obtain in Corol-
lary 4.3.56 a recursion the rule for Σ(α1,...,αl) in the case where α1 is even. This leads
to a description of Σα for all maximal compositions α whose odd parts form a hook
(see Remark 4.3.59). Results of this subsection will be applied in Subsection 4.3.4 and
Section 5.4.
Recall that we write γ �0 n if γ is a weak composition of n, that is, a finite sequence

of nonnegative integers that sum up to n.

Definition 4.3.43. Let (n1, n2) �0 n. The inductive product on Sn1×Sn2 is the binary
operator

� : Sn1 ×Sn2 → Sn

(σ1, σ2) 7→ σ1 � σ2

where σ1 � σ2 is the element of Sn whose cycles are the cycles of σ1 and σ2 altered as
follows:
(1 ) in the cycles of σ1, add n2 to each entry > k,
(2 ) in the cycles of σ2, add k to each entry

where k := dn1
2 e.

For two sets X1 ⊆ Sn1 and X2 ⊆ Sn2 we define

X1 �X2 := {σ1 � σ2 | σ1 ∈ Sn1 , σ2 ∈ Sn2} .

It will follow from Lemma 4.3.47 below that the inductive product is well-defined.

Example 4.3.44. (1) Let ∅ ∈ S0 be the empty function and σ ∈ Sn. Then

∅ � σ = σ � ∅ = σ.

(2) Consider n1 = 6, n2 = 4, n = 10 and the elements in stair form σ(6) ∈ Sn1 and
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σ(3,1) ∈ Sn2 . Then k = 3 and

σ(6) � σ(3,1) = (1, 6, 2, 5, 3, 4)� (1, 4, 2)(3)
= (1, 6 + 4, 2, 5 + 4, 3, 4 + 4)(1 + 3, 4 + 3, 2 + 3)(3 + 3)
= (1, 10, 2, 9, 3, 8)(4, 7, 5)(6).

(3) Consider n1 = 5, n2 = 4 and the elements in stair form σ(5) = (1, 5, 2, 4, 3) ∈ Sn1

and σ(3,1) = (1, 4, 2)(3) ∈ Sn2 . Then σw0
(3,1) = (1, 3, 4)(2) where w0 = (1, 4)(2, 3) is

the longest element of S4. We have k = 3 and

σ(5) � σw0
(3,1) = (1, 5 + 4, 2, 4 + 4, 3)(1 + 3, 3 + 3, 4 + 3)(2 + 3)

= (1, 9, 2, 8, 3)(7, 4, 6)(5).

Note that in Parts (2) and (3) we obtain the elements in stair form σ(6,3,1) and σ(5,3,1),
respectively.

In order to work with the inductive product, it is convenient to describe it more
formally. To this end we introduce the following notation which we will use throughout
the subsection.

Notation 4.3.45. Let n ≥ 0, (n1, n2) �0 n, k := dn1
2 e,

N1 := [k] ∪ [k + n2 + 1, n] and N2 := [k + 1, k + n2].

We have that |N1| = n1, |N2| = n2, N1 and N2 are disjoint and N1 ∪N2 = [n]. Note
that [0] = [1, 0] = ∅. Define the bijections ϕ1 : [n1]→ N1 and ϕ2 : [n2]→ N2 by

ϕ1(i) :=
{
i if i ≤ k
i+ n2 if i > k

and ϕ2(i) := i+ k.

The bijections ϕ1 and ϕ2 formalize the alteration of the cycles of σ1 and σ2 in Defini-
tion 4.3.43, respectively. Their inverses are given by

ϕ−1
1 (i) :=

{
i if i ≤ k
i− n2 if i > k

and ϕ−1
2 (i) := i− k.

For i = 1, 2 and σi ∈ Sni , write σ
ϕi
i := ϕi ◦ σi ◦ ϕ−1

i . Then σϕii ∈ S(Ni) and σϕii
can naturally be identified with the element of Sn that acts on Ni as σϕii and fixes all
elements of [n] \Ni.

We will see in Lemma 4.3.47 that we obtain σϕii by applying ϕi on each entry in of σi
in cycle notation.

Example 4.3.46. Let n1 = 6 and n2 = 4 and consider the elements in stair form

σ1 := σ(6) = (1, 6, 2, 5, 3, 4) ∈ S6 and σ2 := σ(3,1) = (1, 4, 2)(3) ∈ S4.
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Then k = 3 and

σϕ1
1 = (1, 6 + 4, 2, 5 + 4, 3, 4 + 4) = (1, 10, 2, 9, 3, 8),
σϕ2

2 = (1 + 3, 4 + 3, 2 + 3)(3 + 3) = (4, 7, 5)(6).

Thus, from Example 4.3.44 it follows that σ1 � σ2 = σϕ1
1 σϕ2

2 . The next lemma states
that this is true in general.

We now come to the more formal description of the inductive product.

Lemma 4.3.47. Let σr ∈ Snr with decomposition in disjoint cycles σr = σr,1σr,2 · · ·σr,pr
for r = 1, 2.
(1 ) We have

σ1 � σ2 = σϕ1
1 σϕ2

2 .

(2 ) Let r ∈ {1, 2} and σr,j = (c1, . . . , ct) be a cycle of σr. Then

σϕrr,j = (ϕr(c1), . . . , ϕr(ct)).

(3 ) The decomposition of σ1 � σ2 in disjoint cycles is given by

σ1 � σ2 = σϕ1
1,1 · · ·σϕ1

1,p1 · σ
ϕ2
2,1 · · ·σϕ2

2,p2 .

Proof. Set σ := σ1 � σ2 and σ′ := σϕ1
1 σϕ2

2 . It will turn out that σ = σ′.
We first show Part (2). Let r ∈ {1, 2}, ξ be a cycle of σr and i ∈ [nr]. Then

ξϕr(ϕr(i)) = (ϕr ◦ ξ ◦ ϕ−1
r ◦ ϕr)(i) = ϕr(ξ(i)).

Hence, if ξ = (c1, . . . , ct) ∈ Snr then ξϕr = (ϕr(c1), . . . , ϕr(ct)) ∈ S(Nr).
We continue with showing Part (3) for σ′. For r = 1, 2 we have

σϕrr = ϕr ◦ σr ◦ ϕ−1
r

= ϕr ◦ σr,1 · · ·σr,pr ◦ ϕ−1
r

= (ϕr ◦ σr,1 ◦ ϕ−1
r ) · · · (ϕr ◦ σr,pr ◦ ϕ−1

r )
= σϕrr,1 · · ·σϕrr,pr .

Thus,

σ′ = σϕ1
1,1 · · ·σϕ1

1,p1σ
ϕ2
2,1 · · ·σϕ2

1,p2 . (4.18)

The cycles in this decomposition are given by Part (1). As ϕ1 and ϕ2 are bijections with
disjoint images, the cycles are disjoint.
Lastly, we show σ = σ′. From (4.18), Part (2) and the definition of ϕ1 and ϕ2 it

follows that we obtain the cycles of σ′ by altering the cycles of σ1 and σ2 as described
in Definition 4.3.43. Hence, σ = σ′.
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Corollary 4.3.48. Let σ1 ∈ Sn1 , σ2 ∈ Sn2 and σ := σ1 � σ2. Then

P (σ) = ϕ1(P (σ1)) ∪ ϕ2(P (σ2)).

We continue with basic properties of the inductive product.

Lemma 4.3.49. Let σ1 ∈ Sn1 , σ2 ∈ Sn2 and σ := σ1 � σ2. Then for all i ∈ [n]

σ(i) =
{
σϕ1

1 (i) if i ∈ N1

σϕ2
2 (i) if i ∈ N2.

Proof. By Lemma 4.3.47, σ = σϕ1
1 σϕ2

2 . If n1 = 0 or n2 = 0 the claim is trivially true.
Thus, suppose n1, n2 ≥ 1 and let i ∈ [n]. Consider σϕ1

1 and σϕ2
2 as elements of Sn. Since

{N1, N2} is a partition of [n] there is exactly one r ∈ {1, 2} such that i ∈ Nr. We have
that σϕrr (Nr) = Nr and that σϕ2−r+1

2−r+1 fixes each element of Nr. Hence,

σ(i) = σϕ1
1 σϕ2

2 (i) = σϕrr (i).

We now determine the image of the inductive product and show that it is injective.

Lemma 4.3.50. Let (n1, n2) �0 n.
(1 ) The image of Sn1 ×Sn2 under � is given by

Sn1 �Sn2 = {σ ∈ Sn | σ(Ni) = Ni for i = 1, 2} .

(2 ) The inductive product on Sn1 ×Sn2 is injective.

Proof. (1) Set Y := {σ ∈ Sn | σ(Ni) = Ni for i = 1, 2}.
We first show Sn1 � Sn2 ⊆ Y . Let σ ∈ Sn1 � Sn2 . Then there are σi ∈ Sni for

i = 1, 2 such that σ = σ1 � σ2. By Lemma 4.3.49 we have σ(Ni) = σϕi(Ni) = Ni for
i = 1, 2. Hence, σ ∈ Y .
Now we show Y ⊆ Sn1 �Sn2 . Let σ ∈ Y . For i = 1, 2 set σ̃i = σ|Ni (the restriction

to Ni). Consider i ∈ {1, 2}. Since σ ∈ Y , σ̃i(Ni) = Ni and thus σ̃i ∈ S(Ni). Therefore,
σi := ϕ−1

i ◦ σ̃i ◦ ϕi is an element of Sni . Moreover, σϕii considered as an element of Sn

leaves each element of N2−i+1 fixed. Hence, we have

(σ1 � σ2)|Ni = σϕ1
1 σϕ2

2 |Ni = σϕii |Ni = σ̃i|Ni = σ|Ni .

Consequently, σ = σ1 � σ2.
(2) Since |Ni| = ni for i = 1, 2, the cardinality of Y is n1!n2!. This is also the

cardinality of Sn1 ×Sn2 . As the image of Sn1 ×Sn2 under � is Y , it follows that � is
injective.

Recall that for α �e n, each element of Σα has the property that its length is maximal
in its conjugacy class. We want to use this property to prove our main result.
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Consider σ = σ1� σ2 such that σ1 has type (n1). We seek a formula for `(σ) depend-
ing on σ1 and σ2. We are particularly interested in the case where the n1-cycle σ1 is
oscillating.
Given σ ∈ Sn let Inv(σ) := {(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)} be the set of inver-

sions of σ. Then `(σ) = |Inv(σ)| by [BB05, Proposition 1.5.2].

Lemma 4.3.51. Let σ1 ∈ Sn1 be an n1-cycle, σ2 ∈ Sn2, σ := σ1 � σ2,

P := {i ∈ [k] | σ1(i) > k} ,
Q := {i ∈ [k + 1, n1] | σ1(i) ≤ k} ,

p := |P | and q := |Q|. Then we have

`(σ) = `(σ1) + `(σ2) + (p+ q)n2.

Moreover,
(1 ) p, q ≤ bn1

2 c,
(2 ) if σ1 is oscillating, then p = q =

⌊n1
2
⌋
.

Proof. Let i, j ∈ [n] and m :=
⌊n1

2
⌋
. We distinguish three types of pairs (i, j) and count

the number of inversions of σ type by type.
Type 1. There is an r ∈ {1, 2} such that i, j ∈ Nr. In this case let t ∈ {i, j} and set

t′ := ϕ−1
r (t). Then t′ ∈ [nr]. From Lemma 4.3.49 we obtain

σ(t) = ϕr(σr(t′)).

In addition, we have

ϕr(σr(i′)) > ϕr(σr(j′)) ⇐⇒ σr(i′) > σr(j′)

since ϕr is a stricly increasing function. As ϕ−1
r is stricly increasing as well, we also have

that

i < j ⇐⇒ i′ < j′.

Hence,

(i, j) ∈ Inv(σ) ⇐⇒ i < j and σ(i) > σ(j)
⇐⇒ i′ < j′ and ϕr(σr(i′)) > ϕr(σr(j′))
⇐⇒ i′ < j′ and σr(i′) > σr(j′)
⇐⇒ (i′, j′) ∈ Inv(σr).

Thus, the number of inversions of Type 1 is

|Inv(σ1)|+ |Inv(σ2)| = `(σ1) + `(σ2).
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Type 2. We have i ∈ N1, j ∈ N2 and i < j. Assume that (i, j) is of this type
and recall that N1 = [k] ∪ [k + n2 + 1, n] and N2 = [k + 1, k + n2] where k = dn2 e.
Since i < j, we have i ≤ k which in particular means that ϕ−1

1 (i) = i. As σ(j) ∈ N2,
k + 1 ≤ σ(j) ≤ k + n2. Moreover, σ(i) = σϕ1

1 (i) by Lemma 4.3.49. Consequently,

σ(i) = σϕ1
1 (i) = ϕ1(σ1(i)) =

{
σ1(i) < σ(j) if σ1(i) ≤ k
σ1(i) + n2 > σ(j) if σ1(i) > k.

Therefore,

(i, j) ∈ Inv(σ) ⇐⇒ σ1(i) > k.

Hence, the number of inversions of Type 2 is the cardinality of the set P × N2. Thus,
we have pn2 inversions of Type 2.
Type 3. We have i ∈ N2, j ∈ N1 and i < j. Let (i, j) be of Type 3. Then from

i < j we obtain j ≥ k + n2 + 1. In particular this type can only occur if n1 > 1 because
otherwise n = 1 + n2 < j.

Since i ∈ N2, also σ(i) ∈ N2. That is, k + 1 ≤ σ(i) ≤ k + n2. Moreover, from i < j
and i ∈ N2 it follows that j ≥ k + n2 + 1. Thus,

j′ := ϕ−1
1 (j) = j − n2

and j′ ∈ [k + 1, n1]. Hence,

σ(j) = σϕ1
1 (j) = ϕ1(σ1(j′)) =

{
σ1(j′) < σ(i) if σ1(j′) ≤ k
σ1(j′) + n2 > σ(i) if σ1(j′) > k.

That is,

(i, j) ∈ Inv(σ) ⇐⇒ σ1(j′) ≤ k ⇐⇒ j′ ∈ Q ⇐⇒ j ∈ ϕ1(Q)

where we use that j′ ∈ [k + 1, n1] for the second equivalence. Consequently, the set of
inversion of Type 3 is the set N2 × ϕ1(Q). Since ϕ1 is a bijection, it follows that there
are exactly qn2 inversions of this type.

Summing up the number of inversions of each type, we obtain the formula for the
length of σ.

We now prove (1) and (2).
(1) By definition, σ1(P ) ⊆ [k+1, n1] and Q ⊆ [k+1, n1]. The cardinality of [k+1, n1]

is
⌊n1

2
⌋
. Therefore, p, q ≤ ⌊n1

2
⌋
.

(2) Assume that σ1 is oscillating. Suppose first that n is even. Then k = n1
2 . Because

σ1 is oscillating, we obtain that

σ1([k]) = [k + 1, n1] and σ1([k + 1, n1]) = [k]

from Definition 4.3.1 and Lemma 4.3.4. Hence, p = q = k = bn1
2 c.

168



4.3 Equivalence classes of (Sn)max under ≈

Suppose now that n is odd. Then k = n1+1
2 . Since σ1 is oscillating, Definition 4.3.1

and Lemma 4.3.4 yield that there is an m ∈ {k − 1, k} such that

σ1([m]) = [n1 −m+ 1, n1] and σ1([m+ 1, n1]) = [n1 −m].

It is not hard to see that this implies p = q = k − 1 = bn1
2 c.

We have seen in Example 4.3.44 that the elements in stair form σ(5,3) and σ(6,3) can
be decomposed as

σ(5,3) = σ(5) � σw0
(3) and σ(6,3) = σ(6) � σ(3)

where w0 is the longest element of S3. We want to show that these are special cases of
a general rule for decomposing the element in stair form σα. Before we state the rule,
we compare the sequences used to define the element in stair form in Definition 4.2.13
for compositions of n, n1 and n2.

Lemma 4.3.52. For m ∈ N0 let x(m) be the sequence (x(m)
1 , . . . , x

(m)
m ) given by x(m)

2i−1 = i

and x(m)
2i = m− i+ 1. Set x := x(n), y := x(n1) and z := x(n2).

(1 ) We have ϕ1(yi) = xi for all i ∈ [n1].
(2 ) If n1 is even then ϕ2(zi) = xi+n1 for all i ∈ [n2].
(3 ) If n1 is odd then ϕ2(w0(zi)) = xi+n1 for all i ∈ [n2] where w0 is the longest element

of Sn2.

Proof. Recall that k =
⌈n1

2
⌉
and (n1, n2) �0 n by Notation 4.3.45. Let i ∈ N. We mainly

do straight forward calculations.
(1) Assume 2i− 1 ∈ [n1]. Then i ≤ k and thus ϕ1(i) = i. Consequently,

ϕ1(y2i−1) = ϕ1(i) = i = x2i−1.

Now, assume 2i ∈ [n1]. Then

n1 − i+ 1 = dn1 − i+ 1e ≥
⌈
n1 −

n1
2 + 1

⌉
=
⌈
n1
2 + 1

⌉
=
⌈
n1
2

⌉
+ 1 = k + 1,

i.e. ϕ1(n1 − i+ 1) = n1 + n2 − i+ 1. Therefore,

ϕ1(y2i) = ϕ1(n1 − i+ 1) = n1 + n2 − i+ 1 = n− i+ 1 = x2i.

(2) Assume that n1 is even. Then n1 = 2k. If 2i− 1 ∈ [n2] then we have

2(k + i)− 1 = n1 + 2i− 1 ≤ n1 + n2 = n.
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Thus,

ϕ2(z2i−1) = ϕ2(i) = k + i = x2(k+i)−1 = x2i−1+n1 .

Suppose 2i ∈ [n2]. Then 2(k + i) = n1 + 2i ≤ n and

ϕ2(z2i) = k + n2 − i+ 1 = (n− 2k − n2) + k + n2 − i+ 1
= n− k − i+ 1
= x2(k+i) = x2i+n1 .

(3) Assume that n1 is odd. In this case n1 = 2k− 1. Let w0 be the longest element of
Sn2 . We have w0(j) = n2 − j + 1 for all j ∈ [n2]. If 2i− 1 ∈ [n2] then 2i− 1 + n1 ∈ [n]
and

ϕ2(w0(z2i−1)) = ϕ2(w0(i))
= ϕ2(n2 − i+ 1)
= n2 + k − i+ 1
= (n− 2k + 1− n2) + n2 + k − i+ 1
= n− (k + i− 1) + 1
= x2(i+k−1)

= x2i−1+2k−1 = x2i−1+n1 .

If 2i ∈ [n2] then 2i+ n1 ∈ [n] and

ϕ2(w0(z2i)) = ϕ2(w0(n2 − i+ 1)) = ϕ2(i) = i+ k = x2(i+k)−1 = x2i+n1 .

Example 4.3.53. Consider n = 9, n1 = 6 and n2 = 3. Then k = 3. Using the notation
from Lemma 4.3.52 we obtain

x = (1, 9, 2, 8, 3, 7, 4, 6, 5),
y = (1, 6, 2, 5, 3, 4),
z = (1, 3, 2).

Then x = (ϕ1(y1), . . . , ϕ1(y6), ϕ2(z1), ϕ2(z2), ϕ2(z3)) as predicted by Lemma 4.3.52.
Moreover, x, y and z are the sequences used to define the elements in stair form σ(6,3),
σ(6) and σ(3), respectively. Therefore,

σ(6,3) = (ϕ1(y1), . . . , ϕ1(y6))(ϕ2(z1), ϕ2(z2), ϕ2(z3)) = σϕ1
(6)σ

ϕ2
(3) = σ(6) � σ(3).

This also illustrates the idea of the proof of the next lemma.

Lemma 4.3.54. Let α = (α1, . . . , αl) �e n with l ≥ 1. Then we have the following.

(1 ) If α1 is even then σα = σ(α1) � σ(α2,...,αl).
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(2 ) If α1 is odd then σα = σ(α1) �
(
σ(α2,...,αl)

)w0 where w0 is the longest element of
Sα2+···+αl.

Proof. Set n1 := α1 and n2 := α2 + · · · + αl. As in Lemma 4.3.52, let x(m) be the
sequence (x(m)

1 , . . . , x
(m)
m ) given by x(m)

2i−1 = i and x(m)
2i = m − i + 1 for m ∈ N0 and set

x := x(n), y := x(n1) and z := x(n2). We have that
(1) σα has the cycles

σαi =
(
xα1+···+αi−1+1, xα1+···+αi−1+2, . . . , xα1+···+αi−1+αi

)
for i = 1, . . . , l,

(2) σ(α1) = (y1, y2, . . . , yn1) and
(3) σ(α2,...,αl) has the cycles

σ̃αi =
(
zα2+···+αi−1+1, zα2+···+αi−1+2, . . . , zα2+···+αi−1+αi

)
for i = 2, . . . , l.

Assume that α1 is even and set σ := σ(α1)�σ(α2,...,αl). From Lemma 4.3.47 we obtain that
σ has the cycles (σ(α1))ϕ1 and (σ̃(αi))ϕ2 for i = 2, . . . , l. By Lemma 4.3.52, ϕ1(yj) = xj
for j ∈ [n1] and ϕ2(zj) = xα1+j for j ∈ [n2]. As a consequence,

(σ(α1))ϕ1 = (ϕ1(y1), . . . , ϕ1(yα1)) = (x1, . . . , xα1) = σα1

and

(σ̃αi)ϕ2 =
(
ϕ2(zα2+···+αi−1+1), . . . , ϕ2(zα2+···+αi−1+αi)

)
=
(
xα1+···+αi−1+1, . . . , xα1+···+αi−1+αi

)
= σαi

for i = 2, . . . , l. Hence, σ = σα.
Now let α1 be odd. Set σ := σ(α1) �

(
σ(α2,...,αl)

)w0 where w0 is the longest element of
Sα2+···+αl . Then σ has the cycles (σ(α1))ϕ1 and ((σ̃(αi))w0)ϕ2 for i = 2, . . . , l. Moreover,
from Lemma 4.3.52 we have that ϕ2(w0(zj)) = xα1+i for j ∈ [n2]. Thus,

(σ̃(αi))
w0)ϕ2 =

(
ϕ2(w0(zα2+···+αi−1+1)), . . . , ϕ2(w0(zα2+···+αi−1+αi)

)
)

=
(
xα1+···+αi−1+1, . . . , xα1+···+αi−1+αi

)
= σαi

for i = 2, . . . , l. As we have already shown that (σ(α1))ϕ1 = σα1 , it follows that σ =
σα.

The upcoming Theorem 4.3.55 is the main result of this subsection. It enables us to
decompose Σα if α1 is even. Before we can state the result, we need to introduce some
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more notation. For α �e n we define

Σ×α := {σ ∈ Σα | P (σ) = P (σα)} .

In Theorem 4.3.55 the set (Σ×α )w0 appears where w0 the longest element of Sn. Let
σ ∈ Σα. Then by Corollary 4.1.16, σw0 ∈ Σα. Since P (σw0) = w0(P (σ)), we have

σ ∈ (Σ×α )w0 ⇐⇒ P (σw0) = P (σα) ⇐⇒ P (σ) = P (σw0
α ). (4.19)

Theorem 4.3.55. Let α = (α1, . . . , αl) �e n with l ≥ 1.
(1 ) If α1 is even then Σα = Σ(α1) � Σ(α2,...,αl).

(2 ) If α1 is odd then Σ×α = Σ×(α1) �
(
Σ×(α2,...,αl)

)w0 where w0 is the longest element of
Sα2+···+αl.

Proof. Let α(1) := (α1), α(2) := (α2, . . . , αl), n1 := |α(1)|, n2 := |α(2)| and w0 be the
longest element of Sn2 . We use the inductive product on Sn1 × Sn2 and the related
notation. The proofs of (1) and (2) have a lot in common. Hence, we do them simul-
taneously as much as possible and separate the cases α1 even and α1 odd only when
necessary.
If l = 1 then α = α(1), α(2) = ∅ and thus

Σα(1) � Σα(2) = Σα �S0 = Σα.

Moreover, Σ×(α1) = Σ(α1) and
(
Σ×∅
)w0 = Σ∅. Thus we have (1) and (2) in this case.

Now suppose l ≥ 2. Let σ := σα, σ1 := σα(1) and σ2 := σα(2) if α1 is even and
σ2 = σw0

α(2) if α1 is odd. From Lemma 4.3.54 we have σ = σ1�σ2. By Proposition 4.2.14,
σα(i) ∈ Σα(i) for i = 1, 2. In addition, Corollary 4.1.16 then yields that σw0

α(2) ∈ Σα(2) .
Consequently, σi ∈ Σα(i) for i = 1, 2.
We begin with the inclusions “⊆”. Let τ ∈ Σα with P (τ) = P (σ) if α1 is odd. First we

show τ ∈ Sn1 �Sn2 . By Lemma 4.3.50, we have to show τ(Ni) = Ni for i = 1, 2. Since
{N1, N2} is a set partition of [n], it suffices to show τ(N1) = N1. As σ1 ∈ Sn1 is an n1-
cycle, P (σ1) = {[n1]}. Moreover, Corollary 4.3.48 yields P (σ) = ϕ1(P (σ1))∪ϕ2(P (σ2)).
Thus,

N1 = ϕ1([n1]) ∈ ϕ1(P (σ1)) ⊆ P (σ).

If α1 is even then N1 ∈ Pe(σ). Moreover, Proposition 4.2.25 yields Pe(τ) = Pe(σ). Thus,
N1 ∈ P (τ) which means that τ(N1) = N1. If α1 is odd then P (τ) = P (σ) by assumption.
Hence, N1 ∈ P (σ) = P (τ) and thus τ(N1) = N1.

Because τ ∈ Sn1 � Sn2 , there are τ1 ∈ Sn1 and τ2 ∈ Sn2 such that τ = τ1 � τ2.
Let i ∈ {1, 2}. We want to show τi ∈ Σα(i) . Recall that σi ∈ Σα(i) . Thus, from
Proposition 4.2.25 it follows that τi ∈ Σα(i) if and only if
(i) σi and τi are conjugate in Sni ,
(ii) `(σi) = `(τi) and

172



4.3 Equivalence classes of (Sn)max under ≈

(iii) Pe(σi) = Pe(τi).
Therefore, we show that τi satisfies (i) – (iii). Let i be arbitrary again.
(i) For a permutation ξ, let C(ξ) be the multiset of cycle lengths of ξ. Assume

ξ = ξ1 � ξ2 for ξi ∈ Sni and i = 1, 2. From Lemma 4.3.47 it follows that

C(ξ) = C(ξ1) ∪ C(ξ2). (4.20)

Since τ = τ1 � τ2, Corollary 4.3.48 implies P (τ) = ϕ1(P (τ1)) ∪ ϕ2(P (τ2)). Therefore,
from N1 ∈ P (τ) it follows that P (τ1) = {[n1]}. That is, τ1 is an n1-cycle of Sn1 . By
definition, σ1 is an n1-cycle of Sn1 too. Thus, C(τ1) = C(σ1). Since τ ∈ Σα, τ and σ
are conjugate so that C(τ) = C(σ). Because of (4.20) and C(τ1) = C(σ1), it follows
that also C(τ2) = C(σ2). In other words, τi and σi are conjugate for i = 1, 2.
(ii) Let m :=

⌊n1
2
⌋
. By Lemma 4.3.51, there are p, q ≤ m such that

`(τ) = `(τ1) + `(τ2) + (p+ q)n2.

Moreover, we have `(τi) ≤ `(σi) for i = 1, 2 because τi and σi are conjugate and σi ∈
Σα(i) . On the other hand, σ1 is oscillating by Theorem 4.3.20 and hence Lemma 4.3.51
yields

`(σ) = `(σ1) + `(σ2) + 2mn2.

Since τ ∈ Σα, we have `(τ) = `(σ). Therefore, we obtain from the equalities for `(τ) and
`(σ) and the inequalities for `(τ1), `(τ2), p and q that `(τ1) = `(σ1) and `(τ2) = `(σ2).

(iii) Corollary 4.3.48 states that

P (ξ) = ϕ1(P (ξ1)) ∪ ϕ(P (ξ2)) (4.21)

for ξ = σ, τ . This equality remains valid if we replace P by Pe. From τ ∈ Σα and
Proposition 4.2.25 it follows that Pe(τ) = Pe(σ). Hence,

ϕ1(Pe(τ1)) ∪ ϕ2(Pe(τ2)) = ϕ1(Pe(σ1)) ∪ ϕ2(Pe(σ2)).

Since ϕ1 and ϕ2 are bijections and the images of ϕ1 and ϕ2 are disjoint, it follows that
Pe(τi) = Pe(σi) for i = 1, 2. This finishes the proof of τ ∈ Σα(1) � Σα(2) .
It remains to show that τ1 ∈ Σ×

α(1) and τ2 ∈
(
Σ×
α(2)

)w0 if α1 is odd. Thus, assume
that α1 is odd. We have already seen that P (τ1) = P (σ1). Hence, τ1 ∈ Σ×

α(1) . Since α1
is odd, P (τ) = P (σ) by assumption and therefore we deduce from (4.21) as above that
P (τ2) = P (σ2). Now we can use that σ2 = σw0

α(2) and obtain τ2 ∈
(
Σ×
α(2)

)w0 from (4.19).
We continue with the inclusions “⊇”. Let τi ∈ Σα(i) for i = 1, 2 and τ := τ1 � τ2.

If α1 is odd, assume that in addition τ1 ∈ Σ×
α(1) and τ2 ∈

(
Σ×
α(2)

)w0 which by (4.19) is
equivalent to P (τi) = P (σi) for i = 1, 2.
We want to show τ ∈ Σα and again use Proposition 4.2.25 to do this. That is, we

show the properties (i) – (iii) for τ and σ.

173



4 Centers and cocenters of 0-Hecke algebras

(i) For i ∈ {1, 2} we have C(τi) = C(σi) since τi ∈ Σα(i) . Hence, from (4.20) it follows
that C(τ) = C(σ), i.e. τ and σ are conjugate.

(ii) Since τ1, σ1 ∈ Σα(1) , they are oscillating n1-cycles by Theorem 4.3.20. Therefore,
Lemma 4.3.51 yields

`(ξ) = `(ξ1) + `(ξ2) + 2mn2

for ξ = σ, τ and m = bn1
2 c. Moreover, as σi, τi ∈ Σα(i) , `(τi) = `(σi) for i = 1, 2. Hence,

`(τ) = `(σ).
(iii) Since ξ = ξ1 � ξ2 for ξ = σ, τ , Equation (4.21) holds. This equation remains

true if we substitute P by Pe. In addition, from Proposition 4.2.25 we obtain that
Pe(τi) = Pe(σi) for i = 1, 2. Thus, Pe(τ) = Pe(σ).
Because of (i) – (iii) we can now apply Proposition 4.2.25 and obtain that τ ∈ Σα. In the
case where α1 is odd, it remains to show P (τ) = P (σ). But this is merely a consequence
of P (τi) = P (σi) for i = 1, 2 and (4.21).

We now infer from Theorem 4.3.55 that the inductive product provides a bijection
from Σ(α1) × Σ(α2,...,αl) to Σα for all α �e n with even α1.

Corollary 4.3.56. Let α = (α1, . . . , αl) �e n with l ≥ 1.
(1 ) If α1 is even then the map Σ(α1)×Σ(α2,...,αl) → Σα, (σ1, σ2) 7→ σ1�σ2 is a bijection.

(2 ) If α1 is odd then the map Σ×(α1) ×
(
Σ×(α2,...,αl)

)w0 → Σ×α , (σ1, σ2) 7→ σ1 � σ2 where
w0 is the longest element of Sα2+···+αl is a bijection.

Proof. By Lemma 4.3.50 the two maps in question are injective. Theorem 4.3.55 shows
that they are also surjective.

Recall that, given a maximal composition α = (α1, . . . , αl) �e n, there exists 0 ≤ j ≤ l
such that α1, . . . , αj are even and αj+1, . . . , αl are odd. Using Part (1) of Corollary 4.3.56
iteratively, we obtain the following decomposition of the elements of Σα.

Corollary 4.3.57. Let α = (α1, . . . , αl) �e n, σ ∈ Sn of type α and 0 ≤ j ≤ l be such
that α′ := (αj+1, . . . , αl) are the odd parts of α. Then σ ∈ Σα if and only if there are
σi ∈ Σ(αi) for i = 1, . . . , j and τ ∈ Σα′ such that

σ = σ1 � σ2 � · · · � σj � τ

where the product is evaluated from right to left.

Example 4.3.58. Consider α = (2, 4, 3, 1, 1) �e 11. From Table 4.1 and Example 4.3.33
we obtain

Σ(2) = {(1, 2)} ,
Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)} ,

Σ(3,1,1) = {(1, 5, 2), (1, 2, 5), (1, 5, 3), (1, 3, 5), (1, 5, 4), (1, 4, 5)} .
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By Corollary 4.3.57, Σα consists of all elements (1, 2) � (σ � τ) with σ ∈ Σ(4) and
τ ∈ Σ(3,1,1). Thus, |Σα| = 12. For instance,

(1, 2)� ((1, 3, 2, 4)� (1, 3, 5)) = (1, 2)� (1, 8, 2, 9)(3, 5, 7)
= (1, 11)(2, 9, 3, 10)(4, 6, 8)

is an element of Σα.

Remark 4.3.59. For compositions with one part α = (n), Theorem 4.3.20 provides a
combinatorial characterization of Σ(n). Therefore, Corollary 4.3.57 reduces the problem
of describing Σα for each maximal composition α to the case where α has only odd parts.
These α are the partitions consisting of odds parts.

If α is an odd hook, then Theorem 4.3.40 yields that the hook properties characterize
the elements of Σα. That is, we have a description of Σα for all α whose odd parts form a
hook. Generalizing this result would be interesting but is out of the scope of this thesis.
Remark 4.3.76 gathers some observations on partitions with two odd parts.

Let α �e n and α′ be the composition formed by the odd parts of α. We conclude the
subsection with a formula that expresses |Σα| as a product of |Σα′ | and a factor that only
depends on the even parts of α. In the case where α′ is an odd hook, we can determine
|Σα′ | explicitly and thus obtain a closed formula for |Σα|.

Corollary 4.3.60. Let α = (α1, . . . , αl) �e n, 0 ≤ j ≤ l be such that (α1, . . . , αj) are the
even and α′ := (αj+1, . . . , αl) are the odd parts of α, n′ := |α′|, P := {i ∈ [j] | αi ≥ 4},
p := |P | and q := −2p+ 1

2
∑
i∈P αi. Then

|Σα| = 2p3q|Σα′ |.

Moreover, if α′ is a hook (r, 1n′−r) then

|Σα| =
{

2p3q if r ≤ 1
(n′ − r + 1)2p′3q′ if r ≥ 3

where p′ := p+ 1 and q′ := q + r−3
2 .

Proof. Since α1, . . . , αj are the even parts of α, Corollary 4.3.57 implies that

|Σα| = |Σα′ |
j∏
i=1
|Σ(αi)|. (4.22)

For the same reason, Corollary 4.3.24 yields

|Σ(αi)| =
1 if n ≤ 2

2 · 3
αi−4

2 if n ≥ 4.
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for i = 1, . . . , j. Therefore,

j∏
i=1
|Σ(αi)| =

∏
i∈P

2 · 3
αi−4

2 = 2p3−2p+ 1
2
∑

i∈P αi = 2p3q.

and with (4.22) we get the first statement.
For the second part, assume that α′ is a hook. Then, by the choice of j, α′ is an

odd hook. It remains to compute |Σα′ |. If α′ = ∅ or α′ = (1n′) we have |Σ′α| = 1. If
α′ = (r, 1n′−r) with r ≥ 3 then Corollary 4.3.42 provides the formula

|Σα′ | = 2(n′ − r + 1)3
r−3

2 .

Example 4.3.61. Consider α = (2, 8, 4, 5, 1, 1, 1) �e 22. Then α′ = (5, 1, 1, 1) �e 8 is a
hook, P = {2, 3}, p′ = 2 + 1 and q′ = −2 · 2 + 1

2(8 + 4) + 5−3
2 = 3. Thus, Corollary 4.3.60

yields |Σα| = (8− 5 + 1)2333 = 864.

4.3.4 Mild equivalence classes

In this subsection we use the inductive product to study oscillating permutations with
connected intervals. The first goal is to show that for all α �e n and σ ∈ Sn we
have σ ∈ Σα if σ is oscillating with connected intervals and P (σ) = P (σα). This
leads to a characterization of Σα for a certain type of compositions which we call mild.
In this subsection we use the notions related to the inductive product introduced in
Notation 4.3.45.
In Lemma 4.3.12 we showed that conjugating n-cycles of Sn with w0 preserves the

properties of being oscillating and having connected intervals. We now generalize this
result.

Lemma 4.3.62. Let σ ∈ Sn.
(1 ) If σ is oscillating then σw0 is oscillating.
(2 ) If σ has connected intervals then σw0 has connected intervals.

Proof. Let τ be a cycle of σ, t be the length of τ , w0 be the longest element of Sn and
u0 be the longest element of St. We consider the cycle τw0 of σw0 .
We show cst(τw0) = cst(τ)u0 first. Fix a presentation of τ in cycle notation τ =

(a1, . . . , at). Then

cst(τw0) = (b1, . . . , bt) and cst(τ)u0 = (c1, . . . , ct)

where

bi := ρτw0 (w0(ai)) and ci := u0(ρτ (ai))

for i = 1, . . . , t. The t-cycles cst(τw0) and cst(τ)u0 are elements of St. Hence,

{b1, . . . , bt} = {c1, . . . , ct} = [t].
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Moreover, for all i, j ∈ [t] we have

bi < bj ⇐⇒ ρτw0 (w0(ai)) < ρτw0 (w0(aj))
⇐⇒ w0(ai) < w0(aj)
⇐⇒ ai > aj

⇐⇒ ρτ (ai) > ρτ (aj)
⇐⇒ u0(ρτ (ai)) < u0(ρτ (aj))
⇐⇒ ci < cj .

Therefore, bi = ci for all i ∈ [t]. That is, cst(τw0) = cst(τ)u0 .
We focus on Part (1). For Part (2) simply substitute all occurrences of the phrase

is oscillating by has connected intervals. Assume that σ is oscillating. Then cst(τ) is
oscillating by definition. As cst(τ) is a t-cycle in St we can can apply Lemma 4.3.12
and obtain that cst(τ)u0 is oscillating too. Because cst(τw0) = cst(τ)u0 , it follows that
τw0 is oscillating as well. Since each cycle of σw0 is given by τw0 for a cycle τ of σ, we
are done.

We now show that σ = σ1� σ2 is oscillating with connected intervals if and only if σ1
and σ2 have these properties.

Lemma 4.3.63. Let σ1 ∈ Sn1, σ2 ∈ Sn2 and σ := σ1 � σ2. Then σ is oscillating (has
connected intervals) if and only if σ1 and σ2 are oscillating (have connected intervals).

Proof. Let σr = σr,1σr,2 · · ·σr,pr be a decomposition in disjoint cycles for r = 1, 2. Fix
an r ∈ {1, 2} and a cycle (c1, . . . ct) = σr,j of σr. Then by Lemma 4.3.47 we have that

σϕrr,j = (ϕr(c1), . . . , ϕr(ct)).

As ϕr is strictly increasing, it preserves the relative order of the cycle elements so that

cst(σr,j) = cst(σϕrr,j).

In addition, Lemma 4.3.47 provides the cycle decomposition

σ = σϕ1
1,1 · · ·σϕ1

1,p1 · σ
ϕ2
2,1 · · ·σϕ2

2,p2 .

of σ. Hence, σ is oscillating if and only σ1 and σ2 are oscillating. For the same reason,
σ has connected intervals if and only if σ1 and σ2 have connected intervals.

We have already seen in Lemma 4.3.11 and Lemma 4.3.36 that the element in stair
form σα is oscillating and has connected intervals if α �e n has only one part or is an
odd hook. The lemma below generalizes this to all maximal compositions.

Lemma 4.3.64. Let α �e n. Then the element in stair form σα is oscillating and has
connected intervals.
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Proof. Let α = (α1, . . . , αl) �e n. We do an induction on l. If l = 1 then α = (n) and
Lemma 4.3.11 states that σα is oscillating with connected intervals. Now suppose l > 1
and let w0 be the longest element of Sα2+···+αl . Then from Lemma 4.3.54 we obtain

σα =

σ(α1) � σ(α2,...,αl) if α1 is even
σ(α1) �

(
σ(α2,...,αl)

)w0 if α1 is odd.

By induction hypothesis, σ(α1) and σ(α2,...,αl) are oscillating with connected intervals.
Using Lemma 4.3.62, it follows that σw0

(α2,...,αl) is oscillating with connected intervals as
well. Therefore we can apply Lemma 4.3.63 and obtain that in both cases σ is oscillating
with connected intervals.

Let α �e n. We now show that each σ ∈ Σα is necessarily oscillating and has connected
intervals. Moreover, we give a sufficient condition for σ ∈ Sn to be an element of Σα.

Theorem 4.3.65. Let α �e n and σ ∈ Sn.
(1 ) If σ ∈ Σα then σ is oscillating and has connected intervals.
(2 ) Let σα be the element in stair form. If σ is oscillating with connected intervals and

P (σ) = P (σα) then σ ∈ Σα.

Proof. Let τ ∈ Sn.
(1) By Lemma 4.3.64 the element in stair form σα is oscillating and has connected

intervals. In addition, if τ is oscillating with connected intervals and τ ′ := siτsi ≈ τ for
some i ∈ [n − 1] then also τ ′ is oscillating with connected intervals by Corollary 4.3.31
and Lemma 4.3.32. Hence, we can use an induction argument as in the proof of Theo-
rem 4.3.20 in order to show that τ is oscillating and has connected intervals if τ ∈ Σα.
(2) Suppose that α = (α1, . . . , αl), σ := σα, τ is oscillating with connected intervals

and P (τ) = P (σ). We do an induction on l. If l = 1 then τ is an n-cycle and the claim
is implied by Theorem 4.3.20.
Suppose l > 1. Let α(1) := (α1), α(2) := (α2, . . . , αl), n1 := |α(1)|, n2 := |α(2)| and w0

be the longest element of Sn2 . From Definition 4.2.13 we have the cycle decomposition
σ = σα1σα2 · · ·σαl . Set σ(1) := σα(1) and σ(2) := σα(2) if α1 is even and σ(2) := σw0

α(2) if
α1 is odd. We use the definitions from Notation 4.3.45.

By Lemma 4.3.54, σ = σ(1) � σ(2) . As P (τ) = P (σ), we can write τ as a product of
disjoint cycles τ = τ1τ2 · · · τl such that the cycles τi and σαi contain the same elements
for i = 1, . . . , l. Using Corollary 4.3.48, we obtain

N1 = ϕ1([n1]) ∈ ϕ1(P (σ(α1))) ⊆ P (σ) = P (τ).

Thus, τ ∈ Sn1 � Sn2 by Lemma 4.3.50. It follows that τ = τ (1) � τ (2) where τ (1) :=
(τ1|N1)ϕ

−1
1 and τ (2) := (τ2τ3 · · · τl|N2)ϕ−1

2 (cf. the proof of Lemma 4.3.50). Since each
of the two n1-cycles τ1 and σ1 consist of the elements of N1, each of the n1-cycles τ (1)

and σ(1) consist of the elements ϕ−1(N1) = [n1]. Hence, P (τ (1)) = P (σ(1)). Combining
P (τ (1)) = P (σ(1)), P (τ) = P (σ) and Corollary 4.3.48, we obtain that also P (τ (2)) =
P (σ(2)).
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Since τ is oscillating with connected intervals by assumption, Lemma 4.3.63 implies
that τ (i) is oscillating and has connected intervals for i = 1, 2.
Assume that α1 is even. Then σ(2) = σα(2) and hence P (τ (i)) = P (σα(i)) for i = 1, 2.

In addition, we have seen that τ (i) is oscillating and has connected intervals for i = 1, 2.
Therefore, τ (i) ∈ Σα(i) for i = 1, 2 by induction hypothesis. Since τ = τ (1) � τ (2), an
application of Theorem 4.3.55 yields τ ∈ Σα as desired.
Now let α1 be odd. Then P (τ (1)) = P (σα(1)) and P (τ (2)) = P (σw0

α(2)). Applying the
induction hypothesis as above, we obtain τ (1) ∈ Σα(1) . Moreover, τ (1) ∈ Σ×

α(1) since
P (τ (1)) = P (σα(1)).
From P (τ (2)) = P (σw0

α(2)) it follows that P ((τ (2))w0) = P (σα(2)). Since τ (2) is oscillating
with connected intervals, Lemma 4.3.62 implies that (τ (2))w0 is oscillating with connected
intervals. Consequently, we can apply the induction hypothesis and obtain (τ (2))w0 ∈
Σα(2) . Thus, Corollary 4.1.16 implies τ (2) ∈ Σα(2) . Hence, (4.19) and P (τ (2)) = P (σw0

α(2))
yield τ (2) ∈

(
Σ×
α(2)

)w0 . To sum up, we have τ (1) ∈ Σ×
α(1) and τ (2) ∈

(
Σ×
α(2)

)w0 . Therefore,
we can apply Theorem 4.3.55 and obtain that τ ∈ Σ×α .

Let α �e n and σ ∈ Sn be conjugate to σα. Then in general, σ being oscillating with
connected intervals is not sufficient for σ ∈ Σα. This is shown by the following example.

Example 4.3.66. Consider the maximal composition α = (2, 1). The element in stair
form is given by σα = (1, 3)(2). Let σ = (1, 2)(3). Then σ is oscillating with connected
intervals and has type α. But `(σ) = 1 < `(σα) = 3. Hence, σ 6∈ Σα.

In general, the sufficient condition for σ ∈ Σα stated in the second part of Theo-
rem 4.3.65 is not a necessary condition: By Example 4.3.33, it is not satisfied by some
elements of Σ(3,1,1). Another example is given below.

Example 4.3.67. Let α = (3, 3). The corresponding element in stair form is given
by σα = (1, 6, 2)(5, 3, 4). Let σ = s2σαs2. On the one hand, σ = (1, 6, 3)(5, 2, 4),
i.e. P (σ) 6= P (σα). On the other hand, σα(2) = 1 < σα(3) = 4 and σ−1

α (2) = 6 >
σ−1
α (3) = 5. Consequently, `(σ) = `(σα) by Lemma 4.2.22. Now Lemma 4.2.20 implies
σ ≈ σα so that σ ∈ Σα by Proposition 4.2.14.

One may ask for which compositions α Part (2) of Theorem 4.3.65 is an equivalence.
In the following we answer this question.

Definition 4.3.68. We call a maximal composition α �e n mild if α has at most one
odd part or each odd part of α is 1. In this case, we also call Σα mild.

Proposition 4.3.69. Let α �e n and σα be the element in stair form. Then α is mild
if and only if P (σ) = P (σα) for all σ ∈ Σα.

Proof. First assume that α is mild and let σ ∈ Σα. From Lemma 4.2.23 follows that σ
and σα have the same orbits of even length on [n]. Thus, if α has no odd part then the
implication is clear. If α has exactly one odd part then σ and σα each have exactly one
odd orbit which contains all the elements not contained in the even orbits. Therefore,
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4 Centers and cocenters of 0-Hecke algebras

also the two odd orbits coincide. If all odd parts of α are 1, then each element i ∈ [n]
which is not contained in an even orbit is a fixed by σ and σα. Hence, σ and σα have
the same orbits on [n].

Assume now that α is not mild. An illustration of the following is given by Exam-
ple 4.3.67. Let α = (α1, . . . , α`(α)). Then α has at least two odd parts and at least
one of them is strictly greater than 1. Let r be minimal such that αr is odd. By
the definition of maximal compositions, αi is even for i < r, αi is odd for i ≥ r and
αr ≥ αr+1 ≥ · · · ≥ α`(α). Hence, αr > 1 and αr+1 is odd. Let k := 1

2
∑r−1
i=1 αi + 1 and

l := k + αr−1
2 . Then l = 1

2(1 +∑r
i=1 αi) ≤ n

2 .
We set σ := slσαsl and show that σ ∈ Σα and that the orbits of σ and σα on [n] are

not the same. We deal with two cases depending on αr+1.
If αr+1 > 1, then the cycles of σα corresponding to αr and αr+1 look as follows

(k, n− k + 1, k + 1, n− k, . . . , n− l + 2, l)(n− l + 1, l + 1, n− l, . . . ). (4.23)

Hence,

σα(l) = k < n− l = σα(l + 1)
σ−1
α (l) = n− l + 2 > n− l + 1 = σ−1

α (l + 1)

where we use k < l and l ≤ n
2 for the first inequality. Thus, by Lemma 4.2.22 we have

`(σ) = `(σα). Hence, σ ≈ σα by Lemma 4.2.20 and Proposition 4.2.14 implies σ ∈ Σα.
On the other hand, we obtain σ from σα by interchanging two elements between two
nontrivial cycles. Hence, the corresponding orbits on [n] also change.

Assume now that αr+1 = 1. Since α is a maximal composition, it follows that then
αi = 1 for all i > r. Then the definition of σα implies that l + 1 is a fixpoint of σα and
that the cycle corresponding to αr is the same as in (4.23). Therefore,

σα(l) = k < l + 1 = σα(l + 1)
σ−1
α (l) = n− l + 2 > l + 1 = σ−1

α (l + 1)

where we use that n− l+ 2 ≥ n
2 + 2 > n

2 + 1 ≥ l+ 1 for the second inequality. As before
this means that σ ∈ Σα. On the other hand, l is a fixpoint of σ but not of σα. That is,
the sets of orbits on [n] of σ and σα are different.

Let α �e n. We now show that Part (2) of Theorem 4.3.65 characterizes the elements
of Σα if α is mild. Note that by Proposition 4.3.69, the mild compositions are exactly
the maximal compositions for which we can characterize Σα in this way.
Theorem 4.3.70. Let α �e n be mild, σα the element in stair form and σ ∈ Sn. Then
σ ∈ Σα if and only if σ is oscillating with connected intervals and P (σ) = P (σα).
Proof. The implication from right to left is given by Theorem 4.3.65.
For the other direction assume that σ ∈ Σα. Then σ is oscillating with connected

intervals by Theorem 4.3.65. Moreover, Proposition 4.3.69 yields P (σ) = P (σα) since α
is mild.
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Corollary 4.3.71. Let α = (α1, . . . , αl) �e n. Then

|Σα| ≥
l∏

i=1
|Σ(αi)|

and we have equality if and only if α is mild.

Proof. Since α is maximal, there is a j such that αi is even for all i ≤ j and αi is odd
for all i > j. Set α′ := (αj+1, . . . , αl).

We can use Equation (4.22) which states that |Σα| = |Σα′ |
∏j
i=1 |Σ(αi)|. In addition,

we have |Σα′ | ≥ |Σ×α′ |. Note that |(Σ×β )w0 | = |Σ×β | where w0 is the longest elements of
Sm for all m ∈ N and β �e m. Thus we obtain from using Part (2) of Corollary 4.3.56
inductively that |Σ×α′ | =

∏l
i=j+1 |Σ×(αi)|. As (αi) is a mild composition for all i, we obtain

that |Σ×(αi)| = |Σ(αi)| from Proposition 4.3.69. Therefore, we have

|Σα| = |Σα′ |
j∏
i=1
|Σ(αi)| ≥ |Σ×α′ |

j∏
i=1
|Σ(αi)| =

l∏
i=1
|Σ(αi)|. (4.24)

Moreover,

α is mild ⇐⇒ α′ is mild ⇐⇒ |Σα′ | = |Σ×α′ |

where we use Proposition 4.3.69 for the last equivalence. Therefore, we have equality in
(4.24) if and only if α is mild.

We continue with the even hooks. Let α be such a hook. Then α is mild, since each odd
part of α equals 1. Thus, we can use Theorem 4.3.70 in order to extend Theorem 4.3.40
to even hooks.

Theorem 4.3.72. Let α �e n be a hook and σ ∈ Sn of type α. Then σ ∈ Σα if and
only if σ satisfies the hook properties.

Proof. Let α = (k, 1n−k) �e n and σα be the element in stair form. The case where k
is odd was done in Theorem 4.3.40. Therefore, let k be even and σ ∈ Sn of type α.
Then α is mild and Theorem 4.3.70 implies that σ ∈ Σα if and only if σ is oscillating,
has connected intervals and P (σ) = P (σα). On the other hand, recall that σ satis-
fies the hook properties if and only if σ is oscillating, σ has connected intervals and
1, 2, . . . ,m, n−m+ 1, n−m+ 2, . . . , n appear in the cycle of length k of σ where m = k

2 .
That is, it remains to show that P (σ) = P (σα) is equivalent to the third hook property.

Two k-cycles have the same orbits on [n] if and only if the same elements occur in their
respective cycle of length k since all other elements of [n] are fixpoints. By definition, the
cycle of length k of σα, consists of the elements 1, 2, . . . ,m, n−m+1, n−m+2, . . . , n.

Let α = (k, 1n−k) �e n be a hook. From Corollary 4.3.41 we know how to construct
Σα from Σ(k) if k is odd. If k is even, we obtain Σα in the following way.
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Table 4.2: The cardinalities of Σα and P (Σα) for some partitions α with two odd parts.

α |Σα| |P (Σα)|
(3, 3) 22 6
(5, 3) 80 10
(7, 3) 240 10
(9, 3) 720 10

(11, 3) 2160 10
(5, 5) 664 36
(7, 5) 2156 52
(9, 5) 6468 52

(11, 5) 19404 52
(7, 7) 18596 210
(9, 7) 57700 274

(11, 7) 173100 274

Corollary 4.3.73. Let α = (k, 1n−k) �e n be an even hook and id ∈ Sn−k. Then the
map Σ(k) → Σα, σ 7→ σ � id is a bijection.

Proof. Recall Σ(1n−k) = {id}. Then Corollary 4.3.56 yields that the map from the claim
is a bijection.

Example 4.3.74. Consider α = (4, 1, 1) and id ∈ S2. From Table 4.1 we read

Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)}

Hence, Corollary 4.3.73 yields

σα =
{
σ � id | σ ∈ Σ(4)

}
= {(1, 6, 2, 5), (1, 5, 2, 6)} .

The cardinality of Σα in the case where α is a hook is given as follows.

Corollary 4.3.75. Let α = (k, 1n−k) �e n be a hook. Then

|Σα| =


1 if k ≤ 2
2 · 3 k−4

2 if k ≥ 3 and k is even
2(n− k + 1)3 k−3

2 if k ≥ 3 and k is odd.

Proof. Use the second part of Corollary 4.3.60.

We end this chapter with a remark on the open cases in the description of the elements
of (Sn)max�≈.

Remark 4.3.76. In Remark 4.3.59 we reduced the problem of describing Σα for all
maximal compositions α to the partitions with only odd parts. Therefore, it would be
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interesting to find a combinatorial description of Σα if α is a partition of odd parts which
is not a hook. Unfortunately, the situation is a lot more complex. One reason for this is
the following. For any subset Σ of Sn define

P (Σ) := {P (σ) | σ ∈ Σ} .

By Proposition 4.3.69, P (σα) is not the only element of P (Σα) and there seems to be no
simple way to describe P (Σα). Moreover, the number of σ ∈ Σα whose orbits yield the
same set partition of [n] depends on this very set partition. For example, Σ(3,3) consists
of the following elements where elements with the same orbit partition occur in the same
row.

(1, 6, 2)(3, 4, 5) (1, 2, 6)(3, 4, 5) (1, 6, 2)(3, 5, 4) (1, 2, 6)(3, 5, 4)
(1, 6, 3)(2, 4, 5) (1, 6, 3)(2, 5, 4) (1, 3, 6)(2, 4, 5) (1, 3, 6)(2, 5, 4)
(1, 4, 5)(2, 6, 3) (1, 5, 4)(2, 3, 6) (1, 5, 4)(2, 6, 3) (1, 4, 5)(2, 3, 6)
(1, 6, 4)(2, 3, 5) (1, 4, 6)(2, 3, 5) (1, 6, 4)(2, 5, 3) (1, 4, 6)(2, 5, 3)
(1, 6, 5)(2, 3, 4) (1, 5, 6)(2, 3, 4) (1, 5, 6)(2, 4, 3) (1, 6, 5)(2, 4, 3)
(1, 5, 3)(2, 4, 6) (1, 3, 5)(2, 6, 4)

However, for partitions with two odd parts, the data shown in Table 4.2 suggests that
there are the following recurrence relations. Let k > l ≥ 3 be two odd integers. Then∣∣∣Σ(k+2,l)

∣∣∣ = 3
∣∣∣Σ(k,l)

∣∣∣∣∣∣P (Σ(k+2,l))
∣∣∣ =

∣∣∣P (Σ(k,l))
∣∣∣ .

The first relation also holds for odd n-cycles by Corollary 4.3.22.
Regarding the description of P (Σα), there is the following property similar to the

third hook property satisfied by the compositions α = (k, l) with k > l from Table 4.2.
Let σ ∈ Σα and m := k−l

2 . Then 1, . . . ,m, n−m+ 1, . . . , n are elements of the orbit of
length k of σ on [n].
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5 The center acting on simple modules

In this chapter we study the action of the center of Hn(0) on the simple Hn(0)-modules.
Unless stated otherwise all notation related to Coxeter groups (such as S and w0) refers
to the symmetric group Sn. By Corollary 4.2.18, a basis of Z(Hn(0)) is given by the
elements π̄≤Σα for α �e n. We are interested in determining π̄≤ΣαvI for α �e n and
I ⊆ S where vI is the generator of the simple Hn(0)-module F I . For instance, consider
the maximal composition (1n). The element in stair form associated to (1n) is σ(1n) = 1.
Thus, π̄≤Σ(1n) = 1 and consequently π̄≤Σ(1n)vI = vI for all I ⊆ S.
If n ≥ 3 then from Theorem 2.3.10 it follows that Hn(0) has exactly three blocks:

one isomorphic to F S , one isomorphic to F ∅ and a nontrivial block to which all other
simple modules F I with I 6= ∅, S belong to. Calculations for n ≤ 9 lead to the following
conjecture.

Conjecture 5.0.1. Let n ≥ 3, α �e n with α 6= (1n) and F I be a simple Hn(0)-module
belonging to the nontrivial block of Hn(0). Then π̄≤ΣαvI = 0.

The main result of the chapter is the verification of Conjecture 5.0.1 for all maximal
compositions whose odd parts form a hook in Corollary 5.4.10. The proof is based on
the combinatorial description of Σα for this family of maximal compositions developed
in Section 4.3 (cf. Remark 4.3.59). The conjecture is complemented by Lemma 5.1.1
which deals with the remaining simple modules F ∅ and F S . It states that

π̄≤Σαv∅ = v∅ and π̄≤ΣαvS =
∑

w∈S≤Σα

(−1)`(w)vS

for all α �e n.
The structure of the chapter is as follows. After some preparations in Section 5.1 we

consider the elements π̄≤Σα for three classes of compositions. We start with compositions
with one part in Section 5.2, continue with odd hooks in Section 5.3 and finally use the
inductive product in order to extend our results to maximal compositions whose odd
parts form a hook in Section 5.4.

5.1 The action of central elements associated to maximal
compositions

For I ⊆ S we make use of the shorthand SI for the parabolic subgroup (Sn)I . Likewise,
for α �e n we may write S≤Σα instead of (Sn)≤Σα .
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For I ⊆ S consider the simple Hn(0)-module F I generated by vI . For i ∈ [n − 1] we
have

π̄ivI = (πsi − 1)vI =
{
−vI if si ∈ I
0 if si /∈ I.

Let α �e n and I ⊆ S. Recall from Section 4.1 that

S≤Σα = {w ∈ Sn | w ≤ σ for some σ ∈ Σα}

and π̄≤Σα = ∑
w∈S≤Σα

π̄w. Therefore,

π̄≤ΣαvI =
∑

w∈S≤Σα

π̄wvI =
∑

w∈S≤Σα ,
w∈SI

(−1)`(w)vI =
∑

w∈SI∩S≤Σα

(−1)`(w)vI . (5.1)

That is, π̄≤Σα acts as ∑w∈SI∩S≤Σα
(−1)`(w) on F I . We directly obtain three border

cases.

Lemma 5.1.1. Let α �e n and I ⊆ S.
(1 ) If I = ∅ then π̄≤ΣαvI = vI .
(2 ) If I = S then π̄≤ΣαvI = ∑

w∈S≤Σα
(−1)`(w)vI .

(3 ) If α = (1n) then π̄≤ΣαvI = vI .

Conjecture 5.0.1 can be rephrased as

π̄≤ΣαvI = 0 for all n ≥ 3, ∅ ( I ( S and (1n) 6= α �e n.

That is, if Conjecture 5.0.1 is true and∑w∈S≤Σα
(−1)`(w) is known for each α �e n then

we have a complete description of the action of Z(Hn(0)) on the simple Hn(0)-modules.
Therefore, determining∑w∈S≤Σα

(−1)`(w) for each α �e n would be interesting. But this
is beyond the scope of this thesis.
The strategy for proving Conjecture 5.0.1 for all α �e n whose odd parts form a hook is

as follows. For the compositions in question we already have a combinatorial description
of Σα (cf. Remark 4.3.59) from which we can infer properties of SI ∩S≤Σα that imply∑
w∈SI∩S≤Σα

(−1)`(w) = 0. To be precise, we will show that SI ∩S≤Σα is an interval in
Bruhat order. From (5.1) it then follows that π̄≤ΣαvI = 0.
Let α �e n and I ⊆ S be arbitrary. By Lemma 2.2.10, SI consists of all w ∈ Sn with

w ≤ w0(I) and therefore is an order ideal of Sn with respect to the Bruhat order. In
addition, S≤Σα is an order ideal in Bruhat order by definition. Consequently,

SI ∩S≤Σα = {w ∈ Sn | w ≤ w0(I) and ∃σ ∈ Σα : w ≤ σ} .

is an order ideal as well.
We are interested in the elements of SI ∩ S≤Σα that are maximal in Bruhat order.

Therefore, we first consider w0(I) and then a characterization of ≤ called the tableau
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criterion. We will see that for all y ∈ Sn there exists the meet w0(I) ∧ y in Bruhat
order (although for n ≥ 3, (Sn,≤) is not a lattice). Then it follows that each maximal
element of SI ∩S≤Σα is of the form w0(I)∧σ where σ ∈ Σα. Moreover, we will see how
one can compute w0(I) ∧ σ from w0(I) and σ. We begin with a description of w0(I).

Lemma 5.1.2. Let I ⊆ S, w := w0(I) and 1 ≤ a1 < a2 < · · · < am = n be indices such
that S \ I =

{
sa1 , . . . , sam−1

}
. Then w(1) = a1 and for i ∈ [n− 1] we have

w(i+ 1) =
{
ak+1 if i = ak for some k
w(i)− 1 otherwise.

Proof. Let w ∈ Sn be defined by the recursion above. We show w = w0(I). First note
that w maps [ak] to itself for k = 1, . . . ,m. Thus, w ∈ SS\{sak} for k = 1, . . . ,m by
Lemma 2.2.4. Consequently,

w ∈
m⋂
k=1

SS\{sak} = SI .

Moreover, we obtain from the recursion that DR(w) = I. Hence Proposition 2.2.8 yields
w = w0(I).

Example 5.1.3. For n = 11 and I = S \ {s2, s5, s9} we have

w0(I) =
(

1 2 3 4 5 6 7 8 9 10 11
2 1 5 4 3 9 8 7 6 11 10

)
.

Definition 5.1.4. Given x ∈ Sn and k ∈ [n], let xi,k be the i-th element in the increasing
rearrangement of x(1), x(2), . . . , x(k).

The Tableau Criterion is a well-known characterization of the Bruhat order of the
symmetric group [BB05, p. 63]. We use the following version and include a proof based
on [BB05].

Theorem 5.1.5 (Tableau Criterion). For x, y ∈ Sn the following are equivalent.
(1 ) x ≤ y.
(2 ) xi,k ≤ yi,k for all k ∈ [n− 1] and i ∈ [k].

Proof. Recall from Proposition 2.2.3 that for I ⊆ S we can uniquely factorize each
x ∈ Sn as x = xI · xI where xI ∈ (Sn)I and xI ∈ (Sn)I . Let x, y ∈ Sn. From [BB05,
Theorem 2.6.1] it follows that x ≤ y if and only if xS\{sk} ≤ yS\{sk} for all k ∈ [n − 1].
Moreover, by [BB05, Proposition 2.4.8] we have for k ∈ [n− 1] that xS\{sk} ≤ yS\{sk} if
and only if xi,k ≤ yi,k for all i ∈ [k]. This yields the claim.

The Bruhat tableau B(x) of x ∈ Sn is the tableau of shape (n − 1, n − 2, . . . , 1) for
which the kth row counted from bottom to top is

x1,k, x2,k, . . . , xk,k.
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Thanks to the tableau criterion, checking for x, y ∈ Sn whether x ≤ y can be done by
comparing the Bruhat tableaux B(x) and B(y) cellwise.

Example 5.1.6. Let n = 5, I = {s1, s3, s4}, w = w0(I) = 21543 and σ be the element
in stair form σ(5) = (1, 5, 2, 4, 3) = 54132. Then

B(w) =

1 2 4 5
1 2 5
1 2
2

and B(σ) =

1 3 4 5
1 4 5
4 5
5

.

By comparing the Bruhat tableaux, we see that wi,k ≤ σi,k for all i, k. Thus, the tableau
criterion yields w ≤ σ.

We continue with some properties of Bruhat tableaux.

Lemma 5.1.7. Let x ∈ Sn.
(1 ) For all k ∈ [n] and i ∈ [k] we have i ≤ xi,k ≤ n− k + i.
(2 ) For all k ∈ [n− 1] we have {x1,k, . . . , xk,k} ⊆ {x1,k+1, . . . , xk+1,k+1}.
(3 ) For all k ∈ [n− 1] and i ∈ [k] we have xi,k+1 ≤ xi,k ≤ xi+1,k+1.

Proof. Statements (1) and (2) are direct consequences of the definition of xi,k. For (3)
consider x(k + 1) and recall xi,k+1 < xi+1,k+1. If x(k + 1) > xi,k then xi,k = xi,k+1. If
x(k + 1) < xi,k then xi,k = xi+1,k+1.

Now we come to a sufficient condition for a tableau of shape (n − 1, n − 2, . . . , 1) to
be a Bruhat tableau of an x ∈ Sn. In fact, by the definition of Bruhat tableaux and
Lemma 5.1.7 it is also a necessary condition.

Lemma 5.1.8. Let bi,k ∈ [n] for k ∈ [n− 1] and i ∈ [k] be integers such that
(1 ) b1,k < b2,k < · · · < bk,k for all k ∈ [n− 1] and
(2 ) {b1,k, . . . , bk,k} ⊆ {b1,k+1, . . . , bk+1,k+1} for all k ∈ [n− 2].

Then there is a unique x ∈ Sn such that xi,k = bi,k for all 1 ≤ i ≤ k ≤ n− 1.

Proof. From the definition of the bi,k, it follows that there exists a unique x ∈ Sn such
that
(i) x(1) = b1,1,
(ii) {x(k)} = {b1,k, . . . , bk,k} \ {b1,k−1, . . . , bk−1,k−1} for k = 2, . . . , n− 1,
(iii) {x(n)} = [n] \ {x(1), . . . , x(n− 1)}.
We show xi,k = bi,k for all k ∈ [n− 1] and i ∈ [k] by induction on k. For k = 1 we have
x1,1 = x(1) = b1,1. Assume now that 1 < k < n and that the hypothesis is true for k−1.
From the choice of x(k) and the induction hypothesis we obtain

{x1,k, . . . , xk,k} = {x(k)} ∪ {x1,k−1, . . . , xk−1,k−1}
= {x(k)} ∪ {b1,k−1, . . . , bk−1,k−1} = {b1,k, . . . , bk,k} .

188



5.1 The action of central elements associated to maximal compositions

Because

x1,k < · · · < xk,k and b1,k < · · · < bk,k,

it follows that xi,k = bi,k for all i ∈ [k]

Let n ≥ 3 and w, y ∈ Sn. We have seen in Section 2.2 that w and y may do not have
a meet in Bruhat order. However, it turns out that if w = w0(I) for some I ⊆ S then
they have.

Proposition 5.1.9. Let I ⊆ S and y ∈ Sn. Then w0(I) and y have a meet z in Bruhat
order. Moreover, we have zi,k = min {w0(I)i,k, yi,k} for 1 ≤ i ≤ k ≤ n− 1.

Example 5.1.10. Let n = 6, I = {s1, s2, s3, s4} and y = (1, 6, 5)(2, 4, 3) = 642315.
Then the Bruhat tableaux of w0(I) and y are given by

1 2 3 4 5
2 3 4 5
3 4 5
4 5
5

and

1 2 3 4 6
2 3 4 6
2 4 6
4 6
6

,

respectively. The tableau containing the cellwise minima of the two tableaux is given by

1 2 3 4 5
2 3 4 5
2 4 5
4 5
5

so that the meet of w0(I) and y is z = 542316 = (1, 5)(2, 4, 3).

Proof. Let 0 = a0 < a1 < · · · < am = n be integers such that S \ I =
{
sa1 , . . . , sam−1

}
,

x := w0(I) and bi,k := min {xi,k, yi,k} for k ∈ [n − 1] and i ∈ [k]. Theorem 5.1.5
implies that for each u ∈ Sn we have u ≤ x and u ≤ y if and only if ui,k ≤ bi,k for all
1 ≤ i ≤ k ≤ n− 1. Therefore, if we show that there is a z ∈ Sn such that zi,k = bi,k for
all i ∈ [k] and k ∈ [n− 1], this permutation z is the meet of x and y.

By Lemma 5.1.8, we have to show that bi,k < bi+1,k for all k ∈ [n− 1] and i ∈ [k − 1]
and that {b1,k, . . . , bk,k} ⊆ {b1,k+1, . . . , bk+1,k+1} for all k ∈ [n− 2].

The first part is an easy consequence of the definition of the bi,k and the fact that
xi,k < xi+1,k and yi,k < yi+1,k for i ∈ [k − 1].

For the second part let k ∈ [n− 2]. We deal with two cases
Case 1. There is a j ∈ [m] such that k = aj (i.e. k 6∈ DR(x)). Then x stabilizes [k]

since x ∈ SI . Moreover, Lemma 5.1.2 implies x(k + 1) = aj+1. Hence, xi,k = xi,k+1 = i
for all i ∈ [k]. But by Lemma 5.1.7 this means that xi,k ≤ yi,k and xi,k+1 ≤ yi,k+1 so
that bi,k = xi,k = xi,k+1 = bi,k+1 for all i ∈ [k].
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Case 2. There is a j ∈ [m] such that aj−1 < k < aj (i.e. k ∈ DR(x)). Then x stabilizes
[aj−1] as x ∈ SI . In addition, we obtain from Lemma 5.1.2 that x(i) = aj + aj−1− i+ 1
for aj−1 < i ≤ k + 1. Thus, for i ∈ [k] we have

xi,k =
{
xi,k+1 = i if i ≤ aj−1

xi,k+1 + 1 = xi+1,k+1 if i > aj−1.
(5.2)

Now, fix an i ∈ [k]. If i ≤ aj−1, we have bi,k = i = bi,k+1 as before. If i > aj then again
we have two cases.
Assume first that xi,k ≤ yi,k and recall yi,k ≤ yi+1,k+1 from Lemma 5.1.7. Combining

this with (5.2) we obtain xi+1,k+1 = xi,k ≤ yi+1,k+1 so that bi,k = xi,k = bi+1,k+1.
Assume now that xi,k > yi,k. Note that either yi,k = yi,k+1 or yi,k = yi+1,k+1. If

yi,k = yi,k+1 then

bi,k = min {xi,k, yi,k+1} = min {xi,k − 1, yi,k+1}
(5.2)= min {xi,k+1, yi,k+1} = bi,k+1.

Otherwise yi,k = yi+1,k+1 so that

bi,k = min {xi,k, yi+1,k+1}
(5.2)= min {xi+1,k+1, yi+1,k+1} = bi+1,k+1.

Let α �e n and I ⊆ S. If w ∈ SI ∩S≤Σα then there is a σ ∈ Σα such that w ≤ w0(I)
and w ≤ σ. Since w0(I) ∧ σ exists by Proposition 5.1.9, it follows that w ≤ w0(I) ∧ σ.
In particular, if w is maximal in SI ∩ S≤Σα with respect to the Bruhat order then
w = w0(I) ∧ σ. Hence, there is a subset T of Σα such that the maximal elements of
SI ∩S≤Σα are {w0(I) ∧ τ | τ ∈ T}.
Recall that for ν : Sn → Sn, w 7→ ww0 we have ν(si) = sn−i. As a consequence,

ν(I) = {sn−i | si ∈ I}. Sometimes it will be convenient to consider Sν(I)∩S≤Σα instead
of SI ∩ S≤Σα . The next result shows how the maximal elements of the two sets are
related.

Lemma 5.1.11. Let α �e n, I ⊆ S, ν : Sn → Sn, w 7→ ww0 and σ ∈ Σα be such that
w0(I) ∧ σ is maximal in SI ∩S≤Σα with respect to the Bruhat order. Then ν(σ) ∈ Σα

and w0(ν(I)) ∧ ν(σ) is maximal in Sν(I) ∩S≤Σα.

Proof. Set U := SI ∩ S≤Σα . From Lemma 4.1.17 and Corollary 4.1.16 it follows that
ν(SI) = Sν(I) and ν(Σα) = Σα. Hence, ν(U) = Sν(I) ∩ S≤Σα . Moreover, we obtain
that ν(w0(I)) = w0(ν(I)) and ν(σ) ∈ Σα.

From the fact that ν is an automorphism in Bruhat order, it follows that

ν(w0(I) ∧ σ) = ν(w0(I)) ∧ ν(σ) = w0(ν(I)) ∧ ν(σ).

Using the automorphism property again yields that w0(I)∧σ being maximal in U implies
that its image under ν is maximal in ν(U). As this image is w0(ν(I)) ∧ ν(σ), we are
done.
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We end the preliminaries with a sufficient condition for π̄ΣαvI = 0 which will be used
later.

Lemma 5.1.12. Let α �e n and I ⊆ S. If there is a u ∈ Sn with u 6= 1 such that
SI ∩S≤Σα is the interval in Bruhat order [1, u] then π̄≤ΣαvI = 0.

Proof. Assume that there is a 1 6= u ∈ Sn such that SI ∩ S≤Σα is the Bruhat order
interval [1, u]. Since u 6= 1, the number of elements of even length equals the number
of elements of odd length in [1, u] [BB05, Corollary 2.7.11]. Hence, SI ∩S≤Σα = [1, u]
implies ∑w∈SI∩S≤Σα

(−1)`(w)vI = 0. Thus, (5.1) yields π̄≤ΣαvI = 0.

5.2 Compositions with one part

In this section we prove Conjecture 5.0.1 in the case where α has only one part. That
is, we show π̄≤Σ(n)vI = 0 for all ∅ ( I ( S.

Let α = (n). The proof has three major steps. First, we determine the Bruhat tableau
of σα. Second, we show that w0(I) ≤ σα or w0(I) ≤ σw0

α for all I ( S using the first result
and the tableau criterion. Third, we infer from the second step that SI ∩S≤Σα = SI

for all I ( S.
Let x ∈ Sn. By Lemma 5.1.7, xi,j ≤ n− j + i for all j ∈ [n− 1] and i ∈ [j]. We call

xi,j maximal if xi,j = n− j + i. In this case we also call the entry in the Bruhat tableau
of x corresponding to xi,j maximal. It follows that yi,k ≤ xi,k for all y ∈ Sn if xi,k is
maximal.

Example 5.2.1. The Bruhat tableau of

σ = σ(5) = (1, 5, 2, 4, 3) = 54132

is shown below.

1 3 4 5
1 4 5
4 5
5

Observe that σ1,3 = σ1,4 = 1 and σi,k = n− k + i otherwise. That is, σi,k is maximal in
the second case.

Lemma 5.2.2. Let σ := σ(n) be the element in stair form and m :=
⌈
n+1

2

⌉
.

(1 ) For i ∈ [n],

σ(i) =


n− i+ 1 if i < m

1 if i = m

n− i+ 2 if i > m.
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(2 ) For k ∈ [n− 1] and i ∈ [k],

σi,k =
{

1 if k ≥ m and i = 1
n− k + i otherwise.

Proof. (1) From the definition of the element in stair form, it follows that

σ = (x1, x2, . . . , xn)

in cycle notation where x2i−1 = i and x2i = n− i+ 1. Hence for j ∈ [n],

σ(xj) =
{
xj+1 if j < n

x1 if j = n.

If n is even then xn = x2n2 = n − n
2 + 1 = n

2 + 1 = m. If n is odd then we have
xn = x2n+1

2 −1 = n+1
2 = m. Therefore, σ(m) = 1.

Let i ∈ [n]. If i < m then x2i−1 = i and thus σ(i) = x2i = n − i + 1. If i > m then
x2(n−i+1) = n− (n− i+ 1) + 1 = i and hence σ(i) = x2(n−i+2)−1 = n− i+ 2.
(2) Let k ∈ [n− 1]. We have that

σ([k]) = σ([k] ∩ [m− 1]) ∪ σ([k] ∩ {m}) ∪ σ([k] ∩ [m+ 1, n]).

By Part (1),

σ([k] ∩ [m− 1]) = {n− i+ 1 | 1 ≤ i ≤ m− 1 and i ≤ k} ,
σ([k] ∩ [m+ 1, n]) = {n− i+ 2 | m+ 1 ≤ i ≤ k}

= {n− i+ 1 | m ≤ i ≤ k − 1} .

Hence, if k < m then σ([k]) = {n− k + 1, n− k + 2, . . . , n}, i.e. σi,k = n − k + i for
i ∈ [k]. Moreover, if k ≥ m then σ([k]) = {1} ∪ {n− k + 2, n− k + 3, . . . , n} and thus
σ1,k = 1 and σi,k = n− k + i for 1 < i ≤ k.

In Example 5.1.6 it is shown that w0(I) ≤ σ(5) for n = 5 and I = {s1, s3, s4} via the
tableau criterion. This is a special case of the next result.

Lemma 5.2.3. Assume n ≥ 2, α = (n) and I ( S. Let a ∈ [n−1] be such that sa ∈ S\I
and

σ :=

σ(n) if a ≤ ⌈n2 ⌉
σw0

(n) if a >
⌈
n
2
⌉
.

Then σ ∈ Σα and w0(I) ≤ σ.

Proof. As I ( S and n ≥ 2, there exists an a ∈ [n− 1] such that I ⊆ S \ {sa}. Because
w0(I) ≤ w0(S \ {sa}), we can assume I = S \ {sa} without loss of generality. Let σ
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be given as in the theorem. By definition we have σα ∈ Σα. From Corollary 4.1.16 it
follows that also σw0

α ∈ Σα. Thus, σ ∈ Σα.
It remains to show w0(I) ≤ σ. First, suppose that a ≤ ⌈n2 ⌉. Let w := w0(I), k ∈ [n−1]

and i ∈ [k]. By Theorem 5.1.5, we have to show wi,k ≤ σi,k. If k <
⌈
n+1

2

⌉
or i > 1 then

Lemma 5.2.2 implies that σi,k is maximal which means that wi,k ≤ σi,k. Thus, consider
the case where k ≥

⌈
n+1

2

⌉
and i = 1. From Lemma 5.1.2 we obtain w(a) = 1. Because

k ≥
⌈
n+1

2

⌉
≥ a, it follows that w1,k = 1. Thus, w1,k ≤ σ1,k.

Second, let a >
⌈
n
2
⌉
. Consider the automorphism ν : Sn → Sn, w 7→ ww0 . Then

ν(I) = S \{sn−a} and since n−a ≤ ⌈n2 ⌉, we obtain that w0(ν(I)) ≤ σα from the already
proven case. As ν is order preserving, it follows that ν(w0(ν(I))) ≤ σw0

α . Moreover,
ν(w0(ν(I))) = w0(I) by Lemma 4.1.17. Hence w0(I) ≤ σ.

It turns out that SI ⊆ S≤Σ(n) if I ( S. This is the major step towards the verification
of Conjecture 5.0.1 in the case α = (n).

Theorem 5.2.4. Let α = (n) and I ⊆ S with I 6= S if n > 1. Then we have that
SI ∩S≤Σα = SI .

Proof. First suppose n = 1. Then α = (1) and I = ∅. Thus, SI = {1} = S≤Σα .
Now assume n ≥ 2. Then I ( S. We set w := w0(I). From Lemma 5.2.3 we have

that σα, σw0
α ∈ Σα and w ≤ σα or w ≤ σw0

α . Consequently, SI ⊆ S≤Σα because by
Lemma 2.2.10 SI is the Bruhat order interval [1, w] and S≤Σα is an order ideal with
maximal elements Σα.

Corollary 5.2.5. Conjecture 5.0.1 is true for α = (n).

Proof. Let n ≥ 3, α = (n) and ∅ ( I ( S. We have to show that π̄≤ΣαvI = 0.
From Theorem 5.2.4 it follows that SI ∩S≤Σα = SI . Furthermore, SI = [1, w0(I)] by
Lemma 2.2.10 and w0(I) 6= 1 since I 6= ∅. Now Lemma 5.1.12 implies π̄≤ΣαvI = 0.

5.3 Odd hooks
Let α �e n be an odd hook such that α 6= (1n), (n). Then n ≥ 4. In this section we
verify Conjecture 5.0.1 for this kind of composition. The case α = (1n) is a border case
and the case α = (n) has been treated in the last section. Indeed, the proof presented
in this section fails if α = (n).
In order to motivate the reasoning, we reformulate some results from the α = (n) case.

Let n ≥ 2 and I ( S. Lemma 5.2.3 implies that there is a σ ∈
{
σ(n), σ

w0
(n)

}
such that

w0(I)∧ σ = w0(I). As SI ∩S≤Σ(n) = SI by Theorem 5.2.4, it follows that SI ∩S≤Σ(n)
is the interval in Bruhat order [1, w0(I) ∧ σ].
In this section we define τ ∈ Σα depending on I such that SI ∩S≤Σα = [1, w0(I)∧ τ ].

However, the construction of τ and the proof that w0(I)∧τ is the only maximal element
of SI ∩ S≤Σα requires more work as in the α = (n) case. One reason for the latter is
that in general w0(I) ∧ τ 6= w0(I).
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We begin with a property of the Bruhat tableaux of all σ ∈ Σα that will be useful for
showing that w0(I)∧ τ is the greatest element of SI ∩S≤Σα . Before stating the general
result, we illustrate the property.

Example 5.3.1. Let α = (3, 1, 1). Then Σα consists of the elements

(1, 5, 2), (1, 5, 3), (1, 5, 4), (1, 2, 5), (1, 3, 5), (1, 4, 5).

The respective Bruhat tableaux are shown below.

1 3 4 5
1 3 5
1 5
5

1 2 4 5
1 2 5
2 5
5

1 2 3 5
2 3 5
2 5
5

2 3 4 5
2 3 5
2 5
2

2 3 4 5
2 3 5
2 3
3

2 3 4 5
2 3 4
2 4
4

The entries in the gray subtableaux are cellwise bounded from above by the tableau

2 3
2 .

Lemma 5.3.2. Let α = (α1, 1n−α1) �e n with 1 < α1 < n be an odd hook, m := α1−1
2

and σ ∈ Σα. Then σi,k ≤ m+ i if m < k < n−m and 1 ≤ i ≤ k −m.

Proof. Since σ ∈ Σα, it satisfies the hook properties by Theorem 4.3.40. In particular,
there exists a j ∈ [m+ 1, n−m] such that [m+ 1, n−m] \ {j} is the set of fixpoints of
σ. We do an induction on k.
For the base case suppose k = m+ 1. We have to show σ1,m+1 ≤ m+ 1. If j 6= m+ 1

then σ(m+ 1) = m+ 1 so that m+ 1 ∈ σ([m+ 1]) and consequently

σ1,m+1 = min σ([m+ 1]) ≤ m+ 1.

Assume j = m+ 1. Then [m+ 2, n−m] is the set of fixpoints of σ. Hence, σ([m+ 1])
and [m+ 2, n−m] are disjoint. In addition, Lemma 5.1.7 yields

σ1,m+1 ≤ n− (m+ 1) + 1 = n−m.

Therefore, σ1,m+1 ≤ m+ 1.
Assume now that k > m+ 1 and the claim holds for k − 1. We distinguish two cases

depending on j.
First, suppose j 6= k. Then σ(k) = k. Let i ∈ [k −m − 1]. By induction hypothesis

σi,k−1 ≤ m+ i. As i ≤ k −m− 1, it follows that

σi,k−1 ≤ m+ k −m− 1 = k − 1 < k = σ(k).

Thus, σi,k = σi,k−1 and therefore σi,k ≤ m+ i. Now consider σk−m,k. We have

σk−m,k = min(σ([k]) \ {σ1,k, . . . , σk−m−1,k}).
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Since σ(k) = k, we have k ∈ σ([k]). Moreover, from the reasoning above we obtain
σi,k = σi,k−1 < k for i ∈ [k − m − 1]. Therefore, k is an element of the set above.
Consequently, σk−m,k ≤ k = m+ (k −m) as desired.
Second, assume j = k. Then all the elements of [k + 1, n − m] are fixpoints of σ.

Hence, σ([k]) and [k+ 1, n−m] are disjoint. Moreover by using Lemma 5.1.7 again, we
obtain

σi,k ≤ n− k + i ≤ n− k + k −m ≤ n−m.

for i = 1, . . . , k −m. Thus, σi,k ∈ [k] for i = 1, . . . , k −m. The k −m greatest elements
of [k] are m+ 1,m+ 2, . . . , k. Therefore, σi,k ≤ m+ i for i = 1, . . . , k −m.

Let α �e n be an odd hook with α 6= (1n), (n) and I ⊆ S. In order to obtain τ ∈ Σα

such that w0(I) ∧ τ is the greatest element of SI ∩S≤Σα , we will use the elements σ(j)

that are the subject of the next lemma. Again we are interested in the Bruhat tableau
of σ(j).

Lemma 5.3.3. Let α = (α1, 1n−α1) �e n be an odd hook with 1 < α1 < n, m := α1−1
2

and j ∈ [m+ 1, n−m]. Define the element of Sn

σ(j) := (j, xα1−1, xα1−2, . . . , x1)

where x = (x1, x2, . . . , xn) is the sequence with x2i−1 = i and x2i = n− i+ 1.

(1 ) We have σ(j) ∈ Σα.
(2 ) For all i ∈ [n],

σ(j)(i) =



j if i = 1
n− i+ 2 if 2 ≤ i ≤ m
i if m+ 1 ≤ i ≤ n−m and i 6= j

n−m+ 1 if i = j

n− i+ 1 if n−m+ 1 ≤ i ≤ n.

(3 ) For all k ∈ [n− 1] and i ∈ [k],

σ
(j)
i,k =


j if k ≤ m and i = 1 or m < k < j and i = k −m+ 1
m+ i if m < k < n−m and 1 ≤ i ≤ k −m
n− k + i otherwise.

Example 5.3.4. Let α be an odd hook and m = α1−1
2 . We give examples for the

elements σ(j) from Lemma 5.3.3 in cycle and one-line notation.
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(1) For α = (3, 1, 1) we have m = 1 and

σ(2) = (1, 2, 5) = 2 5 3 4 1,
σ(3) = (1, 3, 5) = 3 2 5 4 1,
σ(4) = (1, 4, 5) = 4 2 3 5 1.

The related Bruhat tableaux are shown in Example 5.3.1. They are the three
tableaux on the right hand side.

(2) For α = (7, 1, 1, 1) we have m = 3 and

σ(4) = (1, 4, 8, 3, 9, 2, 10) = 4 10 9 8 5 6 7 3 2 1,
σ(5) = (1, 5, 8, 3, 9, 2, 10) = 5 10 9 4 8 6 7 3 2 1,
σ(6) = (1, 6, 8, 3, 9, 2, 10) = 6 10 9 4 5 8 7 3 2 1,
σ(7) = (1, 7, 8, 3, 9, 2, 10) = 7 10 9 4 5 6 8 3 2 1.

Proof of Lemma 5.3.3. We begin with the proof of Part (2). Note that x1 = 1, x2 = n,
xα1−2 = m and xα1−1 = n−m+ 1. In particular, σ(1) = j and σ(j) = n−m+ 1. From
the definition of x it follows that

{xr | 1 ≤ r ≤ α1 − 1} = [m] ∪ [n−m+ 1, n],
{xr | α1 ≤ r ≤ n} = [m+ 1, n−m].

(5.3)

Let i ∈ [n] with i 6= 1 and i 6= j. If i ∈ [m + 1, n − m] then i is a fixpoint of σ,
i.e. σ(i) = i as desired. Hence assume i ∈ [m] ∪ [n − m + 1, n]. Let r ∈ [n] be such
that xr = i. By the definition of σ, σ(i) = xr−1. If i ≤ m then x2i−1 = i and
therefore σ(i) = x2(i−1) = n − i + 2. If i ≥ n − m + 1 then x2(n−i+1) = i and thus
σ(i) = x2(n−i+1)−1 = n− i+ 1. This finishes the proof of Part (2).
We proceed with the proof of Part (1). In order to show that σ ∈ Σα, we use Theo-

rem 4.3.40, i.e. we have to show that σ satisfies the hook properties. By (5.3), the third
property is satisfied. It remains to show that σ is oscillating with connected intervals.
Let τ be the cycle standartization of the cycle of length α1 of σ. We have to show that
τ is oscillating with connected intervals. We have

τ = (m+ 1, α1 −m+ 1,m, . . . , α1 − 1, 2, α1, 1).

Hence, τ([m + 1]) = [m + 1, α1]. Since m + 1 = α1+1
2 , it follows that τ is oscillating.

Moreover, for each k ∈ [m] and q := |[k, α1 − k + 1]|,

{τ r(m+ 1) | r = 0, . . . , q − 1} = [k, α1 − k + 1].

Thus, τ has connected intervals.
Lastly, we prove Part (3). Let k ∈ [n − 1] and i ∈ [k]. We deal with four cases

depending on k. In each case we use Part (2) in order to determine the set σ([k]).
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Case 1. Suppose k ≤ m. Part (2) implies

σ([k]) = {j, n− k + 2, n− k + 3, . . . , n} .

Hence, σ1,k = j and σi,k = n− k + i if i > 1.
Case 2. Suppose m < k < j. Then

σ([k]) = {m+ 1,m+ 2, . . . , k, j, n−m+ 2, n−m+ 3, . . . , n} .

Thus,

σi,k =


m+ i if i ≤ k −m
j if i = k −m+ 1
n− k + i if i > k −m+ 1

Case 3. Suppose j ≤ k < n−m. Then

σ([k]) = {m+ 1,m+ 2, . . . , k, n−m+ 1, n−m+ 2, . . . , n} .

Consequently, σi,k = m+ i if i ≤ k −m and σi,k = n− k + i if i > k −m.
Case 4. Suppose k ≥ n−m. Then

σ([k]) = {n− k + 1, n− k + 2, . . . , n} .

Thus, σi,k = n− k + i.

Definition 5.3.5. Let α = (α1, 1n−α1) �e n be an odd hook with 1 < α1 < n, m := α1−1
2

and a ∈ [n− 1]. Define

τα,a :=
{
σ(j) if a ≤ ⌈n2 ⌉
(σ(n−j+1))w0 if a >

⌈
n
2
⌉

with

j :=
{

max {a,m+ 1} if a ≤ ⌈n2 ⌉
min {a+ 1, n−m} if a >

⌈
n
2
⌉

and σ(j) the element from Lemma 5.3.3.

Example 5.3.6. Consider α = (3, 1, 1) �e 5. Then m = α1−1
2 = 1. Let σ(j) be defined

as in Lemma 5.3.3 for j = 2, 3, 4. The elements τα,a for a = 1, . . . , 4 are

τα,1 = τα,2 = σ(2) = (1, 2, 5),
τα,3 = σ(3) = (1, 3, 5),

τα,4 =
(
σ(2)

)w0 = (1, 5, 4).
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Let α �e n be an odd hook unequal to (1n) and (n) and I ( S. Then there is an
a ∈ [n−1] such that sa 6∈ I. We want to show that τα,a is our desired element of Σα with
SI ∩S≤Σα = [1, w0(I)∧ τα,a]. We first check that τα,a is well defined and an element of
Σα.

Lemma 5.3.7. Let α = (α1, 1n−α1) �e n be an odd hook with 1 < α1 < n, m := α1−1
2

and a ∈ [n− 1].
(1 ) The element τα,a is well defined and τα,a ∈ Σα

(2 ) If a >
⌈
n
2
⌉
then τα,a = τw0

α,n−a.

Proof. Let j be as in the definition of τα,a and σ(k) be the element from Lemma 5.3.3
for k ∈ [m+ 1, n−m].

(1) Since σ(k) is only defined for k ∈ [m+ 1, n−m] and k ∈ [m+ 1, n−m] if and only
if n− k + 1 ∈ [m+ 1, n−m], we have to show that j ∈ [m+ 1, n−m].

Assume first that a ≤ ⌈n2 ⌉. Then j = max {a,m+ 1}. If a ≤ m + 1 then j = m + 1
and we are done. If a > m+ 1 then j = a and

j = a ≤
⌈
n

2

⌉
≤ n+ 1

2 = n− n− 1
2 ≤ n− α1 − 1

2 = n−m,

i.e. j ∈ [m + 1, n − m]. Therefore, τα,a = σ(j) is well defined. From Lemma 5.3.3 it
follows that τα,a ∈ Σα.
Assume now that a >

⌈
n
2
⌉
. Then j = min {a+ 1, n−m}. If a + 1 ≥ n − m then

j = n−m. If a+ 1 < n−m then j = a+ 1 and

m+ 1 = α1 + 1
2 ≤ n

2 ≤
⌈
n

2

⌉
< a < j.

That is, j ∈ [m + 1, n − m] and τα,a is well defined in this case too. Lemma 5.3.3
yields that σ(n−j+1) ∈ Σα. In addition, we have Σα = Σw0

α by Corollary 4.1.16. Hence,
τα,a = (σ(n−j+1))w0 ∈ Σα.
(2) Assume that a >

⌈
n
2
⌉
and set a′ := n− a and j′ := max {a′,m+ 1}. Then

j = min {a+ 1, n−m}, τα,a = (σ(n−j+1))w0 , a′ ≤ ⌈n2 ⌉ and τα,a′ = σ(j′).

As a consequence, we have τα,a = τw0
α,a′ if and only if j′ = n− j + 1. We show the latter.

Clearly,

a+ 1 ≤ n−m ⇐⇒ a′ = n− a ≥ m+ 1.

Thus, if j = a+ 1 then a+ 1 ≤ n−m so that a′ ≥ m+ 1 and consequently

j′ = a′ = n− a = n− j + 1

as desired. Moreover, if j = n−m then a+ 1 ≥ n−m so that a′ ≤ m+ 1 and hence

j′ = m+ 1 = n− (n−m) + 1 = n− j + 1.
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5.3 Odd hooks

Example 5.3.8. This example illustrates the reasoning in this section. Consider n = 5,
α = (3, 1, 1) �e 5 and I = S \{s1}. Let m = α1−1

2 , a = 1, j = max {a,m+ 1}, w = w0(I)
and τ = τα,a. We show that SI ∩S≤Σα is the interval in Bruhat order [1, w ∧ τ ].

We have m = 1, j = 2, w = (2, 5)(3, 4) and τ = σ(2) = (1, 2, 5) and consider the
Bruhat tableaux

B(w) =

1 3 4 5
1 4 5
1 5
1

and B(τ) =

2 3 4 5
2 3 5
2 5
2

.

Proposition 5.1.9 states that (w ∧ σ)i,k = wi,k ∧ σi,k for all σ ∈ Sn, k ∈ [4] and i ∈ [k].
Thus,

B(w ∧ τ) =

1 3 4 5
1 3 5
1 5
1

.

It follows that w ∧ τ = (2, 5). Moreover, we see that for all k ∈ [4] and i ∈ [k],

(w ∧ τ)i,k =
{
τi,k = 3 if k = 3 and i = 2
wi,k otherwise.

Let σ ∈ Σα. From Example 5.3.1 or applying Lemma 5.3.2 we obtain that

τ2,3 = 3 = m+ 2 ≥ σ2,3.

Thus,

(w ∧ τ)i,k =
{
τi,k ≥ σi,k if k = 3 and i = 2
wi,k otherwise

≥ wi,k ∧ σi,k
= (w ∧ σ)i,k

for all k ∈ [4] and i ∈ [k]. Therefore, the tableau criterion, Theorem 5.1.5, implies that
w ∧ σ ≤ w ∧ τ .

For each x ∈ SI ∩S≤Σα there exists a σ ∈ Σα such that x ≤ w and x ≤ σ and hence
x ≤ w ∧ σ ≤ w ∧ τ . Thus, SI ∩S≤Σα = [1, w ∧ τ ].

Let I ( S such that there is an a ≤ dn2 e with sa 6∈ I. We want to compare the Bruhat
tableaux of w0(I) and τα,a. The one of τα,a is given by Lemma 5.3.3. We now determine
the Bruhat tableau of w0(I) in the case where I is a maximal subset of S.
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5 The center acting on simple modules

Lemma 5.3.9. Let n ≥ 2, a ∈ [n − 1], I := S \ {sa} and w := w0(I). Then for all
k ∈ [n− 1] and i ∈ [k],

wi,k =


a− k + i if k ≤ a
i if i ≤ a and a < k

n− k + i if a < i and a < k.

Proof. This is not hard to see considering the one line notation of w

w = a a− 1 · · · 1 n n− 1 n− 2 · · · a+ 1

which we obtain from Lemma 5.1.2.

We now consider I ( S such there is an a ≤ dn2 e with sa 6∈ I and compare the Bruhat
tableaux of w0(I) and τα,a.

Lemma 5.3.10. Let α = (α1, 1n−α1) �e n be an odd hook with 1 < α1 < n, I ( S be
such that there is an a ∈ [n − 1] with sa 6∈ I and a ≤ ⌈n2 ⌉, k ∈ [n − 1] and i ∈ [k]. Set
m := α1−1

2 , w := w0(I) and τ := τα,a. If wi,k > τi,k then m < k < n−m and i ≤ k−m.

Proof. Let j := max {a,m+ 1} and σ(j) be defined as in Lemma 5.3.3. By the definition
of τ , we have that τ = σ(j). Since w0(I) ≤ w0(S \ {sa}), we obtain from Theorem 5.1.5
that w0(I)i,k ≤ w0(S \{sa})i,k. Therefore, we can assume without loss of generality that
I = S \ {sa}.
We show the contraposition. That is, we assume that the statement m < k < n−m

and i ≤ k −m is not true and show that then wi,k ≤ τi,k. Lemma 5.3.3 implies that

τi,k =
{
j if k ≤ m and i = 1 or m < k < j and i = k −m+ 1
n− k + i otherwise.

In the second case, τi,k is maximal and thus wi,k ≤ τi,k. It remains show that wi,k ≤ τi,k
in the first case.
Suppose k ≤ m and i = 1. Lemma 5.1.2 yields w(1) = a, i.e. a ∈ w([k]). By the choice

of j, we have that j ≥ a. Therefore,

τ1,k = j ≥ a ≥ minw([k]) = w1,k.

Now, suppose m < k < j and i = k −m + 1. This case can only occur if j > m + 1.
Then j = a. By assumption, α1 ≥ 3 and therefore m ≥ 1. Since k < j = a, we obtain
from Lemma 5.3.9 that

wk−m+1,k = a− k + k −m+ 1 = a−m+ 1 ≤ a.

Thus, τk−m+1,k = j = a ≥ wk−m+1,k.

Now we come to the main result on SI ∩S≤Σα in the case where α is an odd hook.
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Theorem 5.3.11. Let α = (α1, 1n−α1) �e n be an odd hook with 1 < α1 < n, I ( S
and a ∈ [n− 1] be such that sa 6∈ I. Then SI ∩S≤Σα is the interval [1, w0(I) ∧ τα,a] in
Bruhat order.

Proof. Let τ := τα,a and w := w0(I). Recall from Proposition 5.1.9 that for each σ ∈ Sn

the meet w ∧ σ exists and we have that (w ∧ σ)i,k = wi,k ∧ σi,k for all k ∈ [n − 1] and
i ∈ [k]. We distinguish two cases depending on a.
Case 1. Suppose a ≤ ⌈n2 ⌉. Let x ∈ SI ∩ S≤Σα . We want to show that x ≤ w ∧ τ .

Since x ∈ SI ∩S≤Σα , there is a σ ∈ Σα such that x ≤ w and x ≤ σ. Thus, x ≤ w ∧ σ
and we can assume that x = w ∧ σ without loss of generality.

Let k ∈ [n− 1] and i ∈ [k]. By the tableau criterion, Theorem 5.1.5, we have to show
that (w ∧ σ)i,k ≤ (w ∧ τ)i,k. We deal with two cases. If wi,k ≤ τi,k then

(w ∧ τ)i,k = wi,k ≥ (w ∧ σ)i,k.

Suppose now that wi,k > τi,k and let m = α1−1
2 . Then Lemma 5.3.10 implies m < k <

n−m and i ≤ k−m. On the one hand, Part (3) of Lemma 5.3.3 yields that τi,k = m+ i.
On the other hand, we obtain from Lemma 5.3.2 that σi,k ≤ m+ i. Therefore,

(w ∧ τ)i,k = τi,k ≥ σi,k ≥ (w ∧ σ)i,k.

Case 2. Suppose that a >
⌈
n
2
⌉
. Set Ĩ = Iw0 , ã = n−a, w̃ = w0(Ĩ) and τ̃ = τα,ã. Then

ã ≤ ⌈n2 ⌉ and by Case 1, SĨ ∩S≤Σα = [1, w̃ ∧ τ̃ ]. Hence, an application of Lemma 5.1.11
yields

SI ∩S≤Σα = [1, w̃w0 ∧ τ̃w0 ].

Furthermore, w = w̃w0 and by Lemma 5.3.7, τ = τw0
α,n−a = τ̃w0 . As a consequence,

SI ∩S≤Σα = [1, w ∧ τ ].

Lemma 5.3.12. Let α �e n with α 6= (1n). Then si ≤ σα for all i ∈ [n− 1].

Proof. Let i ∈ [n − 1] and I = S \ {si}. Then for each w ∈ SI , w([i]) = [i]. Consider
α �e n with α 6= (1n). Then α1 ≥ 2. Thus by definition, σα(1) = n 6∈ [i] which implies
σα 6∈ SI . As SI is the subgroup of Sn generated by S \ {si}, we conclude si ≤ σα.

Remark. In the proof of Lemma 5.3.12 we showed that σα([i]) 6= [i] for all i ∈ [n − 1]
and all elements in stair form σα with α �e n and α 6= (1n). Duchamp, Hivert and
Thibon call permutations with this property connected in [DHT02]. In the paper they
show that the connected permutations index a basis of the algebra of free quasisymmetric
functions.

Corollary 5.3.13. Conjecture 5.0.1 is true for all odd hooks α �e n with α 6= (n).

Proof. Let n ≥ 3, α be an odd hook with α 6= (n) and ∅ ( I ( S. As Conjecture 5.0.1
only pertains compositions different from (1n), we also assume that α 6= (1n). We have
to show that π̄≤ΣαvI = 0.
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5 The center acting on simple modules

Since I 6= S we can apply Theorem 5.3.11 and obtain that there is a u ∈ Sn such
that SI ∩S≤Σα is the interval in Bruhat order [1, u]. Since ∅ 6= I there is an i ∈ [n− 1]
such that si ∈ SI . On the other hand, we obtain si ≤ σα from Lemma 5.3.12 since
α 6= (1n). Thus, si ∈ S≤Σα . Consequently, si ∈ SI ∩S≤Σα , i.e. si ≤ u. Hence, u 6= 1
and Lemma 5.1.12 implies π̄≤ΣαvI = 0.

5.4 An application of the inductive product

The goal of this section is to show that Conjecture 5.0.1 is true for all maximal composi-
tions whose odd parts form a hook. This is the largest family of compositions for which
we validate the conjecture in this thesis. We always assume n ≥ 1 and use the notions
related to the inductive product introduced in Notation 4.3.45.
Let ∅ ( I ( S and α = (α1, . . . , αl) �e n be such that α 6= (1n) and the odd parts of α

form a hook. We are going show that (Sn)I ∩(Sn)≤Σα is an interval so that π̄≤ΣαvI = 0.
For α = (n) or α an odd hook, we obtained these results in Section 5.2 and Section 5.3.
Therefore, we can assume that `(α) ≥ 2 and α1 is even.

The strategy is the same as before: We construct τ ∈ Σα with the property that
w0(I) ∧ τ is the greatest element of (Sn)I ∩ (Sn)≤Σα . To do this we use the inductive
product exploiting the fact that α1 is even. More precisely, we set α′ := (α2, . . . , αl),
n′ := |α′| and τ := ξ � τ ′ for certain ξ ∈ {σ(α1), σ

w1
(α1)} and τ ′ ∈ Σα′ depending on I

and α where w1 is the longest element of Sα1 . We will choose τ ′ such that w′ ∧ τ ′ is
the greatest element of (Sn′)I′ ∩ (Sn′)≤Σα′ where S

′ are the simple reflections of Sn′ ,
I ′ ⊆ S′ also depends on I and α, (Sn′)I′ is a parabolic subgroup of Sn′ and w′ ∈ Sn′ is
the longest element of (Sn′)I′ . The existence of τ ′ will be provided by induction.

We start with a lemma which determines the Bruhat tableau of the inductive product
of two permutations σ1 � σ2 where σ1 ∈ Sn1 is an oscillating n1-cycle with n1 even.

We will use the lemma in situations where σ1 ∈ Σ(n1) since then σ1 is oscillating by
Theorem 4.3.20. For instance, it can be applied to the element τ = ξ � τ ′ mentioned
above.

Lemma 5.4.1. Let (n1, n2) � n with n1 even and σ = σ1 � σ2 where σi ∈ Sni for
i = 1, 2 and σ1 is oscillating. Then for all j ∈ [n− 1] and i ∈ [j],

σi,j =


(σ1)i,j + n2 if j < n1

2 and i ≤ j,
(σ2)i,j−n1

2
+ n1

2 if n1
2 < j < n1

2 + n2 and i ≤ j − n1
2 ,

(σ1)i,j−n2 if n1
2 + n2 < j and i ≤ j − n1

2 − n2,
n− j + i otherwise.

Proof. Recall from Definition 4.3.1 that σ1([n1
2 ]) = [n1

2 + 1, n1] as σ1 is oscillating and
n1 is even. The proof is divided into seven parts. Table 5.1 gives an overview of what
we show in which part.

202



5.4 An application of the inductive product

Table 5.1: An overview of the results shown in the seven parts of the proof of
Lemma 5.4.1.

(1) σi,j = (σ1)i,j + n2 if j ≤ n1
2 and i ≤ j,

(2) σi,j = n− j + i if j = n1
2 and i ≤ j,

(3) σi,j = n− j + i if n1
2 < j and j − n1

2 < i,
(4) σi,j = (σ2)i,j−n1

2
+ n1

2 if n1
2 < j ≤ n1

2 + n2 and i ≤ j − n1
2 ,

(5) σi,j = n− j + i if j = n1
2 + n2 and i ≤ j,

(6) σi,j = n− j + i if n1
2 + n2 < j and j − n1

2 − n2 < i,
(7) σi,j = (σ1)i,j−n2 if n1

2 + n2 < j and i ≤ j − n1
2 − n2.

Let j ∈ [n− 1]. From Lemma 4.3.49 we obtain that

σ([j]) = σϕ1
1 ([j] ∩N1) ∪ σϕ2

2 ([j] ∩N2).

(1) Suppose j ≤ n1
2 . Then ϕ−1

1 ([j]) = [j] and

σ([j]) = σϕ1
1 ([j]) = ϕ1(σ1([j])) = {ϕ1((σ1)i,j) | 1 ≤ i ≤ j} .

Since the sequence (σ1)1,j , (σ1)2,j , . . . , (σ1)j,j is strictly increasing and ϕ1 is order pre-
serving, it follows that

σi,j = ϕ1((σ1)i,j)

for all i ∈ [j]. Using the definition of ϕ1 and σ1([n1
2 ]) = [n1

2 + 1, n1], we obtain that
ϕ1((σ1)i,j) = (σ1)i,j + n2 for all i ∈ [j].

(2) Suppose j = n1
2 and let i ∈ [j]. Then we have σ1([j]) = [n1 − j + 1, n1] so that

(σ1)i,j = n1 − j + i. Thus,

σi,j = (σ1)i,j + n2 = n1 + n2 − j + i = n− j + i

where we use Part (1) for the first equality.
(3) Suppose n1

2 < j and let i ∈ [j] with j − n1
2 < i. Set r := j − n1

2 . Then j − r = n1
2 ,

i− r ∈ [n1
2
]
and

n− j + i = n− (j − r) + i− r = σi−r,j−r ≤ σi,j ≤ n− j + i

where the second equality is valid by Part (2) and the first and the second inequality
are consequences of Lemma 5.1.7 Part (3) and (1), respectively. Thus, σi,j = n− i+ j.
Moreover, it follows that

σi,j = σi−r,j−r = σi−r,n1
2
.
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As a consequence,

σ

([
n1
2

])
=
{
σi,n1

2
| 1 ≤ i ≤ n1

2

}
=
{
σi,j | j −

n1
2 < i ≤ j

}
.

(4) Suppose n1
2 < j ≤ n1

2 + n2. Then ϕ−1
2
([n1

2 + 1, j
])

=
[
j − n1

2
]
and

σ([j]) = σϕ1
1

([
n1
2

])
∪ σϕ2

2

([
n1
2 + 1, j

])
= σ

([
n1
2

])
∪ ϕ2

(
σ2

([
j − n1

2

]))
=
{
σi,j | j −

n1
2 < i ≤ j

}
∪
{
ϕ2
(
(σ2)i,j−n1

2

)
| 1 ≤ i ≤ j − n1

2

}
=
{
σi,j | j −

n1
2 < i ≤ j

}
∪
{

(σ2)i,j−n1
2

+ n1
2 | 1 ≤ i ≤ j −

n1
2

}
.

Because the sequences σ1,j , . . . , σj,j and (σ2)1,j−n1
2
, . . . , (σ2)j−n1

2 ,j−
n1
2

are both strictly
increasing, it follows that σi,j = (σ2)i,j−n1

2
+ n1

2 for all i ∈ [j − n1
2 ].

(5) Suppose j = n1
2 + n2. Then σ2([j − n1

2 ]) = [n2] and thus for all i ∈ [j − n1
2 ],

σi,j = (σ2)i,j−n1
2

+ n1
2 = i+ n1

2 = n− j + i

where we use that n − j = n1
2 . From Part (3) we have that σi,j = n − j + i for all

i ∈ [j − n1
2 + 1, j] as well. Therefore, σi,j = n− j + i for all i ∈ [j].

(6) Suppose n1
2 +n2 < j. We can argue as in Part (3) and obtain that σi,j = n− j+ i

for all i such that j − n1
2 − n2 < i ≤ j. Moreover analogous to Part (3), we obtain that

σ

([
n1
2 + n2

])
=
{
σi,j | j −

n1
2 − n2 < i ≤ j

}
.

(7) Suppose n1
2 + n2 < j. Then

σ([j]) = σ

([
n1
2 + n2

])
∪ σϕ1

1

([
n1
2 + n2 + 1, j

])
.

Hence, the last equation of Part (6) implies{
σi,j | 1 ≤ i ≤ j −

n1
2 − n2

}
= σϕ1

1

([
n1
2 + n2 + 1, j

])
.

Using the definition of ϕ−1
1 , we obtain

ϕ−1
1

([
n1
2 + n2 + 1, j

])
=
[
n1
2 + 1, j − n2

]
.
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By assumption, σ1(
[n1

2
]
) =

[n1
2 + 1, n1

]
and σ1([n1

2 + 1, n1]) =
[n1

2
]
. Thus, we have that

σ1
([n1

2 + 1, j − n2
]) ⊆ [n1

2 ]. As a consequence,

ϕ1

(
σ1

([
n1
2 + 1, j − n2

]))
= σ1

([
n1
2 + 1, j − n2

])
and this set contains the j − n1

2 − n2 smallest elements of σ1([j − n2]). To sum up,{
σi,j | 1 ≤ i ≤ j −

n1
2 − n2

}
= σϕ1

1

([
n1
2 + n2 + 1, j

])
= σ1

([
n1
2 + 1, j − n2

])
=
{

(σ1)i,j−n2 | 1 ≤ i ≤ j −
n1
2 − n2

}
.

That is, σi,j = (σ1)i,j−n2 for all i such that 1 ≤ i ≤ j − n1
2 − n2.

Example 5.4.2. Let n1 = 6, n2 = 5, n = 11, ξ = σ(6) = (1, 6, 2, 5, 3, 4) ∈ Sn1 ,
τ ′ = (1, 2, 5) ∈ Sn2 and τ = ξ � τ ′. Then τ = (1, 11, 2, 10, 3, 9)(4, 5, 8). The Bruhat
tableaux of ξ, τ ′ and τ are shown below.

B(ξ) =

1 3 4 5 6
1 4 5 6
4 5 6
5 6
6

B(τ ′) =
2 3 4 5
2 3 5
2 5
2

B(τ) =

1 3 4 5 6 7 8 9 10 11
1 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11
5 6 8 9 10 11
5 8 9 10 11
5 9 10 11
9 10 11
10 11
11

Since ξ ∈ Σ(n1), it is oscillating by Theorem 4.3.20. Hence, we can apply Lemma 5.4.1
on τ and it follows that the lower, upper and middle white part of B(τ) are determined
by the lower white part of B(ξ), the upper white part of B(ξ) and B(τ ′), respectively.
Moreover, the gray cells of B(ξ) and B(τ) contain maximal entries. For the former this
is a consequence of ξ([n1

2 ]) = [n1
2 + 1, n1] and for the latter this is the case otherwise of

Lemma 5.4.1.

In the last sections conjugating with w0 turned out to be a useful tool. We now consider
the interplay between the inductive product on Sn1 and Sn2 and the conjugation with
the longest elements of Sn1 , Sn2 and Sn1+n2 .

Lemma 5.4.3. Let (n1, n2) � n with n1 even. Set n0 := n and let wi be the longest
element of Sni for i = 0, 1, 2.
(1 ) For i = 1, 2 and ϕi the bijection from Notation 4.3.45 regarded as a function
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ϕi : [ni]→ [n], we have

w0 ◦ ϕi = ϕi ◦ wi.

(2 ) Given σ = σ1 � σ2 ∈ Sn with σi ∈ Sni for i = 1, 2, we have

σw0 = σw1
1 � σw2

2 .

Proof. (1) Let j ∈ [n1]. Using the definition of ϕ1, we obtain

w0 (ϕ1(j)) =
{
w0(j) = n− j + 1 if j ≤ n1

2
w0(j + n2) = n− n2 − j + 1 = n1 − j + 1 if j > n1

2 .

On the other hand,

ϕ1 (w1(j)) = ϕ1(n1 − j + 1) =
{
n1 + n2 − j + 1 = n− j + 1 if n1 − j + 1 > n1

2
n1 − j + 1 if n1 − j + 1 ≤ n1

2 .

Now use

j ≤ n1
2 ⇐⇒ n1 − j + 1 ≥ n− n1

2 + 1 ⇐⇒ n1 − j + 1 > n1
2

to obtain the claim for ϕ1.
Consider ϕ2. Let j ∈ [n2]. Then

w0 (ϕ2(j)) = w0(j + n1
2 ) = n− n1

2 − j + 1 = ϕ2(n2 − j + 1) = ϕ2 (w2(j))

as desired.
(2) Let i ∈ {1, 2} and j ∈ Ni. Note that w0(Ni) = Ni and w−1

0 = w0. Hence,
σ(w−1

0 (j)) = σϕii (w−1
0 (j)) by Lemma 4.3.49. Thus,

σw0(j) = (w0 ◦ σϕii ◦ w−1
0 )(j)

= (w0 ◦ ϕi ◦ σi ◦ ϕ−1
i ◦ w−1

0 )(j)
= ((w0 ◦ ϕi) ◦ σi ◦ (w0 ◦ ϕi)−1)(j)
= ((ϕi ◦ wi) ◦ σi ◦ (ϕi ◦ wi)−1)(j)
= (ϕi ◦ wi ◦ σi ◦ w−1

i ◦ ϕ−1
i )(j)

= ((σwii )ϕi)(j)

where we use Part (1) for the forth equality.

Let α = (α1, . . . , αl) �e n with l ≥ 2 and α1 even, α′ := (α2, . . . , αl), n′ := |α′|, w1 be
the longest element of Sα1 , τ := ξ � τ ′ with ξ ∈ {σ(α1), σ

w1
(α1)} and τ ′ ∈ Σα′ , I ( S and

w := w0(I). We want to compare the Bruhat tableaux of τ and w. From Lemma 5.4.1 we
have a nice description of the Bruhat tableau of τ in terms of ξ and τ ′. Since w lacks the
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inductive structure of τ , we have no such description for its Bruhat tableau. Therefore
we consider an element v := ξ � w′ with w′ ∈ Sn′ and the property that w ≤ v. Then
Lemma 5.4.1 implies that the Bruhat tableaux of τ and v are the same, except for the
parts determined by τ ′ and w′, respectively. That is, comparing the Bruhat tableaux
of τ and v reduces to the comparison of the Bruhat tableaux of τ ′ and w′. We now
introduce the element v.

Lemma 5.4.4. Let (n1, n2) � n with n1 even, I ( S and a ∈ [n − 1] with sa 6∈ I. Set
w := w0(I),

ξ :=

σ(n1) if a ≤ ⌈n2 ⌉
σw1

(n1) if a >
⌈
n
2
⌉

where w1 is the longest element of Sn1, S′ to be the set of simple reflections of Sn2,

I ′ :=
{
S′ = ∅ if n2 = 1
S′ \ {sa′} if n2 > 1

where a′ :=
{

min {a, n2 − 1} if a ≤ ⌈n2 ⌉
max {1, a− n1} if a >

⌈
n
2
⌉
,

w′ ∈ Sn2 to be the longest element of (Sn2)I′ and v := ξ � w′. Then w ≤ v.

Proof. Since I ⊆ S \ {sa}, it follows that w ≤ w0(S \ {sa}). Therefore we can assume
without loss of generality that I = S \ {sa}.
(1) Assume a ≤ ⌈n2 ⌉. Then ξ = σ(n). Let j ∈ [n− 1] and i ∈ [j]. We show wi,j ≤ vi,j .

Then we can apply the tableau criterion, Theorem 5.1.5, to obtain w ≤ v. Since the
element in stair form σ(n1) is oscillating by Lemma 4.3.11 we can apply Lemma 5.4.1
on v. We distinguish the four cases that occur in Lemma 5.4.1.
Case 1. Assume j < n1

2 . Then Lemma 5.4.1 yields vi,j = (σ(n1))i,j + n2. From
Lemma 5.2.2 we have that (σ(n1))p,q = n1 − q + p unless p = 1 and q > n1

2 . Thus,
(σ(n1))i,j = n1− j + i, i.e. vi,j = n− j + i. That is, vi,j is maximal and hence vi,j ≥ wi,j .
Case 2. Assume n1

2 + n2 < j and i ≤ j − n1
2 − n2. Then vi,j = (σ(n1))i,j−n2 by

Lemma 5.4.1.
First assume i > 1. Then it follows from above that

(σ(n1))i,j−n2 = n1 − (j − n2) + i = n− j + i.

Hence, again vi,j is maximal and therefore vi,j ≥ wi,j .
We now assume i = 1. We have

a ≤
⌈
n

2

⌉
≤ n1

2 + n2
2 + 1

2 ≤
n1
2 + n2 < j.

Consequently, w1,j = 1 by Lemma 5.3.9 and thus certainly w1,j ≤ v1,j .
Case 3. Suppose n1

2 < j < n1
2 +n2 and i ≤ j− n1

2 . This case can only occur if n2 ≥ 2.
Hence, I ′ = S′ \ {sa′}. Moreover, in this case vi,j = w′

i,j−n1
2

+ n1
2 by Lemma 5.4.1.
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Assume first that a ≥ n2− 1. Then a′ = n2− 1 and hence j− n1
2 ≤ n2− 1 = a′. Thus,

w′
i,j−n1

2
= a′ − (j − n1

2 ) + i = n1
2 + n2 − 1− j + i

by Lemma 5.3.9. Hence, vi,j = n − 1 − j + i. If j < a then Lemma 5.3.9 yields
wi,j = a− j + i and since a ≤ n− 1, it follows that wi,j ≤ vi,j . We have

i ≤ j − n1
2 ≤ n2 − 1 ≤ a.

Therefore, if j ≥ a then wi,j = i by Lemma 5.3.9 and hence Lemma 5.1.7 implies
wi,j ≤ vi,j .
Assume now that a < n2 − 1. Then a′ = a.
(i) Suppose i ≤ a. If j ≥ a then wi,j = i ≤ vi,j . Thus, assume j < a. Then

Lemma 5.3.9 yields wi,j = a − j + i and w′
i,j−n1

2
= n1

2 + a − j + i. Hence vi,j =
n1 + a− j + i ≥ wi,j .

(ii) Suppose i > a. Then also j− n2
2 > a. Because a = a′, we obtain from Lemma 5.3.9

that w′
i,j−n1

2
= n1

2 + n2 − j + i. Thus, vi,j = n− j + i. Hence, vi,j ≥ wi,j as vi,j is
maximal.

Case 4. Assume that i and j do not fall in one of the previous cases. Then we obtain
from Lemma 5.4.1 that vi,j = n − j + i. Thus, vi,j ≥ wi,j . This finishes the proof of
w ≤ v in the case a ≤ ⌈n2 ⌉.

(2) Assume a >
⌈
n
2
⌉
. Let w0 be the longest element of Sn and wi be the longest

element of Sni for i = 1, 2. We use the Bruhat order automorphism ν with ν(x) = xw0

to trace this case back to Part (1). Set ã := n−a and Ĩ := S \{sã}. Define w̃, ã′, ξ̃, Ĩ ′, w̃′
and ṽ depending on Ĩ and ã in the same way as their counterparts without tilde from
the theorem are defined depending on I and a.
Since a >

⌈
n
2
⌉
, we have ã = n−a ≤ ⌈n2 ⌉. From Lemma 4.1.17 it follows that w = w̃w0 .

We claim that w′ = (w̃′)w2 . If n2 = 1 then w′ = w̃′ = 1 ∈ Sn2 and therefore w′ =
(w̃′)w2 . Now suppose that n2 ≥ 2. Then w′ = w0(S′ \ {s′a}) and w̃′ = w0(S′ \ {sã′}) in
Sn2 . We show a′ = n2−ã′. By definition, a′ = max {1, a− n1} and ã′ = min {ã, n2 − 1}.
Moreover,

a′ = 1 ⇐⇒ a− n1 ≤ 1 ⇐⇒ n− ã− n1 ≤ 1 ⇐⇒ n2 − 1 ≤ ã ⇐⇒ ã′ = n2 − 1.

Hence, a′ = n2 − ã′ if a′ = 1. Furthermore it follows from the equivalence that if
a′ = a− n1 then ã = ã′ and

n2 − a′ = n2 + n1 − a = n− a = ã = ã′.

Therefore, we have a′ = n2 − ã′ as desired. This implies sa′ = sw2
ã′ in Sn2 and thus

w′ = (w̃′)w2 by Lemma 4.1.17. This finishes the proof of the claim w′ = (w′)w̃2 .
We have seen in Part (1) that σ(n1)

(
[n1

2 ]
)

= [n1
2 + 1, n1]. Therefore we can apply
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5.4 An application of the inductive product

Lemma 5.4.3 to ṽ and obtain

ṽw0 = σw1
(n1) � (w̃′)w2 = σw1

(n1) � w′ = v.

From Part (1) we have w̃ ≤ ṽ. Since ν is a Bruhat order automorphism, it follows
that w = w̃w0 ≤ ṽw0 = v.

Example 5.4.5. Let n = 11, α = (α1, . . . , α4) = (6, 3, 1, 1) �e n, a = 1, I = S \ {sa}
and w = w0(I). Moreover, set α′ = (3, 1, 1), n1 = α1 = 6 and n2 = |α′| = 5.

(1) We define v as in Lemma 5.4.4. That is, we set ξ = σ(6), S′ to be the simple
reflection of S5, a′ = min {1, 4} = 1, I ′ = S′ \ {s1}, w′ to be the longest element of
(S5)I′ and v = σ(6) � w′. Then

w = (2, 11)(3, 10)(4, 9)(5, 8)(6, 7),
σ(6) = (1, 6, 2, 5, 3, 4),
w′ = (2, 5)(3, 4),
v = (1, 11, 2, 10, 3, 9)(5, 8)(6, 7)

and Lemma 5.4.4 yields w ≤ v. One can check the latter by comparing the Bruhat
tableau of w and v shown below.

B(w) =

1 3 4 5 6 7 8 9 10 11
1 4 5 6 7 8 9 10 11
1 5 6 7 8 9 10 11
1 6 7 8 9 10 11
1 7 8 9 10 11
1 8 9 10 11
1 9 10 11
1 10 11
1 11
1

B(v) =

1 3 4 5 6 7 8 9 10 11
1 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11
4 6 7 8 9 10 11
4 7 8 9 10 11
4 8 9 10 11
4 9 10 11
9 10 11
10 11
11

By Lemma 5.4.1 the entries in the gray cells of B(v) are maximal and the other entries
only depend on either ξ or w′.
(2) Consider τ = ξ � τ ′ with τ ′ = (1, 2, 5) ∈ S5. This is the element τ from Ex-

ample 5.4.2. Then ξ = σ(6) ∈ Σ(α1) and by Example 5.3.1, τ ′ ∈ Σα′ . Therefore,
Theorem 4.3.55 implies τ ∈ Σα.
We compare the Bruhat tableaux of w, v and τ . The latter is shown in Example 5.4.2.

Since τ and v are elements of S11 given as inductive products with the same left factor
ξ, Lemma 5.4.1 implies that B(τ) and B(v) coincide outside the white subtableau of
shape (4, 3, 2, 1). Therefore, w ≤ v implies that wi,j > τi,j is possible only for entries
within this subtableau, i.e. for 3 < j < 8 and i ≤ j − 3. From Lemma 5.4.1 we obtain
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5 The center acting on simple modules

that

vi,j = w′i,j′ + 3 and τi,j = τ ′i,j′ + 3

for these i and j where j′ = j − 3. Thus, if wi,j > τi,j then vi,j > τi,j and hence
w′i,j′ > τ ′i,j′ . That is, we have established a connection to the smaller Bruhat tableaux
of w′, τ ′ ∈ S5. This is a crucial step in the proof of the following result.

The next lemma gives rise to a recursive definition of the element τ form the intro-
duction of the section. The objects ξ, I ′, a′ and w′ occurring in it are defined exactly as
in Lemma 5.4.4 for n1 = α1 and n2 = n′.

Lemma 5.4.6. Assume that α = (α1, . . . , αl) �e n with α1 even and l ≥ 2, I ( S and
a ∈ [n− 1] with sa 6∈ I are given. Let w := w0(I), α′ := (α2, . . . , αl),

ξ :=

σ(α1) if a ≤ ⌈n2 ⌉
σw1

(α1) if a >
⌈
n
2
⌉

where w1 is the longest element of Sα1, τ ′ ∈ Σα′ and τ := ξ � τ ′. Then τ ∈ Σα.
Moreover, let n′ := |α′|, S′ be the set of simple reflections of Sn′,

I ′ :=
{
S′ = ∅ if n′ = 1
S′ \ {sa′} if n′ > 1

where a′ :=
{

min {a, n′ − 1} if a ≤ ⌈n2 ⌉
max {1, a− α1} if a >

⌈
n
2
⌉

and w′ ∈ Sn′ be the longest element of (Sn′)I′. Then w ∧ τ is the greatest element of
(Sn)I ∩ (Sn)≤Σα if w′ ∧ τ ′ is the greatest element of (Sn′)I′ ∩ (Sn′)≤Σα′ .

Proof. First, we show τ ∈ Σα. We know that σ(α1) ∈ Σ(α1) and by Corollary 4.1.16 also
that σw1

(α1) ∈ Σ(α1). Thus, ξ ∈ Σ(α1). Moreover, τ ′ ∈ Σα′ by assumption. Since α1 is
even, Theorem 4.3.55 now yields τ = ξ � τ ′ ∈ Σα.

In the following we repeatedly use that for all m ∈ N and u, x ∈ Sm such that u is
the longest element of a parabolic subgroup of Sm, the meet u ∧ x exists and we have
(u ∧ x)i,j = ui,j ∧ xi,j for all j ∈ [m− 1] and i ∈ [j] by Proposition 5.1.9.

Assume that (Sn′)I′∩(Sn′)≤Σα′ has a greatest element and that w′∧τ ′ is this element.
Let x ∈ SI∩S≤Σα . Then there is a σ ∈ Σα such that x ≤ w and x ≤ σ. Hence x ≤ w∧σ
and without loss of generality we can assume that x = w ∧ σ. By Theorem 4.3.55, there
are η ∈ Σ(α1) and σ′ ∈ Σα′ such that σ = η � σ′. An overview of the permutations
appearing in this proof and their relations in Bruhat order is given by Figure 5.1.
We have to show that w ∧ σ ≤ w ∧ τ . By the tableau criterion, Theorem 5.1.5, this is

equivalent to (w ∧ σ)i,j ≤ (w ∧ τ)i,j for all j ∈ [n− 1] and i ∈ [j].
Let j ∈ [n− 1] and i ∈ [j]. If wi,j ≤ τi,j then

(w ∧ τ)i,j = wi,j ≥ (w ∧ σ)i,j

as desired.
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w ∧ τ

w

τ = ξ � τ ′ σ = η � σ′

v = ξ � w′

w ∧ σ
?

w′ ∧ τ ′

w′

τ ′ σ′

w′ ∧ σ′

Figure 5.1: The two diagrams show how the elements appearing in the proof of
Lemma 5.4.6 are related to each other by the Bruhat order. On the left
hand side, we have the elements of Sn and on the right hand side the ele-
ments of Sn′ . If x and y are joined by an edge and x is below y then x ≤ y.

Assume wi,j > τi,j . In this case (w∧τ)i,j = τi,j . Set n1 := α1, n2 := n′ and v := ξ�w′.
Then v is defined as in Lemma 5.4.4 and the same lemma yields v ≥ w. Therefore, the
tableau criterion implies vi,j > τi,j .
The elements τ = ξ� τ ′, v = ξ�w′ and σ = η�σ′ are all contained in Σ(n1)�Sn2 . In

addition, n1 is even and each element of Σ(n1) is oscillating by Theorem 4.3.20. Therefore,
we can use Lemma 5.4.1 in order to compute the Bruhat tableaux of τ , v and σ from
their respective factors in the inductive product.
Since τ and v have the same left factor in the inductive product and vi,j 6= τi,j ,

Lemma 5.4.1 implies that n1
2 < j < n1

2 +n2 and i ≤ j− n1
2 . For this kinds of indices the

same lemma yields

vi,j = w′i,j′ +
n1
2 , τi,j = τ ′i,j′ +

n1
2 and σi,j = σ′i,j′ +

n1
2 (5.4)

where j′ := j − n1
2 . Thus, from vi,j > τi,j we obtain that w′i,j′ > τ ′i,j′ . Consequently,

(w′ ∧ τ ′)i,j′ = τ ′i,j′ . Since w′ ∧ τ ′ is the greatest element of (Sn′)I′ ∩ (Sn′)≤Σα′ , it follows
that

τ ′i,j′ = (w′ ∧ τ ′)i,j′ ≥ (w′ ∧ σ′)i,j′ .

In particular, (w′ ∧ σ′)i,j′ = σ′i,j′ because otherwise we would obtain the contradiction
τ ′i,j′ ≥ (w′ ∧ σ′)i,j′ = w′i,j′ . Therefore, we have τ ′i,j′ ≥ σ′i,j′ . Using (5.4) again, we get
τi,j ≥ σi,j . Consequently,

(w ∧ τ)i,j = τi,j ≥ σi,j ≥ (w ∧ σ)i,j .

Example 5.4.7. As in Example 5.4.5, let n = 11, α = (6, 3, 1, 1) �e n, I = S \{s1}, w =
w0(I), α′ = (3, 1, 1), n′ = |α′|, S′ be the simple reflections of S5, a′ = 1 I ′ = S′ \ {sa′},
w′ be the longest element of (S5)I′ , ξ = σ(6), τ ′ = (1, 2, 5) ∈ S5 and τ = ξ � τ ′.
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5 The center acting on simple modules

Using Definition 5.3.5, we have τ ′ = τα′,a′ . Therefore, Lemma 5.3.7 yields τ ′ ∈ Σα′ and
from Theorem 5.3.11 it follows that w′∧τ ′ is the greatest element of (Sn′)I′ ∩(Sn′)≤Σα′ .
That is, we can apply Lemma 5.4.6 and obtain that τ ∈ Σα and that w∧τ is the greatest
element of (Sn)I ∩ (Sn)≤Σα .

By generalizing the construction from Example 5.4.7, we obtain the main result on
SI ∩S≤Σα . It implies that for all I ( S and α �e n such that the odd parts of α form
a hook, SI ∩S≤Σα is an interval in Bruhat order.

Theorem 5.4.8. Let (α1, . . . , αl) �e n be such that the odd entries of α form a hook
and I ⊆ S be such that I 6= S if n > 1. Then there exists a τ ∈ Σα such that SI ∩S≤Σα
is the interval [1, w0(I) ∧ τ ] in Bruhat order.

Proof. Let m be the number of even parts among α1, . . . , αl−1 and w := w0(I). We do
an induction on m.
For the base case assume m = 0. We claim that then α = (n), α = (1n) or α =

(α1, 1n−α1) with 1 < α1 < n and α1 odd. If l = 1 then α = (n). If l > 1 then
α1, . . . , αl−1 are odd. It follows that αl is odd as well, since α is a maximal composition.
Hence α is an odd hook. That is, either α = (1n) or α = (α1, 1n−α1) with 1 < α1 < n
and α1 odd. This finishes the proof of the claim.
Suppose α = (1n). Then Σα = {1} and therefore SI ∩S≤Σα = {1} = [1, w ∧ 1].
From now on we can assume n ≥ 2. Then I ( S and there exists an a ∈ [n− 1] such

that sa 6∈ I.
Suppose α = (n) and set τ := σ(n) if a ≤ ⌈

n
2
⌉
and τ := σw0

(n) if a >
⌈
n
2
⌉
. Then

Lemma 5.2.3 yields that τ ∈ Σα and w ∧ τ = w. Together with Theorem 5.2.4 it follows
that SI ∩S≤Σα = SI = [1, w ∧ τ ].

Suppose α = (α1, 1n−α1) with 1 < α1 < n and α1 odd. Set τ := τα,a with τα,a as
in Definition 5.3.5. Then τ ∈ Σα by Lemma 5.3.7. Moreover, Theorem 5.3.11 yields
SI ∩S≤Σα = [1, w ∧ τ ].

We continue with the induction step. Assume m ≥ 1. Then l ≥ 2, n ≥ 2 and there
exists an a ∈ [n − 1] such that sa 6∈ I. As in Lemma 5.4.6, we set α′ := (α2, . . . , αl),
n′ := |α′|, S′ to be the set of simple reflections of Sn′ ,

I ′ :=
{
S′ = ∅ if n′ = 1
S′ \ {sa′} if n′ > 1

where a′ :=
{

min {a, n′ − 1} if a ≤ ⌈n2 ⌉
max {1, a− α1} if a >

⌈
n
2
⌉

and w′ to be the longest element of (Sn′)I′ . The first `(α′) − 1 = l − 2 parts of α′ are
α2, . . . , αl−1 and hence exactly m− 1 of these parts are even. Furthermore, I ′ ⊆ S′ with
I ′ 6= S′ if n′ > 1. Thus, we can apply the induction hypotheses and obtain that there is
a τ ′ ∈ Σα′ such that (Sn′)I′ ∩ (Sn′)≤Σα′ = [1, w′ ∧ τ ′]. Let

ξ :=

σ(α1) if a ≤ ⌈n2 ⌉
σw1

(α1) if a >
⌈
n
2
⌉
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where w1 is the longest element of Sα1 and τ := ξ�τ ′. Then we can apply Lemma 5.4.6
and obtain that τ ∈ Σα and (Sn)I ∩ (Sn)≤Σα = [1, w ∧ τ ].

From Theorem 5.4.8 it follows that SI ∩S≤Σα is an interval if I 6= ∅, S and the odd
parts of α �e n form a hook. By the following example, this is not true for all maximal
compositions.

Example 5.4.9. Let α = (3, 3) and I = {s1, s2, s3, s4}. Then w0(I) = (1, 5)(2, 4).
In Remark 4.3.76 the 22 elements of Σα are given. In particular, σ1 = (1, 6, 5)(2, 4, 3)
and σ2 = (1, 5, 6)(2, 3, 4) are elements of Σα. Set τi = w0(I) ∧ σi for i = 1, 2. Then
τ1, τ2 ∈ SI ∩S≤Σα . Computing τ1 and τ2 with Proposition 5.1.9 yields

τ1 = (1, 5)(2, 4, 3) and τ2 = (1, 5)(2, 3, 4).

We show that both τ1 and τ2 are maximal in SI ∩ S≤Σα . Then SI ∩ S≤Σα cannot
be an interval. One can check that `(σ1) = 10. Because ≈ preserves the length, we have
`(σ) = 10 for each σ ∈ Σα. On the other hand, `(w0(I)) = 10 but w0(I) is obviously not
an element of Σα. Thus, each element of SI ∩S≤Σα has at most length 9. As `(τi) = 9
for i = 1, 2, both elements must be maximal in SI ∩S≤Σα .

Thanks to Theorem 5.4.8, we can now prove the main result of this chapter. The
proof is similar to that one of Corollary 5.3.13.

Corollary 5.4.10. Conjecture 5.0.1 is true for all α �e n whose odd parts form a hook.

Proof. Let n ≥ 3, α �e n with α 6= (1n) be such that the odd parts of α form a hook
and ∅ ( I ( S. We have to show that π̄≤ΣαvI = 0 where vI is the element generating
the simple Hn(0)-module F I .
Since I 6= S we can apply Theorem 5.4.8 which provides a u ∈ Sn such that SI∩S≤Σα

is the interval [1, u] in Bruhat order. Because ∅ 6= I, there is an i ∈ [n − 1] such that
si ∈ SI . Moreover, as α 6= (1n), we can use Lemma 5.3.12 and obtain that si ≤ σα
which implies that si ∈ S≤Σα . Consequently, si ∈ SI ∩S≤Σα and thus si ≤ u. That is,
u 6= 1 and Lemma 5.1.12 implies that π̄≤ΣαvI = 0.
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Index of notation

Index of notation

K arbitrary field 9
N {1, 2, . . .} 9
[a, b] {c ∈ Z | a ≤ c ≤ b} for a, b ∈ Z 9
[a] [1, a] for a ∈ Z 9
l covering relation 9
x ∧ y meet of x and y 9
rad(M) radical of M 9
soc(M) socle of M 9
top(M) top of M 9
spanKX the K-vector space with basis X 9

α � n composition of n 9
λ ` n partition of n 10
α �0 n weak composition of n 10
αc complementary composition of α 10
α̃ partition obtained by sorting the parts of α 10
|α| size of composition α 9
comp(D) composition associated to set D 10
`(α) length of composition α 9
Set(α) set associated to composition α 10

u ≤ w Bruhat order for u,w elements of Coxeter group 12
u ≤L w left weak order for u,w elements of Coxeter group 13
[u,w] interval in Bruhat order for u,w elements of Coxeter group 13
[u,w]L interval in left weak order for u,w elements of Coxeter group 13
DL(w) left descent set 13
DR(w) right descent set 13
DI right descent class DII 14
DJI right descent class 14
F I simple HW (0)-module for I ⊆ S 18
FD simple Hn(0)-module for D ⊆ [n− 1] 18
HW (0) 0-Hecke algebra of Coxeter group W 16
Hn(0) 0-Hecke algebra of symmtric group Sn 16
Ic S \ I for I ⊆ S 14
`(w) length of element of Coxeter group W 12
P I indecomposable projective HW (0)-module 19
πw element of K-basis {πu | u ∈W} of HW (0) 17
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π̄w element of K-basis {π̄u | u ∈W} of HW (0) 17
πi, π̄i elements πsi and π̄si of Hn(0) for i ∈ [n− 1] 16
πI , π̄I elements πw0(I) and π̄w0(I) for I ⊆ S 18
S set of Coxeter generators of the Coxeter group W 11
S(X) symmetric group of the set X 11
Sn symmetric group on n elements 11
SI parabolic subgroup (Sn)I 14
Stab(Y ) stabilizer 14
W Coxeter group 11
WI parabolic subgroup 14
W I set of quotients 14
w0 longest element of W 14
w0(I) longest element of the parabolic subgroup WI 15

|α|j number of cells of α in column j 33
|α//β| size of α//β 26
 T attacks in T 28
 attacks 28
E dominance preorder on compositions 33
≤c a partial order on compositions 26
oT left neighbor in T 28
o left neighbor 28
� a partial order on E for E ∈ E(α//β) 30
∼ an equivalence relation on SCT(α//β) 29
AD(T ) set of attacking descents of SCT T 28
α//β skew shape 26
Bk, Bk,l sets of cells associated to descents of a source tableau 56
c(i, j) column of cell (i, j) 28
cT (i) column of entry i in T 28
Ck, Ck,l sets of cells associated to ascents of a sink tableau 77
colT column word 31
colBk,l,T column word of T restricted to Bk,l 57
cont(σ) content 35
D(T ) descent set of SCT T 28
Dc(T ) ascent set of SCT T 28
D(U) descent set of the simple submodule U of Sα//β,E 89
Dc(U) ascent set of the simple submodule U of Sα//β,E 89
E(α//β) set of equivalence classes of SCT(α//β) under ∼ 29
EA set of A-sortable tableaux of E for A ∈ FDc 83
ED set of D-sortable tableaux of E for D ∈ OD 60
Ehsort set of horizontally sorted tableaux 65
EU support of the simple submodule U of Sα//β,E 89
FDc(T0) flanking ascents of the sink tableau T1 82
FDc set of subsets of Dc(T1) containing FDc(T1) for a sink tableau T1 82
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Ik, Ik,l, I̊k,l integer intervals associated to descents of a source tableau 56
ish inner shape 26, 27
Jk, Jk,l, J̊k,l integer intervals associated to the ascents of a sink tableau 77
JT set of simple reflections associated to T 46
Lc composition poset with partial order ≤c 26
nAD(T ) set of non-attacking descents of SCT T 28
NDc(T ) set of neighborly ascents of SCT T 28
nNDc(T ) set of non-neighborly ascents of SCT T 28
OD(T0) offensive descents of the source tableau T0 59
OD set of subsets of D(T0) containing OD(T0) for a source tableau T0 59
osh outer shape 26, 27
r(i, j) row of cell (i, j) 28
rT (i) row of entry i in T 28
Sα//β Hn(0)-module with K-basis SCT(α//β) 29
Sα//β,E Hn(0)-module with K-basis E for E ∈ E(α//β) 29
Sσ
α Hn(0)-module with K-basis SPCTσ(α) 102

SCT standard composition tableau 27
SCT(α//β) set of standard composition tableaux of shape α//β 27
sh shape 27
SPCT(α) set of standard permuted composition tableaux of shape α 102
SPCT standard permuted composition tableau 102
supp(v) support 35
T>m tableau given by the entries > m of T 33
T0,E sorce tablau of E 31
T1,E sink tablau of E 31
TD the D-sorted tableau for D ∈ OD 64
U set of simple submodules of Sα//β,E 86
UA simple submodule of Sα//β,E associated to A ∈ FDc 86
uA a generator of the simple submodule UA 86

Pm ◦D composite diagram 122
D1D2 product of crossing diagrams 120
σ1 � σ2 inductive product of permutations σ1 and σ2 163
σi,k element of anti-rank i in σ([k]) for permutation σ 187
[a, b]δ δ-commutator of a, b ∈ HW (0) 112
[H,H]δ δ-commutator 112
[w]δ equivalence class of w ∈W with respect to ≈δ 114
≈δ equivalence relation on W 114
s→δ, →δ relations on W 114
α �e n maximal composition of n 124
A∗ HomK(A,K) 112
B(σ) Bruhat tableau of permutation σ 187
χ K-linear map making HW (0) a Frobenius algebra 112
cl(W )δ set of δ-conjugacy classes of W 114
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cst(σ) cycle standardization of σ 155
Dα crossing diagram of α 123
dα the permutation associated to the crossing diagram Dα 124
δ automorphism of W with δ(S) = S 111

automorphism of HW (0) given by the W -automorphism δ 112
δ′ ν ◦ δ 112
Γδ a set associated to δ 117
H 0-Hecke algebra HW (0) 111
Hδ δ-cocenter 112
Inv(σ) set of inversions 167
ν automorphism of W given by w 7→ ww0 111

automorphism of HW (0) given by the W -automorphism ν 112
Omin elements of minimal length in O 114
P (σ) set of orbits of σ 131
Pe(σ) set of even orbits of σ 131
Pn prime diagram of thickness n 122
π̄≤Σ

∑
x∈W≤Σ π̄x 115

ρσ(i) anti-rank of i among the elements of its cycle in σ 155
S≤Σα (Sn)≤Σα for α �e n 185
Σα equivalence class of σα with respect to ≈ 128
Σ×α set of σ ∈ Σα with P (σ) = P (σα) 172
σα element in stair form corresponding to α 127
τα,a an element of Σα depending on odd hook α and integer a 197
Wδ,min

⋃
O∈cl(W )δ Omin 114

Wδ,min�≈δ quotient set of Wδ,min by ≈δ 114
W≤Σ order ideal in Bruhat order generated by Σ 115
Z(H)δ δ-center 112
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