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On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?" ...

I am not able rightly to apprehend the kind of confusion of ideas that could pro-
voke such a question.

– Charles Babbage, Passages from the Life of a Philosopher





A B S T R A C T

The Laser Interferometer Space Antenna (LISA) is a large ("L-Class") European
Space Agency (ESA) mission, scheduled to fly in the mid 2030s. LISA is a
constellation of three satellites designed to detect gravitational waves (GWs)
using laser interferometry. GWs will cause µcycle phase fluctuations in
the MHz interferometric beatnotes. Tracking the beatnotes to this precision
would require equally precise onboard clocks, which unfortunately do not
exist. Instead, LISA will use additional interferometric measurements of the
differential errors between the spacecraft clocks to correct any clock errors in
post-processing.

This correction has to be performed alongside the main noise suppression
step for LISA, an algorithm called time-delay interferometry (TDI). TDI
is designed to suppress fluctuations in the laser frequencies, which would
otherwise exceed the expected GW signal by more than 8 orders of magnitude.
Both TDI and clock correction are part of the so-called initial noise-reduction
pipeline (INREP) of LISA.

In this thesis, we will review the principles behind gravitational wave detectors
and the operating principle of LISA, including a technical overview of the
main components of the LISA measurement chain. This serves as a basis
for developing a detailed simulation model for the main interferometric
measurements produced by LISA. In particular, we include in this model
large frequency offsets of the laser beams, which are affected by Doppler shifts
during the propagation, as well laser frequency locking control loops, which
were neglected in previous studies. A particular focus is put on modelling
the three independent spacecraft clocks, and the additional measurements
used to correct for their timing jitters. We also show results of numerical
simulations based on this model, and discuss the noise sources limiting these
raw measurements.

Finally, we study one possible realization of the INREP. We show that we
are able to suppress all primary noise sources included in our simulation,
and provide models for the residual noise levels. We also review the basics
of TDI, and reproduce a numerical search for possible TDI combinations,
finding additional noise suppressing signal combinations previously missed
in the literature. We study the relationships between these combinations,
and identify how they relate to a basic set of generators. We conclude by
discussing different approaches how the un-synchronized spacecraft clocks
can be corrected for as part of TDI, and show analytical and numerical results
regarding the correction performance.
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K U R Z Z U S A M M E N FA S S U N G

Die Laser Interferometer Space Antenna (LISA) ist eine große ("L-Class") ESA-
Mission, die Mitte der 2030er Jahre starten soll. LISA ist eine Konstellation
aus drei Satelliten, die Gravitationswellen (GW) mit Hilfe von Laserinterfe-
rometrie detektieren soll. GW erzeugen µcycle Phasenschwankungen in den
interferometrischen MHz Signalen. Solch eine präzise Phasenmessung würde
ebenso präzise Referenzuhren auf den Satelliten erfordern, die leider nicht
existieren. Stattdessen wird LISA zusätzliche interferometrische Messungen
der relativen Fehler zwischen den Uhren der Satelliten verwenden um deren
Fehler im Nachhinein zu korrigieren.

Diese Korrektur muss zusäztlich zu dem Hauptschritt der Rauschunter-
drückung für LISA durchgeführt werden, einem Algorithmus namens TDI.
TDI wurde entwickelt, um Fluktuationen in den Laserfrequenzen zu unter-
drücken, die ansonsten das erwartete GW-Signal um mehr als 8 Größenord-
nungen übersteigen würden. Sowohl TDI als auch die Uhrenkorrektur sind
Teil der sogenannten initial noise-reduction pipeline (INREP) für LISA.

Wir werden die Prinzipien hinter GW-Detektoren und das Funktionsprin-
zip von LISA diskutieren, inklusive eines technischen Überblick über die
Hauptkomponenten der LISA-Messkette. Dies dient als Grundlage für die
Entwicklung eines detaillierten Simulationsmodells für die interferometri-
schen Messungen, die von LISA erzeugt werden. Insbesondere beziehen wir
in dieses Modell große Frequenz-Offsets der Laserstrahlen ein, die durch
Doppler-Verschiebungen während der Ausbreitung beeinflusst werden, sowie
Regelkreise zur Laserfrequenzkontrolle, die in früheren Studien vernachläs-
sigt wurden. Ein besonderer Schwerpunkt liegt auf der Modellierung der drei
unabhängigen Satellitenuhren und den zusätzlichen Messungen, die zu ihrer
Korrektur verwendet werden. Wir präsentieren Simulationsergebnisse und
diskutieren welche Rauschquellen die Rohmessdaten limitieren.

Schließlich untersuchen wir eine mögliche Implementierung der INREP. Wir
zeigen, dass wir in der Lage sind, alle primären Rauschquellen, die in unse-
rer Simulation enthalten sind, zu unterdrücken, und liefern Modelle für die
verbleibenden Rauschquellen. Wir besprechen die Grundlagen von TDI und
reproduzieren eine numerische Suche nach möglichen TDI-Kombinationen,
wobei wir zusätzliche rauschunterdrückende Signalkombinationen finden, die
bisher in der Literatur übersehen wurden. Wir untersuchen die Beziehungen
zwischen diesen Kombinationen und stellen fest, wie sie sich auf eine Grund-
menge von Generatoren beziehen. Abschließend diskutieren wir verschiedene
Ansätze, wie die desynchronisierten Uhren der 3 Satelliten als Teil von TDI
korrigiert werden können, und zeigen analytische und numerische Ergebnisse
hinsichtlich der Korrekturleistung.

Schlagwörter: Gravitationswellen, LISA, Time-Delay Interferometry
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1
O V E RV I E W

This thesis is organized in three parts.

Part i gives an introduction to the topic. We first review the principle behind
gravitational waves and their detection in chapter 2, and summarize the
observations to date, as well as which sources we expect to find with different
proposed detectors. Chapter 3 then focuses on LISA, where we review the
mission architecture and introduce most of the instrumental systems modelled
in the later parts of the thesis.

A large part of this thesis work was the development of a more realistic model
for LISA instrumental simulations, presented in part ii.

Chapter 4 explains the context in which this work was performed, and
introduces the basic model used to represent the information content of laser
beams in our simulation. We then present the model for the optical simulation
in chapter 5, where we derive equations for modelling the phase and frequency
of all laser beams, how they are propagated between the spacecraft and what
signals are generated by their interference. We choose here a formulation
which is compatible with general relativity (GR), in the sense that all signals
onboard a single spacecraft are expressed in that spacecrafts proper time,
while relativistic effects are only relevant for the propagation of these signals
between the spacecraft.

Chapter 6 is concerned with modelling the different timing signals present on
each LISA satellite, and how clock errors couple in to the measurements. This
includes the additional clock-derived signals used for on-ground calibration
and absolute ranging. This is followed by chapter 7, where we further discuss
how to model the last stage of the on-board anti-aliasing filters, and give
the final phasemeter equations describing the interferometric measurements.
This includes a model for the laser-locking control loops, which relate all six
lasers to one primary laser and ensure that all beatnote frequencies in the
constellation fall within a pre-determined frequency range.

We conclude part ii by presenting simulation results in chapter 8, based on in-
strumental model previously presented. We discuss the limiting noise sources
appearing in the different interferometers, and how the raw measurements
are impacted by the laser locking scheme.

Part iii then presents a version of the initial noise-reduction pipeline (INREP),
which consists of a chain of processing elements designed to remove all
primary noise sources.

We start this part with chapter 9, where we review the processing elements
in the full pipeline, and give simulation results showing that all primary

1



2 overview

noise sources included in the simulation presented in part ii indeed can be
succesfully suppressed below the level of secondary noises.

We then introduce the basic principles behind the main noise suppression
step, TDI, in chapter 10. This is followed by a review of the numerical search
algorithms for finding so-called 2nd generation combinations known from
the literature, which we reproduced with the result of finding additional 14
link combinations previously missed, in chapter 11. We also review there how
these combinations are related to the 4 basic generators of first generation
TDI.

We then introduce the so-called intermediary TDI variables in chapter 12, and
derive how different noise sources couple into the final TDI variable. For this,
we include the effect of laser locking, which affects the level of residual laser
noise, but not those of secondary noises. In this chapter, we also derive how
TDI has to be adopted for data given in units of frequency in order to achieve
the same levels of laser noise reduction achievable by the usual formulation
in phase.

Finally, we review in chapter 13 how the three independent spacecraft clocks
can be corrected for in TDI. First, we discuss how the clocks can in principle
already be corrected for while building the TDI combinations. We then discuss
how this is affected by the choice of different units, in particular when using
the total phase or frequency, or just phase or frequency fluctuations remaining
after a polynomial trend has been subtracted from the data. The latter case
requires an additional clock correction algortihm to be applied to the data, for
which we present a general formulation applicable to almost any TDI variable.
We also present both analytically and numerically that both laser and clock
noise can be reduced below the level of secondary noises, even in the presence
of large offsets and drifts of all three spacecraft clocks and stochastic ranging
noise. We then conclude with an outlook for how to synchronize the final TDI
variables to a common global time frame, such as Barycentric Coordinate Time
(TCB), and briefly discuss the alternative approach to first synchronizing all
raw measurements to Barycentric Coordinate Time (TCB) before constructing
the TDI variables.

The appendix is located in part iv. It contains an overview of the common
conventions and notations used in parts ii and iii, which we summarize in
appendix A. Furthermore, we review how Lagrange interpolation can be
used to apply fractional delays to data given at discrete sampling times, and
present a model for the errors in these interpolations, in appendix B.

Appendix C contains an overview over the different quantities used to describe
frequency stability of oscillators, both in the time- and frequency domain, as
well as a short catalogue of the typical frequency stability of different kinds
of oscillators.

Finally, we list the noise models used for the instrument simulation in ap-
pendix D.
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2
G R AV I TAT I O N A L WAV E A S T R O N O M Y

Going back to A. Einstein [33], a GW propagating through spacetime suffi-
ciently far away from its source can be described as a small pertubation on
an otherwise flat spacetime metric. It is shown there that these metric fluctu-
ations carry energy, which indicates that they are a real physical effect and
not just an artifact of the mathematical framework used to describe general
relativity.

GWs are arguably one of the most extreme observable quantities in modern
physics, in multiple respects. As we will discuss in section 2.1, the energy
emitted in gravitational radiation by merging black holes can outshine the
rest of the visible universe by some orders of magnitude. Despite this large
luminosity, it still takes extremely precise equipment to directly detect any
trace of them. The reason for this disparity is that the interaction of GWs with
matter is an extremely weak one. Still, GW observatories are now regularly
detecting signals from merging binary systems (cf. section 2.3), opening a
new window for observing our universe.

Compared to electro-magnetic (EM) observations, GWs allow studies of a
completely new class of astrophysical objects, which by themselves do not
emit any EM radiation, such as black holes. In addition, they can support
EM observatories by giving alerts to extreme events such as the merging of
neutron stars or super novae. And last but not least, they allow unique tests
of the fundamental theory of gravity, general relativity (GR).

In this chapter, we will first focus on the amount of energy emitted in binary
systems in the form of GWs in section 2.1. This is sufficient to sketch the
principle behind the first indirect detection of GWs, as well as to highlight
why it is infeasible to generate detectable GWs in a laboratory.

We then review the basic toolset of GR in section 2.2, which allows us to
understand how GWs interact with matter, and how they can be measured
directly.

Consequently, we describe the principle behind the detectors which allowed
the first direct detection of GWs in section 2.3, and conclude with an overview
over the current and planned GW observatories, as well as the sources they
will observe, in section 2.4.

5



6 gravitational wave astronomy

2.1 gravitational wave luminosity and indirect detection

GWs arise when matter is accelerated. This is not unlike the case for EM
radiation, which is generated by accelerating charged particles. Contrary to
EM radiation, however, there are no dipole GWs [73].

Instead, the simplest possible GWs are created as quadropole radiation, that
is, from a constellation of matter for which the second time-derivative of the
quadrupolemoment is non-vanishing.

Already in [33], Einstein provided a formula for the amount of energy radiated
by such a system.

In this section, we provide a short review of these fundamentals, following
closely the formulation presented in [38]. There, this formula is applied to the
case of a body rotating around one of its main axes of inertia with an (almost)
constant angular velocity Ω. The radiated energy per unit time is called the
luminosity, and in this case is given by

LGW =
32
5
· G

c5 ·Ω
6 · (I1 − I2)

2 . (2.1)

Here, G is the gravitational constant, c the speed of light in a vacuum, and
I1, I2 are the moments of inertia along the axis prependicular to the rotation
axis.

2.1.1 Gravitational waves from binary systems

A likely candidate to produce measurable amounts of gravitational radiation
is a gravitationally bound system. Inspecting eq. (2.1), we observe that to
maximize the amount of gravitational radiation being emitted from a system,
it should be rotating with a large angular velocity, Ω, while having a large
moment of inertia along one axis. The ratio between these two quantities is
governed by orbital mechanics in this case.

We can consider two equal point masses orbiting each other at a separation
D. In this scenario, we simply get I1 = 1

2 MD2 and I2 = 0. Equation (2.1)
becomes

LGW =
8
5
· G

c5 ·Ω
6 ·M2D4 . (2.2)

Neglecting relativistic effects for the moment, we can use Kepler’s third law
to compute the angular velocity based on the masses and separation, to get

Ω2 =
2GM

D3 . (2.3)

Inserting this into eq. (2.2), yields

LGW =
64
5
· G

c5 · G
3 M5

D5 . (2.4)
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The only free parameters are the masses of the two test masses and their
separation. To maximize the amount of GWs, we are looking for massive
objects on tight orbits. This implies that these objects should not only be
massive, but also compact, such that they are able to closely orbit each other
without colliding or being ripped apart from tidal effects. Possible candidates
could therefore be the remnants of collapsed stars, such as white dwarfs,
neutron stars or black holes.

A useful parameter to study such compact objects is the Schwarzschild radius,

RS =
2MG

c2 , (2.5)

which defines the radius of the event horizon of a black hole of the given
mass.

Inserting this expression into eq. (2.2) gives

LGW =
2
5
· c5

G
·
(

RS

D

)5

≈ 1052 W ·
(

RS

D

)5

.

(2.6)

Note that the result is given as the ratio between the Schwarzschield radius
and the separation to the fifth power, amplified by c5

G ≈ 3.6× 1052 W. This
means that compact, tightly orbiting binaries, for which the ratio RS/D is
within a few orders of magnitude of 1, could indeed emit large amounts
gravitational radiation.

As an upper bound for the most luminous events we can expect, we can
consider two black holes immediately before merger, such that their event
horizons are almost touching. In this extreme limit we would simply have
RS ≈ D, and the Note that some

assumptions we made –
such as the application
of Kepler’s law – are
certainly invalid in this
scenario. Still, the
calculated value is
within a few orders of
magnitude of what has
been observed using
direct detection of
GWs, see
section 2.3.

power of the gravitational radiation would be 1052 W.

It is not easy to put this number into context. For example, a typical star like
our sun has a luminosity of ’just’ 1026 W. One of the most luminous stars
observed to date, RMC 136a1, radiates 2.3× 1033 W [25], still far below the
energy emitted in a black hole merger. It is estimated that there are around
1022-1024 stars in the observable universe1, such that at least for the short time
at which the two black holes are merging, they would emit more energy in
GW radiation than all stars combined emit as EM radiation2.

However, as we will see in section 2.2, despite the large amount of gravitational
radiation emitted in such events, the interaction of GWs with matter is so
weak that it is still extremely hard to detect them directly.

Instead, the first detections of gravitational waves were indirect, and relied
on continous observation of systems which also emit electromagnetic radia-
tion.

1 This estimate is given on http://www.esa.int/Science_Exploration/Space_Science/

Herschel/How_many_stars_are_there_in_the_Universe.
2 Stars can have luminosities ranging from 10−5 to 106 that of our sun, as visible on

a Hertzsprung-Russell Diagram (e.g., see https://www.eso.org/public/austria/images/

eso0728c/). We assumed for this estimate that the average star emits around 1026 W.

http://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe
http://www.esa.int/Science_Exploration/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe
https://www.eso.org/public/austria/images/eso0728c/
https://www.eso.org/public/austria/images/eso0728c/
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Figure 2.1: Observed
change in the orbital
period of the Hulse-
Taylor binary com-
pared to the prediction
from general relativity.
Figure from [91], itself
based on data from
[98].
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2.1.2 Indirect detection

As discussed above, compact binary systems can emit significant amounts of
energy in the form of gravitational radiation. This energy is not created out
of nothing, but instead converted from the kinetic energy and mass of the
binary. Therefore, the orbital period of such a system will not be constant,
but will slowly decrease with time as the two stars radiate away their kinetic
energy and get closer together.

This phenomenon was first observed in the Hulse-Taylor binary, which con-
sists of a neutron star and a pulsar [99]. Pulsars are rapidly rotating, highly
magnetized neutron stars which emit large amounts of electromagnetic radia-
tion with each rotation. In the case of the Hulse-Taylor binary, the pulsar was
rotating 17 times per second. In the case of this pulsar, they could observe
periodic variations in the arrival time of those pulses, and could conclude
that these are caused by a non-pulsing companion star, with an orbital period
of 7.75 hours.

Pulsars are usually highly stable in their rotational period. This allows
observation of fluctuations in the orbital period of this binary star system over
long timescales. And indeed, over 3 decades of observations, the Hulse-Taylor
binary has been slowing down at a rate almost perfectly predicted by GR [98],
see fig. 2.1.

The two neutron stars are believed to be of almost equal mass of 1.4 M�, and
follow a highly eccentric orbit with an eccentricity of ≈ 0.6 and a semi-major
axis of 1 950 100 km. Due to this high eccentricity, we would not expect our
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simplified eq. (2.2), which is based on a circular orbit, to produce accurate
results. Still, it’s interesting to compare how close we can get with such a
simple model. Putting in the masses of the two binaries and assuming we can
use the semi-major axis as our separation yields a luminosity of

LGW ≈ 6.2× 1023 W . (2.7)

This falls short by about one order of magnitude from the real value 7.35× 1024 W
computed from a full relativistic treatment, see for example [101].

2.1.3 Gravitational waves from the laboratory
Figure 2.2: A naive
gravitational wave
generator: two test-
masses connected by
a thin rod or cable. In
principle, this setup
will emit gravitational
waves when rotated –
however, as explained
in the text, the amount
of radiation is incredi-
bly small.

It would be interesting if we could study GWs by directly generating them in
a laboratory here on earth. The problem in generating GWs in a laboratory
is the extremely small scaling factor G/c5 ≈ 2.7× 10−53 W−1 appearing in
eq. (2.1). This factor must be overcome by Ω6 · (I1 − I2)2.

To get an idea of the orders of magnitude involved, we make a simplified
thought experiment: We consider two massive spheres, which we will again
model as point masses with mass MS. While the binary in the previous
example was held together by gravity, we instead link our two spheres by
a cable of radius r and length L. For simplicity, we will work under the
assumption that we have a thin cable with r � L. As before, the whole setup
is rotated around the spheres’ common center of mass (see fig. 2.2).

The moments of inertia along the non-rotating axes are then I1 ≈ 1
12 (MC +

6MS)L2 and I2 ≈ 0, with MC as the mass of the cable. Inserting this into
eq. (2.1) gives

LGW =
2
45
· G

c5 ·Ω
6 · (MC + 6MS)

2L4 . (2.8)

Even if we assume that our idealized system does not lose kinetic energy by
any other means, it should eventually slow down due to the energy lost by
gravitational radiation.

A possible laboratory experiment to prove the existence of gravitational waves
could therefore be to put such a setup into a frictionless environment, bring
it to rotation around its center of mass, and observe the rate at which it
slows down. Observing that the angular velocity Ω enters eq. (2.8) to the
sixth power, we want to rotate our system as fast as possible to maximize the
amount of radiated GWs.

The speed at which we can rotate this system will be limited by the cables
ultimate tensile strength, Smax, which has to counteract the centrifugal force
pulling the system apart.

The tension acting on the cable is highest at it’s center, where it is given as the
sum of the centrifugal force due to the cable itself and the test mass, divided
by the cross sectional area, A, of the cable. We get

S =
LΩ2

8A
(4MS + ALρ) , (2.9)
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with ρ as the density of the cable.

This means the highest angular velocity we can achieve before the cable breaks
is given by

Ω2 =
8ASmax

L(4Ms + ALρ)
. (2.10)

Inserting this into eq. (2.8), and replacing the mass of the cable by MC = ρAL
gives

LGW =
1024
45
· G

c5 · A
3LS3

max ·
(6MS + ALρ)2

(4MS + ALρ)3 . (2.11)

We observe that MS appears to the third order in the denominator, but only
up to the second order in the numerator. This means that mounting heavy
masses at the end of the cable actually decreases the amount of gravitational
radiation. This tells us it is better to remove the spheres and rotate just the
cable, which allows us to achieve a higher angular velocity.

This can be modelled by replacing MS → 0 in the previous equations, which
leads to the same simplified formula given in [38],

LGW =
1024
45
· G

c5 ·
A2S3

max
ρ

. (2.12)

The parameters we can adjust to construct our experiment are the cross-
sectional area, A, and the material properties, Smax and ρ. Ideally, we would
need a material with high tensile strength and low density, i.e., a material
of high specific strength. A = πr2 can in principle be made arbitrarily large.
However, for these equations to remain valid, we have to stay within the
assumption that the cable is indeed thin, i.e., that L2 � r2.

The commercially available materials with the highest specific strength are car-
bon fibres, with an extremely high tensile strength of up to Smax = 7000 MPa
combined with a comparatively low density of ρ = 1.79 g cm−3 [88]. Typically,
carbon fibres are very thin, with diameters of the order of a few µm. For the
sake of argument, we will assume that it is possible to create a composite
cable out of these carbon fibres with A = 1 cm2 while preserving the same
specific strength. Assuming this cable has a length of L = 1 m, eq. (2.10) tells
us that we could spin it up to aGiven as ν = 2πΩ. frequency of more than 5 kHz before it breaks.
Inserting these values into eq. (2.12) gives a maximum luminosity of 10−33 W.
By comparison, the total kinetic energy of the rotating cable would be given
as

Ekin =
1
2

I1Ω2 ≈ 2× 105 J . (2.13)

This means that even if we started our experiment atAssuming an age of
the universe of 13.8

billion years.

the dawn of time, it
would only have radiated a factor 2× 10−21 of it’s total energy.

This is obviously far below any observable power level.

Theoretically, novel materials such as colossal carbon tubes could achieve
similar tensile strengths of Smax = 6.9 GPa, but with densities as low as
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ρ = 0.116 g cm−3 [65]. However, such numbers are currently not achievable
on scales usable for our experiment. If we assume for the sake of curiosity
that we could construct a cable with the same dimensions as before out of
these colossal carbon tubes, we could theoretically spin it up to more than
20 kHz - it would still only radiate 10−32 W in gravitational radiation.

This highlights the complete infeasability of producing any measurable
amount of GW power in such a laboratory experiment any time in the
foreseeable future.

2.2 a short review of general relativity

So far, we have only computed the amount of energy radiated by GWs. Now,
we want to sketch how they interact with matter, and how they can be detected
directly. We will first review the basic mathematical toolset used to describe
GR, give the Einstein field equations as well as their approximate wave
solution, and finally discuss the principle behind the direct GW detections up
to this date.

All material presented in this section is adapted from the literature, in partic-
ular using [37], [73] and [58]. See there for a much more detailed treatment,
as well as proofs which are omitted here.

2.2.1 Introduction

A guiding principle in modern physics is that of general covariance. Simply
put, it means that our description of physics should not depend on our
choice of coordinates. In Special Relativity, this principle is only fulfilled for
coordinate transformations between inertial reference frames. Extending it
to allow invariance of the physical laws under any differentiable coordinate
transformation ultimately lead to the discovery of the general theory of
relativity.

Contrary to classical mechanics - where space is seen as isomorphic to the
three dimensional flat space with time as an absolute parameter governing the
laws of physics - space and time are seen as coordinates of a 4-dimensional
space-timeM. The points of this spacetime are called events - they uniquely
identify a time and place.

Mathematically,M can be described using the tool-set of pseudo-Riemannian
geometry. The central object in this theory is a so called manifold, which can
be There are some

additional technical
restricitions these have
to fulfill, which are not
relevant here.

any set of points, M, which are locally equivalent to pseudo-Euclidean
space. Formally, this meansM must be equipped with a set of local maps
x :M→ R4 which give a one-to-one correspondence of the area around any
point r ∈ M to the usual vector space R4. These allow us to - at least locally -
define coordinates in the familiar R4 to mathematically describe physics in
a curved space. We consider only differantiable manifolds, for which any
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two maps x, y around the same point p are compatible in such a way that
x ◦ y−1 : R4 → R4 is infinitely differentiable.

The coordinates of any spacetime event p in a given map x are therefore
specified by four numbers, which we indicate by x0(p), x1(p), x2(p), x3(p).
We will use greek indices to denote any of these 4 coordinates. Latin indices
denote just the spatial components x1(p), x2(p), x3(p), while the temporal
coordinate is identified with x0(p). Furthermore, we will usually drop the
explicit dependence on the spacetime event p, and just write the coordinates
as xµ.

Practically, this abstract structure of a manifold equipped with maps allows
us to define quantities onM itself, which are independent of the choice of
coordinates, thus fullfilling the principle of general covariance.

2.2.2 Vectors, co-vectors and tensors

One common example of such a quantity is a vector field. Given any coordi-
nate chart x around a point p, we can define a basis of the tangent space TpM
in that point as

∂

∂xµ

∣∣∣∣
p
=

d
dλ

x−1(x(p) + λeµ

)∣∣∣∣
λ=0

, (2.14)

where eµ is an element of the standard basis of Rn. Any member v(p) of the
tangent space can then be written as

v(p) =
3

∑
µ=0

vµ(p)
∂

∂xµ

∣∣∣∣
p
= vµ(p)

∂

∂xµ

∣∣∣∣
p

, (2.15)

where we introduce the Einstein sum convention - repeated identical indices
of upper and lower indices are to be summed. A vector field is thenTM (without the

subscript p) is the
tangent bundle. It can
be defined as the set of
all vector fields onM.

a
map v :M→ TM, which assigns a vector in TpM for each point, p, in
the manifold. Since our manifold represents 4 dimensional space-time, we
call members of its tangent space 4-vectors, to distinguish them from the 3
component vectors used in classical physics.

Another way to look at vectors in the point p is to interpret them as the
derivative along a curve γ : R→M with γ(0) = p. Such a curve could, for
example, describe the trajectory of a particle moving through spacetime. In
that case, it is also called a world line of that particle.

Given aMeaning that
f ◦ x−1 : Rn → R is
differentiable in the
usual sense for any

map x.

differentiable function f :M→ R, we can define its derivative along
the curve γ in the point p as

γ̇p( f ) =
d

dλ
f ◦ γ(λ)

∣∣∣∣
λ=0
≡ γ̇µ(0)

∂

∂xµ

∣∣∣∣
p

f , (2.16)
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where the last equality See [37] for a detailed
derivation.

relates to the previous definition of a vector using the
definitions

γ̇µ(λ) =
d

dλ′
xµ ◦ γ(λ′)

∣∣∣∣
λ′=λ

, (2.17a)

∂

∂xµ

∣∣∣∣
p

f =
d

dλ
f ◦ x−1(x(p) + λeµ

)∣∣∣∣
λ=0

. (2.17b)

If the curve γ describes the world line of a particle parametrized by its The proper time of a
particle is the time
shown by a perfect
clock comoving with
it.

proper
time, it’s derivative γ̇ with components γ̇µ is called the 4-velocity of the
particle.

Closely related to the tangent space is the co-tangent space T∗pM, which is
defined as the space of linear functions η : TpM→ R, or dual space of TpM.
It is also a vector space, and we can define a basis dxµ

∣∣
p by demanding

dxµ

∣∣∣∣
p

(
∂

∂xν

∣∣∣∣
p

)
= δν

µ , (2.18)

where δν
µ is the Kronecker delta. Consequently, we can define a general

co-vector in the point p as

k(p) = kµ(p) dxµ

∣∣∣∣
p

. (2.19)

Similar to a vector field, a co-vector field is then Similarly to TM, T∗M
is the Cotangent
bundle, the set of all
co-vector fields on
M.

a map k :M→ T∗M which
assigns a co-vector in T∗pM to each point p of the manifold. In the following,
we will drop the explicit mention of the event p for vectors, co-vectors and
the more general tensors defined below.

A co-vector’s action on a vector v can simply be computed as

k(v) = kµvµ , (2.20)

to be evaluated for each point of the manifold.

We can use vector and co-vector fields to construct more general fields of
(m,n) tensors T ∈ Tn

mM, Employing the sum
convention, each index
αi, βi takes 4 different
values, so this equation
has a total of 4(m+n)

summands.

which can be written as

T = Tβ1...βn
α1...αm

∂

∂xβ1
⊗ . . .

∂

∂xβn
⊗ dxα1 ⊗ . . . dxαm . (2.21)

Such a (m,n) tensor can be thought of as a function attached to each point of
the manifold which maps m vectors v1, . . . , vm and n co-vectors k1, . . . , kn to
one real number:

T(k1, . . . , kn, v1, . . . , vm) = Tβ1 ...βn
α1 ...αm · k1

β1
. . . kn

βn
· vα1

1 . . . vαm
m . (2.22)

2.2.3 The metric tensor

2.2.3.1 Measuring distances

By definition, each pseudo-Riemannian manifold is equipped with a metric
tensor g ∈ T0

2M, defining a scalar product at each point. Physically, it can be
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used to define distances between events in the curved spacetime. As described
above, since it is a tensor, we can always write its action on two vectors v, w
as

g(v, w) = gµνvµwν , (2.23)

such that it is convenient to write its coefficients, gµν, as a matrix.

The two vectors could represent the derivative, γ̇(λ),Contrary to massive
particles, light-like

particles don’t have a
proper time one could
use to parametrize the

world line, and λ is
just a mathematical
parameter without

physical significance.
Consequently, γ̇(λ) is

not a 4-velocity.

along the worldline of a
photon. Photons follow null-geodesics3, fulfilling

g(γ̇(λ), γ̇(λ)) = 0 ∀λ . (2.24)

One important example of a metric is the Minkowski metric tensor, ηµν, of
special relativity, which can be written globally in an inertial frame as

η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.25)

This means that in an inertial frame in a flat spacetime, eq. (2.24) simply
becomes(

γ̇0(λ)
)2

= δijγ̇
i(λ)γ̇j(λ) , (2.26)

where we used the definitions in eqs. (2.16), (2.17a) and (2.18).

We can integrate the square root of this expression between two events A and
B to represent a macroscopic spacetime interval:

∆t =
∫ λB

λA

dλ γ̇0(λ) =
∫ λB

λA

dλ
√

δijγ̇i(λ)γ̇j(λ) = L . (2.27)

The left-hand side is then theNote that while
eq. (2.24) is valid in

any reference frame,
the values of γ̇µ are

coordinate dependent!
Therefore, the

computed values for
∆t and ∆L will depend
on the chosen reference

frame.

coordinate time difference between the events,
while the right-hand side is the spatial distance between them. This means we
can measure spatial distances by tracking the time of flight of photons, which
is the basic principle behind interferometric distance measurements.

2.2.3.2 Converting vectors to co-vectors

We can use a metric to convert a vector v into a co-vector v[ by defining

v[ = g(v, ·) = gµνvµ︸ ︷︷ ︸
=vν

dxν . (2.28)

Conversely, we can use the dual of the metric, defined via

gµα(g−1)αν = δν
µ, (2.29)

3 This is an additional property in addition to the geodesic equation, see section 2.2.4 below.
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to convert a co-vector k into a vector k],

k] = g−1(k, ·) = (g−1)µνkµ︸ ︷︷ ︸
=kν

∂

∂xν
. (2.30)

These rules can directly be generalized to pull any numer of indices of a
general tensor up or down, by applying the same rule for each index.

Note that using eqs. (2.29) and (2.30), we get

gµν = (g−1)µα(g−1)νβgαβ = (g−1)µν . (2.31)

This means the components of g−1 are exactly given by those of g with the
indices pulled up, such that we will use the same symbol for g and g−1.

2.2.4 Derivatives and geodesics

We need a structure on the spacetime manifold to allow us to take derivatives
of tensor fields. There are different ways to define such a derivative, but the
most prevelant one used in GR is the covariant derivative or more general a

We consider here only
a special case called
the Levi-Civita
connection.

connection. The covariant derivative ∇ of a general tensor T ∈ Tn
mM along a

vector v = vµ ∂
∂xµ can be defined as

∇vT = vµ
(
∇µTβ1 ...βn

α1...αm

) ∂

∂xβ1
⊗ . . .

∂

∂xβn
⊗ dxα1 ⊗ . . . dxαm , (2.32)

where

∇µTβ1 ...βn
α1 ...αm =

∂

∂xµ

(
Tβ1...βn

α1...αm

)
+ Γβ1

µνTνβ2...βn
α1 ...αm + · · ·+ Γβn

µνTβ1...βn−1ν
α1 ...αm

− Γν
µα1

Tβ1 ...βn
να2 ...αm − · · · − Γν

µαm
Tβ1...βn

α1 ...αm−1ν .
(2.33)

The symbols Γµ
νκ are called the Christoffel symbols (or more generally, the con-

nection components). For the Levi-Civita connection, they can be computed
from the metric coefficients:

Γµ
νκ =

1
2

gµδ

(
− ∂

∂xδ
gνκ +

∂

∂xν
gκδ +

∂

∂xκ
gδν

)
. (2.34)

We can use the covariant derivative to define a condition for free-falling
particles. A free-falling particle’s world line is a curve γ which naturally
follows the background spacetimes curvature. In other words, the

As mentioned above,
light-like particles do
not have a 4-velocity.
But they do have
tangent vectors to their
world lines, which can
be used in the geodesic
equation
instead.

particles
4-velocity does not change along this trajectory, meaning that there is no
acceleration acting on it.

Formally, this means that

∇γ̇γ̇ = 0 . (2.35)

Such a curve is called a geodesic.
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2.2.5 Curvature and the Einstein field equations

The metric alone is not sufficient to judge if spacetime is curved at a particular
point or not. Instead, one has to compute the Riemann curvature tensor
Riem ∈ T1

3M, whose components in a given basis are

Riemµ
ναβ =

∂

∂xα
Γµ

βν −
∂

∂xβ
Γµ

αν + Γµ
αγΓγ

βν − Γµ
βγΓγ

αν . (2.36)

A spacetimeM is considered flat if Riem = 0 globally. The contraction

Ricµν = Riemγ
µγν (2.37)

is called the Ricci tensor, and it’s contraction

R = Ricµ
µ (2.38)

is called the Ricci scalar.

Utilizing these quantities, we can write down the Einstein field equations,

Ricµν −
(

1
2

R + Λ
)

gµν = κTµν . (2.39)

These are theAt first glance, these
appear to be 16

equations, since both µ

and ν can take on 4
values. This reduces to

10 equations since all
tensors appearing here

are symmetric.

10 fundamental equations which relate the spacetime geometry
to the matter content encoded in the stress-energy tensor Tµν, which appears
scaled by the Einstein gravitational constant κ. Λ is a free parameter, the
cosmological constant, which can be related to the rate of expansion of the
universe.

Note that this is a system of non-linear differential equations for the spacetime
metric gµν, since the curvature terms Ricµν and R contain derivatives of the
Christoffel symbols Γα

µν, which themselves contain derivatives of the metric
gµν.

Note that in order to conserve general covariance, any field equation for the
metric has to leave 4 of it’s 10 degrees of freedom un-constraint.

2.2.6 Gravitational waves as weak-field solutions

Solving the full Einstein field equations is a significant challenge. This remains
true even when considering special cases, such as vacuum solutions satisfying
Tµν = 0.

Exact analytical solutions do exist, for example the famous Schwarzschild met-
ric describing a non-rotating spherical black hole, but are relatively rare. In
addition, it is possible to numerically solve the equations, which allows accu-
rate modelling of the gravitational waveforms generated by events involving
strong gravitational fields, such as the merging of two black holes.

For describing the action of GWs far away from their generating source,
however, it has proven more succesful to consider them as a

This decomposition is
not valid under

arbitrary coordinate
transformation, but

only under a subset of
so-called gauge

transformations, see
[58].

small pertubation
hµν of the metric tensor on a flat background spacetime:

gµν = ηµν + hµν , (2.40)
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where ηµν is the Minkowski tensor of special relativity. As shown in e.g. [58],
one can define a special coordinate system called the transverse-traceless (TT)
gauge in which the hµν fulfill

hµ0 = 0,
∂

∂xj hkj = 0,
3

∑
k=1

hkk = 0 . (2.41)

In this case, it can be shown that the vacuum Einstein field equations simplify
significantly to just ordinary wave equations,

�hkj = 0 , (2.42)

where � is the D’Alambertian operator of special relativity.

These linearized equations are identical in form to the usual wave equations
appearing in, for example, electromagnetism. Therefore, eq. (2.42) allows
simple monochromatic plane-wave solutions. Due to the additional gauge
constraints given in eq. (2.41), the solutions of eq. (2.42) have only two degrees
of freedom.

For example, we can consider a plane wave propagating in the x3 direction.
This solution is given in the TT gauge by

hµν = cos
(
ω(x0 − x3)

)
·


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (2.43)

with h+ and h× describing the amplitude of the so-called

In GR, these are the
only two valid GW
polarizations. Some
alternative
gravitational theories
allow up to 6 different
polarizations, see e.g.
[102].

plus and cross
polarizations of the gravitational wave.

The full metric is therefore given by

gµν =


−1 0 0 0

0 1 + h+ cos
(
ω(x0 − x3)

)
1 + h× cos

(
ω(x0 − x3)

)
0

0 1 + h× cos
(
ω(x0 − x3)

)
1− h+ cos

(
ω(x0 − x3)

)
0

0 0 0 1

 . (2.44)

For the moment, we focus on just the h+ polarization. If we remember that
the metric determines distances between spacetime events, we see that a h+
polarized GW periodically stretches and contracts the x1 direction, while
having an equal but opposite effect on the x2 direction.

In principle, this distortion

There are other kinds
of GW detectors. One
example are bar
detectors, which are
designed to amplify
the effect of a passing
GW using mechanical
resonance. However,
these have not
succeeded to detect
any GWs to
date.

can be measured by two observers A and B,
which, in the absence of a GW, are at rest in the given coordinate system and
seperated by the flat-spacetime distance L, both equipped with a perfect clock.
A can encode the time shown by his clock on an electromagnetic signal, for
example by modulating a laser beam, and send it to B. On reception, B can
then recover the encoded time, and compare it to the time shown by his own
clock to determine the coordinate time difference between the event the beam
was emitted and the event he received it.
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As we saw in section 2.2.3.1, in the absence of GWs, this time difference will
directly yield the unperturbed spatial distance, L.

In a first approximation, assuming that the photon path connecting A and B is
aligned with the x1 axis and that L is small compared to the GW wavelength,
the GW will cause a change ∆L in the propagation time proportional to the
undisturbed separation L [73],

∆L ≈ h+ cos
(
ω(x0 − x3)

)
L . (2.45)

B will therefore see a periodic variation in the emission times of the signals
received from A, from which they can deduce the properties of the GW. The
same principle can be applied to measure h×, which acts similarly on the
diagonal between x1 and x2.

Although conceptually simple, such a light-time GW detector is difficult to
realize in practice. Typical GW amplitudes observable on earth are of the
order h+/× < 10−20, such that both observers A and B need extremely precise
clocks4 to actually be able to distinguish the small fluctuations ∆L caused by
GWs from the intrinsic imperfections of their reference clocks.

2.3 direct gravitational wave detection

We discussed in the previous section that the effect of gravitational waves
can be measured by tracking the time of flight of electromagnetic signals
between free-falling observers. One technical challenge in designing such a
light time gravitational wave detector is that the time of flight fluctuations
must be measured with extreme precision, which requires very stable clocks
at both ends of the detector. A way around this is to use only a single timing
reference, typically in the form of a laser source of coherent light, which
is split into two seperate, orthogonal paths, reflected at mirrors acting as
test-masses and then recombined at the point of origin. Such a differential
detector is called a Michelson interferometer, and is depicted in fig. 2.3. Since
the light output from the laser comes from the same origin and travels almost
equal paths, any fluctuations in the lasers frequency are heavily suppressed
at the output port of this configuration. This allows us to measure relative
distance fluctuations between the two arms with the required precision to
detect GWs. For example, the advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO) [3] can resolve relative changes in its 4 km arms to
better than a factor 10−23, which corresponds to an absolute distance change
of less than 4× 10−20 m. For comparison, this is roughly a hundred-thousand
times smaller than the

The charge radius is a
measure of the size of

an atomic nucleus, and
is determined by

scattering electrons
around it.

charge radius of a proton [60].

4 And/or be seperated by extremely large distances. In addition, any matter between the ob-
servers can affect the light propagation time as well, potentially further limiting the achievable
performance [73].
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2.3.1 Principle of a Michelson interferometer

We formulate here the basic operating principle of a Michelson interferometer,
as depicted in fig. 2.3. A single laser beam is split at a central beam splitter.
The two resulting beams are send along two seperate arms, reflected off of
mirrors at the end and finally recombined at the same beam splitter. Since the
two arms differ in length, the two recombined beams have a relative phase
shift and interfere. The resulting interferometric signal can be read out using
a photo diode.

Formally, the electrical field of the laser before the beam is split can be written
as

E(t) = 2A cos(Φ(t)) = 2A cos(ωt + φ(t)) , (2.46)

where we assume the amplitude A to be constant while φ(t) accounts for any
intrinsic imperfections in the lasers phase. We assume the two arms to be of
unequal length, such that the light travel time for one round-trip is given as
τ + δτN for the north arm and τ + δτE for the east arm. Therefore, the two
arms differ in round trip time by ∆τ = δτE − δτN .

The electrical field after recombining the two beams after each round trip We ignore here any
other phase shifts of
the beams, for example
due to interaction with
the mirror
surfaces.

is
then given as a superposition of the two recombined beams,

EBS(t) = A(cos(Φ(t− τN)) + cos(Φ(t− τE))) . (2.47)

The photodiode detects a signal proportional to the time averaged squared
magnitude of the electrical field:

P = 〈|EBS|2〉
= A2(1 + cos(Φ(t− τN)−Φ(t− τE)))) .

= A2(1 + cos(ω∆τ + φ(t− τN)− φ(t− τE))) .

(2.48)

Ground-based Michelson interferometers such as aLIGO are usually designed
such that the nominal ∆τ Interferometers with a

nominally constant
readout signal are
called homodyne in-
terferometers.

is constant. Note that the cosine in eq. (2.48)
can take values between 1 and -1, such that the overall detected power at
the photodiode can take any value between 2A2 and 0. By intentionally
moving one of the mirrors, it is possible to adjust ∆τ in such a way that the
interferometer is tuned to a nominal operating point. In the case of aLIGO,
this operating point is close to the dark fringe, at which no light arrives at the
photodiode. This ultimately allows a readout of the phase fluctuations [44],

ω∆τ + φ(t− τN)− φ(t− τE) . (2.49)

Assuming that the arm length mismatch ’Small’ means here that
fmax � 1/∆τ, with
fmax as the highest
signal frequency we
want to
measure.

∆τ is small, we can write

φ(t− τN)− φ(t− τE) = φ(t− τE + ∆τ)− φ(t− τE)

≈ ∆τφ̇(t− τE)

= 2π∆τν(t− τE)

(2.50)
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Figure 2.3: A simple
Michelson interfer-
ometer. A single laser
beam is split up at a
beam splitter, send to
two mirrors, reflected,
and recombined at the
same beam splitter.
Any pathlength fluc-
tuations in either of
the two arms creates
a phase difference be-
tween the two beams,
which creates the in-
terferometric signal.

τ + δτE

τ + δτN

for the terms related to the inherent laser instability. Here, we used ν(t) =
1

2π φ̇(t) for the lasers frequency fluctuations. These directly couple into the
phase readout of a Michelson interferometer. Since they enter scaled by the
armlength mismatch, a Michelson interferometer with perfectly equal arms is
completely insensitive to laser frequency noise.

On the other hand, the term ω∆τ means that Michelson interferometers
are very sensitive to differential changes in the arm length, which makes
them ideal gravitational wave detectors. As discussed in section 2.2.6, a plus
polarized monochromatic GW propagating in the x3 direction periodically
changes relative distances in the x1 and x2 directions, with opposing signs. If
our Michelson interferometer is oriented in such a way that the north arm is
aligned with x1 direction and the east arm is aligned with the x2 direction the
effect of the gravitational wave directly translates into a differential armlength
change.

Keeping the same orientation, a cross-polarized wave, on the other hand,
doesn’t create any differential armlength change, such that the interferometer
is insensitive to it. It is therefore possible to determine the polarization of a
passing GW by utilizing multiple detectors with different orientations.

Multiple detectors working in tandem have a number of additional benefits.
For one, they allow discrimination of instrumental glitches by rejecting signals
which are only visible in one detector at a time. In addition, since GWs
propagate at the speed of light, multiple detectors can triangulate the direction
the wave is coming from, since the same signal will be seen in different
detectors with a small time delay.

2.3.2 First detections

On the 14th of September 2015, aLIGO made the first direct detection of a
gravitational wave signal [5]. They observed the merging of two black holes
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Figure 2.4: The grav-
itational wave spec-
trum. Image from [27]

of approximately 36 and 29 solar masses, with the final black hole having
only a mass of approximately 62 solar masses. About 3 solar masses worth of
energy were radiated in form of gravitational waves in this event, with a peak
gravitational luminosity of 3.6× 1049 W.

The two aLIGO detectors are working in tandem with the European Virgo
detector, with more gravitational wave observatories being planned to join
in a global network of detectors [6], which promises an exciting future of
ground based gravitational wave observations.

Indeed, within the first half year of observation, the LIGO-VIRGO collab-
oration already detected three binary black hole mergers, followed by the
detection of a binary neutron star merger and seven additional binary black
hole mergers in the second observation run [7]. Including the latest catalogue
of the first half of the third observation run [8], this collaboration reported a
total of 50 individual detections.

2.4 gravitational wave spectrum

The Newtonian noise is
caused by gravitational
attraction of moving
masses in the
environment, for
example due
atmospheric
variations.

growing network of ground based detectors are remarkable instruments,
but they can only observe a limited part of the gravitational universe. In
particular, they are severly limited at low frequencies, mainly due to the
impact of seismic and newtonian noise.

However, it is exactly at these low frequencies were we expect a large catalogue
of astrophysical GW sources [28]. This is not surprising, since the prime target
for GW detection are binary systems of compact objects, most notably of black
holes, neutron stars and white dwarfs. Due to the large mass and scale of
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these systems, they move comparatively slowly; consequently, their emitted
GW radiation is also at low frequencies, especially while they are far away
from their merger.

Figure 2.4, provided by [27], shows an overview of the different sources we
expect in different frequency ranges. We summarize here the main sources
expected in some present and future GW observatories.

2.4.1 High frequency sources

Following [27], ground based interferometers such as aLIGO and Virgo cover
only the very high part of the expected frequency spectrum, with GW periods
of less than 1 second.

The main sources in that range are merging compact binaries, as those already
observed by aLIGO and Virgo. The ground based observatories typically only
see the very last few seconds of such a merger, when the two compact objects
get close together, resulting in a large peak in amplitude as well as a shift to
higher frequency.

Violent events such as supernovae also involve large mass redistributions, and
could therefore also generate GW in this frequency range. As of the writing
of this thesis, however, there have been no detections [4].

In addition to these transient signals, rapidly rotating neutron stars could gen-
erate continous GW signals provided that they have some non-axisymmetric
deformations. Even though the amplitude of these sources is expected to be
much smaller than that of the transient signals, the fact that they are theorized
to be stable over very long time scales allows statistical analysis of data from
multiple observation runs. So far, no continous wave detection has been
confirmed, but this might change when more data becomes available. See
[31, 80] for more information.

2.4.2 Mid frequency sources

Space-based observatories will be able to observe signals with GW periods
ranging from seconds to hours. The most developed mission of this kind is
LISA [10], planned to fly in the 2030s, which aims to measure gravitational
waves in the frequency band from 1× 10−4 Hz to 1 Hz.

Contrary to ground based detectors, which are mostly noise dominated
with occasional loud transient sources, LISA will most likely be signal domi-
nated.

Similar to ground based detectors, LISA will also be able to observe compact
binaries such as those responsible for all direct detections up to date. However,
we will be able to see them long before the merger, where the two components
of the binary are still widely seperated on relatively stable orbits. This means
that these sources will be present as quasi-monochromatic sources, which
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slowly increase in frequency as the binary radiates away its kinetic energy.
This could allow accurate predictions of the actual time and sky position of the
merger, as described in [75], which both EM observatories and ground-based
GW observatories could use as early warning to prepare for observation.

In addition to black hole and neutron star binaries, LISA will also be able to
observe millions of white dwarf binaries in our own galaxy. EM observations
already confirmed the existence of some of those white dwarf binary systems,
which should produce continous GWs right in this frequency range. This will
allow immediate verification of the measurement chain, since we know that
these sources have to be in the data, with a predictable amplitude.

But not all of these will be resolvable as individual sources, such that we
expect a stochastic gravitational wave background ever present in the signal.
This stochastic background might also have components which can be linked
to a cosmological origin, and might give insight into the physics of the very
young universe, shortly after the big bang.

Besides these stellar mass sources, LISA will also be able to observe merg-
ers of supermassive black holes expected in the centers of most galaxies,
which are millions of times more massive than those visible in ground based
observatories.

And a related class of signal are the so-called Extreme Mass Ratio Inspirals
(EMRIs), which appear when a relatively small object, such as a stellar mass
black hole, merges into a supermassive blackhole. These have a relatively
complicated waveform, and allow a unique test of the predictions of GR.

In general, space based observatories such as LISA are projected to have some
signals with very high signal to noise ratio. This will allow precision tests of
the predictions made by GR, which could constrain the validity of alternative
theories of gravity.

In addition, these GW observations can be used to get a completely indepen-
dent estimate of the expansion rate of the universe.

2.4.3 Low frequency sources

We hinted in section 2.3 that one of the primary challenges of constructing
a light time GW detector is the requirement of having extremely stable
clocks to measure fluctuations in the light travel time of the electromagnetic
signals.

Pulsars are a special case of neutron stars from which we can observe peri-
odical electromagnetic pulses with very high timing stability. Indeed, these
pulses should be stable enough to in principle allow GW detection by ground
based observation with radio telescopes. The actual measurement principle
relies on measurements of the arrival time of pulses from multiple pulsars,
which are then searched for correlations which can hint at the presence of
a GW signal. Such a collection of observatories is called a Pulsar Timing
Array (PTA), and is only sensitive to very low frequencies. Possible sources
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are for example super massive black hole binaries at the center of galax-
ies, with orbital periods of months to years. See for example [13] for more
information.

Finally, it is possible that GWs from the very early universe might have
imprinted on the cosmic microwave background and could be discerned from
EM observations of it. To date, this only lead to upper limits of such an effect,
see e.g. [71] for more details.



3
T H E L A S E R I N T E R F E R O M E T E R S PA C E A N T E N N A

LISA is a large ESA mission, scheduled to fly in the mid 2030s. It’s operating
principle is similar to that of the ground based observatories, in that LISA also
aims to detect gravitational waves using laser interferometry. However, there
are some very significant design differences, and therefore unique technical
challenges.

In this chapter, we give a brief overview of the LISA mission, with a particular
emphasis on the technical details which are relevant to the research presented
in this thesis.

In the following, we first describe the LISA constellation and orbits in sec-
tion 3.1. The orbital dynamics have important implications for the achievable
laser noise reduction, which we discuss in section 3.2. In addition, as we will
discuss in section 3.3, the large inter-spacecraft velocities require a heterodyne
detection scheme, in which the on-board reference clocks become a significant
performance limitation.

We then present an overview of the scientific payload in section 3.4, describing
the overall optical layout and the available interferometers on each satellite.
The main phase readout mechanism is then described in section 3.5.

Finally, we describe further auxilliary functions related to the phasemeter
and give an overview of the frequency distribution system in sections 3.6
and 3.7.

3.1 the lisa constellation and orbits

LISA isn’t just a single Michelson interferometer, but consists of 3 seperate
spacecraft which all follow their individual orbits. The spacecraft exchange
laser beams between them, tracking distance fluctuations to the level required
for GW detection. The orbits are chosen in such a way that the overall
constellation of the three spacecraft forms an almost equilateral triangle.

The iconic triangle configuration is achieved by positioning the three space-
craft in a plane which is tilted by 60 degrees with respect to the ecliptic
plane, with the center of mass of all 3 spacecraft trailing earth on its orbit by
about 20 degrees, or roughly 50 million km [10], see fig. 3.2. Each individual
spacecraft is therefore on a slightly eccentric orbit, where it moves faster when
close to the sun and slower when further away. The result is that the overall
constellation performs a cartwheel motion around the sun, with the rotation
direction of the spacecraft around their center of mass opposite to that of
constellation as a whole, see fig. 3.1.

25
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Figure 3.1: The LISA
orbits, from [10]. All
three spacecraft fol-
low their individual
trajectory around the
sun, such that the con-
stellation as a whole
performs a cart-wheel
like motion.

1 AU
Sun

These kinds of orbits can be constructed for a wide range of spacecraft
seperations [68]. As we saw in section 2.2, GWs create relative distance
fluctuations, such that large armlengths are desirable, since they yield a
stronger signal. However, this is only true up to a certain point: if the arms
are too long with respect to the GW wavelength, multiple periods of the GW
can partly cancel their effect during a single roundtrip time [10].

In addition, making the arms too long brings a number of technical challenges.
For example, even though the laser beams which leave the spacecraft are
highly collimated, they will diverge during the propagation, such that only
a fraction of the power will actually reach the far spacecraft. In the far
field, the intensity of a gaussian laser beam in a given area evolves with
the distance squared. Therefore, an increase in the arm length needs to be
compensated by either larger telescopes, which would decrease the beam
divergence while simultaneously increasing the reception area, or by using
higher power lasers. Therefore, a tradeoff between technical challenges
and ideal detector sensitivity must be found, balancing cost with scientific
performance.

For LISA, the current baseline foresees arm lengths of 2.5× 109 m, which
should allow fulfillment of all science objectives outlined in [10].

3.2 laser noise suppression in lisa

A first approach to construct an analogon to the ground based Michelson
interferometers in space would be to use two of the spacecraft as retroreflectors
for beams emitted from the remaining spacecraft. We label the emitting
spacecraft with the index 1, and the other two by the indices 2 and 3.

Just as we saw in section 2.3, a single laser source on spacecraft 1 would
generate light which is sent on two different paths, reflected, and recombined
at spacecraft 1.

A first technical problem is that, as discussed in section 3.1, the laser beams
lose a very significant amount of their power when propagating between
the spacecraft. As a result, the spacecraft cannot act as simple passive retro-
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Figure 3.2: The LISA
constellation, from
[10]. The triangular
constellation trails
earth by 20◦ and is
tilted by 60◦ with
respect to the ecliptic
plane.

Earth

Sun
1 AU (150 million km)

19 – 23°
60°

2.5 million km

reflectors, but must amplify the incoming signal before reflecting it back to the
sending spacecraft. This can be achieved by using a Such control loops are

required in any case, to
ensure that all
beatnotes fall within
the photoreceivers
detection bandwidth,
as discussed in
section 3.6.2.

control loop to phase-lock
the lasers on spacecraft 2 and 3 to the incoming light from spacecraft 1. This
allows the spacecraft to act as active retro-reflectors, such that the beams
being returned from spacecrafts 2 and 3 are transmitted at full power.

This is similar to the situation in the satellite mission Gravity Recovery and
Climate Experiment-Follow-On (GRACE-FO), which uses laser interferometry
to track the seperation of two satellites in orbit to determine mass distributions
below them. GRACE-FO has comparable laser intensities at the receiving
spacecraft and uses a similar active transponder scheme, demonstrating its
feasability [9].

A more serious problem with this approach is that, different from the ground
based detectors, the arms in LISA are not perfectly equal, and thus laser
frequency noise (LFN) is not perfectly suppressed.

Figure 3.3 shows a numerical simulation of the light travel times between the
spacecraft for realistic orbits1. It shows that even though the constellation is
quite stable, the arm lengths still fluctuate by about 1 percent over the course
of a year. In absolute terms, this can correspond to an armlength mismatch of
about 30 000 km.

As we will show in part ii of the thesis, the resulting non-suppressed LFN
due to this mismatch is several orders of magnitude above the level required
for GW detection. This is sketched in fig. 3.4, where we depict the residual
laser noise level assuming the armlengths shown in fig. 3.3 at the beginning
of the mission. The top curve of the figure shows the typical laser noise of
a cavity stablized space qualified laser, here assumed to be at 30 Hz/

√
Hz,

as described in appendix D.1. The standard Michelson retains a high laser
noise level due to the large armlength mismatch of 0.22 s, as shown by the
orange curve. This is to be compared to the dotted curve, which corresponds

1 Orbit from numerical simulations performed at the ESA Concurrent Design Facility (CDF),
data provided by D. Escorial Olmos.
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Figure 3.3: Light
travel times along
the links between
spacecraft 1, 2 and
3. Computed using
[19] based on orbits
provided by ESA.
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to a typical LISA noise allocation for a single noise source of 1 pm/
√

Hz
[10]2.

The proposed solution to this problem is a post-processing algorithm called
time-delay interferometry (TDI), which we study in detail in part iii of the
thesis. In summary, TDI time shifts and combines multiple inter-spacecraft
phase measurements to construct virtual interferometers with almost equal
arms, in which LFN is naturally suppressed.

The original, first generation combinations were designed to cancel laser
noise exactly under the assumption that the arm lengths are unequal, but
constant and symmetric under an exchange of the sending and receiving
spacecraft [82]. Using realistic orbits, the cancellation will no longer be exact,
as depicted by the blue solid line in fig. 3.4. The equivalent interferometer
has an armlength mismatch of just 10−7 s, reducing LFN by over six orders of
magnitude compared to the standard Michelson.

This can be further improved upon by utilizing so-called second generation
combinations [85], which take the time evolution of the arm lengths into ac-
count. As can be seen by the dark green bottom curve in fig. 3.4, the resulting
combinations have an armlength mismatch of just 10−11 s, suppressing laser
noise far below the level required for GW detection. We omit here for clarity
that constructing these TDI combinations also affects the signal and other
secondary noise levels, such that in principle, their residual laser noise level
should be compared to a different requirement curve. However, this does not
invalidate the points made above, as we will see in part iii.

2 The overall suggested noise allocation for the optical metrology in LISA is 10 pm/
√

Hz [10].
We plot an allocation a factor of 10 below this, since laser noise is only a single contribution to
the overall noise budget. In addition, we neglect for the moment the usual relaxation towards
lower frequency (cf. [10], pg. 17) for clarity. This simplification will be dropped in the more
detailed analysis in parts ii and iii.
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Figure 3.4: Resid-
ual laser noise in a
simple Michelson vs.
first and second gen-
eration Michelson
combinations. Noise
shape function and
TDI transfer functions
omitted for clarity, see
section 3.2 for more
details.
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3.3 heterodyne detection and clock noise

Another consequence of the dynamics of the LISA orbits is that the spacecraft
are moving with high relative velocities of several m s−1 along the line of sight.
This causes large Doppler shifts of the laser beams being exchanged, such that
the beams entering the intererometers differ in frequency by several MHz.
GWs cause tiny fluctuations in the arrival time of the incoming beams, which
cause a small phase fluctuation. Therefore, LISA uses a heterodyne detection
scheme, in which the phase evolution of the MHz beatnotes is tracked with
µcycle precision [15]. The GW signal is then recovered from the recorded
phase as small fluctuations around the nominal frequency.

Tracking the phase of such a high frequency signal to this precision requires
an equally precise local timing reference. In LISA, each spacecraft will
be equipped with a local clock, typically a temperature stabilized quartz
oscillator, also called an ultra-stable oscillator (USO). Appendix C contains an
overview of the performance of different kinds of oscillators. As explained
there, currently available space qualified clocks do not fulfill the stringent
timing requirements required for the interferometric readout.

This will be compensated by a sophisticated frequency distribution scheme,
in which the signals generated by each clock are distributed throughout the
whole constellation. This allows a differential measurement between the
different clocks, which ultimately allows suppression of these clock errors in
the final TDI data streams.

We will summarize the hardware involved in this frequency distribution in
section 3.7, describe the resulting signals in part ii and finally propose an
actual noise subtraction algorithm in part iii.
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Figure 3.5: Pay-
load conceptual de-
sign, from [10]. Two
MOSAs are mounted
at a 60◦ angle. Each
of them houses a
telescope, an opti-
cal bench and a GRS.

3.4 payload overview

3.4.1 Movable optical sub-assemblies

We show in fig. 3.5 an overview of the LISA payload. Each satellite carries two
MOSAs, which are mounted with a roughly 60◦ angle, each pointing towards
one of the other two spacecraft (bottom of fig. 3.5). This angle is adjustable
by about 2◦ to allow compensations for deviations from a perfect triangular
constellation due to orbital mechanics [10].

Each MOSA is a rigid structure connecting the optical bench (OB) with a
telescope and a gravitational reference sensor (GRS) (top-left of fig. 3.5). The
telescope (left) is used for light transmission and reception towards the distant
spacecraft, while the GRS (right) houses the test-mass. The OB is mounted
in-between telescope and GRS, and carries the optical components needed for
interferometry.

3.4.2 Gravitational reference sensors

We described in section 2.2 that a GW creates a periodic modulation of the
light travel time between two test masses. This result is only valid under
the condition that the test-masses are actually free-falling, i.e., that no non-
gravitational forces are acting on them.

Although the spacecraft themselves are on nominally free-falling orbits around
the sun, they are in reality un-shielded from the influence of, e.g., solar winds
and micro-meteorites. As has been confirmed by LISA-Pathfinder, these
effects create jitters of the spacecraft position at a level which would spoil our
GW measurements [12].
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Figure 3.6: Sketch
of the LISA optical
layout, from [55].
Each optical bench
carries three inter-
ferometers, allow-
ing a readout of the
inter-spacecraft and
spacecraft-testmass
seperation, as well as
a reference measure-
ment between the two
lasers on the space-
craft.

A solution, which was also demonstrated by LISA pathfinder, is that each
spacecraft will house two small cubic test-masses which act as gravitational
reference points for the measurements. Their position relative to the spacecraft
will be read out using dedicated interferometers.

The test-masses themselves are housed in a gravitational reference sensor
(GRS). It is responsible for most functionality regarding the test mass. In
particular, each GRS has to be able to securely hold the test-mass during
launch, before releasing it into free-fall for science operations. The test-
mass then stays enclosed inside the GRS, where it is shielded from external
influences and controlled along the non-sensitive degrees of freedom to avoid
collisions with the spacecraft [10]. Along the sensitive direction, the test-
masses are ’drag-free’, meaning that the spacecraft follows the test-mass
motion instead, as described in section 3.4.4.

3.4.3 Optical layout and split interferometry

The overall optical layout for each LISA satellite is outlined in fig. 3.6.

Each OB has an associated local laser. In addition, the two OBs on each
spacecraft are inter-connected by an optical fibre, such that a total of 3
different laser beams are available on each OB:

• The local beam, which is being emitted towards the far spacecraft and
the adjacent optical bench,

• the distant beam, incoming from the distant spacecraft through the
telescope, which carries the GW signal, and

• the adjacent beam, incoming from the adjacent OB on the same space-
craft, which is used as a local reference.

These are used to construct three different interferometers:
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• The ISC interferometer3, which beats the distant beam against the local
one,

• the reference interferometer, which beats the adjacent beam against the
local one,

• and the test-mass interferometer, which also beats the adjacent beam
against the local one, but includes an additional reflection off the local
test mass.

Most noise sources, such as LFN, are common in the reference and test-mass
interferometer. Thus, we can combine the measurements from these two
interferometers to cancel this common noise and get a high-precision readout
of the seperation between test-mass and the local optical bench.

This information can be used in conjunction with the ISC interferometer,
which measures the seperation between the local and distant optical bench,
to synthesize a high-precision readout of the seperation between the two
test-masses at the ends of one LISA link.

In addition, the reference interferometer readout can also be used to remove
LFN of one of the two lasers on each spacecraft.

This concept is called split-interferometry, and the actual signal combinations
are computed on-ground out of the individual interferometric readouts. We
discuss this in detail in chapter 12.

3.4.4 DFACS

In addition to allowing a post-processing correction for jitters of the spacecraft,
the interferometric readout of the test-mass positionIn addition, the DFACS

also uses capacitative
readouts of the

test-mass orientation
provided by the GRS

[10].

will also be used in the
drag-free attitude control system (DFACS) to adjust the spacecraft trajectories
such that they follow the test-masses on their free-fall trajectory. Since there
are two test-masses, the spacecraft can’t follow both of them in all degrees
of freedom. Instead, each of the test-masses is only free-falling along some
degrees of freedom, including the sensitive axes connecting to the distant
spacecraft, while their position in the other ones is controlled by electro-static
actuators. The DFACS then only ensures drag-free control of the spacecraft
positions along three translational degrees of freedom [10].

As experimentally demonstrated in LISA-Pathfinder [12], the DFACS is not
perfect4, such that although the spacecraft tries to follow the test-mass mo-
tion in the sensitive direction, there is still a significant amount of residual
spacecraft displacement noise in the inter-spacecraft interferometer carrying
the gravitational wave signal. This will be compensated in a post-processing
step, as described in section 3.4.3.

3 This interferometer is sometimes also called the ’long-arm interferometer’ or ’science interfer-
ometer’.

4 The main noise sources limiting the DFACS performance are thruster noise and the finite gain
of the DFACS control loops (G. Heinzel, personal communication, 2021).
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3.5 phase readout

3.5.1 Overview

As mentioned above, the phase of the MHz interferometric beatnotes is
tracked and recorded with µcycle precision. The device responsible for this
measurement is called the phasemeter. At its core, this phasemeter will
rely on a device called a digital phase-locked loop (DPLL). In general, a
phase-locked loop (PLL) is a device or algorithm which takes as input an
oscillating signal and produces as output another signal which has a Note that although in

the case of the LISA
phasemeter both input
and output signal have
the same frequency,
this is in general not
required for a
PLL.

stable
phase relationship to the input signal. In a DPLL, this allows to create a
digital replica of the analog input signal, of which the phase and frequency
are directly accesible.

The full LISA measurement chain is sketched in fig. 3.11, with the parts
directly related to the phasemeter to the bottom left of the picture. The input
signal is generated by interference of the beams in the different interferometers.
This signal is first converted from a fluctuating intensity of the EM field of the
laser beam to a proportional voltage using a A photoreceiver

consists of a
photodetector (e.g., a
photodiode) and the
associated electronics
needed to create a
voltage output, such as
an amplifier.

photoreceiver, and then digitized
using an analog-to-digital converter (ADC). The ADC records samples of
the input signal at a high sampling rate of around 80 MHz. In addition, all
input signals are overlayed with a so-called pilot tone at 75 MHz, which is
directly derived from the USO and acts as timing reference for all phasemeter
measurements. This allows correction of timing jitters of the ADC and the
phasemeter clock, see section 3.6.3. Any imperfections in the pilot tone itself
still couple into the digitized signal, and need to be corrected in a post-
processing step. We will derive a detailed model for this coupling of clock
errors in chapter 6, and discuss its correction in chapter 13.

The phasemeter uses a DPLL running at a clock rate of 80 MHz to determine
the phase and frequency of the input signal. The measured phase or beatnote
frequency is then filtered and downsampled to a much lower sampling
rate of around 4 Hz before being transmitted to earth. Signals sampled at
intermediary frequencies can also be provided and used as input to, for
example, the DFACS [47].

A prototype of this phasemeter design is explained in detail in [36].

3.5.2 Digital phase locked loop

The core of the phasemeter is a DPLL, sketched in fig. 3.7. It creates a digital
replica of the input signal, within a device called a numerically controlled os-
cillator (NCO), of which the phase and frequency are directly accessible.

The NCO consists of a phase increment register (PIR), a phase accumulator
(PA) and a sine and cosine look-up table (LUT). The PA represents the See appendix C.1.2 for

the exact definition of
these
quantities.

to-
tal phase of the oscillator, and gets incremented at each time step by the
value of the PIR, which therefore represents its instantaneous frequency. The
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Figure 3.7: Schematic
overview of a DPLL,
from [48]. See sec-
tion 3.5.2 for full de-
scription of the algo-
rithm.
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fractional part of the PA, corresponding to up to one cycle of the oscillator, is
used as input to the LUTs to produce quantized values of a sine and cosine
function.

The digital input signal coming from the ADC is given as

V(t) = A cos(ωt + φs(t)) , (3.1)

and gets multiplied by these digital sine and cosine signals provided by the
NCO. This is followed by a low-pass filter, to get the in-phase signal,

I(t) = 〈V(t) · cos(ωt + φn(t))〉

=
A
2

cos(φn(t)− φs(t))

≈ A
2

, (3.2)

and the quadrature signal,

Q(t) = 〈V(t) · sin(ωt + φ(t))〉

=
A
2

sin(φn(t)− φs(t))

≈ A
2
(φn(t)− φs(t)) . (3.3)

Here, we assumed that the NCO is already locked to the input signal, such
that φn(t)− φs(t)� 1. Q then gives a direct readout of the phase fluctuations,
which can be used as error signal in a controller to adjust the PIR of the NCO
and keep it locked to the input signal. Both the PIR and PA are available as
output, and get further low-pass filtered and decimated to a frequency suitable
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Figure 3.8: Sketch of
the principle behind
DWS, from [48]. A
tilt of the incoming
beams causes a small
phase shift between
the signals in the up-
per and lower quad-
rants, which can be
readout using DPLLs.
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for transmission to earth in multiple steps. See [36] for more information on
DPLLs and related functionality of the phasemeter.

Note that the PIR and PA represent the full dynamic range of the input signal,
including the MHz offsets in the frequency and corresponding phase ramps
of millions of cycles per second. The desired gravitational wave signals cause
µcycle phase fluctuations in these signals, which need to be recovered in
further processing steps on ground, see chapter 8 for more details.

3.6 auxilliary phasemeter functions

In addition to the main phase readout, the phasemeter will provide a number
of additional auxilliary functions and measurements.

3.6.1 Differential wavefront sensing

The main purpose of the LISA phase measurement is to determine the longi-
tudinal pathlength change between the test masses located in the local and
distant spacecraft.

In addition, it will also provide a precise measurement of the angles between
the local and incoming beams, using a method called differential wavefront
sensing (DWS). See fig. 3.8 for a schematic overview.

Instead of using a single photodiode at each interferometer output, this
method uses a so-called quadrant photo diode (QPD), whose sensitive area is
split into 4 quadrants of equal area.

Any tilt between the phase front of the incoming beam and that of the local
beam will create a slight phase shift in the signals recorded in the different
quadrants. By tracking the phase of each quadrant individually, using one
DPLL for each of them, it is possible to reconstruct the tilt of the incoming
wavefronts from the relative phase between the four readouts. [48] contains a
good summary of this method, as well as an efficient algorithm of combining
the signals from the different quadrants to recover both the relative beam tilts
as well as the longitudinal signal.
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This readout will be used as input to the DFACS, as well as for on-ground cal-
ibrations which compensate for residual tilt-to-length (TTL) couplings.

3.6.2 Laser locking and frequency planning

The overall available bandwidth for tracking the different interferometers will
be limited to a range of approximately5 5 MHz to 25 MHz. Therefore, we
must ensure that any two lasers entering into an interferometer must have a
frequency difference within this range.

This can be achieved by offset-frequency locking all lasers in the constellation
to one primary laser used as reference, utilizing additional control loops.
Each of them uses the frequency output of the DPLL as error signal to adjust
the frequency of one of the lasers entering the interferometer. The result is
that the locked laser’s frequency is adjusted in such a way that the measured
beatnote is at exactly the desired value.

As described above, each spacecraft carries two local lasers and receives light
from two remote spacecraft. In principle, either of the local lasers could
therefore be locked to:

(a) The adjacent beam,

(b) the distant beam arriving on the same optical bench, or

(c) the distant beam arriving on the adjacent optical bench.

Mixing options (a) and (c) is referred to as ’frequency-swap’, and not consid-
ered as the LISA baseline. Therefore, each laser will be locked using either (a)
or (b), utilizing an interferometric readout of the optical bench on which it
acts as local laser. See [46] for further information.

The set of offset frequencies of all locked lasers for the whole mission duration
is called a frequency plan, and its computation is non-trivial. We can count
the number of frequencies we have to determine: All reference and test-mass
interferometers on the same spacecraft use the same two laser beams, thus
they end upWe will later introduce

a sign convention such
that the two reference
beatnotes on the same

spacecraft have
opposite signs, cf.

section 5.4.2.

at the same frequency. So there are a total of three reference
interferometer beatnote frequencies for the three spacecraft. In addition,
each ISC interferometer uses a different set of beams, giving an additional 6
beatnote frequencies. Therefore, we have to find as set of 5 offsets for the 5
locked lasers to control the value of 9 different beatnote frequencies.

This is further complicated by the fact that the laser beams pick up Doppler
shifts during propagation between the spacecraft, such that the frequency
plan has to adjust over time to compensate for changes in the orbits. In
addition, to avoid cross-talk between different interferometer channels, no
two frequencies on the same spacecraft should have the same value at the

5 For example, the photoreceivers only have a limited bandwidth which limits at high frequen-
cies, while some noise sources like relative intensity noise (RIN) are expected to become
limiting at low frequencies. In addition, the aliased pilot tone will appear at 5 MHz, such that
all other signals should be above this frequency.
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Figure 3.9: Example
frequency plan for
four years, data pro-
vided by G. Heinzel. 5
laser offset frequencies
are controlled such
that all 9 beatnotes
fall within a range of
±5 MHz to ±25 MHz,
indicated by black
lines. We plot all 9
beatnote frequencies,
legend omitted for
clarity.
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same time - including some margin to account for the additional sideband
beatnotes required for the clock correction (cf. section 3.7).

This topic, in particular the computation of a frequency plan given a set of
constraints on the beatnote frequencies, can be solved exactly, as discussed in
detail in [46]. An example frequency plan is depicted in fig. 3.9, showing that
it is possible to control all frequencies to fall within the desired range. This
frequency plan is provided by G. Heinzel and based on the same orbits used
for the illustration in fig. 3.3.

We will include a model for laser locking as well as an overview of the different
possible locking configurations first presented in [46] in our simulation model,
see section 7.3. In addition, we will study the impact laser locking has on the
INREP in section 12.2.

3.6.3 Pilot tone correction

As described above, the analog photoreceiver signal is digitized at the input
to the phasemeter, using an ADC. This ADC uses the on-board USO as timing
reference, therefore inheriting its timing jitters. However, the ADC itself will
also contribute its own timing jitter on top of those of the sampling clock, at a
level incompatible with the stringent noise requirements.

The planned solution is to superimpose a copy of the pilot tone on each
ADC channel. The phase of this pilot tone gets tracked with a dedicated
DPLL. Since the pilot tone is very stable and at a well known frequency,
we can predict it’s phase evolution. Comparing the recovered phase of the
pilot tone with its expected phase then allows an accurate measurement6 of

6 The pilot tone is intentionally generated at a relatively high frequency of 75 MHz to be more
sensitive to timing jitter of the ADC. This is above the phasemeters Nyquist frequency of
40 MHz, such that the pilot tone appears as a signal aliased to 5 MHz.
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Figure 3.10: Principle
of the pseudo-ranging
measurement via PRN
codes. The received
code from the distant
spacecraft is correlated
with a local copy, al-
lowing a measurement
of the time delay ∆T.

PRNRX

PRNlocal

∆T

the additional ADC jitter, up to errors in the pilot tone itself. This phase
measurement can then be used to correct for the ADC jitterThese are typically

tracking one carrier
and two sideband

beatnotes.

in all other
DPLLs which are processing the same time series. Therefore, the pilot tone
should be seen as the clock defining the onboard time for the phasemeter
measurements.

3.6.4 Absolute ranging

As discussed above, the LISA metrology system will be able to measure
relative distance fluctuations at pm precision over timescales of about 1 s to
1000 s. Constructing the laser-noise-suppressing TDI combinations out of
the raw phase measurements, however, needs additional information on the
absolute separation between the spacecraft. More precisely, as we will discuss
in chapter 13, the application of TDI requires knowledge of a combination
of the physical light travel time and of the desynchronization between the 3
independent spacecraft clocks.

This information can be obtained byThis is realized using a
low-power phase

modulation, cf. [34]
and [15] for more

technical details.

imprinting a unique pseudo random
noise (PRN) code on each laser beam. On the one hand, these binary codes
are perfectly pre-determined - they are generated from a fixed sequence of
ones and zeros which is known on each spacecraft. On the other hand, they
are ’random’ in the sense that their auto-correlation function approximates
a delta distribution. In addition, they are orthogonal, meaning that the
cross-correlation between any two of these codes is vanishing.

The absolute ranging measurement relies on these correlation properties to
determine the delays experienced by the beams as they propagate between the
spacecraft. When the beam is sent, the sending laser’s PRN code is imprinted
on it. This requires a conversion from the digital code to an analog signal,
which in turn requires referencing to the local clock. Therefore, the PRN code
that is actually imprinted on the laser will inherit any timing errors of the
sending spacecraft’s clock.

The beam then propagates to the distant spacecraft, where it is received with
a time delay. The local phasemeter on the receiving spacecraft records the
phase difference between the incoming and the local beam, in which the
PRN code is visible as a step-wise modulation. This modulation pattern is
correlated to a local copy of the code in a delay-locked loop (DLL). Any errors
of the receiving spacecrafts USO will now also affect this correlation, since
the phasemeter uses it as timing reference.
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Figure 3.11: Overview
over USO frequency
distribution and mea-
surements on one op-
tical bench. Red lines
represent laser links,
blue lines are electri-
cal signals and black
lines are digital. Not
depicted is a possible
electrical comparison
between the 2.4 GHz
and 2.401 GHz mod-
ulation signal. The
80 MHz phasemeter
clock can be either
generated from the
2.4 GHz signal or from
the 10 MHz USO (see
section 6.1.2). See sec-
tion 3.7 for a detailed
description of this
diagram.
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Overall, the time-correlation of the received code with the local copy allows
a measurement of the receiver’s clock time at the event of reception of the
modulated beam versus the emitter’s clock time at the event of emission, as
sketched in fig. 3.10. This quantity is called a pseudo-range, which depends
on both the actual distance of the satellites and the errors in the satellite
clocks.

Note that the PRN code has a finite length, and simply repeats itself after a
certain timespan. In the case of LISA, this repetition period is The code repetition

period is expected to
correspond to a few
100 km.

significantly
shorter than the overall light travel time between the spacecraft [34]. The PRN
measurement therefore only determines the pseudo-range up to a constant
offset.

This ambiguity can be resolved by combining the PRN measurement with
ground-based obervations from the ESA tracking stations, which are accurate
enough to determine which repetition of the PRN is actually received.

3.7 frequency distribution system

As sketched in section 3.3, the clocks available for LISA are not precise enough
to allow GW detection without any correction. We outline here the hardware
involved in generating and distributing the different timing signals needed
to suppress clock errors below the requirements. The most relevant signals
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are then modelled in chapter 6, while the actual clock correction algorithm is
given in chapter 13.

Figure 3.11 summarizes the main electrical, optical and digital signal paths
on one optical bench, with a particular focus on the clock signals generated
by the frequency distribution system (FDS). The figure is based on the much
more detailed description in [14] and [15]. All shown frequencies should be
seen as placeholder values and are subject to change.

The USO provides a timing signal, which we assume to be at 10 MHz. This
signal is up-converted to generate two electrical signals, one at 2.4 GHz and
one at 2.401 GHz. These are used to drive the electro-optical modulator (EOM)
on the left-hand and right-hand optical bench, respectively.

The EOMs convert this electrical signal into a phase modulation of the local
laser beam. We will model this modulation in section 5.2.2. In summary,
this can be described by adding two sidebands which are seperated from the
main carrier frequency by the modulation frequency, as shown in fig. 3.12
below.

Figure 3.12: Spectrum
of the modulated laser
beam, from [55]. The
PRN code is visible as
modulation around
the carrier. The two
clock sidebands are
seperated from the
carrier by 2.4 GHz.

Note that all interferometers always interfere beams from a left-handed
optical bench with those from a right-handed optical bench. In addition,
the sidebands on the left- and right-handed optical benches are seperated
by 1 MHz, which will ensure that the resulting sideband-sideband beatnotes
will be offset from the carrier-carrier beatnote by 1 MHz7. This allows the
phasemeter to track both sideband and carrier beatnotes independently. The
spectrum of the beatnote is shown in fig. 3.13.

Figure 3.13: Spectrum
of the recorded beat-
note, from [55]. Two
sideband-beatnotes
appear seperated by
1 MHz from the carrier
beatnote. Both local
and received PRN
codes are visible in the
spectrum.

1 MHz1 MHz
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In addition to producing the sideband, the 2.4 GHz signal is also used as
timing reference from which other signals are derived. Most notably the
80 MHz phasemeter clock8 and the 75 MHz pilot tone signal, both of which
can be generated by integer frequency dividers by 30 and 32, respectively. The

7 This 1 MHz offset has to be taken into account as margin around each beatnote frequency
when designing the frequency plan, cf. section 3.6.2

8 Since the phasemeter clock is not performance critical, it could also be directly synthesized
from the 10 MHz USO signal.
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80 MHz signal is used to drive most onboard processing of the phasemeter.
This includes the field programmable gate array (FPGA) clock used for digital
signal processing (DSP) algorithms, the ADC used to sample the beatnotes,
counters used to generate the PRN modulation signal as well as a timer
providing timestamps for all phasemeter measurements.

The 75 MHz pilot tone, on the other hand, is the primary timing reference
to which all interferometric measurements on one spacecraft are referred, as
explained in section 3.6.3. The conversion chain from the 2.4 GHz sideband
to the 75 MHz pilot tone is therefore performance-critical: the pilot tone
represents the clock to which our measurements are ultimately referred, while
the sidebands are the only measurements we can use to correct errors in
it.

Conversely, the 2.401 GHz sideband does not need to be perfectly stable
with respect to the pilot tone. Instead, it can be referred to the 2.4 GHz
signal by utilizing either the sideband-sideband beatnotes in the reference
interferometers, or even a dedicated electrical measurement between the
2.4 GHz and the 2.401 GHz signals (not depicted in fig. 3.11).
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I N T R O D U C T I O N

4.1 simulations for lisa

LISA is a complex instrument, which combines highly precise on-board
measurements with sophisticated on-ground processing algorithms to achieve
the required precision to detect GWs in space. Some aspects of the full LISA
signal chain – such as the propagation of laser beams through 2.5× 106 km
of free space – are very challenging to accurately reproduce in ground based
experiments.

Still, numerous ground based verifications of different aspects of the LISA
measurement chain exist, including verifications of the working principles
of TDI [30, 54, 59, 74, 79]. The development of TDI and the associated noise
reduction algorithms, however, relies heavily on analytical studies, guided
and verified by numerical experiments.

One main aspect of this thesis work was to develop a more accurate physical
model for the simulated data streams of LISA.

In particular, this applies to

• accounting for large frequency offsets in the modelling of beams,

• simulation of Doppler frequency shifts during beam propagation,

• inclusion of laser frequency locking in the simulation, and

• proper modelling and simulation of different clocks and their impact
on the signal chain.

Besides allowing the development and testing of noise suppression algorithms,
as discussed in part iii, these simulated data sets also allow studies on the
expected LISA performance [39], as well as provide a more realistic basis for
other consortium activities, See lisa-ldc.lal.

in2p3.fr for more
information on the
LDC!

such as the LISA data challenges (LDCs).

This simulation model uses the index and notation conventions summarized
in appendix A.

This activity was performed in the context LISA data-processing group (LDPG)
working group (WG) 7 of the LISA consortium. As such, most of the modelling
presented in this part of the thesis (chapter 4 to chapter 8) was developed in
close collaboration with other members of the LISA consortium, in particular
J.-B. Bayle, and is based on a technical note published internally as [16].
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4.2 simulation tools

Besides the modelling efforts, the author was also heavily involved in imple-
menting most of these models into the LISA consortiums instrument simulator
prototype LISANode [18], as well as its spin-off project LISA Instrument. We
will present results of these simulations in chapter 8.

LISANode is a simulation framework designed to allow the user to build
modular simulation graphs out of atomic computational units, called nodes.
This is realized using a mix of python and C++, where the python code is
responsible for defining the graph structure and interconnecting the different
nodes. The nodes themselves are instead implemented in C++, such that the
final executable is a C++ command line program.

This has the advantage that we can make use of C++ compiler optimizations to
produce a fast executable, as well as make use of legacy code from previous
LISA simulators such as LISACode [66].

The basis of the LISANode was originally developed by J.-B. Bayle, and is well
documented in [20]. It has now become a large software project with close
collaboration of multiple contributors from all over the world.

Besides LISANode, the very same simulation model is also the basis for a new
entirely python based simulator called LISA Instrument [17]. The code base
was again developed by J.-B. Bayle, with regular exchange with and input
from the author of this thesis (among others). It is designed to facilitate fast
explorative studies. All intermediary variables computed during a simulation
with LISA Instrument are directly accessible after the simulation is com-
pleted, which is useful for debugging. In addition, LISA Instrument relies
strongly on the numpy framework, which includes fast optimized functions
for handling these large arrays of data.

A downside of this approach is that with increasing simulation length, mem-
ory becomes a bottleneck. LISANode, on the other hand, is designed to
compute new simulated samples on the fly, keeping only the data in memory
which is required for the current and future samples. This way, the memory
requirements are significantly less sensitive to the length of the simulation,
allowing longer simulation runs on memory constrained machines.

Both LISA Instrument and LISANode are rapidly evolving projects. In this
thesis, we focus on the description of the physical model, and refer to the ex-
tensive in-code documentation for the actual technical implementation.

4.3 simulation overview

We aim to derive a model for the main interferometric measurements of LISA.
The model should capture the most significant performance impacting effects,
while being able to simulate around ten years of data. In addition, we want
to test a wide variety of mission parameters, such that simulation has to be
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able to produce data at a much faster rate than ’real-time’ in order to allow
testing of different scenarios.

Most derivations for this model are performed in continuous time. Actual
numerical simulations rely on a discrete time grid, whose sampling rate
f phy
s has to be chosen in such a way that all signals we are interested in

can be properly represented, and any numerical processing artifacts during
the physics simulation occur outside the LISA measurement band between
10−4 Hz and 1 Hz.

As described in section 7.1, we will also model some of the on-board process-
ing. In particular, we will include a down-sampling step to go from f phy

s to a
lower measurement sampling rate f meas

s , which represents the rate of actual
phasemeter data which is ultimately telemetered down to earth. In addition,
the sampling rate f phy

s can be chosen to directly represent one of the higher
sampling rates present in the real phasemeter, such as the input data for the
DFACS. Besides facilitating easier integration of a dynamics simulation, this
will also allow us to use the same filters in the simulation which are used in
the final stages of the hardware phasemeter prototypes.

Recent investigation [47] have revealed that these sampling rates cannot be
chosen arbitrarily for the real mission, due to constraints of the timing signal
conversion chain inside the phasemeter. A final baseline has not been decided
yet, but we will assume values of

f phy
s = 16 Hz and f meas

s = 4 Hz (4.1)

for the purpose of our simulations. These are compatible with the options pro-
posed in [47], and allow simulations at much higher rate than real-time.

Note that f phy
s is much lower than the phasemeter sampling rate (about

80 MHz [15]), and even more significantly lower than the rate which would be
required to represent the actual EM field of the laser beams, Assuming a laser

wavelength of
λ = 1064 nm, as
proposed for LISA
[10]

which oscillates
at ν0 = 281.6 THz.

As such, we neither simulate the full EM field of the beam itself, nor the full
range of the interferometric beatnote.

Instead, we simulate variables representing the information content of the
beams as well as the final measurements produced by the phasemeter. This
means that most of the physics as well as the phasemeter algorithms, such as
the DPLL described in section 3.5, have to be described by a high-level model
capturing the most significant effects.

4.3.1 Phase vs. Frequency

We want to simulate the information content of a laser beam, which is encoded
in its total phase Φ(τ) or the equivalent instantaneous frequency ν(τ). These
quantities are defined for our beam model in chapter 5. Their relationship to
each other is explored in detail in appendix C.
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As shown in fig. C.1, the total phase of a periodic function increases quickly
with time. This makes using it challenging for numerical simulations, since
any variable representing the total phase will either numerically overflow
when using fixed point arithmetic, or eventually suffer an unacceptable loss
of precision when using floating-point arithmetic.

To avoid these issues, we simulate frequencies instead of phases. Indeed, as
visible in fig. 3.9, the frequencies observed in LISA are controlled to remain at
the same order of magnitude during the whole mission duration.

However, modelling the propagation of laser beams is often easier in phase.
Therefore, we will derive most of the equations in part ii of this thesis both in
units of phase and frequency.

4.3.2 Two-variable representation

In LISA, we will have effects at completely different timescales and dynamic
ranges affecting our signals in various ways.

On the one hand, there are effects which modulate the frequency of our beams
on a time scale of the orbital revolution around the sun, which lies well outside
our measurement band. In addition, these effects tend to have large dynamic
ranges. The Doppler shifts caused by the relative spacecraft velocities, for
example, can fluctuate by several MHz over the mission duration.

On the other hand, we want to track precisely the small phase fluctuations
within our measurement band, which are caused by GWs and instrumental
noises. These have a much smaller magnitude, with the LFN being the
dominant effect at 30 Hz/

√
Hz, while GWs typically cause frequency shift of

a few hundred nHz [10].

To account for this discrepancy, we model these different effects independently.
We decompose the total laser frequency into one constant ν0 and two variables,

ν(τ) = ν0 + νo(τ) + νε(τ) . (4.2)

The constant central laser frequency ν0 = 281.6 THz is identical for all laser
beams, and saved as a separate parameter. In this simulation model, a simple
laser beam would therefore be entirely represented by the couple

(νo(τ), νε(τ)) , (4.3)

where we express both the frequency offsets νo(τ) and the frequency fluctua-
tions νε(τ) in units of Hz.

The large frequency offset νo(τ) will be used to represent frequency plan
offsets and Doppler shifts (both on the order of MHz), as well as the GHz
sidebands. The small frequency fluctuations νε(τ), on the other hand, are
used to describe GW signals and noises, the largest of which are the laser
frequency noise at 30 Hz/

√
Hz.
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Alternatively, we can express eq. (4.2) in phase units by writing the total phase
as

Φ(τ) = ν0τ + φo(τ) + φε(τ) , (4.4)

where the definitions of large phase drifts φo(τ) and small phase fluctuations
φε(τ) As described in

appendix C, we
express phase in unit
of cycles, not
radian.

follow from eq. (C.2),

νo(τ) = φ̇o(τ) and νε(τ) = φ̇ε(τ) . (4.5)

4.3.3 Usage of the two variables

It is important to stress that this decomposition into two variables is entirely
artificial, and in the real mission, we will only have access to the total phase
or the total frequency. Therefore, to produce data representative of the real
instrument telemetry, we have to always consider the sum of the two variables
as the final simulation output. This might raise the question of why we go
to the effort of seperating the whole model in two variables in the first place.
The answer is twofold.

First, we observe that our beatnote frequencies are limited to up to 25 MHz.
Therefore, assuming we use double precision variables, we expect a numerical
noise floor around 10−16 × 25 MHz ≈ 2.5 nHz, which is below the noise level
allocated for the mission (see chapters 8 and 9 for simulation results verifying
this). This means a double precision variable containing the total frequency
should be sufficient to do the GW data analysis. However, we also want to
study sub-dominant noises - and their residual noise levels are often far below
2.5 nHz, as demonstrated in chapters 12 and 13.

Secondly, though we only get the total phase/frequency as raw data from
the instrument, we can still decompose this data into two variables in a
post-processing step, as described in chapter 8 and section 9.1. This is not
strictly required, but will ease the stringent processing requirements of TDI,
see chapter 13.

Therefore, we can actually bypass the computation of the total frequency
to generate data under the assumption that we can perfectly decompose our
signals into deterministic out-of-band and stochastic and in-band effects. This
allows us to achieve a much lower numerical noise floor when studying small
noise residuals, and identify effects which would normally be buried under
the quantization noise of the MHz beatnotes.

We can (and do) still compute the total frequency as the sum of the two
variables, and apply all simulated on-board processing steps to it to generate
more realistic data, as described in chapter 7.
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In this chapter, we derive a model for the generation and propagation of the
laser beams in LISA, as well as their interference at the photodiodes. It is
structured as follows.

We first review the optical bench design of LISA in section 5.1, and introduce
the notation used to identify the different signals present on each optical
bench.

We then define our basic model of a laser beam in section 5.2, including a
model for the sideband modulation. While this description is general, we
give explicit definitions for the laser beams generated by the laser source in
section 5.3. These beams are interfered at the photodiodes, and we model
this interference in section 5.4. Before interference, the beams need to be
propagated from the laser sources to the photodiodes, as described in sec-
tion 5.5.

Finally, we summarize all photodiode signals observed on a single optical
bench in section 5.6.

5.1 optical bench overview

As described in section 3.4, each spacecraft hosts two optical benches, each of
them associated with a laser source and a GRS containing a test mass. Our
goal in this chapter is to derive expressions representing the main signals
observed in the three interferometers on each OB.

In reality, each single interferometer output is implemented using redundant
balanced detection with four QPDs, c.f. [55]. We do not simulate balanced
detection, and only consider a single data stream for each interferometer.
Additional readouts related to the laser beams alignment, such as the DWS
described in section 3.6.1, are not included in the model presented here. We
plan to include them in a future version of the simulation by propagating
additional independent variables representing the different beam tilts.

In addition, we neglect most phase shifts of the beams due to interaction with
optical components.

Figure 5.1 gives an overview of the optical bench, as well as the notation used
for the different signals in our model.

51
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Figure 5.1: Schematics
of the optical design
along with notations
for the laser beam and
beatnote total phases,
here for MOSA ij.
Adapted from [55].

Laser beams at the exit of the laser source1 ij are expressed in terms of
quantities derived from its total phase Φij(τ). We will first present our
general model to represent these modulated laser beams in section 5.2, and
apply it to the actual beams produced in LISA in section 5.3.

We will then model the interference of two modulated beams in section 5.4,
again in general terms. To apply the resulting expressions to the final photo-
diode signal, we first need to derive expressions for propagating the beams
from the laser source to the respective photodiode in section 5.5.

We will give there expressions which enable us to compute the total phase
and frequency of all beams arriving at the photodiodes on optical bench ij, all
implicitly expressed in terms of theSee appendix A.3 for

the definition of the
different time frames

used in the simulation,
and the associated

notation.

associated spacecraft proper time (TPS)
τi:

• Φiscij←ij(τ), the total phase of laser ij after propagation to the photodiode
of the inter-spacecraft interferometer iscij;

• Φrefij←ij(τ), the total phase of laser ij after propagation to the photodiode
of the reference interferometer refij;

• Φtmij←ij(τ), the total phase of laser ij after propagation to the photodiode
of the test-mass interferometer tmij;

• Φiscij←ji(τ), the total phase of laser ji after propagation to the photodiode
of the inter-spacecraft interferometer iscij;

• Φrefij←ik(τ), the total phase of laser ik after propagation to the photodi-
ode of the reference interferometer refij;

1 As discussed in detail in appendix A, we label all elements uniquely associated to a MOSA
using two indices. The first index corresponds to the spacecraft the MOSA is mounted on,
while the second index corresponds to the spacecraft the MOSA sends to and receives light
from. For example, the laser 12 is used as local laser for the optical bench on MOSA 12, which
itself is mounted on spacecraft 1 and points to spacecraft 2.
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• Φtmij←ik(τ), the total phase of laser ik after propagation to the photodi-
ode of the test-mass interferometer iscij.

Any quantities derived from the total phase follow the same notation, with
braces around the inner symbols carrying the indices. For example, νo

ij,c(τ) is
the frequency offset of the carrier virtual local beam at the laser source ij (cf.
section 5.2.4), while (νrefij←ij)

o
c(τ) is the same quantity after it has propagated

to the reference interferometer photodiode.

Finally, we list the available interferometric readouts in section 5.6.

5.2 laser beam simulation

5.2.1 Laser beam model

We want to model the information content of the EM field of a laser beam.
In all generality, the EM field can be modelled by Or alternatively, it

could be described in
all generality by the
antisymmetric EM field
tensor Fµν.

two three-dimensional
vector fields, the electrical field and the magnetic field. For our simulation
modelling, however, we will operate under a number of simplifications.

We work in the plane wave approximation, and assume that any effects
due to wavefront imperfections can be modeled as equivalent longitudinal
pathlength variations. In addition, we neglect effects related to the fields
polarization, consider the waves to propagate in a perfect vacuum and only
model the scalar electric field amplitude2.

This allows us to use a simple model for the electrical field of our laser beam.
At any fixed point inside a spacecraft, its amplitude can be written as

E(τ) = E0(τ) cos(2πΦ(τ)) , (5.1)

using the time coordinates associated with a reference frame at rest for this
point.

In practice, it is often more useful to use a complex representation of such a
signal,

E(τ) = E0(τ)ei2πΦ(τ) , (5.2)

with i as the unit imaginary number.

The physical electrical field amplitude is then given as the real part of the
complex signal,

E(τ) = R[E(τ)] . (5.3)

2 We don’t need to model the magnetic field amplitude, as it is also determined by the electrical
field amplitude [103].
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Figure 5.2: Bessel
functions of the first
kind.
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5.2.2 Sideband modulation

As discussed in section 3.7, the laser beams in LISA will be modulated using
a GHz signal derived from the local clock.

This signal is imprinted on the outgoing laser beam using an EOM, which
creates a phase modulation. The electric field then reads

E(τ) = E0ei2πΦc(τ)eim cos(2πΦm(τ)) , (5.4)

where m is the modulation depth, Φc(τ) is the total phase of the carrier,
and Φm(τ) is the total phase of the modulating signal, both expressed in
cycles.

Following [44], the term eim cos(2πΦm(τ)) in the resulting electric field can be
expanding using the Bessel functions of the first kind Jn. This is known as the
Jacobi-Anger expansion [100], given as

eim cos(Θ) =
∞

∑
n=−∞

in Jn(m)einθ . (5.5)

If the modulation depth m isWe expect that
m ≈ 0.15 [64].

not too large, we can further expand the Bessel
functions to first order in m. As can be seen in fig. 5.2, only the first two
orders have significant contributions for m� 1, and we get

J0(m) ≈ 1, J1(m) ≈ m
2

and Jn(m) ≈ 0 ∀n > 1 . (5.6)

The complex field amplitude of the modulated laser then reads

E(τ) ≈ E0

(
ei2πΦc(τ) + i

m
2

ei2π(Φc(τ)+Φm(τ)) + i
m
2

ei2π(Φc(τ)−Φm(τ))
)

. (5.7)

Let us introduce the upper and lower sideband total phases,

Φsb+(τ) = Φc(τ) + Φm(τ) and Φsb−(τ) = Φc(τ)−Φm(τ) , (5.8)
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such that the modulated laser beam is written as the superposition of three
virtual beams,

E(τ) ≈ E0

(
ei2πΦc(τ) + i

m
2

ei2πΦsb+ (τ) + i
m
2

ei2πΦsb− (τ)
)

(5.9a)

≡ Ec(τ) + Esb+

(τ) + Esb−(τ) (5.9b)

For the purpose of our simulation, we will model Ec(τ), Esb+

(τ) and Esb−(τ)

as independent beams. As before, we are only interested in the phase or
frequency of these beams.

We can decompose the phases in eq. (5.8) in terms of large phase drifts and
small fluctuations, as described in eq. (4.4), to get

Φc(τ) = ν0τ + φo
c (τ) + φε

c (τ) , (5.10a)

Φm(τ) = φo
m(τ) + φε

m(τ) . (5.10b)

Notice that since Φm(τ) represents the 2.4 GHz electrical signal used for
modulation, it contains no term proportional to the central laser frequency ν0.
We define the upper and lower sideband phase drifts and fluctuations,

φo
sb+(τ) = φo

c (τ) + φo
m(τ) and φε

sb+(τ) = φε
c (τ) + φε

m(τ) , (5.11a)

φo
sb−(τ) = φo

c (τ)− φo
m(τ) and φε

sb−(τ) = φε
c (τ)− φε

m(τ) , (5.11b)

such that by plugging eqs. (5.10a) and (5.10b) in eq. (5.8), we recover the usual
two-variable decompositions for the upper and lower sideband total phases,

Φsb+(τ) = ν0τ + φo
sb+(τ) + φε

sb+(τ) , (5.12a)

Φsb−(τ) = ν0τ + φo
sb−(τ) + φε

sb−(τ) . (5.12b)

Equivalently, we can decompose the carrier and modulating signal phases in
terms of frequency offsets and fluctuations,

νc(τ) = ν0 + νo
c (τ) + νε

c (τ) , (5.13)

νm(τ) = νo
m(τ) + νε

m(τ) , (5.14)

such that the upper and lower sideband frequencies can be written as

νsb+(τ) = ν0 + νo
sb+(τ) + νε

sb+(τ) , (5.15)

νsb−(τ) = ν0 + νo
sb−(τ) + νε

sb−(τ) , (5.16)

with the upper and lower sideband frequency offsets and fluctuations,

νo
sb+(τ) = νo

c (τ) + νo
m(τ) and νε

sb+(τ) = νε
c (τ) + νε

m(τ) , (5.17)

νo
sb−(τ) = νo

c (τ)− νo
m(τ) and νε

sb−(τ) = νε
c (τ)− νε

m(τ) . (5.18)
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5.2.3 Pseudo-random noise modulation

As discussed in section 3.6.4, the laser beams will carry an additional modula-
tion with a PRN code used for absolute ranging and timing synchronization.
This step-wise modulation is performed at a relatively high frequency of
around 2 MHz, far outside our simulation bandwidth. We therefore do not
model the actual phase modulation. As shown in [34], this modulation also
causes a small additional noise in our measurement band, at a level below
1 pm/

√
Hz in units of displacement, which we neglect.

Instead, as described in section 6.3.2, we model the PRN measurement by
directly propagating the time deviations of each spacecraft timer with respect
to their TPSs alongside the laser beams. The model used for the onboard
timers themselves is described in section 6.1.3.

Note that at the moment, we only model the PRN measurement in the ISC
interferometers, and completely ignore their presence in the other interferom-
eters.

5.2.4 Model for a modulated beam

From sections 5.2.2 and 5.2.3, we model an actual laser beam using three
independent virtual beams for the carrier, the upper and the lower sidebands,
as well as an independent variable representing the local timer deviations
encoded in the PRN modulation.

In addition, eqs. (5.11a) and (5.11b) show that the information content of the
upper and lower sidebands areOne difference is that

they lie at a different
frequencies, and are

thus affected
differently by Doppler

shifts.

almost identical. We make the assumption
that they can be combined in such a way that we can treat them as one signal,
with a readout noise that is reduced by a factor of

√
2. Therefore, we only

simulate the upper sideband. For clarity, we drop the sign in all sideband
indices and simply use sb when we refer to the upper sideband. Ultimately,
each laser ij is then implemented by propagating at most 5 variables,

νij(τ) ≡ (νo
ij,c(τ), νε

ij,c(τ), νo
ij,sb(τ), νε

ij,sb(τ), δτ̂i(τ)) , (5.19)

where

• νo
ij,c(τ) and νε

ij,c(τ) are the carrier frequency offsets and fluctuations,

• νo
ij,sb(τ) and νε

ij,sb(τ) are the sideband frequency offsets and fluctuations,
and

• δτ̂i(τ) describes the local timer deviations of the generating spacecraft
as described in section 6.1.3, in relevant laser beams only.

We can express all these quantities in units of phase,

Φij(τ) ≡ (φo
ij,c(τ), φε

ij,c(τ), φo
ij,sb(τ), φε

ij,sb(τ), δτ̂i(τ)) , (5.20)

where
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• φo
ij,c(τ) and φε

ij,c(τ) are the carrier phase drifts and fluctuations,

• φo
ij,sb(τ) and φε

ij,sb(τ) are the sideband phase drifts and fluctuations, and

• δτ̂i(τ) still describes the local timer deviations of the generating space-
craft, in relevant laser beams only.

5.3 laser beams at the source

In this section, we derive the expression of a modulated beam generated by
the laser source ij. All signals in this section are functions of the spacecraft
proper time (TPS) of spacecraft i, which we call τi.

As described above, the modulated beam is modelled by the carrier and
sideband virtual beams, as well as the local timer deviations.

5.3.1 Carrier beam

The total phase φij,c(τ) of the carrier at generation is decomposed in terms of
drift and fluctuations,

φo
ij,c(τ) =

∫ τ

τi,0

Oij(τ)dτ and φε
ij,c(τ) = pij(τ) , (5.21)

with Oij(τ) as the carrier frequency offset for this laser source with respect
to the central frequency ν0, and pij(τ) as the laser source phase fluctuations
expressed in cycles. As explained in section 7.3, pij(τ) can either describe the
noise Np

ij(τ) of a cavity-stabilized laser, c.f. appendix D.1, or the fluctuations
resulting from an offset frequency lock, c.f. section 7.3. Likewise, Oij(τ) is
either set as an initial offset from the nominal frequency, or computed based
on the locking conditions.

In terms of frequency fluctuations, we then simply have

νo
ij,c(τ) = Oij(τ) , (5.22a)

νε
ij,c(τ) = ṗij(τ) . (5.22b)

5.3.2 Clock sidebands

As disussed in section 6.1.1, the frequency offsets and fluctuations for the
modulating signal are derived from the pilot tone, which itself is derived
from the USO. They therefore inherit any USO timing errors qi, such that we
have

Φij,m(τ) = νm
ij (τ + qi(τ) + Mij(τ)) (5.23)

for the total phase of the modulating signal. We define here νm
ij = 2.4 GHz

and 2.401 GHz as the

Note that these
frequencies are per
definition at exactly
their nominal values,
while the real
modulation signals
will have a frequency
offset due to the terms
qi and Mi in
eq. (5.23).

constant nominal frequency of the left and right MOSAs,
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respectively. We added a modulation noise term Mij(τ) (c.f. appendix D.2
and section 6.1.2), accounting for any imperfections between the sideband
signal and the pilot tone. These can arise from either the electrical frequency
conversion or the optical modulation. As discussed in detail in section 6.1.1,
we decompose qi into large drifts and small fluctuations:

qi(τ) = qo
i (τ) + qε

i (τ) , (5.24)

where qo
i models large deterministic drifts of the USO while qε

i (τ) describes
stochastic fluctuations.

These are expressed as timing jitter. As such, the total phase of the modulating
signal can be decomposed into

φo
ij,m(τ) = νm

ij (τ + qo
i (τ)) , (5.25a)

φε
ij,m(τ) = νm

ij (q
ε
i (τ) + Mij(τ)) . (5.25b)

Inserting these terms in eqs. (5.11a) and (5.18), we get

φo
ij,sb(τ) =

∫ τ

τi,0

Oij(τ)dτ + νm
ij (τ + qo

i (τ)) , (5.26a)

φε
ij,sb(τ) = pij(τ) + νm

ij (q
ε
i (τ) + Mij(τ)) , (5.26b)

and

νo
ij,sb(τ) = Oij(τ) + νm

ij (1 + q̇o
i (τ)) , (5.27a)

νε
ij,sb(τ) = ṗij(τ) + νm

ij (q̇i(τ) + Ṁij(τ)) . (5.27b)

Note that there is only one clock per spacecraft, such that we use the same
qi for sideband beams on both optical benches. Mij(τ), on the other hand, is
unique for each sideband.

5.4 laser beam interference

Photoreceivers are used to measure the power of the electromagnetic field
of the two interfering laser beams in each interferometer on our optical
benches.

We derive here the expressions of this electromagnetic power near the surface
of a photodiode for two general modulated beams. Note that we do not
consider any noise in the readout of that power yet, such as shot noise.

5.4.1 Beatnote from simple beams

Using definitions given in eq. (5.2), let us write the complex amplitude for
two simple beams 1 and 2 interfering at a photodiode onboard spacecraft i,

E1(τ) = E1,0(τ)ei2πΦ1(τ) and E2(τ) = E2,0(τ)ei2πΦ2(τ) . (5.28)
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We ignore any effects due to spatial dimensions of the beam or the photodiode,
and assume that such effects will be modelled as either an equivalent phase
error in the readout signal, or as an As an example, DWS

could be modelled as a
direct measurement of
beam tilt angles, with
all beam angles
represented by
independent
variables.

independent quantity.

The power of the total electromagnetic field3 measured near the photodiode
is

P(τ) ∝ |E1(τ) + E2(τ)|2 . (5.29)

Substituting the expressions of the two beams yields

P(τ) ∝ |E1,0(τ)|2 + |E2,0(τ)|2

+ 2E1,0(τ)E2,0(τ) cos(2π(Φ1(τ)−Φ2(τ))) .
(5.30)

The power near the photodiode has a periodic component with a total phase
of ΦPD(τ) = Φ1(τ)−Φ2(τ). We call this periodic signal the beatnote.

Let us use the two-variable representation described in eq. (4.4),

Φ1(τ) = ν0τ + φo
1(τ) + φε

1(τ) (5.31a)

Φ2(τ) = ν0τ + φo
2(τ) + φε

2(τ) , (5.31b)

to express the total phase of the beatnote as the sum of large phase drifts and
small phase fluctuations,

ΦPD(τ) = φo
PD(τ) + φε

PD(τ) , (5.32)

with

φo
PD(τ) = φo

1(τ)− φo
2(τ) (5.33a)

φε
PD(τ) = φε

1(τ)− φε
2(τ) . (5.33b)

We simulate the equivalent instantaneous frequency defined as νPD(τ) =

Φ̇PD(τ). It can be written as

νPD(τ) = νo
PD(τ) + νε

PD(τ) , (5.34)

where the beatnote frequency offsets νo
PD(τ) and the beatnote frequency

fluctuations νε
PD(τ) are defined by

νo
PD(τ) = νo

1(τ)− νo
2(τ) (5.35a)

νε
PD(τ) = νε

1(τ)− νε
2(τ) . (5.35b)

5.4.2 Beatnote polarity

A closer look at eq. (5.30) shows that we do not have direct access to the total
phase ΦPD(τ) of the beatnote, but rather measure its cosine value4. Cosine is

3 By using the complex electrical field, this expression already contains an implicit time average,
removing oscillating components at the total laser frequency [44].

4 Note that we could have just as well modelled our signal using a sine instead of a cosine
function, in which case the arbitrariness of this sign is not as obvious. However, we can always
write sin(φ) = cos(φ− π/2), and absorb the additional term π/2 into the definition of the
initial phase to again get a symmetric function. This is valid since the starting time of our
measurements and the initial phase of the beams at that time are completely arbitrary in our
model.
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an even, periodic function, therefore the total phase can only be known up to
a sign and a multiple of 2π.

Physically, the ambiguity in the sign θPD corresponds to the fact that the
electrical signal does not contain any information about which of the two
interfering laser beams is of higher frequency. In practice, however, θPD can
be determined at all times byThe laser frequency

has to be adjustable to
enable the frequency

locking scheme, cf.
section 7.3.

inducing a frequency offset of known polarity
on the local laser beam and observing the resulting change in the beatnote
frequency.

In addition, once all lasers are locked, the beatnote polarities can simply be
read from the frequency plan, as described in section 3.6.2.

Therefore, we will not include this additional factor θPD in the remaining
analysis of this thesis, but instead assume it is either removed directly by the
phasemeter, or in a first processing step on-ground.

5.4.3 Beatnotes from modulated beams

In section 5.2.2, we showed that a modulated laser beam can be written as
the superposition of three virtual beams, the carrier, the upper and the lower
sideband, each of them in the form of a simple beam.

To study the electromagnetic field of two interfering modulated beams near
a photodiode, we write each of the two beams k = 1, 2 as the sum of three
virtual beams,

Ek(τ) = Ec
k(τ) + Esb+

k (τ) + Esb−
k (τ) , (5.36)

with total phases

Φk,c(τ) = 2πν0τ + Φo
k,c(τ) + Φε

k,c(τ) , (5.37a)

Φk,sb+(τ) = 2πν0τ + Φo
k,sb+(τ) + Φε

k,sb+(τ) , (5.37b)

Φk,sb−(τ) = 2πν0τ + Φo
k,sb−(τ) + Φε

k,sb−(τ) , (5.37c)

or the equivalent instantaneous frequencies

νk,c(τ) = ν0 + νo
k,c(τ) + νε

k,c(τ) , (5.38a)

νk,sb+(τ) = ν0 + νo
k,sb+(τ) + νε

k,sb+(τ) , (5.38b)

νk,sb−(τ) = ν0 + νo
k,sb−(τ) + νε

k,sb−(τ) . (5.38c)

We again need to compute

P(τ) ∝ |E1(τ) + E2(τ)|2

=
∣∣∣Ec

1(τ) + Esb+

1 (τ) + Esb−
1 (τ) + Ec

2(τ) + Esb+

2 (τ) + Esb−
2 (τ)

∣∣∣2 .
(5.39)

Expanding this expression yields cross terms between all 6 virtual beams,
which correspond to beatnotes at their difference frequencies.

Since the sidebands are modulated at a relatively high frequency of about
2.4 GHz, most of these beatnote frequencies are far outside of the phasemeters
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measurement bandwidth of approximately 5 MHz to 25 MHz [46]. Only three
lie inside this region,

• The carrier-carrier beatnote, of total phase and frequency

ΦPD,c(τ) = Φ1,c(τ)−Φ2,c(τ) , (5.40a)

νPD,c(τ) = ν1,c(τ)− ν2,c(τ) , (5.40b)

• The upper sideband-upper sideband beatnote, of total phase and fre-
quency

ΦPD,sb+(τ) = Φ1,sb+(τ)−Φ2,sb+(τ) , (5.41a)

νPD,sb+(τ) = ν1,sb+(τ)− ν2,sb+(τ) , (5.41b)

• The lower sideband-lower sideband beatnote, of total phase and fre-
quency

ΦPD,sb−(τ) = Φ1,sb−(τ)−Φ2,sb−(τ) , (5.42a)

νPD,sb−(τ) = ν1,sb−(τ)− ν2,sb−(τ) , (5.42b)

The frequency offsets νo
c (τ), νo

sb+(τ), and νo
sb−

(τ) are chosen such that the
three aforementioned beatnotes never overlap (c.f. section 7.3) and can be
tracked individually. Each of these beatnote frequencies can be decomposed
again as a sum of large frequency offsets and small fluctuations, and we
recover equations similar to eqs. (5.35a) and (5.35b). Therefore, the virtual
beams of a modulated laser beam can be implemented as three distinct beams
in the simulation, from which we form three beatnotes.

Because we only consider one sideband virtual beam (c.f. section 5.2.4), we
only simulate the carrier-carrier and one of the sideband-sideband beat-
notes.

5.5 laser beam propagation

Before giving the expression for the signals detected on all photodiodes in
section 5.6, we need to derive a model for the propagation of the laser beams
from the laser source to the different photodiodes.

As described in section 5.2.4, we model modulated beams as the superposi-
tion of simple beams, each treated independently. Consequently, the same
propagation equations The result of that

propagation will of
course be different
when applied to the
different
variables!

apply to both carrier and sideband beams. We will
therefore suppress the labels ()c/sb for all variables, with the understanding
that all equations are valid for both carrier and sideband beams.

The propagation of the timer deviations is modelled independently in sec-
tion 6.3
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5.5.1 Propagation of a simple beam

In this section, we study the relationship between the phase and frequency of
a simple beam at two different points in space, A and B. Let us call τA and τB

the proper times of observers co-moving with A and B.

We assume that the total phase of the beam before propagation is given as a
function of τA, which we call ΦA(τ). We use eq. (4.4) to write it as the sum of
a nominal frequency, large phase drifts, and small phase fluctuations,

ΦA(τ) = ν0τ + φo
A(τ) + φε

A(τ) . (5.43)

The total phase after propagation can be written as a function of τB, which
we write as ΦB(τ). In all generality, it is given by

ΦB(τ) = ΦA(τBA(τ)) , (5.44)

where τBA(τ) is the time at which a photon is emitted at A, expressed in the
time coordinate τA, as a function of the time of its reception at B, expressed
in the time coordinate τB.

In the simulation, we implement this propagation by applyingIn LISANode and LISA

Instrument, fractional
delays are

implemented using
Lagrange interpolating

polynomials, see
appendix B.

fractional
delay filters on time series generated according to the timescale of τA. For
this application, it is most useful to introduce the proper pseudo-range (PPR),

dBA(τ) = τ − τBA(τ) , (5.45)

such that

ΦB(τ) = ΦA(τ − dBA(τ)) . (5.46)

Note that this PPR includes not only the time of flight of a photon, but also
conversions between reference frames associated to τA and τB.

Since we model small in-band and large out-of-band effects independently
(c.f. section 4.3.2), we need to decompose the PPR in a similar manner,

dBA(τ) = do
BA(τ) + dε

BA(τ) , (5.47)

with do
BA(τ) describing slowly varying PPR offsets (e.g., due to constant

pathlengths and variations in orbital motion, relativistic effects, and coordinate
transformations) and dε

BA(τ) as small in-band PPR fluctuations (e.g., due to
gravitational waves and optical path noises).

Applying this decomposition to eqs. (5.43) and (5.44), we have

ΦB(τ) = ν0 · [τ − do
BA(τ)− dε

BA(τ)] + φo
A(τ − do

BA(τ)− dε
BA(τ))

+ φε
A(τ − do

BA(τ)− dε
BA(τ)) .

(5.48)

Since both dε
BA(τ) and φε

A(τ) represent small fluctuations, we neglect effects
to second order in any quantity with the superscript ( )ε. We expand the
previous equation to first oder in dε

BA(τ) and φε
A(τ) to get

ΦB(τ) = ν0 · [τ − do
BA(τ)− dε

BA(τ)] + φo
A(τ − do

BA(τ))

− νo
A(τ − do

BA(τ)) · dε
BA(τ) + φε

A(τ − do
BA(τ)) .

(5.49)
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We can express the phase after propagation as the sum of large phase drifts
and small phase fluctuations, ΦB(τ) = ν0τ + φo

B(τ) + φε
B(τ), with

φo
B(τ) = φo

A(τ − do
BA(τ))− ν0do

BA(τ) , (5.50a)

φε
B(τ) = φε

A(τ − do
BA(τ))− (ν0 + νo

A(τ − do
BA(τ))) · dε

BA(τ) . (5.50b)

We write the equivalent instantaneous frequency as the sum of a large fre-
quency offsets and small frequency fluctuations,

νB(τ) = ν0 + νo
B(τ) + νε

B(τ) , (5.51)

where we have defined

νo
B(τ) = φ̇o

B(τ) = νo
A(τ − do

BA(τ))
(
1− ḋo

BA(τ)
)
− ν0ḋo

BA(τ) , (5.52a)

νε
B(τ) = φ̇ε

B(τ) = νε
A(τ − do

BA(τ))
(
1− ḋo

BA(τ)
)

− (ν0 + νo
A(τ − do

BA(τ))) · ḋε
BA(τ) .

(5.52b)

Here, we have neglected first order terms in ν̇o
Adε

BA(τ), so these equations are
only valid if the laser frequency is evolving slowly.

To estimate the order of magnitude of the term ν̇o
Adε

BA(τ) we neglected com-
pared to the term νo

Aḋε
BA(τ) we included, we can observe the rate of change

in the example frequency plan presented in fig. 3.9. This is plotted in fig. 5.3.
As we can see, we have ν̇o

A < 4 Hz s−1 for the whole 4 year duration. νo
A, on

the other hand, is of the order of 10 MHz. We consider both νo
A and ν̇o

A as
constant scaling factors for this estimate.

dε
BA(τ) and ḋε

BA(τ) are noise terms, which we can evaluate in the frequency
domain. We have

F
[
ḋε

BA(τ)
]
= 2π fF [dε

BA(τ)] . (5.53)

The usual LISA measurement band is 10−4 Hz to 1 Hz, such that even at the
lower limit of 10−4 Hz, we have

νo
AF

[
ḋε

BA
]
≈ 104 Hz s−1F [dε

BA]

� ν̇o
AF [dε

BA] ≈ 4 Hz s−1F [dε
BA] .

(5.54)

Note that the term νo
Aḋε

BA(τ) is already At the time of writing,
we actually scale all
pathlength noise terms
with just ν0 in both
LISANode and LISA

Instrument. This is
planned to be updated
to reflect the equations
in this thesis in the
near future.

a very small correction to the dominant
term ν0ḋε

BA(τ), such that we can savely neglect these additional terms.

5.5.2 Propagation inside the spacecraft

Let us first study the propagation of a simple beam inside a single spacecraft
i. We can locally assume a flat spacetime, such that the two time coordinates
are one and the same. As such, all functions in this subsection depend on the
associated TPS τi.

Here, the point B represents the target interferometer, e.g., B = iscij, while A
represents the laser source, e.g., A = ij.
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Figure 5.3: Magnitude
of beatnote frequency
derivatives for all 9
beatnotes in exam-
ple frequency plan,
data provided by G.
Heinzel.
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Using eq. (5.47), we can model the PPR as a the sum of a constant and a
noise due to small optical pathlength fluctuations, expressed in seconds, so
we define

do
BA(τ) = CB←A and dε

BA(τ) = nB←A(τ) . (5.55)

Substituting these expressions in eqs. (5.50a) and (5.50b) yields the propagated
phase drifts and fluctuations,

φo
B(τ) = φo

A(τ − CB←A)− ν0CB←A , (5.56a)

φε
B(τ) = φε

A(τ − CB←A)− (ν0 + νo
A(τ − CB←A))nB←A(τ) . (5.56b)

Expressed as equivalent frequencies, from eqs. (5.52a) and (5.52b), we have

νo
B(τ) = νo

A(τ − CB←A) , (5.57a)

νε
B(τ) = νε

A(τ − CB←A)− (ν0 + νo
A(τ − CB←A))ṅB←A(τ) . (5.57b)

Note that our notation for the left-hand side of eqs. (5.56a), (5.56b), (5.57a)
and (5.57b) has to capture both the photodiode the beam is interfering at as
well as the source laser.

We will therefore include both of these informations in the label of the propa-
gated beam, as introduced in section 5.1. For example, the phase fluctuations
of the local beam in the ISC interferometer would be φε

iscij←ij(τ).

We describe below the noises currently modelled in the simulation for the
different interferometers.
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5.5.2.1 Local beams in inter-spacecraft and reference interferometers

We add a generic optical pathlength noise term to the propagated beam.
Therefore, we apply eqs. (5.56a), (5.56b), (5.57a) and (5.57b) with

Ciscij←ij = 0 , (5.58a)

niscij←ij = Nob
iscij←ij(τ) . (5.58b)

5.5.2.2 Adjacent beams in test-mass and reference interferometers

The beams are exchanged between the optical benches using an optical fibre.
We model any non-reciprocal noise terms related to the propagation through
these fibres by backlink noise term Nbl

ij←ik(τ). We model it as an equivalent
pathlength change in seconds. In addition, as before, we add an optical
pathlength noise term, such that we can apply eqs. (5.56a), (5.56b), (5.57a)
and (5.57b) with

C(ref/tm)ij←ik = 0 , (5.59a)

n(ref/tm)ij←ik = Nbl
ij←ik(τ) + Nob

(re f /tm)ij←ik(τ) . (5.59b)

5.5.2.3 Local test-mass interferometers

As shown in fig. 5.1, the local laser beam is reflected off the test mass before
impinging on the photodiode associated with the local test-mass interferome-
ter.

In reality, the motion of the test-mass and spacecraft will be coupled by the
DFACS, as described in section 3.4.4. A detailed study for the perfomance
analysis of this control loop is outside the scope of this thesis, see [12] for
details of the expected performance based on LISA Pathfinder.

For this thesis, we will simply assume that the local laser beam picks up an
additional noise term Nδ

ij(τ) due to the movement of the free-falling test mass,
which we model in appendix D.3. This noise is assumed to represent the
movement of the test-mass towards the measuring optical bench, such that a
positive value corresponds to an decrease in pathlength, and thus a decrease
of the delay received by the beam, which in turn causes a positive phase
shift.

In addition, we include Note that this noise is
missing in the actual
simulation at the time
of writing of the thesis,
and should be added
in a future version. We
include it in the
analytical model for
completeness.

a second noise term N∆
ij (τ) due to the movement of the

spacecraft, which is assumed to represent the movement of the optical bench
away from the test-mass5. A positive value now corresponds to an increase in
pathlength. See fig. 5.4 for a sketch of how we define these quantities.

Notice that both of these terms enter with a factor 2, since the beam travels to
the test-mass and back.

5 In other words, both Nδ
ij(τ) and N∆

ij (τ) are given by the displacement vector of test-mass and
optical bench, projected on the same vector pointing towards the distant spacecraft. Note that
at the time of writing, only Nδ

ij(τ) is included in the simulation.
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Figure 5.4: Defini-
tion of line-of-sight
displacement of test-
masses and optical
benches. Positive val-
ues of Nδ

ij and N∆
ij

indicate movement
towards the distant
spacecraft.

−→
Nδ

ji

−→
N∆

ji

←−
N∆

ij

←−
Nδ

ij

Therefore, we apply eqs. (5.56a), (5.56b), (5.57a) and (5.57b) with

Ctmij←ij = 0 , (5.60a)

ntmij←ij = 2(N∆
ij (τ)− Nδ

ij(τ)) + Nob
tmij←ij(τ) , (5.60b)

to model the propagation to the local test-mass interferometer, where we again
add an additional noise term accounting for optical pathlength noise.

5.5.3 Inter-spacecraft propagation

Let us now focus on the inter-spacecraft propagation of a simple laser beam
received byFollowing

appendix A.1, this
laser beam was emitted

by spacecraft j and is
received by spacecraft i.

the telescope ij.

The phase and frequency of the beam before propagation is naturally ex-
pressed as a function of emitter TPS, τj, while those of the received beam, as
well as the PPR, are expressed as functions of the receiver TPS, τi.

For this subsection, we consider the spacecraft as free-falling point masses,
and model effects due to orbital mechanics and GWs. In addition, we include
the noise term N∆

ij introduced in section 5.5.2.3, accounting for jitter of the
spacecraft position with respect to its nominal position. As before, we only
consider the displacement within the sensitive direction, with a positive value
indicating movement towards the distant spacecraft, as depicted in fig. 5.4.
Therefore, both N∆

ij terms cause a decrease in pathlength between the two
optical benches.

Following eq. (5.47), the PPR offsets do
ij(τ) should contain any large out-of

band fluctuations. This includes effects due to post-Minkowskian expansions
and conversions between different reference frames. We do not repeat the full
calculation of these expression, but instead rely on the results presented in
[11] for the simulation results presented in this thesis.

We include the effect of gravitational signals, the spacecraft jitter and a small
For this term, we don’t

distinguish between
noise added by the

sending and receiving
spacecraft.

optical pathlength noise term in the PPR fluctuations,

dε
ij(τ) = Hij(τ)− N∆

ji (τ − do
ij(τ))− N∆

ij (τ) + Nob
iscij←ji(τ) . (5.61)
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Note that the distant spacecrafts jitter enters at the time of emission, while
the local one enters at the time of reception.

Hij(τ) is the overall effect of GWs integrated over the photon path, expressed
as the variation of the photon time of flight. We do not compute the actual
values of the Hij(τ) in the simulation, but treat them as an external input
provided by other consortium WGs6.

Substituting these expressions in eqs. (5.50a) and (5.50b) yields the phase drifts
and fluctuations of the beam received by MOSA ij, which will be measured
in iscij,

φo
iscij←ji(τ) = φo

ji(τ − do
ij(τ))− ν0do

ij(τ) , (5.62a)

φε
iscij←ji(τ) = φε

ji(τ − do
ij(τ))− (ν0 + νo

ji(τ − do
ij(τ)))

×
(

Hij(τ)− N∆
ji (τ − do

ij(τ))− N∆
ij (τ) + Nob

iscij←ji(τ)
)

.

(5.62b)

Expressed as equivalent frequencies, from eqs. (5.52a) and (5.52b), we have

νo
iscij←ji(τ) = νo

ji(τ − do
ij(τ))(1− ḋo

ij(τ))− ν0ḋo
ij(τ) , (5.63a)

νε
iscij←ji(τ) = νε

ji(τ − do
ij(τ))(1− ḋo

ij(τ))− (ν0 + νo
ji(τ − do

ij(τ)))

×
(

Ḣij(τ)− Ṅ∆
ji (τ − do

ij(τ))(1− ḋo
ij(τ))

− Ṅ∆
ij (τ) + Ṅob

iscij←ji(τ)
)

.

(5.63b)

5.6 photodiode signals

In this section, we give an overview over the different interferometric sig-
nals on optical bench ij. They are computed using the usual two-variable
decomposition, as described in section 5.4.

Photoreceivers, which consists of photodiodes and the associated readout
electronics, convert optical power at the photodiode surface to a proportional
voltage which can be processed further. As discussed in section 5.4.1, the
EM-field at the photodiode has a time-varying component, of which we model
only the total phase or frequency. The electrical voltage produced by the
photoreceiver will therefore also be time-varying, and we again model only
its total phase or frequency. It consists of the phase/frequency of the EM
field at the photodiode, plus an additional readout noise term Nro(τ), whose
magnitude for each interferometer is described in appendix D.5. It accounts
for both optical effects, like shot noise, as well as electronic noise added by
the photoreceiver.

Since we do not really distinguish between different noises related to this
readout, we simply call the resulting signal the photodiode signal.

6 We refer to section 2.2 for how GWs affect light propagation times in general, and to the
literature for a more detailed treatment in the case of LISA, e.g., [94].
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In summary, we model the photodiode signals in the ISC interferometer as

φo
iscij,c/sb(τ) = (φiscij←ji)

o
c/sb(τ)− (φiscij←ij)

o
c/sb(τ) , (5.64a)

νo
iscij,c/sb(τ) = (νiscij←ji)

o
c/sb(τ)− (νiscij←ij)

o
c/sb(τ) , (5.64b)

φε
iscij,c/sb(τ) = (φiscij←ji)

ε
c/sb(τ)− (φiscij←ij)

ε
c/sb(τ) (5.64c)

+ Nro
iscij,c/sb(τ) ,

νε
iscij,c/sb(τ) = (νiscij←ji)

ε
c/sb(τ)− (νiscij←ij)

ε
c/sb(τ) (5.64d)

+ Ṅro
iscij,c/sb(τ) ,

while those in the reference and test-mass interferometers are given as

φo
ifoij,c/sb(τ) = (φifoij←ik)

o
c/sb(τ)− (φifoij←ij)

o
c/sb(τ) , (5.65a)

νo
ifoij,c/sb(τ) = (νifoij←ik)

o
c/sb(τ)− (νifoij←ij)

o
c/sb(τ) , (5.65b)

φε
ifoij,c/sb(τ) = (φifoij←ik)

ε
c/sb(τ)− (φifoij←ij)

ε
c/sb(τ) (5.65c)

+ Nro
ifoij,c/sb(τ) ,

νε
ifoij,c/sb(τ) = (νifoij←ik)

ε
c/sb(τ)− (νifoij←ij)

ε
c/sb(τ) (5.65d)

+ Ṅro
ifoij,c/sb(τ) ,

where ’ifo’ can stand for either ’ref’ or ’tm’.

Note that we give here only the signals for optical bench ij, with the index
k on the right-hand side chosen such that whole set of indices satisfies
{i, j, k} = {1, 2, 3}.
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In this chapter we describe how we model the onboard clocks, and how their
timing signals are distributed through the constellation.

As described in section 3.5, the electric photodiode signals from chapter 5
are digitized by an analog-to-digital converter (ADC) before their phase is
reconstructed in a digital phase-locked loop (DPLL). Any timing jitter of
the ADC itself will be corrected by overlaying each signal with a pilot tone
(cf. section 3.6.3), which therefore effectively acts as timing reference for the
phasemeter measurements. We will assume this pilot tone correction works
perfectly, and directly consider the pilot tone as the reference clock for all
phasemeter measurements.

As described in section 3.7, different timing signals are derived from the USO
and distributed through the constellation, which we will model in section 6.1.
We will then formulate how errors in these timing signal affect the phase and
frequency of the digitized signal in section 6.2.

Finally, we give a high-level model of the PRN measurement (cf. section 3.6.4)
in section 6.3.

6.1 clock model

We describe here all signals and effects related to the onboard clocks. For
most of the clock signals, we give specific frequency values, which are to be
seen as placeholders until the design of the frequency distribution system
(FDS) for LISA is finalized.

6.1.1 USO model

In LISA, each spacecraft uses one dedicated clock from which all timing
signals are derived. It is realized by an ultra-stable oscillator (USO), generating
a clock signal with a nominal frequency of νUSO = 10 MHz.

Following appendix C.1.2, we model the USO signal as a periodic signal of
the form

VUSO(τ) = cos(2πνUSO[τ + qi(τ)]) , (6.1)

where we further decompose the clocks timing jitter qi(τ) using two time
series,

qi(τ) = qo
i (τ) + qε

i (τ) . (6.2)

69
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Figure 6.1: Overview
over USO frequency
distribution on one
optical bench, based
on [15]. Not depicted
is a possible electri-
cal comparison be-
tween the 2.4 GHz
and 2.401 GHz signal.
Note that the PM clock
is not performance
critical, and could be
synthesized from ei-
ther the 2.4 GHz signal
or directly from the
USO, indicated by two
possible connections in
dotted lines.

qo
i (τ) models large deterministic effects, such as clock frequency offsets and

drifts, while qε
i (τ) models stochastic fluctuations.

qi(τ) describes the timing deviations of the local USO hosted by spacecraft i,
expressed in the TPS τi. We simulate the clock in terms of fractional frequency
fluctuations, where the two components are given by

q̇o
i (τ) = y0,i + y1,iτ + y2,iτ

2 and q̇ε
i (τ) = Ṅq

i (τ) , (6.3)

with a random jitter Ṅq
i (τ), a constant deterministic frequency offset y0,i, a

linear frequency drift scaled by the constant y1,i, and a quadratic frequency
drift scaled by the constant y2,i. Note that constant time offsets of the onboard
timers are introduced and discussed in section 6.1.3.

See appendix C for a detailed overview on clock frequency stability. The
model we use in the simulation is given in appendix D.8, and is based on an
estimate for the LISA USO performance provided by the SYRTE ’Theory and
Metrology group’ [81].

6.1.2 Derived clock signals

As described in section 3.7, the USO signal is converted to different frequencies
in the FDS. Figure 6.1 shows a schematic overview of how the most relevant
clock signals are generated on each spacecraft.

The USOs 10 MHz signal is upconverted to 2.4 GHz and 2.401 GHz. These
signals are used as input for EOMs on the left- and right-handed optical
benches to create the optical sidebands discussed in chapter 5.

In addition, the 2.4 GHz signal is used to generate a 75 MHz pilot tone and
a 80 MHz phasemeter clock using frequency dividers. Note that the 80 MHz
phasemeter clock could also be directly synthesized from the USO, since it is
not performance critical.
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Figure 6.2: Noises
added by different
components in the
frequency distribution
system, expressed in
fractional frequency.
USO noise is domi-
nant, and would cause
equivalent displace-
ment noise many or-
ders of magnitude
above 1 pm assuming
a 25 MHz beatnote.
Noise added by opti-
cal modulation and
/32 divider are perfor-
mance critical.
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PHARAO USO measured @ CNES (provided by P. Wolf)

LISANode USO model (ADEV = 7.5× 10−14)

x240 multiplier measured @ AEI (provided by K. Yamamoto)

LISA laser prototype measured @ ILT (provided by M. Born)

/32 divider measured @ AEI (provided by K. Yamamoto)

1pm requirement @ 25 MHz

Figure 6.2 gives the expected noise of the different components1. These noise
levels are shown converted to fractional frequency fluctuations, such that
they can all be compared on the same scale. As a reference, we give the 1 pm
requirement curve converted to fractional frequency fluctuations of a 25 MHz
beatnote, as derived in appendix C.5.1.

We see that the components in the conversion chain from 10 MHz USO to
75 MHz pilot tone add additional timing at a much lower level than that of
the USO itself.

Therefore, we assume that the statistical properties of the pilot tone VPT(τ) are
identical to those of the generating USO, as described in section 6.1.1. In the
following, qi(τ) therefore directly stands for the pilot tone timing jitter.

We do not model the 80 MHz signal, as its timing jitter is removed by the
See section 3.6.3 for
more information on
pilot tone
correction.

pilot tone correction, which we assume works perfectly.

Imperfections in the frequency conversion between the pilot tone and any
other clock derived signal are modelled by an additional noise term on the
derived signal. For example, the total phase of the 2.4 GHz signal is modelled
as

2.4 GHz× (τ + qi(τ) + Mij(τ)) , (6.4)

with Mij(τ) as an additional modulation noise term. In principle, Mij(τ)

includes both errors from the ÷32 frequency divider and the optical modu-
lators. However, as we see in fig. 6.2, noise from the In particular the fibre

amplifiers behind the
EOMs, see e.g. [14] for
more information. We
show in fig. 6.2 more
recent measurement,
which are also limited
by noise from the fibre
amplifier.

optical modulators is
dominant, and we give a model in appendix D.2.

The 2.401 GHz signals phase, on the other hand, contains additional noise
terms due to the ×240 and ×240.1 frequency converters. This additional
noise is expected to surpass the optical modulation noise, and would be
limiting the clock correction performance. We show that it can be removed by

1 We thank K. Yamamoto and M. Born from the Albert Einstein Institute (AEI) as well as P. Wolf
from SYRTE for providing these measurements!
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utilizing the sideband beatnotes in the reference interferometers, as described
in section 13.3.3.2.

Therefore, the performance-critical part of the frequency conversion chain is
to go from the 75 MHz pilot tone to the 2.4 GHz optical sideband. As we will
show in chapter 13, the corresponding modulation noise Mij will ultimately
limit the achievable clock correction.

6.1.3 Timer model

In order to model timestamping and pseudo-ranging (c.f. section 6.3), we
not only need the frequency fluctuations of the local clock, but also the time
shown by each spacecraft timer. These times must be tracked down to at least
ns-precision while reaching values of around 108 s at the end of the 10 years
of extended mission [55]. The use of double-precision floating-point numbers
is not compatible with such a dynamic range. Therefore, we simulate offsets
of that timer relative to the spacecraft proper time (TPS) δτ̂τi

i (τ) ≡ δτ̂i(τ),
called timer deviations, which evolve slowly with time. The total on-board
clock time (THE)2 τ̂τi

i (τ) as a function of the TPS can then be computed by

τ̂τi
i (τ) = τ + δτ̂i(τ) . (6.5)

Timer deviations are closely related to the USO timing jitter,

δτ̂i(τ) = qi(τ) + δτ̂i,0 . (6.6)

In this equation, δτ̂i,0 accounts for the fact that we don’t know the true time
τi,0 at which we turn on the timer, i.e., we can’t relate the initial phase of the
clock signal qi(τi,0) to any external time frame. Using eq. (6.3), we obtain

δτ̂i(τ) = δτ̂i,0 +
∫ τ

τi,0

Nq
i (τ
′)dτ′ + y0,iτ +

1
2

y1,iτ
2 +

1
3

y2,iτ
3 (6.7)

for the timer deviations, which corresponds to

• a constant time offset δτ̂i,0,

• a random walk following the frequency fluctuations Nq
i (τ),

• a linear drift due to the frequency offset y0,i,

• a quadratic component due to the linear frequency drift y1,i, and

• a cubic component due to the quadratic frequency drift y2,i.

Note that the deterministic frequency drift and offset are the most relevant
parts for the long term evolution; however, the stochastic part is typically not
a white noise, and can reach values larger than our desired ns-timing accuracy.
As such, we consider the total δτ̂i(τ) for computing timing errors.

2 This timescale will be realized in practice by the so-called spacecraft elapsed time (SCET),
which is the only timescale directly available onboard the satellites.
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6.2 signal sampling

6.2.1 Signal sampling in terms of phase

The photodiode signals recorded on spacecraft i (cf. chapter 5) are generated
according to the spacecraft proper time (TPS) τi. The measurements which
are eventually telemetered, however, are As described above,

the onboard clock time
is for our purposes
defined by the pilot
tone, which is the
timing reference for all
phasemeter
measurements.

recorded and timestamped in the
on-board clock time (THE). This means that we need to simulate a resampling
of the photodiode signals from the TPS to the THE. If an arbitrary signal s is
expressed in terms of phase, this can be achieved following eq. (A.5),

sτ̂i(τ) = sτi(ττ̂i
i (τ)) . (6.8)

Therefore, we need to compute the TPS ττ̂i
i (τ) given a THE time τ. This

quantity can be computed by writing eq. (6.5) evaluated at ττ̂i
i (τ),

τ̂τi
i (ττ̂i

i (τ)) = ττ̂i
i (τ) + δτ̂i(τ

τ̂i
i (τ)) . (6.9)

We apply the identity eq. (A.5) to the left-hand side, which gives after rear-
ranging

ττ̂i
i (τ) = τ − δτ̂i(τ

τ̂i
i (τ)) . (6.10)

We can solve this implicit equation for ττ̂i
i (τ) iteratively, by computing

δτ̂0
i (τ) = δτ̂i(τ) , (6.11a)

δτ̂n+1
i (τ) = δτ̂i(τ − δτ̂n

i (τ)) , (6.11b)

such that

lim
n→∞

δτ̂n
i (τ) = δτ̂i(τ

τ̂i
i (τ)) . (6.12)

Since the timer deviations are evolving slowly, the iteration converges quickly.
In the simulation, we model the timestamping error by iterating the equation
twice, to get

ττ̂i
i (τ) ≈ τ − δτ̂2

i (τ) . (6.13)

We then perform Lagrange interpolation to time shift all measurements to the
correct recording times, i.e., for any frame-independent measurement sτi(τ)

expressed in the TPS, we compute

sτ̂i(τ) ≈ sτi(τ − δτ̂2
i (τ)) . (6.14)

Note that this is only valid for measurements expressed in phase. As we will
see in section 6.2.2, Equation (6.8) does not hold when the measurements are
expressed in terms of frequency.
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Figure 6.3: Error in
iterative computation
of ττ̂i

i (τ) at different
iterative orders.
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6.2.1.1 Validity of iterative solution

We want to evaluate if eq. (6.13) remains valid for the whole mission duration,
such that we can use it in our simulations. At very long time scales, the timer
deviations are dominated by the deterministic effects in eq. (6.7), i.e., by qo

i (τ).
As such, we can approximate

τ̂τi
i (τ) ≈ τ + y0,iτ +

1
2

y1,iτ
2 +

1
3

y2,iτ
3 . (6.15)

Assuming the clock parameters are given by eq. (D.12), we can compute
anIn general, the inverse

function of a 3rd order
polynomial is not

guaranteed to exist.
Given the very small

values for the
coefficients y0,i, y1,i

and y2,i, however,
eq. (6.15) is a

one-to-one function for
the mission duration,

with a unique inverse.

analytical inverse of that function (using the computer algebra system
Mathematica), such that we get an exact solution for ττ̂i

i (τ). We can then
evalute that solution using exact integer arithmetic. This allows us to evalute
the errors in our iterative solutions, which are plotted in fig. 6.3. Assuming
that we want to compute ττ̂i

i (τ) with ns accuracy, we observe that:

• δτ̂0
i (τ) is not sufficient even on the time scale of days,

• δτ̂1
i (τ) is sufficient at time scales up to 3 years,

• δτ̂2
i (τ) is sufficient for the full extended mission duration of 10 years.

6.2.2 Sampling errors in terms of frequency

The effect of resampling can also be expressed in terms of total frequency,
where it manifests as a Doppler-like frequency shift. Note that we compute
the frequency now by taking the derivative with respect to the THE, since
this is the time reference which the phasemeter will use to measure the
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frequency of the signal. From eq. (6.21), and denoting function composition
as (Φτi

PD ◦ ττ̂i
i )(τ) = Φτi

PD(τ
τ̂i
i (τ)), we have

ντ̂i
PD(τ) =

dΦτ̂i
PD

dτ
(τ) =

d(Φτi
PD ◦ ττ̂i

i )

dτ
(τ) . (6.16)

Using the chain rule,

ντ̂i
PD(τ) =

dΦτi
PD

dτ

(
ττ̂i

i (τ)
)
× dττ̂i

i
dτ

(τ) = ντi
PD(τ

τ̂i
i (τ))× dττ̂i

i
dτ

(τ) . (6.17)

To compute the derivative of ττ̂i
i (τ), we differentiate eq. (6.10),

dττ̂i
i

dτ
(τ) = 1− d(δτ̂i ◦ ττ̂i

i )

dτ
(τ) = 1− dδτ̂i

dτ

(
ττ̂i

i (τ)
)
× dττ̂i

i
dτ

(τ) . (6.18)

Finally, using dδτ̂i
dτ = q̇i(τ), we can rearrange this equation, to get

dττ̂i
i

dτ
(τ) =

1

1 + q̇i(τ
τ̂i
i (τ))

, (6.19)

which yields

ντ̂i
PD(τ) =

ντi
PD(τ

τ̂i
i (τ))

1 + q̇i(τ
τ̂i
i (τ))

≈ ντi
PD(τ − δτ̂2

i (τ))

1 + q̇i(τ − δτ̂2
i (τ))

(6.20)

for the total frequency.

6.2.3 Sampling in two-variable decomposition

We now want to describe the effect of timing errors in the two-variable
decomposition. This will allow us to decompose the previously described
sampling errors into two seperate effects, large, deterministic offsets in the
measurement timestamps and small, stochastic fluctuations which enter as an
additional noise term. The latter represent what is often referred to as "clock
noise", see, e.g., [64]. However, we want to reinforce that this decomposition
is entirely artifical – both of these effects described the same physical process,
the instability of the USO, just on different time scales.

6.2.3.1 Decomposition in terms of phase

As described above, the resampling to the THE happens when the signals
are digitized by the ADC, which is triggered according to the onboard clock.
As such, it is applied to the total phase of each photodiode signal, given by
eq. (5.32),

Φτ̂i
PD(τ) = Φτi

PD(τ
τ̂i
i (τ)) = φo

PD(τ
τ̂i
i (τ)) + φε

PD(τ
τ̂i
i (τ)) . (6.21)

Since φo
PD(τ) is very quickly evolving, small timing fluctuations in ττ̂i

i (τ) will
couple into the measurement described by φε

PD(τ). So there is a cross coupling
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between φo
PD(τ) and φε

PD(τ), and we cannot just time shift both components
individually.

We can insert eq. (6.6) and eq. (6.2) in to eq. (6.10) to get

ττ̂i
i (τ) = τ − δτ̂i,0 − qo

i (τ
τ̂i
i (τ))− qε

i (τ
τ̂i
i (τ)) . (6.22)

Because clock-noise fluctuations q̇ε
i are modelled as band-limited noise (c.f. sec-

tion 6.1.1), they remain very small and we can expand the φo term in eq. (6.21)
to first order in q̇ε

i ,

Φτ̂i
PD(τ) = φo

PD(τ − δτ̂i,0 − qo
i (τ

τ̂i
i (τ))− qε

i (τ
τ̂i
i (τ))) + φε

PD(τ
τ̂i
i (τ))

≈ φo
PD(τ − δτ̂i,0 − qo

i (τ
τ̂i
i (τ))) + φε

PD(τ
τ̂i
i (τ))

− νo
PD(τ − δτ̂i,0 − qo

i (τ
τ̂i
i (τ)))qε

i (τ
τ̂i
i (τ)) ,

(6.23)

to get the two variables

φτ̂i ,o
PD (τ) ≈ φo

PD(τ − δτ̂i,0 − qo
i (τ − δτ̂2

i (τ))) , (6.24)

φτ̂i ,ε
PD (τ) ≈ φε

PD(τ − δτ̂2
i (τ)) (6.25)

− νo
PD(τ − δτ̂i,0 − qo

i (τ − δτ̂2
i (τ)))q

ε
i (τ − δτ̂2

i (τ)) .

6.2.3.2 Decomposition in terms of frequency

For frequency, we start with eq. (6.20), and again decompose clock noise q̇i
into two variables as explained in section 6.1.1. We can expand to first order
in q̇ε

i to get

1

1 + q̇o
i (τ

τ̂i
i (τ)) + q̇ε

i (τ
τ̂i
i (τ))

≈ 1

1 + q̇o
i (τ

τ̂i
i (τ))

− q̇ε
i (τ

τ̂i
i (τ))

[1 + q̇o
i (τ

τ̂i
i (τ))]2

. (6.26)

So in total, we have

ντ̂i
PD(τ) ≈ ντi

PD(τ
τ̂i
i (τ))

[
1

1 + q̇o
i (τ

τ̂i
i (τ))

− q̇ε
i (τ

τ̂i
i (τ))

[1 + q̇o
i (τ

τ̂i
i (τ))]2

]
. (6.27)

We now expand ντi
PD(τ) = ντi ,o

PD (τ) + ντi ,ε
PD (τ), and neglect the small coupling of

qε
i (τ) to the already small fluctuations ντi ,ε

PD (τ). We collect the terms to express
the photodiode signal offsets ντ̂i ,o

PD (τ) and fluctuations ντ̂i ,ε
PD (τ) after shifting to

the THE, using eq. (6.14),

ντ̂i ,o
PD (τ) ≈ ντi ,o

PD (τ − δτ̂2
i (τ))

1 + q̇o
i (τ − δτ̂2

i (τ))
, (6.28)

ντ̂i ,ε
PD (τ) ≈ ντi ,ε

PD (τ − δτ̂2
i (τ))

1 + q̇o
i (τ − δτ̂2

i (τ))
− ντi ,o

PD (τ − δτ̂2
i (τ))q̇

ε
i (τ − δτ̂2

i (τ))

[1 + q̇o
i (τ − δτ̂2

i (τ))]
2

. (6.29)

In the simulation, we model this effect by first rescaling frequency offsets of
the photodiode signals, so we would obtain

ντi ,o
PD (τ)

1 + q̇o
i (τ)

. (6.30)
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We then add this quantity to the frequency fluctuations of the photodiode
signals, correctly rescaled, to obtain

ντi ,ε
PD (τ)

1 + q̇o
i (τ)

− ντi ,o
PD (τ)q̇ε

i (τ)

[1 + q̇o
i (τ)]

2 . (6.31)

Note that all quantities are still evaluated at τ.

Lastly, these quantities are resampled at τ − δτ̂2
i (τ) using Lagrange interpola-

tion to retrieve eqs. (6.28) and (6.29).

For clarity’s sake, we drop the time arguments in our signals, such that they
are inherently given in the corresponding spacecraft THE. We introduce the
first-order timestamping operator Ti, which shifts a signal s(τ) from the TPS
to the THE of spacecraft i. Formally, its action is given by

Tis(τ) = s(τ − δτ̂2
i (τ)) . (6.32)

Its pendant for frequency includes the rescaling by 1 + qo
i , and is defined as

Ṫis(τ) = Ti

[
s(τ)

1 + q̇o
i (τ)

]
. (6.33)

The photodiode signals read, in the THE,

ντ̂i ,o
PD ≈ Ṫiν

τi ,o
PD and ντ̂i ,ε

PD (τ) ≈ Ṫi

[
ντi ,ε

PD −
ντi ,o

PD q̇ε
i

1 + q̇o
i

]
, (6.34)

where we suppressed the explicit time argument.

6.3 pseudo-ranging

As sketched in section 3.2, LISA noise reduction algorithms, such as TDI,
require knowledge of the propagation time of the laser beams between the
spacecraft, or ranging. Technically, this is realized in LISA by generating a PRN
code representing the time shown by the local clock on the sending spacecraft,
which is modulated and transmitted via the outgoing laser beam. This code
is then recovered from the phase measurement of that beam, and correlated
with a local copy of the code generated according to the receiving spacecrafts
clock. We call the result the measured pseudo-range (MPR). See section 3.6.4
(and references there) for more details on the technical implementation.

In this section, we first derive the equations for the MPRs in terms of clock
time differences, c.f. section 6.3.1. Since we only simulate timer deviations,
we reformulate these equations in section 6.3.2 so they are directly applicable
to our simulation.

Pseudo-ranging simulation is performed at f phy
s , while the MPRs are ulti-

mately downsampled to a lower rate f meas
s , alongside the other measure-

ments.
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6.3.1 Pseudo-ranging as clock time difference

Since the PRN code is modulated onto the laser beam, it suffers the same
delays when propagating between the spacecraft3.

As described in section 5.2.3, we do not model the actual phase modulation
of the PRN. Instead, we directly compute the difference Rij between times
shown by local clocks (i.e. THE times).

Following the conventions used in section 5.5, we consider in the following
paragraphs a beam received by optical bench ij at the receiver TPS τ, which
was emitted from optical bench ji at emitter TPS τji(τ) = τ − dij(τ). Here,
the PPR dij(τ) contains the photon time of flight, as well as the conversion
between time coordinates.

Conceptually, the MPR measures the difference between the THE τ̂τi
i (τ)

shown by the local clock of the receiving spacecraft at the event of reception
of the beam, and the THE τ̂

τj
j (τ − dij(τ)) shown by the local clock of the

sending spacecraft at the event of emission of the beam. Thus, we can model
the MPR as the difference

Rij(τ) = τ̂i(τ)− τ̂j(τ − dij(τ)) + NR
ij (τ) , (6.35)

where NR
ij (τ) is a ranging noise term modelling imperfections in the overall

correlation scheme. See appendix D.7 for its model in the simulation.

6.3.2 Pseudo-ranging in terms of timer deviations

As explained in section 6.1.3, we do not simulate the total THE τ̂i(τ) for each
spacecraft, but only deviations δτ̂i(τ) from the TPS,

τ̂i(τ) = τ + δτ̂i(τ) and τ̂j(τ) = τ + δτ̂j(τ) . (6.36)

Inserting these definitions into eq. (6.35) yields

Rij(τ) = δτ̂i(τ)−
[
δτ̂j
(
τ − dij(τ)

)
− dij(τ)

]
+ NR

ij (τ) . (6.37)

Let us define δτ̂isci←j(τ),

δτ̂isci←j(τ) ≈ δτ̂j(τ − dij(τ))− dij(τ) , (6.38)

the clock time of the sending spacecraft propagated to the photodiode of the
distant inter-spacecraft interferometer.

We can then express the MPR as the simple difference

Rij(τ) ≈ δτ̂i(τ)− δτ̂iscij←j(τ) + NR
ij (τ) . (6.39)

This is the measurement we generate in the simulation, where we make the
additional assumption that dij ≡ do

ij for this measurement. This is valid,

3 We assume here that the vacuum between the satellites is sufficiently good that we can neglect
(or compensate) any dispersion effects.



6.3 pseudo-ranging 79

since the terms contained in dε
ij only create timing jitters much less than a

nanosecond (cf. section 5.5).

Notice that in eq. (6.39), we compute the MPR as a function of the receiving
TPSs, so that formally Rij = Rτi

ij . In reality, the MPR is measured according to

the THE of the receiving spacecraft, Rτ̂i
ij . Similarly to all other measurement,

we simulate this by first generating Rτi
ij and then resampling the resulting

time series to get Rτ̂i
ij , as described in section 6.2.





7
O N B O A R D P R O C E S S I N G

The onboard phasemeters track the phase evolution (or, almost equivalently,
the instantaneous frequencies) of sampled and digitized versions of the MHz
beatnotes described in section 5.6, using a digital phase-locked loop (DPLL)
which runs at 80 MHz. The resultant phase is downsampled in multiple steps
(cf. [36]) to the final measurement rate.

As described above, we do not simulate the phasemeter at this high sampling
rate, but instead rely on high-level models to capture the most significant
effects.

During the sampling process, clock imperfections couple into the measure-
ments. We described this effect in chapter 6, and modelled its impact on the
phase of the digitized signal by shifting all measurements from the TPS to the
THE. We will now assume that the DPLL is able to perfectly reconstruct the
phase of this digitized signal.

Following [47], we assume that one of the last downsampling steps inside
the phasemeter creates a timeseries at f phy

s = 16 Hz, which then gets further
filtered and decimated to f meas

s = 4 Hz.

We model this last step in the processing chain by including a digital finite
impulse response (FIR) filter in our simulation, which we model in section 7.1.
The resulting phasemeter signals are given in section 7.2.

These phasemeter equations still contain unevaluated terms for the laser
offsets and frequency fluctuations, which are determined by the laser locking
schemes. We describe these locking conditions and the different locking
schemes in section 7.3.

Finally, we conclude by describing additional data streams available from
contact to ground stations in section 7.4.

7.1 filtering and downsampling

High-order digital low-pass FIR filters are expected to be used to prevent
noise aliasing in the frequency band relevant for LISA data analysis, between
10−4 Hz and 1 Hz [56]. Therefore, they must strongly attenuate the signals

As explained below,
the transition band can
actually extend slightly
above the Nyquist
frequency, up to
f meas
s − 1 Hz.

above the Nyquist frequency, while maintaining a high gain and low phase
distortion below 1 Hz. In reality, this will be performed by cascading fil-
ters to go all the way from 80 MHz to f meas

s = 4 Hz [36], and their precise
implementation is under development.

81
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Figure 7.1: Antialias-
ing filter transfer func-
tion magnitude. The
transition band (grey)
is chosen to avoid
aliasing into the mea-
surement band (blue).
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In the simulation, we only use a single filtering and downsampling step to go
from f phy

s to the final measurement sampling rate of f meas
s = 4 Hz.

We build a digital symmetrical FIR filter from a Kaiser windowing function,
using the following parameters:

• the transition band extends from 1.1 Hz to 2.9 Hz,

• the minimum attenuation above 2.9 Hz is 240 dB.

Note that the filter transition band extends above the Nyquist frequency, such
that there will be a significant amount of aliasing during downsampling, as
depicted in fig. 7.1. However, since aliasing happens by reflection across the
Nyquist frequency, any noise in the band [ fs/2, fs − 1 Hz] will be aliased into
the band [1 Hz, fs/2], such that it stays outside our measurement band of
[10−4 Hz, 1 Hz]. We will revisit how the aliased noise appears in our final
signals in section 12.3.3.

The filter coefficients ck are computed based on these parameters using the
kaiserord method of the scipy library [95]. The filter is then applied by
computing the n′th sample of the output series y from the input series x via

y[n] =
N

∑
k=0

ckx[n− k] , (7.1)

with N as the order of the filter.

Analytically, we model the filter by applying a filter operator F to the photo-
diode signals. I.e., we simply write

y(t) = Fx(t) , (7.2)

where we extend the definition in eq. (7.1) to also be applicable to a continous
time function. Inspecting eq. (7.1), F is a linear operator.
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In the frequency domain, the effect of the filter is described by multiplying
the signals by its transfer function,

HF(ω) =
N

∑
k=0

cke−iωk/ f phy
s , (7.3)

whose magnitude is plotted in fig. 7.1.

Once the signals are filtered, we use a four-fold decimation, i.e. we select only
1 sample out of 4.

7.2 phasemeter signals

We call phasemeter signals the downsampled, filtered signals output by the
phasemeter, i.e. the inter-spacecraft, test-mass, reference carrier and sideband
beatnotes, as well as the MPRs. These are As mentioned before,

there are other data
streams - such as the
angular readouts
provided by DWS -
which we do not
model here.

the signals ultimately telemetered
down to Earth.

For these phasemeter signals, we introduce a clear notation that uses the
name of the associated interferometer and its index, completed by the type
of beam (carrier or sideband). The real phasemeter will only produce the
total frequency or the total phase of the signal. For our studies, however, it is
often useful to also have access to the underlying offsets and fluctuations in
two seperate variables, which is why we give here the signals in this form.
The simulation will provide an additional output for the total frequency, as
discussed in section 7.2.1.

As usual, we will denote the decomposition used by (...)ε or (...)o. E.g.,
refε

ij,c(τ) is the phasemeter output for the reference carrier frequency fluctua-
tions of optical bench ij.

These expressions are derived from the photodiode signals given in section 5.6,
accounting for clock noise as described in section 6.2.3. As before, the time
shift due to the on-board clocks is expressed by applying the time stamping
operators Ti and Ṫi, see eqs. (6.32) and (6.33). Finally, we apply the filter
operator, as discussed in section 7.1. The final expressions are then given as
functions of the THEs.

For readabilities sake, we drop all time arguments in these expressions. We use
delay operators to account for time shifts which appear when propagating
signals. We denote Dij the delay operator associated with the PPR do

ij(τ)

defined in section 5.5.3, such that for any signal s(τ),

Dijs(τ) = s(τ − do
ij(τ)) . (7.4)

Furthermore, we introduce the Doppler-delay operator, which is defined as

Ḋijs(τ) = (1− ḋo
ij(τ))s(τ − do

ij(τ)) . (7.5)

We summarize below the different signals we simulate. Again, we give
expressions only for optical bench ij, with the index k on the right-hand
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side chosen such that whole set of indices satisfies {i, j, k} = {1, 2, 3}. All
other optical benches can be derived by the usual index permutations, see
appendix A.1.

We will also use a shorthand notation for the beatnote frequency offsets in
the TPS, which we define by

ac
ij ≡ νo

iscij,c = ḊijOji − ν0ḋo
ij −Oij , (7.6a)

asb
ij ≡ νo

iscij,sb = aij + Ḋij(ν
m
ji (1 + q̇o

j ))− νm
ij (1 + q̇o

i ) , (7.6b)

bc
ij ≡ νo

refij,c = Oik −Oij , (7.6c)

bsb
ij ≡ νo

refij,sb = bij + (νm
ik − νm

ij )(1 + q̇o
i ) . (7.6d)

In addition, most of the laser related terms pij, Oij will be determined by the
laser locking scheme, as described in section 7.3.

Our phasemeter signals are then given as:

6 carrier-carrier beatnotes in the inter-spacecraft interferometers,

isco
ij,c = FṪiac

ij , (7.7a)

iscε
ij,c = FṪi

[
Ḋij ṗji − (ν0 + Dijν

o
ji,c)
(

Ḣij − ḊijṄ∆
ji − Ṅ∆

ij + Ṅob
iscij←ji

)
−
(

ṗij − (ν0 + νo
ij,c)Ṅob

iscij←ij

)
+ Ṅro

iscij,c −
ac

ijq̇
ε
i

1 + qo
i

]
.

(7.7b)

6 sideband-sideband beatnotes in the inter-spacecraft interferometers,

isco
ij,sb = FṪiasb

ij , (7.8a)

iscε
ij,sb = FṪi

[
Ḋij
(

ṗji + νm
ji [q̇

ε
j + Ṁji]

)
−
(

ṗij + νm
ij [q̇

ε
i + Ṁij]

)
− (ν0 + Dijν

o
ji,sb)

(
Ḣij − ḊijṄ∆

ji − Ṅ∆
ij + Ṅob

iscij←ji

)
+ (ν0 + νo

ij,sb)Ṅob
iscij←ji + Ṅro

iscij,sb −
asb

ij q̇ε
i

1 + qo
i

]
.

(7.8b)

6 carrier-carrier beatnotes in the reference interferometers,

refo
ij,c = FṪibc

ij , (7.9a)

refε
ij,c = FṪi

[
( ṗik − (ν0 + νo

ik,c)(Ṅbl
ij + Ṅob

refij←ik))

− ( ṗij − (ν0 + νo
ij,c)Ṅob

refij←ij) + Ṅro
refij,c −

bc
ijq̇

ε
i

1 + qo
i

]
.

(7.9b)

6 sideband-sideband beatnotes in the reference interferometers,

refo
ij,sb = FṪibsb

ij , (7.10a)

refε
ij,sb = FṪi

[
( ṗik + νm

ik [q̇i + Ṁik]− (ν0 + νo
ik,sb)(Ṅbl

ij + Ṅob
refij←ik))

− ( ṗij + νm
ij [q̇i + Ṁij]− (ν0 + νo

ij,sb)Ṅob
refij←ij)

+ Ṅro
refij,sb −

bsb
ij q̇ε

i

1 + qo
i

]
.

(7.10b)
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6 carrier-carrier beatnotes in the test-mass interferometers,

tmo
ij,c = FṪibc

ij , (7.11a)

tmε
ij,c = FṪi

[
( ṗik − (ν0 + νo

ik,c)(Ṅbl
ij + Ṅob

tmij←ik))

− ( ṗij − (ν0 + νo
ij,c)(2(N∆

ij − Nδ
ij) + Nob

tmij←ij(τ)))

+ Ṅro
tmij,c −

bc
ijq̇

ε
i

1 + qo
i

]
.

(7.11b)

6 MPRs,

Rij = FTi
[
do

ij − (Dijδτ̂j − δτ̂i) + NR
ij
]

. (7.12)

7.2.1 Output in total frequency

In reality, we will not have access to the two beatnote components, but only
the total phase or the total frequency. The simulation accounts for that by
providing an additional output variable for each interferometer.

It is generated by first computing the photodiode signals in the usual two-
variable decomposition, νo

PD,ij, νε
PD,ij, as described in chapter 5. These are then

added to compute the total frequency of the photodiode signal,

νPD,ij = νo
PD,ij + νε

PD,ij . (7.13)

We then apply eq. (6.20) to directly resample this total frequency, using the
total clock error qi. This means we perform no first-order expansion of the
clock errors for this case.

The resulting variable is then filtered and downsampled as described in
section 7.1. This is done to include any numerical artifacts the FIR filter might
introduce into the frequency variable.

7.3 frequency management

As discussed in section 3.6.2, all beatnote frequencies in LISA are controlled
to fall in a range between 5 MHz and 25 MHz1.

The problem of finding such frequency plans has recently been studied in
[46], and exact solutions have been found. We will use these solutions as an
input to the simulation.

In this section, we describe how we simulate the laser locking control loop in
section 7.3.1. We then list the frequency locking schemes available for LISA in
its baseline configuration in section 7.3.2.

1 The exact frequency range remains to be defined. In addition, some margins are required for
both the upper and lower bounds to account for the sideband beatnotes, which are offset by
1 MHz from the carrier beatnotes.
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7.3.1 Laser locking

Laser locking is achieved by controlling the frequency of a laser such that
a given beatnote frequency νPD(τ) remains equal to a pre-programmed ref-
erence value νPD,r(τ). We do not simulate the actual control loop here, but
instead directly compute the correct offsets and fluctuations of the locked
laser for the locking condition to be satisfied. We perform this simulation in
the TPS.

We consider the frequency lock to be perfect2. This means that the locking
beatnote offset isThis is true with

respect to the local
clock in the THE, the
frequency in the TPS

will be different from
the desired value!

exactly equal to the desired value, and the locked lasers
fluctuations are chosen in such a way that they exactly cancel the fluctuations
in the beatnote signal.

In terms of phase, the result of this control is that the measured beatnote
phase ΦPD(τ) is controlled to be exactly equal to a pre-programmed reference
value ΦPD,r(τ). The locked lasers phase drifts and fluctuations are given as

φo
l (τ) and φε

l (τ) , (7.14)

while those of the reference laser are

φo
r (τ) and φε

r (τ) . (7.15)

The locking condition is derived by solving

φτi ,o
PD (τ) = φτi ,o

PD,r(τ) and φτi ,ε
PD (τ) = φτi ,ε

PD,r(τ) . (7.16)

The laser control loop operates on data delivered by the phasemeter at a high
frequency of 80 MHz3. As such, we simulate the locking before applying any
filtering or downsampling.

As explained in section 5.4.2, the phasemeter treats all frequencies as positive.
The sign of the beatnote contains the information about which of the two
lasers has the higher frequency, such that it is an essential information for
the control loop to work properly. Fortunately, it is possible to determine the
beatnote polarity by actuating the locked laser with a known frequency offset
and observing the change in the beatnote.

We can there assume that the beatnote polarity is known at all times, and
model the photodiode signals total phase without it, as

ΦPD(τ) = Φr(τ)−Φl(τ) . (7.17)

We end up with photodiode signals as given in section 5.6, including readout
noise terms,

φo
PD(τ) = φo

r (τ)− φo
l (τ) , (7.18)

φε
PD(τ) = φε

r (τ)− φε
l (τ) + Nro

PD(τ) , (7.19)

2 In reality, the locking control loops will have finite gain and bandwidth, such that the locking
beatnotes can still contain out-of-band glitches and noise residuals.

3 K. Yamamoto, AEI phasemeter team, personal communication May 2021.
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The reference signal φτi
PD,r(τ) is determined by the phasemeter clock, which

is derived from the onboard USO (see section 6.1.1), such that it is a perfect
phase ramp at the desired beatnote frequency νPD,r when expressed in the
THE. Our control loop is simulated in the TPS, and using eqs. (6.5) and (A.5),
we obtain

φτi
PD,r(τ) = φτ̂i

PD,r(τ̂i(τ)) = νPD,r(τ + qi(τ)) . (7.20)

We decompose this into large phase drifts and small fluctuations,

φτi ,o
PD,r(τ) = νPD,r(τ + qo

i (τ)) and φτi ,ε
PD,r(τ) = νPD,rqε

i (τ) . (7.21)

Substituting eq. (7.21) in eqs. (7.18) and (7.19), we find the locked laser phase
drifts and fluctuations

φo
l (τ) = φo

r (τ)− νPD,r(τ + qo
i (τ)) , (7.22)

φε
l (τ) = φε

r (τ)− νPD,rqε
i (τ) + Nro

PD(τ) . (7.23)

Taking the derivative of these equations yields equivalent expressions in
frequency,

νo
l (τ) = νo

r (τ)− νPD,r(1 + q̇o
i (τ)) , (7.24)

νε
l (τ) = νε

r (τ)− νPD,r q̇ε
i (τ) + Ṅro

PD(τ) . (7.25)

Note that these equations describe the locked laser at the photodiode. To
properly simulate this effect, we need the locked lasers frequency at the source,
which we denote here as ν̄l(τ). We recall from eq. (5.57b) that we subtract a
noise term nB←A(τ) from the fluctuations during propagation, such that we
have

ν̄ε
l (τ) = νε

l (τ) + (ν0 + νo
l (τ))nB←A(τ)

= νε
r (τ)− νPD,r q̇ε

i (τ) + Ṅro
PD(τ)

+ (ν0 + νo
l (τ))nB←A(τ)

(7.26)

for the locked lasers fluctuations at the source.

Note that in the current version of the code, we do not use the desired beatnote
frequencies as input, but use the desired offset with respect to the primary
laser instead. Inspecting eq. (7.24), we see that the two are simply related by
a sign. This will be changed in a future version in order to allow an easier
interface to the frequency plans provided in [46], which are formulated in
terms of desired beatnote frequency.

7.3.2 Locking configurations

In total, 5 of the 6 lasers in the constellation will be locked (directly or indi-
rectly) to one primary laser. Each of the locked lasers is locked to either
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Table 7.1: Definition
of 6 fundamental lock-
ing configurations,
with laser 12 as pri-
mary laser

Configuration LA 12 LA 23 LA 31 LA 13 LA 32 LA 21

N1-LA12 Primary Local Distant Local Local Distant

N2-LA12 Primary Local Distant Local Distant Distant

N3-LA12 Primary Local Local Local Distant Distant

N4-LA12 Primary Distant Distant Local Local Distant

N5-LA12 Primary Distant Distant Local Local Local

N6-LA12 Primary Local Local Distant Distant Distant

• the adjacent laser, using the reference interferometer, so that eqs. (7.24)
and (7.26) read

Oij(τ) = νo
refij←ik(τ)− νrefij,r(1 + q̇o

i (τ)) , (7.27a)

pij(τ) = νε
refij←ik(τ)− νrefij,r q̇ε

i (τ) + Ṅro
refij

(τ)

+ (ν0 + Oij(τ))Ṅob
refij←ij ,

(7.27b)

• or to the distant laser, using the inter-spacecraft interferometer, such
that we get

Oij(τ) = νo
iscij←ji(τ)− νiscij,r(1 + q̇o

i (τ)) , (7.28a)

pij(τ) = νε
iscij←ji(τ)− νiscij,r q̇ε

i (τ) + Ṅro
isci j(τ)

+ (ν0 + Oij(τ))Ṅob
iscij←ij ,

(7.28b)

where the index k is again chosen such that the whole set fullfils {i, j, k} =
1, 2, 3.

These expressions can be substituted into the phasemeter equations in sec-
tion 7.2 to derive the phasemeter signals with locked lasers.

As discussed in [46], there are 6 distinct non-swapping locking topologies.
For each of them, we have the freedom to choose the primary laser, such
that, in total, we have 36 possible locking configurations. We give the locking
conditions for the 6 configurations with laser 12 as the primary laser in
table 7.1. The other 30 combinations can be deduced by applying permutations
of the indices, as described in appendix A.1.

Notice that we use a different notation for the locking configuration than
what is proposed in [46]. We ordered the different configurations first by
considering the length of consecutive laser locks, and second by favoring those
for which the adjacent lasers on the same spacecraft are locked together.

The two notations are related in table 7.2.

Conf. In [46]

N1 N1c

N2 N2b

N3 N1a

N4 N2c

N5 N1b

N6 N2a

Table 7.2: Notation in
this thesis converted to
the one used in [46].

7.4 telemetry

The data produced by the phasemeters will be packaged and telemetered to
the European Space Tracking (ESTRACK) ground stations. We currently do
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Figure 7.2: Laser locking configurations for LA 12 as the primary laser, from [16].
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not simulate any artefacts due to this process. Instead, our simulation prod-
ucts match exactly to the phasemeter signals described in section 7.2.

In addition to facilitating the data downlink, contact to ground stations will
also allow estimation of the offsets of the THEs to the respective TPS. This
could be achieved using a similar scheme to that used in Global Astrometric
Interferometer for Astrophysics (GAIA) [53], although the details for how
this will be done for LISA are not finalized at the time of writing of this
thesis.

We do not simulate this procedure in detail, but give a high-level model by
providing the deviations of the THEs to the respective TPS as an additional
output. This estimate carries a noise term accounting for the expected un-
certainty achievable from such a ground-based time comparison, tentatively
set to a standard deviation of 1 ms. Note that we do not include the synchro-
nization to TCB in the data processing described in part iii, and thus do not
further consider this measurement.
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S I M U L AT I O N R E S U LT S

We present here first results of our simulations, performed using LISANode.

We first discuss our simulation parameters in section 8.1, and show time-
domain plots of the simulated data streams. We then discuss the residual
noise levels observed in the different interferometers in section 8.2, and finally
conclude in section 8.3 by summarizing the available measurements.

As mentioned in section 4.2, LISANode is a rapidly evolving project with
multiple contributors. At the time of writing of this thesis, not all effects
described above are And many more are

under development
which are not
described
above!

fully implemented in the simulation.

The main differences at the time of writing are:

• The additional coupling of pathlength noises to laser frequency offsets
(cf. eq. (5.52b)) are not included. Instead, all pathlength noises are
scaled by only the central laser frequency ν0.

• Frequency fluctuations are output renormalized by the the central laser
frequency ν0 and multiplied by the beatnote polarity described in sec-
tion 5.4.2. Frequency offsets are output in units of MHz.

• Spacecraft jitter N∆
ij (τ) described in sections 5.5.2.3 and 5.5.3 is not

simulated.

• Modulation noise terms described in section 6.1.2 have the same level
for right- and lefthanded optical benches, neglecting the effect of the fre-
quency conversion chain from the pilot tone to the 2.401 GHz sideband.

• Laser locking is implemented as described in section 7.3, but there is no
interface for a time-varying frequency plan for the full mission duration
as those shown in section 3.6.2. Instead, all relative offset frequencies
are set to fixed linear ramps at the beginning of the simulation.

• The simulation includes some additional minor optical pathlength noise
terms we neglected in section 5.5 for clarity.

8.1 simulation parameters

We give here results for the simulation. We enable With the exception of
spacecraft jitter N∆

ij ,
which is not yet
included in the
simulation.

all noises described above,
but include no gravitational wave signal. We simulate 106 s, using delays
computed from the ESA provided orbits shown in fig. 3.3. Lasers are locked
in the laser locking scheme N1-LA12 (cf. section 7.3) with frequency offsets set
to the starting values of the frequency plan shown in fig. 3.9. The simulation

91
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Figure 8.1: Simulated
total beatnote frequen-
cies.
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Figure 8.2: Residual
noise in a locking beat-
note after detrending.
We are limited by nu-
merical artifacts.
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Figure 8.3: Residual
noise in a non-locking
ISC beatnote after de-
trending. We are lim-
ited by laser frequency
noise.
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took 24 min on a single desktop CPU core1, which is ≈ 700 times faster than
real-time.

We analyze the output in total frequency, to which we apply a third order
polynomial least-square fit to remove large trends. Figure 8.1 shows the total
frequency before the fit, while Figure 8.2 and Figure 8.3 show the post-fit
residuals for a locking and a non-locking ISC beatnote, respectively.

As expected, the non-locking beatnotes carry large frequency fluctuations due
to unsuppressed laser frequency noise. The locking beatnotes residuals, on
the other hand, appear to be dominated by numerical noise and a residual
trend after the polynomial fit.

8.2 noise levels

We estimate PSDs using the log-scale power spectral density (LPSD) method
described in [89]2.

We overlay all plots with a 10 pm noise allocation curve, which is a typical
target noise level for a single link in LISA [10]. It is given in units of frequency
as

√
SIFO( f ) =

2π f
1064 nm

· 10 pm√
Hz
·
√

1 +
(

2 mHz
f

)4

(8.1)

8.2.1 Non-locking ISC interferometer

We show in fig. 8.4 the noise level in a non-locking ISC interferometer, isc12.
We observe that it is dominated by laser noise.

We can derive a simple model for the residual noise level by considering only
laser noise in eqs. (7.7b) and (7.28b), which yields

iscε
12 ≈ D12D21 ṗ12 − ṗ12 , (8.2)

where ṗ12 is the laser noise of the primary laser, whose noise level is shown
in grey in fig. 8.4. The PSD can be estimated to be proportional to the squared
magnitude of the fourier transform (cf. appendix C for more information PSD
estimation), which gives

|F [iscε
12]|2 ( f ) ≈

∣∣∣(ei2π(do
12+do

21) f − 1)F [ ṗ12] ( f )
∣∣∣2

≈ 4 sin2(2π f d) |F [ ṗ12] ( f )|2 ,
(8.3)

where d is the average arm length in seconds. We overlay this model with our
simulated data in fig. 8.4, which shows perfect agreement.

1 This is with the highest level of C++ compiler optimizations (-O3), on a Linux workstation
equipped with an AMD Ryzen 3700x. Compilation took an additional 2 min 5 s.

2 We use a python implementation of this method developed by C. Vorndamme at AEI,
with the following parameters: olap="default", bmin=1, Lmin=0, Jdes=2000, Kdes=1000,

order=-1, win=np.kaiser, psll=300.
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Figure 8.4: Residual
noise in a non-locking
ISC beatnote. Laser
frequency noise is
modulated by the
roundtrip light travel
time.
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Figure 8.5: Residual
noise in a non-locking
reference beatnote.
Non-common noises
with the locking ad-
jacent reference inter-
ferometer are visible.
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8.2.2 Non-locking REF interferometer

We show in fig. 8.5 the noise level in a non-locking reference interferometer,
ref12.

In our locking scheme N1, one of the two reference interferometers on each
spacecraft is always used for locking, such that all noise is cancelled in the
adjacent ref13. Since both reference interferometers on the same spacecraft
interfere the same lasers, any common noise between ref13 and ref12 will be
cancelled in both interferometers. This applies for example to laser frequency
noise, but not to noise sources unique to the two reference interferome-
ters.

Inspecting fig. 8.5, we observe a colored noise which can be explained by
these non-common noise sources, which in our model are optical pathlength
noise (cf. appendix D.6), backlink noise (cf. appendix D.4), and readout noise
(cf. appendix D.5). We can add up the PSDs for these noise terms in both
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Figure 8.6: Residual
noise in locking beat-
note. We are limited
by numerical effects.
Simulating just fluc-
tuations allows for
a significantly lower
numerical noise floor.
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interferometers to explain the observed noise floor. Note that this includes
a factor

√
2 to account for non-common noise terms in both interferometers,

which due to the laser locking condition are both transferred to ref12.

This estimate is only valid for locking configurations N1, N3 and N5, which
use one reference interferometer per spacecraft for locking. In configura-
tions N2, N4 and N6, on the other hand, we expect a laser noise dominated
residual for one of the reference beatnotes, similar to that described in sec-
tion 8.2.1.

8.2.3 Locking interferometer

Since we model a perfect frequency lock in section 7.3, we would expect no
noise in the locking beatnotes. In practice, the noise level will be limited by
numerical effects, such as the limited dynamic range of our variables. We can
give a rough estimate for a lower limit of the expected numerical quantization
noise by estimating the least significant bit of a double precision variable as

LSB = 1.1× 10−16 ×Mag , (8.4)

where Mag is the magnitude of the variable. Mag is given in our case as
the value of the respective beatnote frequency before detrending, so around
10 MHz. Following [50], numerical quantization noise causes a white noise at
the level√

SLSB( f ) =
LSB√

6 fs
. (8.5)

We show in fig. 8.4 the noise level in a locking interferometer, isc31. We
observe that our noise floor is not perfectly white, and is about one order of
magnitude above the lower limit derived above.

Since the shift to THE, all onboard filtering as well as the polynomial detrend-
ing was performed on this variable in total frequency, we would expect some
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Figure 8.7: Residual
noise in all beatnotes.
Non-locking ISC beat-
notes contain modu-
lated laser noise, while
non-locking reference
beatnotes contain only
secondary noises. All
locking beatnotes are
plotted using both the
total frequency and
the fluctuations, which
shows that the resid-
ual noise level is due
to numerical effects.
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accumulation of numerical errors, which can explain this increased noise
level.

Overall, the noise is more than a factor ten below the 10 pm allocation, such
that we are confident the simulated variables can be used for data analysis
studies.

To verify that our locking conditions are implemented correctly, we also
overlay the PSD computed from the variable containing just the frequency
fluctuations, as described in section 4.3.2. We see that we get a white noise
floor at 2× 10−15 Hz/

√
Hz, many orders of magnitude below the required

levels.

8.3 summary

We plot in fig. 8.7 an overview of the noise level in all ISC and reference
beatnotes. We show the locking beatnotes using both the total frequency
and just the frequency fluctuations, allowing a significantly reduced noise
floor.

We see that all beatnotes can be grouped into the three classes described
above:

• Non-locking ISC beatnotes, dominated by laser noise,

• Non-locking reference beatnotes, dominated by secondary noises, and

• Locking beatnotes, dominated by numerical noise, which is significantly
reduced when using just the frequency fluctuations.

The non-locking beatnotes would

With locking schemes
N2, N4 and N6, some
of the GW signal will
also be visible in the

non-locking reference
beatnotes, but again

buried by
un-suppressed laser

noise.
contain our gravitational wave signal. It is

buried below roughly 8 order of magnitudes of laser frequency noise, such
that these raw data streams are not usable for extracting GW signals.
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We will study how to suppress this overwhelmingly large LFN - as well as
other noise sources - in part iii.





Part III

I N I T I A L N O I S E R E D U C T I O N P I P E L I N E F O R L I S A
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As was shown at the end of part ii, the raw measurements are not directly
usable for GW detection. The primary reason for this is the presence of
overwhelming amounts of laser frequency noise in the non-locking beatnotes,
which exceeds the level expected from GWs by several orders of magni-
tude.

Although laser noise is certainly the most dominant noise source in LISA, it
is not the only one. Several other effects need to be subtracted using ancillary
measurements, most notably longitudinal spacecraft jitter along the sensitive
axis, tilt-to-length (TTL) couplings due to angular jitters, and clock noise.
And the main laser noise suppression step of TDI itself requires as input time
series of delays, which need to be recovered from the noisy onboard ranging
measurements described in section 6.3.

In addition, the treated data has to be transformed to a global time scale
such as the Barycentric Coordinate Time (TCB) to allow for Multi-messenger

astronomy refers to the
simultaneous
observation of
astrophysical events
using different effects,
such as GWs, EM
radiation, neutrinos or
cosmic rays.

multi-messenger
observation and accurate modelling of the source parameters.

These processing steps are summarized under the name initial noise-reduction
pipeline (INREP). Its input are the raw measurements as they are produced
and telemetered by the three satellites, called level 0 (L0) data, and the output
are variables allowing direct extraction of gravitational wave signals in the
astrophysical data analysis, called level 1 (L1) data1.

9.1 the inrep processing elements

Many of the processing steps of the full INREP are currently still being
developed inside LDPG, and some of them allow multiple alternatives which
need to be carefully studied and evaluated against each other.

We give below an overview over one possible version of the INREP, which we
will show can sufficiently suppress the two limiting noise sources included
in the simulated data presented in chapter 8, laser frequency noise and clock
noise. These simulation results are shown in section 9.2. We include a
processing step to remove longitudinal spacecraft jitter for completeness, even
though this noise source it is not included in the simulated data.

1 The full LISA data processing chain is still being developed, and might include additional
processing elements operating in-between L0, INREP and L1. For the scope of this thesis, we
will use L0 synonymous with the simulated data presented at the end of chapter 8, and do not
consider any additional processing steps except those described below.

101



102 the initial noise reduction pipeline

Finally, we mention TTL subtraction and synchronization to TCB as final
processing steps. Their detailed development is beyond the scope of this
thesis.

9.1.1 Initial data treatment

As outlined in chapter 8, the raw data of the interferometric measurements re-
ceived from the spacecraft will be given either as total phase or alternatively as
total frequency. See appendix C.1.2 for the definition of these quantities.

At the time of writing this thesis, the actual raw data format is not yet decided.
The data will be expressed in a format optimized for transmitting it to earth,
and needs to be converted to physical units in a first processing step2.

For the purpose of this thesis, we will assume that this conversion has already
happend, and that we get data in physical units. Matching the output of our
simulation, we will assume all data to be given as total frequency, in Hz. We
will further assume that all variables are given as double precision floating
point variables, which is in line with the options currently being evaluated as
part of the phasemeter prototyping performed at the AEI2.

As we already saw in chapter 8, it can be beneficial (or even necessary) to
remove large trends from the data even for simple data analysis steps such as
spectral estimation.

In addition, as we will see in chapter 13, some of the main noise suppression
steps need adjustment depending on if one uses the total frequency or just
the residual after large trends have been removed.

For these reasons, we will include a processing element to perform this kind of
decomposition, similar to what we already described in chapter 8. The result
will be two variables for each measurement, whose information content is
modelled by the phasemeter equations given in section 7.2, plus a significant
numerical noise in the fluctuations. As we saw in chapter 8, this additional
noise is at a level which should not affect our final results.

9.1.2 Ranging noise reduction

As we will see in chapter 13, one option to perform the TDI processing is to
directly combine the data streams provided by the different spacecraft with
delays containing both the physical light travel time as well as the offsets
between the spacecraft clocks.

Such measurements are directly given by the measured pseudo-range (MPR)
described in section 6.3, with the caveat that these carry an unacceptably high
level of measurement noise. This ranging noise can be significantly reduced
by combining the PRN measurement with the sideband measurements, as we
will describe in section 13.4.

2 G. Heinzel, personal communication, 2021.
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A simpler alternative is to just apply a polynomial fit to the measured ranging
data, removing any in-band random fluctuations. This has the disadvantage
of also removing in-band clock fluctuations, which should be included in the
MPR. We chose this option for the data shown below, since it is sufficient to
suppress laser noise below the requirements.

Another problem which can arise is that the measured ranges can suffer
from a constant systematic bias, for example due to processing- or cable
transmission delays. Ideally, such delays would be modelled and measured
on-ground, such that they can be compensated for in a simple calibration step.
Any remaining biases can be found and removed by estimating the optimal
delays to be applied in TDI using TDI-ranging [87].

This procedure is beyond the scope of the thesis, and we will not include any
constant bias in our ranging data. Nevertheless, we will give a model for how
a constant bias couples into TDI in section 12.3.2.1.

9.1.3 Removal of spacecraft jitter and reduction to three lasers

As described in section 12.1, the first major noise removal step is to combine
the ISC measurements with the reference and test-mass interferometer mea-
surements to construct a virtual test-mass to test-mass measurement for each
of the six laser links, with one laser per spacecraft.

We remark that this step is not strictly required for the simulated data set
described in chapter 8: we do not simulate spacecraft jitter, and we used a
locking scheme which already removes the frequency fluctuations of one of
the two lasers on each spacecraft. However, it will be required in the final
mission, so we will include this processing step for completeness.

9.1.4 Time delay interferometry

TDI is the main laser noise reduction step, and the main topic discussed in
part iii of this thesis. Its goal is to combine the raw measurements described
in chapter 7 to construct virtual equal arm interferometers in which laser
noise is suppressed by many orders of magnitude.

We will introduce the basic principles of TDI in chapter 10. The result of TDI
are timeseries of synthesized interferometer measurements, which suppresses
laser noise below the requirements.

As we will discuss in chapter 11, there is a large space of possible TDI
variables, all reducing laser noise to the same level given realistic orbits. We
show results of a numerical search for variables of so-called second generation
TDI, similar to those previously presented in the literature [92, 63], where we
identify additional variables of 14 links missing in those references. We will
also discuss the relationship between these different variables, as well as their
information content, in section 11.5.1.
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Following this work on the fundamentals of TDI, we move to more practical
considerations in chapter 12. In particular, we discuss how the intermediary
variables free of longitudinal spacecraft motion are constructed, and how to
estimate the residual noise levels observed in the final TDI variables.

9.1.5 Clock noise correction

Assuming that the main TDI processing is performed usingCf. section 13.4.1 for
the alternative using

the total frequency

just frequency
fluctuations, in-band clock noise will not be suppressed in the resulting
variable, and needs to be removed in an additional processing step.

We will describe a generic algorithm for how to apply this clock correcion to
almost any TDI variable in section 13.3, and discuss the limiting effects and
residual clock noise levels.

9.1.6 TTL subtraction

Another noise source potentially being reduced in the INREP is tilt-to-length
(TTL) coupling. TTL describes any coupling of theE.g., due to misaligned

optical components or
movements of the

test-masses or
spacecraft.

angular tilt of the laser
beams into the longitudinal pathlength readout. TTL coupling has been
observed in both LISA Pathfinder [97] and GRACE-FO [77], and it is expected
to also be major noise source for LISA.

Optimal strategies for mitigating the impact of TTL coupling are currently be-
ing studied inside the LISA consortium, and their details are beyond the scope
of this thesis. These can include pre-flight and in-flight hardware calibrations,
as well as subtraction of residual TTL noise in post-processing using a readout
of the beam angles via DWS. This offline correction could be performed as an
additional processing after the main TDI variable is constructed, similar in
principle to the clock noise correction described above.

A major challenge in subtracting TTL noise in post processing in LISA is
determining the coupling coefficient for how a given beam tilt couples into
the phase readout. Contrary to LISA Pathfinder, the raw measurements of
LISA will be covered by laser frequency noise, which has to be reduced by
TDI before the errors due to TTL coupling become apparent. Any calibration
procedures to determine the coupling coefficients therefore have to operate
on the TDI output, which contains a linear combination of many delayed
measurements in which multiple coupling coefficients enter.

For more details, see [35, 52].

9.1.7 Reference frame conversion

Using the processing steps described above, the TDI variables produced are
given in the time frame of the three independent spacecraft clocks.



9.2 simulation results 105

The final TDI variables are needed in a global reference frame, like TCB, to
facilitate the astrophysical data analysis. We briefly discuss how this could
be achieved using a combination of the on-board measurements with on-
ground observations in a Kalman-like optimal filter in section 13.5, but the
detailed development of this algorithm is ongoing and outside the scope of
this thesis.

9.2 simulation results

We show here that the pipeline described above is able to remove all dominant
noise sources included in our simulation. In summary, we perform the
following processing steps on the simulated data presented in chapter 8:

We perform the polynomial detrending of the interferometric beatnotes as
described in section 8.1. We then apply a fourth order polynomial fit to the
MPRs, to recover a time series of delays free of in-band noise.

We then construct the intermediary variables ηij as described in section 12.1,
using the fit-residual of the beatnotes as input. These are used to compute the
second generation Michelson variables We show in fig. 9.1

only the result for X2.
The other two variables
arrive at the same final
noise level, given by
the secondary
noises.

X2, Y2 and Z2, given in section 10.2.
They are still dominated by clock noise, which we remove in the additional
processing step derived in section 13.3.

The residual is then well explained by the dominant secondary noise sources
included in our simulation, which are test-mass acceleration noise at low fre-
quency, and readout noise at high frequencies. We overlay the expected noise
level as described in section 12.2.2, which agrees well with our simulation
result.

It is important to point out we still neglect some processing steps, as described
above:

• We do not simulate any constant biases in the ranging data, and thus
don’t include a processing step to determine and correct them.

• We do not simulate any angular jitters, and consequently do not include
any TTL correction.

• We do not perform the final transformation to TCB, but remark that we
do not expect this step to significantly affect the noise reduction.

In addition, we want to point out that the simulation model presented in
part ii includes some simplifying assumptions. Relaxing these might reveal
additional processing requirements in the future.
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Figure 9.1: INREP re-
sult, residual noise in
2nd generation Michel-
son X2. Clock noise is
dominant at low fre-
quencies, and removed
in an extra process-
ing step. Final result
is well explained by
levels of test-mass and
readout noise given in
section 8.2, modulated
by the TDI transfer
function derived in
section 12.2.2. The
secondary noises will
ultimately limit the in-
strument performance,
and replace the 10 pm
requirement in this
plot.
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As described in section 3.2, the easiest way to attempt to suppress laser
noise in LISA would be to combine two round-trip measurements starting
from a single spacecraft. Using the configuration described in chapter 8, we
can construct such a variable by taking the difference between the two ISC
beatnotes recorded on spacecraft 1. The result is an un-equal arm Michelson
interferometer.

As explained in section 2.3.1, we expect laser noise in an unequal arm inter-
ferometer to be suppressed by a factor 2π f ∆τ, where ∆τ is the armlength
mismatch in seconds. In our case, we have ∆τ ≈ 0.2 s, so we expect a laser
noise residual still many orders of magnitude above the 10 pm allocation.
This is verified in fig. 10.1, where we constructed such a variable out of the
simulated data presented in chapter 8.

The proposed solution to this problem is to construct virtual equal arm
interferometers on ground using a post-processing technique known as time-
delay interferometry. This method was first proposed in [82], and has been
continously developed over the last 20 years, with many authors contributing
results. For more information on the history and fundamental working
principles of TDI, we recommend the excellent review article by M. Tinto and
S.V. Dhurandar, and references therein [83].

We derive the basic steps needed to construct laser noise reducing variables,
following a similar approach to that described in [92, 63], in section 10.1.
The key ideas presented in this section will form the basis for the arguments
presented in chapters 11 to 13.

We then review the achievable level of laser noise suppression in the different
TDI generations in section 10.2, and finally sketch the ideas of studying TDI
from an algebraic perspective in section 10.3.

As before, we will use the notation conventions outlined in appendix A.

10.1 construction of tdi combinations

10.1.1 Interferometric measurements

To understand the basic principles of TDI, it is instructive to consider a
simplified LISA model. We consider in this chapter only laser noise, with
phasemeter measurements expressed in total phase. Furthermore, we assume
only

Cf. section 12.1 for
how this assumption
can be realized in
reality.

a single unique laser per spacecraft.

107
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Figure 10.1: Noise in
a simple Michelson
configuration. Arm-
length mismatches of
∆τ ≈ 0.2 s cause large
laser noise residual.
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We model only the two ISC interferometers on each spacecraft, which measure
the beatnote between the local laser with the two incoming lasers from the
remote spacecraft. In total, we get 6 beatnotes, which we call ηij. Here, i,
j take the values from 1 to 3, with the first index indicating the receiving
spacecraft, as usual.

Following the derivation in chapter 5, the interspacecraft measurements are
then given as

ηij = DijΦj −Φi , (10.1)

with Φi as the total phase of the unique laser on spacecraft i. We omit any time
arguments in this equation. The delay operator Dij indicates that Φj should
be evaluated at the time associated to the event of emission from the distance
spacecraft, while ηij and Φi are evaluated at the event of reception.

We assume in this chapter that all variables are given according to a global
time frame, such as TCB, and that all spacetime events are identified by a
coordinate time t and an associated spacecraft. The above equation then
becomes

ηij(t) = Φj(t− dij(t))−Φi(t) , (10.2)

with dij(t) as the light travel time in the TCB, computed at time of reception
t. Since the spacecraft are not static, the delays are in general time varying
functions.

Our goal in TDI is to combine multiple of the one-way measurements ηij
to construct virtual equal arm interferometers on ground, which suppress
laser noise. We will perform this construction step-by-step, always combining
two measurement in such a way that one common laser noise term in them
cancels.
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Figure 10.2: Idealized
transponder signal,
where the distant
satellites acts as a
mirror. The sending
spacecraft measures
a differential signal
between the phase
at emission and that
at reception, which
is delayed by a full
round-trip. Adapted
from [22].

10.1.2 Virtual laser locking

Consider a TDI toy model: we want to create a This is equivalent to
locking the laser on
spacecraft 2 to the
incoming laser from
spacecraft 1, but in
post-
processing.

’virtual’ transponder signal,
where a laser beam is being emitted from spacecraft 1 towards spacecraft 2,
reflected, and send back to spacecraft 1, where it interferes with a non-delayed
version of the same beam. We can label the final time of reception as tr, the
time of reflection at spacecraft 2 as tt, and the original time of emission as te.
This is sketched in fig. 10.2.

As described above, dij(t) is defined as the propagation time for a single link,
so we have

tt = tr − d12(tr) , (10.3a)

te = tt − d21(tt) . (10.3b)

We can combine these two equations to get te as a function of tr,

te = tr − d12(tr)− d21(tr − d12(tr)) . (10.4)

We can now write the phase received after a full roundtrip as

D121Φ1(t) ≡ D12(D21Φ1(t))

= D12Φ1(t− d21(t))

= Φ1(t− d21(t− d12(t))− d12(t)) ,

(10.5)

where we defined the In general, delay
operators are not
commutative, so e.g.
D12D21 6=
D21D12.

nested delay operator D121 = D12D21.

Our full transponder signal is then given as

T = D121Φ1 −Φ1 . (10.6)

In order to construct this signal, we can use the two one-way measurements
η12 and η21, which are given by

η12 = D12Φ2 −Φ1 , η21 = D21Φ1 −Φ2 . (10.7)

These contain the same laser phases, just evaluated at different times. If the
delays are known perfectly, we can construct

η12 + D12η21 = D12Φ2 −Φ1 + D121Φ1 −D12Φ2

= D121Φ1 −Φ1 .
(10.8)
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Figure 10.3: Synthe-
sized transponder
signal. Both spacecraft
measure the phase dif-
ference between their
local laser at emission
and the distant laser
at reception, which
is delayed by a single
link. Adding the sig-
nals of both spacecraft
with the correct delays
yields the full round-
trip measurement
shown in fig. 10.2.
Adapted from [22]. Here, η12 is evaluated at tr, while η21 is evaluated tt. Both η contain a laser

noise term Φ2(tt), which cancel exactly, and we perfectly reconstruct our
desired transponder signal. This is sketched in fig. 10.3.

We can now keep adding new terms using the same principle, always can-
celling one laser noise term from an event of emission with another one from
an event of reception. This allows us to construct any signal of the form

T1 = ηi1i2 + Di1i2 ηi2i3 + Di1i2i3 ηi3i4 + · · ·+ Di1 ...in−1 ηin−1in

= Di1i2 ...in Φin −Φi1 ,
(10.9)

where we generalize the nested delay to

Di1i2...in = Di1i2 Di2i3 . . . Din−1in . (10.10)

T1 now corresponds to an interferometer where one beam was emitted from
spacecraft in, relayed by spacecrafts in−1 . . . i2, and finally received and inter-
fered on spacecraft i1.

10.1.3 Laser noise cancellation in two beam interferometers

To achieve laser noise cancellation, we can introduce a second term of the
same kind, with a different set of delays,

T2 = Dj1 j2 ...jn Φjm −Φj1 , (10.11)

and look at their difference:

TDI = T1 − T2 = Di1i2 ...in Φin −Φi1 −Dj1 j2...jm Φjm + Φj1 . (10.12)

We see that if i1 = j1 and in = jm, we get

TDI = (Di1i2 ...in −Dj1 j2 ...jm)Φin . (10.13)

This means we are left with only one unique laser noise term, which is
suppressed by the difference of nested delay operators representing different
photon paths.
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Physically, this signal represents an interferometer: two beams are emitted
from spacecraft in, received at spacecraft i1, and travel among the spacecraft
as indicated by the list of spacecraft indices appearing in the nested delays,
from right to left. The problem of laser noise suppression is now translated
into the problem of finding the correct photon paths, which itself depends on
the orbital dynamics governing the light travel times for each inter-satellite
link.

There is of course a trivial solution to laser noise cancellation, which is
i1 . . . in = j1 . . . jm, such that the two beams travel exactly the same path. This
amounts to directly subtracting our measurement from itself, yielding exact
cancellation of all noises, but also all signals. We are therefore only searching
for non-trivial solutions, such that i1 . . . in 6= j1 . . . jm

10.2 tdi generations

Traditionally, the solutions of the problem of finding laser noise reducing TDI
combinations have been categorized into different simplified scenarios:

• 0th generation TDI, considering all delays to be constant and equal,

• 1st generation TDI, considering all delays to be constant, equal along two
direction of the same link (e.g., D12 = D21), but unequal for different
links (e.g., D12 6= D13),

• 1.5th generation TDI, considering all delays to be constant and unequal,
and

• 2nd generation TDI, considering all delays to be linearly evolving func-
tions of time.

As we already saw in section 3.2, second generation TDI is sufficient for the
laser noise suppression requirements in LISA. We will still give an example
of a third generation combination in section 10.2.5.

Note that since higher generations impose increasingly strict conditions, any
TDI solution at a given generation N is also a solution of lower generation
M < N.

As an example, we give for each generation The three Michelson
combinations centered
on spacecraft 1, 2 and 3
are traditionally called
X, Y and Z.

the Michelson X combination.
None of them are perfect equal arm-length interferometers, and their arm-
length mismatch ∆τ is dominated by the next-to-leading order contributions
to the arm length neglected in their derivation. We can model this up to 2nd
generation by considering a third order expansion for the light travel times,

DAx(t) = x(t− dA − ḋAt− 1
2

d̈At2) , (10.14)

with dA, ḋA and d̈A constant. We will then give a model for the leading order
arm length mismatch terms up to 2nd generation. Following section 2.3.1, we
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Figure 10.4: Schematic
overview of the 0th
and first generation
Michelson combina-
tions. Two beams are
emitted from space-
craft 1. For the 0th
generation, they are
recombined after a sin-
gle round-trip, while
for 1st generation, they
each travel to both
spacecraft 2 and 3 be-
fore being recombined,
cancelling constant
armlength mismatches.

SC 1

SC 2 SC 3

SC 1

SC 2 SC 3

expect a laser noise residual in the TDI variable (expressed in frequency) of

SXν
i
(ω) = ∆τ2

i ω2Sν(ω) , (10.15)

where ω is the angular Fourier frequency, i an index denoting the generation,
and Sν as the raw laser frequency noise PSD.

We show a simplified numerical simulation in section 10.2.6 to verify that
these models are accurate.

10.2.1 0th generation TDI

If all delays are constant and equal, the condition for laser noise cancellation
is simply that we need the same number of delays for each beam. This
corresponds to n = m in eq. (10.13). An example of a 0th generation TDI
combination is the simple Michelson (sketched in fig. 10.4 (left)),

X0 = η12 + D12η21 − η13 −D13η31

= (D121 −D131)Φ1 .
(10.16)

This is equivalent to the simple Michelson combination we considered in the
beginning of this chapter, with the only difference being that we can construct
such a signalSee section 12.2 for

more information how
the different locking
schemes impact TDI.

regardless of the laser locking configuration, for each of the
three spacecraft.

The leading order contributions to the armlength mismatch is simply

∆τ0 ≈ 2(d12 − d13) , (10.17)

which as we saw before leads to laser noise residuals far above the require-
ments.

10.2.2 1st generation TDI

First generation combinations were first proposed in [82].

Since all delays are constant, their order does not matter, and we have

[DA, DB] = DADB −DBDA = 0 (10.18)
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for the commutator of As described in
appendix A, we
sometimes use upper
latin letters as
placeholder for any
index pair ij.

any two delays. This means we can freely exchange
the order in which the spacecraft indicies appear in the two nested delays in
eq. (10.13). This yields the simple condition that the visited spacecraft have to
be identical for both paths. Formally, we have

{ik|k = 1 . . . n} = {jk|k = 1 . . . n} (10.19)

for the sets of all indices ik and jk in eq. (10.13).

An example of a 1st generation TDI combination is a variant of the Michelson,
where each of the two beam visits both spacecraft, but in opposite order
(sketched in fig. 10.4 (right)):

X1 = η12 + D12η21 + D121η13 + D1213η31

− [η13 + D13η31 + D131η12 + D1312η21]

= (D12131 −D13121)Φ1 .

(10.20)

As argued below, X1 is actually also automatically TDI generation 1.5. There-
fore, the leading order contributions to the armlength mismatch are propor-
tional to ḋA, and we can compute them via a first order expansion in ḋ as

∆τ1 ≈ 4d(ḋ31 − ḋ12) , (10.21)

where d is the average arm length in seconds, and we assumed ḋij ≈ ḋji.

10.2.3 1.5th generation TDI

In 1.5th generation TDI (also called ’modified’ 1st generation TDI), all the
conditions of 1st generation apply, but we further distinguish the direction in
which the delays are computed. This gives the more restrictive condition that
the individual delays appearing in the expanded nested delays of both paths
must be identical.

Expanding the nested delays in X1, we observe that it also satisfies this stricter
condition, so it is automatically 1.5th generation.

Generalized 1.5th generation combinations were first proposed in [84].

An example of a 1st generation TDI combination which is not 1.5th generation
is the Sagnac combination, where the two beams travel in a circle around the
constellation, in opposite directions:

α1 = η12 + D12η23 + D123η31 − [η13 + D13η32 + D132η21]

= (D12D23D31 −D13D32D21)Φ1 .
(10.22)

Indeed, the leading-order contribution to the arm-length mismatch for α1 is
simply

∆τα1 ≈ (d12 + d23 + d31)− (d13 + d32 + d21) , (10.23)

which only vanishes under the condition dij = dji.
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Figure 10.5: Schematic
overview of the 2nd
generation Michelson
combination. Here,
both beams travel to
both spacecraft 2 and
3 twice before being
recombined, cancelling
spacecraft movement
to first order.
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10.2.4 2nd generation TDI

In second generation TDI, the delays are no longer modelled as constants, but
instead as linear functions of time,

DAx(t) = x(t− dA − ḋAt) , (10.24)

with dA and ḋA constant. Therefore, we can no longer freely commute two
delays, since nested delays yield non-symmetric terms (we neglect any terms
of the form ḋAḋB):

DADBx(t) ≈ x((1− ḋA − ḋB)t− dA − dB + dAḋB) (10.25)

This is easily generalized to an arbitrary number of delays, where each delay
couples to all the linear terms in the delays to it’s right:

DA1 ...An x(t) ≈ x

((
1−

n

∑
k=1

ḋAk

)
t−

n

∑
k=1

dAk +
n

∑
k=1

dAk

n

∑
m=k+1

ḋAm

)
(10.26)

Note that only the last summand,

n

∑
k=1

dAk

n

∑
m=k+1

ḋAm , (10.27)

depends on the order of the delays. Therefore, in order to achieve laser noise
cancellation to first order in ḋ, the two beams must be chosen in such a way
that

• Both beams contain the same overall delays, and

• they are ordered in such a way that eq. (10.27) yields the same result for
both.
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An example of a 2nd generation TDI combination is yet another variant of the
Michelson, where each of the two beam visits both distant spacecraft twice
(sketched in fig. 10.5):

X2 = η12 + D12η21 + D121η13 + D1213η31 + D12131η13

+ D121313η31 + D1213131η12 + D12131312η21

−
[
η13 + D13η31 + D131η12 + D1312η21 + D13121η12

+ D131212η21 + D1312121η13 + D13121213η31
]

= (D121313121 −D131212131)Φ1 .

(10.28)

These combinations were first described in [85].

For its armlength mismatch, we consider terms to first order in d̈ij ≈ d̈ji and
second order in ḋij ≈ ḋji and again use the average armlength d, to get

∆τ2 = 8d
[(

ḋ2
12 − ḋ2

31
)
− 2d

(
d̈12 − d̈31

)]
. (10.29)

Here, the first term matches the previous result from the literature [24].
The second term is proportional to d̈12 − d̈31, which we will estimate to be
dominant for the ESA provided orbits (cf. section 10.2.5).

10.2.5 3rd and higher generation TDI

In principle, the above reasoning could be continued to include higher and
higher polynomial orders. Third generation TDI would mean that the arms
are equal to first order in all contributions given in eq. (10.14).

However, as we saw in fig. 3.4, 2nd generation TDI is sufficient to reach the
required laser noise suppression in LISA.

Indeed, we can compute numerically from the orbits shown in fig. 3.3 that
the orders of magnitude for the arm length derivatives can be approximated
as dA ≈ 8.3 s, ḋA ≈ 10−9 and d̈A ≈ 10−15 s−1. Since laser noise ’only’ needs to
be suppressed by roughly 8 orders of magnitude, we see that the armlength
mismatch ∆τ2 given in eq. (10.29) should be sufficient. In addition, we can
confirm that the contribution of d̈A should be the dominant contribution to
∆τ2.

In addition to not being required, the analytical problem of finding third
generation TDI combinations also seems rather challenging. Due to the
quadratic time dependence, the number of terms in a nested delay goes with
the square of the number of delays, which means we would have to solve
analytical formulas with a very large number of terms.

As a an example for a third generation combination, we can take an ed-
ucated guess based on an argument from [92]. They conjecture that each
TDI combinations of 2nd generation can be constructed from 1st genera-
tion combinations by ’splicing’. For example, each of the two beams in the
2nd generation Michelson combination contains exactly the same delays as
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both beams combined in the first generation version, such that each arm is
transversed twice, with a reversed direction for the second pass.

Extending that idea, we can guess the third generation Michelson combination
to be the interferometer evaluating to

X3 = (D12131312131212131 −D13121213121313121)Φ1 , (10.30)

which is a splicing of the 2nd generation combination, where each arm is now
traversed four times by each beam.

ToThis is by no means a
conclusive study, but

merely a quick test to
check the general
feasability of this

combination.

test this hypothesis, we can numerically evaluate the difference in light
travel time for the first and second beam, assuming a 2nd order fit of realistic
orbits given in fig. 3.3. The computations where performed using Mathe-
matica, with the working precision of all numerical values set to 50 digits
precision.

For reference, using this method, the X2 combinations time difference between
the two paths evaluates to 9.7× 10−12 s, which exactly what we would expect
from inserting the values of d, ḋ and d̈ determined by our orbital fit into
eq. (10.29). Our ’third generation’ Michelson X3, on the other hand, evaluates
to just 8.6× 10−20 s, an improvement of 8 orders of magnitude, and indeed
below the level we would expect from terms proportional to either ḋ2

A or
d̈A.

10.2.6 Simulation comparison across generations

To verify the laser noise suppressing capabilities of the different TDI genera-
tions, we present results using a simplified simulation using LISA Instrument,
where we disable all noises except laser noises. We simulate 105 samples, and
do not simulate laser locking. The same realistic ESA orbits and the same
sampling rates are used as in chapter 8. In addition, we use the same transi-
tion band for the anti-aliasing filter, but increase the attenuation to 320 dB in
order to not be limited by aliasing1.

We then compute the 0th, 1st, 2nd and 3rd generation Michelson variables
described above, using PyTDI, where we chose anCf. appendix B for

more information on
the practical

implementation of
delays.

interpolation order of
65.

The results are shown in fig. 10.6. We observe that our model matches the
achieved laser noise level well for 0th, 1st and 2nd generation, although the
2nd generation variable is limited by a white numerical noise floor below
2× 10−3 Hz. This is even more pronounced for the 3rd generation variant,
which is completely limited by numerical noise, with an estimated theoretical

1 The attenuation of the filter given in chapter 7 was intentionally chosen to limit the level of
aliased noise to just below the 1 pm allocation (with some margin). A stronger filter would
be computationally more expensive, which might impose additional requirements on the
instrument hardware. In this chapter, we are more interested in the fundamental limits of TDI
than being true to the instrument design, such that we can use a higher attenuation in order to
highlight the maximum achievable laser noise suppression.
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Figure 10.6: Laser
noise residual in dif-
ferent Michelson X
generations.
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laser noise residual2 far below the other variables. The sharp increase of
X3 close to 1 Hz can be explained by the interpolation errors discussed in
section 12.3.2.2.

10.3 the algebra of commutative and non-commutative delay
operators

It can be useful in practice to study and describe TDI combinations from an
algebraic perspective. In fact, the problem of up to 1.5th generation TDI can
be exactly solved using algebraic methods, see [83]. It turns out that the entire
space of 1.5th generation variables can be generated from just 6 fundamental
combinations [69], while for 1st generation, even 4 combinations are sufficient
[32].

To the knowledge of the author, the algebraic problem of second generation
TDI is to date still unsolved [83], and no finite set of generators is known.
This opens up the question which, and how many, second generation TDI
combinations one should compute to extract all available information. We
will briefly explore this question at the end of chapter 11.

Regardless, it is useful to realize that once 2nd generation TDI combinations
Cf. chapter 11 for a
review of possible
second generation
combinations.

are found, they can be manipulated algebraically.

Formally, we observe the following properties of the delay operators of first
and second generation TDI:

• Each delay operator Dij has a left and right inverse Dji, which exactly
cancels the applied time shift (see chapter 11 for more information, in
particular eq. (11.2)).

2 Note that we neglected terms proportional to ˙̇ḋA in the computation of ∆τ in section 10.2.5,
which might cause a residual laser noise at a higher level than estimated here.
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• Delay operators are linear operators, in the sense that

Dij(x(t) + y(t)) = Dijx(t) + Dijy(t) ,

Dij(ax(t)) = aDijx(t) ,
(10.31)

for any constant a ∈ R and any time dependent functions x(t), y(t).

• Delay operators of first generation are commutative, while those of
second generation are non-commutative.

Using that delay operators are linear, we can factorize any given TDI combi-
nation as

TDI = ∑
ij∈I2

Pijηij , (10.32)

where the set of index touples I2 = {ij | i, j ∈ {1, 2, 3}, i 6= j} has six elements
and each Pij is a polynomial3 of delay operators.

For example, the first generation Michelson combination can be factorized
as

X1 = η12 + D12η21 + D121η13 + D1213η31

− [η13 + D13η31 + D131η12 + D1312η21]

= (1−D131)(η12 + D12η21)− (1−D121)(η13 + D13η31) ,

(10.33)

which means its defining polynomials Pij are

P12 = (1−D131) , P23 = 0 , P31 = −(1−D121)D13 ,

P21 = (1−D131)D12 , P32 = 0 , P13 = −(1−D121) .

We know from the previous sections that the laser noise appearing in each
ηij is strongly suppressed in the full TDI combination. However, this is not
the case for most other noises. For the purpose of estimating the coupling
of non-suppressed effects, like gravitational waves and most noise sources,
it is therefore often sufficient to analyze eq. (10.32) under the assumption
that all delays appearing in the Pij are constant, or even equal to one average
delay. Therefore, any result valid for 0th, 1st or 1.5th generation variables are
applicable to the non-suppressed quantities in the second generation variables
as well, with increasing level of accuracy.

For example, assuming that all delays are equal, we can write X1 in terms of
the simple Michelson X0,

X1 = (1−D131)(η12 + D12η21) + (1−D121)(η13 + D13η31)

≈ (1−D2) (η12 + Dη21 − η13 −Dη31)︸ ︷︷ ︸
X0

, (10.34)

3 Note that these operator-valued polynomials don’t obey the same rules valid for real-valued
polynomials. In particular, a polynomial of delay operators has in general no multiplicative
inverse. In addition, the delay operators of 2nd generation TDI are non-commutative, such
that the order of operators must be preserved when factorizing these polynomials.
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where we used D as the unique equal delay operator of 0th generation TDI.
Likewise, we can write X2 in terms of X1 assuming that delays commute, or
even in terms of X0 if they are all assumed equal:

X2 =(1−D131 −D13121 + D1213131)(η12 + D12η21)

− (1−D121 −D12131 + D1312121)(η13 + D13η31)

≈(1−D12131)X1 .

≈(1−D4)(1−D2)X0 .

(10.35)

These properties are very useful in practice. For example, the relationship
between X2 and X1 was used in [86] to generalize an already known clock
correction algorithm from first to second generation, and it is also regularly
used in the LISA performance model group to relate noise residuals for
second generation TDI to those of first generation TDI.

We will also use a similar reasoning to relate all second generation combina-
tions found in chapter 11 and presented in table 11.3 to the four generators of
first generation TDI, cf. section 11.5.1.





11
T D I C O M B I N AT I O N S

We presented in chapter 10 how TDI combinations can be built out of the one-
way measurements to construct arbitrary two-beam interferometers.

We will extend this approach to construct more general multi-beam interfer-
ometers, following the ideas described by [92, 63], in section 11.1. Here, we
also introduce a concise notation for identifying TDI combinations.

We then generalize the conditions for laser noise cancellation in the differ-
ent TDI generations in section 11.2, and discuss different symmetries the
combinations can obey in section 11.3.

Finally, we use these formulations in section 11.4 to perform an independent
replication of the search method outlined in [92, 63], finding additional 14 link
combinations which were previously missed. A full summary of the found
combinations is given in table 11.3. We then relate these combinations to the
generators of first generation TDI in section 11.5, and show simulation results
indicating that just four combinations are sufficient to recover all information
encoded in the 2nd generation TDI combinations in section 11.5.1. Finally, we
show how these decompositions can be applied to actual simulated data in
section 11.5.2

The results reported in this chapter where produced independently by the
author, but with regular exchange and comparison of results with the LISA
group in Trento, in particular M. Muratore, D. Vetrugno and S. Vitale.

11.1 laser noise cancellation in multi-beam interferometers

We have discussed how to construct two-beam interferometers allowing
laser noise cancellation in chapter 10. This approach can be generalized to
construct TDI combinations utilizing an arbitrary (even) number of beams, by
combining multiple two-beam interferometers.

To understand this, it is useful to consider the spacetime events involved in
each measurement ηij. Each ηij represents a one-way measurement, where
incoming light from the distant spacecraft is interfered with the local laser
beam. The resulting measurement is the difference of the phase of the local
laser at the event of reception of the distant beam and that of the distant laser
at the event of its emission. We used this property in section 10.1.2 to combine
multiple ηij’s such that the laser entering at the event of reception in one of
the ηij exactly cancels with the same laser entering at the event of emission of
another ηij.

121
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Figure 11.1: A
schematic overview
of 1.5th generation
Michelson combi-
nation. The x-axis
denotes the number
of events in the TDI
combination, starting
at one of the emission
events. The colors indi-
cate which spacecraft
is visited in each link.
The y-axis denotes
the coordinate time
at each event, normal-
ized by the average
light travel time. Even
though the arms are
unequal, the overall
path is closed, mean-
ing that the first and
last event in the chain
happen simultane-
ously on the same
spacecraft, and laser
noise cancels. Light-
travel times chosen
only for visualization.
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8 link Michelson combination

This allowed construction of single-beam interferometers, where one of the
beams is emitted at an emission event, relayed in an arbitrary path along
the constellation, and then recombined with a non-delayed version at a re-
ception event. Furthermore, in section 10.1.3, we combined two such beams
which share a common reception event to construct a virtual interferometer,
cancelling laser noise if the two respective emission events are simultane-
ous.

This means so far, we used two different laser noise cancellation mechanisms
when combining measurements:

• Cancellation at a simultaneous reception and emission event, and

• Cancellation at two simultaneous reception events.

Obviously, there is a third option to combine the ηij’s which we didn’t use so
far, which is cancellation at two simultaneous emission events.

As an example, fig. 11.1 shows a schematic overview of the emission and
reception events involved in the first generation Michelson combination. The
x-axis is a simple counter indexing these events, while the y-axis shows the
coordinate time at which the beam arrives at a certain spacecraft.

In the classical TDI description outlined in section 10.1.3, the two beams are
combined at a reception event. Therefore, the figure is to be read starting
from the event labelled #4, where two beams are received simultaneously.
Each of the two beams can then be tracked back to their inital event of
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Figure 11.2: 1.5th gen-
eration ’beacon’-type
TDI combination uti-
lizing 4 beams/two
interferometers. The
only simultaneous
events are the very
beginning and end
of the chain. Combi-
nation given in [92].
This combination has
a smaller temporal
foot-print than the
Michelson combina-
tion. Light-travel times
chosen only for visual-
ization.
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emission by going through the sequence either descending (from #4 to #0) or
ascending (from #4 to #8). Laser noise is cancelled if the two emission events
are simultaneous1.

However, we can just as well time shift our whole combination to start at
the emission time from the first spacecraft, labelled #0 in the figure. We
then track a beam which is emitted at time t = 0 forwards through time,
computing it’s reception times going through events #1 to #4. At event #4, it is
combined with the second beam, and we change direction. We then compute
the emission times of the second beam while going through the rest of the
sequence, from events #4 to #8. The condition for laser noise cancellation has
not changed, the first and last event have to be simultaneous. The advantage
of going through the sequence in this order is that it is easy to generalize it to
include more than two beams, or equivalently more than one measurement
event. Figure 11.2 shows an example of such a combination, which uses two
measurement events/interferometers. In this example, the two measurement
events on spacecraft 3 have to be aligned in time in such a way that the shared
emission event on spacecraft 2 (# 6 in the figure) is simultaneous for both
interferometers. We still have the same condition for laser noise cancellation,
i.e., the whole photon path has to be closed, which means the first and last
event in the chain have to be in the same spacecraft and simultaneous.

1 ’Simultaneous’ meaning here that the time difference between the two events is sufficient small
that the residual laser noise is below the required level, as discussed in chapter 10.
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In practice, constructing TDI variables starting not from a reception event
but from an emission event requires knowledge of not only the delays Dij,
which give the emission time of a beam on spacecraft j given a reception time
i, but also the advancements Dij, which give the reception time of a beam on
spacecraft j given an emission time on spacecraft i.

Formally, if the coordinate times of the events of emission and reception of a
beam emitted from spacecraft i and received by spacecraft j are denoted te

i
and tr

j , respectively, we have

Djix(tr
j ) = x(te

i ) , Dijx(t
e
i ) = x(tr

j ) , (11.1)

which immediately yields the identity

DijDjix(t) = DjiDijx(t) = x(t) . (11.2)

In LISA, we only directly measure Dij, cf. section 6.3. The advancements
can be calculated out of these using an iterative procedure on eq. (11.2), see
appendix B.4.

We will use the same notation for nested advancements which we used for
nested delays. I.e., we have

Di1i2...in
= Di1i2 Di2i3 . . . Din−1in

, (11.3)

which gives the time of reception of a beam on spacecraft in which was
emitted from spacecraft i1, being relayed by all the spacecraft corresponding
to the indices inbetween, from left to right. Note that eq. (11.2) generalizes to

Di1i2...in
Dinin−1...i1 = Dinin−1...i1 Di1i2 ...in

= 1 . (11.4)

As an example of how to construct a TDI variable starting at an emission
event, let us consider again the 1st generation Michelson combination,

X1 = η12 + D12η21 + D121η13 + D1213η31

− [η13 + D13η31 + D131η12 + D1312η21]

= (D12131 −D13121)Φ1 .

(11.5)

This equation is to be evaluated at a reception time on spacecraft 1. As argued
above, we can simply time-shift the whole combination by applying D13121,
such that it is evaluated at an emission event at one of the beams,As described in

appendix A, we
seperate nested delays
and advancements in

D by a semicolon, i.e.,
D13121;13121 ≡
D13121D13121

which
yields

D13121X1 =D13121η12 + D13121D12η21 + D13121D121η13 + D13121D1213η31

−D13121[η13 + D13η31 + D131η12 + D1312η21]

=D13η31 + D131η13 + D1312η21 + D13121η12

−D13121[η13 + D13η31 + D131η12 + D1312η21]

=(1−D13121;13121)Φ1 .

(11.6)

We can make the following observations:
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• All delays and advancements in the final result are shifted to the second
term, while the first term enters without any timeshift. This leads to
the interpretation of this signal in [92] that we have constructed an
interferometer where one of the beams travels forwards and backwards
in time, and interferes with itself at it’s event of emission.

• The nested delays and advancements in that second term enter exactly in
the same order as the visited spacecraft in our visualization, cf. fig. 11.1.

• Each ηij is evaluated at such times that the two laser noise contribu-
tions in them correspond to the emission and reception events in our
visualization. For example:

– The first term D13η31 contains laser noise from spacecraft 1 at the
event of emission at the time origin of the combination (#0), and
laser noise of spacecraft 3 at the event of reception (#1),

– the ’middle’ term D13121η12 −D13121η13 is the recombination event
(#4), at which both beams interfere; here, both η’s are evaluated at
the same time, such that the common noise of spacecraft 1 cancels,

– and the final term D13121;1312η21 is evaluated at the second to last
event (#7). This η21 contains a laser noise term which is then
emitted at the last event in our figure (#8).

11.1.1 Algorithm for TDI variable construction

The above observations lead us to a This algorithm was
first described in [92],
and updated here to
our notation.

general algorithm of how to construct
any multi-beam interferometer. We assume that the combination we want to
construct is given as a string of visited spacecraft, directly corresponding to
the nested delays in eq. (11.6). Paths in forward time direction are indicated
with a positive sign, while those with a backward time direction receive
a negative sign. For example, the 1st generation Michelson combination
described in eq. (11.6) would be encoded as "13121 -13121", but this notation
is not restricted to two-beam interferometers.

The full algorithm2 to build a TDI combination given by a photon path is
then:

• Expand the nested photon path into a list of single links. E.g.,

"13121 -13121"→ [13, 31, 12, 21,−13,−31,−12,−21] . (11.7)

• Create an empty list of delays/advancements T = [ ], and initialize an
expression C = 0.

2 The last step is optional. Without it, the resulting TDI combinations usually contain a large
number of nested timeshifts, which can become computationally expensive when actually
computing the TDI response. It is therefore often advisable to multiply the final combination
by the inverse of the first half of T , such that half of the timeshifts in the combination are
cancelled. Physically, this timeshift corresponds to building the combination starting from the
central event instead of the first event.
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• Iterate through the expanded photon path, doing the following opera-
tions, assuming the indices are ij:

– If the entry is positive (an advancement), add

C += T Dijηji . (11.8)

– If the entry is negative (a delay), instead subtract

C −= T ηij (11.9)

– Then, append either Dij or Dij to T .

• Apply am overall timeshift to the combination undoing the first half of
T to reduce the total number of time shifts (Optional).

We will denote the application of this algorithm by TDI["string"]. For example,
we would write for the first generation Michelson

TDI["13121 -13121"] = (1−D131)η12 + (D12 −D1312)η21

− (1−D121)η13 − (D13 −D1213)η31 .
(11.10)

This algorithm is functionally identical to that presented in [92] and simply
updated to agree with our notation. We can convert our photon paths to
the notation used there (and the other way around) using the following
steps:

• Expand nested delays:

"13121 -13121"→ [13, 31, 12, 21,−13,−31,−12,−21]

• Replace the two spacecraft indices with corresponding link, so exchange

12↔ 3′ , 23↔ 1′ , 31↔ 2′ ,

21↔ 3 , 32↔ 1 , 13↔ 2 ,

−12↔ −3 , −23↔ −1 , −23↔ −2 ,

−21↔ −3′ , −32↔ −1′ , −13↔ −2′ .

• Collapse the resulting list back into a string, e.g.,

"2 2’ 3’ 3 -2’ -2 -3 -3’" .

11.2 conditions for laser noise cancellation

We can evaluate if a string corresponds to a combination which is TDI gen-
eration 1, 1.5 or 2 using modified versions of the rules presented in sec-
tion 10.2.

Combinations satisfying these conditions can then be found numerically,
by simply generating and testing all possible TDI strings up to a given
length.



11.2 conditions for laser noise cancellation 127

11.2.1 1st Generation

If all armlengths are constant and symmetric, it is sufficient if the same
spacecraft are visited on the forward and backwards paths of the combination.
Formally, we have to count the total number of occurences of each spacecraft
in all positive substrings, which has to be equal to the number of occurences
of each spacecraft in all negative substrings.

For example, the Sagnac combination is given by the string "1321 -1321",
which fulfills this condition.

11.2.2 1.5th Generation

As before, we now have to consider the direction of links. This requires to
expand the photon path into a list of delays, and then count that the same
links are used in forward and backwards direction.

Since all delays are still constant, we can freely commute them in this list. Us-
ing eq. (11.2), we see that each advancement Dij cancels with a corresponding
delay Dji.

In summary, the algorithm to check if a string is TDI 1.5 is:

• Expand the TDI string into list of advancements and delays. For exam-
ple:

"13121 -13121"→ [13, 31, 12, 21,−13,−31,−12,−21] (11.11)

• Count the number of each advancement ij, which has to be equal to the
number of each corresponding delay −ji.

11.2.3 2nd Generation

The algorithm described in section 11.1.1 For this study, it is
more useful to not
apply the optional last
step of the algorithm,
such that all timeshifts
are shifted to the
second laser noise
term.

always yields an expression of the
form

TDI = (1−Di1...in)Φin , (11.12)

with the chain of delays in the second term corresponding exactly to the
indices of the TDI string. We have to check if the overall nested time shift in
that term evaluates to zero when performing a first order approximation in
the arm lengths.

11.2.3.1 Forward time shifts for linear delays

We first need to determine how the forward timeshifts DA are related to the
delays DA in the linear approximation. We have again

DAx(t) = x(t− dA − ḋAt) , (11.13)
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with dA and ḋA assumed constant for the delays.

We want to model our advancements in exactly the same form, which will
allow us to reuse eq. (10.26). So we use3

DAx(t) = x(t− aA − ȧAt) . (11.14)

Utilizing eq. (11.2), we then see that

x(t) = DADAx(t)

= DAx(t− dA − ḋAt)

= x(t− aA − ȧAt− dA − ḋA(t− aA − ȧAt))

= x(t− aA − dA + ḋAaA + (ȧAḋA − ȧA − ḋA)t)

(11.15)

For the equation to hold, the terms with and without a time-dependence both
need to cancel independently, yielding the two solutions

aA = − dA

1− ḋA
, (11.16)

ȧA = − ḋA

1− ḋA
. (11.17)

We can expand both expressions to first order in ḋA to get

aA ≈ −dA(1 + ḋA) , (11.18)

ȧA ≈ −ḋA . (11.19)

11.2.3.2 Laser noise cancellation to first order in L̇

We can reuse the result and reasoning we had in section 10.2 to show that the
overall nested time shift is structurally identical to eq. (10.26),

DÃ1...Ãn
x(t) = x

((
1−

n

∑
k=1

ṪÃk

)
t−

n

∑
k=1

TÃk
+

n

∑
k=1

TÃk

n

∑
m=k+1

ṪÃm

)
. (11.20)

The difference is that we now allow each Ãi to be either an advancement or a
delay, replacing TÃi

→ dAi , ṪÃi
→ ḋAi for a delay, and TÃi

→ −dAi
(1 + ḋAi

),
ṪÃi
→ −ḋAi

for an advancement. The bar on Ai acts as a reminder that when
we use this formula in the two index convention, we need to reverse the order
of indices for the advancements to get the correct inverse operator.

Using these replacement rules, we see immediately that the sum ∑n
k=1 ṪÃk

cancels as long as the same arms are transversed an equal number of times
in forward and backwards direction, which is exactly the condition for TDI
generation 1.5.

3 Note that in the two index convention, we have Dij as the inverse of the delay Dji, with the
indices switched. In our one-index notation for delays, we will use DA as the inverse of DA.
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In addition, we need to check if all delays and advancements in the last two
sums cancel, i.e., that

n

∑
k=1

TÃk

n

∑
m=k+1

ṪÃm
=

n

∑
k=1

TÃk
, (11.21)

at least to first order in L̇. The first order approximation means here that we
can use the simplified substitution TÃi

→ −LAi
for the advancements in the

left side of the equation, while we need to use the full expression for the right
side of the equation.

Equation (11.21) can be checked by either evaluating it symbolically, or by
implementing an appropriate counting algorithm on the links appearing
in the nested delay, as described in [92]. We chose the former option for
convenience, using the computer algebra software Mathematica.

11.2.3.3 Laser noise cancellation expressed in the Fermi frame

It was argued in [63] that the search for TDI combinations can in principle be
performed in any reference frame, since the simultaneity of two events (here
the emission and reception events of the beams) remains true in any reference
frame4.

Furthermore, it was shown that there exists a reference frame in which the
terms for L and L̇ have certain symmetries, and can be expressed in terms of
the relative coordinate velocity5 of the spacecraft:

Lij = L0,ij

(
1− vij

c

)
(11.22)

Lji = L0,ij

(
1− vji

c

)
(11.23)

L̇ij = L̇ji = vij + vji . (11.24)

Using these conditions and neglecting effects second order in vij in expressions
equivalent to eq. (11.21) led to the discovery of some new 2nd generation
TDI combinations in [63] which were previously discarded by the search
algorithm described in [92]. Notably, it was shown that several new 12 link
combinations suppress laser noise to the same level as the previously known
16 link combinations.

4 In reality, the recombination events are not exactly simultaneous, but occur with a small time
offset on the order of ps when expressed in the TCB [63]. It might be possible to construct a
coordinate system with a coordinate singularity which blows up this ps time interval to an
arbitrarily large number, which conversely would mean that finding a ’small’ overall light
travel time in such a coordinate system would not translate to an equally small time interval in
the TCB. This is not the case for the systems considered here, for which the relative scaling of
these time intervals due to coordinate transformations is small enough to not affect the result.

5 Note that in these equations (taken directly from [63], see there for more information), the
armlength are expressed in meters, not seconds, explaining the occurence of the speed of light
c, which is absent in all our equations.
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11.3 symmetries of tdi strings and string normal form

In the previous sections, we introduced a concise notation for defining TDI
combinations, and reviewed an algorithm based on [92] for how to construct
the corresponding interferometers out of the six one-way measurements.
However, there are multiple symmetry operations we can apply to a TDI string
without changing the resultant combination in a meaningful way. Therefore,
each TDI string should be seen as a representative of an equivalence class of
distinct TDI combinations.

Furthermore, some combinations are related by simple permutations of the
spacecraft indices used in them. Thus, each string can also be seen as repre-
sentative of another equivalence class of core TDI combinations, from which
all distinct combinations can be generated by index permutations.

We will use a sorting criterion to pick one unique representative for each of
these equivalence classes.

Note that such symmetries are also discussed in [92, 63]. We list them here
for completeness, and to discuss how they are applied in our notation.

11.3.1 String reversal

We constructed our algorithm to use the first event in the string as starting
point for the combination. However, we could have just as well started from
the opposite end. Practically, this means that the order of visited spacecraft is
reversed, while links which previously where interpreted as delays are now
advancements, and vice versa. This has two minor impacts which should not
lead us to consider these as different combinations.

For one, the sign will be flipped, since we assigned a positive sign to advance-
ments and a negative sign to delays in our algorithm. This sign assignment
was in itself arbitrary, such that this has no physical meaning. Secondly, the
reversed combination will have a small time shift, since the starting time is
now defined at the last spacecraft, not the first. As before, an overall timeshift
does not distinguish a combination. In addition, the first and last event of
the chain can be seen as almost simultaneous within the assumptions of a
given TDI generation, such that this timeshift is indeed irrelevant in most
situations.

Thus, two strings can be seen as equivalent if one can be produced from the
other by reversing the order and changing all signs.

11.3.2 Cyclic string shifts

Applying a cyclic shift of all string indices, e.g.,

"12 21 13 31 -12 -21 -13 -31"→ "21 13 31 -12 -21 -13 -31 12"
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(11.25)

only has a very subtle impact on the resultant combination. If the photon
path described by the combination is perfectly closed, the first and last event
are simultaneous. This means that the cyclically shifted combination contains
exactly the same events, with exactly the same laser noise cancellations at
simultaneous events, and the only change is an overall shift in the starting
time.

In reality, the photon path is not perfectly closed, such that the first and last
event are not simultaneous. We therefore have the additional effect that the
’open’ end of the path is at a different spacecraft. Non-closedness of the path
represents an armlength mismatch of the synthesized interferometer, which
will cause a small residual laser noise, as discussed in section 12.3.1.

This means we can in principle control which laser noise remains unsup-
pressed via cyclic string shifts. This might be exploitable if the lasers have
different noise characteristics, such as is the case if they are all locked to one
master laser in the constellation, and this noise appears in them with different
delays.

Regardless of this minor technical detail, we will consider two combinations
equivalent if one can be produced by the other via a cyclic string shift.

11.3.3 Equivalent strings and normal representative

Two strings are seen as equivalent if either of them can be produced from the
other one by any combination of string reversals or cyclic shifts.

Since the cyclic permutation group of a list of N elements has itself N elements,
and there are two versions of each string due to string reversal, we have a total
of 2N members of the equivalence class for each string of length N.

We will choose a unique representative for each equivalence class via the
following criteria:

• Favor strings which start with the longest list of consecutive advance-
ments.

• Out of those, favor strings for which the starting indices are ascending
("12", "23", "31").

• Out of those, prefer the lowest numerical ordering of the spacecraft
appearing in the sequence (e.g., "121..." is favored over "231..." or
"123...").

11.3.4 Permutation of spacecraft indices

LISA obeys the symmetries of an equilateral triangle. In total, there are six
possible permutations of the set of spacecraft indices. These can all be written
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as multiple applications of the cyclic permutations, 1→ 2, 2→ 3, 3→ 1, and
the mirror symmetry along the separating axis between spacecraft 2 and 3,
i.e., by exchanging indices 2↔ 3, as described in appendix A.

This implies that for any TDI string of a given TDI generation there exist 6
versions which are all of the same generation. They differ by the starting
spacecraft and by exchanging the order in which the other two spacecraft
appear.

Contrary to the previous two kinds of symmetries, some of these 6 versions
can be seen as distinct combinations. We previously discarded combinations
as equivalent if the same signals enter in them, up to an overall time-shift
or a timing mismatch to be neglected at given TDI generation. This is
not the case when changing the starting spacecraft or the order in which
spacecraft are visited. For example, the Michelson combination X does not
use any measurements between spacecraft 2 and 3, while its equivalents Y
and Z constructed by cyclically shifting all spacecraft indices do use these
measurements. They therefore contain different signals, and are seen as
distinct combinations.

Some combinations are mirror symmetric. For example, exchanging the role
of spacecraft 2 and 3 in the Michelson X combination is equivalent to a
reversal of the string, which we previously identified to be equivalent to just
a sign flip.

11.3.5 Time reversal symmetry

Reversing just the time direction of all links in a TDI string yields another
TDI string of the same generation as the original6. In many cases, this time-
reversed string is truly equivalent to the original, in the sense of section 11.3.3,
or it is equivalent to one of the permutations described in section 11.3.4.

However, there are a few cases in which it is not equivalant to either. As
an example, we show in fig. 11.3 the time-reversed version of the Beacon
combination we originally discussed in fig. 11.2. In the original version of the
variable, both spacecraft 1 and 2 emit two beams each, while all measurements
are performed on spacecraft 3.

In the time-reversed version, on the other hand, all beams are emitted from
spacecraft 3, while they are interfered and measured on spacecraft 1 and
2. This change in topology of the combination cannot be produced by a
simple exchange of spacecraft labels, such that both the original and the time
reversed version should be seen as distinct combinations.

6 We thank S. Vitale for pointing out this additional symmetry!



11.3 symmetries of tdi strings and string normal form 133

Figure 11.3: 1.5th gen-
eration ’beacon’-type
TDI combination uti-
lizing 4 beams/two
interferometers after
a time reversal. The
combination is not
time symmetric. Con-
trary to fig. 11.2, all
beams are now emit-
ted from S/C 3, and
measured on S/C 1
and 2. Light-travel
times chosen only for
visualization.
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11.3.6 Core combinations and equivalence

We call a distinct combination the equivalence class of strings which can be
produced from each other just by string reversal or cyclic string shifts. There-
fore, the three Michelson combinations X1, Y1 and Z1 are distinct combina-
tions.

We call a core combination the set of strings which can be produced from
each other by either string reversal, cyclic string shifts, permutations of the
spacecraft indices or time reversal. For example, X1, Y1 and Z1 are distinct
combinations, but represent the same core combination.

Note that for time-symmetric combinations, each core combination represents
3 or 6 distinct combinations, depending on if the combination is mirror
symmetric or not. Likewise, for non time-symmetric combinations, there are
6 or 12 versions, again depending on the mirror symmetry.

To summarize, depending on its symmetries, each core TDI combination
represents 3, 6 or 12 distinct combination.

Since each distinct combination of length N itself represents 2N possible
strings (cf. section 11.3.3), the equivalence class of one core TDI combination
of length N has either 6N, 12N or 24N members.
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11.4 search algorithm results

We reproduced the search algorithm outlined in [92], including the general-
ization utilizing the Fermi coordinate frame proposed in [63].

Our version of the search algorithm operates in multiple steps:

1. Generate all possible non-trivial paths of a given length N starting from
"12", and keep those which are 1.5th generation TDI.

2. Reduce the resulting set to the set of core combinations using the
definitions in section 11.3.

3. Check each core combination for being second generation TDI using the
definitions in section 11.2.3. Here, we construct two datasets, one using
the stricter criterium in [92], and one using the relaxed criterium from
[63].

The resulting lists of core combinations can then be expanded to the list
of distinct combinations by generating all possible index permutations and
time reversals and then removing those which are equivalent in the sense of
section 11.3.3.

Non-trivial means here that we neglect paths which contain structures like
"ij -ji", which, following the description in section 11.1, would just cancel
immediately when computing the combination. We also restrict ourselves to
paths which start with the link "12". Furthermore, we reject paths which end
at "-21", since that last step would cancel with the first step under a cyclic
shift of the sequence.

Fixing the start of the paths is just an optimization. It is valid since each laser
noise cancelling sequence contains at leastTo be more precise, a

sequence of length N
must contain N/2

forward time links.

one forward time link, and at this
stage we are not looking for all possible permutations of the combinations. So
any valid TDI combination can be brought to start with "12" by a permutation
of the spacecraft labels and a cyclic shift in the sequence.

We decide which paths are TDI first generation by keeping those which use
each link an equal number of times in forward and backward direction. The
result still contains many duplicates due to different symmetries, which are
resolved as described in section 11.3.

11.4.1 List of core combinations and their properties

The results of our search are summarized in table 11.1 and table 11.2.

The numbers of distinct first generation combinations are in perfect agreement
with those reported on the website7 accompanying [92].

7 http://www.vallis.org/research/tdi.html

http://www.vallis.org/research/tdi.html
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Table 11.1: Number
of first generation TDI
combinations found
in our search. The
number of distinct
combinations are in
agreement with those
reported in [92].

# of links Core combinations Distinct combinations

8 3 15

10 2 12

12 22 168

14 85 924

16 579 6090

For each second generation combination, we state if it is classified as TDI
second generation following according to [63], which we will call Fermi8-
closed, or only according to [92], called L̇-closed.

The set of 48 sixteen-link combinations which are L̇-closed is equivalent to
that reported on vallis.org/tdi, modulo string reversals + shifts.

For the Fermi-closed combinations, we found results at slight variance with
those reported in [63].

For 12 links, we find the same 3 core combinations reported in [63]. They are
all time symmetric, while two of them are also mirror symmetric, such that
they represent a total of 12 distinct combinations.

In addition, we find 3 core combinations of length 14, which were not reported
in [63]. None of them are mirror symmetric, and one is not time symmetric,
such that they represent 24 distinct combinations.

Reaching out to the authors, they confirmed to have accidentally put a pre-
liminary list of combinations in the paper. After review, they could confirm
the existence of the twenty-four 14 link combinations. During this exchange,
they also realized the additional time symmetry discussed in section 11.3.5,
which reduces their list of 35 sixteen-link core combinations to just 28. This
should be reflected in an upcoming joint publication with the authors of [63],
which will contain the full table of combinations.

After including the time-symmetry to reduce the results of our own search
algorithm, we arrived at the same set of 28 sixteen-link core combinations,
which represent a total of 174 distinct combinations. This set includes all 48
distinct sixteen-link combinations found in [92].

We give a complete list of all core combinations up to 16 links in table 11.3.
The notation was chosen in agreement with the authors of [63], and a similar
table is included in [62].

We state for each combination if it is also L̇-closed. In addition, we mark if it
is mirror or time symmetric, thus if its equivalence class represents 3, 6 or 12
distinct combinations.

Some of the second generation combinations have the particularity to cancel
exactly under the assumption that all delays are equal. This means they not
only suppress laser noise, but all other noises and signals as well. This is

8 As discussed above, laser noise suppression of a TDI variable does not depend on the reference
frame. However, this property becomes obvious only in the Fermi-normal frame, as discussed
in [63].

vallis.org/tdi
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Table 11.2: Number
of second genera-
tion TDI combina-
tions found in our
search. The number
of L̇-closed combina-
tions are in agreement
with [92]. We find
additional 14 link com-
binations which are
Fermi-closed that were
not reported in [63].

# of links Core (L̇/Fermi-closed) Distinct (L̇/Fermi-closed)

12 0/3 0/12

14 0/3 0/24

16 8/28 48/174

indicated in table 11.3 as being "Trivial". We will discuss the reason for this
cancellation in section 11.5.1.

11.5 tdi generators for secondary noises

Having seen in section 11.4 that the problem of second generation TDI vari-
ables offers a rich set of solutions, it is interesting to discuss how many of
these contain redundant information.

As we will see in section 12.2, the assumptions of 0th generation – equal and
constant arms – are sufficient to describe the level of unsuppressed noises
in the standard Michelson combinations. In some cases, in particular at low
frequencies and when constructing combinations of combinations, it turns out
this assumption is no longer good enough, and we have to go first generation
TDI - meaning three unequal, but constant arms.

One important result for 1st generation TDI is that all TDI variables can be
generated from just 4 basic generators. As shown in [83], one possible set
of generators are the 3 Sagnac variables α, β and γ, together with the fully
symmetric Sagnac ζ. In our notation, theseNote that ζ is defined

in [83] only using three
distinct delays of first
generation TDI, such

that we could have
chosen either Dij or

Dji for each delay to
represent it. Contrary

to [64], we chose the
set D12, D23, D31.

can be defined as

α = η12 + D12η23 + D123η31 − η13 −D13η32 −D132η21 (11.26a)

β = η23 + D23η31 + D231η12 − η21 −D21η13 −D213η32 (11.26b)

γ = η31 + D31η12 + D312η23 − η32 −D32η21 −D321η13 (11.26c)

ζ = D23η12 + D31η23 + D12η31 −D23η13 −D12η32 −D31η21 (11.26d)

In terms of TDI strings, the generators are given as

α = TDI["1321 -1321"] (11.27a)

β = TDI["2132 -2132"] (11.27b)

γ = TDI["3213 -3213"] (11.27c)

ζ ≈ D23TDI["13 -32 21 -13 32 -21"] (11.27d)

α, β, γ are simple two-beam interferometers, while ζ is a 6 beam interferometer
with 3 measurement events, one on each spacecraft. Note that eq. (11.27d) is
only valid with Dij = Dji, while the equations for α, β and γ are exact.

As mentioned above, following [83], we should be able to write

TDI = A′α + B′β + C′γ + D′ζ (11.28)

for any first generation TDI combination, with A′, B′, C′, D′ polynomials of the
delay operators. Since second generation combinations are also automatically
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first generation combinations9, the same should hold approximately for all
solutions found in section 11.4 when simplifying them assuming only three
constant but unequal arms.

This means that under the assumptions of first generation, all information we
can extract from any of the combinations given in table 11.3 is in principle
already contained in these four generators.

α, β, γ and ζ are of course not suppressing the laser noise to a sufficient level,
such that they are not usable for actual data analysis. Still, exploring how each
second generation variable is related to their first generation counterparts
is useful for categorizing their properties and assessing their information
content.

In addition, we will demonstrate in section 11.5.2.2 that there are multiple
variables which can be used as second generation versions of all 4 generators,
which can be used in the same decompositions, even in the presence of
realistic laser noise. This suggests that such 4 variables already contain most
information we can hope to extract from our signals.

Other combinations might of course have practical advantages. For example,
some combinations do not use all 6 laser links, such that they remain available
in the event of a complete loss of the laser link between two of the spacecraft.
In addition, as can be seen in fig. 11.5, the typical singularities present
in the transfer function of all second generation TDI variables appear at
different frequencies for the different combinations. This might allow some
combinations to be more favorable for detecting signals close to these singular
frequencies. Last but not least, combinations with multiple measurements
require shorter segments of data to compute a single data point of the TDI
combination. For example, C16

1 requires summation of the light travel for 8
links, or about 8× 8.33 s ≈ 67 s for each of the two beams, while the beams of
C16

4 only use 4 links at a time, corresponding to just 4× 8.33 s ≈ 33 s.

11.5.1 Decomposition of geometric combinations

We show explicitly that each of the combinations given in table 11.3 can be
approximated as a linear combination of the first generation generators α, β,
γ and ζ.

To simplify the expressions, we apply an overall time shift E to the variable
constructed using the algorithm given in section 11.1.1, such that we solve the
equation

E TDI = Aα + Bβ + Cγ + Dζ . (11.29)

9 In the sense that if we replace the 6 non-commutative delay operators Dij in any 2nd generation
variable with only three commutative delay operators (using the symmetry Dij = Dji), the
resulting variable will be first generation TDI. Note that this map is not necessarily bijective;
multiple second generation variables could be mapped to the same first generation variable.
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Name Normal string L̇ closed M.S. T.S. Trivial

C12
1 "1231321 -1321231" X X

C12
2 "12321 -1321 131 -1231" X

C12
3 "121 -13 32 -21 13 -323 31 -12 23 -31" X X

C14
1 "121321 -13212 231 -1231"

C14
2 "1213 -3213 32 -2123 3123 -31" X

C14
3 "1213 -32 21 -13 32 -2123 31 -12 23 -31" X

C16
1 "121313121 -131212131" X X X

C16
2 "121323121 -132121231" X

C16
3 "123121321 -132121231" X

C16
4 "12121 -13121 13131 -12131" X X X X

C16
5 "1213121 -13121 131 -12131" X X

C16
6 "1213212 -23121 132 -21231" X X

C16
7 "123123 -31321 1313 -32131" X X

C16
8 "12313123 -31321 13 -32131" X X

C16
9 "12121 -13212 23132 -21231" X

C16
10 "1213121 -13212 232 -21231" X

C16
11 "12312321 -1321 13 -321231"

C16
12 "1231321 -13123 313 -32131" X

C16
13 "12121 -1321 132 -212 231 -1231" X

C16
14 "1213121 -13 32 -2123212 23 -31" X X

C16
15 "12132 -2123 3121 -13212 23 -31" X

C16
16 "1213 -3212 232 -2123 3121 -131" X X

C16
17 "12132 -21321 1312 -2312 23 -31"

C16
18 "1213 -321 1321 -1312 231 -1231" X

C16
19 "1232321 -1321 13 -323 31 -1231" X

C16
20 "1232321 -1323 31 -121 13 -3231" X

C16
21 "12123 -3121 13 -32 213 -3212 23 -31" X

C16
22 "1213 -3212 23 -3121 13 -32 2123 -31" X X

C16
23 "12121 -13 32 -2123 313 -3212 23 -31" X

C16
24 "1231 -121 13 -321 1321 -131 12 -231" X X

C16
25 "12321 -1323 31 -12 232 -21 13 -3231" X

C16
26 "12121 -13 32 -21 13 -32123 31 -12 23 -31" X

C16
27 "12132 -21 13 -32 21 -13123 31 -12 23 -31" X

C16
28 "121 -132 21 -13 32 -21 131 -123 31 -12 23 -31" X X

Table 11.3: Overview of 2nd generation TDI core combinations up to 16 links. The combinations are labelled by CA
B ,

with A as the number of links and B as a running index. C16
1 is the familiar Michelson X2 combination. ’M.S.’ indicates

whether the combination is mirror symmetric, while ’T.S.’ indicates whether it is time symmetric. ’Trivial’ indicates if the
combination is vanishing in the assumption of equal arms.
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Name Timeshift Expression

C12
1 1 (1− xyz)α

C12
2 xy2 (y− xz)α

C12
3 yz (y− xz)ζ

C14
1 xy

(
1− z2) α

C14
2 yz

(
1− z2) γ

C14
3 y

(
1− z2) ζ

C16
1 1

(
1− y2z2) (α− zβ− yγ + yzζ)

C16
2 1

(
1− xyz3) α− z(1− xyz)β

C16
3 1

(
1− xyz3) α

C16
4 y4z2 (y− z)(y + z)(α− zβ− yγ + yzζ)

C16
5 y2 (

1− z2) (α− zβ− yγ + yzζ)

C16
6 xy

(
1− z2) (zα− β)

C16
7 xy3 (y− xz)(yα− γ)

C16
8 y (1− xyz)(yα− γ)

C16
9 x2y2z2 (

xy− z3) α +
(
z2 − xyz

)
β

C16
10 x2y

(
x− yz3) α +

(
yz2 − xz

)
β

C16
11 y

(
1− x2z2) α

C16
12 y2 (1− xyz)α + (xz− y)γ

C16
13 x2yz

(
xy− z3) α

C16
14 y

(
xyz2 − z

)
γ +

(
1− xyz3) ζ

C16
15 xz2 (xy− z)γ + (1− xyz)ζ

C16
16 yz2 (

xy− z3) γ +
(
−xyz + z2) ζ

C16
17 xy2z2 (y− xz)β

C16
18 x (x− yz)α

C16
19 xy2 (

y− x3z
)

α

C16
20 xy2 (

y− x3z
)

α +
(

x2z− xy
)

ζ

C16
21 yz2 (xz− y)(γ− zζ)

C16
22 yz2 (

1− z2) (γ− zζ)

C16
23 y2z2 (

xz2 − yz
)

γ +
(
y− xz3) ζ

C16
24 xyz3 (

z2 − y2) α

C16
25 x2y (y− xz)α + (z− xy)ζ

C16
26 yz

(
y− xz3) ζ

C16
27 x (1− xyz)ζ

C16
28 y3z (y− z)(y + z)ζ

Table 11.4: Decomposition of variables from table 11.3 into generators α, β, γ and ζ of first generation TDI. Only
valid in the approximation of three unequal constant arms, where we donate the three delay operators by x, y and z.
’Timeshift’ denotes the delay to be applied to the combination constructed from the algorithm given in section 11.1.1, i.e.,
the factor E in eq. (11.29).
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Figure 11.4: Laser
noise suppression
in first generation
ζ compared to the
second generation
version ζ1 presented
in the literature [83]
as well as C16

27 . 1 pm
curve multiplied by
transfer function of ζ1.

10−4 10−3 10−2 10−1 100

10−12

10−10

10−8

10−6

10−4

10−2

Fourier frequency in Hz

A
SD

in
H

z/
√

H
z

1st generation ζ (Tinto et al.)
2nd generation ζ (Tinto et al.)
2nd generation ζ (Muratore et al.)
1pm noise allocation curve (Tinto et al.)

To avoid confusion (and mimic the notations used in the literature, e.g. [83]),
we will replace the usual delay operators appearing in our expressions with
three variables x, y, z, according to

D12 = D21 = z, D23 = D32 = x, D31 = D13 = y . (11.30)

We summarize the results in table 11.4. Many of the variables are simple
differences of the generators α, β, γ and ζ. This implies that we have mul-
tiple options to choose second generation versions of the first generation
generators in eqs. (11.27a) to (11.27d). For example, both C12

1 and C12
2 can be

approximated to be proportional to α̇. In fact, C12
1 and its cyclic permutations

are identical to the second generation Sagnac variables previously suggested
in the literature (cf. [83]).

In addition, we observe that C16
4 , C16

24 and C16
28 contain an overall difference

term (y− z) or (y2 − z2). These terms are vanishing if all delays are assumed
equal, which explains why we identified these variables as ’trivial’ in table 11.3.
We point out, however, that these only vanish if all arms are indeed equal,
and are just strongly suppressed in the realistic case of time-varying, unequal
arms.

Furthermore, it is argued in [83] that ζ has the special properties of being
relatively insensitive to GWs at low frequencies, while α, β and γ are not.
We would therefore expect this property to extend to C12

3 , C14
3 , C16

26 , C16
27

and C16
28 , which approximate a derivative10 of ζ. This could make these

variables interesting for distinguishing a gravitational wave background from
instrumental noise.

10 At low frequencies, a difference of delays can be approximated as derivative.
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Figure 11.5: Sec-
ondary noises in ex-
act expression for C12

1 ,
C12

2 , C12
3 and C16

1 com-
pared to residual wrt.
approximation given
in table 11.4.
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Note that all variables given in table 11.3 suppress laser noise to the same
level, contrary to the second generation variables ζ1, ζ2 and ζ3 proposed in
[83]. In our notation, these are given as

ζ1 =(D232 −D13D21D32)η12 − (D323 −D12D31D23)η13

+ (D32D13 −D12D313)(η23 − η21)

+ (D23D12 −D13D212)(η31 − η32) ,

(11.31)

and cyclic permutations for ζ2 and ζ3.

To verify the different levels of laser noise suppression, we simulate 105

samples of data containing only laser noise using LISA Instrument, and com-
puted ζ, ζ1 and C16

27 , using a high interpolation order 65 such that interpolation
artifacts appear mostly off-band. We used travel times computed from the
usual ESA provided orbits, as shown in fig. 3.3. The result is plotted in
fig. 11.4, where we see that while ζ1 does perform significantly better than
ζ, it does not meet the 1 pm requirement, and is many orders of magnitude
above C16

27 .

11.5.2 Verification by simulation

11.5.2.1 Decomposition in first generation

To verify that the decompositions shown in table 11.4 are good approxima-
tions for the secondary noises, we run a simplified simulation using LISA

Instrument. We simulate 105 samples with only readout noise and test-mass
acceleration noise enabled, and do not simulate laser locking. We use the
same realistic ESA orbits as in chapter 8, and the same sampling rates and
anti-aliasing filter.

As an example, we compute the combinations C12
1 , C12

2 , C12
3 and C16

1 exactly,
using the algorithm given in section 11.1.1. We do the same for the first
generation generators α, β, γ and ζ, as given in eqs. (11.27a) to (11.27d).
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Figure 11.6: Exact
expression for (1−
xyz)C16

1 compared to
analytical estimate
of secondary noise
levels and residual wrt.
approximation given
in eq. (11.36).

10−4 10−3 10−2 10−1 100

10−11

10−9

10−7

10−5

10−3

Fourier frequency in Hz

A
SD

in
H

z/
√

H
z

(1− xyz)C16
1 exact

Analytical
Residual

We then estimate the delays xd, yd, zdMeaning that
x f (t) = f (t− xd), and

similar for y, z.

applied by x, y, z via

xd = mean
[

d23(t) + d32(t)
2

]
(11.32)

yd = mean
[

d31(t) + d13(t)
2

]
(11.33)

zd = mean
[

d12(t) + d21(t)
2

]
, (11.34)

with dij(t) as the time series of MPRs output by the simulation. We use these
delays to compute the expressions given in table 11.4, and compare the results
to the exact versions11 of C12

1 , C12
2 , C12

3 and C16
1 .

The result is plotted in fig. 11.5, where we give the amplitude spectral density
(ASD) of the exact version compared to the time-domain residual between
the exact version and the approximation. We see that the residual is several
orders of magnitude below the actual secondary noise levels, such that the
expressions given in table 11.4 should indeed give good approximations of
the secondary noises in the 2nd generation variables.

11.5.2.2 Decomposition in second generation

As a proof of concept that these decompositions are also applicable for the
second generation variables, we re-run the same simulation with laser noise
enabled.

Inspecting table 11.4, we observe that C12
1 and its cyclic permutations together

with C16
27 give expressions for α, β, γ and ζ with the

There are other options
we could have used

instead, for example
the cyclic permutations

of C12
2 together with

C12
3 .

same pre-factor (1−
xyz).

11 Here, we also have to apply the additional time-shift given in table 11.4.
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We can therefore define

α̃ = TDI["1231321 -1321231"] , (11.35a)

β̃ = TDI["2312132 -2132312"] , (11.35b)

γ̃ = TDI["3123213 -3213123"] , (11.35c)

ζ̃ = D23TDI["12132 -21 13 -32 21 -13123 31 -12 23 -31"] .
(11.35d)

Since we are allowed to commute delays in our approximation, we can use
these generators in our expressions given in table 11.4 to construct versions
of the TDI variables which are modulated12 by (1− xyz).

For example, we get

C̃16
1 =

(
1− y2z2) (α̃− zβ̃− yγ̃ + yzζ̃

)
≈ (1− xyz)

(
1− y2z2) (α− zβ− yγ + yzζ)

≈ (1− xyz)C16
1 .

(11.36)

To determine if this decomposition is accurate, we can construct the exact
expression for any of these variables, and then apply the same factor (1− xyz)
to it. We demonstrate this in fig. 11.6 for C16

1 . Laser noise is fully suppressed,
and the noise level of the simulated data (in orange) is perfectly explained
by the enabled secondary noises (in dotted grey). We show that the residual
noise between the exact variable (1− xyz)C16

1 and our approximate solution
C̃16

1 , computed as (1− xyz)C16
1 − C̃16

1 , is several orders of magnitude below
the secondary noises.

These results indicate that a set of second generation versions of the generators
of first generation TDI such as those given in eqs. (11.35a) to (11.35d) might
be sufficient for most data analysis needs.

12 This modulation can probably be removed using a suitable integrating filter, or at least
compensated by dropping one delay difference already present in all second generation
variables (for example, removing the factor

(
1− y2z2) from C̃16

1 ) to get a variable with similar
response, without additional suppression at low frequencies. We go here the other way around
by including the factor (1− xyz) in the constructed variable to show a proof-of-principle that
the decomposition works.





12
T D I I N P R A C T I C E

So far, we have described the basic principles behind TDI using a simplifed
model of the LISA measurements expressed in total phase. In this chapter,
we will discuss how these measurements can be constructed out of the raw
data streams, what the technical limitations of TDI are and how TDI has to be
adapted if the input data is given in frequency instead of phase.

We first briefly revisit the first INREP processing steps of constructing the
virtual test-mass to test-mass measurement out of the three interferometers
on each optical bench in section 12.1.

We then discuss the impact laser locking has on the secondary noise levels
in TDI in section 12.2, and study different limiting factors for the achievable
laser noise reduction in section 12.3.

Finally, we discuss how TDI has to be adapted when using phasemeter mea-
surements given in units of frequency instead of phase in section 12.4.

12.1 split interferometry and intermediary variables

As outlined in sections 3.4.3 and 9.1.3, one of the first processing steps
in the INREP is to combine data produced by the three interferometers
on each optical bench to synthesize a total of 6 virtual test-mass to test-
mass measurements. This can be described in two steps, as we outline
below. Similar expressions for the intermediary variables can be found in the
literature (cf. for example [64]). We give them here updated to our notation,
and respecting the sign conventions introduced in chapter 5.

12.1.1 Removal of optical bench displacement noise

As described in section 3.4.4, the spacecraft will try to follow a free-falling
test-mass along each sensitive axis by means of the DFACS.

However, as shown in LISA Pathfinder [12], this control system is not perfect,
and the inter-spacecraft interferometer will contain residual jitter on the order
of nm, which is 3 orders of magnitude above the desired level of pm.

The solution to this problem is

In reality, the delays
D12 will not be known
perfectly, and need to
be implemented using
an interpolation
scheme, cf.
section 9.1.3. In
addition, the
individual spacecraft
clocks need to be taken
into account when
combining data from
different spacecraft, cf.
chapter 13. We neglect
these technical issues
for now.

to construct the so-called ξ variable,

ξ12 = isc12 +
ref12 − tm12

2
+

D12(ref21 − tm21)

2
, (12.1)
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which combines the inter-spacecraft interferometer with the difference of
reference and test-mass interferometer to construct a virtual test-mass to
test-mass measurement1.

This construction is symmetric among all 6 optical benches, which is why
it is sufficient to give here only the expression for ξ12. The expressions for
all other 6 optical benches can be deduced by applying the usual 6 index
permutations, cf. appendix A.

Note that if the DFACS was perfect, and there was no additional sensing noise
entering the control loop, the test-mass interferometer would only measure a
constant phase offset, yielding the simplification ξij ≈ iscij.

12.1.2 Reduction to three lasers

The second goal of constructing the intermediary variable is to remove the
frequency fluctuations of half the lasers in the constellation. This could be
realized in hardware by choosingThis is the case for

locking schemes N1,
N3 and N5.

a locking scheme in which the two lasers on
each spacecraft are locked to each other, cf. section 7.3. However, we cannot
assume that the laser locking is perfect; in addition, we do not want to exclude
the remaining locking schemes. Regardless of the locking scheme, we always
have the option to remove half of the laser contributions in a post-processing
step, by constructing the intermediary variables ηij. They are given as

η12 = ξ12 +
D12(ref21 − ref23)

2
(12.2a)

η13 = ξ13 +
(ref12 − ref13)

2
(12.2b)

Contrary to ξ, the η variables are not symmetric across all 6 optical benches,
but differ between the left and right handed one aboard each spacecraft. This
loss of symmetry is due to our choice which of the two lasers of the spacecraft
to remove. Therefore, we have to give expressions for η12 and η13, and those
of the other spacecraft can be deduced form cyclic index permutation, cf.
appendix A.

Note that both reference beatnotes on the spacecraft measure the interference
of the same lasers, so they nominally measure the same signal, just with
opposite signs (up to secondary noises). If one of them is used to lock the
local lasers, this signal is just equal to a pre-programmed frequency offset.
In the limit of assuming a perfect frequency lock (with no residual in-band
fluctuations), we could neglect it, and get η ≈ ξ.

1 We assume here that the beatnote signs (cf. section 5.4.2) have been fixed in the phasemeter
or in a first processing step. In addition, we neglect that the optical bench motion terms
N∆

ij enter eq. (7.7b) and eq. (7.11b) scaled by different laser frequency offsets. Since the
laser frequency offsets are known from the frequency plan, we could include these scaling
factors. But we remark that neglecting them will only create a residual noise scaled by roughly
20 MHz/282 THz ≈ 7× 10−8, which is far below the needed level of suppression. We therefore
omit them for clarity.
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12.2 secondary noise levels in tdi

We have so far described TDI in terms of a generic laser phase Φ or phase
and frequency fluctuations pi and ṗi, respectively.

As described in section 7.3, all but one laser in LISA will be locked to one
primary laser. The locked lasers frequency will be controlled to drive the
phasemeter signal used for locking to a pre-programmed reference value. In
that process, it will inherit any noise of the primary laser, optical pathlength
fluctuations during propagation as well as readout noises in the phasemeter
channel used for locking. This effect is compounded when multiple lasers
are locked in a chain, which is required to reach all lasers in the constella-
tion.

Therefore, each term pi in the phasemeter equations given in section 7.2 is
actually a complicated combination of multiple noise terms with potentially
several delays. At first sight, this seems to imply a complicated coupling of
these noise terms into the final TDI observable.

However, it turns out that all of these additional noise terms are suppressed
alongside the laser noise, such that the choice of the locking configuration does
not significantly impact the secondary noise levels in the final variable.

12.2.1 Secondary noises in TDI with locked lasers

As described in section 5.3, pij denotes the phase fluctuations of the laser
associated to MOSA ij. These can be either the inherent frequency fluctuations
due to the cavity used for frequency stabilizations, or fluctuations imprinted
on the laser due to laser locking.

If we neglect the onboard filter, the timestamping errors and any technical
imperfections in TDI for now, We use here

expressions in phase
fluctuations, but the
same reasoning can be
extended to frequency
fluctuations by using
the Doppler-delays
introduced in
section 12.4.

the intermediary variables (cf. section 12.1) can
be written as

ηij = Dij pj − pi + Nηij , (12.3)

where we dropped the second index of the respective pij still present after
construction of ηij, and Nηij accounts for all secondary noise terms in ηij which
enter with different correlations than the laser noise terms.

If we were to replace the pi terms with the expressions derived from the
locking rules given in section 7.3, some of the ηij would cancel at this point,
and others would become a complicated combination of noise terms; however,
it is useful to keep pi unevaluated for now.

We know from section 10.3 that we can factorize any TDI combination as
given in eq. (10.32),

TDI = ∑
ij∈I2

Pijηij . (12.4)
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Furthermore, we know from chapter 10 that the TDI variable is constructed
in such a way thatThis is neglecting any

technical imperfection
in constructing the TDI

variable, as discussed
in section 12.3, which

add terms proportional
to all 6 lasers. These
additional terms are

also highly suppressed,
and therefore also not

relevant for the
un-suppressed

secondary noises.

only the laser phase fluctuations pi of a single laser appear
in them, scaled by a difference term corresponding to photon paths with
almost equal time delays. As we saw in section 10.2, this difference of delays
corresponds to a suppression of more than 10 orders of magnitude across
the whole LISA frequency band2. On the other hand, any noise sources
entering ηij with different correlations than the laser noise terms will not be
meaningfully suppressed, but simply have their spectrum modulated by the
delay polynomials Pij.

Overall, we get

TDI = [DA1 ...An −DB1 ...Bn ]pi + ∑
ij∈I2

PijNηij , (12.5)

where we used A1 . . . An and B1 . . . Bn as placeholder for the photon paths
defining the combination. Which pi appears in our combination is deter-
mined by the starting spacecraft of the TDI stringIt is argued in

section 11.3 that we
can apply cyclic string
shifts to a combination
without meaningfully

changing its output.
This allows us to

change which laser
noise pi appears in

eq. (12.5).

used to define the combina-
tion.

Following section 7.3, each pi can be written as a potentially delayed version
of the primary lasers phase fluctuations, plus any secondary noises entering
either in the propagation to or the readout at the interferometer used for
locking.

We use a simplified notation to describe this relationship, by writing

pi = Dlock p0 + Npi (12.6)

for a locked laser, with p0 as the laser noise of the primary laser, Dlock a series
of delays depending on the locking scheme and Npi a term summarizing all
secondary noise terms entering due to the locking.

Inserting this expression into eq. (12.5), we get

TDI = [DA1 ...An −DB1...Bn ](Dlock p0 + Npi) + ∑
ij∈I2

PijNηij . (12.7)

We see that the secondary noise terms for each ηij (without considering the
laser locking) appear scaled by Pij, while all the additional secondary noise
term imprinted on the laser beam are suppressed by the same delay term as
the laser noise.

Since laser noise needs to be suppressed by roughly 8 order of magnitudes,
we conclude that the additional secondary noise terms entering with the same
suppression are completely negligible compared to the terms entering scaled
by the delay polynomials Pij.

For example, if we assume each noise term Nηij to be uncorrelated to the others,
we can estimate the residual noise level in any TDI variable by computing

STDINη
≈ ∑

ij∈I2

∣∣∣P̃ijÑηij

∣∣∣2 . (12.8)

2 The fundamental arm length mismatch of the photon paths making up a second generation
TDI combination is ∆τ ≈ 10 ps, such that the residual laser noise is scaled by 2π f ∆τ < 10−10.
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As argued in section 10.3, it is here This is usually the case
as long as the
combination in
question does not
meaningfully suppress
the noise being
considered.

often sufficient to compute the Fourier
transform of the delay polynomials P̃ij under the assumption that all delays
are equal.

12.2.2 Examples

As examples of transfer functions for secondary noises, we want to compute
how the two limiting secondary noises included in our simulation, readout
noise and test-mass acceleration noise, couple into the second generation
Michelson variable X2.

Under the assumption of three equal arms, the Pij of X2 are simply given
as

P12 = −P13 = (1−D4)(1−D2) , (12.9)

P21 = −P31 = (1−D4)(1−D2)D , (12.10)

with the Fourier transform

P̃12 = −P̃13 = (1− e−iω4d)(1− e−iω2d) , (12.11)

P̃21 = −P̃31 = (1− e−iω4d)(1− e−iω2d)e−iωd . (12.12)

Here, following [39], it is useful to define

CXX =
∣∣∣(1− e−iω4d)(1− e−iω2d)

∣∣∣2 = 64 cos2(dω) sin4(dω) . (12.13)

For readout noise, we need to distinguish between readout noise in the
ISC, reference and test-mass interferometers. We assume all of these to be
uncorrelated, with noise levels given in appendix D.5.

Inserting the phasemeter equations given in chapter 7 into the intermediary
variables given in section 12.1, and ignoring all terms except for the readout
noise, we get

η12 = Ṅro
isc12,c

+
Ṅro

ref12,c
− Ṅro

tm12,c

2
+ D12

(
Ṅro

ref21,c
−

Ṅro
ref23,c

+ Ṅro
tm21,c

2

)
,

(12.14)

η13 = Ṅro
isc13,c

+
Ṅro

ref12,c
− Ṅro

tm13,c

2
+ D13

(
Ṅro

ref31,c
− Ṅro

tm31,c

2

)
, (12.15)

and cyclic for the other ηij.

All readout noise terms are assumed to be uncorrelated, but some of them
appear in multiple ηij. For these, we cannot directly use eq. (12.8), but need
to instead collect the correct factors and delays of all terms appearing in the
TDI combinations before computing the squared magnitude.

Overall, this gives

SXro
2
=
[
4(SṄro

isc
+ SṄro

ref
) + (3 + cos(2ωd))SṄro

tm

]
CXX . (12.16)
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For the test-mass acceleration noise, we instead simply have

ηij = −ν0(Ṅδ
ij −DijṄδ

ji), ∀ij ∈ I2 . (12.17)

We can assume all 6 test-masses to be uncorrelated and collect the respective
terms, to get the PSD

SXtm
2

= 4ν2
0(3 + cos(2ωd))CXXSṄδ , (12.18)

where SṄδ is the jitter of a single test-mass expressed as a dimensionless
fractional frequency shift.

These formulas are verified by the simulation results presented in fig. 9.1,
where the secondary noise level in X, Y and Z could be perfectly explained
by the sum of eqs. (12.16) and (12.18).

12.3 laser noise residuals

As discussed in section 10.2, TDI has a fundamental limit to the achievable
level of noise suppression determined by the armlength mismatch of the
corresponding interferometer.

However, there are additional technical noise couplings which can limit the
achievable overall noise suppression.

Contrary to the secondary noises described in section 12.2.1, the residual
laser noise will depend on the locking scheme. We will derive all couplings
below for the special case of locking scheme N1-L12, but remark that the same
principle is applicable to all other locking schemes. In addition, it should
be noted that the locking schemes break the usual triangle symmetry, such
that the cyclic permutations of the same variable (e.g., the three Michelson
variables X, Y and Z) will have different laser noise residuals.

We consider only the primary lasers phase fluctuations p0. Following sec-
tion 7.3, this laser noise term is distributed throughout the whole constellation,
such that we get in our locking scheme

p12 = p13 = p0 , (12.19a)

p21 = p23 = D21 p0 , (12.19b)

p31 = p32 = D31 p0 , (12.19c)

for the different laser fluctuations.

12.3.1 Fundamental armlength mismatch

In the absence of technical imperfections, we know from chapters 10 and 11
that the TDI combinations are designed to give a laser noise residual of the
form

TDI = [DA1 ...An −DB1...Bn ]pi (12.20)

= [DA1...An −DB1...Bn ]Dlock p0 (12.21)
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Figure 12.1: Funda-
mental laser locking
limit for TDI X, Y and
Z with laser locking
enabled. The same
analytical model we
derived without laser
locking (in dotted
grey) still applies.
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where pi is the laser noise for the starting spacecraft of any combination, and
all other laser noise terms cancel. Here, [DA1 ...An −DB1...Bn ] is a placeholder
for the actual delay commutator defined by the photon path of the particular
combination under study.

Inserting eqs. (12.19a) to (12.19c) into this equation shows that we get the
same fundamental laser noise suppression limit we had before, with the only
difference that the primary lasers noise appears with up to one additional
delay Dlock, which does not affect the noise level.

Thus, the Fourier transform of this term can be approximated as

F [[DA1...An −DB1...Bn ]Dlock p0] ≈ ω∆τe−iωQd p̃0(ω) , (12.22)

with Q = n if the photon path starts at spacecraft 1 and Q = n + 1 otherwise.
∆τ is the armlength mismatch of the TDI combination.

To verify this, we run a simulation of 105 s using LISANode, with only laser
noise enabled and no bias in the ranging. The light-travel time between the
spacecraft are computed based on the ESA orbits, as shown in fig. 3.3. We use
the locking scheme N1-LA12, and a stronger anti-aliasing filter with 320 dB
attenuation in order to not be limited by aliasing. We then compute the second
generation TDI X, Y and Z using a high interpolation order of 65, such that
interpolation errors appear off-band. The result is plotted in fig. 12.1, and
agrees well with the analytical model given in section 10.2, overlayed in grey.
At low frequencies, we are limited by numerical errors.

12.3.2 Technical imperfections

The algorithm outlined in chapters 10 and 11 works under the assumption
that the delay operators applied in post-processing are identical to those
modelling the actual propagation between the spacecraft. In addition, they
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did not account for the filter operator present in the phasemeter equations
given in section 7.2.

We can model these effects in multiple steps. First, we can insert eqs. (12.19a)
to (12.19c) into the phasemeter equations given in chapter 7 and those for the
intermediary variables given in section 12.1 to get3

η12 = F(D121 − 1)p0 , (12.23a)

η13 = F(D131 − 1)p0 , (12.23b)

η23 = F(D231 −D21)p0 , (12.23c)

η32 = F(D321 −D31)p0 , (12.23d)

η21 = 0 , (12.23e)

η31 = 0 . (12.23f)

Here, we neglected the impact of the timestamping operator, which we will
discuss in detail in chapter 13.

As described above, we can write any TDI combination as

TDI = ∑
ij∈I2

Pijηij , (12.24)

which now simplifies to

TDI =
[
P12F(D121 − 1) + P13F(D131 − 1)

+ P23F(D231 −D21) + P32F(D321 −D31)
]
p0 .

(12.25)

The delay polynomials Pij contain the delays we apply in post-processing,
for which we use the different symbol Dij. They will be affected by any
ranging errors in our MPR (cf. section 12.3.2.1) as well as errors due to the
interpolation (cf. section 12.3.2.2).

Instead of modelling these errors in each delay appearing in each Pij, we will
go the other way around, and replace all propagation delays Dij appearing in
eq. (12.25) with offline delays Dij. Each of these replacement will introduce
an additive error term, as described below. In addition, we can commute the
filter operator F with all delays to its right, such that it appears right next to
the laser noise p0.

Overall, this will yield a laser noise residual as in eq. (12.21), where the delay
commutator now consists of only offline delays and is applied to the filtered
laser noise, in addition to a number of additional noise terms as described
below.

For each of these effects, we will run a simulation to highlight it by choosing
appropriate parameters. Not that these parameters are usually not realistic,
and lead to higher residual laser noise levels than we will have in the actual
mission. In all cases, we simulate 105 s using LISANode, with laser noise
enabled using the locking scheme N1-LA12 and a strong anti-aliasing filter

3 Note that with this locking scheme, and considering only laser noise, we have simply ηij ≡ iscij,
as described in section 12.1.
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with an attenuation of 320 dB. We will overlay in each case the analytical
model given in section 12.3.2.4, but considering only the single effect under
study.

12.3.2.1 Ranging errors

We call ranging errors any mismatch between the delays we apply in post-
processing and the real Depending on in

which reference frame
the data is given, the
real delays we should
apply can be either
light travel times
computed in the TCB
or they could be MPRs
including the clock
desynchronizations, cf.
chapter 13.

propagation delays. This is not to be confused with
the fundamental armlength mismatch presented in section 12.3.1, which only
depends on the orbital mechanics.

In our case, we will consider as a first step offline delays Dµ
ij which carry a

constant bias4 µ with respect to the true delays, but are still considered free
of interpolation errors, such that we have

Dij f (t) = f (t− dij) and Dµ
ij f (t) = f (t− dij − µij) . (12.26)

Assuming that µij is small, we can introduce the operator ∆µ
ij, defined by

∆µ
ij f (t) = (Dij −Dµ

ij) f (t) ≈ µij ḟ
(
t− dij

)
. (12.27)

In the Fourier domain, we simply get

F
[
∆µ

ij

]
(ω) ≈ µijωe−iωdij . (12.28)

To test this in the simulation, we use a large ranging bias of 10 m in each
arm and again use a high interpolation order of 65. The result is shown in
fig. 12.2, where the overlayed analytical model in dotted grey agrees perfectly
with the simulated result, except at very low frequencies where we are again
limited by numerical effects. Interestingly, TDI X appears to be significantly
less sensitive to ranging noise in this locking scheme, presumably due to
the special role spacecraft 1 has in both the locking scheme and the TDI
combination.

12.3.2.2 Interpolation errors

As described in detail in appendix B, the interpolation with Lagrange polyno-
mials causes an error depending on the fractional delay. We will track this
error term by introducing the operator ∆I

ij, given as

∆I
ij = (Dµ

ij −Dij) . (12.29)

It is derived in appendix B.2, with its Fourier transform given in eq. (B.26). It
can be written as

F
[
∆I

ij

]
(ω) = e−iωdij ε̃ij(ω) , (12.30)

4 As described in section 13.5, the ranging data can be filtered to remove most in-band fluctu-
ations. A detailed analysis of the coupling of in-band ranging noise is under development
inside the LDPG with contributions from the author of this thesis, but was not finalized at the
time of writing. It should be available in the future in an upcoming publication.
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Figure 12.2: Laser
noise residual due to a
constant ranging bias
for TDI X, Y and Z
with laser locking en-
abled. To highlight the
effect, we use a large
bias of 10 m in each
arm. The coupling
into X is strongly sup-
pressed compared to
Y and Z. Model over-
layed in dotted grey.
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where ε̃ij is a term depending on the Lagrange interpolation coefficients cε
k,

ε̃ij(ω) =

[(
p

∑
k=−p+1

cε
keiω(k/ fs+dε

ij)

)
− 1

]
. (12.31)

See appendix B.2 for more details.

Together with eq. (12.27), we then get

Dij = Dij + ∆I
ij + ∆µ

ij . (12.32)

For a nested delay, we instead get

Dijk = (Dij + ∆I
ij + ∆µ

ij)(Djk + ∆I
jk + ∆µ

jk) (12.33a)

≈ Dijk + ∆I
ijDjk +Dij∆I

jk︸ ︷︷ ︸
≡∆I

ijk

+∆µ
ijDjk +Dij∆

µ
jk︸ ︷︷ ︸

≡∆µ
ijk

, (12.33b)

where we neglect terms second order in ∆I
ij or ∆µ

ij.

To test this in the simulation, we use the same input data as in section 12.3.1,
but this time we compute the TDI variables with a very low interpolation
order of just 5. The result is shown in fig. 12.3, again overlaying the analytical
model with the simulation results. We see that our model in dotted grey
reproduces the general trend and noise level, but is unable to capture the
finer structure.

12.3.2.3 Flexing-filtering coupling

We need to move all filter operators next to the laser noise term p0. It was
argued in [24] that the filter operator does not commute with a time-varying
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Figure 12.3: Laser
noise residual due to
interpolation errors in
TDI X, Y and Z with
laser locking enabled.
To highlight the effect,
we use a very small
interpolation order
of just 5. The model
overlayed in dotted
grey captures the
general trend and
noise level, but is not
able to explain the fine
structure of the noise.
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delay, giving rise to the so-called flexing-filtering coupling. We can keep track
of each commutation by introducing a filter-delay commutator:[

F,Dij
]
= FDij −DijF . (12.34)

This definition is straightforwardly applied to nested delay operators by
commuting F with each individual delay. For example,

FDijDjk = DijFDjk +
[
F,Dij

]
Djk (12.35)

= DijDjkF +
[
F,Dij

]
Djk +Dij

[
F,Djk

]︸ ︷︷ ︸
≡[F,DijDjk]

, (12.36)

The Fourier transform of
[
F,Dij

]
is given in [24, 20], and can be approximated

as

F
[[

F, Dij
]]
≈ −ωe−iωdij ḋijKF(ω) , (12.37)

where KF is the frequency domain derivative of the filter transfer function
HF (cf. eq. (7.3)),

KF(ω) =
dHF

dω
(ω) =

i

f phy
s

M

∑
k=−M

kckeiωk/ f phy
s . (12.38)

Here, we have M = N−1
2 , where N is the filter order as used in eq. (7.3).

Following [24], we assumed that the group delay of the filter HF has been
compensated in a first processing step, by shifting all filtered time series by
N − 1 samples, such that the sum does not start at k = 0. This significantly
reduces the impact of this effect.

To check the validity of this model for the flexing-filtering coupling, we
run a simulation with the filter design parameters set to a transition band
spanning from 1 mHz to 1 Hz, while keeping the attenuation at 320 dB. We
observe that the analytical model can explain the extra noise present at high
frequencies between 0.1 Hz and 1 Hz, while we are limited by noise due to the
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Figure 12.4: Laser
noise residual due to
flexing-filtering cou-
pling in TDI X, Y and
Z with laser locking
enabled. To highlight
the effect, we used a
very wide transition
band spanning from
1 mHz to 1 Hz together
with a strong attenu-
ation of 320 dB. The
model overlayed in
dotted grey captures
the general trend and
noise level, but is not
able to fully explain
the fine structure of
the noise.
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fundamental armlength mismatch at lower frequencies. However, similar to
the interpolation errors, the model fails to fully reproduce the fine structure
of the observed noise.

12.3.2.4 Summary of technical imperfections

We observe that each propagation delay in eq. (12.25) yields a delay-filter
commutator in addition to the terms given in eq. (12.32). It is therefore useful
to define

Rij = F∆I
ij + F∆µ

ij +
[
F,Dij

]
, (12.39)

with the Fourier transform

R̃ij(ω) ≈
[
(ε̃ij(ω) + ωµij)HF(ω)− ḋijKF(ω)

]
e−iωdij , (12.40)

and its nested variant

Rijk = F∆I
ijk + F∆µ

ijk +
[
F,Dijk

]
, (12.41)

with the Fourier transform

R̃ijk(ω) ≈
[
(ε̃ij(ω) + ε̃jk(ω) + (µij + µjk)ω)HF(ω)

− (ḋij + ḋjk)KF(ω)
]
e−iω(dij+djk) .

(12.42)

We can now insert these expressions into eq. (12.25) to get

TDI =
[
P12(D121 − 1) + P13(D131 − 1) + P23(D231 −D21)

+ P32(D321 −D31)
]
Fp0

(12.43a)

+
[
P12R121 + P13R131 + P23[R231 −R21]

+ P32[R321 −R31]
]

p0 .
(12.43b)
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Figure 12.5: Aliasing
during downsampling
from 16 Hz to 4 Hz.
Signals in the red, yel-
low and green areas
are aliased into the
main band in blue.
Shown for filter trans-
fer function without
laser locking modula-
tion for clarity.
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We want to analyze the residual noise in the frequency domain, for which we
will assume all delays appearing in the Pij to be constant. The term labelled
eq. (12.43a) has the Fourier transform as given in eq. (12.22), such that we get

F [TDI] (ω) ≈
[
ω∆τe−iωQdHF(ω) + P̃12R̃121 + P̃13R̃131

+ P̃23

[
R̃231 − R̃21

]
+ P̃32

[
R̃321 − R̃31

]]
p̃0 .

(12.44)

Since we replaced all delays appearing in the TDI combination by those
applied in post-processing, ∆τ is now the armlength mismatch computed
using these offline delays5.

In terms of PSD, since we only have a single laser noise term, we can compute

STDIp0
≈
∣∣∣ω∆τe−iωQdHF(ω) + P̃12R̃121 + P̃13R̃131

+ P̃23

[
R̃231 − R̃21

]
+ P̃32

[
R̃321 − R̃31

]∣∣∣2Sp0 .
(12.45)

12.3.3 Aliasing

As described in chapter 7, the phasemeter signals will be filtered and down-
sampled before being transmitted down to earth. The anti-aliasing filter used
in this step has a strong, but finite attenuation at high frequencies, such that
there will be a small residual noise level left after filtering, which gets aliased
into our measurement band when downsampling. In the real mission, this
will happen in multiple steps going all the way from the high phasemeter
sampling rate of 80 MHz down to the same rate used for transmission. We

5 This includes the potentially large ranging bias. However, since TDI combinations are by
construction insensitive to constant armlength mismatches, we expect no big change in the
resulting values.
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work under the assumption that the last filtering step in the real phasemeter
will be the dominant effect, and that it is comparable to that used in the
simulation6.

We can model how this effect enters our simulation in the following steps:

• Compute the Fourier transform of the laser noise in each ηij up to the
physical sampling rate. This depends on the locking scheme.

• Apply the filter transfer function as given in eq. (7.3).

• Compute the aliased noise in each ηij by reflecting the spectrum across
the Nyquist frequency. Since we downsample by a factor 4, we get
a total of three aliased noise terms, NA1

ij , NA2
ij and NA3

ij , for each ηij.

Here, NAk
ij is the noise in the band [kπ f meas

s , (k + 1)π f meas
s ], expressed

in angular frequency.

• Apply the usual delay polynomials Pij to each term, treating the NAk
ij as

uncorrelated for different k but fully correlated for the same k.

We get for the Fourier transform of each ηij

η̃12(ω) = HF(ω)(e−iω(d12+d21) − 1) p̃0 , (12.46a)

η̃13(ω) = HF(ω)(e−iω(d13+d31) − 1) p̃0 , (12.46b)

η̃23(ω) = HF(ω)(e−iω(d23+d31) − e−iωd21) p̃0 , (12.46c)

η̃32(ω) = HF(ω)(e−iω(d32+d21) − e−iωd31) p̃0 , (12.46d)

η̃21(ω) = 0 , (12.46e)

η̃31(ω) = 0 , (12.46f)

from which we can compute the aliased terms as

ÑA1
ij (ω) = η̃ij(2π f meas

s −ω) , (12.47a)

ÑA2
ij (ω) = η̃ij(2π f meas

s + ω) , (12.47b)

ÑA3
ij (ω) = η̃ij(4π f meas

s −ω) , (12.47c)

which is to be evaluated for values of ωThe Nyquist frequency
is here given in

angular frequency,
diving it by 2π gives

the more familiar f meas
s
2 .

up to the Nyquist rate, π f meas
s .

Note that noise in the bands [π f meas
s , 2π f meas

s ] and [3π f meas
s , 4π f meas

s ] appears
reflected in our measurement band. The noise in the band [2π f meas

s , 3π f meas
s ]

is reflected twice, such that the two effects cancel and it is simply shifted
without reflection, see fig. 12.5.

For each k, the aliased terms represent signals which are physically at different
frequencies. This is why we assume that they are fully un-correlated to each
other and to the in-band laser noise described above.

6 The phasemeter design is not finalized yet, but the sampling rates used in our simulation (16 Hz
and 4 Hz) are under consideration for the final two downsampling steps of the phasemeter
[47]
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Figure 12.6: Laser
noise residual due
to aliasing in TDI X,
Y and Z with laser
locking enabled. To
highlight the effect,
we used a weak an-
tialiasing filter with an
attenuation of 120 dB.
The model overlayed
in dotted grey gener-
ally explains the noise
well, but sometimes
fails to fully explain
the fine structure of
the noise.
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We then compute for each set of aliased noise terms how they couple into
TDI,

STDIAk =

∣∣∣∣∣ ∑
i,j∈I2

P̃ij(ω)ÑAk
ij (ω)

∣∣∣∣∣
2

. (12.48)

which we evaluate numerically. The overall PSD of the aliased noise is then
computed as

STDIA =
3

∑
k=1

STDIAk . (12.49)

To test this model, we run a simulation with the same parameters as those in
section 12.3.1, but with the filter attenuation set to just 120 dB. The result is
shown in fig. 12.6, where we see that our model can mostly explain the ob-
served aliased noise well. However, as we also observed for the interpolation
errors and the flexing filtering coupling, the model is not perfect, and some
parts of the spectrum are not fully reproduced7.

12.3.4 Overall laser noise level

To estimate the final residual laser noise level, we run a simulation with the
default parameters as described in part ii, but disabling all noises except
laser noise, plus an additional bias of 1 m in each ranging measurement. We
simulate again 105 s, using the locking scheme N1-LA12. For TDI, we use

7 The error is within an order of magnitude, such that all models presented here should still
be useful to estimate the residual noise levels. It would be interesting to further explore the
source of the discrepancy between the simulation and our models as a follow-up work. Such
studies are ongoing inside the LISA consortium, with contributions from the author of this
thesis, and might be published in the future.
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Figure 12.7: Overall
laser noise residual
in TDI X with laser
locking enabled, using
realistic simulation
parameters. The sim-
ulation result is well
explained by our ana-
lytical models, except
for the numerical
noise floor at low fre-
quencies.
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interpolation order 418, and compute just TDI X for clarity. We overlay the
different contributions of the analytical models.

The residual laser noise is well explained by our models, down to around
1 mHz where we hit the usual noise floor of our simulations. If not for this
numerical deviation, the fundamental armlength mismatch would limit at
frequencies below 1 mHz, while aliasing is limiting in the band between
1 mHz and 4 mHz. Above 4 mHz, the most significant residual is caused
by the 1 m ranging bias, until the interpolation errors take over close to the
Nyquist frequency. The strong increase around 1 Hz is a combination of
interpolation errors and aliasing. Flexing-filtering coupling is sub-dominant
throughout the whole measurement band, and the overall laser noise residual
is comfortably below the 1 pm allocation curve for the whole measurement
band up to 1 Hz.

12.4 tdi in units of frequency

This section is based on a publication developed in close collaboration with
J.-B. Bayle and M. Staab, available as [23].

It is structured as follows: in section 12.4.1, we review the context of this
section, and give the expression of the interferometric measurements in terms
of frequency and show how Doppler shifts couple. Then, in section 12.4.2, we
evaluate the additional noise due to these Doppler shifts in the TDI variables
and show that it does not meet the requirements. A procedure to mitigate
this effect is presented in section 12.4.3. We show that the Doppler couplings
can be reduced to levels below the requirements, and confirm the analytical
study by numerical simulations in section 12.4.4.

8 This value has been shown to be sufficient for our sampling rate of 4 Hz to not get significant
interpolation artefacts below Fourier frequencies of 1 Hz.
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Figure 12.8: Light
travel time derivatives
ḋij for ESA provided
orbits. Only plotted
for clockwise direction,
since ḋij deviates from
ḋji only on the percent
level.
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12.4.1 Introduction

Most TDI studies indifferently assume that the measurements are expressed
in terms of interferometric beatnote phases or frequencies [83], but many of
these studies disregard the Doppler shifts which arise when using units of
frequency [83, 93, 66, 24]. The introduction to TDI presented in chapter 12 of
this thesis was also performed in phase, while our simulations are performed
in frequency. To properly process the simulated data, we therefore need to
adapt the TDI algorithm to correctly account for Doppler shifts.

Indeed, the relative motion of the spacecraft induces time-varying frequency
shifts in the beatnote frequencies that reduce the performance of standard TDI
algorithms. In fact, as we show below, in the presence of the Doppler effect,
the standard formulation of TDI applied to data in units of frequency no
longer suppresses laser-noise to the level required. We however demonstrate
that TDI algorithms can be easily modified to account for Doppler shifts when
using units of frequency. Ultimately, we recover the same laser noise-reduction
performance as one obtains when using units of phase.

We stay in the simplified LISA model used in chapter 10, in that we consider
each spacecraft as a point mass on a free-fall trajectory. We assume these
trajectories to be again given by the same ESA provided orbits for which
we show the computed The reasoning in this

chapter holds
regardless of in which
reference frame the
variables are expressed,
such that we do not
distinguish between
PPRs, MPRs and LTTs.
In addition, we do not
distinguish between dij
and do

ij.

light travel times dij(t) in fig. 3.3. As described in
section 5.5.3, the time derivatives of these light travel times affect the laser
frequency observed after propagation, which is known as a Doppler shift.
The light travel time derivatives for the orbits considered in this thesis are
shown in fig. 12.8

Moreover, we will again assume here that each spacecraft i contains only
one laser with laser noise pi, which is used in both optical benches. We will
also neglect all optical pathlength and clock noise, the onboard filters, laser
locking, as well as the timestamping operator in the equations presented in
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section 7.2, such that the relevant measurement equations given in eq. (7.7b)
simplify to

η̇ij ≡ iscε
ij,c = (1− ḋij)Dij ṗj − ṗi , (12.50)

where we explicitly expanded the Doppler-delay operator Ḋij used in eq. (7.7b).

We observe that compared to the η expressed in phase which we presented in
chapter 10, we get additional laser noise terms scaled by ḋij.

12.4.2 Residual noise due to Doppler shifts in TDI

As an example for how these new laser noise terms propagate through TDI,
we consider again the second-generation Michelson variable X2 introduced in
chapter 10, which reads

X2 = (1−D121 −D12131 + D1312121)(η13 + D13η31)

− (1−D131 −D13121 + D1213131)(η12 + D12η21) .
(12.51)

In the following, we shall ignore any technical reasons for imperfect laser
noise reduction discussed in section 12.3 and only consider the maximum
theoretical laser noise reduction achievable.

Following section 10.2, we know that the TDI combination evaluates to

X2 = [D13121, D12131]p1 , (12.52)

which gives

SXΦ
2
(ω) = ω2∆τ2SΦ(ω) , (12.53)

in terms of PSD, where SΦ(ω) is dominated by the PSD of the laser noise
expressed in cycles and ∆τ2 is the usual armlength mismatch of the combina-
tion.

Now, let us assess the impact of Doppler shifts if one uses naively the tra-
ditional second generation TDI algorithm using measurements in units of
frequency. For this, we can insert eq. (12.50) in eq. (12.51). The only struc-
tural difference between eq. (12.50) and eq. (10.1) is the additional Doppler
term ḋijDij pj. Because TDI is a linear operation, we can immediately give
the residual laser noise in terms of frequency when applying the same algo-
rithm,

Xν
2 = [D13121, D12131]p1 + δXν

2 , (12.54)

where δXν
2 is a function of the Doppler shifts,

δXν
2 = (1−D131 −D13121 + D1213131)

× (ḋ12D12 ṗ2 + ḋ21D121 ṗ1)

− (1−D121 −D12131 + D1312121)

× (ḋ13D13 ṗ3 + ḋ31D131 ṗ1) .

(12.55)
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Figure 12.9: Ampli-
tude spectral density
of the second genera-
tion TDI combination
when using measure-
ments expressed in
units of frequency.
The blue curve shows
the amplitude of
Doppler-related terms,
c.f. eq. (12.57), the
orange curve shows
the amplitude of the
delay commutators,
c.f. eq. (12.58), while
the red curve presents
the usual LISA 1 pm-
noise allocation.
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A rough estimation of this Doppler coupling can be computed from δXν
2 ≈

¯̇dpi, where ¯̇d is the average light travel time derivative. Plugging orders of
magnitudes for the TTs derivatives and laser noise yields a Doppler coupling
at 10−6 Hz, above the expected level for our GW signals (10−7 Hz). It is also
above the level of the traditional residuals of TDI, given by the first term of
eq. (12.54) and shown in fig. 12.9. As a consequence, the PSD of the residual
noise for the Xν

2 TDI variable is dominated by the Doppler coupling,

SXν
2
(ω) ≈ SδXν

2
(ω) . (12.56)

Assuming that all laser frequencies are uncorrelated, a more precise computa-
tion yields the PSD of this extra residual noise,

SδXν
2
(ω) ≈ 16Sν sin2(ωd̄

)
sin2(2ωd̄

)
×
(

¯̇d2
12 +

¯̇d2
31 + ( ¯̇d12 − ¯̇d31)

2
)

.
(12.57)

This is to be compared with the residual laser noise in terms of frequency
when one disregards Doppler effects. It is given by replacing SΦ with Sν in
eq. (12.53),

S[Xν
2 ]
(ω) = ω2∆d2Sν(ω) . (12.58)

In fig. 12.9, we show those analytical curves alongside the usual 1 pm-noise
allocation curve, given by dividing eq. (8.1) by a factor 10.

The extra residual laser noise due to Doppler terms is above or at the same
level as the GW signal, and far above the usual laser noise residual when one
disregards the Doppler effect. Therefore, a procedure to mitigate this effect is
required if one wishes to use frequency measurements.
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12.4.3 Adapting time-delay interferometry for Doppler shifts

We included Doppler shifts in our equations in section 7.2 by utilizing the
Doppler-delay operator, defined as

Ḋij = (1− ḋij)Dij , (12.59)

such that laser noise entering eq. (12.50) takes the same algebraic form as its
phase counterpart eq. (10.1),

η̇ij = Ḋij ṗj − ṗi . (12.60)

We now introduce a new type of second generation TDI combination by
considering the standard expression from eq. (12.51) but using the Doppler-
delay operators introduced in eq. (12.59). The new TDI variable reads

Ẋ2 = (1− Ḋ121 − Ḋ12131 + Ḋ1312121)(η̇13 + Ḋ13η̇31)

− (1− Ḋ131 − Ḋ13121 + Ḋ1213131)(η̇12 + Ḋ12η̇21) .
(12.61)

The algebraic form of this expression is now identical in phase and frequency,
and we immediately recover the residual noise given in eq. (12.53),

Ẋν
2 =

[
Ḋ13121, Ḋ12131

]
ṗ1 . (12.62)

A direct comparison with eq. (12.54) demonstrates that the new TDI variable
introduced in eq. (12.61) is not impacted by the Doppler noise δXν

2 .

To compute the PSD of the Ẋν
2 residual laser noise, we study the commutator

of Doppler-delay operators

y =
[
ḊA1 ...An , ḊB1...Bn

]
. (12.63)

As one can observe in fig. 12.8, the light travel time derivatives evolve slowly
with time, with d̈∆t ∼ 10−14 � ḋ ∼ 10−8 if ∆t ∼ 10 s is the timescale of the
TTs considered here. Therefore, we can assume that ḋ’s are constant when
computing y. Equation (12.63) can then be factored as

y ≈
(

n

∏
m=1

(1− ḋAm)

)(
n

∏
m=1

(1− ḋBm)

)
× [DA1...An , DB1 ...Bn ] . (12.64)

The factor that contains the light travel time derivatives is a constant, which,
to first order, deviates from 1 by 2 ¯̇dn ≈ 10−7. We can therefore neglect it
when estimating the PSD. For this reason, the PSD of the laser noise residual
for the new TDI variable introduced in eq. (12.61) is then given by

SẊν
2
(ω) ≈ S[Xν

2 ]
(ω) , (12.65)

whose expression is explicitly given in eq. (12.58). A direct comparison with
eq. (12.56) shows that the PSD of the new Ẋν

2 TDI variable is not impacted by
the unacceptably large contribution from δXν

2 .

Note that although we demonstrated this method of replacing Dij by Ḋij
using the variable X2, it is completely general, and can be applied to any TDI
combination.
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Figure 12.10: Ampli-
tude spectral density
of the residual laser
noise in Xν

2 obtained
using data in units of
frequency, with the
traditional algorithms
(in blue) and Doppler
correction (in orange).
The theoretical models
from Eqs. (12.57) and
(12.58) are superim-
posed as black dashed
lines. These curves
need to be compared
with the 1 pm-noise
allocation (in red).
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12.4.4 Simulation results

Using LISA Instrument, we simulated the interferometric measurements as
frequency deviations from the average beatnote frequencies. These frequency
deviations include only laser noise, which is Doppler-shifted during prop-
agation. We assumed 3 free-running lasers for this study, and used a high
sampling rate, such that effects of onboard filtering appear off band. We
used the same realistic orbits and light travel times as presented in figs. 3.3
and 12.8, and simulated 106 samples, i.e., a bit less than 12 days.

The TDI processing was performed using PyTDI. In fig. 12.10, we compare 2
different scenarios using the same input data. The blue curve shows the ASD
of the residual laser noise when the standard second-generation Michelson
Xν

2 variable is used. We superimpose the model for the expected excess of
noise δXν

2 due to Doppler effect given in eq. (12.57), and check that it matches
our simulated results. Alternatively, the orange curve shows the ASD of the
residual laser noise when the Doppler-corrected second-generation Michelson
Ẋν

2 variable is used. It is superimposed with the analytical expectation given
in eq. (12.65) in a large part of the band, until we reach a noise floor in
agreement with the numerical accuracy typically achieved in our simulations.
The increase at very high frequency is an interpolation artifact, which we
modelled in section 12.3.2.2.

These simulations confirm the analytical results developed in the previous
section. In particular, it shows that the residual noise of the new TDI variable
introduced in eq. (12.61) is similar to the one obtained with the standard
TDI combinations when the Doppler effect is neglected. In other words, the
TDI variable corrects efficiently for the Doppler contribution which otherwise
induces an unacceptably large noise.





13
T I M E S Y N C H R O N I Z AT I O N A N D T D I

So far, we have neglected in part iii of this thesis that the measurements are
recorded with three independent spacecraft clocks.

We will discuss in section 13.1 that this does not significantly impact the
construction of TDI variables in principle, and that laser noise can still be
reduced by taking the clock imperfections into account while constructing the
variable. We remark in section 13.2 how this would effectively correct both
laser and clock noise in the same step. However, this is only true when one
uses the total phase or frequency, which implies very stringent requirements
on the precision of the applied time shifts.

An alternative is to first detrend all variables, and then operate just on the
remaining fluctuations. This eases the requirements on the delays applied
in TDI, but requires an additional processing step to remove in-band clock
fluctuations, which we outline in section 13.3.

We test these analytical results in section 13.4, by performing simulations with
laser- and clock-noise enabled, showing that both of these noise sources can
be reduced below the level of other secondary noises, even if we additionally
enable ranging noise. This is possible with either schemes, using the total
frequency or a detrended variable, but the latter seems to cause smaller
numerical errors. These results should be seen as preliminary, since more
detailed studies to evaluate the achievable noise suppression and to model
the residuals are on-going.

We conclude with an outlook in section 13.4.2, where we briefly discuss the
remaining processing steps still missing in section 13.4. In particular, we
discuss how the final variables could be synchronized to each other and a
global timescale, like TCB, and how one could correct for constant ranging
biases.

13.1 time synchronization as part of tdi

The topic of this section is under development as a joint publication1 with
J.-B. Bayle, A. Hees, M. Lilley, M. Staab and P. Wolf.

1 The idea that one could perform TDI directly using the measurements given in their respective
clock frames was first formulated in detail by A. Hees at SYRTE. Independently, the authors
of [63] also already remarked in their manuscript that "[the] implementation [of TDI] will be
based on data timestamping and pseudo-ranging measurements that all happen on board
individual satellites, and will not require to pick any global frame to achieve noise cancellation",
but it is not further explored there how this can be realized in practice.

167
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We derived TDI in chapter 10 making extensive use of delay operators, by
defining the measurements as

ηij = DijΦj −Φi . (13.1)

Here, the left-hand side ηij as well as the right-hand side Φi are evaluated at
the same time, corresponding to the event a photon is received and interef-
ered on spacecraft i, while DijΦj is evaluated at the corresponding event of
emission on spacecraft j.

We assumed in that chapter that all measurements are given in a global time
frame, such as TCB, which allows us to write

ηt
ij(t) = Φt

j(t− dt
ij(t))−Φt

i(t) , (13.2)

where dt
ij is the light travel time computed in the TCB. This assumption

implies the requirement that all measurements need to be shifted from their
respective THE in which they are provided by the spacecraft to a common
global reference frame.

However, we could have just as well expressed the same equation in any other
reference frame, or even using different reference frames for the different
quantities without changing any of the physics.

For example, we could express each of the lasers in their associated proper
times τi, to get

ητi
ij (τ) = Φ

τj
j (τ − dτ

ij(τ))−Φτi
i (τ) . (13.3)

In fact, this is exactly what we did in section 5.5.3 to derive the propagation
equations of the simulation model, with dτ

ij(τ) as the PPR.

We can even express the measurements as they are given according to the
local spacecraft clocks,

ητ̂i
ij (τ) = Φ

τ̂j
j (τ − dτ̂

ij(τ))−Φτ̂i
i (τ) . (13.4)

Here, ητ̂i
ij and Φτ̂i

i are defined as functions of the THE of spacecraft i, while

the distant Φ
τ̂j
j is defined as a function of the THE of spacecraft j. Overall,

this equation still has to represent the same measurement. This means τ in
this equation represents a time a photon is received according to τ̂i, while
τ − dτ̂

ij(τ) has to represent the time the photon was emitted according to τ̂j.
Or in other words: dτ̂

ij is the difference between τ̂i at the event of reception
and τ̂j at event of emission, which is exactly the pseudo-ranging measurement
described in section 6.3, except for ranging noise.

This means we can simply re-interpret eq. (13.1) to represent eq. (13.4) instead
of eq. (13.2). All measurements are then implicitly given in their respective
THE, and the delays to be applied by Dij have to represent the MPRs, includ-
ing de-synchronizations of the different spacecraft clocks. Since the algebraic
form of the equation does not change, all result presented in chapters 10
and 11 are directly applicable to the re-defined variables, and TDI variables
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can be constructed in exactly the same way. The same can be extended to the
variables expressed in frequency as discussed in section 12.4, since again, the
algebraic form of the equation does not change.

The residual laser noise levels presented in chapter 12 are also applicable
in principle, with the change that the MPRs should be used in all models
instead of the TCB light travel times. This can, for example, lead to increased
values of the armlength derivative ḋ used in our models, since the clock
drifts presented in chapter 6 are potentially higher than the armlength rate of
change due to Doppler shifts.

Any TDI variable constructed in this fashion will then be given in the time-
frame of the ’starting’ spacecraft of that variable. For example, the three
Michelson variables X, Y and Z will be given according to the spacecraft
clocks of spacecraft 1, 2 and 3, respectively, such that they still need to be
synchronized to a common reference frame for astrophysical data analysis.
The advantage of this approach is that this synchronization can be performed
after laser noise has been suppressed, potentially relaxing the pre-processing
requirements by a significant margin.

An alternative to the approach presented here is to time-shift all measurements
to a common reference frame, either one of the THEs or a global frame
like TCB, before computing the TDI combination. In fact, such a prior
synchronization has often been thought to be a required processing step
(see, e.g., [64, 96]), and is at the time of writing still considered the baseline
approach for LISA data processing. However, we suspect that this will require
increased complexity of the pre-processing algorithms compared to directly
using the data given in the respective THE.

We will discuss in section 13.2 the required accuracy for the time-shifts applied
to our data. This applies both to TDI and to the synchronization to a common
time scale, like TCB.

13.2 time synchronization in different units

To analyze the required accuracy of the time shifts applied to our measure-
ments, we will consider the raw data to be given as total phase2 measured
with respect to the clock time. This could represent any of the interferometric
measurements presented in part ii. Following chapter 7, we can write

Φτ̂i(τ) = Φτi(ττ̂i
i (τ))

≈ Φτi(τ − δτ̂2
i (τ)) .

(13.5)

2 The reasoning presented here also applies to variables given in total frequency. The only
difference is that the timeshifts have to take Doppler-like rescaling factors into account, cf.
section 6.2.2. Applying a first order expansion to those then yields a similar equation to
eq. (13.6).
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where Φτi is the total phase given in the TPS. δτ̂2
i (τ) accounts for both large

clock offsets and small, zero-mean fluctuations clock jitter. In this section, we
will only consider the latter, such that we can expand toHere, we use that

Φ̇τi (τ) ≡ ντi (τ).
first order:

Φτi(τ − δτ̂2
i (τ)) ≈ Φτi(τ)− ντi(τ)δτ̂2

i (τ) , (13.6)

The clock noise term couples scaled by ντi(τ) ≤ 25 MHz. Therefore, to achieve
µcycle/

√
Hz phase resolution, δτ̂2

i (τ)We ignore here the
usual relaxation

towards low
frequencies for clarity.

must have an ASD of≤ 40 fs/
√

Hz.

As discussed before, the clocks on LISA will not meet this timing requirement.
Instead, clock errors must be corrected in post processing.

Since the clock errors enter as a time shift, the most straightforward way of
correcting them would be to simply time shift Φτ̂i(τ) to the desired reference
frame, compensating for the clock errors. This could (in principle) be a global
time frame, like TCB, or the time frame of another spacecraft as part of
constructing the TDI variable, as discussed in section 13.1.

The challenge with that approach is that any errors in the applied time shifts
will affect the measurement with the coupling factor ντi(τ) ≤ 25 MHz, which
means that all time shifts applied to the total phase inherit the stringent
clock timing stability requirement of 40 fs/

√
Hz. This is challenging from two

perspectives. For one, any numerical error in the applied time shifts will also
strongly couple into the measurement. The total time shifts usually appearing
in a TDI variable are of the order 10 s, which is 14 orders of magnitude above
the required precision of 40 fs, and therefore not far from the limit of a double
precision variable. In addition, reaching this 40 fs/

√
Hz precision is only

feasible for synchronization between the three spacecraft clocks, where we can
utilize the dedicated clock sideband measurement. There is no measurement
available which is expected to allow this level of synchronization between the
3 spacecraft clocks and a global frame, like TCB.

Another numerical challenge when constructing TDI variables out of data
given in total phase or frequency is quantization noise present in each inter-
polated term. Recalling section 10.1, we build TDI combinations by summing
multiple delayed measurements ηij. Each individual ηij is not suppressed by
its own, and carries a white quantization noise proportional to its magnitude,
which can be as high as ≈ 10−16 × 25 MHz when considering data in total
frequency. This means we would get a numerical noise floor around 0.01 nHz
accross the whole frequency band, which can be limiting at low frequencies.
We show in section 13.4 that this can be somewhat mitigated by computing the
TDI variables in a certain factorization, but numerical noise remains limiting
in some cases.

An alternative to directly time-shifting the total phase or frequency would be
to first remove any linear drifts from them. To illustrate that, we use a simple
model for Φτi(τ),

Φτi(τ) = ντ + ϕ(τ) , (13.7)

where ν is constant and ϕ(τ) a zero-mean noise term, mostly laser frequency
noise, with ϕ̇(τ)� ν. Inserting this into eq. (13.6), we then have

Φτ̂i(τ) ≈ ντ + ϕ(τ)− ν · δτ̂2
i (τ) , (13.8)
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where we neglected a second order term in ϕ̇(τ)δτ̂2
i (τ). Using that both ϕ(τ)

and δτ̂2
i (τ) are assumed to be zero-mean noise processes, we can now apply

a linear fit to our raw data to remove the term ντ, and get the de-trended
phase variable,

φτ̂i(τ) ≈ ϕ(τ)− ν · δτ̂2
i (τ) . (13.9)

Any errors in a time shift applied to φτ̂i will now couple scaled3 by φ̇τ̂i ≈ 50 Hz,
such that the precision requirement on these time shifts is relaxed by 5-6
orders of magnitude.

In addition, each individual delayed term used in the construction of the
TDI variable will be much smaller, and therefore introduce significantly less
numerical noise. The quantization noise present in the original variable before
detrending is still there, but it will be suppressed towards low frequencies by
the TDI transfer function.

The downside of detrending is that the clock noise term νδτ̂2
i (τ) can no longer

be compensated by time shifting the data. Instead, it remains as a new noise
term, scaled4 by the beatnote frequency ν.

The final TDI combination will contain many of these noise terms from all
measurements entering into it. They will appear with different time shifts
applied to them, and scaled by different beatnote frequencies.

As we will show in section 13.3, these noise terms can be compensated
by subtracting a combination of the clock noise measured in the sideband
interferometers in an additional processing step after the TDI variable is
constructed.

13.3 clock noise correction in tdi

This section is based on a publication developed in close collaboration with
J.-B. Bayle [43]. A previous version of this article was also included in [20]. It
is a continuation of the work published with M. Tinto in [86].

We described in section 13.2 that one way of doing the INREP processing is to
subtract any large trends from the phase or frequency data before constructing
the TDI variables. As mentioned there, this approach requires an additional
clock noise correction step.

As described in chapter 6, the GHz clock sideband modulations allow an
independent measurement of the differential clock jitter, which can be used
for clock-noise reduction algorithms. A first version of such an algorithm
was presented in [51], which perfectly cancels clock noise assuming constant
armlengths. In [86], it was shown that this algorithm can be extended to

3 This is a rough estimate from integrating the laser frequency noise of 30 Hz/
√

Hz up to the
Nyquist frequency of 2 Hz.

4 Any large deterministic offset in δτ̂2
i (τ) would be absorbed into the fit, such that the measured

average beatnote frequency will be different from the actual frequency.
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linearly time-varying armlengths and still reduces clock noise below require-
ments. The correction algorithms given in these references are specific to be
applied to either the Michelson or Sagnac combinations. We present here a
general clock-noise reduction algorithm which can be directly applied to all
second-generation TDI combinations presented in section 11.4.

We study in section 13.3.1 how clock noise enters in the standard TDI combi-
nations, and propose a general algorithm to remove it. In section 13.3.2, we
present numerical simulations, and discuss the main results in section 13.3.3.
In particular, we give models for the limiting effects and compare the perfor-
mance of our algorithm against existing clock-noise reduction schemes.

13.3.1 Clock-noise reduction

As a starting point, we use a simplified version of the phasemeter equations
presented in chapter 7. We disregard all noises expect clock noise qε

i and
modulation noise Mij, and consider neither the filter, the timestamping oper-
ator nor laser locking5. In addition, we assume that large trends have been
removed from the data, such that we can directly use the equations describing
the fluctuations. For legibility, we will drop the explicit ( )ε for all quantities,
e.g., we write qi ≡ qε

i in this section.

These simplifications give

iscij,c = −q̇iaij , (13.10a)

iscij,sb = νm
ji Ḋij(q̇j + Ṁji)− νm

ij (q̇i + Ṁij)

− q̇i(aij + Ḋijν
m
ji − νm

ij ) ,
(13.10b)

for the ISC beatnote fluctuations, and

refij,c = −q̇ibij , (13.11a)

refij,sb = νm
ik (q̇i + Ṁik)− νm

ij (q̇i + Ṁij)

− q̇i(bij + νm
ik − νm

ij ) ,
(13.11b)

for the reference interferometers.

Under these assumptions, the test-mass (TM) beatnote frequency fluctuations
are identical to the reference (REF) ones.

13.3.1.1 Intermediary variables

Inserting eqs. (13.10a) and (13.11a) in the expressions given for the intermedi-
ary variables in section 12.1, we find how clock noise enter into ηij,

ηij = Ḋijbjk q̇j − aijq̇i , (13.12)

ηik = −(bij + aik)q̇i . (13.13)

5 We included all of these effects in the INREP pipeline results shown in chapter 9, showing
that the reduction is effective in any case. We also include them in the dedicated numerical
simulations shown in section 13.4.
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Note that bij = −bik, since the two reference interferometers on one spacecraft
use the same lasers. In the following, we choose to only use reference beatnote
frequencies bij from left MOSAs.

13.3.1.2 Clock-noise residuals

From these intermediary variables, we can build laser noise-free TDI combi-
nations. They can be expressed as polynomials of delay operators Pij, in the
form

TDI = ∑
i,j∈I2

Pijηij . (13.14)

where I2 = {(1, 2), (2, 3), (3, 1), (1, 3), (3, 2), (2, 1)} is the set of the 6 MOSA
index pairs.

Inserting eqs. (13.12) and (13.13), we find that clock noise enters in the TDI
combination as

TDIq = ∑
i,j,k∈I+3

[PkiḊki − Pik]bijq̇i − ∑
i,j∈I2

Pijaijq̇i , (13.15)

with I+3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} as the set of triplets of spacecraft indices
in ascending order.

To estimate the contribution of clock noise before any correction, we as-
sume that all light travel times are constant and equal to L, such that we
can commute delay operators. As shown in [24], these commutators only
yield multiplicative terms � 1. Also, we suppose that all clock noises are
uncorrelated but have the same PSD Sq̇(ω). Lastly, we assume that beatnote
frequency offsets are constant. The clock noise residual PSD then reads

STDIq(ω) ≈ ∑
i,j,k∈I+3

∣∣∣aijP̃ij(ω) + ajiP̃ji(ω)

− bij[P̃ik(ω)− P̃ki(ω) ˜̇Dki(ω)]
∣∣∣2Sq̇(ω) ,

(13.16)

Here, ˜̇Dij and P̃ij are the Fourier transforms of delay operators and polynomi-
als thereof, see [24] for further information.

As an example, we can use eq. (13.16) to work out clock noise residuals in the
second-generation Michelson combination X2,

X2 = (1− Ḋ121 − Ḋ12131 + Ḋ1312121)(η13 + Ḋ13η31)

− (1− Ḋ131 − Ḋ13121 + Ḋ1213131)(η12 + Ḋ12η21) .
(13.17)

We find that

SXq
2
(ω) ≈ 16 sin2(2ωL) sin2(ωL)AX2(ω)Sq̇(ω) , (13.18)

with AX2(ω) is a scaling factor that depends only on the beatnote frequencies,

AX2(ω) = (a12 − a13)
2 + a2

21 + a2
31

− 4b12(a12 − a13 − b12) sin2(ωL) .
(13.19)
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Figure 13.1: Compar-
ison of the residual
clock noise in second-
generation Michelson
X2 combination, and
the usual LISA 1 pm
noise allocation curve.
We assumed here a
state-of-the-art space-
qualified USO and a
realistic set of beatnote
frequency offsets.
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Figure 13.1 shows this clock noise residual assuming the same USO model
presented in chapter 6, with Sq̇( f ) = 4× 10−27 f−1 in fractional frequency
fluctuations, and a realistic set of beatnote frequency offsets. We compared
it to a typical 1 pm LISA noise allocation for a single noise source, given by
dividing eq. (8.1) by a factor 10.

We see that below 0.2 Hz, clock noise significantly violates this requirement
and must be suppressed.

13.3.1.3 Building correcting expression

Inspecting eq. (13.15), we observe that clock noise enters in our TDI combina-
tion coupled with delay polynomials. We can rearrange it to get

TDIq = ∑
i,j,k∈I+3

[
Pij(bjk − aij)q̇i − Pik(bij + aik)q̇i

+ Pij(Ḋijbjk q̇j − bjk q̇i)
]

.

(13.20)

Following chapter 7, the beatnote frequency offsets aij, bij are time-dependent.
As such, commuting them with a delay operator yields an error term. This
effect will be studied in section 13.3.3.1. We neglect it for now, and write the
previous equation as

TDIq ≈ ∑
i,j,k∈I+3

[
(bjk − aij)Pijq̇i − (bij + aik)Pik q̇i

+ bjkPij(Ḋijq̇j − q̇i)
]

.

(13.21)

We observe that clock noise appears on the right side of the Pij, either directly
as q̇i, or as a differential term Ḋijq̇j − q̇i.
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We will now see that the sideband-sideband beatnotes given in section 7.2
can provide a direct measurement of the differential clock noise. We form the
dimensionless quantity

rij =
iscij,sb − iscij,c

νm
ji

. (13.22)

By inserting eqs. (13.10a) and (13.10b) into the previous expression, we see
that rij directly measures the differential clock noise appearing in eq. (13.20),

rij = Ḋijq̇j − q̇i , (13.23)

where we neglect the modulation noise for now. The effect of modulation
noise and an additional processing step for its partial mitigation are discussed
in section 13.3.3.2.

Because the beatnote frequency offsets are measured and the delay polynomi-
als are known, we can subtract ∑i,j,k∈I+3 bjkPijrij from our TDI combination to
remove the last term of eq. (13.20).

We are left with the first two terms in the sum in eq. (13.20). We discussed in
chapter 11 how any arbitrary interferometer can be synthesized out of a set
of 6 one-way interferometric measurements ηij between the LISA spacecraft.
We observe that the rij are of exactly the same form as the ηij, just expressed
in terms of clock noise instead of laser noise. Therefore, we can apply the
usual algorithm given in section 11.1.1 to construct any expression of the form
(Ḋi1,i2,...,in qin − qi1) from the rij.

Each delay polynomial Pij in eq. (13.14) is the sum of nij chained delay
operators with signs σk

ij. It can be written as

Pij =
nij

∑
k=1

σk
ijḊAk

ij,...,B
k
ij

, (13.24)

where we denote the first and last indices of the chained delay operators
in the k-th summand with Ak

ij and Bk
ij, respectively. By design of the TDI

algorithm, we always have Bk
ij = i.

We can then construct a TDI variable for each summand of eq. (13.24), giving

Rij =
nij

∑
k=1

σk
ij

(
ḊAk

ij,...,i
q̇i − q̇Ak

ij

)
. (13.25)

We have

Pijq̇i − Rij =
nij

∑
k=1

σk
ijq̇Ak

ij
. (13.26)

In most second generation TDI combinations6, this last term is vanishing,
such that we have Rij = Pijqi. Therefore, we can subtract them from eq. (13.20)
to remove the last clock-noise terms.

6 We explicitly tested it for all second generation TDI combinations up to 16 links presented in
section 11.4. We conjecture that it is valid for any second generation variable derived from
geometric principles.
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In the special case where one summand in Pij, say the n-th term, does not
contain any delay, we skip it in the construction of Rij (eq. (13.25)). An extra
term σn

ij q̇i is to be accounted for in eq. (13.26), which has to cancel with one of
the σk

ijq̇Ak
ij
.

The full corrected TDI combination therefore reads

TDIc = TDI− ∑
i,j,k∈I+3

[
(bjk − aij)Rij − (bij + aik)Rik + bjkPijrij

]
. (13.27)

Note that this algorithm can be applied without modification to TDI variables
containing not only delays, but also advancements, as those presented in
chapter 11.

13.3.1.4 Example: correcting clock noise for X2

As an example, we apply our algorithm to the second-generation Michel-
son combination X2 given in eq. (13.17). Following the decomposition of
eq. (13.14),

P12 = −(1− Ḋ131 − Ḋ13121 + Ḋ1213131) , (13.28a)

P23 = 0 , (13.28b)

P31 = (1− Ḋ121 − Ḋ12131 + Ḋ1312121)Ḋ13 , (13.28c)

P21 = −(1− Ḋ131 − Ḋ13121 + Ḋ1213131)Ḋ12 , (13.28d)

P32 = 0 , (13.28e)

P13 = (1− Ḋ121 − Ḋ12131 + Ḋ1312121) . (13.28f)

Applying the TDI algorithm, we construct the Rij variables satisfying eq. (13.25).
They read

R12 = −(1− Ḋ131)(r12 + Ḋ12r21)

+ (2− Ḋ121 − Ḋ12131)(r13 + Ḋ13r31) ,
(13.29a)

R23 = 0 , (13.29b)

R31 = −(2− Ḋ131 − Ḋ13121)(r12 + Ḋ12r21)

+ (1− Ḋ121)(r13 + Ḋ13r31)

+ (1− Ḋ121 − Ḋ12131 + Ḋ1312121)r13 ,

(13.29c)

R21 = −(1− Ḋ131)(r12 + Ḋ12r21)

− (1− Ḋ131 − Ḋ13121 + Ḋ1213131)r12

+ (2− Ḋ121 − Ḋ12131)(r13 + Ḋ13r31) ,

(13.29d)

R32 = 0 , (13.29e)

R13 = −(2− Ḋ131 − Ḋ13121)(r12 + Ḋ12r21)

+ (1− Ḋ121)(r13 + Ḋ13r31) .
(13.29f)

These can be directly inserted into eq. (13.27) to get the corrected variable
Xc

2.
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13.3.2 Numerical simulations

To complement the theoretical studies presented above, we conducted nu-
merical experiments to verify the clock-noise suppression capabilities of this
algorithm. We simulate data using LISA Instrument, and then use PyTDI to
generate the second-generation Michelson TDI data streams X2, as well as the
corresponding clock correction, all described in section 13.3.1.

As usual, laser beams and interferometric measurements are simulated in
frequency, and we use the usual two-variable decomposition as described in
part ii. In order to study the small clock noise residual and not be limited by
numerical noise, we directly use the small ( )ε variable as input for the TDI
construction.

In order not to be limited by other numerical effects, such as interpolation
errors or flexing-filtering couplings, we use an unrealistically high sampling
rate of 10 Hz for the full simulation chain. By doing so, we omit any simulation
of on-board filters. The duration of our simulation is set to 105 s, i.e., 106

samples.

The propagation of laser beams between spacecraft is stil implemented using
Lagrange fractional delay filters of order 31. Given our high sampling rate,
they do not cause any observable artefact in our frequency band of interest
and remain computationally tractable. Light travel times and their derivatives
are computed from realistic orbits provided by ESA, as shown in fig. 3.3.
These light travel times include relativistic corrections up to terms in 1/c,
including the Sagnac effect and the Shapiro delay, as described in [11].

We use the following programmed offsets for lasers, see section 7.2,

O12 = 8.1 MHz, O21 = −9.5 MHz , (13.30)

O13 = 1.4 MHz, O31 = 10.3 MHz , (13.31)

O23 = 9.2 MHz, O32 = −11.6 MHz , (13.32)

and do not simulate laser locking.

Our simulated clock noise matches that of a state-of-the-art space-qualified
USO with

Sq̇( f ) = 4× 10−27 f−1 (13.33)

in fractional frequency deviations, generated using a variant of the infinite
RC model [67]. We do not simulate any deterministic clock errors, such as
constant timing and frequency offsets or higher order frequency drifts due to
aging of the oscillators.

Modulation errors are based on a fit of the 2 W-fiber amplifier (red) curve
from figure 5.13 in [14]. In fractional frequency deviations with respect to the
modulation frequency, they are given by

SṄm( f ) = 5.2× 10−14 f 1/3 . (13.34)
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Figure 13.2: Simula-
tion results. Blue and
green curves repre-
sent the uncorrected
X2 and corrected Xc

2
combinations in the
sole presence of clock
noise. The yellow
curve shows the level
of modulation noise in
the corrected variable.
Overlaid dashed black
lines show our analyt-
ical expectations for
these quantities. The
usual 1 pm-noise allo-
cation curve is shown
in red as a reference.
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Note that this noise level did not meet the requirements for LISA in [14], and
we consequently also expect this noise to violate our 1 pm-noise allocation
curve. Laser development is ongoing to achieve the required noise levels in
line with the stringent timing requirements7.

As we saw in chapter 6, only the 2.4 GHz modulation signals on a spacecraft
have a direct low-noise relationship to the pilot tone used as timing reference,
while the 2.401 GHz signals suffer additional noise due to the ×240 and
×240.1 multiplies in the chain (cf. figs. 6.1 and 6.2). We use a simple model
for this effect, by making the working assumption that the right hand-side
modulation noises (indexed 13, 32, 21) are 10 times higher than the left hand
ones, i.e., with a spectrum

SṄm( f ) = 5.2× 10−13 f 1/3 . (13.35)

To compute our TDI combinations, we also use order-31 Lagrange fractional
delay filters.

Figure 13.2 presents the results of our numerical experiments. We used the
LPSD method to estimate the spectra8. As a reference, we also plot in red
the usual LISA Performance Model’s 1 pm-noise allocation curve, given by
dividing eq. (8.1) by a factor 10.

The blue and green curves represent the ASDs of the uncorrected X2 and
corrected Xc

2 second-generation Michelson TDI combinations, in the sole
presence of clock noise (we disabled modulation errors). The black dashed
line overlaying the former curve represents the theoretical clock-noise content
in X2 from eq. (13.18). The black dashed line overlaying the green curve,
representing our model of the residual clock noise after correction, is discussed
in details in section 13.3.3.1 and given by eq. (13.43).

7 M. Hewitson, personal communication, (April 9, 2021).
8 With the following paramters: olap="default", bmin=1, Lmin=0, Jdes=4000, Kdes=5000,

order=-1, win=np.kaiser, psll=240.
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The orange curve represents the modulation errors in the corrected Xc
2 combi-

nation. We obtain it by enabling modulation errors in addition to clock noise
in the previous simulation. In addition, we perform an additional processing
step to remove the higher right hand-side modulation noise terms, see sec-
tion 13.3.3.2. The overlaid black dashed line shows our analytical expectations,
also described in the same section.

13.3.3 Discussion

We see in fig. 13.2 that our clock-noise reduction algorithm works as expected
and that clock noise is reduced to below the noise allocation curve. In addition,
our analytical models match perfectly with simulated results.

We discuss in the following paragraphs the models for the residual clock
noise after correction, the imperfections in the sideband measurements used
for the correction, and other limiting effects that may appear with different
simulation parameters but were not visible in our setup. Finally, we compare
our algorithm with the previously proposed solution [86].

13.3.3.1 Time-varying beatnote frequencies

The residual clock noise after correction is dominated by the effect of time-
varying beatnote frequencies, which we neglected when deriving the correc-
tion. To evaluate this clock-noise residuals, we take the difference between
eq. (13.20) and eq. (13.21). One gets

TDIν = ∑
i,j,k∈I+3

([
aij, Pij

]
+ [aik, Pik]

)
qi , (13.36)

where we used that the reference beatnote offsets This is only the case if
laser locking is
neglected. We will
present a more general
model including all
beatnote frequency
derivatives in
section 13.3.3.5

are constants in our setup,
and hence can be freely commuted with delays. Here, [A, B] = AB − BA
stands for the commutator of A and B.

We can now assume that all delays are equal and constant, such that a delay
operator of N delays can be written as DN . We can write the delay polynomial
Pij as

Pij = ∑
α

λαDNα , (13.37)

with λα the factor in front of the term α, and Nα the number of delays
associated with the same term. We now have

[
aij, Pij

]
= ∑

α

λα

[
aij, DNα

]
, (13.38)

and similarly for Pik.
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Let us study one commutator
[
aij, DN]. This is an operator, which will be

applied on qi. Assuming that aij is a linear function of time, we can write

[
aij, DN

]
= aij(t)DN − (DNaij)DN

= (aij −DNaij)DN

= Nd ȧijDN ,

(13.39)

where Nd ȧij is a constant. We can then go to the frequency domain to write

F
[[

aij, DN
]]
≈ Nd ȧije−jωNd . (13.40)

We can therefore define

Qij(ω) = ∑
α

λαNαd e−jωdN , (13.41)

such that, still in the frequency domain,

F
[[

aij, Pij
]]

= Qij ȧij . (13.42)

Finally, using that clocks are independent but share the same statistical
properties, we obtain the following residual from the time-varying beatnote
offsets,

STDIν(ω) = Sq(ω) ∑
i,j,k∈I+3

∣∣Qij(ω)ȧij + Qik(ω)ȧik
∣∣2 . (13.43)

In our simulation, the average value of the beatnote derivatives evaluate
to

ȧ12 ≈ ȧ21 ≈ −2.0 Hz s−1 , (13.44)

ȧ13 ≈ ȧ31 ≈ 320 mHz s−1 , (13.45)

ȧ23 ≈ ȧ32 ≈ −58 mHz s−1 , (13.46)

while their average second derivatives are of the order of, or below, 10−7 Hz s−2,
which is small enough to neglect it in our model. This is also verified by the
perfect agreement between model and simulation in fig. 13.2.

13.3.3.2 Modulation errors

In section 13.3.1, we introduce modulation errors to model imperfections
of the sideband modulation. By inserting eqs. (13.10a) and (13.10b) into
eq. (13.22), we see that they appear in rij as

rij =
νm

ji Ḋij Ṁji − νm
ij Ṁij

νm
ji

. (13.47)

Therefore, our clock noise reduction performance will ultimately be limited
by this modulation noise. To achieve the required performance, we must
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remove the higher modulation noise contributions from the right hand-sided
modulation signals.

To remove these higher modulation noise terms, we need to measure the
difference ∆Mi of the two modulation signals on each spacecraft i. It can
be measured electrically before the optical modulations are performed, or
optically, using the sideband-sideband beatnotes in the reference interferome-
ters.

We study here the second option, and define

∆Mi =
refik,sb − refik

2
− refij,sb − refij

2
, (13.48)

where the indices i, j, k ∈ I+3 . Note that both terms in eq. (13.48) contain
the same information. We use here interferometric measurements from both
adjacent MOSAs ij and ik to reduce the overall readout noise in ∆Mi, which
is uncorrelated in both measurements.

These expressions strongly suppress any other noise sources which affect
both carrier and sideband equally, such as laser frequency noise. Inserting
eqs. (13.11a) and (13.11b), we see that they contain the modulation noise
terms

∆Mi ≈ νm
ij Ṁij − νm

ik Ṁik . (13.49)

We now define

rc
ij = rij +

Ḋij∆Mj

νm
ji

, (13.50a)

rc
ik = rik −

∆Mi

νm
ki

, (13.50b)

which contain the same differential clock noise as rij and rik, so that we can use
them in place of the latter in the clock-noise reduction procedure described in
section 13.3.1. However, substituting previous expressions, it becomes clear
that these terms do not contain modulation noise from right-handed MOSAs,
as we have

rc
ij =

Ḋijν
m
jk Ṁjk − νm

ij Ṁij

νm
ji

, (13.51a)

rc
ik =

Ḋikνm
ki Ṁki − νm

ij Ṁij

νm
ki

. (13.51b)

Since we choose νm
ij identical on all left-handed MOSAs, this simplifies to

rc
ij = Ḋij Ṁjk − Ṁij , (13.52a)

rc
ik = Ḋik Ṁki − Ṁij , (13.52b)

The remaining left-sided modulation error terms enter eqs. (13.52a) and (13.52b)
with the same pattern as clock noise in eq. (13.23). This extends to the clock
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noise correction term we subtract in eq. (13.27), such that the overall modula-
tion noise exactly replaces the clock noise in the original TDI expression. As
such, following eq. (13.16), their PSDs are given by

∑
i,j,k∈I+3

∣∣∣aijP̃ij(ω) + ajiP̃ji(ω)

− bij[P̃ik(ω)− P̃ki(ω) ˜̇Dki(ω)]
∣∣∣2SM(ω) ,

(13.53)

where we assume that modulation noise is uncorrelated but of equal PSD
SṀ(ω) for all 2.4 GHz sidebands.

In the particular case of X2, we get

16 sin2(2ωL) sin2(ωL)AX2(ω)SṀ(ω) , (13.54)

with AX2 as the same scaling factor as given in eq. (13.19),

AX2(ω) = (a12 − a13)
2 + a2

21 + a2
31

− 4b12(a12 − a13 − b12) sin2(ωL) .
(13.55)

We see in fig. 13.2 that this model fits perfectly our numerical results.

13.3.3.3 Calibration errors

The clock correction algorithm relies on accurate measurements of the large
beatnote frequency offsets aij, bij. Therefore, the achievable clock correction
will be limited to a level proportional to the fractional error in these coeffi-
cients. A simple model for the residual noise from this effect can be derived
by replacing the coefficients aij, bij in eq. (13.18) with terms representing the
calibration error in the respective variables.

In reality, aij, bij will be determined with respect to the frequency of the USO,
such that large deterministic offsets in its frequency will affect their measured
value. We neglected such offsets in our analytical study and simulation, but
remark that they are typically at a level below 10−6 for a space-qualified USO,
as discussed in chapter 6. Therefore, the residual noise due to this effect is
smaller than the one presented in section 13.3.3.1.

13.3.3.4 Other effects

The clock-noise reduction algorithm presented here relies on the same princi-
ples as the laser-noise reduction by the traditional TDI combinations. As such,
any effect which limits the latter will also impact the former in a similar fash-
ion. This applies - in principle - to all effects described in section 12.3, except
the residual laser noise due to a fundamental armlength mismatch.

However, as seen in fig. 13.2, clock noise only needs to be reduced by around
4 orders of magnitude, whereas laser noise needs to be reduced by around
8 orders of magnitude9. Therefore, if these effects are sufficiently small to

9 For a laser noise of 30 Hz/
√

Hz compared to the usual LISA 1 pm noise allocation curve.
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Figure 13.3: Compar-
ison of the residual
clock noise obtained
with the reduction
algorithm proposed
in section 13.3.1 (in
blue), the alternative
algorithm proposed
in section 13.3.3.5 (in
orange), and the al-
gorithm previously
proposed in the liter-
ature [86] (in green).
Overlayed the analyt-
ical model shown in
eq. (13.66). The usual
1 pm-noise allocation
curve is shown in red.
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allow for laser noise reduction, they are automatically sufficiently small to
not significantly impact the clock noise reduction.

13.3.3.5 Comparison to other algorithms

In fig. 13.3, we compare the performance of our clock-noise reduction algo-
rithm (blue curve) against that from [86] (plotted in green). In our notation
system and replacing delay operators by their Doppler-delay counterparts,
the former algorithm is given by

Xc
2 = X2 − (1− Ḋ12131)KX1 , (13.56)

where KX1 is the correcting expression for the first-generation Michelson,

KX1 = −
b12

2

[
(1− Ḋ121)(rc

13 + Ḋ21rc
31)

+ (1− Ḋ131)(rc
12 + Ḋ12rc

21)
]

+ a12(rc
13 + Ḋ13rc

31)− a13(rc
12 + Ḋ12rc

21)

+ a21[rc
13 − (1− Ḋ131)rc

12 + Ḋ13r31]

− a31[rc
12 − (1− Ḋ121)rc

13 + Ḋ12rc
21] .

(13.57)

We see that the former algorithm performs slightly better than the one pro-
posed above, by about a factor of two in amplitude.

This difference in the performance is explained by the factorization used
to build the second-generation correction from the first-generation version.
The factorized delays are applied to the whole first generation expression,
which partly accounts for the the time-varying beatnote frequencies, leading
to a lower residual. This is only valid under the assumption that Doppler-
delay operators can be commuted. In our setup, this assumption is only an
approximation, but the residual due to this effect (i.e., terms scaled by the
commutator of two delay operators) is smaller than that due to time-varying
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beatnotes (i.e., arising from the commutator of beatnote frequencies and delay
operators).

A first solution to achieve the same performance in the framework of this
paper is to build the clock-noise correction for the first-generation Michelson
X1 combination under the same assumptions, and then apply the same factor
(1− Ḋ12131). Our simulations show that we exactly recover the same levels of
residual clock noise.

A second, more general solution is to observe that beatnote frequencies always
appear directly to the left of the clock noise terms in eq. (13.20). Going to
eq. (13.21), we commuted the Pij with all beatnote frequencies. A more
conservative approach would be to construct expressions R

aij
ij which evaluate

to

R
aij
ij = Pijaijqi , (13.58)

and similarly for the other terms in eq. (13.20), such that they can be used
directly in that equation. This can be approximated by directly rescaling all rij
by aij before constructing Rij. Inspecting our correction variable in eq. (13.23),
one of the clock-noise terms always appears attached to a delay operator. This
leaves us with a single delay-beatnote commutator in each rij term, due to the
physical propagation delay.

In detail, we compute

TDIc = TDI− ∑
i,j,k∈I+3

R
bjk
ij − R

aij
ij − R

bij
ik − Raik

ik + Pij(bjkrc
ij) . (13.59)

In the example of the second generation Michelson variable, we would for
example have

Rb23
12 = −(1− Ḋ131)(b23r12 + Ḋ12b23r21)

+ (2− Ḋ121 − Ḋ12131)(b23r13 + Ḋ13b23r31)
(13.60a)

= P12b23q1 − (1− Ḋ131)(
[
b23, Ḋ12

]
q2 + Ḋ12

[
b23, Ḋ21

]
q1)

+ (2− Ḋ121 − Ḋ12131)(
[
b23, Ḋ13

]
q3 + Ḋ13

[
b23, Ḋ31

]
q1) ,

(13.60b)

≡ P12b23q1 + R[b23]
12 (13.60c)

where we introduced an error term R[b23]
12 accounting for the commutators,

and used that

b23r12 = b23(Ḋ12q2 − q1) = (Ḋ12b23q2 − b23q1) +
[
b23, Ḋ12

]
q2 , (13.61)

and similar for the other combinations of beatnote frequency and rij. We
observe that Rb23

12 now consists of our desired expression P12b23q1 and the new
error term R[b23]

12 .

The residual clock noise in any TDI variable can therefore be approximated
as

TDIc,res = ∑
i,j,k∈I+3

R
[bjk ]

ij − R
[aij]

ij − R
[bij]

ik − R[aik ]
ik + Pij(

[
bjk, Ḋij

]
qj) . (13.62)
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In the frequency domain, we get using eq. (13.39),

F
[

R[b23]
12

]
(ω) ≈ dḃ23e−iωd[((e−iω2d − 1)(F [q2] + e−iωdF [q1]) (13.63)

+ (2− e−iω2d − e−iω4d)(F [q3] + e−iωdF [q1])
]

≡ dḃ23e−iωdR̃q
12 (13.64)

for a single residual term, where R̃q
12 collects the complex exponentials and

clock noise terms in the above equation. Overall, this gives

TDIc,res ≈ de−iωd ∑
i,j,k∈I+3

(ḃjk − ȧij)R̃q
ij − (ḃij + ȧik)R̃q

ik

+ ḃjkP̃ijF
[
qj
]

.
(13.65)

If we again assume that all three clocks are uncorrelated and have the same
PSD Sq̇, we need to collect all their contributions individually, and finally get

STDIc,res(ω) =
[
3
[
(ȧ12 + ȧ21)

2 + (ȧ13 + ȧ31)
2] cos(2dω)

−
[
ȧ12(ȧ21 + 2ȧ31 − 3ḃ12) + ȧ13(2ȧ21 + ȧ31)

− ḃ12(3ȧ21 + 2(ȧ31 + ḃ12)) + 2(ȧ21 + ȧ31)
2] cos(4dω)

+ ȧ12(2ȧ13 + 9ȧ21 + 4(ȧ12 + ȧ31)− 3ḃ12)

+ ȧ13(4(ȧ13 + ȧ21) + 9ȧ31) + 6
(
ȧ2

21 + ȧ21 ȧ31 + ȧ2
31
)

− ḃ12(3ȧ21 + 2ȧ31 + 2ḃ12)
]
8d2 sin2(dω)Sq̇ .

(13.66)

Note that although we computed the residual here for the example of the
Michelson X combination, the general approach can be applied to any TDI
combination.

The results of this alternative scheme for X2 are presented in fig. 13.3 as the
orange line, overlayed by our analytical model. We don’t recover the exact
zeros from [86] as they are related to the factor (1− Ḋ12131), but otherwise
achieve a very similar residual noise level.

13.4 numerical verification of clock correction with total
frequency

We have argued in section 13.1 that in principle, we can include the correction
for the desynchronization between the different clocks in the main laser noise
reduction step. However, as discussed in section 13.2 this requires very high
numerical precision, and we suggested to instead detrend variables given in
total frequency to work with smaller numbers. This implies that clock noise
is no longer automatically reduced while constructing the variable, requiring
an additional clock noise reduction step, which we derived in section 13.3.
There, we showed simulations of just the frequency fluctuations to check our
analytical models of the achievable laser noise reduction.

We now want to verify numerically how these results translate to the more
realistic case of having an input variable expressed in total frequency, and
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show that TDI still works if the clocks including large offsets and drifts. In
addition, we will include ranging noise in the MPRs, and show that it can
be sufficiently suppressed using a combination of a polynomial fit and the
sideband measurements.

For this, we simulate 105 s of data using LISANode, with the usual ESA pro-
vided orbits. We enable laser-, clock- and ranging noise, and use the usual
locking scheme N1-LA12, while disabling all other noises. The MPRs then
measure the clock time differences at the events of emission and reception of
the beams, plus a stochastic ranging noise at 1 m/

√
Hz.We want to stress that

the MPRs thus include all imperfections from the clocks of the two spacecraft
involved in each link. For the clocks, we include the deterministic drifts given
in appendix D.8, in addition to initial timer offsets of 1 s, 0.1 s and −0.7 s for

Relative to their
respective proper time.

spacecraft 1, 2 and 3, respectively. We also include the random clock jitters as
given in appendix D.8, but do not simulate modulation noise.

For all cases, we compute both the second generation Michelson X and Y
variables. With our locking scheme, all non-locking beatnotes entering in X
are actually recorded on spacecraft 1, according to the same clock. This is not
the case for Y, where we have to use non-locking beatnotes from spacecraft
1, 2, and 3, such that we expect potentially different behaviour for these two
variables.

Since we are using the total frequency, we expect numerical quantization
noise due to the large varibles to be a significant contributor to the final noise
spectrum. To keep track of these effects, we run another simulation with
identical parameters, but all noises disabled. All variables still carry their
numerical quantization noise, and other numerical errors due to, e.g., the
Lagrange interpolation, will still appear in the result.

13.4.1 TDI using total frequency

We first compute the TDI variables directly using the total frequencies as
input, without any detrending. As delays, we use the MPRs, and apply the
Doppler correction as outlined in section 12.4. We recall that for applying
the Doppler correction, we have to compute the derivative of the delays
applied in TDI. Any error in these Doppler factors will be scaled by the
large beatnote frequencies, such that they have to be determined with great
precision. Errors in the delays themselves, however, are less important, since
beatnote frequencies are changing relatively slowly.

We can compute an accurate estimate of the MPR derivative by utilizing the
sideband measurements. Following the definitions in chapter 6, we can define
similar variables to the rij used in section 13.3:

ρ̇12 =
iscc − iscsb + 1 MHz

2.401 GHz
, (13.67a)

ρ̇13 =
iscc − iscsb − 1 MHz

2.4 GHz
, (13.67b)
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Figure 13.4: TDI X2
and Y2 constructed
using variables in total
frequency, including
laser and clock noise,
as well as large deter-
ministic clock drifts
and offsets. Laser
noise is still reduced,
but numerical artifacts
due to the large dy-
namic range of the
variables become sig-
nificant. Simulation
results without any
noises enabled shown
as comparison. The
usual 1 pm-noise allo-
cation curve is shown
in red.
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and cyclic for the other spacecraft. The main difference between these equa-
tions and eq. (13.22) is that we compensate for the 1 MHz beatnote frequency
offsets of the sidebands wrt. the carrier.

For the actual time shifts, we use the MPRs, but apply a polynomial fit to
remove any in-band fluctuations from them. The small fluctuations correcting
for clock noise are accounted for in the Doppler correction, for which we use
the ρ̇ij as the delay derivatives. We use interpolation order 65 in order to not
be limited at high frequencies. We then estimate the spectrum using the LPSD
algorithm10.

We compute the TDI variable X2 (and its cyclic permutations) in multiple
steps. Following [83], X2 can be factorized as

X2 = (1− Ḋ13121)

A︷ ︸︸ ︷
((η̇12 + Ḋ12η̇21) + Ḋ121(η̇13 + Ḋ13η̇31))

− (1− Ḋ12131) (Ḋ131(η̇12 + Ḋ12η̇21) + (η̇13 + Ḋ13η̇31))︸ ︷︷ ︸
B

.
(13.68)

We first construct the one-arm roundtrip variables,

(η̇12 + Ḋ12η̇21), (η̇13 + Ḋ13η̇31) , (13.69)

followed by the two-arm roundtrips labelled A and B in eq. (13.68), to which
we then finally apply the delay differences (1− Ḋ13121) and (1− Ḋ12131).

Besides being We only need to apply
a total of 6 high-order
interpolations,
compared to 14 when
using the fully
expanded version of
X2.

computationally less expensive, this method also has the advan-
tage that any numerical noise present in A and B gets suppressed towards low
frequencies by the delay differences11, which act like a first derivative.

The result is plotted in fig. 13.4. We observe that both laser and clock noise
are indeed significantly suppressed in both X and Y, but not to the level

10 With the following parameters: bmin=1, Lmin=0, Jdes=2000, Kdes=100, order=1,

win=np.kaiser, psll=240.
11 We thank M. Staab for suggesting to use this factorization in order to reduce the numerical

noise in these variables!
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previously observed. One limiting effect we expected in section 13.2 is
numerical noise. To verify this, we overlay simulation results with all noises
disabled (in green and dark blue), which agree well with our simulation
results with laser and clock noise enabled (in sky-blue and orange) across
most of the frequency band. At high frequencies, we see a small increase
in Y. A possible explanation could be that the polynomial fit introduces a
small bias in the delays, which following section 12.3 should affect Y more
significantly than X with our locking scheme. We also observe that our usual
1 pm allocation curve is not met at low frequencies, with a larger discrepancy
for Y than for X.

However, the 10 pm optical metrology system (OMS) allocation curve given
in eq. (8.1) (from which we derived our 1 pm allocation) is quite stringent at
low frequencies, and almost an order of magnitude below the expected level
of test-mass acceleration noise at a Fourier frequency of 10−4 Hz. In fact, the
numerical noise in our variable is significantly below the expected test-mass
acceleration noise level, as shown by theThis is the same curve

shown in fig. 9.1,
where it agreed well
with our simulation

results when all effects
are enabled.

grey curve labeled ’secondary noises’
in fig. 13.4.

13.4.2 TDI using detrended total frequency

As discussed in section 13.2, an alternative to using the total frequency is to
first detrend all time series, and then compute the TDI variables using the
detrended data. This has the advantage that the delays need to be known at
much lower precision. The disadvantage is that this requires an additional
clock correction step, as described in section 13.3.

We therefore detrend our data by applying a polynomial fit to each variable,
using the same methods already described in chapter 8. We then compute the
TDI variables using the fit residuals as input, and afterwards apply the clock
correction procedure described in section 13.3. We also apply a fit to the MPRs,
and use its result as our input delay series to reduce any numerical noise in the
MPR themselves. We apply the Doppler correction as outlined in section 12.4,
again using the ρ̇ij introduced in section 13.4.1 to not couple any ranging
noise, and use the same interpolation order 65. We then estimate the spectrum
using the LPSD algorithm, with the same parameters as before.

The result is plotted in fig. 13.5. We included the previously achieved results
from fig. 13.5 as a comparison, and see that we indeed achieve a lower noise
floor when using detrended variables, at least for Y. The 1 pm-noise allocation
curve is now almost met at very low frequencies, such that the additional
numerical noise is far below the expected test-mass acceleration noise level.
The steep increase at the very lowest frequencies is an artifact from the spectral
estimation.

The results in this section demonstrate that it is possible to reduce both
laser and clock noise without any relation to a global or common reference
frame.
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Figure 13.5: TDI X2
and Y2 constructed
using fit residuals of
variables in total fre-
quency, including laser
and clock noise, as
well as large determin-
istic clock drifts and
offsets. Laser noise
is reduced, and nu-
merical artifacts due
to the large dynamic
range of the variables
are smaller than when
directly using the total
frequency. The usual
1 pm-noise allocation
curve is shown in red.
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13.5 outlook : ranging processing and synchronization to
tcb

We showed in section 13.4 that both clock and laser noise can be reduced to
match the 1 pm allocation curve in Except for a small

violation at the
smallest frequencies
around 10−4 Hz, where
this allocation curve is
unnecessarily
stringent.

most of the frequency band when using
data provided in total frequency, even in the presence of significant clock
offsets and drifts, as well as random ranging measurement noise.

However, we still neglected the final processing step of shifting the resulting
variables to a common time frame, like the TCB. This requires accurate
knowledge of all 3 clock offsets wrt. TCB. These clock offsets are encoded
in the MPRs, where they appear entangled with the delay due to the inter-
spacecraft propagation.

One way to disentangle this information is to use a Kalman filter, similar to
what has been described in [96]. Such a filter can use information on the
expected dynamical behaviour of the different components making up the
MPRs, for example due to the orbital dynamics and statistically expected evo-
lution of the clock fluctuations, in combination with additional interferometric
measurements and ground based observations to provide an accurate estimate
of the individual clock offsets and the physical light propagation times as
seperate variables. Designing these filters is non-trivial, and multiple versions
are currently under development inside the LISA consortium. Final results
on their performance using realistic simulations are not yet available.

Depending on how well the clock offsets can be determined, one could also
first transform all variables to a common reference frame, either one of the
spacecraft clocks or even TCB, and then construct the TDI variable using, for
example, light travel times computed in the TCB. Compared to the approach
presented in this thesis, this might offer the advantage that we can use the
additional information entering the Kalman filter to achieve overall better
performance. However, as described in section 13.2, any timeshift applied
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before TDI needs to fulfill stringent timing requirements, which might be
difficult to achieve for synchronization to TCB.

Synchronizing the variables after laser noise has been reduced is much less crit-
ical, since the time shifts can be applied to the in-band fluctuations, which are
several orders of magnitude smaller than the original MHz beatnotes.

Another effect we neglected in section 13.4 are large deterministic biases
in the MPRs, for example due to processing or cable delays affecting the
PRN measurements. Ideally, these should be characterized on-ground before
launch, such that they can be simply compensated in a calibration step. In
case this is not possible, or that these biases turn out to be time-varying, they
could be determined using time-delay interferometric ranging (TDI-R). The
basic idea behind TDI-R is that in order to fully suppress laser and clock
noise, the delays applied in TDI have to be identical to the ones present in
the actual data. Any errors in the delays will cause an increased noise level,
such that one can use the noise level in the TDI variables to monitor how
far the applied delays deviate from the true ones. The basic idea of TDI-R is
discussed in [87].



S U M M A RY A N D C O N C L U S I O N

In this thesis, we modeled the interferometric measurements produced by the
Laser Interferometer Space Antenna (LISA), and explored different aspects of
the initial noise-reduction pipeline (INREP) for LISA.

The INREP is designed to suppress otherwise overwhelming primary noise
sources, such as laser frequency noise and clock noise, and produce variables
which can be used for astrophysical data analysis.

We show both analytically and by means of numerical simulations that the
main noise sources included in our simulations can be suppressed below
the level of secondary noises, even when that simulation includes previously
neglected effects such as de-synchronized clocks, large frequency offsets due
to Doppler shifts and laser locking control loops. We derived a detailed
simulation model, in an effort to produce simulated data streams which are
more representative of the data expected from the real mission, including
ancillary data streams needed for clock noise correction. These simulations
are the basis for developing and testing the algorithms used in the INREP.
The raw measurements produced by the simulation are given as the total
frequency of the MHz interferometric beatnotes, in which gravitational wave
signals would appear as µcycle phase fluctuations. We show that double
precision variables are sufficient to facilitate this large dynamic range.

The core algorithm used in the INREP is time-delay interferometry (TDI),
which is designed to construct virtual equal-arm interferometers out of the raw
LISA measurements, in which laser noise is naturally suppressed. In essence,
TDI functions by forming linear combinations of the individual measurements
recorded on the different spacecraft. By applying appropriate timeshifts
while constructing such a linear combination, it is possible to significantly
suppress laser noise in the final variable. TDI is usually formulated in terms
of laser phase noise, assuming that all interferometric measurements are given
according to a global time scale such as TCB.

In this thesis, we show that such TDI variables can also be constructed directly
out of the raw LISA measurements, which are sampled according to the three
un-synchronized spacecraft clocks, and that no prior synchronization to a
common timescale is required. In this scheme, the clock synchronization is
applied as part of the time shifts which are an integral part of constructing
any TDI combination. Such time-shifts can be recovered to sufficient accuracy
by combining the dedicated pseudo random noise (PRN) and clock-sideband
measurements, even when the PRN measurement carries significant ranging
measurement noise. We argue that this result is basically valid regardless of
if the raw measurements are given as total phase or frequency.

However, working with frequency instead of phase requires a slight adjust-
ment to the TDI algorithm, as Doppler shifts of the laser beams during
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propagation need to be taken into account. We show analytically that this
adjustment can be naturally included in the formulation of TDI, and perform
simulations to verify that we achieve the same noise suppression one would
expect without considering Doppler shifts in the simulated data.

In addition, TDI variables can be constructed using just frequency fluctuations,
which can be recovered from the total frequency by subtracting a simple
polynomial fit. This has the advantage of significantly reducing the dynamic
range of the variables, which eases the impact of numerical artifacts during
processing such as TDI. A downside is that clock noise can no longer be
compensated by the time-shifts applied in TDI, and instead needs to be
subtracted in an extra processing step. While such clock noise correction
algorithms where already known, we contributed to their generalization from
so-called first generation TDI variables to second generation TDI, and showed
for the first time simulations which demonstrate this clock noise suppression.
In addition, we derived a generalized formulation of such a clock correction
algorithm, which can be applied to any second generation TDI variable.

We also modeled the residual clock noise levels achievable after the correction,
as well as how additional noise in the sideband measurements used for
clock correction couple into the final TDI variable. These results are directly
applicable to the ongoing effort in the LISA consortium to develop a detailed
performance model for the mission, which relies on these kinds of analytical
and numerical studies to verify that the scientific objectives can be achieved
in the presence of realistic instrument noise.

Besides modeling the residual clock noise, we also derived several new
models for different effects limiting the achievable laser noise suppression.
This includes the effect of interpolation errors, as well as updated versions of
the previously known residual laser noise levels due to the so-called flexing
filtering coupling and systematic ranging biases, which we now compute
taking the laser locking conditions into account. The laser locking breaks
the usual triangular symmetry, such that the three Michelson variables X,
Y and Z can contain different levels of residual laser noise. In addition,
we briefly discuss why the laser locking does not significantly impact any
non-suppressed effects, such as secondary noises or the gravitational wave
signal, and again verify these arguments with numerical simulations.

Finally, we explored the space of possible second generation TDI combinations,
following the approach of geometric TDI known from the literature. During
this work, we identified additional variables of 14 links which were previously
missed. The full space of second generation TDI combinations is large, but
can be reduced by removing duplicates which are related to each other by an
internal symmetry. This leads to a set of 34 core combinations up to a length
of 16 links.

We show analytically that this set of core-combinations can be further related
to the set of four generators of first generation TDI, and show simulation
results that this relationship can be – at least approximatively – extended to the
second generation variables. For this, we identify that multiple variables can
act as second-generation variants of the fully symmetric Sagnac combination
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ζ, all of which suppress laser noise to a significantly lower level then the
previously known second generation versions of ζ.

Future work could concern the INREP processing steps which we neglected
in this thesis. Although we showed that laser noise can be reduced below
the requirements without synchronizing all measurements to TCB, such a
synchronization still has to be performed on the final variables to allow the
observations to be coordinated with electromagnetic and earth-based GW
observatories. To achieve this, the very precise on-board measurements could
be combined with ground-based observation of the spacecraft positions in
a Kalman-like optimal filter to recover independent estimates of the offsets
between the three spacecraft clocks and TCB. Assuming this procedure works
with sufficient precision, this would also allow to bring all measurements
to TCB before constructing the TDI variable – it would be very interesting
to compare the performance of these different approaches to combine clock
synchronization with TDI.

Furthermore, we completely ignored a major noise source which might
require on-ground calibration, tilt-to-length (TTL) coupling. It describes any
coupling of angular tilts into a longitudinal pathlength change. To simulate
TTL couplings, our simulation needs to be enhanced to include variables
representing those angular tilts, such that we can compute the additional
pathlength changes. In addition, we can only correct for TTL couplings if
both the beam angles and the coupling coefficients for how these angles
cause a pathlength error are known. The angles can be determined using
the DWS measurments, which we should add as an additional simulation
outputs. The coupling coefficients then need to be determined in a calibration
procedure, the details of which are currently under development in the LISA
consortium.

And finally, most of the results presented in this thesis are based solely
on analytical studies and numerical experiments. While the simulations
are useful to rule out errors in the analytical models presented in part iii,
any error in the model underlying the simulation will not be caught. It
is therefore imperative to cross-check the results presented here with real
experiments, such as the Hexagon experiment being developed at the AEI,
wherever possible. While the full LISA measurement chain, including large
optical delays, can probably not be reproduced on ground, such experiments
can still verify our models for, e.g., the coupling of clock noise, and its
suppression.





Part IV

A P P E N D I X





A
C O N V E N T I O N S

a.1 index conventions

We will need to distinguish many different elements onboard or conceptually
attached to the three LISA spacecraft. These include hardware components,
such as the spacecraft themselves, MOSAs, and optical benches, but also
physical quantities such as the noise time series of a laser, or the delay of a
laser beam propagating between the spacecraft.

Our notation will be guided by the following principles, which are largely
based on the proposed unified conventions of the LISA consortium [21]:

• Each of the spacecraft is identified by one index out of the set {1, 2, 3}.

• Each element which exists only once onboard a spacecraft, such as the
unique USO, is indexed by that spacecrafts index.

• Each element uniquely associated to one of the two MOSAs, such as
the optical benches, test-masses, etc., will be indexed by two indices.
The first one is that of the spacecraft the MOSA is mounted, while the
second index is that of the spacecraft the MOSA is pointing to.

• Quantities which describe a process that involves the propagation be-
tween two of the spacecraft will be interpreted as being associated to
the spacecraft in which the quantity is measured, or in whose frame
it is naturally expressed. For example, the gravitational wave signal
observed in the interferometer on MOSA 12 will be indexed with the
same indices 12. The same convention applies to the delay of a beam
arriving on spacecraft 1 from spacecraft 2, which will be labelled by the
indices 12.

This is summarized in fig. A.1.

Note that this notation uniquely identifies each element using just the space-
craft indices. LISA is an almost equilateral triangle, with most components of
interest in this thesis being present twice on each spacecraft, attached to the
MOSAs pointing to each of the other two spacecraft. As such, most of these
components have 6 versions, which need to be uniquely identified.

This 6-fold symmetry is very closely related to the symmetry group of an
equilateral triangle, which indeed has six elements. The vertices of the triangle,
which represent spacecraft indices in our case, can be subject to either of these
transformations:

• The identity I ,
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Figure A.1: Labelling
conventions used for
spacecraft, light travel
times, lasers, MOSAs,
and interferometric
measurements. From
[23].

SC 1SC 2

SC 3

MOSA 31

MOSA 13

MOSA 12MOSA 21

MOSA 23

MOSA 32

D 
32

  ⃗

D 12  ⃗

⃖ 
D 

23

D 13  ⃗

⃖ D 31

⃖ D 21

• two circular permutations, C1 = {1→ 2, 2→ 3, 3→ 1} and C2 = {1→
3, 3→ 2, 2→ 1},

• or a reflection along the axis seperating two of the spacecraft, exchanging
two of the indices and leaving the third one unchanged; so either
M1 = {2↔ 3},M2 = {1↔ 3}, orM3 = {1↔ 2}.

Note that any of these symmetries can be written as multiple applications of
one of the circular permutations and up to one mirror symmetry. In detail,
we have

I = C3
1 , C2 = C2

1 , M2 =M1C1, M3 =M1C2
1 . (A.1)

By choosing a notation which uniquely identifies each element using just the
spacecraft indices, we can write most equations in this thesis for just one of
the six cases, and then apply these rules for exchanging the indices to directly
get the 5 other versions of these equations.

a.2 mapping between conventions

Traditionally, many different notations have been used to describe the LISA
instrument and in particular TDI. Table A.1 gives the mapping between the
double-index conventions used in the article, and a previously very popular
alternative using primed indices, used in, e.g., [24, 20, 64, 66]. We give the
correspondence for optical bench and associated subsystems and quantities,
and that for light TTs and their derivatives.
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Table A.1: Conversion
between index conven-
tion in this thesis and
those used in [64].

Double-index
Primed indices

for optical benches

Primed indices

for light TTs

12 (e.g., νisc
12 or d12) 1 (e.g., νisc

1 ) 3 (e.g., d3)

23 (e.g., νisc
23 or d23) 2 (e.g., νisc

2 ) 1 (e.g., d1)

31 (e.g., νisc
31 or d31) 3 (e.g., νisc

3 ) 2 (e.g., d2)

13 (e.g., νisc
13 or d13) 1′ (e.g., νisc

1′ ) 2′ (e.g., d2′)

32 (e.g., νisc
32 or d32) 3′ (e.g., νisc

3′ ) 1′ (e.g., d1′)

21 (e.g., νisc
21 or d21) 2′ (e.g., νisc

2′ ) 3′ (e.g., d3′)

a.3 time coordinate and reference systems

The following time coordinate are used in this document. They are largely
based on [21].

• The Barycentric Coordinate Time (TCB), denoted t,

• the spacecraft proper time (TPS) of each of the three spacecraft, denoted
τ1, τ2, and τ3,

• the on-board clock time (THE) of each of the three spacecraft, containing
instrumental clock noise, denoted τ̂1, τ̂2, and τ̂3.

Signals are, whenever possible, expressed in their proper or natural time coor-
dinate. E.g., local laser beam phases are expressed in the TPS of the spacecraft
housing the laser, and inter-spacecraft PPRs computed in the Barycentric
Celestial Reference System (BCRS) are expressed in TCB coordinate.

It is sometimes useful to express a signal in a different time coordinate.
Mathematically, this is equivalent to defining a new function of time. To
prevent confusion while highlighting that the function describes the same
physical quantity, we will use the same symbol but add a superscript denoting
the time coordinate. For example, a phase φ could be expressed as function of
the TCB, writing φt(x), or it could be expressed as function of the spacecraft
proper time of spacecraft i, writing φτi(x), or as function of the clock time of
that spacecraft, writing φτ̂i(x). Note that the symbol used for the function
argument is arbitrary, and does not specify the reference frame. We will often
use τ without subscripts as a generic function argument for functions of TPS
or THE.

Conversions between time coordinates can easily be expressed with these
conventions. One can simply give the time expressed in one time coordinate
as a function of the time expressed in a different coordinate. For example,
τt

i (x) is the TPS as a function of the TCB time. Trivially,

tt(x) = ττi
i (x) = τ̂τ̂i

i (x) = x . (A.2)

It is often useful to model the deviation of one time scale with respect to
another one. For any two time scales A, B, we adopt the notation

AB(x) = x + δAB(x) , (A.3)
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such that, for example in

τt
i (x) = x + δτt

i (x) , (A.4)

δτt
i (x) is the offset of the spacecraft proper time of spacecraft i with respect

to TCB.

One important class of signals we study are phases φ of electromagnetic waves.
As scalar quantities, these are invariant under coordinate transformations,
such that they transform from one time frame to another using a simple time
shift:

φτi(τ) = φt(tτi(τ)) = φτ̂i(τ̂τi
i (τ)) . (A.5)

This is not correct for frequencies. Since the frequency is defined as the
time derivative of the phase, is inherently depends on the time scale of an
observer.

In order to reduce the number of symbols for equations expressed in frequency,
we will adopt the ’dot’ notation for the derivative. As such, the time derivative
of any function f τ will be written as

ḟ τ =
d f τ

dτ
. (A.6)

Note that this derivative is always with respect to the function’s natural
reference frame. In some cases, for example for nested functions where the
chain rule should be applied, we will continue to use the d/dτ notation.

a.4 time shift operators

One important set of mathematical operators used in this thesis are time shift
operators. They act on a time dependent function by evaluating it at another
time. The most important application in this thesis is to model the propagation
of signals between the different spacecraft, either in the simulation or when
applying TDI.

We thus define the following notations related to time-shift operators and TDI
combinations:

• Dijx(τ) = x(τ − dij(τ)): Delay operator.

At time of reception τ of a beam from spacecraft i, gives x evaluated at
time of emission at spacecraft j, which we write as τ− dij(τ). Depending
on in what frame x(τ) is given, the computation of dij can include a
change in reference frames, and clock offsets. Example: for data given
in the TCB, dij is the relativistic light travel time computed in the TCB.
For data given according to the on-board clocks, dij has to compensate
for reference frame conversions and clock imperfections. In cases where
there is chance of confusion, we include a superscript indicating which
reference frame is being used. For example, dijt is the light travel time in
the TCB, dτ

ij is the PPR used in chapter 5, and dτ̂
ij is the MPR, including

clock offsets of τ̂i and τ̂j wrt. τi and τj.
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• Dijx(τ) = x(τ + aij(τ)): Advancement operator.

At time of emission τ of a beam from spacecraft i, gives x evaluated
at time of reception at spacecraft j, τ + aij(τ). Fulfills DijDjix(t) =

DjiDijx(t) = x(t).

• Ḋijx(τ) = (1− ḋij)x(τ − dij(τ)): Doppler delay.

To be used with variables expressed as frequencies.

• Ḋijx(τ) = (1 + ȧij)x(τ + aij(τ)): Doppler advancements.

To be used with variables expressed as frequencies.

• D12;21;13;31 = D12D21D13D31: Nested delay/advancement operator.

Any single adjacent delays or advancements can be concatenated to a
list of delays/advancements, seperated by ;.

• D121;131 = D12;21;13;31: Photon path delay operator.

Decomposes into nested delay for photon paths indicated by indices.
Whenever there is a change in direction of the photon path, a new path
must be attached, seperated by ;.

– Physical interpretation of Dijkl : Given a time of reception at i, what
was the time of emission at l, for a beam that traveled from l to k
to j to i?

– Physical interpretation of Dijkl : Given a time of emission at i, what
will be the time of reception at l, for a beam that travels from i to j
to k to l?

– Physical interpretation of Dijkl;lmno: Given a time of emission at i,
what will be the time of reception at l for a beam traveling from i
to j to k to l? Given that time as time of reception at l, what is time
of emission at o for a beam that traveled from o to n to m to l?

Useful as short hand notation. Example: Laser noise residual in 1st
generation Michelson can be written

(D12131;12131 − 1)p1 = (D12;21;13;31;12;21;13;31 − 1)p1 (A.7)

with advancements, or

(D12131 −D13121)p1 = (D12;21;13;31 −D13;31;12;21)p1 (A.8)

without. Note that the order of delays in the expression without ad-
vancement gets reversed.
This translates to the notation used in [92] for photon paths in the
following way:

(D12131;12131 − 1)p1 ≡
−−−→
3′322′

←−−−
33′2′2 , (A.9)

so indices with a bar are traversed forward in time (with the beam
direction), and un-bared indices are traversed backwards in time (against
the beam direction).
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The fundamental one-link delays Dij and advancements Dij, as well as
the nested variant, are fully compatible with this notation; they just start
each individual link as new photon path which is added to the overall
loop.

• Dijx(t) = x(t− d̃ij(t)): offline delay.

Delays applied in offline/on-ground processing. Like propagation delay,
but using a measured/processed estimate of dij instead of the real value.
All notations defined for Dij carry over to Dij, and can be combined in
any way; For example, we could use something like Ḋ12131;123;3231.

• DAx(t) = x(t− dA(t)): single index delay.

We sometimes need to study the general properties of single delay
operators, which are not related to specific spacecraft. In this case, the
two indices hurt readability, which is why we use a single index notation
in parallel. To avoid confusion, single index delays DA will be labelled
with upper case latin letters, starting at A, B, . . . , or using another lower
identifying index, like A1, A2, . . . . These are never replaced with single
spacecraft indices, and are not uniquely related to any specific delay,
but can be evaluated as spacecraft index pairs. For example, if we
derive a condition for the commutator of two delays, DADB −DBDA,
we could evaluate it replacing A, B with any spacecraft index pair, like
D12;23 −D23;12.

• DA1 A2...An ≡ DA1 DA2 . . . DAn : Nested single index delay.



B
I N T E R P O L AT I O N W I T H L A G R A N G E P O LY N O M I A L S

Most of our analytical formulations are expressed in continous time, such
that we can evaluate all functions at arbitrary times. However, as described
in chapter 7, the real data available on ground will be a digital time series
sampled at a fixed sampling rate. Time shifting by non-integer time intervals
requires interpolation between the samples. This has been first proposed for
TDI in LISA in [76], and different interpolation methods have been analyzed
in detail in [41].

Both the TDI implementations in LISANode and PyTDI implement fractional
delay filters using a Lagrange interpolation scheme as described in [41].

Each interpolation comes with the potential of interpolation errors, which is
why it is advisable to avoid multiple interpolations of the same time series.
Therefore, nested delays are usually implemented by first computing the
overall delay to be applied to the ηij variables, which is then only interpolated
once.

Note that the computation of the delay itself is much less sensitive to interpo-
lation errors, since the delays are very smooth functions which are in addition
filtered to remove any high-frequency content, cf. section 13.5. Therefore,
it is sufficient to use a low interpolation order when computing the overall
delay.

This is in stark contrast to the main variables ηij, which require high in-
terpolation orders to achieve sufficient laser noise suppression1, see sec-
tion 12.3.2.2.

b.1 lagrange interpolation coefficients

Offline delays are implemented using fractional delay filters. They consist
of an integer delay D0

ij delaying the time series to the nearest sample, fol-

lowed by a Meaning that the
fractional part of the
delay uses samples
both in the past and
future of the point of
interest. Assuming that
the integer delay is
sufficiently large, the
overall fractional delay
filter is causal, i.e., it
requires only samples
in the past.

non-casual FIR filter Dε
ij whose filter coefficients are computed

by constructing a Lagrange interpolating polynomial around the point of
interest. Consequently, we decompose the overall delay dij to be applied into
an integer part and a fractional part,

dij = d0
ij + dε

ij , (B.1)

with d0
ij = N/ fs, fs as the sampling rate, and N an integer.

1 In LISANode, the default values for the interpolation orders of the η variables and the travel
times are 31 and 3, respectively, while in PyTDI, they are set to 31 and 5.
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In all generality, we can write

Dij = Dε
ijD0

ij , (B.2)

where the integer delay D0
ij acts on a time series x[n] as

Dijx[n] = x[n− N] , (B.3)

while the fractional delay Dε
ij acts as a non-causal FIR filter,

Dε
ijx[n] =

p

∑
k=−p+1

cε
kx[n + k] , (B.4)

with p = order+1
2 as the half-point count.

b.1.1 Lagrange coefficients in LISANode

In LISANode, following [20], the integer number of samples N and the frac-
tional number of samples ε are computed as

N = ceil
(
dij fs

)
− 1 , (B.5)

ε = 1 + N − dij fs . (B.6)

With these definitions, we have

d0
ij =

N
fs

, dε
ij =

1− ε

f s
. (B.7)

By defining the following ε dependent variables,

A =
1
p

p−1

∏
i=1

(
1 +

ε

i

)(
1 +

1− ε

i

)
, (B.8)

B = 1− ε , (B.9)

C = ε , (B.10)

D = ε(1− ε) , (B.11)

E[j] = (−1)j (p− 1)!
(p− 1− j)!

p!
(p + j)!

, (B.12)

F[j] = j + ε , (B.13)

G[j] = j + (1− ε) , (B.14)

the filter coefficients can be computed as

cε
0 = AC , (B.15)

cε
1 = AB , (B.16)

cε
j = AD

E[j]
F[j]

∀j > 1 , (B.17)

cε
j = AD

E[j]
G[j]

∀j < 0 . (B.18)
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b.1.2 Lagrange coefficients in PyTDI

PyTDI uses a slightly different formulation for the variable fractional delay
filter. Note that this formulation yields equivalent results to the one in
LISANode.

In particular, the integer number of samples N and the fractional number of
samples ε are now defined as

N = floor
(
dij fs

)
, (B.19)

ε = dij fs − N . (B.20)

With these definitions, we have

d0
ij =

N
fs

, dε
ij =

ε

fs
. (B.21)

Confer to the in-code documentation for the definitions of the coefficients in
this case. The actual resultant coefficients cε

k are identical in both implementa-
tions, down to the numerical limit.

b.2 interpolation errors

We want to study the error we make when interpolating a time series when
compared to a perfect delay2. It is useful to do this analysis in the frequency
domain. For this, we need to compute the Fourier transform of

∆ij = (Dij −Dij) . (B.22)

We have

F
[
D0

ijx(t)
]
(ω) = e−iωd0

ijF [x] (ω) (B.23)

for the integer delay,

F
[
Dε

ijx(t)
]
(ω) =

p

∑
k=−p+1

cε
keiωk/ fsF [x] (ω) (B.24)

for the fractional delay and

F
[
Dε

ijx(t)
]
(ω) = e−iω(d0

ij+dε
ij)F [x] (ω) (B.25)

for the perfect delay. Overall, this gives

F
[
∆ijx(t)

]
= e−iωd0

ij

[(
p

∑
k=−p+1

cε
keiωk/ fs

)
− e−iωdε

ij

]
F [x] (ω) (B.26)

2 We thank M. Lilley for useful discussions regarding this topic, and for cross-checking most of
the results presented in this section!
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for the difference between the offline and perfect delay. For the purpose
of estimating the PSD, we are interested in the squared magnitude of this
quantity, which is given as

∣∣F [∆ijx(t)
]∣∣2 =

∣∣∣∣∣
(

p

∑
k=−p+1

cε
keiωk/ fs

)
− eiωdε

ij

∣∣∣∣∣
2

|F [x] (ω)|2 . (B.27)

The integer part of the delay cancels, and we are left with an expression
depending only onAs mentioned above,

depending on how the
coefficients are

computed, we either
have dε

ij = (1− ε)/ fs

or dε
ij = ε/ fs.

the fractional delay ε. This expression can be computed
numerically for estimating a PSD.

Alternatively, we can compute it analytically. In general, we have |x− y|2 =

|x|2 + |y|2 − xy∗ − x∗y for any two complex numbers x, y. In our case, we get

∣∣∣∣∣
(

p

∑
k=−p+1

cε
keiωk/ fs

)
− eiωdε

ij

∣∣∣∣∣
2

=

∣∣∣∣∣ p

∑
k=−p+1

cε
keiωk/ fs

∣∣∣∣∣
2

+
∣∣∣eiωdε

ij

∣∣∣2
−

p

∑
k=−p+1

cε
k

(
eiω(k/ fs−dε

ij) + e−iω(k/ fs−dε
ij)
)

=

∣∣∣∣∣ p

∑
k=−p+1

cε
keiωk/ fs

∣∣∣∣∣
2

+ 1

− 2
p

∑
k=−p+1

cε
k cos

(
ω(k/ fs − dε

ij)
)

.

(B.28)

The first term contains mixed terms for the different coefficients. We can write

∣∣∣∣∣ p

∑
k=−p+1

cε
keiωk/ fs

∣∣∣∣∣
2

=

(
p

∑
k=−p+1

cε
keiωk/ fs

)(
p

∑
l=−p+1

cε
l e−iωl/ fs

)

=
p

∑
k=−p+1

p

∑
l=−p+1

cε
kcε

l eiω(k−l)/ fs .

(B.29)

It is useful to split up the double sum into three components, k = l, k < l and
l < k. This gives us

∣∣∣∣∣ p

∑
k=−p+1

cε
keiωk/ fs

∣∣∣∣∣
2

=
p

∑
k=−p+1

cε
k

2 +
p

∑
k=−p+1

p

∑
l=k+1

cε
kcε

l eiω(k−l)/ fs

+
p

∑
l=−p+1

p

∑
k=l+1

cε
kcε

l eiω(k−l)/ fs

(B.30)
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We can then rename the indices k ↔ l in the third sum to combine the last
two terms, so we have in total∣∣∣∣∣ p

∑
k=−p+1

cε
keiωk/ fs

∣∣∣∣∣
2

=
p

∑
k=−p+1

cε
k

2 +
p

∑
k=−p+1

p

∑
l=k+1

cε
kcε

l (e
iω(k−l)/ fs + e−iω(k−l)/ fs)

=
p

∑
k=−p+1

cε
k

2 + 2
p

∑
k=−p+1

p

∑
l=k+1

cε
kcε

l cos(ω(k− l)/ fs) .

(B.31)

This means finally, we get∣∣∣∣∣
(

p

∑
k=−p+1

cε
keiωk/ fs

)
− eiωdε

ij

∣∣∣∣∣
2

= 1 +
p

∑
k=−p+1

cε
k

2

− 2
p

∑
k=−p+1

cε
k cos

(
ω(k/ fs − dε

ij)
)

+ 2
p

∑
k=−p+1

p

∑
l=k+1

cε
kcε

l cos(ω(k− l)/ fs) .

(B.32)

However, it turns out that this expression is less useful in practice than
eq. (B.27). The reason is that at low frequencies, the interpolation errors
cancel down to the numerical limit. In eq. (B.27), this cancellation happens in
amplitude, and we square the expression afterwards; small numerical errors
thus get strongly suppressed in the final PSD. In eq. (B.32), however, the
cancellation happens in power, such that numerical errors in the computation
show up with their full magnitude in the PSD.

This effect is clearly visible in fig. B.1, where the noise floor of the PSD
expression is twice as high as that of the square of the complex expression (on
a logarithmic axis), which is itself in agreement with the expected numerical
limit.

As can be seen in fig. B.1, the interpolation errors are mostly relevant at high
frequencies close to the Nyquist rate, and highly depend on the interpolation
order and the fractional delay. Indeed, in the limit ε = 0, the Lagrange
interpolation collapses to a simple integer delay, which of course does not
introduce any errors.

We present in section 12.3.2.2 how these interpolation errors couple into the
final output of our TDI variables.

b.3 nested delays

A naive approach to compute a nested delay DA1...An x(t) would be to sim-
ply interpolate the time series x(t) n times, once for each delay. However,
as mentioned above, this has the potential of introducing large numerical
errors.
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Figure B.1: Interpola-
tion error magnitude
at different fractional
delays ε, expressed
as fraction of an in-
teger delay. Colored
curves are computed
numerically from
eq. (B.27), while grey
dotted curves use an-
alytical model given
in eq. (B.32). The latter
has a higher numerical
noise floor. We plot
the square-root of both
expressions.
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To circumvent this problem, we first compute the overall delay to be applied
to a time series, and then only interpolate it once. Note that this approach is
also more in-line with our interpretation of TDI combinations in chapter 10,
where each ηij is evaluated at the time associated to one specific spacetime
event, and the nested delay is simply computing that time with respect to the
current timestamp.

In detail, a nested delay applied to an arbitrary function can be written as

DA1...An x(t) = x(t− d1(t)−DA1 d2(t)− · · · − DA1...An−1 dn(t)︸ ︷︷ ︸
dtotal

) , (B.33)

with each individual delay acting as DAi x(t) = x(t− di).

Following [20], the total delay dtotal can thus be computed iteratively:

dtotal =
n

∑
k=1

zk , (B.34)

with

z1 = d1(t) (B.35)

zi = di

(
t−

i−1

∑
k=1

zk

)
. (B.36)

The delays applied in the computation of the zi themselves are also imple-
mented using Lagrange interpolation. However, since these are typically very
smooth functions with no high-frequency content, a low interpolation order
is sufficient here.
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b.4 computation of forward time shifts

As stated in section 6.3, the quantity we directly measure with the dedicated
ranging measurement in LISA is What we measure is

actually a pseudo
range, containing clock
offsets in addition to
the physical light travel
time. Assuming
ranging noise is
sufficiently suppressed,
these can be directly
used as input to TDI,
see chapter 13.

the delay Dij. However, in order to apply
the more general multi-beam TDI algorithm given in section 11.1.1, we need
to compute advancements Dij out of the delays.

The starting point for this is eq. (11.2), which evaluated at a given coordinate
time reads

DjiDijx(t) = Djix(t− dij(t)) = x(t + aij(t)− dij(t + aij(t))) ≡ x(t) . (B.37)

This immediately gives an implicit equation for the time series of advance-
ments aij:

aij(t) = dij(t + aij(t)) . (B.38)

We can solve this equation iteratively by computing

a0
ij(t) = dij(t) ,

an+1
ij (t) = dij(t + an

ij(t)) ,
(B.39)

This procedure has been implemented in LISANode3 and PyTDI4. In PyTDI, the
iteration is stopped once the residual error an

ij− an+1
ij is less then 1 ps, whereas

the implementation in LISANode always stops after 4 cycles.

3 Together with M. Muratore and J.-B. Bayle
4 Implemented by M. Staab. and J.-B. Bayle.
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D I F F E R E N T M O D E L S F O R F R E Q U E N C Y S TA B I L I T Y

c.1 introduction

The content of this chapter is based on an internal technical note for the geoQ
Sonderforschungsbereich, see [42].

The main observable in LISA is the interferometric signal detected in the
different channels onboard each spacecraft. There are different options for
how to represent these signals, which have different trade-offs in terms of
processing complexity and information content. In this appendix, we review
the mathematical framework used in this thesis to describe periodic signals.
In particular, we utilize it to describe the beatnotes measured in the various
interferometers of LISA (c.f. section 5.4), at frequencies between 5 MHz and
25 MHz. In addition, electromagnetic fields produce by the lasers are also
described using the same framework (c.f. section 5.2.1), at much higher
frequencies of around 282 THz.

We will also review the different quantities used to describe frequency stability
both in the time- and frequency domain.

c.1.1 Literature

As this is supposed to be a technical overview, most of the information
in this document can also be found in other documents or textbooks with
similar topics. Therefore, most of the basic definitions are given without
reference.

Particularly relevant references are [29] for the theoretical background in
section C.2 as well as [49] for practical considerations. [70] and [2] are good
references for time domain stability analysis of oscillators, here discussed in
section C.3. They also contain some information on the topic discussed in
section C.4, the conversion between time and frequency domain measures of
oscillator stability.

c.1.2 Periodic signals

We consider periodic signals V(τ) which can be represented by

V(t) = A cos(Φ(t)) = A cos(2πν0t + φ(t)) , (C.1)
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with A as the possibly time varying amplitude, here assumed constant. Φ(t)
is the total phase in radian1, ν0 as the constant nominal frequency of the
signal in Hertz, and φ(t) as the phase deviations, also in radian. Since the
cosine is periodic, the total phase and the phase deviations are only defined
up to arbitrary integer multiple of 2π.

Alternatively to the total phase Φ(t), one can also use the instantaneous
frequency,

ν(t) =
1

2π
Φ̇(t) = ν0 +

1
2π

φ̇(t) , (C.2)

to get

V(t) = A cos
(

2π
∫ t

0
ν(t′)dt′

)
= A cos(2πν0t + φ(t)) . (C.3)

If the signal frequency is fairly stable, it is sometimes easier to describe it using
the timing jitter x(t) in seconds or the dimensionless fractional frequency
deviations y(t),

x(t) =
φ(t)
2πν0

and y(t) =
ν(t)− ν0

ν0
=

φ̇(t)
2πν0

= ẋ(t) , (C.4)

so that we have

ν(t) = ν0(1 + y(t)) and Φ(t) = 2πν0(t + x(t)) . (C.5)

Because phase deviations φ(t) are only defined up to an integer multiple of
2π, the timing jitter x(t) is itself defined up to a multiple of 1/2πν0. To define
the latter unambiguously, we often choose φ(t) such that for some point in
time t0, φ(t0) ∈ [0, 2π[. For example, t0 could be the time at which we start
tracking the phase of an interferometric beatnote.

c.1.3 Relationship to displacement, velocity and acceleration

Since most of our simulation model concerns the propagation of EM waves,
which propagate at the speed of light c, a timing jitter x(t) can easily be
related to a path length change l in meters. Consequently, fractional frequency
variations y(t) are related to velocities v, and the derivative of y(t) to the
acceleration a, respectively:

l(t) = c · x(t) (C.6a)

v(t) = c · y(t) (C.6b)

a(t) = c · ẏ(t) (C.6c)

As derivatives of one another, positions, velocities and acceleration are closely
related. However, it is important to point out that the integration constant (the

1 Note that we choose to use cycles instead of radian for most of this thesis, to have a simple
relationship between phase and frequency. The conversion is simply given by Φ[rad] =
2πΦ[cycles]. We use radian in this appendix to reflect the standard notation used in the
literature.
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Figure C.1: Example
for expressing the
same signal in total
phase, frequency or
chirpyness, or in the
respective fluctuations.
For illustrative pur-
poses, we assumed
a signal with a con-
stant offsets plus some
white noise in chirpy-
ness. The white noise
( f 0 in terms of PSD)
becomes a random
walk ( f−2) in fre-
quency and finally
a random run ( f−4) in
phase.

total phase for Φ(t) or the total frequency for ν(t)) is lost when performing
derivatives. As such, the total phase Φ(t) in principle contains more informa-
tion than the instantaneous frequency. In many situations, however, the total
phase is only physically meaningful up to a constant, such that phase and
frequency are often seen as equivalent in the context of interferometry.

The acceleration still contains less information than either of them, so it
is unsuitable in situations where the absolute frequency of the signal is
important. Due to this, ν̇(t) is not widely used to describe periodic functions.
However, since acceleration is widely used to describe the test mass behaviour
in LISA Pathfinder and LISA, it is worthwhile to mention the relationship in
this section.

Since a signal of time varying frequency is often called a chirp, ν̇(t) is called
the chirpyness.

c.1.4 Deterministic behaviour

Many oscillators display deterministic deviations from their nominal fre-
quency, such as a linear frequency drift or a constant frequency offset.

Such deterministic effects can heavily skew the results of the methods for
estimating frequency stability described below, masking actual random fluctu-
ations. It is therefore common practice to subtract deterministic trends before
performing a stability analysis.

Notice that equation eq. (C.2) implies that a frequency offset corresponds to a
linear ramp in the phase data whereas a frequency drift leads to quadratic
behaviour in the phase data.
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c.2 frequency stability in the frequency domain

c.2.1 The power spectral density

In the frequency domain, a stochastic process V is usually described by the
power spectral density (PSD), SV . It can be defined as the Fourier transform2

of the autocorrelation function R:

SI I
V ( f ) =

∫ ∞

−∞
R(t)e−i2π f tdt. (C.7)

The superscript I I indicates that this is a two-sided PSD, defined for both
positive and negative frequencies. Assuming the process under investigation
is wide-sense stationary and ergodic, the autocorrelation function is given by

R(τ) = lim
T→∞

1
T

∫ T/2

−T/2
V(t)V(t + τ)dt. (C.8)

Further details on the autocorrelation function can be found in appendix
C.8.

In most practical applications, the PSD needs to be estimated from a finite
time series using the periodogram3. Assume that we have recorded a real
signal V(t) over a time period T. The periodogram of that signal is than
defined as

PT( f ) =
1
T
∣∣ṼT( f )

∣∣2 , (C.9)

where ṼT is the Fourier transform of the truncated signal VT:

VT(t) =

V(t) for− T/2 < t < T/2

0 elsewhere
(C.10)

such that

ṼT( f ) =
∫ T/2

−T/2
V(t)e−i2π f tdt. (C.11)

One can than show [29] that the periodogram PT converges to the PSD for
T → ∞, i.e.,

SI I
V ( f ) = lim

T→∞

1
T
∣∣ṼT( f )

∣∣2 . (C.12)

However, the variance of this estimate does not necessarily converge to
zero, meaning that the estimate does not necessarily get better when one
uses a longer time series. Instead, increasing T leads to a finer frequency
resolution. The variance can be reduced by first splitting the time series

2 Assuming the Fourier transform of the autocorrelation function exists.
3 In contrast to the PSD, the periodogram can always be calculated for a finite time series,

regardless of whether the Fourier transform of the autocorrelation function exists.



C.2 frequency stability in the frequency domain 215

Figure C.2: PSD of
white noise plus a
sharp peak at 10mHz.
The PSD is estimated
from a finite time se-
ries by means of the
periodogram using
no, 10 or 100 averages.
Notice that averaging
decreases the vari-
ance as well as the
frequency resolution,
thereby widening the
peak and limiting the
lowest resolvable fre-
quencies.
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into shorter segments. One can then calculate the periodograms for these
shorter segments and then average the results; however, since the individual
segments are shorter, this reduces the frequency resolution. Thus, assuming
that the measurement time T is fixed, one has to consider a tradeoff between
the desired frequency resolution and the acceptable variance of the estimate.
This effect is demonstrated in figure C.2.

Truncating the signal as in equation eq. (C.10) might be the simplest way to
truncate a time series; however, it might not yield the most accurate result. In
general, it is advisable to apply a so-called window function to the truncated
time series before calculating the periodogram; this reduces an effect known
as spectral leakage, which spreads power from frequencies in one frequency
bin into adjacent frequency bins. Directly using eq. (C.10) is also called a
box-shaped window in this context, which is rarely optimal. An in-depth
discussion of the influence of different window functions as well as other
notes on practical considerations when calculating power spectral densities
can be found in [49].

c.2.2 Related quantities

Notice that equation eq. (C.9) returns an estimate for the two-sided power
spectral density, with positive and negative frequency values. Real valued
signals yield a PSD that is an even function of the frequency, SI I

V ( f ) = SI I
V (− f ),

which means that the information in the negative frequency part is redundant.
This is why experimentalists usually work with the one-sided power spectral
density,

SI
V( f ) = 2SI I

V ( f ), (C.13)

which is only defined for positive frequencies. The factor of 2 is used to
ensure that the one-sided power spectral density still relates to the same total
signal power. The rest of this document will always refer to the one sided
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PSD (except when explicitly stated otherwise), and the superscript ( )I will
be omitted.

The PSD of a real-valued signal with units of [signal] has units of [signal]2/Hz,
which intuitively translates to signal power4 in a unit bandwidth. Conse-
quently, the total power of the signal is given by the integral

P =
∫ ∞

0
SI

V( f )d f . (C.14)

This relation follows from Parseval’s theorem,∫ ∞

−∞
|V(t)|2 dt =

∫ ∞

−∞

∣∣Ṽ(2π f )
∣∣2 d f , (C.15)

where the left hand side gives the total energy of the signal. Dividing this
equation by the measurement time T yields the average signal power on
the left, whereas the right hand side yields the integral over the PSD, using
equation eq. (C.9).

If the PSD is estimated from a discrete time series recorded at a certain
sampling frequency fs, the Nyquist–Shannon sampling theorem states that
the highest resolvable signal frequency is fs/2 (Nyquist frequency). Signals
at a higher frequency are ’aliased’ into the frequency band [1/T, fs/2], such
that

P =
∫ fs/2

1/T
SI

V( f )d f (C.16)

is the total signal power5.

In the case of white noise SI
V is constant, so P = fs

2 SI
V ; since the power of the

signal is a physical quantity that should not depend on the sampling rate
of our measurement apparatus, the value of the PSD has to depend on the
sampling frequency (assuming that the noise bandwidth is larger than fs/2).
This problem can be circumvented by low-pass filtering the measured signal
before sampling it, discarding noise power at frequencies above fs

2 .

Instead of working with the PSD, it is sometimes more convenient to look at
the linear- or amplitude spectral density (ASD), in units [signal]/

√
Hz, which

is simply defined as

ASDV( f ) =
√

SV( f ). (C.17)

Other common notations to denote an ASD are

ASDV( f ) = S1/2
V ( f ) = Ṽ( f ), (C.18)

Here, Ṽ is not the Fourier transform of V.

4 Using a generalized notion of [power] = [signal]2, which does not have to correspond to a
physical power with units of Watts. In the case of an electrical signal in Volts, the power is
given by [power] = V2/R; so the formula holds for voltage through a resistor with R = 1Ω.

5 The lower bound of 1/T stems from the fact that f = 0 would correspond to an infinitely long
measurement.
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c.2.3 Measures of oscillator stability

Power spectral densities can be calculated for arbitrary observable quantities.
In our situation, all of the variables mentioned above (φ, x, ν, y) could be used
to describe the stability of an oscillator. We usually estimate the PSD using
a version of eq. (C.12), which contains the square of the Fourier transform.
Since derivatives become multiplications with 2π f in the frequency domain,
the PSDs of phase and frequency fluctuations can easily be converted into
one another6:

Sy( f ) = (2π f )2Sx( f ), Sφ( f ) = (2πν0)
2Sx( f ), Sν( f ) = ν2

0Sy( f ),

(C.19)

so in total we have

Sy( f ) = (2π f )2Sx( f ) =
f 2

ν2
0

Sφ( f ) =
1
ν2

0
Sν( f ). (C.20)

Another measure for stability that is usually provided for high Fourier fre-
quencies is the single sideband (SSB) phase noise, which is nowadays defined
as

L =
1
2

Sφ( f ). (C.21)

It is typically expressed in units dBc/Hz, utilizing

L [dBc/Hz] = 10 log10

(
1
2

Sφ[rad2/Hz] · 1Hz
)

(C.22)

or equivalently

L [rad2/Hz] = 10
L[dBc/Hz]

10 rad2/Hz. (C.23)

The unit dBc/Hz stands for ’dB below the carrier in a 1Hz bandwidth’. It
was historically computed from the power spectrum of the signal V(t), by
comparing the power in a 1Hz bandwidth at a given offset f from the carrier
with the total signal power. One disadvantage of this procedure is that both
amplitude and phase noise influence the signal’s power spectrum, which is
one of the reasons that eq. (C.21) was adopted as the modern definition.

Note that phase noise (Sφ and L) is defined with respect to a carrier frequency.
Its numerical value can be made arbitrarily small by using frequency dividers7

to produce a lower frequency signal; however, this does not make the oscillator
more stable. Therefore, the reference frequency has to be stated in addition to
the phase noise itself in order to get a physically meaningful quantity. The
same is true for absolute frequency fluctuations Sν.

It is thus advisable to use Sy or Sx for comparing the performance of different
oscillators.

6 Notice that y and ν also differ by a constant offset. This would only affect the PSD for a Fourier
frequency of 0Hz, which is usually omitted, c.f. [49]

7 Frequency dividers convert a signal to a lower frequency, conserving the timing jitter of the
original signal. This is in contrast to mixers and interferometers, which conserve phase errors
instead.
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c.2.4 Colors of noise

Many noise processes have PSDs that follow a power law of the kind

S( f ) ∼ f α, (C.24)

where α is an integer. This behaviour can also be restricted to a limited
bandwidth, or a mixture of different power laws might be present, such that

S( f ) = ∑
α

hα f α, hα ∈ R (C.25)

Some power laws must be band limited, since the total power should be a
finite quantity; depending on the value of α, the integral eq. (C.16) might
not converge if the lower and upper bounds f− and f+ approach 0 or +∞,
respectively. Noise of these types therefore has to be band limited to some
frequency range. In practice, however, the upper and lower frequency limits
that can be measured are given by the achievable sampling rate and the
available measurement time, which are both finite.

High values of α indicate that most of the signal’s power is located at high
frequencies whereas the opposite is true for low values of α. Due to this,
these power laws are often named by color, in analogy to the visible light
spectrum. There, light of different colors correspond to light at different
frequencies, such that light with a spectral composition dominated by low
or high frequencies appears red or blue, respectively. These names, however,
are not standardized across the literature and should only be used as rough
guidelines. Some of the most commonly encountered power laws are:

• α = −2: One speaks of red noise, random walk noise or brownian noise
(random particle movement). As the name suggests, this kind of noise
can be generated by integrating a series of uncorrelated random values,
i.e., following a path of random steps. The total power converges for
f+ → ∞, but not for f− → 0.

• α = −1: Known as pink noise, shot noise or flicker noise. It is char-
acterised by having an equal amount of noise power in each decade
on a logarithmic scale. The total power diverges for both f+ → ∞ and
f− → 0.

• α = 0: a flat spectral distribution, also called white noise. It has an
equal amount of noise power in equally spaced frequency intervals.
Corresponds to a series of uncorrelated random values. The total power
converges for f− → 0, but not for f+ → ∞.

• α = +1: Blue noise. One also speaks of flicker phase noise when
encountered in a spectrum of frequency measurements, in analogy to
the conversion between phase and frequency PSDs eq. (C.19). The total
power converges for f− → 0, but not for f+ → ∞.

• α = +2: Violet noise. Also called white phase noise when encountered
in a spectrum of frequency measurements, again in analogy to eq. (C.19).
The total power converges for f− → 0, but not for f+ → ∞.
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c.2.5 Integrating and differentiating noises

Take two time series g(t) and p(t) that fulfill g(t) = dp
dt . Due to properties

of the Fourier transform, the PSD of g can be derived from the PSD of p by
multiplying with (2π f )2, such that

Sg( f ) = (2π f )2Sp( f ). (C.26)

Conversely, one can also integrate noise with α = n to get noise with α = n+ 2.
These principles are often used to simulate noises with spectral densities of
the form f α±2n, by successively integrating or differentiating a given noise
with spectrum f α. Notice that you cannot use this method to generate noise
with uneven values for α (starting from white noise), though there are other
methods to generate noise with arbitrary noise shapes, see for example
[45].

c.3 frequency stability in the time domain

Another way to characterise noise is to look at statistical measures in the
time domain. For this section, we will assume that we have discrete a time
series yk for the fractional frequency deviations and xk for the timing errors,
respectively. We will further denote samples from a time series derived by
averaging over a time interval τ by ȳi, where τ must be a multiple of the basic
measurement interval τ0 = 1/ fs.

In this discrete case, the derivative in eq. (C.4) translates to a difference,
meaning

yi =
∆(xi)

τ0
=

xi+1 − xi

τ0
. (C.27)

Notice that N frequency samples correspond to N′ = N + 1 phase samples;
we need the initial phase x0 to reconstruct the phase data from the frequency
data:

xi+1 = τ0yi + xi = τ0

i

∑
k=0

yk + x0, i < N. (C.28)

c.3.1 Standard variance

The most common way of describing the statistical properties of a random
process Y is the standard variance. It is defined as

σ̃2
Y = E[(Y− E[Y])2] = E[Y2]− E[Y]2, (C.29)

where E[·] is the statistical expectation. Given N samples yk of the random
process, one can estimate the standard variance by computing the sample
variance, such that

σ̃2
y =

1
N − 1

N

∑
k=1

[yk − 〈y〉N ]2, 〈y〉N =
1
N

N

∑
k=1

yk (C.30)



220 different models for frequency stability

Unfortunately, this is not very useful in the presence of divergent noise
(Sy( f ) ∼ f α, α < 0), because the mean over all samples (and hence the value
of σ̃2

y ) will not converge when N → ∞. Since these kinds of noises are often
encountered when studying frequency stability, other types of variances were
defined to remedy this problem.

c.3.2 Allan variance

The Allan variance σ2
y is the most common way of quantifying frequency

stability in the time domain. Instead of estimating the average deviations from
the mean as is done by the standard variance, it is defined as the expectation
of the squared difference of adjacent samples after averaging the time series
over a certain time interval τ.

Introduce ȳi as the fractional frequency values averaged over the time τ = mτ0:

ȳi =
1
m

(i+1)m−1

∑
k=im

yk, (C.31)

which implicitly depend on τ. Then the Allan variance is defined as

σ̃2
y (τ = mτ0) =

1
2

E
[
(ȳi+1 − ȳi)

2] (C.32)

The factor one half is introduced such that the Allan variance coincides with
the standard variance for white noise.

The Allan variance has the advantage that it converges for most common
clock noises. In practice, the statistical expectation is estimated by the sample
mean, such that we have

σ2
y (τ) =

1
2(M− 1)

M−1

∑
i=1

[ȳi+1 − ȳi]
2, (C.33)

where M is the length of the series ȳi. If the original time series has N samples,
the averaged series has M = N/m samples, rounded towards the next lower
integer value.

Due to the fundamental relationship between phase and frequency eq. (C.27),
one can also calculate the Allan variance out of timing data xk:

σ2
y (τ) =

1
2(M′ − 2)τ2

M′−2

∑
i=1

[x(i+2)m − 2x(i+1)m + xim]
2, (C.34)
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where M′ = M + 1. Notice that the xk are not averaged in this case. This can
be seen by inspecting the difference of two adjacent samples of the averaged
series ȳi:

ȳi+1 − ȳi =
1
m

(
(i+2)m−1

∑
k=(i+1)m

yk −
(i+1)m−1

∑
k=im

yk

)
(C.35)

=
1
m

(
(i+1)m−1

∑
k=im

yk+m − yk

)
(C.36)

=
1

mτ0

(
(i+1)m−1

∑
k=im

∆(xk+m)− ∆(xk)

)
(C.37)

=
1
τ

(
x(i+2)m − 2x(i+1)m + xim

)
, (C.38)

using the general property of the difference ∆ that ∑i1
i=i0

∆(ai) = ai1+1 − ai0
for any ordered series ai.

For white noise, the Allan deviation satisfies σy(τ) = σ̃ȳ (i.e. the standard
deviation of the time series after averaging blocks of m samples is the same
as the Allan deviation for τ = mτ0).

c.3.2.1 Overlapping Allan variance

The original definition of the Allan variance in equation eq. (C.33) uses the
sample mean over M− 1 realisations of the squared differences of averaged
frequency data,

[ȳi+1 − ȳi]
2, (C.39)

to estimate the true statistical expectation of this difference.

Here, the averages are computed such that each sample is used only once, i.e.,
there is no overlap between adjacent averages. This means that not all possible
ways of computing the squared difference eq. (C.39) are utilised.

Instead, one can form every possible average over a time interval τ by allowing
the ranges of samples to overlap:

ȳ′i =
1
m

i+m−1

∑
k=i

yk. (C.40)

Using this notation, (ȳi+1 − ȳi)
2 translates to (ȳ′i+m − ȳ′i)

2. This now yields
N− 2m possible realisations of eq. (C.39), significantly increasing the statistical
certainty of the resulting Allan variance:

σ2
y (τ) =

1
2(N − 2m + 1)

N−2m+1

∑
j=1

[ȳ′i+m − ȳ′i]
2 (C.41)

=
1

2m2(N − 2m + 1)

N−2m+1

∑
j=1

(
j+m−1

∑
i=j

[yi+m − yi]

)2

. (C.42)
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Due to the double summation, directly applying this formula to large data
sets can lead to prohibitively long computation times. Luckily, computing the
overlapping Allan variance out of phase data is much more efficient:

σ2
y (τ) =

1
2(N′ − 2m)τ2

N′−2m

∑
i=1

[xi+2m − 2xi+m + xi]
2, (C.43)

so it is usually preferable to convert frequency data into phase data to use
the more efficient formula. N′ = N + 1 is the number of available phase
samples.

In general, using overlapping averages is the preferred way of estimating the
Allan variance.

c.3.2.2 Certainty of the estimated Allan variance

As mentioned above, the ’true’ Allan variance corresponding to the process
under investigation is estimated from a finite time series in all practical
applications. The certainty of this estimate is often assumed to be given by
±1σ error bars at ±σy(τ)/

√
M, where M is the number of non-overlapping

average frequency samples used to calculate σy(τ) for a given τ. Although
this is an easy way to equip a computed Allan variance with error bars, it is
usually not quite correct, because the certainty depends on the correlation
between the used samples, i.e., the underlying power law. It is also not
applicable to the overlapping Allan variance. If the power law is known,
the former can be corrected by multiplying the error bars with a factor kα

[70]:

α -2 -1 0 1 2

kα 0.75 0.77 0.87 0.99 0.99

This assumes a PSD of the form Sy( f ) ∼ f α. Instead of using this simple
formula, one can also determine error bars using χ2 statistics, cf. [2, 70] for
further information.

c.3.2.3 Deterministic effects

Since the Allan variance is calculated from differences of adjacent frequency
samples, it is invariant under frequency offsets, which are equivalent to linear
drifts in the phase data.

A linear frequency drift leads to quadratic behaviour in the Allan variance.
This can be seen by considering equation eq. (C.32): for a linear drift and no
additional random behaviour, the difference is equal to the drift rate yd times
the timespan between the samples, which is just τ after averaging the time
series. Notice that the normalisation factor 1/2 in equation eq. (C.32) implies
that if the frequency drifts with

y(t) = y0 + yd · t, (C.44)
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we get

σ2
y (τ) =

y2
d

2
· τ2 (C.45)

for the Allan variance.

c.3.3 Modified Allan variance

The Allan variance has the disadvantage that it does not discriminate between
white and flicker phase noise; they both lead to σy ∼ τ−1, making it impossible
to infer the underlying power law from the Allan variance alone. The so called
modified Allan variance solves this problem by performing an additional
averaging operation on the phase data:

mod σ2
y (τ) =

1
2τ2m2(N − 3m + 1)

N−3m+1

∑
j=1

[
m+j−1

∑
i=j

(xi+2m − 2xi+m + xi)

]2

.

(C.46)

Naively implementing this formula can become computationally expensive,
again, due to the double summation; this can be remedied by pre-computing
the second differences in the inner sum.

c.3.4 Other variances

The Allan variance and the modified Allan variance are not the only time
domain measures used to describe oscillator stability, but they are the most
frequently encountered ones. Therefore, this document will only consider
these two variances. For a more complete overview over other variances, see
[2, 70].

c.4 domain conversions

In general, the aforementioned measures of frequency stability in the time and
frequency domain are not equivalent; in particular, it is not possible to convert
arbitrary Allan deviations into corresponding power spectral densities.

c.4.1 Standard variance for a given PSD

In the simplest case of white noise, the Allan variance is closely related8 to
the standard variance and can be uniquely converted to a PSD. Remember

8 As argued above, we have σ2
y (τ) = σ̃2

ȳ in this case.
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Figure C.3: Transfer
function of the regu-
lar Allan deviation.
The higher frequency
contributions are sup-
pressed with 1/ f 2,
indicated by the dot-
ted line. The first peak
is at f ≈ 0.3710/τ.
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that the PSD is the Fourier transform of the auto correlation function. This
means that we can use the inverse Fourier transform to write

σ̃2 = R(0) =
∫ ∞

0
S( f )d f . (C.47)

For band-limited white noise, S( f ) is equal to a constant S or zero, so we get
σ̃2 = S · Bandwidth. The bandwidth where the PSD is known is often limited
by the Nyquist frequency, such that

σ̃2 =
fs

2
· S. (C.48)

This relation can be used to simulate noise with a given PSD and sampling
rate by utilising a random number generator. A given series of random
numbers with variance σ̃ can be rescaled with 2/ fs to represent white noise
with a PSD of S in the aforementioned bandwidth.

c.4.2 Integral formulas

The calculation of the different variances for a given τ can be understood as
the application of a digital filter, which can be described in the frequency
domain by applying the corresponding transfer function Hτ( f ) to the PSD.
The value of σ2

y (τ) is then interpreted as the power of the filtered signal,
which is computed in the frequency domain by integrating the PSD:

σ2
y (τ) =

∫ fh

0
Sy( f ) |Hτ( f )|2 d f (C.49)

Notice that this integral is not guaranteed to converge for fh → ∞. If it
diverges, the result of this conversion strongly depends on the chosen cutoff
frequency fh.

In practice, the PSD itself is also estimated by some numerical algorithm,
which often involves some level of processing like removing a DC offset or a
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Figure C.4: Transfer
function of the mod-
ified Allan deviation.
The higher frequency
contributions are sup-
pressed with 1/ f 4,
indicated by the dot-
ted line. The first peak
is at f ≈ 0.3079/τ.
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linear trend. This can cause disparities when comparing Allan deviations di-
rectly computed from frequency or phase data with Allan deviations obtained
from converted power spectral densities.

c.4.2.1 PSD to Allan variance

The transfer function of the Allan variance is [2]

|Hτ( f )|2 =
2 sin4 (πτ f )

(πτ f )2 , (C.50)

which is plotted in fig. C.3. This means we can calculate the Allan variance
using

σ2
y (τ) = 2

∫ fh

0
Sy( f )

sin4 (πτ f )
(πτ f )2 d f , (C.51)

where fh is the high frequency cutoff of the measurement device. It is apparent
that this integral does not converge for fh → ∞ if Sy( f ) ∼ f α>1, i.e., in the
presence of significant phase noise.

c.4.2.2 PSD to modified Allan variance

The analogue to equation eq. (C.51) for the modified Allan variance is [2]

mod σ2
y (τ) =

2
m4

∫ fh

0
Sy( f )

sin6 (πτ f )
(πτ0 f )2 sin2 (πτ0 f )

d f (C.52)

≈ 2
∫ fh

0
Sy( f )

sin6 (πτ f )

(πτ f )4 d f , (C.53)

where fh is the high frequency cutoff of the measurement device and τ =

mτ0 = m/ fs. The integral in eq. (C.52) quickly converges to the one in
eq. (C.53) for m→ ∞ [72], such that

|Hτ( f )|2 ≈ 2 sin6 (πτ f )

(πτ f )4 . (C.54)
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This transfer function is plotted in figure C.4.

The modified Allan variance is less dependent on the cutoff frequency fh
since contributions from high frequencies are suppressed with 1/ f 4 instead
of 1/ f 2 in the case of the regular Allan variance, which allows the integral to
still converge for more divergent PSDs.

c.4.3 Parametric conversion for power laws

The integral formula connecting Allan variance and power spectral density
can be analytically solved for power spectral densities following a simple
power law, leading to Allan variances following a different power law. This
allows for simple conversion formulas for the most often encountered types
of frequency instabilities9 [72]:

Noise Type: RW FM Flicker FM White FM Flicker PM White PM

Sy( f ) = h−2 f−2 h−1 f−1 h0 f 0 h1 f 1 h2 f 2

σ2
y (τ) = A · h−2τ1 B · h−1τ0 C · h0τ−1 D · h1τ−2 E · h2τ−2

mod σ2
y (τ) = A′ · h−2τ1 B′ · h−1τ0 C′ · h0τ−1 D′ · h1τ−2 E′ · h2τ−3

Here, the coefficients are given by

A = 2π2

3 , B = 2 ln 2, C = 1
2 , D = 1.038+3 ln 2π fhτ

4π2 , E = 3 fh
4π2 ,

A′ = 0.824 2π2

3 , B′ = 27
20 ln 2, C′ = 1

4 , D′ = 0.084, E′ = 3 fhτ0
4π2 .

Notice that the Allan variance coefficients for white and flicker phase noise
depend on the cut-off frequency fh, as expected, and that the corresponding
Allan variances both are (almost) proportional to τ−2. This makes it difficult,
if not impossible, to determine the coefficients h1 and h2 from Allan deviation
plots alone.

If data on high frequency phase noise (Sφ or L) is available in addition to
Allan deviations for the long term stability, one can also try to fit a power
law to the high frequency data and extrapolate it to lower frequencies to
determine h1 and h2. One can than still use the Allan deviation to determine
h−2, h−1 and h0.

It should be noted that [2] cautions against using these conversion formula
when more than one kind of power law is present.

c.4.4 Numerical approximation of the PSD

Although the integral equations in section C.4.2 are, in general, not invertible,
one can still attempt to find an approximate numerical solution to the inverse
problem of finding a power spectral density from given values of the Allan

9 RW = Random Walk, FM = Frequency Modulation, PM = Phase Modulation.
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variance. We attempt here to develop such a method to estimate either the
regular or the modified Allan deviation.

The integral equation eq. (C.49) is given in continuous time. In practice,
however, one only has discrete values for the Allan deviation σi for times τi
and seeks discrete values for the power spectral density Pj at frequencies f j.
This allows to rewrite eq. (C.49) into a matrix equation of the form

σ = H · P, (C.55)

i.e.,

σi = ∑ HijPj, Hij =
∫ f j+δ+j

f j−δ−j
|Hτi( f )|2 d f , (C.56)

where the frequency spacing is assumed to be in such a way that the PSD is
approximately constant in each frequency interval [ f j − δ−j , f j + δ+j ], and the
δ’s are chosen such that

∑
j

Hij =
∫ fh

0
|Hτi( f )|2 d f . (C.57)

The matrix H is usually not invertible and has to be ’regularised’ in order to
solve the matrix equation eq. (C.55). One possible approach to achieve this is
to introduce an approximation of H (let’s call it H̄) that is guaranteed to be
invertible and then solve the matrix equation

σ = ((1− λ)H + λH̄)P, (C.58)

by inverting ((1− λ)H + λH̄). The parameter λ ∈ [0, 1] should be as small as
possible, but large enough to make the matrix invertible.

One possible choice for H̄ is inspired by the transfer function of the Allan
variance and by the idea that each value of σi should correspond to one value
of Pj at a frequency f j that is reciprocal to the averaging time τi. That is, the
transfer function in figure C.3 is replaced with a sharp peak located at the
first maximum of the original transfer function, ’forgetting’ the contributions
from the higher frequency lobes. This peak is not at exactly 0.5/τ, since its
location is affected by the enveloping 1/ f 2 dependence. For the regular Allan
deviation, the first maximum is at fi ≈ 0.3710/τi while it is at fi ≈ 0.3079/τi
for the modified Allan deviation. The corresponding matrix has the form

H̄ =



0 . . . 0 0 η1

0 . . . 0 η2 0
... . . . ...

0 ηn−1 0 . . . 0

ηn 0 0 . . . 0


, ηi = ∑

j
Hij. (C.59)

In the case of the regular Allan variance, this procedure only works if the PSD
is at most proportional to f α<1, since the side lobes contribute too much to
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Figure C.5: Overview
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an Allan deviation.
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the order in which the
curves appear in the
plot.

the value of the Allan variance otherwise, making the conversion non-reliable.
It is more stable in the case of the modified Allan variance, since the higher
frequency parts are suppressed with 1/ f 4 instead of 1/ f 2; here, it yields
reasonable results for all common clock noise types. Appendix C.7 contains
some examples.

c.5 examples

Figures figs. C.5 to C.7 show measured stability values for different com-
mercial oscillators as well as some values taken from external sources in
terms of amplitude spectral density, Allan deviation and modified Allan
deviation. Since long term stability is commonly expressed using the Allan
deviation, manufacturers usually do not provide power spectral density plots
at frequencies below 1Hz. The ASD plots in figure C.5 were either directly
computed from the raw frequency/phase data or they were converted from
Allan variances using the algorithm described in section C.4.4. Similarly,
some of the plots in figure C.7 where obtained by first converting an Allan
deviation to a PSD and then back to a modified Allan deviation. Notice
that these conversions are somewhat inaccurate for the highest and lowest
frequencies. Deterministic trends where removed from the raw data before
calculating Allan deviations and PSDs such that these plot only show the
random fluctuations; the downward trend for the largest τ in figures C.6
and C.7 observed for some of the quartz oscillators is an artefact of this drift
removal.
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Figure C.6: Overview over frequency stability of different oscillators in terms of Allan deviation.
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c.5.1 LISA requirement

One area of interest for characterising frequency stability in the context of
this thesis is inter-satellite interferometry, as it will be utilised by LISA, which
will measure relative distances between spacecraft with picometer accuracy. It
achieves this accuracy using heterodyne laser interferometry; in this scheme,
the path length change introduces a phase shift in the laser light from the
remote spacecraft, which is combined with a local laser on the receiving
spacecraft to get a low frequency beat note at around 20 MHz. This electrical
signal is then digitised using an analog to digital converter; this is where
the clock noise of the onboard oscillator enters the signal, since variations
in its sample rate are indistinguishable from actual phase variations in the
signal.

Ideally, the on-board oscillator should be so stable that the noise introduced
this way is smaller than the required picometer accuracy.

LISA will use lasers at a wavelength of 1064 nm, which means that 1 pm
√

Hz
−1

corresponds to a phase variation of φ = 2π µrad
√

Hz
−1

. These are translated
into phase variations in the 20 MHz beat note, which corresponds to a timing
jitter of

ASDx =
2π µrad

√
Hz
−1

2π × 20 MHz
=

50 fs√
Hz

. (C.60)

This can be converted into fractional frequency stability using eq. (C.19), the
result of which is plotted in figure C.5 in comparison with other oscillators.
Here, following [64], it was assumed that the frequency dependence of the
requirement is

ASDx =
√

Sx( f ) =
50 fs√

Hz

√
1 +

(
3 mHz

f

)4

. (C.61)

Notice that the mission requirement for the on-board clock cannot be ful-
filled by any space-qualified clock available today. The optical lattice clocks
described in [57] would be stable enough, however, they achieve this perfor-
mance as large laboratory experiments, not as flight-ready hardware. This
is why clock noise correction schemes have been developed for LISA, as
discussed in chapters 6 and 13 of this thesis.

Also notice the discrepancy between figures C.5 and C.6. In figure C.5, the
curve for the LISA requirement intersects with the one from the single-ion
clock, whereas the two curves do not intersect in figure C.6. Here, it becomes
apparent that the Allan deviation is not a good measure of frequency stability
in the presence of white phase noise, since it depends on the high frequency
cutoff fh, which was assumed to be at 10Hz in this case. Choosing a different
value significantly influences the resultant LISA requirement in figure C.6.
The modified Allan deviation shown in figure C.7 instead yields results which
are consistent with the spectral density in figure C.5.
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c.5.2 Quartz oscillators

A quartz oscillator is a very common and versatile electrical component that
produces a periodic signal derived from the mechanical vibrations of a quartz
crystal which is coupled to an electrical circuit via the piezoelectric effect of the
quartz material. High quality quartz oscillators can be very stable, although
the crystals resonance frequency has a slight dependence on temperature,
which limits the long term stability. In addition, the resonance frequency
tends to slowly change with time regardless of temperature, a process called
aging. They are often tuneable in a limited frequency range by applying a
voltage to a capacitance diode connected to the crystal, which can be used
to compensate for temperature fluctuations; alternatively (or additionally),
one can install the oscillator in a temperature stabilised housing (called oven),
which in turn allows to tune the frequency by adjusting the temperature.
Usual abbreviations for these different concepts are:

• XO - crystal oscillator

• VCXO - voltage controlled crystal oscillator

• TCXO - temperature compensated crystal oscillator

• OCXO - oven controlled crystal oscillator

The upper two curves in the comparison figure C.5 where recorded for
free-running VCXOs at room temperature. The slightly better performing
Tektronix AFG 3101 is an arbitrary function generator, which contains a good
quartz oscillator as reference clock. The significantly more stable OCXO 8607
is, as the name suggests, a high quality oven controlled crystal oscillator. It’s
Allan deviation was taken from the manufacturers data sheet and converted
to an ASD.

Since quartz oscillators generally have good short term stability and can be
easily adjusted in frequency, they are often combined with a reference signal
that is known to have good long term stability, such as the timing data pro-
vided by Global Positioning System (GPS) or an atomic frequency standards
(AFSs). This is also known as ’disciplining’, and can be realized in practice by
steering the frequency of the oscillator with a low bandwidth control loop to
follow the more stable reference at low Fourier frequencies.

c.5.3 Atomic frequency standards

AFSs use the electronic or optical transition frequencies of atoms as a reference
to provide a very stable clock signal. These devices are in general larger and
much more complicated than simple quartz oscillators, but deliver unmatched
longterm frequency stability.
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c.5.3.1 Ground based AFS

fe 5680a The FE 5680A is a commercial rubidium frequency standard.
The frequency stability data shown was obtained by comparing a FE 5680A
with an FE 5650, which is a very similar device by the same company that
mainly differs by its form factor. As can be seen in figure C.5, its perfor-
mance is somewhat comparable to spaceborne AFS used in, for example, GPS
satellites.

laboratory clocks State-of-the-art laboratory clocks can achieve much
better frequency stability than the commercial devices studied above. [57]
contains a performance comparison between different optical lattice clocks,
again in terms of Allan deviations, which were converted to ASDs for figure
C.5.

c.5.3.2 Spaceborne AFS

gnss Global Navigation(al) Satellite Systems (GNSSs) need very stable
clocks in order to provides accurate ranging information. The multi-GNSS
experiment of the international GNSS service [61] provides clock performance
data for different satellite constellations in terms of timing deviations, which
can be used to compute their frequency stability. Notice that this is an
estimate of the actual performance of the on-board atomic clocks, not the
accuracy achievable with a GPS receiver on ground. The constellations under
consideration are:

• GPS - Global Positioning System, USA. Different Blocks correspond to
different generations of satellites, using Rubidium or Cesium AFS.

• GLONASS - Globalnaja nawigazionnaja sputnikowaja sistema, Russia.
Uses Cesium AFS.

• BeiDou Navigation Satellite System, China. Uses Rubidium AFS.

• Galileo, EU. Uses Rubidium AFS and passive hydrogen masers on each
satellite.

Different satellites within the same constellation/generation can show signifi-
cantly different performance. Figure C.8 shows the averaged performance of
each constellation for GPS week 1929 after removing particularly bad outliers.
The specific data set used in this analysis is provided by Deutsches Geo-
ForschungsZentrum (GFZ) Potsdam [90] and is available at [1]. Figures C.5
to C.7 only contain traces representing the best and worst performing constel-
lations for the sake of better readability. Figure C.8 shows all of the different
GNSS constellations in comparison.

Note that GNSS is only available close to earth, such that it is not an option
for missions like LISA.
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aces The Atomic Clock Ensemble in Space (ACES) is an ESA project
scheduled to be launched to the International Space Station (ISS) in 2021,
which contains two atomic clocks: a cesium laser cooled atomic fountain
clock, PHARAO, for long-term stability and an active hydrogen maser, SHM,
for short-term stability. The estimated in-flight performance shown here was
given in [26] as an Allan deviation.

c.6 methods of frequency determination

So far, we have introduced different ways of quantifying noise present in a
given time series of phase or frequency data. Acquiring such data for a given
oscillator always requires a reference device to which you can compare your
device under test (DUT). In the simplest case, this reference would be another
oscillator that is known to have much better performance than the DUT,
such that the inherent noise of the reference is negligible. If no such stable
reference is available, one can instead compare two devices of the same type
with each other, such that the noise present in the final signal is proportional
to
√

2× [noise of DUT]. The factor
√

2 follows from the assumption that the
noise in both devices is uncorrelated.

c.6.1 Principle of measurement

The simplest experimental setup used to determine the phase noise of two
identical oscillators is shown in fig. C.9. In this setup, the two oscillators
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DUT 1

DUT 2

φ1 − φ2 + φADC

cos(ω0t + φ1)

cos((ω0 + δω0)t + φ2)

cos(δω0t + φ1 − φ2)

Figure C.9: Experi-
mental setup for deter-
mination of differen-
tial phase deviations
between two oscilla-
tors. Here, the signals
are given using the
angular frequency
ω = 2πν for brevity.
φADC is the phase er-
ror introduced due
to timing variations
in the sampling clock
used to digitise the
signal.

are operated with a slight frequency offset δν0, also called the heterodyne
frequency. Their respective electrical signals are combined using an electrical
mixer, which multiplies them. Thus, the resultant signal is of the form10

cos(2πν0t + φ1(t))× cos(2π(ν0 + δν)t + φ2(t))

= cos(4πν0t + 2πδνt + φ1(t) + φ2(t))

+ cos(2πδν0t + φ1(t)− φ2(t)).

(C.62)

Notice that both the high frequency component at twice the carrier frequency
and the low frequency component at the heterodyne frequency δν0 contain the
phase noise information we want to measure. Typical carrier frequencies of
electrical signals11 are in the range of MHz, whereas the heterodyne frequency
can be adjusted to be of the order of a few kHz, which is more convenient
for digitisation. Therefore, the high frequency component of the mixed signal
is removed by a low pass filter prior to conversion to the digital domain by
an analog-to-digital converter (ADC). This digital representation can then be
used to determine the phase of the signal using a suitable algorithm.

One problem with this approach is that the ADC is triggered by a sampling
clock, which also introduces its own phase noise12. This can be circumvented
by a more advanced setup, which is depicted in fig. C.10. Here, both devices
under test are operated at the same frequency. They are then mixed with
a third oscillator at νre f = ν0 + δν, here called the local oscillator (LO). The
LO is also used to generate the sampling clock13 which is used to trigger the
ADC.

10 Using the basic trigonometric identity 2 cos(x) · cos(y) = cos(x− y) + cos(x + y).
11 The principle described here is also used in heterodyne laser interferometers. There, the

mixing happens when the laser light at frequencies of a few hundred THz interferes to create
a beatnote in the MHz range.

12 Although it should be noted that the mixer preserves phase noise, not timing jitter, thus the
required timing stability of the sampling clock is reduced by the ratio of sampling frequency
to carrier frequency.

13 To track a signal at a frequency of δν, the Nyquist-Shannon theorem states that the sampling
rate must be at least 2δν. It is usually chosen with some additional margin, such that the
sampling clock might operate around 4δν, which is still orders of magnitude lower than the
carrier frequency.
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LO

DUT 1

DUT 2

φ1 − φ2
Frequency Divider

cos((ω0 + δω0)t + φr)

cos(ω0t + φ1)

cos(ω0t + φ2)

cos(δω0t + φ1 − φr)

cos(δω0t + φ2 − φr)

φ1 − φr

φ2 − φr

Figure C.10: Experi-
mental setup for deter-
mination of differen-
tial phase deviations
between two oscilla-
tors, DUT 1 and DUT
2, by mixing them
with a third device
operated at an offset
frequency. The local
oscillator LO is used
both for mixing and
to create the sampling
clock which triggers
the ADC, which oper-
ates at a much lower
frequency.

The mixing yields two seperate beatnotes which both contain the differential
phase noise of the LO and one of the DUTs. Tracking the phase of both of
them yields two time series of phase data which can be subtracted to get a
single time series which is free of the LOs phase noise. Therefore, the LO
does not need to be as stable as the DUTs but can be a more convenient
device such as an arbitrary function generator which can be easily adjusted
in frequency.

This scheme has the additional advantage that it can be used to determine the
performance of oscillators that always operate at exactly the same frequency.

c.6.2 Algorithms for frequency determination

One of the last steps in the measurement scheme described above is the
determination of instantaneous phase/frequency deviations of the mixed
signal using the digital representation of the signal recorded by the ADC.
Different algorithms can be used to achieve this, some of which will be
sketched in the following.

c.6.2.1 Zero-Crossing counter

One of the simplest and fastest algorithms to determine the frequency of
a signal is by counting cycles. This can be done by interpolating the time
stamp zi of each ascending zero-crossing and using these values to calculate
the length of each period Ti = zi+1 − zi, such that the frequency series is
simply given by fi = 1/Ti. The accuracy of the algorithm can be improved
by computing the average period length over many cycles, i.e., 〈Ti〉N =

(zi+N − zi)/N. However, it still remains very susceptible to noise since only
the sample points near the zero crossings are used for the analysis.
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c.6.2.2 Constant frequency demodulation

This method is similar in principal to the electronic mixing used to get a beat
note between two oscillators. The digitised signal

V(t) = sin(2πν0t + φ(t)) (C.63)

is multiplied with a perfect sine and a cosine at the assumed nominal fre-
quency, yielding the so-called in-phase and quadrature components of the
signal:

Ic(t) = sin(2πν0t + φ(t)) · sin(2πν0t) (C.64a)

=
1
2
(cos(φ(t))− cos(4πν0t + φ(t))) , (C.64b)

Qc(t) = sin(2πν0t + φ(t)) · cos(2πν0t) (C.64c)

=
1
2
(sin(φ(t)) + sin(4πν0t + φ(t))) . (C.64d)

The high frequency component can be removed by a digital low-pass filter.
The simplest implementation of such a filter would be to take the average
over some timespan T � 1/ν0 to get

Īc(t) =
1
2

cos(φ(t)) , (C.65a)

Q̄c(t) =
1
2

sin(φ(t)). (C.65b)

This assumes that the phase noise changes slowly compared to T. φ(t) can
than be recovered using

φ(t) = atan2( Īc, Q̄c). (C.66)

The arctangent2 utilises two arguments to give a unique result for φ ∈ (−π, π],
instead of φ ∈ (−π/2, π/2] for the regular arctangent or the arcsine. However,
since it always returns a value φ ∈ (−π, π], a steadily growing phase (such
as from a slight frequency offset) leads to periodic phase jumps which have
to be detected and removed by the implemented algorithm.

This method also requires that the frequency of the signal under investigation
is known and reasonably constant. Otherwise, the demodulation happens at
the wrong frequency, e.g. ν0 + δν0 ,such that we get

Ic(t) = sin(2πν0t + φ(t)) · sin(2π(ν0 + δν0)t) (C.67a)

=
1
2
(cos(2πδν0t + φ(t))− cos(4πν0t + 2πδν0t + φ(t))) , (C.67b)

Qc(t) = sin(2πν0t + φ(t)) · cos(2π(ν0 + δν0)t) (C.67c)

=
1
2
(sin(2πδν0t + φ(t)) + sin(4πν0 + 2πδν0t + φ(t))) . (C.67d)

Thus, we would no longer have a DC term, but instead an oscillation at δν0.
If δν0 is large enough, the low-pass filter will remove this part as well, such
that Īc = Q̄c = 0.
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c.6.2.3 Digital PLL

A digital phase-locked loop (DPLL) is similar in concept to the aforementioned
demodulation with constant frequency. The difference is that instead of just
tracking the phase deviations relative to a digital reference as described above,
a feedback loop is implemented. It adjust the digital references phase such
that the phase deviations vanish. Once the loop is locked, this procedure
creates a digital replica of the analog signal from which the desired phase is
readily available. One of the advantages of this approach is that a DPLL can
track the phase of a signal which varies in frequency. We describe DPLLs in
more detail in section 3.5 of this thesis.

c.6.2.4 Kalman filter

A Kalman filter is an algorithm which combines a-priori information about
the behaviour of a signal and the expected noise levels with actual measure-
ments to obtain an estimate of the true process, modelled by a state vector.
Since Kalman filtering is used in many subject areas, numerous introductory
textbooks exist on the topic, among them [78].

The classical Kalman filter is formulated for linear system models, where
it can be shown to be the optimal filter for this application. In the case of
frequency determination, the underlying process is non-linear, requiring a
generalised formulation known as the extended Kalman filter (EKF). We use
the discrete time formulation.

One approach to using an EKF for frequency determination can be found
in [40], although this particular formulation is designed to deal with large
amplitude fluctuations, which is unnecessary in our application. Therefore,
we used a modified state vector of the form

xk =


xk[0]

xk[1]

xk[2]

xk[3]

 =


Ik

Qk

ωk

Ak

 =


cos(ωk + φ)

sin(ωk + φ)

ωk

Ak

 , (C.68)

which consists of the in-phase and quadrature components I and Q, the
angular frequency ω and the amplitude A of the signal. Here, we assumed
that ω is normalised to the sampling frequency such that the time step
between two samples ∆t corresponds to a unit time interval.

The assumed dynamical behaviour of the process is modelled by the evolution
equation, which relates the state vector at the last time step to the current
time step:

xk = f (xk−1) + noise. (C.69)
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Here, the function f (xk) is given by

f (xk) =


xk[0] cos(ω)− xk[1] sin(ω)

xk[0] sin(ω) + xk[1] cos(ω)

ω

A

 . (C.70)

The measurement equation relates the measurements yk we take to our state
vector xk. In our case, we only take one scalar measurement at each time step,
which is simply

yk = hk(xk) + noise = A · Ik + noise = xk[0]xk[3] + noise. (C.71)

This model fits the description of the discrete time EKF found in the literature,
e.g., in [78].

The filter assumes that the measurement as well as ω and A are contami-
nated with white gaussian noise at each time step, whose variance has to be
stated beforehand in addition to starting values for I, Q, ω and A. Finding
reasonable values for these variances can be quite challenging and severely
influences the overall performance of the algorithm.

Advantages of this approach are that each new sample provides new infor-
mation, making it ideal for real time applications.

c.7 test of conversion algorithm

Some of the PSDs shown in the overview figure C.5 were converted from a
given Allan deviation using the conversion algorithm described in section
C.4.4. To justify these result, the algorithm was tested by computing both
PSDs and Allan deviations directly from measured time series of frequency
fluctuations of some oscillators and then compare the results of the conver-
sion with the directly computed values. As can be seen in figure C.11, the
conversion yields results in the right order of magnitude for most common
clock noises, with the exception of white phase noise, as expected. Figure
C.12 shows the same calculation done using the modified Allan deviation,
which yields consistent result for phase noise as well.

c.8 stochastic processes

This appendix is meant to give a short overview on the most common statisti-
cal quantities. For a more detailed discussion, see e.g. [29].

Noise is a stochastic process. It causes random fluctuations in the deterministic
results produced by an experiment, such that different realisations of the same
experiment yield different results. Likewise, the magnitude of these deviations
might change over time, e.g. due to changes in environmental factors like
temperature or ageing of the materials used to build the experiment. Since
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the deviations are random, one can only describe their average behaviour by
using statistical quantities.

Given N realisations xi(t) of a stochastic process x(t), the sample mean is
defined as

〈x(t)〉N =
1
N

N

∑
i=1

xi(t). (C.72)

It is often used to estimate the statistical expectation E[x(t)] of the pro-
cess.

Similarly, the time average of a single realisation xi(t) over an interval
[−T/2, T/2] is given by

x̄i =
1
T

∫ T/2

−T/2
xi(t)dt (C.73)

If time average and sample mean converge to the same value for T → ∞ and
N → ∞, respectively, the process is called ergodic. The mean E[x(t)] is also
called the first moment of the stochastic process. The second moment is the
auto correlation function

R(t, τ) = E[x(t)x(t + τ)], (C.74)

which can be estimated using the sample mean.

If both mean and autocorrelation are time independent, the autocorrelation
only depends on the time difference, i.e. R(t, τ) = R(τ). In this case, the
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process is called wide sense stationary (WSS). If it is also ergodic, we can
calculate R(τ) using the time average. We then get

R(τ) = lim
T→∞

1
T

∫ T/2

−T/2
x(t)x(t + τ)dt (C.75)

for the autocorrelation function.

One can also define higher moments as the statistical expectation of higher
powers of x(t), which can also be time-dependent. If all of them are static,
the process under investigation is called stationary.

c.9 (un-)correlated noise

Usually, the total noise in a signal has different physical origins, such that the
total signal can be written as the sum of two or more signals:

V(t) = V1(t) + V2(t), (C.76)

where V1(t) and V2(t) are both contaminated with their own noise, described
by the PSDs SV1 and SV2 . Now the question arrises how the PSD SV is
related to SV1 and SV2 . The PSD is defined as the Fourier transform of the
autocorrelation function R. We have
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RV(τ) = lim
T→∞

1
T

∫ T/2

−T/2
V(t)V(t + τ)dt (C.77)

= lim
T→∞

1
T

∫ T/2

−T/2
(V1 + V2)(t)(V1 + V2)(t + τ)dt (C.78)

= lim
T→∞

1
T

( ∫ T/2

−T/2
V1(t)V1(t + τ)dt +

∫ T/2

−T/2
V2(t)V2(t + τ)dt

+
∫ T/2

−T/2
V1(t)V2(t + τ)dt +

∫ T/2

−T/2
V2(t)V1(t + τ)dt

)
(C.79)

= RV1 + RV2 + RV1,V2 + RV2,V1 , (C.80)

where

RV1,V2 = lim
T→∞

1
T

∫ T/2

−T/2
V1(t)V2(t + τ)dt (C.81)

is defined to be the cross correlation function14 of V1 and V2. Using this in
conjunction with the definition of the PSD eq. (C.7), we get

SV = SV1 + SV2 + SV1,V2 + SV2,V1 (C.82)

for the PSD of the total signal. SV1,V2 is the so-called cross spectral density
(CSD), defined as the Fourier transform of the cross correlation function.

Since RV1,V2 is not necessarily an even function, the cross spectral density
(CSD) SV1,V2 is not guaranteed to be real. One can show, though, that

SV1,V2( f ) = S∗V2,V1
( f ), (C.83)

such that SV1,V2 + SV2,V1 is indeed real. In fact, we can write

SV = SV1 + SV2 + 2 Re [SV1,V2 ] = SV1 + SV2 + 2 Re [SV2,V1 ] , (C.84)

as argued in [29].

If V1 and V2 are uncorrelated, their CSD vanishes, such that we simply
have

SV = SV1 + SV2 (C.85)

for the combined signal.

Some care must be taken when using the ASD instead of the PSD, since
eq. (C.85) implies that

ASDV =
√

SV =
√

SV1 + SV2 =
√

ASD2
V1
+ ASD2

V2
, (C.86)

again assuming uncorrelated noise. This is often abbreviated by saying that
noise adds quadratically.

14 Assuming that both V1 and V2 are real valued and wide-sense stationary.





D
N O I S E M O D E L S

In this appendix, we describe the different noise sources that we simulate
within LISANode. In particular for each noise, we give a short description and
its mathematical expression. That includes spectral shapes in the form of their
PSD for stochastic terms, as well as any deterministic effects.

The noise models are derived from allocations or current best estimates (CBEs)
given in the performance model [39], where applicable. They are expressed
originally in terms of acceleration, displacement or frequency fluctuations. We
give explicitly the conversion to the units used in this document, i.e., timing
jitter for all pathlength fluctuation noises, and phase for laser noise.

We give here a continuous description of these noise models; however, they
are actually implemented as discrete noise sources at f phy

s .

This appendix is adapted from [16], and was written in close collaboration
with J.-B. Bayle.

We remark that some of the noise sources are not matching the CBE given in
[39], and need to be updated.

d.1 laser noise

Laser noise describes the optical phase fluctuations in the electromagnetic
field of a free-running laser stabilized to a cavity.

Laser noise is given in [39]1 by the allocation for the laser frequency stabil-
ity in units of frequency,

SṄp( f ) =
(

30 Hz/
√

Hz
)2
[

1 +
(

2× 10−3 Hz
f

)4
]

. (D.1)

In the current simulation, we neglect the 1/ f 4 term, and approximate the
now constant laser frequency stability to 28.2 Hz/

√
Hz, which corresponds to

a fractional frequency stability of exactly 10−13. In terms of phase noise Np,
this equates to

SNp( f ) =
(

4.49 Hz/
√

Hz
)2

f−2 . (D.2)

This should be updated in a future version of the simulation.

1 In [39], laser noise is called s̃ν.
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d.2 modulation noise

Modulation noise describes any mismatch in the phase of the modulation
sidebands which are transmitted to the distant spacecraft and the pilot tone
used as a local timing reference. For more information on the technical details
of the frequency distribution system, cf. section 3.7 and chapter 6, or the
literature, e.g. [14].

Both the 2.4 GHz and the 2.401 GHz sideband signals used for modulation
are generated from the local USO. The pilot tone is derived from the electrical
2.4 GHz signal using a series of low noise frequency dividers. As such,
the 2.4 GHz signal has lower noise with respect to the pilot tone then the
2.401 GHz signal. We will not model the noise of the frequency dividers, and
at the moment assume that all modulation noises have the same spectral
shape. The optical modulation is performed using an EOM followed by a
fibre amplifier.

According to [14], the fiber amplifier is the dominating part. We fit a rough
model to the blue curve in fig. 5.13 in [14] to obtain a timing jitter power
spectral density of

SM( f ) =
(

1× 10−14 s/
√

Hz
)2
[

1 +
(

1.5× 10−2 Hz
f

)2
]

. (D.3)

We remark that this is an underestimate compared to the more recent measure-
ments presented in chapter 6. The reason for this discrepancy is that the blue
curve in fig. 5.13 in [14] corresponds to a 1 W fibre amplifier, allowing lower
noise levels. This noise level should be updated in a future version of the
simulation.

d.3 test-mass acceleration noise

Test-mass acceleration noise describes the optical pathlength variations due to
the test-mass motion away from its nominal position inside its housing.

The acceleration of the test mass is given in [39]2 by the allocation value
for the single test-mass acceleration noise in acceleration units,

(
2.4× 10−15 ms−2/

√
Hz
)2
[

1 +
(

0.4× 10−3 Hz
f

)2
][

1 +
(

f
8× 10−3 Hz

)4
]

.

(D.4)

The equivalent pathlength fluctuation picks up a factor two in order to account
for the beam reflection onto the test mass. In the simulation, we neglect high-
frequency components since they are far smaller than the OMS displacement
noise, c.f. appendix D.5. Moreover, we whiten the noise at below 10−14 Hz to
prevent numerical overflow.

2 In [39], the acceleration of the test mass is called Sg.
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Converting to timing jitter using a factor 1/(2π f )4c2, we get

SNδ( f ) =

(
4.05× 10−25 s−1/

√
Hz

f 2

)2[
1 +

(
0.4× 10−3 Hz

f

)2
]

. (D.5)

Note that this is an this is an out-of-loop value, ignoring the coupling of
test-mass to spacecraft motion introduced by DFACS. This is to be updated
and consolidated once spacecraft dynamics are properly implemented in the
simulation.

d.4 backlink noise

Beams are transmitted between adjacent optical benches using optical fibres.
During this transmission, the beams can pick up an additional phase noise
term. We model only the non-reciprocal noise terms, i.e., the difference
between the phase shift of a beam propagating from optical bench i to i′ vs.
that of the beam propagating from i′ to i.

Backlink noise is given in [39]3 by the allocation for the reference backlink
in displacement,

SNbl( f ) =
(

3× 10−12 mHz0.5
)2
[

1 +
(

2× 10−3 Hz
f

)4
]

. (D.6)

Contrary to what is present in [39], we use the same value for both the test-
mass and the reference interferometers. The equivalent timing jitter power
spectral density SNbl( f ) can be computed by dividing by c, and reads

SNbl( f ) =
(
1× 10−20 sHz0.5)2

[
1 +

(
2.0× 10−3 Hz

f

)4
]

. (D.7)

d.5 readout noise

We summarize as readout noise Nro the equivalent positional readout error
in meters due to technical noise sources such as shot noise. For it’s value, we
use the overall entry for OMS displacement noise in [39].

OMS displacement noise is given in [39] as the allocation value for the
long-arm noise, test-mass ifo noise and reference noise in terms of displace-
ment, by a power spectral density of the form

SNro( f ) = A2

[
1 +

(
2× 10−3 Hz

f

)4
]

, (D.8)

where A depends on the interferometer,

• inter-spacecraft interferometer carrier: A = 6.35× 10−12 m/
√

Hz,

3 In [39], the backlink noise is called s̃Ref,back.
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• inter-spacecraft interferometer sideband: A = 1.25× 10−11 m/
√

Hz,

• test-mass interferometer: A = 1.42× 10−12 m/
√

Hz.

• reference interferometer carrier: A = 3.32× 10−12 m/
√

Hz,

• reference interferometer sideband: A = 7.90× 10−12 m/
√

Hz,

In LISANode, we simulate both carriers and sideband. Since there are no
values given for the sideband beatnotes, we approximate them using ε = 0.15
instead of ε = 0.85 in the shot noise formula in [39] to account for the lower
power level.

We converted to timing jitter by dividing by c, to get:

• inter-spacecraft interferometer carrier: A = 2.12× 10−20 s/
√

Hz,

• inter-spacecraft interferometer sideband: A = 4.17× 10−20 s/
√

Hz,

• test-mass interferometer: A = 4.73× 10−21 s/
√

Hz,

• reference interferometer carrier: A = 1.11× 10−20 s/
√

Hz,

• reference interferometer sideband: A = 2.63× 10−20 s/
√

Hz.

Note that the OMS displacement noise as given in [39] summarizes multiple
noise sources, some of which are already otherwise accounted for, such as
backlink noise. Therefore, these values should be updated in a future version
of the simulation.

d.6 optical bench pathlength noise

Optical bench pathlength noise Nob summarizes different optical pathlength
noises due to, for example, jitters of optical components in the path of the
different beams. It is modelled as a optical pathlength change in meters, with
values based on [39].

Optical bench pathlength noise in terms of displacement is given by a
power spectral density of the form

SNob( f ) = A2 , (D.9)

where A depends on the beam,

• local beams in the test-mass interferometers: A = 4.24× 10−12 m/
√

Hz,

• local beams in the reference interferometers: A = 2× 10−12 m/
√

Hz,

• all other beams: A = 1× 10−15 m/
√

Hz.

We converted to timing jitter by dividing by c, to get:

• local beams in the test-mass interferometers: A = 1.4× 10−20 s/
√

Hz,

• local beams in the reference interferometers: A = 6.7× 10−21 s/
√

Hz,

• all other beams: A = 3.3× 10−24 m/
√

Hz.
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d.7 ranging noise

Pseudo-ranging is performed by correlating local and distant PRN signals,
c.f. section 6.3. Ranging noise describes the imperfection of the overall ranging
measurement scheme in a single link.

Pseudo-ranging is given by an ad-hoc model, combining a systematic bias
NR,o

i and a zero-mean stochastic Gaussian white noise NR,ε
i (τi),

NR
i (τi) = NR,o

i + NR,ε
i (τi) , (D.10)

with default values of SNR,ε = 3× 10−9 s/
√

Hz (or 0.9 m/
√

Hz), and NR,o
i =

0 s.

d.8 clock noise

USOs on each spacecraft act as central time references for all onboard systems,
and therefore represent clocks ticking according to the on-board clock time
(THE), c.f. section 6.1.1. Clock noise models any deviations of these clocks
from the corresponding spacecraft proper time (TPS).

Clock noise is given by the model described in [81], expressed in terms of
fractional frequency deviations as the sum

q̇i(τ) = Ṅq
i (τ) + y0,i + y1,iτ + y2,iτ

2 . (D.11)

with

y0 ≈ 5× 10−7 s s−1, y1 ≈ 1.6× 10−14 s s−2, y2 ≈ 9× 10−23 s s−3 . (D.12)

These values should be seen as orders of magnitude, and will be different for
all 3 USOs.

We use

• Ṅq
i (τ) is a random jitter, generated as a flicker noise with a PSD between

10−5 Hz and f phy
s /2 = 1.5 Hz given by

SṄq
i
( f ) =

(
6.32× 10−14

)2
f−1 , (D.13)

• y0,i a constant deterministic frequency offset, by default set to 5× 10−8,
6.25× 10−7, and −3.75× 10−7 for the 3 spacecraft clocks,

• y1,i a constant frequency linear drift, by default set to 8× 10−16 s−1,
1× 10−14 s−1, and −6× 10−15 s−1 for the 3 spacecraft clocks, and

• y2,i a constant frequency quadratic drift, by default set to 3× 10−24 s−2,
2.25× 10−23 s−2, and −3.75× 10−23 s−2 for the 3 spacecraft clocks.

Expressed as a timing jitter, clock noise reads

qi(τ) = Nq
i (τ) + y0,iτ +

1
2

y1,iτ
2 +

1
3

y2,iτ
3 , (D.14)
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with Nq
i (τ) now a random timing jitter with a PSD of

SNq
i
( f ) =

(
1× 10−14

)2
f−3 . (D.15)
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