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Abstract

The underlying Habilitation aims to contribute to the research on fracture mechanics of
solids across the scales. This active research field is driven by the investigation and devel-
opment of new methods, processes and technologies applicable to engineering problems
with complex material behavior of solids at fracture. It includes mathematically precise
formulations of theoretical and computational models with emphasis on continuum physics
as well as the development of variation methods and efficient numerical implementations
tools. In particular, two directions will be considered in this contribution: (i) the con-
struction of advanced multi-scale techniques and (ii) modern element technologies. On the
multi-scale techniques, a robust and efficient Global-Local approach for numerically solv-
ing fracture-mechanics problems is developed in the first part of this contribution. This
method has the potential to tackle practical field problems in which a large-structure
might be considered and fracture propagation is a localized phenomenum. In this regard,
failure is analyzed on a lower (Local) scale, while dealing with a purely linear problem on
an upper (Global) scale. The modeling of crack formation at the Local scale is achieved in
a convenient way by continuum phase-field formulations to fracture, which are based on
the regularization of sharp crack discontinuities. For this purpose, a predictor-corrector
scheme is designed in which the local domains are dynamically updated during the com-
putation. To cope with different element discretizations at the interface between the two
nested scales, a non-matching dual mortar method is formulated. Hence, more regularity
is achieved on the interface. The development of advanced discretization schemes ac-
counting for meshes with highly irregular shaped elements and arbitrary number of nodes
is the main focus in the second part of this work. To this end, a relatively new method -
the virtual element method (VEM) - will be presented here that leads to an exceptional
efficient and stable formulation for solving a wide range of boundary value problems in
science and engineering. The structure of VEM comprises a term in the weak formula-
tion or the potential density functional in which the unknowns, being sought are replaced
by their projection onto a polynomial space. This results in a rank-deficient structure,
therefore it is necessary to add a stabilization term to the formulation. The performance
of the virtual element method is comparable to using finite elements of higher order. It
is even more robust than FEM in case of a severe distortion of the element.

Keywords: Computational Mechanics, Material Modeling, Virtual Element Method,
Finite Element Method.
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Zusammenfassung

Die vorliegende Habilitationsschrift enthält Beiträge zu Forschungsthemen im Bereich
mehrskaliger Rissmechanik. Diese werden orangetrieben durch die Entwicklung neuer Me-
thoden, Prozesse und Technologien mit Anwendung in den Ingenieurswissenschaften zu
komplexem Materialverhalten in Festkörpermechanik mit Rissbildung. Diese Habilitati-
onsschrift legt Wert auf mathematisch präzise Beschreibungen von theoretischen sowie
algorithmischen Modellen mit Fokus auf Kontinuumsmechanik. Ausserdem werden varia-
tionelle Methoden und deren effiziente numerische Behandlung diskutiert. Zwei Richtun-
gen werden speziell betrachtet: (i) Konstruktion von fortgeschrittenen Multiskalenmetho-
den und (ii) moderne Element-Technologien. Hinsichtlich Multiskalentechniken wird ein
robuster Glocal-Local-Ansatz für die numerische Lösung von Rissbildungsproblemen im
ersten Teil der Habilitation entwickelt. Diese Methode hat das Potential auf realistische
Probleme angewandt zu werden, wo grössere elastische Strukturen mit lokalisierten Rissen
auftreten. Hier treten Schädigungsprozesse lokalisiert auf, während auf der globalen Ska-
la lediglich ein linearisiertes Problem gerechnet werden muss. Die Rissmodellierung auf
der lokalen Skala wird mit Hilfe eines Kontinuum-Phasenfeld-Ansatzes erreicht. Dieser
basiert auf der Approximation von niederdimensionalen, scharf ausgeprägten, Materia-
lunstetigkeiten. Hierzu wird mit einem sogenannten Predictor-Corrector-Verfahren gear-
beitet, in welchem die lokalen Teilgebiete dynamisch aktualisiert werden. Die verschie-
denen Element-Diskretisierungen der globalen und lokalen Teilgebiete wird am Interface
mit Hilfe einer Dualen-Mortar-Methode erreicht. Somit wird eine höhere Regularität am
Interface gewährleistet. Die Entwicklung von fortgeschrittenen Diskretisierungstechniken
für Vernetzungen mit irregulären Elementen und beliebig vielen Knoten ist der Fokus
im zweiten Teil dieser Schrift. Hierin wird eine relativ neue Methode - der virtuellen
Finite-Elemente-Methode (VEM) - vorgestellt, welche hochgradig effizient und nume-
risch stabile Formulierungen erlaubt. Mit dieser können zahlreiche Randwertprobleme
in Wissenschaft und Ingenieursanwendungen angegangen werden. Strukturell enthält die
VEM einen zusätzlichen Term in der schwachen Formulierung oder ein Potential-Dichte-
Funktional, in welcher die gesuchten Unbekannten durch eine Projektion auf den Raum
der Polynome ersetzt werden. Diese Operation induziert eine Rang-Reduktion und daher
muss ein Stabilisierungsterm zur Formulierung addiert werden. Die Leistungsfähigkeit der
virtuellen Finite-Elemente-Methode verhält ist vergleichbar zu Finite-Elemente-Verfahren
höherer Ordung. Für stark verzerrte Elemente ist die VEM robuster als herkömmliche
Finite-Elemente-Verfahren.

Stichworte: Berechnungsmechanik, Materialmodellierung, Virtuelle Elemente Metho-
de, Finite Elemente Methode.
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1. Introduction

The aim of this Habilitation is to summarize the effort spent by the material mod-
eling and damage mechanics group leaded by the author of this cumulative work
on modern element technologies in engineering failure analysis together with the devel-
opment of Global-Local approach to allow for their incorporation into efficient numerical
simulation tools. In doing so, the group could contribute to the goals of (i) the collab-
orative research centre SFB 1153 [1], (ii) the priority program SPP 2020 [2] and (iii)
the priority program SPP 1748 [3] at the Leibniz Universität Hannover (LUH). A key
aspect of those projects is the development of new computational framework for mod-
eling fracture processes across-scales. This is an intriguingly challenging task and plays
an extremely important role in the safety assessment of various engineering and science
applications. It combines continuum mechanics, applied mathematics and modeling tech-
niques. Hence merges different fields and methodologies in a multidisciplinary sense to
a scientific approach that helps to understand failure mechanisms. In this cumulative
work we will illustrate our recent achievements in computational fracture mechanics that
are related to modeling, discretization schemes along with multi-scale and multi-physics
applications.

The modeling of crack formation can be achieved in a convenient way by continuum
phase-field approaches to fracture, which are based on the regularization of sharp crack
discontinuities. Phase-field modeling of fracture has been attracting considerable atten-
tion in recent years due to its capability of capturing complex crack patterns in various
problems in solid mechanics. On the element technology, a new discretization scheme, the
virtual element method (VEM), will be discussed in this contribution. VEM has proven
to be a competitive discretization scheme for meshes with irregularly shaped elements
that can even become non-convex. Furthermore, it allows exploration of features such
as flexibility with regard to mesh generation and choice of element shapes, e.g. use very
general polygonal and polyhedral meshes. For efficient and robust numerical solution
procedures, we develop a multi-scale approach where the characteristic length of the local
scale is of the same order as its global counter part. This is accomplished by introducing
the so-called Global-Local approach. Hereby a multi-physics problem at fracture is solved
on a lower (local) scale, while dealing with a purely linear elastic problem on an upper
(global) scale. Besides its feasibility for having two ad-hoc finite element models for the
global and local domain, enables computations/couplings with legacy codes for industrial
applications in more efficient settings. Additionally, the reduction of unknowns (DOF) in
this approach leads to a remarkable reduction of the computational time.

In particular, it will be shown in Part I of this Habilitation, entitled efficient global-
local techniques for failure analysis, how such a multi-scale approach can be of advantage
when large-structure problems are considered in which the fracture state only develops
in smaller, localized, regions. Part II is entitled Advanced Virtual element method and
will outline the recently developed virtual element method (VEM) as a new discretization
scheme for solving failure-mechanics problems numerically. This is due to its flexible
choice of nodes number in an element which can be changed easily during the simulation
process. For comparison purposes, results of the standard finite element method (FEM)
are also demonstrated. In this regard, the capability of VEM element with Voronoi mesh
is comparable to using finite elements of higher order.

In the following Sections 1.1 and 1.2, a short introduction to the above mentioned
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approaches to be modeled in this contribution is provided. This chapter closes with
Section 1.3, which gives an overview of the content of this contribution.

1.1. Efficient Global-Local techniques for failure analysis

Analysis of crack initiation and propagation in brittle and ductile materials has been a
topic of intensive research during the last years to predict failure mechanisms for various
engineering applications. Machining, cutting and forming of materials are at the core of
automobile, aerospace, medical fields, bridges or heavy industries. These applications can
significantly benefit from a precisely predictive computational tool to model fracture be-
havior in the design phase of products. To this end, a Global-Local scheme is employed in
this part as a computational framework for solving fracture mechanics problems. Global-
Local technique has the potential to treat failure in large-scale problems, as shown in
Figure 1.1.
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Figure 1.1: Engineering applications for failure in large-scale problems.

Departing point towards a Global-Local approach applied to fracture mechanics is the
Domain Decomposition method [DDM] [146, 121, 167, 105, 144]. Hence, the Reference
Model [RM] of a boundary value problem is split into an intact and fractured regions
in DDM. Accordingly, by introduction of a fictitious domain, i.e. a coarse projection
of the local domain into the global domain, we extend the resulting non-overlapping
domain decomposition formulation toward a Global-Local formulation [GLM], as outlined
in [17, 258, 143, 140, 138]. It is advantageous when nonlinear behavior develops in smaller
and localized regions, sketched in Figure 1.2.

In the Global-Local approach, fracture is analyzed in a local domain, while deal-
ing with linear problem on a global scale. Numerical tools for the prediction of frac-
ture mechanism at the local (lower) scale are numerous, see [31, 202, 191]. Specifi-
cally, the continuum phase-field approach to fracture is employed. Due to its simplicity
this methodology has gained a wide interest and started to be used in the engineer-
ing community since 2008. From there on many scientist have worked in this field and
developed phase field approaches for finite elements, isogeometirc analysis and lately
also for the virtual element technology, see Part II of this work. The main driving
force for these developments are the possibility to handle complex fracture phenomena
within numerical methods in two and three dimensions. In recent years, several brit-
tle [67, 188, 162, 259, 270, 6, 342, 285, 258, 160, 79, 295, 80, 119, 102, 17] and ductile
[10, 22, 64, 19, 4, 110, 86, 108, 8, 190, 118, 186, 253] phase-field fracture formulations
have been proposed in the literature. These studies range from the modeling of 2D/3D
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Figure 1.2: Illustration of Reference Model, Domain Decomposition Model, Global and
Locals Models.

small and large strain deformations, variational formulations, multi-scale/physics prob-
lems, mathematical analysis, different decompositions and discretization techniques with
many applications in science and engineering. All these examples and the citation therein
demonstrate the potential of phase-field for crack propagation. In Part I of this work,
the global-local approach is extended towards the phase-field modeling of fracture (i) in
anisotropic brittle solids and (ii) in poro-elastic-plastic media.

Global-Local approach easily allows for different spatial discretizations for the global
and local domains. Thus, a flexible choice of the discretization scheme can be employed
on each domain independently; e.g. the Finite Element Method (FEM), Isogeometric
Analysis (IGA) and the Virtual Element Method (VEM), as demonstrated in Figure 1.3.
Hereby, the Global-domain is discretized using the standard finite element method and
at the Local-scale we employed the virtual element method (zoo-animals).

The research on phase-field approaches based on Global-Local framework is still vivid
and point in many different directions. Three applications can be found in the next
sections. Thereafter we put the focus on the Local-domain failure analysis using the
recently developed virtual element method (VEM). This research direction on the Local
scale represents a first link between Part I and Part II of this Habilitation.

1.1.1. One-dimensional study. A brief illustrative one-dimensional analysis for the
Global-Local formulation is provided within this section. The discussion in this part is
based on the recent work of Aldakheel et al. [16].

The elastic energy functional E(u) for linear elasticity problem is described in terms
of the displacement field u ∈ H1

0 (B) and takes the following form

E(u) =
∫

B

1

2
E(x)(u′)2dx−

∫

∂NB

τ̄ · u ds,

where τ̄ ∈ L2(B) is an applied force quantity at the Neumann boundary conditions and E
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Figure 1.3: Illustration of different discretization schemes: Reference Model using FEM;
Global-domain using FEM whereas Local-domain using VEM.

is a Young’s modulus. Consider one dimensional boundary value problem (BVP), that is
given in Figure 1.4 (first-row). We depict this as a reference BVP such that its discretized
setting includes 3 elements and 4 nodal points with a length 8L. The cross-section-area
A is used as an identical unit area through the entire bar. Hence, the energy functional
can be rewritten as

E(u) =
∫ 8L

0

1

2
E(x)(u′)2Adx−

∫

∂NB

τ̄ · u ds.

A distribution of E(x) is illustrated in Figure 1.4 as

• E(x) = E1 for 0 ≤ x ≤ L

• E(x) = E2 for L < x ≤ 2L

• E(x) = E3 for 2L < x ≤ 8L

Minimization of the 1D linear elasticity leads to the Euler-Lagrange equation

Eu(u; δuG) :=
∫ 8L

0

E(x)u′δu′ dx−
∫

∂NB

τ̄ · δu ds = 0, (R)

where Eu is a directional derivative of the energy functional E with respect to the displace-
ment field u. Here, δu ∈ H1

0 (0, 8L) is an arbitrary test function. We now aim to resolve
(R) using the efficient Global-Local formulation. To this end, the corresponding Global
BVP is given in Figure 1.4 (second-row). Its discretized setting includes 2 elements and
3 nodal points with a length 8L. Here, a homogenized Young’s modulus E3 is considered
for the entire global domain, thus EG = E3 at 0 ≤ x ≤ 8L. Accordingly, a Local BVP is
given in Figure 1.4 (fourth-row). Its discretized setting includes 2 elements and 3 nodal
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Figure 1.4: Geometry, loading setup and discretization for the one-dimensional bar.
First row is a Reference domain, second row is a Global domain, third row is a Fictitious
domain and the last row is a Local domain. Nodal points due to the discretization are
depicted for each geometry.

points with a length of 2L. Coarse representation of the Local domain within Global
level is the so-called Fictitious domain, as plotted in Figure 1.4 (third-row). Without a
theoretical explanation, a Global variational equation is defined to find uG ∈ H1

0 (0, 8L)
through

ẼuG
(uG; δuG) :=

∫ 8L

0

Eu′Gδu
′
G dx−

∫

ΓN,G

τ̄ · δuG ds

︸ ︷︷ ︸
standard terms

−
∫

ΓG

λΓ · δuG ds

︸ ︷︷ ︸
jump term

= 0, (G)

where λΓ is an interface residual that measure the discrepancy between Global and Local
solutions at the interface (i.e. global nodal point 2). This in turn enters the global scale
problem as a source term, enabling an update of the global solution. An interface residual
quantity as a traction jump between Fictitious and Local domain takes the following form

λΓ(x) = λF (x)− λL(x) at xG = 2L,

where (λF , λL) ∈ L2 are a given fictitious and local traction quantities on the Global
level through the previous solution field. To ensure the displacement continuity between
the Global and Local domains, resulting global displacement field at the interface uΓ is
imposed on the local boundary value problem. Hence the local boundary value problem
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Figure 1.5: Displacement distribution along the bar: Reference, Global and Local solu-
tions. (a) Global-Local solutions at the first iteration (b) Global-Local solutions at 15th

iteration.

is constrained to find (uL, λL) ∈ (H1
0 (0, 2L), L2) by




ẼuL

(uL, λL; δuL) :=

∫ 2L

0

E(x)u′Lδu
′
L dx−

∫

ΓL

λL · δuL ds = 0,

ẼλL
(uL, λL; δλL) := uΓ − u3L = 0

(L)

Two boundary value problems namely (G) and (L) have to be solved in an iterative
manner such that the convergence for the specific quantity is ensured. The convergence
state is achieved when both displacement and traction continuity along the interface are
held. To evaluate the Global-Local formulation, the boundary value problem given in
Figure 1.4 is considered. We set A = 1, L = 1 and (E2, E3) = (2E1, 3E1) with E1 = 10.
Resulting displacement distribution for the Reference, Global and Local boundary value

Figure 1.6: Convergence behavior of the Global-Local formulation for the one-
dimensional boundary value problem.
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problems is provided in Figure 1.5 for different iterations. It tuns out that after 15
iterations Global-Local formulation indeed recover the displacement obtained from the
Reference solution.

Figure 1.6 shows the convergence behavior of the Global-Local iterative procedure for
the one-dimensional boundary value problem given in Figure 1.4. Here, we set TOL =
10−12 hence after 39 iteration we reached to the required convergence. Further details on
the theoretical formulation of the Global-Local framework are provided in the following
sections at small and large deformation.

1.1.2. Adaptive concurrent multi-scale approach for anisotropic failure. A
considerable number of materials exhibits anisotropic behavior. There span a wide spec-
trum of applications such as failure in rocks [111, 251], tearing experiments in thin sheets
[297] and biomechanics [168, 39]. Numerical formulations for anisotropic phase-field
modeling of brittle fracture are investigated, for instance, in [299, 254, 149, 203, 59].
Anisotropic materials exhibit heterogeneous behavior on the local domain through a fiber
reinforced structure allowing for a homogeneous resolution on the global level. There-
fore, heterogeneous materials often require distinct multi-scale treatments such that the
full resolution on the local scale must be taken into account. In this section, we there-
fore propose a phase-field approach to brittle fracture in anisotropic solids based on the
Global-Local scheme [17, 258, 143, 140, 138].

Robin-type boundary conditions [141, 211, 210] are introduced to relax the stiff local
response at the global scale and enhancing its stabilization. The formulation is based
on an optimized Schwarz method in a multiplicative manner (see for instance [211] or
[210]). Another key goal in this research is the adaptive assignment of the local domain(s)
during a computation. This is achieved with adaptivity as documented in the work of
[162]. The adaptive procedure has two goals: (i) to adjust dynamically the local domain
when fractures are propagating; (ii) to reduce the total computational cost because the
local domains are tailored to the a priori unknown fracture path. This procedure is much
cheaper than using a large local domain from the beginning. The key requirement for
realizing this adaptive Global-Local scheme is a non-matching discretization method on
the interface. To this end, a dual mortar method [321, 278] is implemented, thus providing
sufficient regularity of the underlying meshes. Consequently, different meshes for the
global and local domains can be employed that allow for a very flexible discretization and
mesh generation.

1.1.3. Global-Local scheme for fracture in multi-field environments. Several
pressurized [69, 242, 240, 313, 162, 163, 290, 257] and fluid-filled [239, 317, 196, 236, 234,
115, 160, 12, 200, 310, 198, 75, 199, 88, 161, 343, 318, 15] phase-field fracture formula-
tions have been proposed recently in the literature. These studies range from modeling
of pressurized and fluid-filled fractures, mathematical analysis, numerical modeling and
simulations up to high-performance parallel computations. A related technique that has
the potential to treat large-scale problems efficiently is a global-local technique proposed
in [143, 138]. In this section, we extend the Global-Local approach towards fracture in
porous media at finite strains. This technique has the potential to tackle practical field
problems in which a large scale problem might be considered, in which fracture propaga-
tion is a localized phenomenum.

Our formulation can deal with non-matching grids at the interface, which is very inter-
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esting for cases towards practical field problems as mentioned in [317] in which possibly
various programming codes must be coupled. On the fine-scale level all (nonlinear) equa-
tions are solved. On the global level, only coarse representations of the pressure and
crack phase-field are considered. Additionally, it required significantly less degrees of
freedom than the Reference (single-scale) model, leads to a remarkable reduction of the
computational time.

1.1.4. Modeling of Local failure in multi-physics problems. 1

In the above investigations, failure is analyzed using the Global-Local (concurrent
multi-scale) approach, in which the characteristic length of the Local scale is of the same
order as its Global counterpart, i.e. Llocal ≡ Lglobal, as classified in [206, 124, 140, 143]. In
this section, the focus is put on the Local (lower) scale by developing a micro-mechanical
model for failure in multi-physics problems. In compression with the Global-Local for-
mulations, here the average size of this heterogeneous Local domain is much smaller than
its Global specimen size, i.e. Llocal ≪ Lglobal, see [219, 124]. To this end, we proposed
a water-induced micro-damage mechanisms of concrete using the virtual element method
(VEM).

Within a multiscale point of view, concrete is considered as an over-complex system of
solid skeletons (e.g. cement paste and stones), fluid bulk phases (e.g. water), pores with
a high degree of heterogeneity. A great number of macro-meso-micro-nano-mechanically
motivated approaches exist in the literature to model concrete failure behavior, see for
example [319, 217, 282, 172, 78, 334, 291, 264, 153, 152, 180, 306, 208, 103, 346, 281, 137]
and the citations therein. These approaches are based on dry geometries which are stored
and tested in the air to analyze concrete damage processes. However, specimens that are
submerged in water have a significantly lower failure resistance than dry specimens. This
phenomenon was recognized in the past (e.g. in offshore vs. onshore wind turbines), but
how the moisture content in the concrete microstructure influences its resistance against
fracture is still unknown. This has motivated us to develop a micro-mechanical model to
study the influence of water on deterioration and failure of high-strength concrete based
on the experimental observations of [303]. The simulation of fracture processes in porous
media at the micrometer length scale is achieved by utilizing the continuum phase-field
method [67, 188, 162, 234, 115, 160, 12]. The outcome results stemmed out from the DFG-
Priority Program SPP 2020 ”Cyclic Damage Processes in High-Performance Concretes in
the Experimental Virtual Lab”.

1.2. Application of the Virtual Element Method (VEM) in Mechanics

With the ongoing development of modern element technologies, promising numerical
simulation tools were created for failure analysis of solids. In this regard, discretization
schemes like the Finite Difference Method [133, 194, 301], the Finite Element Method
[43, 345, 323] and the Boundary Element Method [40, 262, 21, 272] are well established
numerical tools for solving various science and engineering problems. Many of these meth-
ods cover the problem ranges that are described in Part I of this work. Additionally new

1Sole authorship
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Figure 1.7: Virtual Elements for engineering applications. Arbitrary element shapes
(irregular, convex, concave) with different node numbers.

approaches like Meshless methods for arbitrary deformations [255, 171, 53, 38], IsoGe-
ometric Analysis [174, 92] and the eXtended Finite Element Method [51, 243, 44] for
fracture mechanics problems are continuously evolved and can be efficiently used within a
specific problem range. Hence, the art of modeling means here to pick the right numerical
solution method that provides accurate results in the most time efficient way. Each of the
methods described above has its own specifications and thus needs experts for a correct
and efficient application.

In this contribution a relatively new discretization technique the Virtual Element
Method (VEM) proposed in [46] will be presented that introduces some new features
to the numerical solution of problems in solid mechanics. VEM can be seen as an exten-
sion of the classical Galerkin finite element method, being inspired from modern mimetic
finite difference schemes and rooted in the pioneering work of [71]. VEM has proven
to be a competitive discretization scheme for meshes with highly irregular shaped ele-
ments that can even be non convex, as sketched in Figure 1.7. Moreover, VEM allows
the usage of an arbitrary polygonal (2D) and polyhedral (3D) element shapes with ar-
bitrary number of nodes. Due to the construction of VEM, a stabilization procedures is
required as described in [77] for linear Poisson problems. So far applications of virtual
elements have been devoted to linear elastic deformations in [135, 36], contact problems
in [328, 9], hyperelastic materials at finite deformations in [85, 329], second order ap-

Figure 1.8: Virtual Elements for contact mechanics. Left: Contact discretization using
node insertion in VEM. Right: Circular joint contact - Stress distribution σVM using
locally refined VEM Voronoi element, see [9].
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Figure 1.9: Virtual Elements for finite elastic-plastic deformations. Left: Load-deflection
curves of punch problem for different element formulations. Right: Distribution of the
equivalent plastic strain α at the final deformation state using VEM Voronoi mesh. VEM
is more robust than FEM in case of a severe distortion of the element, as well documented
in [169].

proximation (serendipity elements) in [49, 97], discrete fracture network simulations in
[175, 54, 55, 256], anisotropic materials at finite strains in [330, 331], inelastic solids in
[298], finite elasto-plastic deformations in [324, 169, 7], isotropic damage in [96], phase field
modeling of fracture in [6, 8], finite strain elastodynamics in [90], finite crystal plasticity
[45] and recently extended towards general element shapes in [333].

Key advantage of the virtual element method is that different numbers of nodes can be
used to define an element. This characteristic fits extremely well into a general contact-
mechanics formulation with non-matching meshes, since it allows to add additional nodes
on the fly and thus to formulate a node-to-node contact approach, as shown in Figure 1.8.
VEM is more robust than FEM in case of a severe distortion of the element, as depicted
in Figure 1.9 for finite strain elasto-plastic deformations. Here, finite elements fail to
converge at large deformation where material flows out under punch. Whereas, Virtual

Figure 1.10: A virtual element method for crack propagation. A prescribed crack evolu-
tion during a tensile load condition. a)-b) A crack path on VEM mesh with a non-convex
element Ωcon.. c) Contour plot of the displacement field ūy, where red and blue represent
the maximum and minimum displacement, respectively as illustrated in [175].
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elements did not need a refined load steps as was the case for FEM towards the failure,
for more details the interested reader is referred to [169].

Another important aspect of VEM in fracture mechanics is that the crack path has the
possibility to change its direction within a virtual element. Due to that, a kinked crack
can be modeled using the efficient virtual element formulation without any restriction, as
plotted in Figure 1.10 as an example of such crack trajectories.

The development of a virtual element typically includes a projection step and a sta-
bilization step. In the projection step, the deformation ϕh which appears in the weak
formulation or energy functional is replaced by its projection ϕΠ onto a polynomial space.
This results in a rank-deficient structure, so that it is necessary to add a stabilization
term to the formulation, see [46] and [47] which depends in the linear case on a scalar
value computed from the elasticity tensor. In [85] the scalar stabilization parameter was
replaced by one that computed using the deformation depending fourth-order elasticity
tensor. A new stabilization techniques for the virtual element method was lately devel-
oped in [329] who use a technique that was first described in [249], generalized in [60] and
simplified in [187] in the context of hexahedral finite elements. The essence of the method
is the addition to the positive semi-definite mean strain energy Ψ(ϕΠ) a positive-definite
energy Ψ̂(ϕh) which is evaluated using full quadrature, and for consistency subtraction
of a term involving Ψ̂(ϕΠ) as a function of the mean strain. This stabilization was also
applied in [324] where some correction were needed in case of plastic deformations.

The research on virtual element method (VEM) is still vivid and point in many differ-
ent engineering directions. Three applications can be found in the next sections. There-
after we put the focus on extended-gradient inelastic-theory to overcome the non-physical
behavior observed in previous sections.

1.2.1. Modeling of brittle fracture using an efficient virtual element scheme.
This section represents an initial contribution to the use of the virtual element method-
ology for numerically solving fracture-mechanics problems. In contrast to the projection
of the displacement field as the only global field being sought in most virtual element
method applications [46, 36, 324], this work further extends VEM towards multi-physics
problems. For this purpose, the fracture primary field is also projected onto a polynomial
space. The modeling of crack formation can be achieved in a convenient way by contin-
uum phase-field approaches to fracture, which are based on the regularization of sharp
crack discontinuities [225, 24, 189, 259, 20, 245, 250].

The goal of this part is to present a consistent variational-based framework for the
phase-field modeling of brittle fracture using an efficient virtual element method. It is
based on a constitutive work density function and a dissipation function with threshold
for fracture, which together define a minimization principle for the coupled problem. The
work density function is decompsed into:

(i) An energetic part defined to be exclusively elastic in nature which represents a
degraded elastic free energy density. Besides the constitutive expression for the
stresses, it also provides a locally energetic driving force for regularized fracture.

(ii) The dissipative part governs fracture resistance with the inclusion of a fracture
length scale parameter.

For brittle fracture, the material response corresponds to the sequence: E(elastic) -
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F (fracture). On the computational side, a robust and efficient monolithic scheme is
employed using the software tool AceFEM program in the numerical implementation to
compute the unknowns (displacement and crack phase-field), see [184]. Key observation
is that the capability of VEM element with Voronoi mesh is comparable to using finite
elements of higher order.

1.2.2. Virtual element formulation for modeling of ductile fracture. Most
metals fail in a ductile fracture mode, preceded by significant plastic deformation, in
contrast to brittle or quasi-brittle materials where fracture occurs without noticeable per-
manent deformation. Analysis of crack initiation and propagation in ductile materials has
been a topic of intensive research during the last years to predict failure mechanisms for
various engineering applications [252, 201, 195, 57].

The modeling of failure in ductile materials must account for complex phenomena such
as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the
macro-scale. From a computational point of view, the tracking of sharp crack surfaces
provides substantial difficulties and is often restricted to simple crack topologies. This
difficulty can be overcome by recently developed phase-field approaches to fracture, which
are based on the regularization of sharp crack discontinuities, see [113, 230, 22, 232, 64,
101, 86, 14, 108, 304, 338].

In the presented work, we examine the efficiency of VEM for predicting ductile failure
mechanisms in solids due to crack initiation and propagation at finite strains. The cou-
pling of plasticity to fracture mechanics is realized by a constitutive work density function
that includes the stored elastic energy and the dissipated work due to plasticity and frac-
ture. The latter represents a coupled resistance to plasticity and fracture, depending on
the internal variables which enter plastic yield function and fracture threshold function.
Key observation is that the capability of VEM element with Voronoi mesh is comparable
to using finite elements of higher order. Furthermore, VEM is more robust than FEM in
case of a severe distortion of the element, as highlighted in Figure 1.9.

1.2.3. VEM for 3D local thermo-elasto-plastic solids. Virtual elements were
introduced in the last decade and applied to various problems in solid mechanics. The
successful application of the method to 2D non-linear problems introduced above leads
naturally to the question of its effectiveness and robustness in the third dimension. Hence,
this section is concerned with the extensions of the virtual element method to problems
of 3D finite strain thermo-plasticity. In previous sections of this Habilitation thermal
effects were not included in the constitutive formulation, despite the fact that temperature
distribution during heat accumulation has a strong influence on the mechanical properties
as well documented in [32, 33, 288]. To this end, the model problem of von Mises type-
plasticity using VEM [169] is extended to account for thermal effects in line with [327].

Low-order virtual element formulations for problems in three dimensions, with ele-
ments being arbitrary shaped polyhedra, are considered, as outlined in [7]. The consti-
tutive formulation is based on a minimization of a specific pseudo-energy, with a novel
construction of the stabilization energy for the coupled problem. For comparison pur-
poses, results of the standard finite element method (FEM) are also demonstrated. It
was shown that the capability of virtual elements is comparable to using finite elements
of higher order. Additionally, a discretization based on VEM did not need any refined
load steps and is more robust than FEM in case of severe distortions of the elements.
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1.2.4. Coupled thermomechanical response of gradient inelastic deforma-
tions. 2

In Section 1.2.2 and Section 1.2.3, the local theory of plasticity was considered in the
constitutive modeling. Numerically, such a conventional formulation suffer from the so-
called pathological mesh dependency behavior using virtual or finite element techniques.
This leads to loss of ellipticity of the governing equations. Thus, an extended-gradient
inelasticity is proposed within this section to get red of the non-physical mesh dependency
response [204, 274, 76, 309].

Inspired by the formulations introduced in Part I of this cumulative work, the coupled
problem is split up into Global and Local constitutive equations in the micromorphic
regularization setting as described in [131, 238]. The key point is the introduction of
dual Global-Local field variables via a penalty method, where only the Global fields
are restricted by boundary conditions. Hence, the problem of restricting the gradient
variable to the plastic domain is relaxed, which makes the formulation very attractive
for element implementation. To this end, we developed a constitutive model for coupled
gradient thermo-plasticity under finite deformations in the logarithmic strain space [11].
In the mechanical part, the model problem of von Mises plasticity introduced before is
extended towards gradient hardening/softening response. In the thermal part, we followed
the investigations of Section 1.2.3 that demonstrate the effect of temperature on the
mechanical fields resulting in a thermal expansion.

1.3. Outline of the work

This work is divided into two parts, briefly summarized below.

Part I is concerned with the efficient Global-Local techniques for solving fracture me-
chanics problems. Its first Chapter 2 describes in detail the Global-Local approach
supplemented with predictor-corrector adaptivity applied to anisotropic phase-field brit-
tle fracture. It emphasizes on a Robin-type boundary conditions to relax the stiff local
response at the global scale and enhancing its stabilization. To cope with different element
discretizations at the interface between the two nested scales, a non-matching dual mortar
method is formulated. Hence, more regularity is achieved on the interface. Chapter 3
then focuses on the extension of the fracture phase-field formulations in porous media to-
wards a global-local scheme. Here also a predictor-corrector strategy is adopted in which
the local domain is dynamically adjusted to the current fracture pattern. In Chapter
4 a micromechanical model for failure in multi-physics problems is developed. Here, the
focus is laid on the Local (lower) scale, in which the average size of this heterogeneous
Local domain is much smaller than its Global specimen size. This is achieved using the
recently developed virtual element method (VEM).

Part II is concerned with a simple low order virtual element formulation and its exten-
sion to different nonlinear problems such as finite thermo-plasticity and phase-field ap-
proaches. In Chapter 5 an efficient 2D virtual element method (VEM) for the phase-field
modeling of isotropic brittle fracture is addressed. A rigorous variational-based frame-
work is proposed for the fracture phase-field approach undergoing small strains. Here
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a flexible choice of nodes number in an element that having arbitrary shape is feasible.
This number can be changed easily during the simulation process. Chapter 6 presents
a 2D virtual element scheme for the phase-field modeling of isotropic ductile fracture.
The formulation here is based on a minimization of a pseudo-potential density functional
for the coupled problem undergoing large strains. Chapter 7 is concerns with the ex-
tensions of the virtual element method to problems of 3D finite strain thermo-plasticity.
Hereby, a conventional local theory of plasticity is considered in the constitutive mod-
eling, leading numerically to mesh sensitive results. In Chapter 8, we overcome this
difficulties by introducing an extended-gradient theory of thermo-plasticity that accounts
for micro-structure based size effects.

Chapter 9 closes this Habilitation with some concluding remarks and possible future
research directions in computational fracture mechanics.



— Part I —

Efficient Global-Local Techniques for
Failure Analysis
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2. Global-Local approach for anisotropic failure in brittle solids

This chapter addresses an efficient Global-Local approach supplemented with predictor-
corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field
formulation is used to resolve the sharp crack surface topology on the anisotropic/non-
uniform local state in the regularized concept. To resolve the crack phase-field by a given
single preferred direction, second-order structural tensors are imposed to both the bulk
and crack surface density functions. Accordingly, a split in tension and compression modes
in anisotropic materials is considered. A Global-Local formulation is proposed, in which
the full displacement/phase-field problem is solved on a lower (local) scale, while dealing
with a purely linear elastic problem on an upper (global) scale. Robin-type boundary
conditions are introduced to relax the stiff local response at the global scale and enhanc-
ing its stabilization. Another important aspect of this contribution is the development
of an adaptive Global-Local approach, where a predictor-corrector scheme is designed in
which the local domains are dynamically updated during the computation. To cope with
different finite element discretizations at the interface between the two nested scales, a
non-matching dual mortar method is formulated. Hence, more regularity is achieved on
the interface. Several numerical results substantiate our developments. The recent pub-
lication of Noii & Aldakheel et al [258] serve as the basis for the content of this
chapter.

2.1. Introduction

Heterogeneous materials such as wood, composites and bones are composed of com-
plicated constituents on different scales. Most of these anisotropic materials, even with
similar constituents properties at the upper scale, can behave differently on the lower
scale. Such heterogeneous responses of solid materials are related to non-uniform and
anisotropic behavior on the lower scale.

The multi-scale family can be classified in two distinct classes denoted as hierarchi-
cal and concurrent multi-scale techniques. These are defined by differentiation of the
global characteristic length scale Lglobal with its local domain counterpart Llocal. In the
hierarchical multi-scale method, the average size of the heterogeneous local domain is
much smaller than its global specimen size, i.e. Llocal ≪ Lglobal, see [219, 124, 91]. This
is often denoted as scale separation law, see computational homogenization approaches
based on the Hill-Mandel principal; outlined for instance in [166, 219] among others. On
the other hand, the concurrent multi-scale method implies Llocal ≡ Lglobal, as classified
in [206, 124]. Herein, the local periodicity (which is the underlying assumption of clas-
sical computational homogenization) is not applicable. Then, the full resolution of the
non-linear response on the local scale must be taken into account, due to the strain local-
ization effect, as outlined in [123]. These type of materials require a different multi-scale
framework in which the non-linear response is consistently projected to the global scale;
see for example [221, 215, 340, 157].

In the present contribution, we develop a multi-scale approach [173, 141, 207, 140,
143] when the characteristic length of the local scale is of the same order as its global
counterpart. This is accomplished by introducing a Global-Local approach based on the
idea of a history-dependent algorithm at the nodal level, see [221] and references cited
therein. This algorithm refers to the procedure in which the boundary value problem
of one scale is solved based on the given information from another scale (as a history
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variable). Accordingly, the history-dependent algorithm contains both the upscaling and
downscaling steps. In the upscaling step, the global response is achieved, whereas the lower
scale information is retained, representing a local-global-transition procedure. However in
the downscaling step, a re-localization/re-meshing of the coarse domain is performed at
the local level, see [167, 84], thereafter solving a non-linear boundary value problem,
based on the information passed from the global scale, representing global-local-transition
procedure.

In this work, the Global-Local approach is employed as a computational framework
for solving fracture mechanics problems as it was first formulated in [143]. Therein,
the following assumptions were made [124, 158]: (i) The nonlinear phenomenological
constitutive law (e.g. the failure mechanism) is embedded on the local scale and linear
behavior is assumed on the global scale. (ii) The global level is free from geometrical
imperfections and hence heterogeneities exist only on the local level. (iii) On the local
level, we consider a divergence-free assumption for the stress state, such that it is free
from any external imposed load. Accordingly, an interface energy functional based on the
Localized Lagrange Multiplier method [260, 261] is desired for the coupling of different
domains and scales.

Global-Local approaches easily allow for different spatial discretizations for the global
and local domains. This enables computations and couplings with legacy codes for in-
dustrial applications in more efficient settings. In this regard, a flexible choice of the
discretization scheme can be employed on each domain independently; e.g. the Finite
Element Method (FEM) [323], Isogeometric Analysis (IGA) [174] and the Virtual Ele-
ment Method (VEM) [332]. A typical application using a simplified Glocal-Local model
was done in [317]. Therein, a (phase-field) fracture model (computed with deal.II [41] in
C++) was employed as local problem using finite elements. The local setting was then
coupled to a reservoir simulator (IPARS [312] based on Fortran) for computing the global
problem. For this global problem, different discretization schemes, the mainly based on
finite differences for subsurface fluid flow, were adopted.

In the following, we describe in more detail our main goals. First, we focus on the
development of a new Global-Local formulation based on Robin-type boundary conditions
[141, 211, 210]. These conditions relax the stiff local response transferred to the global
scale and thus enhance the stabilization of the Global-Local approach. We briefly recall
that Robin-type boundary conditions contain both Dirichlet and Neumann conditions.
The formulation is based on an optimized Schwarz method in a multiplicative manner
(see for instance [211] or [210]).

The second goal of this contribution is to use the Global-Local scheme for the anal-
ysis of anisotropic fracture processes. Specifically, the continuum phase-field approach to
brittle fracture is employed [134, 67, 66, 154, 28, 225, 188]. Due to its capability of
capturing complex crack patterns in various engineering applications, this methodology
has attracted a considerable attention in recent years. Using such a variational approach,
discontinuities in the displacement field are approximated across the lower-dimensional
crack surface by an auxiliary phase-field function. The latter can be viewed as an indi-
cator function, which introduces a diffusive transition zone between the broken and the
unbroken material. The essential aspects of a phase-field fracture propagation formulation
are techniques that must include resolution of the length-scale parameter with respect to
spatial discretization, efficient and robust numerical solution procedures, and the enforce-
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ment of the irreversibility of crack growth. Recent studies on phase-field modeling of
isotropic brittle fracture have been devoted to the multiplicative decomposition of the de-
formation gradient into compressive-tensile parts in [164], coupled thermo-mechanical and
multi-physics problems [231], dynamic cases in [62], a new fast hybrid formulation in [24],
different choices of degradation functions in [280], and cohesive fracture in [307]. Further
applications include hydraulic fracture [239, 159, 236], nonlinear solvers [313, 162], linear
solvers [122, 163], crack penetration or deflection at an interface in [259] and the virtual
element method in [6].

A considerable number of materials exhibits anisotropic behavior. There span a wide
spectrum of applications such as failure in rocks [111, 251], tearing experiments in thin
sheets [297] and biomechanics [168, 39]. Numerical formulations for anisotropic phase-
field modeling of brittle fracture are investigated, for instance, in [299, 254, 149, 203, 59].
Anisotropic materials exhibit heterogeneous behavior on the local domain through a fiber
reinforced structure allowing for a homogeneous resolution on the global level. Therefore,
heterogeneous materials often require distinct multi-scale treatments such that the full
resolution on the local scale must be taken into account. In this work, we therefore propose
a phase-field approach to brittle fracture in anisotropic solids based on the previously
described Global-Local scheme.

Our third main goal is the adaptive assignment of the local domain(s) during a com-
putation. This is achieved with adaptivity. The adaptive procedure has two goals: (i)
to adjust dynamically the local domain when fractures are propagating; (ii) to reduce
the total computational cost because the local domains are tailored to the a priori un-
known fracture path. This procedure is much cheaper than using a large local domain
from the beginning. Our approach is inspired by [162] in which a dynamic update in
form of a predictor-corrector scheme of crack-oriented mesh refinement was developed.
We now apply this idea to the Global-Local approach. In the predictor step, mesh edges
are identified below a given threshold value for the phase-field variable on the local level.
On the global level, neighboring elements are subsequently found, then re-meshed. After-
wards, the old solution is interpolated. In the corrector step, we take the old solution and
compute the problem again, but now on the newly determined local domain. Specifically,
the predictor-corrector approach is now capable to deal with brutal fracture growth; i.e.
when a complete failure happens in one load increment.

The key requirement for realizing this adaptive Global-Local scheme is a non-matching
discretization method on the interface. To this end, a dual mortar method [321, 278] is
implemented, thus providing sufficient regularity of the underlying meshes. Consequently,
different meshes for the global and local domains can be employed that allow for a very
flexible discretization and mesh generation.

In a final step, in addition to the local crack phase-field, we determine the coarse
representation of the crack phase-field at the global level. This is a post-processing step
and is computed based on either (a) solving the crack phase-field on the global level,
denoted as global crack phase-field solution. Or, (b) by means of a homogeneous crack
phase-field solution, which is an extension of the isotropic formulation given in [231, 230]
to our proposed anisotropic phase-field setting.

The chapter is structured as follows: In Section 2.2, we outline the variational anisotropic
phase-field formulation of brittle fracture. Section 2.3 presents the Global-Local approach
to capture the local heterogeneities and constitutive non-linearities at the global level.
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This is augmented by introducing a Robin-type boundary conditions. Then in Section
2.4, a robust and efficient predictor-corrector Global-Local adaptive approach is devel-
oped. Finally, Section 2.5 contains numerical results that demonstrate the modeling
capabilities of the proposed approach. Qualitative and quantitative comparisons with a
single scale phase-field solution are provided, as well.

2.2. Variational Anisotropic Phase-Field Brittle Fracture

2.2.1. The primary fields of anisotropic brittle solids. In the following, let
B ⊂ Rδ, δ = 2 be a smooth open and bounded set with ∂B denoted as its boundary.
We assume a Dirichlet boundaries conditions ∂DB and Neumann condition on ∂NB :=
ΓN ∪C, where ΓN denotes the outer domain boundary and the lower dimensional fracture
C ∈ Rδ−1 is the crack boundary, as illustrated in Fig. 3.1. Let I := (0, t) denote the
loading/time interval with t > 0 being the end time value. Using a phase-field approach,
the fracture surface C is approximated in BL ⊂ B ∈ Rδ so-called local domain. The intact
region with no fracture is denoted as complementary domain BC := B\BL ⊂ B ∈ Rδ, such
that B̄C ∪ B̄L =: B and B̄C ∩ B̄L = ∅. We note that BL, i.e. the domain in which the
smeared crack phase-field is approximated, and its boundary ∂BL depend on the choice
of the phase-field regularization parameter l > 0. This fracture length scale parameter
l is related to the discretization of a domain. This means in particular that h = o(l)
(see e.g., [65] for the related problem of image segmentation) where h denotes the usual
spatial discretization parameter. A simplified numerical analysis on h = o(l) is provided
in [213]. A detailed computational analysis was performed in [314, 163]. Moreover, the
loading interval T := (t0, T ) is discretized using the discrete time (loading) points

0 = t0 < t1 < . . . < tn < . . . < tN = T,

with the end time value T > 0. The parameter t ∈ T denotes for rate-dependent problems
the time, for rate-independent problems an incremental loading parameter.

A phase-field approach to fracture leads to a multi-field problem that depends on the
deformation field and the crack phase-field

u :

{
B × T → Rδ

(x, t) 7→ u(x, t)
and d :

{
B × T → [0, 1]
(x, t) 7→ d(x, t),

(2.1)

of a material point x ∈ B at time t ∈ T .
Specifically, we deal with a diffusive formulation that interpolates between the intact

(unbroken) region with d = 1 and the fully fractured state of the material with d = 0 at
x ∈ B. The Neumann boundary condition ∇d.n = 0 is imposed on ∂B with n being the
outward normal to the surface. The strain is assumed to be small, i.e. the norm of the
displacement gradient ||∇u|| < ǫ is bounded by a small number ǫ.

2.2.2. Variational formulation for the multi-field problem. In this section, we
recapitulate a variational approach to brittle fracture in elastic solids at small strains.
The energy stored in a bulk strain density for isotropic materials is characterized by the
three invariants,

I1(ε) = tr(ε) , I2(ε) = tr(ε2) , I3(ε) = tr(ε3). (2.2)

Additionally, it is assumed that the solid material is reinforced by only one family of fibers
which is denoted as transversely isotropic material. A single preferred direction at point
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Figure 2.1: Setup of the notation: the unbroken domain is denoted by BC and C is the
crack phase-field. The smeared crack phase-field is approximated by the domain BL. The
whole domain is defined as a close subset as B := B̄C ∪ B̄L. The fracture boundary is ∂BL
and the outer boundary of the domain is ∂B.

x is defined by the normal vector a(x) with ‖a‖ = 1 that is called structural director.
This type of material has the highest strength in the direction of the fiber and depicts
isotropic response along its orthogonal direction. Hence, the stress state at a material
point x depends on the deformation and the given single preferred direction. Thus it
results to a deformation-direction-dependent problem. To do so, a penalty-like parameter
χ > 0 is defined to restrict a deformation on the normal plane to a. The effective bulk
free energy now depends on two second-order tensorial quantities, namely the strain ε

and structural M tensor, defined as

ε = ∇su = sym[∇u] and M := a⊗ a, (2.3)

they can be represented by additional two deformation-direction-dependent invariants

I4(ε;M) = tr(ε.M) = ‖a‖2ε = λ2a0 , I5(ε;M) = tr(ε2.M). (2.4)

Note, that I4 is nothing else than the quadratic stretch in the direction a of the fiber. Let
the effective strain density function, Ψ(ε;M) possesses the property of the transversely
isotropic material which has the coordinate-free representation for both matrix and fiber
materials. Thus the following holds

Ψ(ε;M) =: Ψ(QεQT ;QMQT ) ∀Q ∈ G ⊂ O(3), (2.5)

that holds for all orthogonal tensor Q, i.e. QTQ = QQT = I, that is a subset of the
symmetry group G of the anisotropic material. I = δij is the second order identity tensor.
We denote that Ψ(ε;M) is a scalar-valued isotropic tensor function of the symmetric
strain tensor ε and the structural tensor M . Hence, the scalar-valued effective strain
density function is an invariant in space and time between two pairs of point in the given
domain under rotation. Thus Ψ(ε;M) can be represented by the principal invariants of
ε and M as

Ψ(ε;M) = Ψ
(
I1(ε), I2(ε), I4(ε;M), I5(ε;M)

)

= Ψ̃iso
(
I1(ε), I2(ε)

)
+ Ψ̃aniso

(
I4(ε;M), I5(ε;M)

)
.

(2.6)

Herein, the isotropic free-energy function corresponds to

Ψ̃iso
(
I1(ε), I2(ε)

)
:=

λ

2
I21 + µI2, (2.7)
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with λ > 0 and µ > 0 being the elastic Lamé constants. The anisotropic free-energy
function is defined as

Ψ̃aniso
(
I4(ε;M), I5(ε;M)

)
:=

1

2
χI24 + 2Ξ I5, (2.8)

with the anisotropic material parameters χ and Ξ. A stress-free condition, i.e. ε = 0 ,
is required Ψ̃iso

(
I1(0 ), I2(0 )

)
= 0. Moreover, Ψ̃aniso

(
I4(0 ;M), I5(0 ;M)

)
= 0 must hold

true.

Using these definitions, to establish variational based anisotropic phase-field approach
to brittle fractures, we define the bulk free energy functional which represents the stored
energy in bulk as

Ebulk(u;M) =

∫

BC

Ψ(ε;M) dx−
∫

∂NBC

τ̄ · u ds (2.9)

Herein, τ̄ denotes the traction forces on the complementary boundaries ∂NBC := ΓN ∪ C.
The total energetic functional is based on both the stored bulk energy as well as the

fracture dissipation, defined in the work of [134],

E(u, C;M) = Ebulk(u;M) +GcHδ−1(C) , (2.10)

where Gc is the Griffith’s critical elastic energy release rate andHδ−1 is a δ−1 dimensional
Hausdorff measure. For the numerical treatment we regularize Eq. 2.10 following [67].
Specifically, the crack energy is approximated through a sequence of elliptic problems,
so-called Ambrosio-Tortorelli functionals, see [26, 27]. Therein, Hδ−1 is regularized by the
crack phase-field d. Finally, we account for the crack irreversibility constraint meaning
the crack can only grow:

ḋ ≤ 0. (2.11)

In the incremental version, this condition reads:

d ≤ dold,

where d := d(tn) and dold := d(tn−1). For stating the variational formulations, we now
introduce:

V := {H1(B)δ : u = ū on ∂DB}, W := H1(B),
Win := {d ∈ H1(B)δ−1| 0 ≤ d ≤ dold}.

(2.12)

As typical in problems with inequality constraints (see e.g., [179, 181]),Win is a nonempty,
closed, convex, subset of the linear function space W . Due to the inequality constraint in
Eq. 2.11, Win is no longer a linear space.

2.2.3. Phase-field approximation of anisotropic crack topologies. The varia-
tional approach of [68] is widely used for fracture failure phenomena in isotropic elastic
solids. As a point of departure, in line with [224, 108], let a regularized macro crack topol-
ogy of a sharp crack be represented by the exponential function 1 − exp[−|x|/l] satisfying
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d(0) = 0. We define a regularized isotropic crack surface energy functional of the solid
by,

GcHδ−1
iso (C) := Gc

∫

B

γisol (d,∇d) dx with γisol (d,∇d) := 1

2l
(1− d)2 + l

2
∇d.∇d, (2.13)

in terms of the isotropic crack surface density function per unit volume of the solid γisol .

The above representation of a crack surface density function is extended for the class
of anisotropic responses; as for instance outlined in [254, 299, 248]. Similarly to the defor-
mation field, we define a total crack surface density function. It is additively decomposed
into an isotropic and anisotropic crack surface density function, respectively, as follows

γl(d,Q∇d) := γisol (d,∇d) + γanisol (∇d) for all Q ∈ G ⊂ O(3), (2.14)

where G is a given symmetry group of the anisotropic material, i.e. the set of rotation
and reflection vectors, and γanisol (d,∇d) represents an augmented crack surface density
for the anisotropic response. Let this function posses the property of the transversely
isotropic material which has the coordinate-free representation for both matrix and fibers
materials. This leads to

γl(d,∇d;M) = γl(d
2,∇d · ∇d,∇d ·M · ∇d) . (2.15)

Using this definition, an anisotropic crack surface density response can be defined as

γanisol (∇d;M) := α
l

2
∇d.M .∇d. (2.16)

This type of fracture function has the highest geometric resistance in the fiber direction
and has an isotropic response along its orthogonal direction. Hence, the geometric re-
sistance state at a material point x depends on crack phase-field and the given single
preferred direction a. This results in a crack-direction-dependent problem.

The anisotropic term α in Eq. 2.16 behaves as a penalty-like parameter and hence for
α→∞ one obtains ∇d · a = 0, which means that the crack lies parallel to the preferred
orientation. For α→ 0 the isotropic response will be recovered.

Formulation 1.1: Energy functional for the anisotropic crack topology LetM ,
χ, Ξ and α be given with the initial conditions u0 = u(x, 0) and d0 = d(x, 0). For the
loading increments n = 1, 2, . . . , N , find u := un ∈ V and d := dn ∈ Win such that the
functional

E(u, d;M) := Ebulk(u, d+;M) + Efrac(d;M) + Eext(u)

=

∫

B

wbulk(ε, d;M) dx+

∫

B

wfrac(d,∇d;M) dx−
∫

∂NB

τ̄ · u ds,

is minimized. The elastic bulk density wbulk along with the fracture contribution wfrac both
define the so-called total pseudo-energy density function as

w(ε, d,∇d;M) = wbulk(ε, d;M) + wfrac(d,∇d;M),

wbulk(ε, d;M) = g(d+)Ψ(ε;M),

wfrac(d,∇d;M) = Gcγl(d,∇d;M).
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Remark 1: In the case of elastic cracks, it can be shown that the phase field satisfies
0 ≤ d ≤ 1. When additional physics are included for instance a fluid inside the frac-
ture [241] or non-isothermal effects [257], the energy functional must be modified to cope
with negative values of d. Hence in order to allow for future extensions, we work in the
remainder of this work with d+ rather than d. A detailed discussion is provided in [241].

Remark 2: The comparison of the bulk energy functional in Eq. 2.10 and Formulation
2.1 is tow-fold. First, the integration is changed from BC to the entire domain B due to
the presence of the phase-field function d. Second, the presence of d in the bulk energy
through the degradation function g(d) defines the transition state from the unbroken to
fracture state hence results in the degradation of the solid material as well as the crack
propagation.

2.2.4. Strain-energy decomposition. Since the fracturing material behaves quite
differently in tension and compression, a consistent split for the strain energy density
function is employed, where we apply the decomposition only to the isotropic strain
energy function, i.e. Ψiso

(
I1(ε), I2(ε)

)
. Hence, instead of dealing directly with ε(u), we

perform additive decomposition of the strain tensor as

ε = ε+ + ε− with ε :=

δ∑

i=1

〈εi〉±Ni ⊗Ni ,

with the tension ε+ and compression ε− strains. Here, 〈x〉± := x±|x|
2

is a ramp function
of R± expressed by the Macauley bracket. {εi} are the principal strains and {Ni} are
the principal strain directions. The tension/compression fourth-order projection tensor is
defined as

P±
ε :=

∂ε±

∂ε
=
∂
(∑δ

i=1〈εi〉±Ni ⊗Ni

)

∂ε
. (2.17)

It turns out that, P±
ε projects the total strain into its positive and negative parts accord-

ingly, i.e ε± = P±
ε : ε. So, a decoupled representation of the strain-energy function into a

so-called tension and compression contribution is given as follows,

Ψiso
(
I1(ε), I2(ε)

)
:= Ψ̃iso,+

(
I+1 (ε), I

+
2 (ε)

)
︸ ︷︷ ︸

tension term

+ Ψ̃iso,−
(
I−1 (ε), I

−
2 (ε)

)
︸ ︷︷ ︸

compression term

. (2.18)

Herein, the positive and negative principal invariants are

I±
1
(ε) := 〈I1(ε)〉±, I±

2
(ε) := I2(ε

±). (2.19)

Remark 3: An alternative definition to I±
1 (ε) := 〈I1(ε)〉±, can be defined by using

the same description introduced in I±2 (ε) for the first principal invariant which results
in I±1 (ε) := I1(ε

±). This provides a new description for the strain-energy function rep-
resented in Eq. 2.18. However, that is beyond the scope of present chapter and will
investigated in future work.

Physically, it is trivial to assume that the degradation induced by the phase field acts only
on the tensile and shear counterpart of the elastic strain density function. Hence, it is
that assumed there is no degradation in compression, which also prevents interpenetration
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of the crack lips during crack closure, see [224]. It turns out that the bulk work density
function for the fracturing material becomes,

wbulk(ε, d;M) := g(d+)
[
Ψ̃iso,+(I+1 , I

+
2 ) + Ψ̃aniso(I4, I5)

]
+ Ψ̃iso,−(I−1 , I

−
2 ). (2.20)

Here a monotonically decreasing quadrature degradation function, i.e.

g(d+) := (1− κ)d2+ + κ, (2.21)

describes the degradation of the solid with the evolving crack phase-field parameter d. The
small residual stiffness κ is introduced to prevent numerical problems. The constitutive
stress response corresponding to Eq. 2.20 reads

σ(ε, d;M) :=
∂wbulk(ε, d;M)

∂ε
= σiso

ε + σaniso
ε ,

σiso
ε = g(d+)

∂Ψ̃iso,+

∂ε
+
∂Ψ̃iso,−

∂ε
= g(d+)σ̃

iso,+
ε + σ̃iso,−

ε ,

σaniso
ε = g(d+)

∂Ψ̃aniso

∂ε
= g(d+)σ̃

aniso
ε ,

(2.22)

with,

σ̃iso,±
ε := λI±

1
(ε)I + 2µε± and σ̃aniso

ε = χI4M + 2Ξ (ε · M + M · ε) (2.23)

Formulation 1.2: Energy functional for the anisotropic crack topology LetM ,
χ, Ξ and α be given with the initial conditions u0 = u(x, 0) and d0 = d(x, 0). For the
loading increments n = 1, 2, . . . , N , find u := un ∈ V and d := dn ∈ Win such that the
functional

E(u, d;M) =

∫

B

[
g(d+)Ψ̃

iso,+ + Ψ̃iso,−
]
dx

︸ ︷︷ ︸
matrix deformation term

+

∫

B

g(d+)Ψ̃
anisodx

︸ ︷︷ ︸
fiber deformtion term

+Gc

∫

B

γisol dx

︸ ︷︷ ︸
matrix fracture term

+Gc

∫

B

γanisol dx

︸ ︷︷ ︸
fiber fracture term

−
∫

∂NB

τ̄ · u ds
︸ ︷︷ ︸
external load

,

is minimized.

The minimization problem for the given energy functional of the anisotropic crack topol-
ogy in Formulation 2.2 takes the following compact form:

{u, d} = arg{ min
u∈V

min
d∈Win

[ E(u, d;M) ] }. (2.24)

The stationary points of the energy functional in Formulation 2.2 are characterized by the
first-order necessary conditions, namely the so-called Euler-Lagrange equations, which are
obtained by differentiation with respect to u and d.
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Formulation 1.3: Euler-Lagrange equations Let M , χ, Ξ and α be given with the
initial conditions u0 = u(x, 0) and d0 = d(x, 0). For the loading increments n = 1, 2, . . . , N ,
find u := un ∈ V and d := dn ∈ Win :

Eu(u, d; δu) =
∫

B

g(d+)σ̃
iso,+
ε (u) : ε(δu)dx+

∫

B

σ̃iso,−
ε (u) : ε(δu)dx

+

∫

B

g(d+)σ̃
aniso
ε (u) : ε(δu)dx−

∫

∂NB

τ̄ · δu ds = 0 ∀δu ∈ V,

Ed(u, d; δd− d) = (1− κ)
∫

B

d+
[
σ̃iso,+
ε (u) + σ̃aniso

ε (u)
]
: ε(u).(δd− d)dx

+Gc

∫

B

(
1

l
(d− 1).(δd− d) + l∇d.∇(δd− d)

)
dx

+Gc

∫

B

αl∇d.M .∇(δd− d) dx ≥ 0 ∀δd ∈ W ∩ L∞.

(2.25)

Eu and Ed are the directional derivatives of the energy functional with respect to u and
d, respectively. Furthermore, δu ∈ {H1(B)δ : δu = 0 on ∂DB} is the deformation test
function and δd ∈ H1(B) is the phase-field test function.

2.2.5. The Euler-Lagrange equations in a strong form. In order to complete
our derivations, the strong form of Formulation 2.3 will be derived in this section. Using
integration by parts, we obtain a quasi-stationary elliptic system for the displacements
and the phase-field variable, where the latter one is subject to an inequality constraint in
time and therefore needs to be complemented with a complementary condition:

Formulation 1.4: Strong form of the Euler-Lagrange equations LetM , χ, Ξ and
α be given with the initial conditions u0 = u(x, 0) and d0 = d(x, 0). For the loading incre-
ments n = 1, 2, . . . , N , we solve a displacement equation where we seek u := un : B → Rd

such that

− div(σ) = 0 in B,
u = ū on ∂DB,

σ · n = τ̄ on ∂NB,

in terms of the stress tensor σ defined in Eq. 2.22 and the given displacement field ū.
The phase-field system consists of four parts: the PDE, the inequality constraint and a
compatibility condition (in fracture mechanics called Rice condition [279]) along with the
Neumann-type boundary conditions. Find d := dn : B → [0, 1] such that

−
(
2(1− κ)d+

[
Ψ̃iso,+ + Ψ̃aniso

]
− Gc

l
(1− d)−Gcl∆d−Gcαl div(∇d.M)

)
≥ 0 in B,

ḋ 6 0 in B,
−
(
2(1− κ)d+Ψ̃iso,+(ε(u))− Gc

l
(1− d)−Gcl∆d−Gcαl div(∇d.M)

)
ḋ = 0 in B,

(I+ αM)∇d · n = 0 on ∂B.

The mentioned inequality minimization problem for the phase-field equation can be re-
solved through: (a) fixing the fracture with Dirichlet conditions [67], (b) Penalty method,
see [240] (including a mathematical analysis), (c) an Augumented Lagragian penalization
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see [313], (d) Primal-dual active set method ; see [162, 196], (e) Maximum crack driving
state function, see [224, 231]. In the present work, we consider the maximum crack driving
state function to prevent the crack healing by having a positive crack dissipation known
as irreversibility criteria and given in details in next section.

2.2.6. Crack driving force. In this section, a formulation for the crack phase-
field PDE equation in Formulation 2.4 is reformulated based on the crack driving force.
A thermodynamical consistency for the preservation of the energy balance due to the
fracture dissipation results to the Karush-Kuhn-Tucker form, see [230]. As a point of
departure, the modular structure of the anisotropic phase-field fracture equation assumes
the following form

ηḋ︸︷︷︸
crack update

= −g′(d+)D̃︸ ︷︷ ︸
crack driving force

− lδdγl︸︷︷︸
resistance

≤ 0, (2.26)

as outlined in the works of Miehe and coworkers [231, 230, 10, 14]. Here, D̃ is a crack
driving state function which depends on a state array of strain- or stress like quantities.
To get rid of the above inequality evolution problem, we maximize the inequality equation
given in (2.26) for the full process history s ∈ [0, tn],

−g′(d+) max
s∈[0,tn]

D̃ = lδdγl . (2.27)

We introduce maximum positive crack driving force H in t ∈ [0, tn] denoted as,

H(x, t) := max
s∈[0,tn]

D̃
(
state(x, ε(s))

)
, (2.28)

and hence (2.26) can be restated as,

ηḋ︸︷︷︸
crack update

= −g′(d+)H︸ ︷︷ ︸
max crack driving force

− lδd.γl︸ ︷︷ ︸
resistance

. (2.29)

Depending on the type of the crack driving state function which can be either without
or with threshold, D̃ can take different description, see [4, 6, 8]. The crack phase-field
evolution in (2.29) is defined in the domain B that is augmented with an imposed Neumann
homogeneous boundary condition as

(I+ αM)∇d · n = 0 on ∂B. (2.30)

Note, that in Eq. 2.26 the rate-independent case is recovered for η → 0, where the crack
topology is then simply determined by an equilibrium between the crack driving force and
the geometric crack resistance. These equations are interpreted as generalized Ginzburg-
Landau-type evolution equations for the crack phase-field d. Equation 2.29 restated for
the rate-independent limit η → 0 to the so-called Karush-Kuhn-Tucker form:

ḋ 6 0; −δdw ≥ 0, ḋ [−δdw] = 0. (2.31)

This condition provides a natural assumption due to the positive fracture dissipation know
as crack irreversibility condition. The latter constraint is ensured by a specific constitutive
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assumption that relates the functional derivative to a positive energetic driving force. The
last condition in (2.31) is the balance law for the evolution of the crack phase-field which
ensures the principal of maximum dissipation during the crack phase-field evolution (see
e.g. [224]). It is known as compatibility condition.

Remark 4: Karush-Kuhn-Tucker stated in (2.31) along with (2.30) are the modular
structure of the Euler-Lagrange equations in a strong form which are given in Formu-
lation 2.4.

By defining the maximum positive crack driving force H in terms of the crack driving
state function D̃ at hand, Formulation 2.3 can be stated as an equality minimization.
Thus H substitutes the corresponding

[
Ψ̃iso,+ + Ψ̃aniso

]
term in the original Ed.

2.2.7. Crack Driving State Function without Threshold. A crack driving state
function without threshold is frequently used in literature, see [225, 224]. By considering
the phase-field formulation with specific degradation function given in Eq. 2.21, the
accumulated dissipative fracture density for the case of without threshold extended to the
anisotropic setting as,

wfrac(d,∇d;M) := Gcγl(d,∇d;M) = Gc

( 1
2l
(1− d)2 + l

2
∇d.∇d+ α

l

2
∇d.M .∇d

)
.

(2.32)

To derive the crack driving state function we recall the irreversibly inequality condition,
i.e. ḋ ≤ 0. It follows that the left hand side of (2.26) has to be always positive to avoid
the crack healing process

−δdw = (κ− 1)2d+
[
Ψ̃iso,+ + Ψ̃aniso

]
−Gcδdγl(d,∇d;M) 6 0. (2.33)

Maximization of this inequality in the full process history s ∈ [0, tn], yields

(κ− 1)2d+ max
s∈[0,tn]

[
Ψ̃iso,+ + Ψ̃aniso

]
= Gcδdγl(d,∇d;M). (2.34)

To follow the modular structure of the phase-field fracture equation defined in Eq. 2.26,
we multiply (2.34) by l

Gc
. With the definition of a positive crack driving force and shown

by H, hence (2.34) is restated as

(κ− 1)2d+H = lδdγl if H := max
s∈[0,tn]

D̃ with D̃ :=
l
[
Ψ̃iso,+ + Ψ̃aniso

]

Gc
. (2.35)

It is evident that the crack driving state function given by (2.35) is directly effected by
the regularization parameter l. Hence the crack driving state function has the property
of length-scale dependency. The functional derivative of γl with respect to d is obtained
as follows,

∫

B

δdγl(d,∇d;M)dx :=

∫

B

(
∂γl
∂d

+
∂γl
∂∇d

)
dx =

∫

B

(
∂γl
∂d
−∇.[ ∂γl

∂∇d ]
)
dx, (2.36)

which leads to,
∫

B

δdγl(d,∇d;M)dx =

∫

B

1

l
[(d− 1)− l2∆d− αl2 div(∇d.M)]dx. (2.37)

Furthermore ∂γl(d,∇d;M)
∂∇d

· n = (I+ αM)l∇d · n = 0 refers to (2.30).
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Formulation 1.5: Final Euler-Lagrange equations Let M , χ, Ξ and α be given
with the initial conditions u0 = u(x, 0) and d0 = d(x, 0). For the loading increments
n = 1, 2, . . . , N , find u := un ∈ V and d := dn ∈ W :

Eu(u, d+; δu) =
∫

B

g(d+)σ̃
iso,+
ε (u) : ε(δu)dx+

∫

B

σ̃
iso,−
ε (u) : ε(δu)dx

+

∫

B

g(d+)σ̃
aniso
ε (u) : ε(δu)dx−

∫

∂NB

τ̄ · δu ds = 0 ∀δu ∈ V,

Ed(u, d; δd) = (1− κ)
∫

B

2d+Hδddx

+

∫

B

(
(d− 1)δd+ l2∇d.∇δd

)
dx

+

∫

B

αl2∇d.M .∇δd dx = 0 ∀δd ∈ W.

(2.38)

2.2.8. Crack Driving State Function with Threshold. Alternative to crack
driving state function without threshold (introduced above) is an extension to damage-like
criteria by considering the threshold state for crack initiation. This is mainly because of
two reason, first, in the case of without threshold damage due to the effect of degradation
function in the bulk material may occurs in the low stress level then linear elastic is not
defined prior to the fracture initiation. Second, the crack driving state derived in Eq. 2.35
is directly related to the length scale, hence the stationary solution of the crack phase filed
from Eq. 2.29 is dependent on the length-scale solution, strongly. Hence, by considering
the phase-field modular structure with specific degradation function given in Eq. 2.21,
the accumulated dissipative fracture density for the case of with threshold extended for
the anisotropic setting given as,

wfrac(d,∇d;M) = 2ψc

[
1− d+ l2

2
∇d · ∇d+ α

l2

2
∇d.M .∇d

]
. (2.39)

Here, ψc denotes a specific fracture energy density. It is noted that, despite to the definition
used in Eq. 2.32, the crack phase field d enters the formulation by a linear term, more
details in [267], [220] and [231]. Hence, the extension to the anisotropic setting of the
“total” pseudo-energy density reads,

w(ε, d,∇d;M) = (1− κ)d2+[ Ψ̃iso,+ + Ψ̃aniso − ψc ] + ψc + 2ψclγl(d,∇d;M). (2.40)

Then, for the rate-independent loading criterion, i.e. η → 0, the directional derivative of
total pseudo-energy density with respect to d reads

−δdw = (κ− 1)2d+[ Ψ̃
iso,+ + Ψ̃aniso − ψc ]− 2ψcδdγl(d,∇d;M) 6 0 (2.41)

In similar manner of the previous section, by maximizing the inequality equation in Eq.
2.41 with respect to the ε up to current time, i.e. t ∈ [0, tn], inequality formulation in Eq.
2.41 becomes equality and re-stated into the form,

(κ− 1)d+H = lδdγl if H := max
s∈[0,tn]

D̃ with D̃ :=

〈
Ψ̃iso,+ + Ψ̃aniso

ψc
− 1

〉

+

(2.42)

It is noted, that this criterion is independent of the regularization parameter l, due to the
introduction of ψc that is specific material properties for the fracturing solid material. To
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specify crack deriving state function in terms of the critical fracture stress σc as a basic
material properties value rather than ψc, then the crack deriving state function based on
positive effective stress based criterion reads,

σ̂ := σ̃
iso,+
ε + σ̃

aniso
ε :=

δ∑

i=1

〈σ̂,i〉+ N i ⊗N i → D̃ = ζ

〈 δ∑

i=1

(
〈σ̂,i〉+/σc

)2

− 1

〉

+

.

(2.43)

This threshold-type crack driving state function characterized an anisotropic failure sur-
face in terms of the effective principal directions of the stress state. ζ > 0 is used to
control the growth of the crack phase-field in the post-equilibrium fracture state.

An alternative way to describe an anisotropic failure surface may be described in terms
of the,

• Rankin model through a maximum principal tensile-stress stated as,

D̃ = ζ

〈
δ

max
i=1

(
〈σ̃iso

ε,i 〉+/σc
)2

− 1

〉

+

.

• Mohr-Coulomb model through a frictional shear stress stated as,

D̃ = ζ

〈(
σm/σc

)2

− 1

〉

+

.

whereas m := m(θ) = 1+sin θ
1−sin θ

in which the θ refers to the angle of internal friction

and σm := m(θ).
δ

max
i=1

(
〈σ̃iso

ε,i 〉+
)
−

δ

min
i=1

(
〈σ̃iso

ε,i 〉+
)
.

• Linearized Mogi-Coulomb failure through a maximum distortion energy stated as,

D̃ = ζ

〈[
p(c, θ) +

q(θ)

2

(
δ

max
i=1

(
〈σ̃iso

ε,i 〉+
)
+

δ

min
i=1

(
〈σ̃iso

ε,i 〉+
))]2

/τ 2oct − 1

〉

+

,

whereas τoct is the octahedral shear stress and c is apparent cohesion of the material.

• Tresca model through a maximum shear stress stated as,

D̃ = ζ

〈[
δ

max
i=1

(
〈σ̃iso

ε,i 〉+
)
−

δ

min
i=1

(
〈σ̃iso

ε,i 〉+
)]2

/τ 2c − 1

〉

+

,

whereas τc is the critical state value for the shear stress.

• Beltrami model through a maximum principal strain stated as,

D̃ = ζ

〈
δ

max
i=1

(
〈ε̃isoε,i 〉+/εc

)2

− 1

〉

+

.

Additionally, Von-Mises failure criterion or Drucker-Prager failure criteria specifically for
the ductile fracture can be used.
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Figure 2.2: Single-edge-notched plate under tension test by the structural director a0

inclined under an angle φ = −45 (a) Geometry and loading setup for the 2D test scenarios;
(b) load-displacement curve for the varying fracture anisotropy parameter α and fixing χ
deformation anisotropy parameter.

2.2.9. Numerical Model Problem. We now consider a boundary value problem
applied to the square plate shown in Fig. 2.2a and let a = 0.5 hence B = [0, 1]2 mm2 that
includes a predefined single notch from the left edge to the center of body as depicted in
Fig. 2.2a. The geometry and loading setup for the following test is shown in Fig. 2.2a.
The material parameters for the transversely isotropic chosen as λ = 121.15 kN/mm2,
µ = 80.77 kN/mm2, χ = 50 kN/mm2 and Gc = 2.7 × 10−3 kN/mm. The preferred fibre
direction given by the structural director a that is inclined under θ = −45◦ with respect
to the x-axis of a fixed cartesian coordinate system.

To investigate the influence of the fracture anisotropic parameter namely α as the
model parameter in the Formulation 2.5, the computations are performed for four different
values of α, namely α = 0, α = 5, α = 10 and α = 50. We fixed and set χ = 50, because
of its very negligible effect on the fracture model. Load-displacement curve for the varying
fracture anisotropy parameter α is shown in Fig. 2.2b. Additionally, the effect of α on the
crack phase-field resolution is shown in Figure 2.3. It is evident, that the fracture path
follows the fibre direction which is φ = −45◦ if α is increased, see Fig. 2.3 for α = 50. This
results confirm that α behave as a penalty-like parameter in the crack surface density.

2.3. Global-Local Formulation

Departing point towards a Global-Local approach applied to the anisotropic phase-field
formulation is the domain decomposition method [146]. We split the single-scale energy
functional E indicated in Formulation 2.2 to the intact and fractured region, i.e. BC and
BL, respectively.

Accordingly, by introduction of the Fictitious domain BF , i.e. a coarse projection of
the local domain into the global domain (later BG refers to the global domain, we extend
the resulting non-overlapping domain decomposition formulation toward a Global-Local
formulation applied to the anisotropic phase-field fracture. The Global-Local formulation
applied to isotropic phase-field was first proposed by Gerasimov et al. [143]. The main
objective was to introduce an adoption of the phase-field formulation within legacy codes,
specifically for industrial applications.
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Figure 2.3: Fracture of transversely isotropic single-edge-notched plate under tension.
Crack paths for different anisotropy parameters for a fixed deformation anisotropy pa-
rameter χ = 50 and varying fracture anisotropy parameter α = 0, α = 5, α = 10 and
α = 50. For α getting comparatively large, i.e. α = 50, the crack follows the direction of
the fibre direction due to the anisotropy parameter’s role as a penalty-like factor.

An important definition for the subsequent treatment is the energy functional. We
recall that the energy functional for the single-scale problem denoted as E . We further
define the energy functional for the domain decomposition by Ê and the Global-Local
formulations as Ẽ .

2.3.1. Non-overlapping domain decomposition formulation. Recall, the com-
plementary domain BC := B\BL ⊂ B ∈ Rd corresponds to the intact region and let BL is
an open domain, where the fracture surface is approximated in this region, see Fig. 2.4(a).
It is assumed the fracture surface in BL represents a reasonably small ’fraction’ of B such
that |BL| ≪ |BC |. We further define an interface between an unfractured domain BC
and fractured domain BL by Γ ∈ Rδ−1 ⊂ B in the continuum setting to be the interface
between BL and BC , such that B ≡ BL ∪ Γ∪BC . We further assume that BL is free from
any externally imposed load and hence we have prescribed loads only in BC . Such an
assumption is standard for the multi-scale setting, see Fish [124].

Figure 2.4: Domain decomposition scheme. (a) Geometry and loading setup of the
single-scale boundary value problem. (b) Non-overlapping domain decomposition setting
whereas B is decomposed into the intact and fracture region denoted as complementary
and local domains BL and BC , respectively.

Consider a domain decomposition with geometric sketch in Fig. 2.4(b) applied to the
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single-scale domain plotted in Fig. 2.4(a). Two functions on BL and BC are considered,
namely uL ∈ VL and uC ∈ VC, where we introduce additional three sets:

V L := H1
0(BL)δ, V C := V(BC), and WL := Win(BL) ,

referring to the spaces defined in Eq. 2.12.

A descriptive motivation of the domain decomposition approach applied to the varia-
tional anisotropic phase-field modeling is related to two restriction in the model: (i) the
strong coupling scheme that is the strong displacement continuity condition that holds
along with (ii) the predefined interface. To this end, one needs to assume that the dis-
crete interfaces for both complementary and local domain do exactly coincide in the strong
sense, yielding

uL
!
= uC at x ∈ Γ = ΓC = ΓL. (2.44)

This displacement continuity is often called primal approach in the literature, see e.g.
Mandel [212].

Let the single-scale displacement field u ∈ V be the solution of the multi-field varia-
tional problem in (3.30). It is decomposed as

u(x, t) :=

{
uL for x ∈ BL,
uC for x ∈ BC .

(2.45)

Since the fracture surface lives only in BL we introduce scalar-valued function dL : BL →
[0, 1] ∈ WL. The single-scale phase-field d is then decomposed in the following form

d(x, t) :=

{
dL for x ∈ BL,
1 for x ∈ BC .

(2.46)

By imposing (2.45) and (2.46) to the energy functional, indicated in Formulation 2.2,
energy functionals corresponding to BC and BL reads

ÊC(uC ;M) :=

∫

BC

w(εC , 1, 1;M) dx−
∫

∂NBC

τ̄ · uC ds, (2.47)

and

ÊL(uL, dL;M) :=

∫

BL

w(εL, dL,∇dL;M) dx, (2.48)

for the total energy density defined in Formulation 2.1. With the strong displacement
continuity in (3.31) we obtain

E(u, d;M) ≡ Ê(uC ,uL, dL;M) := ÊC(uC ;M) + ÊL(uL, dL;M), (2.49)

where E is the original single-scale functional in Formulation 2.2. As a result, the domain
decomposition variational formulation is equivalent to the single-scale formulation Eq.
3.30

{uC ,uL, dL} = arg{ min
uC∈VC,uL∈VL

min
dL∈WL

[ Ê(uC ,uL, dL;M) ] } . (2.50)

Note, the major advantage of using this minimization problem instead of the one in
(3.30) is the reduction of the nonlinearity order of the complementary domain (which is
free from the fracture state), and more specifically in small deformation setting that is a
linear minimization problem.
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Remark 5: The strong displacement continuity requirement given in Eq. 3.31 is too
restrictive from the computational standpoint [120]. To resolve the phase field problem,

one requires hL ≪ hG. However, if we assume uL
!
= uC on Γ, this yields ΓL = ΓC in a

discretized setting hence hL = hG on Γ which has the contradiction with hL ≪ hG.

Following Remark 3.1, we relax Eq. 3.31 in a weak sense by introducing traction-like
terms in the corresponding energy functionals (2.23) and (2.26). This results in

ÊC(uC, λC;M) :=

∫

BC

w(εC, 1, 1;M) dx −

∫

ΓC

λC · uC ds −

∫

ΓN,C

τ̄ · uC ds,

(2.51)

and

ÊL(uL, dL, λL;M) :=

∫

BL

w(εL, dL,∇dL;M) dx −

∫

ΓL

λL · uL ds, (2.52)

with λC , λL ∈ L2(Γ) being the unknown Lagrange multipliers, which represent traction
forces on the interface. The saddle point problem including complementary and local
domains assumes the form

Ê(uC, uL, dL, λL, λC;M) := ÊC(uC, λC;M) + ÊL(uL, dL, λL;M),

which is under-determined, since no relation is yet specified between uL and uC , nor
between λL and λC . The latter is achieved by introducing the functional

ÊΓ(uΓ, λC, λL) :=

∫

Γ

uΓ · (λL + λC) ds, (2.53)

with uΓ ∈ H1(Γ) representing the (unknown) Lagrange multiplier, which has the dimen-
sion of a displacement, called also displacement interface. Summing EC and EL with EΓ,
we get

Ê(uC ,uL,dL,uΓ, λC , λL;M) :=

∫

BC

w(εC , 1, 1;M) dx+

∫

BL

w(εL, dL,∇dL;M) dx

+

∫

Γ

{λC · (uΓ − uC) + λL · (uΓ − uL)}ds−
∫

ΓN,C

τ̄ · uC ds.

(2.54)

Here the introduction of the intermediate displacement uΓ satisfies the weak traction
continuity between λL and λC along Γ. This is in addition to the weak displacement
continuity between uL and uC across Γ. Hence, both displacement and traction continuity
are imposed implicitly in the weak sense to the energy functional, see Park & Felippa
[260]. The coupling interface energy functional used in Eq. 2.54 (i.e. third term) is called
Localized Lagrange Multipliers, see e.g. [261, 292].

The variational formulation of Eq. 2.54 is equivalent to the single-scale minimization
problem in Eq. 3.30, such that E ≈ Ê , yields

s = arg{ min
uC∈V C ,uL∈V L,uΓ∈H

1(Γ),dL∈WL

max
λC ,λL∈L

2(Γ)
[ Ê(uC ,uL, dL,uΓ, λC , λL;M) ]},

(2.55)
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where s := (uC ,uL, dL,uΓ, λC , λL). Accordingly, the displacement field u, is decomposed
as

u =





uL for x ∈ BL,
uC for x ∈ BC ,
uΓ for x ∈ Γ,

(2.56)

which is based on the solution triple (uC ,uL,uΓ) as a minimizer of the (2.54). Note, the
representation for d in terms of dL defined by (2.46) remains same.

2.3.2. Global-Local formulation. In this section, the formulation is extended to a
Global-Local approach in line with [143]. Specifically in this work, we extend the Global-
Local formulation to the anisotropic crack phase-field which is augmented by Robin-
type boundary conditions [121, 211, 210, 136]. The latter relaxes the stiff local response
observed at the global level which is due to the local non-linearity projected to the global
level and leads to further reductions of the computational time. Additionally, to have
more regularity along the coupling interface, a non-matching finite element discretization
is used on the interface.

Let us define open and bounded fictitious domain BF to recover the space of B that is
obtained by removing BL from its continuum domain, see Fig. 3.2. Indeed, the fictitious
domain is prolongation of the BC towards B. This gives the same constitutive modeling
used in BC for BF . Thus, the energy functional of the complementary and fictitious
domain is the same. We also use the identical discretization space for both BF and BC ,
which results hF := hC . We further define, an open and bounded global domain BG such
that BG = BF ∪ Γ ∪ BC . It yields the same energy functional for BC , BF and BG. Hence,
the material parameters are identical for BC , BF and BG. Additionally, this unification
yields on identical discretization space for the global domains BF and BC , and results in
hG ≈ hF ≈ hC referring to the element size.

Note that, the fictitious domain BF is assumed to be free from geometrical imperfec-
tions which may be present in BL, see Fig. 3.2(b). Thus, the global domain is assumed to
be free from any given imperfection. Let us also define, global and local interfaces denoted
as ΓG ⊂ BG and ΓL ⊂ BL, such that in the continuum setting we have Γ = ΓG = ΓL.
However in a discrete setting we might have Γ 6= ΓG 6= ΓL due to the presence of dif-
ferent meshing schemes (i.e. different element size/type used in BG and BL such that
h 6= hL 6= hG on Γ).

It is assumed that there exists a continuous prolongation of uC into BF . Hence, we
introduce a function uG ∈ V(BG) such that uG|BC

≡ uC and uG = uC on Γ in the sense
of a trace. Thus, the boundary conditions for BG is same as the BC , therefore it holds
uG = ū on ∂DB and τ = τ̄ on ΓN,G. By means of the fictitious domain, the first term in
Eq. 2.54 is recast as follows
∫

BC

w(ε(uC), 1, 1;M) dx =

∫

BC

w(ε(uG), 1, 1;M) dx

=

∫

BG

w(ε(uG), 1, 1;M) dx−
∫

BF

w(ε(uG), 1, 1;M) dx.

(2.57)

Note, we substitute uG for uC in the second and fourth integrals in Eq. 2.57. That is
trivial by means of the prolongation concept such that uG|BF

≡ uF and uG = uF on Γ.
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Figure 2.5: Illustration of the Global-Local formulation. (a) Geometry and loading setup
of the single-scale boundary value problem. (b) Global-Local setting, by introduction of
the fictitious domain BF through prolongation of BC to the entire domain whereas its
unification is so-called global domain BG := BC ∪ Γ ∪ BF .

This provides the Global-Local approximation of the single-scale energy functional E
indicated in Formulation 2.2 by

Ẽ : =

∫

BG

w(εG, 1, 1;M) dx−
∫

BF

w(εF , 1, 1;M) dx−
∫

ΓN,G

τ̄ · uG ds

︸ ︷︷ ︸
global terms

+

∫

BL

w(εL, dL,∇dL;M) dx

︸ ︷︷ ︸
local term

+

∫

Γ

{λC · (uΓ − uG) + λL · (uΓ − uL)}ds
︸ ︷︷ ︸

coupling terms

.

(2.58)

where the approximation E(u, d;M) ≡ Ẽ(uG, uL, dL, uΓ, λC, λL;M) holds.

Formulation 1.6: Global-Local energy functional for anisotropic crack topology
Let M , χ, Ξ and α be given with initial conditions u0 = u(x, 0) and d0 = d(x, 0).
For the loading increments n = 1, 2, . . . , N , find uG := un

G ∈ VG, uL := un
L ∈ VL,

uΓ := un
Γ ∈ H1(Γ), dL := dnL ∈ WL, λC := λnC ∈ L2(Γ) and λL := λnL ∈ L2(Γ), such that
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the functional

Ẽ(uG,uL, dL,uΓ, λC , λL;M) =∫

BG

(
λ

2
I21 + µI2)dx

︸ ︷︷ ︸
global matrix deformation term

+

∫

BG

(
1

2
χI24 + 2ΞI5)dx

︸ ︷︷ ︸
global fiber deformtion term

−
∫

ΓN,G

τ̄ · uG ds

︸ ︷︷ ︸
global external load

−
∫

BF

(
λ

2
I21 + µI2)dx

︸ ︷︷ ︸
fictitious matrix deformation term

−
∫

BF

(
1

2
χI24 + 2ΞI5)dx

︸ ︷︷ ︸
fictitious fiber deformtion term

+

∫

BL

g(dL+)
(λ
2
I+2
1 + µI+2

)
dx+

∫

BL

(
λ

2
I−2
1 + µI−2 )dx

︸ ︷︷ ︸
local matrix deformation term

+

∫

BL

g(dL+)
(1
2
χI24 + 2ΞI5

)
dx

︸ ︷︷ ︸
local fiber deformtion term

+Gc

∫

BL

{ 1
2l
(1− dL)2 +

l

2
∇dL.∇dL}dx

︸ ︷︷ ︸
local matrix fracture term

+Gc

∫

BL

(α
l

2
∇dL.M .∇dL)dx

︸ ︷︷ ︸
local fiber fracture term

+

∫

Γ

{λC · (uΓ − uG) + λL · (uΓ − uL)}ds
︸ ︷︷ ︸

interface coupling term

,

is minimized.

Note, we are not any more using ∂NB for the applied surface load and hence ΓN,G is
considered. This is because the global domain is free from any fracture state. The
minimization problem for the Global-Local energy functional given in Formulation 2.6
that is applied to the anisotropic crack topology takes the following compact form,

s = arg{ min
uG∈V G,uL∈V L,uΓ∈ H1(Γ),dL∈WL

max
λC ,λL∈L

2(Γ)

[
Ẽ(uG,uL, dL,uΓ, λC , λL;M)

]
} (2.59)

where s := (uG,uL, dL,uΓ, λC, λL).

The relation between the solution u of the minimization problem in Eq. 3.30 and the
solution triple (uG,uL,uΓ) of Eq. 2.59 reads

u =





uL, for x ∈ BL,
uG, for x ∈ BG,
uΓ, for x ∈ Γ.

Remark 6: When using standard single scale phase-field modeling, we are most of the
time not dealing with a uniform mesh and hence the domain is divided into coarser and
finer mesh elements. To resolve the crack phase-field, we need to have l ≥ h must hold
at every point of the domain such that l ≥ hc ≥ hf (c and f refers to the coarse and fine
region in domain, respectively) satisfied. This typically leads to a finer mesh even for the
area which is sufficiently far from the fracture zone, and therefore increases the compu-
tational time considerably. However, this is not the case for the Global-Local approach
where the phase-field formulation is only embedded within the local domain and not the
entire domain. Hence the computational time is reduced drastically.
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2.3.3. Variational formulation for the Global-Local coupling system. Now
we consider the weak formulation of Eq. 2.59. The directional derivatives of the functional
Ẽ yield for the global weak form

ẼuG
(s; δuG) :=

∫

BG

σ(uG;M) : ε(δuG) dx−
∫

BF

σ(uG;M) : ε(δuG) dx

−
∫

ΓG

λC · δuG ds−
∫

ΓN,G

τ̄ · δuG ds = 0, (G)

where σ(uG) := ∂εw(ε(uG), 1, 1;M) and δuG ∈ {H1(BG) : δuG = 0 on ∂DB} is the
test function. The local weak formulations assumes the form



ẼuL
(s; δuL) :=

∫

BL

σ(uL, dL;M) : ε(δuL) dx −

∫

ΓL

λL · δuL ds = 0,

ẼdL
(s; δdL) := (1 − κ)

∫

BL

2dL+H(ε(uL);M).δdLdx +

∫

BL

(dL − 1).δdLdx

+

∫

BL

l2∇dL.∇(δdL) dx+

∫

BL

αl2∇dL.M .∇(δdL) dx = 0,

(L)

where σ(uL, dL;M) = ∂εw(εL, dL,∇dL;M) = σiso
ε (εL, dL) + σaniso

ε (εL, dL,M) is de-
fined in Eq. 2.22, δuL ∈ H1(BL) is the local test function and δdL ∈ H1(BL) is the local
phase-field test function.

The variational derivatives of Ẽ with respect to (uΓ, λC, λL) provide kinematic equa-
tions due to weak coupling between global and local form

ẼuΓ
(s; δuΓ) :=

∫

Γ

(λC + λL) · δuΓ ds = 0, (C1)

ẼλC
(s; δλC) :=

∫

Γ

(uΓ − uG) · δλC ds = 0, (C2)

ẼλL
(s; δλL) :=

∫

Γ

(uΓ − uL) · δλL ds = 0. (C3)

Herein δuΓ ∈ H1(Γ) and δλC , δλL ∈ L2(Γ) are the corresponding test functions.

Let us now focus on the global variational in (G). The presence of the two domain
integrals over BG and BF would imply in this case the need to simultaneously access the
corresponding stiffness matrices. Avoiding this can be done as follows: We focus on the
domain integral over BF in (G). The idea is to transform the domain integral in BF to
the global interface ΓG. The divergence theorem leads to
∫

BF

σ(uG) : ε(δuG) dx = −

∫

BF

div(σ(uG)) · δuG dx +

∫

∂BF

σ(uG) · n∂BF
· δuG ds,

(2.60)

where n∂BF
is the unit outward normal vector to ∂BF .

The first term in the right-hand side of in Eq. 2.60 can be canceled by using the
divergence-free assumption for the stress (no body forces in BF ). Following a detailed
argument in Gerasimov et al. [143], the second term can be further simplified

∫

∂BF

σ(uG) · n∂BF
· δuG ds =

∫

ΓG

σ(uG) · nΓ · δuG ds +

∫

∂BF∩ΓN,G

τ̄ · δuG ds.
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Here, nΓ := n∂BF
denotes the normal vector on ΓG, outward of BF , as illustrated in Fig.

3.2. Furthermore, it is possible to choose BL and its coarse representation into the global
level as BF such that ∂BF ∩ ΓN,G = ∅. This is in line with the assumption that the local
domain BL and additionally BF is free from any applied external load. Thus, the last
surface integral cancels and (2.60) can be restated as,

∫

BF

σ(uG) : ε(δuG) dx =

∫

ΓG

σ(uG) · nΓ · δuG ds, (2.61)

such that there exists a fictitious Lagrange multiplier λF ∈ L2(Γ) with

∫

ΓG

σ(uG) · nΓ · δuG ds =:

∫

ΓG

λF · δuG ds. (2.62)

Here, λF is a traction-like quantity on ΓG. Due to (2.61)−(2.62), the partitioned repre-
sentation of equation (G) takes the following form

∫

BG

σ(uG) : ε(δuG) dx−

∫

ΓG

λF · δuG ds−

∫

ΓG

λC · δuG ds−

∫

ΓN,G

τ̄ · δuG ds = 0,

(G1)
with λF satisfying

∫

ΓG

λF · δuG ds =

∫

BF

σ(uG) : ε(δuG) dx. (G2)

Equations (G1), (G2) refer to the global system of equations. The system of equations
(L) is called a local variational equation and additionally (C1), (C2), (C3) refer to the
coupling terms. The entire system is the basis for the Global-Local approach.

2.3.4. Dirichlet-Neumann type boundary conditions. To accommodate a Global-
Local computational scheme, instead of finding the stationary solution of the (G1), (G2),
(L) along with (C1), (C2), (C3) in the monolithic sense, an alternate minimization is used.
This is in line with [143], which leads to the Global-Local formulation through the concept
of non-intrusiveness. Here the global and local level are solved in a multiplicative manner
according to the idea of Schwarz’ alternating method [244].

Let k ≥ 0 be the Global-Local iteration index at a fixed loading step n. The iterative
solution procedure for Global-Local computational scheme is as follows:

• Dirichlet local problem: solution of local problem (L) coupled with (C3),

• Pre-processing global level: recovery phase using (C1) and (G2),

• Neumann global problem: solution of global problem (G1),

• Post-processing global level: recovery phase using (C2).

The detailed scheme for applying the Dirichlet-Neumann type boundary conditions to the
isotropic phase-field fracture modeling is described in [143].

Despite of its strong non-intrusiveness implementation point of view [140], there are
two shortcomings embedded in the system which have to be resolved. (a) Due to the
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extreme difference in stiffness between the local domain and its projection to the global
level, i.e. fictitious domain, the relaxation/acceleration techniques has to be used, see
[143]. (b) Additionally, it turns out that if the solution vector (uk

G,u
k
L, d

k
L,u

k
Γ, λ

k
C , λ

k
L) is

plugged into equations (G1), (G2), (L), (C1), (C2), (C3), the imbalanced quantities follow
∫

Γ

(uk
Γ
− uk

L
) · δλL ds 6= 0 and

∫

Γ

λk
F
· δuG ds 6=

∫

BF

σ(uk
G
) : ε(δuG) dx, (2.63)

resulting in the iterative Global-Local computation scheme. Figure 2.6a depicts one it-
eration of the Global-Local approach by means of the Dirichlet-Neumann type boundary
conditions. The aforementioned difficulties motivate us to provide an alternative coupling
conditions that overcome these challenges, which are explained in the following section.

Figure 2.6: Global-Local iterative scheme with (a) Dirichlet-Neumann type boundary
conditions; (b) Robin-type boundary conditions.

2.3.5. Robin-type boundary conditions. In this section, the Global-Local formu-
lation is enhanced using Robin-type boundary conditions to relax the stiff local response
that is observed at the global level (due to the local non-linearity). Furthermore the com-
putational time is reduced. This improves the resolution of the imbalanced quantities in
(3.36) and it accelerates the Global-Local computational iterations.

Recall, the coupling equations denoted in (C1), (C2) and (C3) arise from the stationary
of the interface energy functional. That provides the boundary conditions which have to be
imposed on the global and local levels. At that level the Robin-type boundary conditions
are formulated.

• Robin-type boundary conditions at the local level

At the local level the new coupling term is introduced as a combination of (C1) and (C2)

ẼuΓ
(s; δuΓ) + ALẼλC

(s; δλC) =

∫

Γ

(λC + λL) · δuΓ ds + AL

∫

Γ

(uΓ − uG) · δλC ds = 0.

(2.64)

This leads for iteration k to∫

Γ

(λk−1

C + λk
L) · δuΓ ds + AL

∫

Γ

(u
k, 1

2

Γ − uk−1

G ) · δλC ds = 0. (2.65)
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Herein, AL is a local augmented stiffness matrix applied on the interface which serves as
regularization of the local Jacobian matrix. By means of (2.65) at iteration k, the local
system of equations results in the following boundary conditions

∫

Γ

λk
L · δuΓ ds +AL

∫

Γ

u
k, 1

2

Γ · δλC ds = Λk−1

L , (C̃1)

∫

Γ

(u
k, 1

2

Γ − uk
L) · δλL ds = 0, (C̃2)

with

Λk−1

L := ΛL(λ
k−1

C , uk−1

G ;AL) = AL

∫

Γ

uk−1

G · δλC ds −

∫

Γ

λk−1

C · δuΓ ds. (2.66)

Along with (L), the local system of equations has to be solved for (uk
L, λ

k
L, u

k, 1
2

Γ ) for given
local Robin-type parameters (Λk−1

L ,AL).

• Robin-type boundary conditions at the global level

Accordingly, at the global level, the new coupling term is stated as a combination of (C1)
and (C3)

ẼuΓ
(s; δuΓ) +AGẼλL

(s; δλL) =

∫

Γ

(λC + λL) · δuΓ ds +AG

∫

Γ

(uΓ − uL) · δλL ds = 0.

(2.67)

This leads for iteration k to
∫

Γ

(λk
C
+ λk

L
) · δuΓ ds + AG

∫

Γ

(uk
Γ
− uk

L
) · δλL ds = 0,

where, AG is a global augmented stiffness matrix applied on the interface.

Through (2.67) at the iteration k, the Robin-type boundary condition at the global
level follows

∫

Γ

λk
C
· δuΓ ds +AG

∫

Γ

uk
Γ
· δλL ds = Λk

G
, (C̃3)

∫

Γ

(u
k, 1

2

Γ − uk
G) · δλC ds = 0, (C̃4)

with

Λk
G
:= ΛL(λ

k
G
, uk

L
;AG) = AG

∫

Γ

uk
L
· δλL ds −

∫

Γ

λk
L
· δuΓ ds. (2.68)

Together with (G1) and (G2), the global system of equations has to be solved for (uk
G
, λk

C
, uk

Γ
)

for a given (Λk
G,AG,u

k, 1
2

Γ ). Here, AG and Λk
G stand for global Robin-type parameters.

Based on the new boundary conditions provided in (C̃1), (C̃2), (C̃3) and (C̃4) the
imbalanced quantities in the Global-Local iterations read

∫

Γ

(uk
Γ
− u

k, 1
2

Γ ) · δλL ds 6= 0 and

∫

Γ

λk
F
· δuG ds 6=

∫

BF

σ(uk
G
) : ε(δuG) dx,

(2.69)
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For the specific Robin-type boundary conditions, we can resolve Eq. 2.691 such that this
term does not produce any error in the iterative procedure. To do so, following Section
2.3.6, the global and local augmented stiffness matrices within the Robin-type boundary
conditions are given by

AG = LT
LT

−T
L SL and AL := SC . (2.70)

AG and AL can be seen as augmented stiffness matrices regularize the Jacobian stiffness
matrix at the global and local levels, respectively.

In the Robin-type boundary condition given in (C̃1) and (C̃3), we can extract different
criteria, e.g.

• AL → ∞: Dirichlet boundary conditions and AG → 0: Neumann boundary condi-
tions;

• AL → 0: Neumann boundary conditions and AG → ∞: Dirichlet boundary condi-
tions;

• AL = SC : Robin-type boundary conditions and AG → ∞: Dirichlet boundary con-
ditions;

Hence, depending on the Robin-type parameters, a family of boundary conditions can be
formulated.

Additionally to achieve a balance state of Eq. 2.692, the following partitioned repre-
sentation of equation (G)

∫

BG

σ(uG) : ε(δuG) dx −

∫

Γ

λF · δuG ds −

∫

Γ

λC · δuG ds −

∫

ΓN,G

τ̄ · δuG ds = 0,

(G̃1)
is equipped with a linearized ∆λF satisfying

∫

Γ

∆λF · δuG ds =

∫

Γ

SF∆uG · δuG dx. (G̃2)

Note that now the second imbalance quantity shown in (2.69) does not anymore produce

an error. We are not solving for λF and in the linearized equation of (G̃1) this term

is replaced by (G̃2). The linearized equation of (G̃1) is solved within a single iteration,
because we are dealing with a linear elastic constitutive equations.

The detailed Global-Local formulation using Robin-type boundary conditions is de-
picted in Algorithm 3.3. Accordingly, Fig. 2.6b depicts one iteration of the Global-Local
coupling scheme by means of the Robin-type boundary conditions. The Global-Local
setting provides a generic two-scale finite element algorithms that enables capturing local
non-linearities.

2.3.6. Derivation of Robin-Type Boundary conditions. In this section, we
investigate the relationship between ∆û and ∆λ̂ (in the incremental sense) for the com-
plementary, fictitious and local domain at the converged solution state. Doing that,
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Robin-type boundary conditions can be derived such that all coupling terms given in
(C1), (C2) and (C3) satisfied, simultaneously, at a Global-Local iteration k.

Recall the complementary term used in Eq. 2.54 and let uC and λC be the stationary
of the following functional,

L(uC, λC;M) :=

∫

BC

w(εC, 1, 1;M) dx +

∫

Γ

λC · (uΓ − uC) ds −

∫

ΓN,C

τ̄ · uC ds.

(2.71)

Here, Γ ∈ Rδ−1 ⊂ BC is denoted as an interface and uΓ := tr uC ∈ H1/2(Γ) can be

given implicitly, i.e. (C̃1)+(C̃2) or explicitly, i.e. (C̃4). Recall Eq. 2.71 lives in BC
(the following description holds true for BF except τ̄ = 0 ). The stationary points of
the energy functional for the L is characterized by the first-order necessary conditions
through L1 = Lu(uC , λC ;w) = 0 and L2 = Lmλ(uC , λC; κ) = 0 . We split L1 into inner
nodes and interface nodes denoted as, {a, b}, respectively, by

La
1(u) = f a − F̄

!
= 0 x ∈ B\Γ,

Lb
1(u)=f

b − LT
Gλ̂C

!
= 0 x ∈ Γ,

L2 = LGûΓ − JGûC
!
= 0 x ∈ Γ.

(2.72)

Here, f =

∫

B

(BG
u )

Tσ(uC) dx is an internal nodal force vector and F̄ =

∫

ΓN

(NG
u )

T τ̄ ds

stands for the external force vector. It is trivial that the Lagrange multiplier acts as an
external force on the interface. A Newton-type solution for the residual based system of
equations for (uC , λC) is provided by the linearization

(f a − F̄) +Kaa∆ûC,a +Kab∆ûC,b = 0 ,

(f b − LT
Gλ̂C) +Kba∆ûC,a +Kbb∆ûC,b − LT

G∆λ̂C = 0 ,

(LGûΓ − LG∆ûb) + LG∆ûΓ − LG∆ûC,b = 0.

(2.73)

where K := ∂f/∂ûC is the standard tangent stiffness matrix. Here, we have the following
iterative update

ûC,a ← ûC,a +∆ûC,a, ûC,b ← ûC,b +∆ûC,b, and λ̂C ← λ̂C +∆λ̂C . (2.74)

Let us assume that the equilibrium state is achieved such that La
1 = 0 ,Lb

1 = 0 and
L2 = 0 . Thus, Eq. 2.73 takes the form

SC∆ûC,b = SC∆ûΓ =: LT
G∆λ̂C with SC := S(KC) = Kbb −KbaK

−1
aaKab, (2.75)

where S refers to the Steklov-Poincaré mapping [177]. By means of Eq. 2.75, displace-
ment ûC is extracted from the interface Γ and through the Poincaré-Steklov mapping S
returns the outward normal stress derivative with respect to the trace of the displacement.
That is called Dirichlet-to-Neumann mapping [105, 147].
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In a similar way, we have the following identity

SL∆ûL,b = TT
L∆λ̂L and SF∆ûF,b = LT

G∆λ̂F . (2.76)

Here, TL := JL|ΓL
is the restriction of JL from BL to ΓL. Furthermore, we define

SL := S(KL) and SF := S(KF ) in Eq. 2.76.

Proposition Let the global solutions be at the converged state and let the following iden-
tity holds true:

u
k, 1

2

Γ = uk
Γ ∈ Γ, (2.77)

then the Global-Local formulation is converged. In addition, (2.77) holds true if and only
if

∆λL = λkL − λk−1
L = 0. (2.78)

Proof. The proof constitutes of two parts. Note, the Global-Local procedure is in the
convergence state if, all the coupling terms (C1), (C2) and (C3) holds true at iteration k.

(a) Let condition u
k, 1

2

Γ = uk
Γ hold, then it is evident (C2) and (C3) are satisfied in

iteration k. Accordingly, replacing Eq. 2.68 in (C̃3) yields

∫

Γ

(λk
C + λk

L) · δuΓ ds +AG

∫

Γ

(uk
Γ
− uk

L) · δλL ds = 0, (2.79)

where the second term due to (C̃2) and the identity of u
k, 1

2

Γ = uk
Γ becomes zero. Hence

this results in the continuity of tractions at iteration k, i.e. (C1) is satisfied.

(b) Let ∆λL = λkL − λk−1
L = 0 hold, then (2.66) can be restated as

λk−1
L = λkL = AL

∫

Γ

uk
G · δλC ds−

∫

Γ

λkC · vΓ ds, (2.80)

and therefore (C̃1) is restated as,

∫

Γ

(λk
C
+ λk

L
) · δuΓ ds +AL

∫

Γ

(u
k, 1

2

Γ − uk
G
) · δλC ds =

∫

Γ

(λk
C
+ λk

L
) · δuΓ ds = 0,

(2.81)

where (C̃4) is used. Subtracting Eq. 2.81 from (C̃3) yields

AG

∫

Γ

(uk
Γ − uk

L) · δλL ds = AG

∫

Γ

(uk
Γ − u

k, 1
2

Γ ) · δλL ds = 0, (2.82)

which results in uk
Γ = u

k, 1
2

Γ . Herein, Eq. C̃2 is used. Reciprocally, if u
k, 1

2

Γ = uk
Γ ∈ Γ

satisfied then ∆λL = 0 holds.
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Remark B.1. Let the Global-Local approach be in the converged state such that u
k, 1

2

Γ =
uk

Γ ∈ Γ. We underline if B = BC∪Γ∪BL holds, then the Global-Local mesh compared with
a single scale mesh is one to one, and the resulting Global-Local solutions are identical with
the single scale solutions. This is because the two finite element meshes which correspond
to the complementary and local domains are ‘exactly’ identical to the single scale mesh.
We now determine specific Robin-type boundary conditions such that ∆λL = 0 holds

which results in uk
Γ = u

k, 1
2

Γ by means of Proposition 1 and that yields the Global-Local
iterative process to be in the converged state.

Recall (2.66) and find AL such that ∆λL = λkL − λk−1
L = 0. Hence we have,

∆λL = AL

∫

Γ

∆uG · δλC ds −

∫

Γ

∆λC · δuΓ ds = 0, (2.83)

resulting to

AL

∫

Γ

∆uG · δλC ds =

∫

Γ

∆λC · δuΓ ds → ALJG∆ûG = LT
G
∆λ̂C, (2.84)

By means of (2.75) and considering (2.90)1, this equality holds if AL := SC which is the
Dirichlet-to-Neumann operator assigned to ΓG ∈ BC .

In a similar manner, let us find AG such that ∆λG = λkG − λk−1
G = 0. This yields

AG

∫

Γ

∆uL · δλL ds =

∫

Γ

∆λL · δuΓ ds → AGJL∆ûL = LT
L
∆λ̂L. (2.85)

By means of (2.76)1 and (2.90)2, we have AG = LT
LT

−T
L SL. Based on Proposition 1 the

converged state of the Global-Local iteration is independent of the choice of AG hence
one can simply replace SL by the identity tensor. Hence, there is no need to access SL at
the global level.

2.3.7. Spatial discretization. The computational domain is subdivided into bi-
linear quadrilateral elements denoted as Q1. Both subproblems are discretized with a
Galerkin finite element method using H1-conforming bilinear (2D) elements, i.e., the
ansatz and test space uses Qc

1–finite elements, e.g., for details, we refer readers to the [89].
Consequently, the discrete spaces have the property Vh ⊂ V and Wh ⊂W . Here, h refers
to the finite element size. Accordingly, a finite element discretization is illustrated in
Section 2.3.8 for the primal fields refers to the (uG,uL, dL,uΓ, λC , λL) and its constitutive
state variables represented by (εG, εL, dL,∇dL).

2.3.8. Finite Element Analysis. Let P be a finite element partition of B into
quadrilaterals, and Ni denotes the nodal shape function associated with the node i. The
scalar-valued quantity •̂i represents the nodal value. For the global-local formulation, we
assume the existence of the partitions PG and PL. The solution discretization are given
by

uG = NG
u ûG, uL = NL

u ûL, dL = NL
d m̂dL, (2.86)

and its derivative

ε(uG) = BG
u
ûG, ε(uL) = BL

u
ûL, ∇dL = BL

d
d̂L. (2.87)
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Algorithm 2.1: Global-Local iterative scheme combined with Robin boundary conditions.

Input: loading data (ūn, τ̄n) on ∂DB and ΓN , respectively;
solution (uG,n−1,uL,n−1, dL,n−1,uΓ,n−1, λC,n−1, λL,n−1) and HL,n−1 from step n− 1.

Global-Local iteration k ≥ 1:

Local boundary value problem:

• given AL,Λ
k−1
L ,HL,n−1; solve

phase-field part:

(1 − κ)

∫

BL

dL+H(ε(uL)).δdLdx + Gc

∫

BL

1

l
(dL − 1).δdLdx

+Gc

∫

BL

l∇dL.∇(δdL)dx+Gc

∫

BL

αl∇dL.M .∇(δdL)dx = 0,

mechanical part:



∫

ΩL

σ(uL, dL) : ε(δuL) dx −

∫

Γ

λL · δuL ds = 0,
∫

Γ

λL · δuΓ ds +AL

∫

Γ

uΓ · δλC ds = Λk−1
L ,

∫

Γ
(uΓ − uL) · δλL ds = 0,

• set (uL, dL, uΓ, λL) =: (uk
L, d

k
L, u

k, 1
2

Γ , λk
L),

• given (uk
L, λ

k
L;AG), set

Λk
G = AG

∫

Γ

uk
L · δλC ds −

∫

Γ

λk
L · δuΓ ds.

Global boundary value problem:

• given AG,Λ
k
G,u

k, 1
2

Γ , solve



∫

ΩG

σ(uG) : ε(δuG) dx −

∫

Γ

λF · δuG ds −

∫

Γ

λC · δuG ds

−
∫

ΓN

τ̄ · δuG ds = 0,
∫

Γ

λC · δuΓ ds+ AG

∫

Γ

uΓ · δλC ds = Λk
G,

∫

Γ
(u

k, 1
2

Γ − uG) · δλC ds = 0,

• set (uG, uΓ, λC) =: (uk
G, uk

Γ, λ
k
C),

• given (uk
G, λ

k
C ;AL), set

Λk
L = AL

∫

Γ

uk
G · δλC ds −

∫

Γ

λk
C · δuΓ ds.

• if fulfilled, set

(uk
G, uk

L, d
k
L, u

k
Γ, λ

k
C, λk

L) =: (uG,n, uL,n, dL,n, uΓ,n, λC,n, λL,n) and stop;

• else k + 1→ k.

Output: solution (uG,n,uL,n, dL,n,uΓ,n, λC,n, λL,n) and HL,n.

To construct the discretization of the Lagrange multipliers λC , λL, uΓ and the supple-
mentary quantity λF on Γ, we write

λC = NG
λ
λ̂C, λL = NL

λ
λ̂L, uΓ = NΓ

u
ûΓ, λF = NG

λ
λ̂F . (2.88)
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We assume that NG
λ = NG

u = NΓ
u and NL

λ := NL
u . This discretization for the

Lagrange multipliers satisfies the inf-sup condition, see e.g. [321, 322].

Thus, coupling terms are discretized by

JG =

∫

BG

(NG
λ )

TNG
u dx, JL =

∫

BL

(NL
λ)

TNL
u dx,

LG =

∫

ΓG

(NG
λ )

TNΓ
u ds, LL =

∫

ΓL

(NL
λ)

TNΓ
u ds.

(2.89)

Following our discretization, JG : BG → ΓG and JL : BL → ΓL become signed Boolean
mappings [52] which are used to project the entire domain to interface contributions, such
that

ûG,b := JGûG and ûL,b := JLûL. (2.90)

Here, b are denoted as interface nodes. In order to handle a non-matching finite
element discretization on the interface, more specifically to compute LL and LG, a dual
mortar method [321] is implemented. This provides sufficient regularity of the underlying
FE meshes.

2.4. Predictor-Corrector Adaptivity Applied to the Global-Local Formulation

We assume the Global-Local formulation is at the converged state, which is denoted
as (muG,n,uL,n, dL,n ,uΓ,n, λC,n, λL,n). The Global-Local approach is augmented by a
dynamic allocation of a local state using an adaptive scheme which has to be performed
at time step tn. By the adaptivity procedure, we mean: (a) to determine which global
elements need to be refined and identified by B adapt

G ⊂ BG; (b) to create the new fictitious
domain B new

F := B old
F ∪ B adapt

F with B adapt
F := B adapt

G and as a result a new local domain
is defined as B new

L := B old
L ∪ B adapt

L , see Fig. 3.3; (c) to determine a new local interface
denoted as ΓL; (d) to interpolate the old global solution in B adapt

L . All these steps refer
to predictor steps. The corrector step is explained thereafter. We briefly notice that the
principal idea of this adaptive scheme is inspired from [162] in which a predictor-corrector
scheme for mesh refinement in the crack zone was proposed.

2.4.1. Predictor step. In this section, we start explaining the predictor step.

• Determining global elements which have to be refined

Recall that the interfaces at the global, fictitious and local domains are denoted by ΓG ⊂
BG, ΓF ⊂ BF and ΓL ⊂ BL. We denote eG ∈ BG, eF ∈ BF and eL ∈ BL as the elements
in the global, fictitious and local domain. Let E1

G,i, E
2
G,i, E

3
G,i and E4

G,i refer to the left,
top, right and bottom global edges for the ith element eG,i, respectively (because, it is
quadrilateral hence it has four edges). Accordingly, Eq

F,i ∈ eF,i and Eq
L,i ∈ eL,i with

q = (1, 2, 3, 4) refer to the fictitious and local edges, see Fig. 3.3.

We now develop a procedure, to determine the global elements eG,i which have at least
one edge Eq

G,i such that their fine resolution at the local level, i.e. Eq
L,i, reaches to the

crack phase-field threshold value. Thus eG,i has to be refined. The predictor step for the
adaptive scheme of the Global-Local formulation is explained in Algorithm 2.2.
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Algorithm 2.2: Predictor step for the adaptive procedure.

Let 0 < TOLd < 1 be given. For the dL := dL,n ∈ BL, find corresponding eG ∈ BG which must
be refined using the following steps:

1. Find xL ∈ ΓL such that dL(xL) < TOLd on ΓL:

Checking criterion: If ”Yes” proceed to step 2. If ”No” stop,

2. find Eq
L,i ∈ ΓL such that xL ∈ Eq

L,i,

3. find Eq
G,i = P−1E

q
L,i (corresponding edge in BG),

4. find eG ∈ BG and eG 6∈ BF such that Eq
G,i ∈ eG.

Here, P : ΓG → ΓL is denoted as a projection/geometrical operator which maps the
global to the local interface by Eq

L,i := PEq
G,i.

• Creating new fictitious and local domains: (B new
F ,B new

L )

We are now able to determine a new fictitious and local domains. Knowing eG from the
previous step, the new fictitious domain is B new

F := B old
F ∪ B adapt

F such that B adapt
F := eG.

As a result, a new local domain is B new
L := B old

L ∪ B adapt
L such that B adapt

L is a fine
discretization (including heterogeneity as well) of B adapt

F , see Fig. 3.3.

• Determining the coupling interface: (ΓG, ΓF , ΓL)

So far, we have identified new fictitious and local domains. Next, we determine ΓF ⊂ BF ,
due to its coarse discretization. Afterwards, we find the local interface ΓL ⊂ BL by
projecting ΓF to BL. Finally, it is trivial that ΓG := ΓF , because BF and BG are in the
same discretization space.

The edge Eq
F,i ∈ ΓF is on the interface if

Eq
F,i ∈ ΓF if ∄ i, j : Eq

F,i = Er
F,j, for q, r = (1, 2, 3, 4), (2.91)

which means if an edge Eq
F,i is shared between two elements in BF , it is not on the

interface (inner edge) and if it belongs only to one element, then it must also belong to

interface (outer edge). As a result, we define the fictitious interface as ΓF = A
i,q
Eq

F,i,

hence ΓL =A
i,k

Eq
L,i with E

q
L,i := PEq

F,i.

• Interpolating the old solution at tn from the global to the local mesh

Given a continuous function u
adapt
G that is uG in B adapt

G , we define the linear interpolation
operator π : B adapt

G → B adapt
L to u

adapt
G by

u
adapt
L,n (x) := πuadapt

G,n = NG
u (x)û

adapt
G,n for x ∈ B adapt

L . (2.92)

where NG
u (x) is defined in Appendix A. Hence, unew

L,n := uL,n ∪ u
adapt
L,n .
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2.4.2. Corrector step. We introduce a corrector step in which the computation
is rerun on the newly determined local mesh. To this end, we compute Global-Local
solutions until the checking criterion in Algorithm 2.2 is not satisfied (No). That means
we could not find additional local edges on the interface such that dL(xL) < TOLd on ΓL

holds.

Let us write Algorithm 3.3 in the following abstract form

sn = GL(sn−1), (2.93)

with s = (uG,uL, dL,uΓ, λC , λL). We define an intermediate solution s
j
n−1 at fixed tn

such that the corrector step for adaptive scheme reads,

s
j
n−1 = GL(sn−1). (2.94)

Perform Algorithm 2.2, if the checking criterion in step 1 is satisfied. But, if this is not
the case, then the corrector step is fulfilled, thus set sjn−1 =: sn and stop; else j + 1→ j.

2.4.3. The final predictor-corrector scheme. The aforementioned predictor-
corrector adaptivity procedure is summarized in Algorithm 2.3. Fig. 3.3 depicts one

Algorithm 2.3: Predictor-corrector steps for the adaptive procedure.

Let 0 < TOLd < 1 be given. For the dL := dL,n ∈ BL, find corresponding eG ∈ BG which have
to be refined using the following steps:

1. Compute the intermediate solution by s
j
n−1 = GL(sn−1),

2. perform Algorithm 2.2 if Checking criterion is satisfied (Yes),

3. if checking criterion in Algorithm 2.2 is not satisfied, then the corrector step is fulfilled,
thus set sjn−1 =: sn and stop; else j + 1→ j.

iteration of the predictor-corrector steps for the adaptive procedure which is illustrated
in Algorithm 2.3.

We notice that for the brutal fracture behavior, where a complete failure happens
in one load increment, Algorithm 2.3 has an important effect. This is mainly because
the corrector step is performed until there is no nodal point on the interface such that
dL(xL) < TOLd holds. If this is fulfilled, the adaptivity procedure stops and goes to the
next load increment. Thus brutal fracture can be observed in the next time step. This is
illustrated in the numerical example of the Section 2.5.

The performance of Algorithm 2.2 and Algorithm 2.3 is depicted in Fig. 2.8 and
Fig. 2.9. This example refers to the isotropic single-edge notch under tension. The
numerical setup is given in [224]. By applying predictor-corrector steps, we will have
a more regularized fracture surface. This is observed for instance in Fig. 2.9 step 58,
step 60 and step 62 (right figures). But that is not the case, if we only apply predictor
step. For instance in Fig. 2.8, at step 58, after the predictor step (in the absence of the
corrector stage). Here we do not have a regularized fracture surface. It will be regularized
in the next load increment which is shown in step 59 . That is also observed in steps
60 and 63 in Fig. 2.8, as well. To compare these effects on the global level, we refer to
the load-displacement curve in Fig. 2.12a. It was observed that the corrector procedure
applied to the predictor step improved the Global-Local results.
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Figure 2.7: Explanation of the predictor-corrector adaptive scheme.

2.4.4. Homogenized phase-field solution on the global level. We determine the
coarse representation of the crack phase-field. Here we denote (uG,n,uL,n, dL,n ,uΓ,n, λC,n, λL,n)
to be the converged solution of the Global-Local approach. We emphasis that the com-
putation of the global phase-field dG is a post-processing step. The homogenized global
crack phase-field solution can be determine based on the following ways.

(a) Global crack phase-field solution. We solve the crack phase-field given in
(2.29) after having obtained the converged global solution by

dG = argmin
dG∈W

[−g′(dG+)H(uG,n;MG)− lGδd.γl], (2.95)

with,

lG := lL
hG
hL

and MG := ML. (2.96)

where H is described by (2.35) and formulated on the global level. The last condition in
(2.96)2 holds because we assumed the structural tensor at the global level inclined with
identical angle as the local level. This holds in the case of the transverse isotropic setting.

(b) Homogeneous crack phase-field solution. Assume that at the global level
the transition zone of the crack phase-field vanishes. That results in a free isotropic and
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Figure 2.8: Global-Local approach augmented with the predictor adaptive scheme given
in Algorithm 2.2; Fracture of isotropic single-edge-notched plate under tension per loading
steps.

Figure 2.9: Global-Local approach augmented with the predictor-corrector adaptive
scheme indicated in Algorithm 2.3; Fracture of isotropic single-edge-notched plate under
tension per loading steps.

anisotropic Laplacian operator ∆(•) = 0 in (2.29). Hence, the second and third terms in
(2.37) become zero. Following that Eq. 2.29 at the quasi-static stationery state is restated
by

dG =
1

1 + 2(1− κ)H(uG,n;MG)
∈ [0, 1], (2.97)
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such that if H → ∞ then dG = 0 and for H → 0 then dG = 1 holds. The homogeneous
crack phase-field solution dG in (2.97) is independent of the lG but the global crack phase-
field solution in (2.95) depends on lG. At the global level we do not have any given
imperfection (e.g. notch shaped). That is located only at the local level. However, (2.95)
or (2.97) still provides the desired crack direction because of H(uG,n;MG). This is due

to the fact that uG,n is determined based on the given u
k, 1

2

Γ which is upscaled from local

level, see (C̃4). As a result, the crack driving force at the global level is the true projection
of the constitutive non-linearity at the local level. That is varitionally consistent and
resulting from the upscaling procedure (i.e. information which is transformed from the
local level to the global scale).

2.5. Numerical Examples

The section presents the performance of the proposed adaptive Global-Local approach
applied to the phase-field modeling of anisotropic brittle fracture. We consider four nu-
merical model problems. The first example deals with an isotropic single-edge-notched
shear test in which we set the directional tensor to be zero. The next three examples deal
with transverse isotropic setting with different directional tensors.

2.5.1. Goals of the computations. For comparison purposes, we compute quanti-
tative and qualitative single scale and Global-Local resolutions. In detail, we investigate:

• Crack patterns on the local scale at the complete fracture state in order to evaluate
the down-scaling procedure (i.e. transition of external loading increments from the
global scale to the local level);

• Load-displacement curves to evaluate the up-scaling procedure during the Global-
Local coupling approach (i.e. transition of local non-linearity and heterogeneity
responses to the global level);

• Investigations of the thermodynamically consistency between the single scale strain-
energy and its Global-Local energy functional;

• Efficiency of the overall response resulting from the predictor-corrector adaptive
scheme;

• Effect of the given threshold phase-field value in the adaptive process for the deriva-
tion of the fracture zone;

• Evaluating the homogenized phase-field solution at the global level, when the Global-
Local scheme is in the converged state.

The outlined constitutive formulation is considered to be a canonically consistent and
robust scheme for capturing the non-linearities on the lower level and its projection on to
the global level.

2.5.2. Geometry, data and solution procedures. As a setup for the numerical
investigations, we use:
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• Geometries and parameters: In the first two examples, a boundary value prob-
lem applied to the square plate is shown in Fig. 2.10. We set A = 0.5 mm hence
B = (0, 1)2 mm2 that includes a predefined single notch from the left edge to the
body center, as depicted in Fig. 2.10. The predefined crack is in the y = A plane
and is restricted in 0 ≤ |C| ≤ l0 and we set l0 = A = 0.5. As a loading setup, we set
the initial values for displacement and phase-field as u0 := 0 ∈ B and d0 := 1 ∈ BC
and BL. The finite element discretization is explained in Section 2.3. Details of the
last two examples are accordingly given.

• Material parameters: In the first two examples, the constitutive parameters for
the isotropic and transversely isotropic material are the same as in [225] and given
as λ = 121.15 kN/mm2, µ = 80.77 kN/mm2. Griffith’s critical elastic energy re-
lease rate is set as Gc = 2.7 × 10−3 kN/mm. In the first example, the preferred
fiber direction is set to zero a = 0 which represents the standard isotropic setting.
Whereas, the three other examples represent transversely isotropic behavior that
is characterized by the symmetric second-order structural tensor M = a⊗ a. For
a given angle φ of the preferred fiber direction, the normal vector is defined as

a :=
[
cos(φ) sin(φ)

]T
. For the second example, the preferred fiber direction is

given by the structural director a which is inclined by θ = +30◦ and θ = −30◦
with respect to the x-axis of a fixed Cartesian coordinate system. Additionally, the
anisotropy penalty-like parameters for the deformation part and fracture contribu-
tion are set to α = χ = 50 and Ξ = 0. All material properties are fixed for the
following numerical examples, unless indicated otherwise.

• Model parameters: The phase-field parameters are chosen as κ = 10−10 and l =
2h. The threshold value for the Global-Local predictor-corrector mesh refinement
scheme is TOLd = 0.85. This threshold value TOLd is a fixed value except for the
compression cases in which we use a different TOLd.

• Solution of the nonlinear problems:

An alternate minimzation scheme is used for solving the local boundary value prob-
lem indicated in Algorithm 3.3. Thus, we alternately solve for dL by fixing uL and
then solving for (uL,uΓ,mλL) by fixing dL until convergence is reached. An iter-
ative Newton solver is used in which the linear equation systems are solved with a
generalized minimal residual method. The stopping criterion of the single scale and
local Newton methods is TolN-R = 10−10. Specifically, the relative residual norm is
given by Residual : ‖mF (mxk+1)‖ ≤ TolN-R‖mF (mxk)‖. Here, mF refers to the
residual of the equilibrium equation of the nonlinear single scale and local boundary
value problems.

• Software:

The implementation is based on MATLAB R2018b [216] and Fortran 90 [82].
The user elements including the constitutive modeling at each Gaussian quadrature
points are written in Fortran 90. The general framework for the Global-Local
approach is implemented in MATLAB as a parent/main program such that all
subprograms in Fortran 90 are called as a Mex-file.
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Figure 2.10: Geometry and loading setup for the single-edge-notched shear test in (a)
and tensile test with the structural director a inclined under an angle φ = +30 in (b) and
φ = −30 in (c) with respect to the x-axis.

2.5.3. Example 1: Isotropic single-edge-notched shear test. In this example,
attention is restricted to pure isotropic crack-propagation by letting a = 0. In this
setting, we consider a shear test such that fracture response exhibits a curved surface. The
numerical computation is performed by applying a monotonic displacement ū = 5× 10−5

in horizontal direction at the top boundary of the specimen.

An important aspect that has to be verified at the local level is the fracture state.
Thus, we look at the crack phase field pattern at the local scale to investigate the tran-
sition of external loading increments (i.e. the down-scaling procedure) from the global
domain to the local level. The Global-Local adaptive scheme to capture the curved sur-
face is evaluated for different TOLd. Hereby, TOLd leads to different fracture zones and
hence different local domains. Four different values of TOLd := (0.9, 0.85, 0.80, 0.70) are
considered. Fig. 2.11 shows the evolution of the local domains for different TOLd. The
global mesh is only used to show a clear representation for the evolution of the local
domain. Since global and local domains are performed independently, and therefore we
deal with a two-scale finite element algorithm.

By comparing e.g. the first and fourth row in Fig. 2.11, it is trivial that a smaller value
of the TOLd yields a narrow fracture zone. Hence, if TOLd1 < TOLd2 then |BL,1| < |BL,2|. The
resultant narrow local domain due to the adaptivity approach in Fig. 2.11 demonstrates
the great efficiency of the proposed method.

The above observation plays an important role by constraining the diffusivity zone of
the crack phase-field in a narrow fracture region. Whereas in the standard single scale
phase field modeling, the fracture zone is spread over more areas and hence a wider
diffusive zone. Thus, by the Global-Local approach we limit the effect of diffusivity on
the local level and not in the entire domain.

The influence of local effects (non-linear constitutive responses) on the global scale are
described based on the load-displacement response, depicted in Fig. 2.12b. These curves
are in a good agreement with the single scale solution. As it is excepted the Global-Local
approach with a higher value of the TOLd = 0.90 is in very good agreement with the single
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Figure 2.11: Example 1. Evolution of the local domain for different threshold values
of TOLd and four deformation states up to final failure, (a) ū = 0.0058 mm (b) ū =
0.0103 mm (c) ū = 0.0117 mm (d) ū = 0.0180 mm.

scale solution. That is mainly because within single scale phase-field modeling, we deal
with a wider diffusivity zone and hence more elements with fracture state are involved.

The use of adaptivity leads to a narrow fracture zone and hence to a reduction of
degrees of freedom. That is shown in Fig. 2.13a for different values of TOLd. It turns out
that a smaller values of TOLd lead to a reduction of the active degrees of freedom and the
computational time. At every jump which appears in Fig. 2.13a the predictor-corrector
adaptive scheme is applied to the Global-Local scheme hence the number of degrees of
freedom is increased.

More specifically, we show that the adaptive scheme applied to the Global-Local ap-
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Figure 2.12: Load-displacement curves for the isotropic single-edge-notched test, (a)
Example in Section 2.4, specimen under tension test and (b) Example 1, shear test based
on Global-Local approach with different TOLd verses single scale.

proach considerably reduces the computational cost in comparison with the single scale
solution, as indicated in Fig. 2.13b. Note that, at load step ū = 10 × 10−3 (the load-
ing point where the fracture initiates) a higher computational time is observed, see Fig.
2.13. That is due to the alternate minimization approach used for solving the variational
phase-field formulation which needs more iteration at cracking to reach the equilibrium
state.

Figure 2.13: Example 1. Isotropic single-edge-notched shear test. (a) Number of degrees
of freedom which have to solved for and (b) Time-displacement curves in terms of the
accumulated time.

We now aim to investigate the energy response when solving a problem as single scale
problem and as Global-Local. Recall, the consistency of the energy functional (departing
point of the Global-Local approximation)

E(u, d;M) ≡ Ẽ(uG, uL, dL, uΓ, λC, λL;M),

between the single scale and the Global-Local functional indicated in Formulation 2.2 and
(2.58), respectively. We investigate this approximation by means of the evolution of the
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total stored elastic strain energy plotted in Fig. 2.14a and the dissipated fracture energy
shown in Fig. 2.14b during load increments. These Global-Local simulation results show
very good agreement with the single scale scheme yet with its efficiency in time shown in
Fig. 2.13b.

Figure 2.14: Example 1. Comparison of the energy response between the single scale
domain and the Global-Local scheme for (a) the total free-energy functional and (b) the
dissipated fracture energy.

At the converged Global-Local state, we obtain the following updated fields:
(uG,n,uL,n , dL,n,uΓ,n, λC,n, λL,n). Based on that, the homogenized global phase-field so-
lution at the complete failure state is illustrated in Fig. 2.15 for different values of TOLd.
We emphasis that in the global level there is no pre-defined crack (i.e. globally there is no
notch). However, it is interesting to note that the homogenized global phase-field solution
is able to capture the crack direction which is indeed a consistent projection of the local
response. Figure 2.15a provides the global phase-field solution by means of (2.95) at the
converged Global-Local state. Accordingly, Fig. 2.15b provides the homogeneous phase-
field solution based on (2.97). Note that, the homogenized global phase-field is slightly
affected by TOLd.

2.5.4. Example 2: Analysis of transversely isotropic single-edge-notched
tension test. The second example deals with transversely isotropic material responses
under tension. It is based on different fiber directions given by the structural director a
which is inclined under an angle φ with respect to the x-axis of a fixed Cartesian coordinate
system. The numerical simulation is performed by applying a monotonic displacement
ū = 5 × 10−5 in vertical direction at the top of the specimen with a linearly increasing
displacement. This loading setting is applied to the rest of numerical examples.

Fiber direction of φ = +30◦. Here we investigate the transversely isotropic single-
edge-notched tension test based on the fiber direction angle φ = +30◦. We apply the
Global-Local approach as follows:

• Case a. Without non-matching discrete interface and without adaptive scheme (a
pre-defined local domain),
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Figure 2.15: Example 1. Homogenized global crack phase-field solution for the isotropic
single-edge-notched shear test (a) Global crack phase-field (b) Homogeneous crack phase-
field solution at ū = 0.0180 mm for different TOLd.

Figure 2.16: Example 2. Transversely isotropic single-edge-notched tension with φ =
+30◦. Complete fracture state at ū = 0.010 mm for (a) matching discrete interface
(Case a) ΓG = ΓL and (b) non-matching discrete interface ΓG 6= ΓL with predefined local
domain (Case b).

In this case, see Fig. 2.16a, we aim to evaluate the Proposition 1 such that B =
BC ∪ Γ∪BL. Here, the local domain is predefined and no adaptivity is applied. Also, the
discrete interface between the global and local domains are one to one such that ΓG = ΓL

(see Fig. 2.16a last column). It is clear that the two finite element meshes used for Global-
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Local approach represent ”precisely” the same as a single scale domain. Hence, we expect
an identical Global-Local response compared with the single scale solutions (see Remark
1 in Section 2.3.6). The complete fracture state is shown in Fig. 2.16a. Accordingly, a
comparison of the load-displacement curves of the proposed formulation is demonstrated
in Fig. 2.17a and shows a very good agreement compared with the single scale problem.

Remark 7: Note that this case is similar to the work of Gerasimov et al. [143]
if Robin-type boundary conditions are not taken into account (i.e. Global-Local approach
based on Dirichlet-Neumann type boundary conditions), as sketched in Fig. 2.6a. Therein,
the corresponding cumulative computational time is higher compared with the reference
single scale solution (see Figure 10 in [143]), due to the slow convergence of the Global-
Local procedure. That motivated the introduction of the Robin-type boundary conditions,
resulting in a reduction of the computational cost, see Fig. 2.13b.

• Case b. With non-matching discrete interface and without adaptive scheme (a
pre-defined local domain).

In the second case, we assume B 6= BC∪Γ∪BL and that the local domain is pre-defined
hence no adaptivity is applied. Furthermore, the discrete interface between global and
local domains are non-matching such that ΓG 6= ΓL (see Fig. 2.16b last column). This
removes one restriction applied in Case a, that is the matching discrete interface criteria.

The complete fracture state is shown in Fig. 2.16b. Compared with the first case, by
the non-matching discrete interface, we are able to have an arbitrary mesh at the local
domain (including interface) without any given interface conditions (and to avoid having
distorted mesh between fine and coarse discretizations). The interface conditions refer to
the identical discretization space for ΓL and ΓG, see Remark 3.1. The importance can be
observed when the fracture reaches the interface, see e.g. Fig. 2.11.

The resulting load-displacement curve in Fig. 2.17b has a very good agreement when
compared with the single scale problem.

Figure 2.17: Example 2. Transversely isotropic single-edge-notched tension with
φ = +30◦. Comparison of the load-displacement curve between single scale problem
and Global-Local formulation. (a) Matching discrete interface with B = BC ∪ Γ ∪ BL
(Case a) and (b) non-matching discrete interface with B 6= BC ∪ Γ ∪ BL (Case b).
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• Case c. With non-matching discrete interface and with adaptive scheme.

In the third case, we consider a non-matching discrete interface along with an adaptive
scheme. This case removes all restrictions applied in Case a (matching interface and
predefined local domain).

Fig. 2.18 illustrates the evolution of the crack phase-field along with the local domain
and the corresponding Global-Local interface. The local domain and its coupling interface
must be computed at each stage. The second row of Fig. 2.18 presents the local mesh
evolution such that the non-matching discrete interface between global and local mesh
is examined. To evaluate the solution related to the local to global transition, the load-

Figure 2.18: Example 2. Transversely isotropic single-edge-notched tension with φ =
+30◦. First row indicates the local crack phase-field resolution and second row represents
the evolution of the local domain per time for different deformation states as follows: (a)
ū = 0.0030 mm (b) ū = 0.0088 mm (c) ū = 0.0092 mm and (d) ū = 0.010 mm.

displacement curve is shown in Fig. 2.19a. Since the single scale problem produces a very
diffusive transition zone for the phase-field, more elements are involved (this is not the
case in the sharp crack limit). This results in a small difference in the load-displacement
curves between the Global-Local formulations and the reference single scale. Fig. 2.19b
illustrates a reduction of the number of degrees of freedom.

The Global-Local approach, besides its feasibility for having two ad-hoc finite element
models for the global and local domain, enables computations with legacy codes. Ad-
ditionally, the reduction of unknowns leads to a reduction of the computational time.
To illustrate the time efficiency, the simulation time ratio between single scale and the
Global-Local approach are shown in Fig. 2.20a. It can be observed that in average, the
Global-Local formulations perform 12 times faster. Furthermore, Fig. 2.20b demonstrates
the corresponding accumulative computational time, which underlines the efficiency of the
predictor-corrector adaptive scheme.

Fig. 2.21a presents the total elastic strain energy per load increments. The resulting
Global-Local curve is in a very good agreement with the single scale approach.

Accordingly, the homogenized global phase-field solutions for different fracture states
are depicted in Fig. 2.22. First and second row of Fig. 2.22 are based on approach (a)



60 Global-Local approach for anisotropic failure in brittle solids

Figure 2.19: Example 2. Transversely isotropic single-edge-notched tension with φ =
+30◦. (a) Comparison of the load-displacement curve; (b) Number of degrees of freedom.

Figure 2.20: Example 2. Transversely isotropic single-edge-notched tension with φ =
+30◦. (a) Time ratio between the computed single scale and the Global-Local time per
loading steps and (b) accumulated time-displacement curves.

and (b) outlined in section 2.4. For comparison purposes, the single scale resolution is
also plotted in the third row of Fig. 2.22. It is observed that, the homogenized phase-field
solution in the case of the anisotropic setting, is able to capture the crack direction. The
global phase-field solution is affected by the global element size and also TOLd (local scale).

Fiber direction of φ = −30◦. This numerical example illustrates the transversely
isotropic single-edge-notched tension test with φ = −30◦. The crack phase-field resolution
has a brutal fracture response in which a complete failure happens in one load increment.
Thus the post-peak behavior is almost vertical, see Fig. 2.24. The aim of this numerical
example is to show the capability of the Global-Local approach to capture such a brutal
fracture behavior. This is mainly possible due to the introduction of the corrector step in
the adaptive scheme described in Section 2.4.

Next, we investigate the effect of the TOLd in the case of the brutal fracture behavior,
by setting TOLd = (0.90, 0.80), as illustrated in Fig. 2.23. Similar as before, different TOLd
lead to different fracture zones and hence different local domains. The crack paths for
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Figure 2.21: Example 2. Transversely isotropic single-edge-notched tension test. Com-
parison of the total energy functional between single scale domain and Global-Local
scheme for fiber direction with φ = +30◦ in (a) and fiber direction with φ = −30◦ in
(b).

both TOLd = 0.90 and TOLd = 0.80 are identical, yet with TOLd = 0.80 a more narrow
fracture zone is observed (hence a reduction of computational time).

A comparison of the load-displacement curves are shown in Fig. 2.24a. The effect of
TOLd on the load-displacement curve with zoom-in to the framed region of the left plot is
shown in Fig. 2.24b. Despite of its brutal fracture behavior, the load-displacement curve
with the higher value of TOLd = 0.90 has a good agreement when compared with a single
scale solution. Following the approximation between the single scale and the Global-Local
modeling, Fig. 2.21b presents a very good agreement in the total elastic strain energy of
both schemes during the load increments.

Figure 2.25 describes the efficiency of the proposed Global-Local approach. Here the
accumulative computational time is plotted in Fig. 2.25a and the number of unknowns are
plotted in Fig. 2.25b versus the displacement and compared with the single scale domain.
At each jump in Fig. 2.25b, the predictor-corrector adaptive scheme is active and applied
on the Global-Local scheme which increases the number of degrees of freedoms.

The homogenized global phase-field solution for this numerical setting is indicated in
Fig. 2.26a at the complete fracture state. The single scale resolution is indicated in third
row of Fig. 2.26b. It is evident that the homogenized phase-field solution is able to (i)
capture the initial crack of the notch plate located at the local level and accordingly, (ii)
the evolution of the fracture state which follows the preferred fiber direction.

2.5.5. Example 3: Investigation of transversely isotropic heterogeneous L-
shaped panel test. The third model problem is concerned with anisotropic brittle
fracture of a heterogeneous L-shaped panel test. The homogeneous isotropic counterpart
setting for this benchmark problem has been reported by many authors, see e.g. [218, 305,
24, 316]. We demonstrate the performance of the Global-Local approach to predict crack
propagation without any given initial crack region. In this case the initial local domain
needs to be determined based on the critical stress state at the global level as outlined
in Fig 2.27c. To increase the order of complexity, a heterogeneous structure is considered
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Figure 2.22: Example 2. Homogenized global crack phase-field solution for φ = +30.
First row: the global crack phase-field; Second row: the homogeneous solution; Third
row: single scale phase field solution per loading step for different deformations states as:
(a) ū = 0.0088 mm (b) ū = 0.0092 mm and (c) ū = 0.010 mm.

by means of randomly distributed hard inclusions as plotted in Fig 2.27b. Furthermore
transversely isotropic material behavior is assumed. The structural director a is inclined
under φ = −15◦.

Geometry and loading conditions are depicted in Fig. 2.27a. The size of the specimen
is chosen to be: A = B = 250 mm and H = 30 mm. The bottom edge of the specimen is
fixed in both directions and a vertical displacement is applied until final failure, see Fig.
2.27a. One third of the specimen is covered by hard inclusions, as shown in Fig. 2.27b.
Here, crack propagation is expected. The remaining parts of the domain are supposed to
be homogeneous, but affected by the transversely isotropic behavior.

The material parameters used in the simulation are the same as in [305] and set as:
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Figure 2.23: Example 2. Fracture of transversely isotropic single-edge-notched plate
under tension for φ = −30◦. Resulting, local crack phase-field by Global-Local adaptive
scheme indicated in; First row with TOLd = 0.90; Second row with TOLd = 0.80 per loading
steps at (a) ū = 0.0030 mm (b) ū = 0.0062 mm (c) ū = 0.0078 mm (d) ū = 0.0085 mm.

Figure 2.24: Example 2. Effect of different TOLd on Global-Local approach by (a)
Comparison of the load-displacement curve; (b) Zooming into the framed region of the
left plot.

λ = 6.16 kN/mm2, µ = 10.95 kN/mm2, Gc = 9 × 10−5 kN/mm, α = χ = 50 and Ξ = 0.
The dimensionless mismatch ratio is denoted by m = Einclusion/Ematrix (here, E refers to
Young’s modulus) and set as m = 10. Thus, we deal with Ematrix = 25.85 kN/mm2 and
Einclusion = 258.5 kN/mm2.

In order to determine an initial fictitious domain, which has to be used for the Global-
Local approach, an idea of the phase-field formulation with threshold state is considered.
Here, a critical stress state on the global level is employed by extending the critical
stress value of the isotropic phase-field formulation in [62] to an anisotropic heterogeneous
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Figure 2.25: Example 2. Time efficiency for the transversely isotropic single-edge-
notched tension test (a) Time-displacement curves in terms of the accumulated time; (b)
Number of degrees of freedom.

Figure 2.26: Example 2. Homogenized global crack phase-field solution for φ = −30◦.
(a) Global crack phase-field and (b) single scale solution for two deformation states:
ū = 0.0078 mm and ū = 0.0085 mm.

Figure 2.27: Example 3. Heterogeneous L-shaped panel test. (a) Geometry and loading
setup with a structural director a inclined under an angle φ = −15 (b) partitioning of
domain into the heterogeneity and homogeneity counterparts and (c) global finite element
mesh without potential fictitious zones.
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Figure 2.28: Example 3. Maximum stress state in the heterogeneous L-shaped panel
test. (a) Global stress state and (b) single scale stress state.

setting. Hence, the critical values for the stress and corresponding strain, are obtained as

εc =

√
3

3

√
Gc

l
(
χ a4 + Ē

) and σc =
3
√
3

16

√
Gc

(
χ a4 + Ē

)

l
. (2.98)

This result is based on (2.35) and (2.97) where a = sin(φ), see [299]. The effective Young’s
modulus Ē for the heterogeneous domain is defined as

Ē :=
EV oigt + EReuss

2

with

EV oigt :=
1

V

∫

B

E dx, and E−1
Reuss :=

1

V

∫

B

E−1 dx.

For χ = 0 in (2.98) the isotropic case of [62] is recovered. The critical stress state increases
as l decreases. Additionally, if the length scale l goes to 0 in the limit, the crack nucleation
stress tends to infinity. This is in agreement with Griffith’s theory, which allows to have
crack nucleation in stress singularities. Then, the critical stresses based on the effective
Young’s modulus Ē = 36.136 kN/mm2 yields σc = 9.2603 N/mm2 with the Voigt average
EV oigt = 44.423 kN/mm2 and the Reuss average EReuss = 27.850 kN/mm2.

Figure 2.28 shows the maximum stress state distribution of the heterogeneous L-shaped
panel test. Here, the maximum stress is observed in the corner point of the specimen where
the singularities are located. Hence, this is the potential candidate for the local domain.
The Global-Local approach is then started after the stress state on the global domain
reaches 75% of σc. This percentage of the critical stress is chosen to be on the safe side
when starting the Global-Local formulations.

The evolution of the local crack phase-field with the corresponding mesh is depicted
in Fig. 2.29 for different deformation stages. Specifically, the second row in Fig. 2.29
corresponds to the deformations ū = 0.324 mm, ū = 0.333 mm and ū = 0.58 mm,
respectively. Due to the existing hard/stiff inclusions, the crack phase-field propagates
around the inclusions. The resulting crack pattern indicated in Fig. 2.29 demonstrates
an excellent agreement with the single scale simulation, with the advantage that the
Global-Local approach requires significantly less degrees of freedom.
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Figure 2.29: Example 3. Crack phase-field pattern for the transversely isotropic het-
erogeneous L-shaped panel test with fiber direction angle of φ = −15◦. First row: local
crack phase-field based on the adaptive scheme; Second row: mesh evolution for local
domain by considering the influence of inclusions; Third row: resulting single scale phase-
field solution at (a) ū = 0.15 mm, (b) ū = 0.324 mm, (c) ū = 0.333 mm and (d)
ū = 0.58 mm.

A comparison of the load-displacement curves is shown in Fig. 2.30a. Therein, a
good agreement of the Global-Local approach with the single scale solution was observed
for the heterogeneous L-shaped panel test. Figure 2.30b illustrates the efficiency of the
Global-Local approach. Here the accumulative computational time is reduced by a factor
of eight.

2.5.6. Example 4: Investigation of transversely isotropic double-edge-notched
tension. The last example is concerned with the capability of the proposed Global-
Local approach for handling coalescence and merging of crack paths in the local do-
mains. Specifically, the following numerical test aims to illustrate the effects of the double
notch shaped specimen. Here crack-initiation and curved-crack-propagation, representing
a mixed-mode fracture, are predicted with a Global-Local formulation. Additionally a
transversely isotropic material behavior given by the structural director a that is inclined
under φ = −15◦ is assumed.

The geometrical setup and the loading conditions of the notched specimen is depicted
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Figure 2.30: Example 3. Heterogeneous L-shaped panel test. (a) Comparison of the
load-displacement curves and (b) accumulated time-displacement curves.

Figure 2.31: Example 4. Double-edge-notched tensile test. (a) Geometry and loading
setup with a structural director a inclined under an angle φ = −15 and (b) global finite
element mesh with two potential fictitious zone BF,1 and BF,2.

in Fig. 2.31a. The bottom edge of the plate is fixed in the x and y directions. A vertical
displacement is applied at the top edge until final failure. We set A = 20 mm and
B = 10 mm hence B = (20, 10)2 mm2. For the double-edge-notches, let H1 = 5.5 mm
and H2 = 3.5 mm with the predefined crack length of l0 = 5 mm, see Fig. 2.31a. The
material parameters used in the simulation are the same as in [6] and set as: λ = 12
kN/mm2, µ = 8 kN/mm2, Gc = 1× 10−3 kN/mm, α = χ = 50 and Ξ = 0.

The global finite element mesh includes two potential fictitious zones BF,1 and BF,2
with the interfaces Γ1 and Γ2 shown in Fig, 2.31b.

The evolution of the crack phase-field resulting from the local domain along with its
mesh evolution are indicted in Fig. 2.32 for different deformation stages up to final failure.
The single scale crack phase-field simulation is shown in Fig. 2.32 in the third row. At
the loading step ū = 0.0143 mm the coalescence and merging of the two local domains
are observed. Furthermore, a considerable reduction of the unknowns versus the single
scale problem, can be clearly noticed due to the very narrow BL in Fig. 2.32.

These results demonstrate the feasibility/efficiency of using the proposed adaptive
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Figure 2.32: Example 4. Crack phase-field pattern for transversely isotropic double-
edge-notched plate under tension with fiber direction angle of φ = −15◦. First row: local
crack phase-field based on the adaptive scheme; Second row: mesh evolution for local
domain; Third row: resulting single scale phase-field solution at (a) ū = 0.01 mm, (b)
ū = 0.0122 mm, (c) ū = 0.0143 mm and (d) ū = 0.0145 mm.

Global-Local approach for different local domains and more complicated structures.
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3. Global-Local approach for hydraulic fracture in poroelastic

media

In this chapter, phase-field modeling of hydraulic fractures in porous media is extended
towards a global-local approach. Therein, the failure behavior is solely analyzed in a
(small) local domain. In the surrounding medium, a simplified and linearized system
of equations is solved. Both domains are coupled by Robin-type interface conditions.
The fracture(s) inside the local domain are allowed to propagate and consequently both
subdomains change within time. Here, a predictor-corrector strategy is adopted in which
the local domain is dynamically adjusted to the current fracture pattern. The resulting
framework is algorithmically described in detail and substantiated with some numerical
tests. The discussion in this chapter is based on the recent work of Aldakheel et al.
[17].

3.1. Introduction

In recent years, several pressurized [69, 242, 240, 313, 162, 163, 290, 257] and fluid-filled
[239, 317, 196, 235, 234, 115, 160, 12, 200, 310, 198, 75, 199, 88, 161, 318, 15] phase-field
fracture formulations have been proposed in the literature. These studies range from
modeling of pressurized and fluid-filled fractures, mathematical analysis, numerical mod-
eling and simulations up to high-performance parallel computations. Recently various
extensions towards multiphysics phase-field fracture in porous media have been proposed
in which various phenomena couple as for instance proppant [198], two-phase flow formu-
lations [197] or given temperature variations [257]. All these examples demonstrate the
potential of phase-field for crack propagation.

Phase-field fracture is a regularized approach, which has advantages and shortcom-
ings. The first advantage is a continuum description based on first physical principles
to determine the unknown crack path [134, 67, 230] and the computation of curvilinear
and complex crack patterns. The model allows for nucleation, branching, merging and
post-processing of certain quantities such that stress intensity factors become redundant.
Therefore, easy handling of fracture networks in possibly and highly heterogeneous media
can be treated. The formulation being described in a variational framework allows finite
element discretizations and corresponding analyses. The mathematical model permits any
dimension, thus phase-field fracture applies conveniently to three-dimensional simulations.
On the energy level, the formulation is non-convex constituting a challenge for both theory
and design of numerical algorithms. A second challenge is the computational cost. Various
solutions have been proposed so far; namely staggered approaches (alternating minimiza-
tion) [66, 73, 74], stabilized staggered techniques [72], quasi-monolithic approaches [162]
(possibly with sub-iterations [213]), or fully monolithic approaches [142, 316, 315]. Adap-
tive mesh refinement was proposed to reduce the computational costs [73, 162, 35, 314].
A related technique that has the potential to treat large-scale problems is a global-local
technique proposed in [143, 138]. Recently this was extended to a framework in which the
local domain is dynamically updated according to the propagating fracture path [258].
The need for such framework can be found in multiscale porous media applications [94, 95]
or in which a localized fracture occurs in a (big) reservoir [317].

The last two references are the motivation for the present work. Here, we extend
the adaptive global-local phase-field fracture approach [258] to porous media applications
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with hydraulic fractures. We first extend our model towards large strain formulations, in
line with [4, 10, 108, 238]. Previous studies only concentrated on small strain applications.
Then, the coupled multiphysics fracture framework is carefully derived. Both subdomains
will be coupled via Robin-type interface conditions, see [258]. This leads to Lagrange mul-
tiplier formulations that are demanding from a mathematical point of view as well as in
the implementation, see for example [321, 322, 320, 284]. A future rigorous numerical
analysis of our global-local approach can be achieved with similar methodologies as used
in [145, 144]. In particular, our formulation can deal with non-matching grids at the
interface, which is very interesting for cases towards practical field problems as mentioned
in [317] in which possibly various programming codes must be coupled. On the fine-scale
level all (nonlinear) equations are solved. On the global level, only coarse representations
of the pressure and crack phase-field are considered. As mentioned in the previous de-
scriptions and references such multiphysics fracture formulations are challenging from a
mathematical and numerical point of view. For these reasons, we concentrate in this work
on careful algorithmic descriptions including supporting numerical simulations. Here, our
emphasis is on results, demonstrating the computational convergence properties of our
proposed numerical schemes. A rigorous numerical analysis must be left for future work.

The outline of this chapter is as follows: In Section 3.2, the governing equations are
described. Then, in Section 3.3, the extension to a global-local formulation for pressurized
fractures is derived. Therein, the Robin-type interface conditions are carefully discussed.
This is followed by the final global-local algorithm. Afterward, we also discuss the dynamic
choice of the local domains with the help of a predictor-corrector scheme. In Section 3.4
some numerical tests are carried out in order to substantiate our algorithmic developments.

3.2. Phase-field modeling of hydraulic fracture

This section outlines a theory of the variational phase-field fracture model in poroelas-
tic media undergoing finite strains. This type of modeling is so-called hydraulic fracturing
or fracking process. Three governing equations are used to describe the constitutive for-
mulations for the mechanical deformation, fluid pressure and the crack phase-field. Strong
and variational formulations of the coupled multi-physics problem are further introduced.
Additionally, the framework is algorithmically described, resulting in the so-called single-
scale domain formulations.

3.2.1. Governing equations. Let us B ∈ Rδ to be a solid in the Lagrangian (ref-
erence) configuration with dimension δ = 2, 3 in space and time t ∈ T = [0, T ] and ∂B
is the surface boundary. Let assume Neumann conditions on ∂NB := ΓN ∪ C, where ΓN

denotes the outer domain boundary and additionally Dirichlet boundary conditions on
∂DB . The sharp crack surface C ∈ Rδ−1 is illustrated as a red color curve in Fig. 3.1.

The boundary-value-problem BVP described here is the coupled multi-field problem
for the fluid-saturated porous media of the fracturing material. Fluid-saturated porous
media is is formulated based on coupled three-field problem. Hence, three unknown
solution fields at material points X ∈ B described by the deformation map ϕ(X, t) of
the solid, the fluid pressure field p(X, t) and the crack phase-field d(X, t) defined as

ϕ :

{
B × T → Rδ

(X, t) 7→ x = ϕ(X, t)
, p :

{
B × T → R
(X, t) 7→ p(X, t)

, d :

{
B × T → [0, 1]
(X, t) 7→ d(X, t)

,

(3.1)
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Figure 3.1: The unfractured domain indicates by BC . The red curved crack surface
lives in the local domain BL. The entire domain is a close subset as B := BC ∪ BL which
includes unfractured and fractured states. The fracture boundary is ∂BL and the outer
boundary of the domain is ∂B. Blue color refer to the injected fluid through the well
drilling and injection.

with ḋ ≥ 0. The location of the material point in the deformed configuration is depicted as
x = X+u(X, t) where u(X, t) is the displacement field. Following Fig. 3.1 at the unde-
formed configuration, the crack phase-field d(X, t) = 0 (light gray color) and d(X, t) = 1
(red color) are refereed to the unfractured and fully fractured state of the material, re-
spectively. The sharp fracture surface C is approximated in BL ⊂ B the so-called local
domain. The unbroken sub-domain with no fracture is denoted by complementary domain
BC := B\BL ⊂ B, such that BC ∪ BL =: B and BC ∩ BL = ∅. We note that a region BL
where the regularized crack phase-field is approximated is strongly related to the choice
of the phase-field diffusivity parameter l > 0 (or so-called regularization parameter).

The material deformation gradient of the solid denoted by F (X) := ∇ϕ(X, t) =
Gradϕ with the Jacobian J := det[F ] > 0 and the right Cauchy-Green tensor C =
F TF . The geometry is enforced by prescribed deformations u and additionally prescribed
traction vector τ̄ at the surface ∂B of the undeformed configuration, which are defined
by the time-dependent Dirichlet- and Neumann type conditions

ϕ = ϕ̄(X, t) on ∂DB and PN = τ̄ (X, t) on ∂NB, (3.2)

here N is the material outward unit normal vector in the undeformed reference configura-
tion such that two-point first Piola-Kirchoff stress tensor P (F , p, d) is the thermodynamic
dual to F . The global mechanical form of the equilibrium equation for the solid body is
represented through first partial differential equation PDE for the multi-field problem as

Div P (F , p, d) + b = 0 , (3.3)

such that dynamic motion is neglected, i.e. quasi-static response, and also we denote b

as a prescribed body force.



72 Global-Local approach for hydraulic fracture in poroelastic media

To formulate the constitutive equation for the poromechanics, let us to move froward
with a biphasic fully saturated porous material, which includes of a pore fluid (i.e. fluid
phase) and a solid matrix (i.e. solid phase) within bulk material. A local volume element
denoted by dV in the undeformed reference configuration can be additively decomposed
into a fluid portion dVF and a solid portion dVS. Thus, the volume fraction is introduced
via nα := dVα/dV , where α = {S, F}. With respect to the fully saturated porous medium
the saturation condition reads

∑

α

nα = nF + nS = 1 , (3.4)

where nF (X, t) represents the porosity, i.e. the volume occupied by the fluid is same as
the pore volume. Note that in the fracture region where

d = 1 yields nS = 0 and nF = 1 . (3.5)

The volume fraction in the porous media, i.e. nα, depends on the physical density (i.e.
material, effective, intrinsic) ραR to the partial density ρα through

ρα = nα ραR with ραR := dmα/dVα and ρα := dmα/dV , (3.6)

where dmα is the mass of the phase α. Thus, the overall density can be expressed as
ρ =

∑
α nα ραR . A comprehensive theoretical and applications review on the porous

materials are provided in the works [58, 93, 99, 114, 283, 214]. The fluid volume fraction
(porosity) nF is linked to the fluid volume ratio θ (fluid content) per unit volume of the
undeformed reference configuration B via

nF = nF,0 + θ , (3.7)

for constant fluid material density, where nF,0 is the initial porosity. In the constitutive
modeling θ describes the first local internal variable (history field). The evolution equation
for the fluid volume ratio θ̇ = ṅF is derived by means of the fluid pressure field p.
Prescribed Dirichlet- and Neumann boundary conditions for the pressure are described
by

p = p̄(X, t) on ∂DB and F ·N = f̄(X, t) on ∂NB , (3.8)

through the material fluid volume flux vectorF in the reference configuration, the imposed
fluid pressure p̄ on the boundary surface and also fluid transport f̄ on the Neumann
boundary surface. Because fluid-filled equation is a time dependent problem, the initial
condition needs to be set for the fluid volume ratio and hence by θ(X, t0) = 0 yields nF =
nF,0 in B. Furthermore, the fluid flux vector in (4.9) is described through to the negative
direction of the material gradient of the fluid pressure ∇p through the permeability, based
on Darcy-type fluid transport theory by

F := −K(F , d) ∇p , (3.9)

here the second-order permeability tensor given by anisotropic second-order tensor K

which described based on the material deformation gradient F and the crack phase-field
d. To consider the effect of the fracture on the fluid contribution, permeability tensor
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is decomposed into a Darcy-type flow for an unfractured porous medium KDarcy and a
Poiseuille-type flow in a fully fractured material Kcrack defined as

K(F , d) = KDarcy(F ) + dζKfrac(F ) ,

KDarcy(F ) = K
ηF
JC−1 ,

Kfrac(F ) = Kc ω
2 J

[
C−1 −C−1N ⊗C−1N

]
,

(3.10)

as outlined in [15, 234]. Here, N = ∇d/|∇d| is the material outward normal to the crack
surface, K is the isotopic intrinsic permeability of the pore space, Kc is the spatial perme-
ability for the fracture state, ηF is the dynamic fluid viscosity and ζ ≥ 1 is a permeability
transition exponent. Following [234], let us now to approximate the crack opening dis-
placement ω (crack aperture) through ω = (λ⊥ − 1)he in terms of the stretch orthogonal
to the crack surface λ2⊥ = ∇d · ∇d/∇d ·C−1 · ∇d and the characteristic element length
he. Characteristic element length, typically set as a minimum discretized element size,
i.e. diameter of an element, in the fractured region.

The conservation of the fluid mass which reflects the second PDE within hydraulic
fracturing setting reads

ṅF − r̄F +Div[F ] = 0 , (3.11)

with a given/imposed fluid source r̄F per unit volume of the initial configuration B, which
describes the injection process in hydraulic fracturing.

Within regularized fracture framework, a sharp-crack surface topology denoted by C
to ensure the continuity of the crack field is further regularized by the smeared crack
surface functional shown by Cl thus C → Cl as outlined in [6, 14], hence we have

Cl(d) =
∫

B

γl(d,∇d) dV with γl(d,∇d) =
1

2l
d2 +

l

2
|∇d|2 , (3.12)

in terms of the regularized crack surface density function denoted by γl per unit volume
of the solid and the regularization parameter l, so-called length scale, which governs the
fracture diffusivity. Hence, the crack phase-field d can be derived by the minimization of
diffusive crack surface Cl(d) by

d = Arg{inf
d
Cl(d)} with d = 1 on C ⊂ B , (3.13)

The outcome Euler-Lagrange differential equation is d − l2∆d = 0 in B augmented with
the homogeneous Neumann-type boundary condition that is ∇d ·N = 0 on ∂B. Let us
consider the smeared crack phase-field functional given in (4.13) to ensure the fracture
Kuhn-Tucker conditions [10, 230]. To do so, the constitutive functions response by means
of the a global evolution equation of regularized crack surface reads

d

dt
Cl(d) :=

1

l

∫

B

[ (1− d)H− ηḋ ] ḋ dV ≥ 0 . (3.14)

Here, artificial/numerical material parameter denoted by η ≥ 0 is used to characterizes
the viscosity term of the crack propagation. The maximum absolute value for the crack
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driving state function denoted by D is defined by the crack driving force H which reads

H = max
s∈[0,t]

D(x, s) ≥ 0 , (3.15)

that accounts for the irreversibility of the crack phase-field evolution by filtering out a
maximum value of D. That is referred to the second local history variable . The local
evolution of the crack phase-field equation in the given domain B resulting from (6.10)
augmented with its homogeneous Neumann type boundary condition, i.e. ∇d ·N = 0 on
∂B yields

[ d− l2∆d ] + ηḋ+ (d− 1)H = 0 , (3.16)

which states the third PDE for the coupled problem.

3.2.2. Constitutive functions. The coupled multi-physics boundary value problem
is formulated through three primary fields (i.e. unknown solution fields) to illustrate the
hydro-poro-elasticity of fluid-saturated porous media in the fracturing material by

Global Primary Fields : U := {ϕ, p, d} , (3.17)

the mechanical deformation map ϕ, the pressure field p and the crack phase-field 0 ≤ d ≤
1. Note, for the numerical implementation standpoint, to guarantee 0 ≤ d ≤ 1 holds, we
project d > 1 to 1 and also d < 0 to 0 to avoid unphysical crack phase-field solution [257].
The constitutive formulations for the hydraulic phase-field fracture are written in terms
of the following set

Constitutive State Variables : C := {F , θ, d,∇d} , (3.18)

which shows the response of the poro-elasticity material modeling with a first-order gradi-
ent damage model. A pseudo-energy density function denoted byW (C) for the poroelastic
media per unit volume reads

W (C) =Welas(F , d) +Wfluid(F , θ) +Wfrac(d,∇d). (3.19)

Here, modified elastic density function Welas which is degraded elastic response re-
sulting form the fracture state, a fluid density function contribution Wfluid and fracture
density function denoted by Wfrac which contain the accumulated dissipative energy are
accordingly used. The elastic density function is formulated through a Neo-Hookean strain
energy function for a compressible isotropic elastic solid

Welas(F , d) = g(d) ψelas(F ) with ψelas(F ) =
µ

2

[
(F : F − 3) +

2

β
(J−β − 1)

]
, (3.20)

such that the shear modulus µ and the parameter β := β(ν) = 2ν/(1 − 2ν) with the
Poisson number ν < 0.5 are used. The quadratic function g(d) = (1− d)2 + κ formulates
the transition between the intact region and the fracture region such that

• In the intact region, i.e. d = 0, yields Welas(F , d) ≈ ψelas(F ),

• In the exact fracture region, i.e. d = 1, yields Welas(F , d) ≈ 0.
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Here, κ≪ 1 is chosen by sufficiently small quantity to provide numerically stabilization
response. Additionally, g(d) from an physical standpoint describe the degradation of the
elastic energy function of the bulk material due to fracture response. It interpolates
between the unfractured state denoted by d = 0 and the fully fractured phase/state
indicated by d = 1 such that following constraints

g(0) = 1, g(1) = 0, g′(d) ≤ 0 and g′(1) = 0, (3.21)

are ensured. The fluid density function is postulated takes the following form

Wfluid(F , θ) =
M

2

[
B2(J − 1)2 − 2 θ B(J − 1) + θ2

]
, (3.22)

based on the given fluid coefficient including which includes Biot’s coefficient B and Biot’s
modulus M . By considering the Coleman-Noll inequality condition in thermodynamics,
the fluid pressure p and the two-point first Piola-Kirchoff stress tensor P are derived from
the first order derivative of the pseudo-energy density function W given in (6.15) by

p(F , θ) := ∂W
∂θ

= θM −MB(J − 1) ,

P (F , p, d) := ∂W
∂F

= g(d)P eff(F )− BpJF−T with P eff = µ
[
F − J−βF−T

]
,

(3.23)

for the isotropic solid material. Here, the second-order material stress tensor P is further
decomposed in a additive manner into the effective stress tensor P eff and additionally
a pressure part. This additive decomposition is written based on the classical Terzaghi
split, as outlined in [300, 98]. Using the pressure definition in (4.24)1 and the second PDE
in (4.12) along with (3.7), thus the conservation of mass takes the following form

ṗ

M
+BJ̇ − r̄F +Div[F ] = 0 , (3.24)

hence, now fluid-filled PDE formulated by means of the fluid pressure p and not fluid
volume fraction (porosity) and additionally the deformation map ϕ. The fracture contri-
bution of pseudo-energy density given in (6.15) takes the following explicit form

Wfrac(d,∇d) = [1− g(d)] ψc + 2ψc l γl(d,∇d) , (3.25)

where ψc > 0 is so-called a critical fracture density energy. Critical elasticity density
function depends on the critical effective stress σc or the Griffith’s energy release rate Gc,
as outlined in [6]

ψc =
σ2
c

2E
=

3

8l
√
2
Gc . (3.26)

By taking the variational derivative δdW of (6.15), the third PDE in the rate-independent
setting by considering some more algebra reads as follows

2ψc[d− l2∆d] + 2(d− 1)H = 0 , (3.27)
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through the history field H, used in (6.11). Following that, the positive crack driving
state function D reads

D :=
〈
ψelas(F (X, s))− ψc

〉
+
≥ 0 . (3.28)

Here, the Macaulay bracket defined through 〈x〉+ := (x + |x|)/2 is used such that the
local irreversibility condition (positivity of the fracture dissipation) to avoid crack healing
process and thus ḋ ≥ 0 is ensured.

3.2.3. Variational formulations derived for the coupled multi-field problem.
The primary fields U given in (6.13) for the coupled poro-elastic media of the fracturing
material is governed by three PDEs in (6.7), (4.25) and (6.12) in a strong form setting.
Here, three PDEs is governed in a time increment [tn, tn+1] such that time step ∆t = tn+1−
tn > 0 holds. Next, three test functions with respect to the deformation δϕ(X) ∈mVϕ :=
{H1(B)δ : δϕ = 0 on ∂DB}, fluid pressure δp(X) ∈ Vp := {H1(B) : δp = 0 on ∂DB} and
crack phase-field δd(X) ∈ Vd := {H1(B)} are defined. The variational formulations with
respect to the three PDEs for the coupled poro-elastic media of the fracturing material
are derived by

Gϕ(U, δϕ) =

∫

B

[
P : ∇δϕ− b̄ · δϕ

]
dV −

∫

∂NB

τ̄ · δϕ dA = 0 ,

Gp(U, δp) =
∫
B

[(
1
M
(p− pn) +B(J − Jn)−∆t r̄F

)
δp+ (∆tK ∇p) · ∇δp

]
dV

+
∫
∂NB

f̄ δp dA = 0 ,

Gd(U, δd) =
∫
B

[(
2ψc d+ 2(d− 1)H

)
δd+ 2ψc l

2 ∇d · ∇δd
]
dV = 0 .

(3.29)

Thus, the fully coupled variational multi-field problem to describe hydraulic fractures in
porous media is formulated in (4.34). Following (4.34), the compact variational form for
the hydraulic phase-field brittle fractures in porous media reads

GU(U, δU) = Gϕ(U, δϕ) +Gp(U, δp) +Gd(U, δd) = 0 ∀ (δϕ, δp, δd) ∈ (V ϕ, Vp, Vd).

(3.30)

Next, we use (4.34) as a departure point for the Global-Local approach in Section 3.3.

3.3. Extension Towards Global-Local Formulations

The above introduced system of equations (4.34) for the coupled problem of poroelas-
ticity at fracture will be solved using the Global-Local (GL) method in this section. GL
formulation is rooted in the domain decomposition approach, see [146]. In comparison
with already existing GL papers, this contribution represents an initial work to the use
of GL approach at large deformations for solving hydraulic fracture mechanics problems
numerically. The main objective here is to introduce an adoption of the hydraulic phase-
field fracture formulation in poroelastic media within legacy codes which can be further
employed for the industrial applications. To this end, the material body B is decomposed
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Figure 3.2: Description of the Global-Local setting. Left: Configuration and loading
setup of the single-scale boundary value problem. Right: Global-Local Configuration, by
means of the fictitious domain BF through filling the gap between BC and BL with a same
constitutive modeling and discretization of BC such that its unification is so-called global
domain BG := BC ∪ ΓG ∪ BF .

into a global domain BG representing a poro-elastic media and a local domain BL reflect-
ing the hydraulic fracturing (fracking) region. The global domain BG := BC ∪ Bf ∪ ΓG

is further split into a complementary domain BC corresponds to the intact area, a fic-
titious domain Bf depicts a coarse representation of the local domain (in terms of the
discritization) within the global domain and an interface ΓG between the unfractured and
the fractured domains. Hereby, the fictitious domain Bf is defined as a prolongation of
complementary domain towards B. Hence it recovers the space of B that is obtained by
removing local domain from its continuum scale, see Fig. 3.2. As a result, same consti-
tutive modeling and space discretization are used for both Bf and BC , yielding hf := hC .
The external loads are applied on BC and hence BL is assumed to be free from external
loads.

At the interface Γ, the global ΓG ⊂ BG and local interfaces ΓL ⊂ BL are defined, such
that in the continuum setting we have Γ = ΓG = ΓL. Thus, the deformation map ϕ and
the fluid pressure p for both global and local domains do exactly coincide in the strong
sense at interface, yielding

ϕL(X, t)
!
= ϕG(X, t) and pL(X, t)

!
= pG(X, t) at X ∈ Γ . (3.31)

Note that in a discrete setting we might face the situation that Γ 6= ΓG 6= ΓL due to the
two different discretization scheme within BG and BL leads to h 6= hL 6= hG on Γ.

Remark 1: The strong primal continuity condition for the deformation/pressure given
in Eq. 3.31 is too restrictive from the computational standpoint [120]. To resolve the

crack phase-field quantity, it is demanding hL ≪ hG. However, if we assume ϕL
!
= ϕG
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and pL
!
= pG on Γ, this yields ΓL = ΓG in a discretized setting hence hL = hG on Γ which

contradicts hL ≪ hG.

Formulation: Continuity conditions at interface Following Remark 1, we modify
Eq. 3.31 in a strong sense by introducing the deformation ϕΓ(X , t) and pressure pΓ(X, t)
interface and their corresponding traction forces {λϕ

L,λ
ϕ
C} and {λpL, λpC} that are intro-

duced as Lagrange multipliers. This results in a set of equations at the interface as,





ϕL(X, t) = ϕΓ(X, t) at X ∈ ΓL,

ϕG(X, t) = ϕΓ(X, t) at X ∈ ΓG,

λ
ϕ
L(X, t) + λ

ϕ
C(X, t) = 0 at X ∈ Γ,

and





pL(X, t) = pΓ(X, t) at X ∈ ΓL,

pG(X, t) = pΓ(X, t) at X ∈ ΓG,

λpL(X, t) + λpC(X, t) = 0 at X ∈ Γ.
(3.32)

Accordingly, the single-scale deformation map ϕ(X, t) and fluid pressure field p(X, t) in
Section 3.2 are decomposed as follows

ϕ(X, t) =





ϕL(X, t) for X ∈ BL,
ϕG(X, t) for X ∈ BG,
ϕΓ(X, t) for X ∈ Γ,

and p(X, t) =





pL(X, t) for X ∈ BL,
pG(X, t) for X ∈ BG,
pΓ(X, t) for X ∈ Γ.

(3.33)

The fracture state is only resolve within BL. Hence, a scalar-valued function dL(X, t) :
BL → [0, 1] is introduced in the BL. Hence, single-scale phase-field d is further decomposed
which takes the following representation

d(X, t) :=

{
dL for X ∈ BL,
0 for X ∈ BG.

(3.34)

Now, the multi-physics problem for the Global-Local approach is described through eleven
primary fields to characterize the hydro-poro-elasticity of fluid-saturated porous media at
finite strains by

Extended Primary Fields : P := {ϕG,ϕL, pG, pL, dL,λ
ϕ
C ,λ

ϕ
L, λ

p
C , λ

p
L,ϕΓ, pΓ} . (3.35)

3.3.1. Governing formulations for the Global-Local coupling system. Based
on the above introduced decompositions and the weak formulations outlined in (4.34),
this section describes the GL weak forms of the PDEs for the coupled problem. The
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global weak formulations of the deformation and pressure field take the form

GϕG
(P, δϕG) :=

∫

BG

P (∇ϕG, pG, 0) : ∇δϕGdV −
∫

Bf

P (∇ϕG, pG, 0) : ∇δϕGdV

−
∫

ΓG

λ
ϕ
C · δϕG dA−

∫

ΓN,G

τ̄ · δϕG dA = 0 ,

GpG(P, δpG) :=

∫

BG

[ 1

M
(pG − pG,n) +B

(
J(∇ϕG)− Jn(∇ϕG)

)]
δpG dV

+

∫

BG

[
(∆tK(∇ϕG, 0) ∇pG) · ∇δpG

]
dV (G)

−
∫

Bf

[ 1

M
(pG − pG,n) +B

(
J(∇ϕG)− Jn(∇ϕG)

)
+∆t r̄F

]
δpG dV

−
∫

Bf

[
(∆tK(∇ϕG, 0) ∇pG) · ∇δpG

]
dV

−
∫

ΓG

λpC δpG dA+

∫

ΓN,G

f̄ δpG dA = 0 ,

where δϕG ∈ {H1(BG)δ : δϕG = 0 on ∂DB} and δpG ∈ {H1(BG) : δpG = 0 on ∂DB} are
the global test functions. Note that the pressure injection process of hydraulic fracturing
r̄F exists only in the fictitious domain Bf . The local weak formulations assumes the form

GϕL
(P, δϕL) :=

∫

BL

P (∇ϕL, pL, dL) : ∇δϕLdV −
∫

ΓL

λ
ϕ
L · δϕL dA = 0 ,

GpL(P, δpL) :=

∫

BL

[ 1

M
(pL − pL,n) +B

(
J(∇ϕL)− Jn(∇ϕL)

)]
δpL dV (L)

+

∫

BL

[(
∆tK(∇ϕL, dL) ∇pL

)
· ∇δpL

]
dV −

∫

ΓL

λpL δpL dA = 0

GdL(P, δdL) :=

∫

BL

[(
2ψc dL + 2(dL − 1) H(∇ϕL)

)
δdL + 2ψc l

2 ∇dL · ∇δdL
]
dV = 0 ,

where δϕL ∈H1(BL), δpL ∈ H1(BL) and δdL ∈ H1(BL) are the local test functions with
respect to the local deformation ϕL, local fluid pressure pL and local crack phase-field dL,
respectively.

Next, we derive the weak formulations for the deformation and pressure continuity at
interface Γ introduced in Formulation 3.1 by using a standard Galerkin procedure

GϕΓ
(P, δϕΓ) :=

∫

Γ

(λϕ
C + λ

ϕ
L) · δϕΓ dA = 0, (C1)

Gλ
ϕ
C
(P, δλϕ

C) :=

∫

Γ

(ϕΓ −ϕG) · δλϕ
C dA = 0, (C2)

Gλ
ϕ
L
(P, δλϕ

L) :=

∫

Γ

(ϕΓ − ϕL) · δλϕ
L dA = 0, (C3)

GpΓ(P, δpΓ) :=

∫

Γ

(λpC + λpL)δpΓ dA = 0, (C4)
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Gλp
C
(P, δλpC) :=

∫

Γ

(pΓ − pG)δλpC dA = 0, (C5)

Gλp
L
(P, δλpL) :=

∫

Γ

(pΓ − pL)δλpL dA = 0, (C6)

herein δϕΓ ∈ H1(Γ); δpΓ ∈ H1(Γ); δλϕ
C , δλ

ϕ
L ∈ L2(Γ) and δλpC , δλ

p
L ∈ L2(Γ) are the

corresponding test functions. Equations (G), (L) and (C1)–(C6) specify the entire system
of the Global-Local formulation.

3.3.2. Standard Dirichlet-Neumann boundary conditions. Two different ways
exist to solve for the upper introduced system of equations, i.e. monolithic or staggered
schemes. In this contribution, we employed the staggered method in the sense of alternate
minimization [244] to find the stationary solution of the (G), (L) along with (C1) – (C6),
see [143] based on non-intrusive Global-Local coupling scheme. To this end, let k ≥ 0 be
the Global-Local iteration index. Hence, the non-intrusive iterative solution scheme for
GL computational framework at a fixed loading step n is accordingly computed by:

• Local Dirichlet problem: Equations to be solved are (L), (C3) and (C6)

• Pre-processing global level: Employing equations (C1) and (C4),

• Global Neumann problem: Equations to be solved are (G),

• Post-processing global level: Solving the last two equations (C2) and (C5).

By using this procedure for solving the system of equation, we unfortunately faced two
difficulties that have to be resolved. (i) Because of the stiffness difference between local and
fictitious domains, an acceleration/relaxation techniques must be utilized, as discussed in
[143, 258]. (ii) Demanding an iterative GL scheme due to the imbalanced quantities of
the deformation and pressure fields at the interface as

∫

Γ

(ϕk
Γ − ϕk

L) · δλϕ
L dA 6= 0 and

∫

Γ

(pkΓ − pkL) δλpL dA 6= 0, (3.36)

These two difficulties have motivated us to develop alternative coupling conditions that
resolve those challenges, which will be discussed next.

3.3.3. Robin-type boundary conditions. The aforementioned difficulties in the
Global-Local formulation can be resolved using the Robin-type boundary conditions. As
an outcome: (a) The stiff local response at the global level is relaxed; (b) the resolution
of (3.36) is improved and (c) the computational time is remarkably reduced. The starting
point for the construction of Robin-type boundary conditions are the coupling equations
denoted in (C1) – (C6) arise from the continuity conditions at the interface in a strong
sense. Those introduce the boundary conditions which have to be apply to the global and
local domains for the consistent two-way coupling.

Robin-type boundary conditions at the local level.
Finite deformation. For the mechanical deformation field at the local level, a new
coupling term is introduced as a combination of (C1) and (C2)

GϕΓ
(P, δϕΓ) +A

ϕ
LGλ

ϕ
C
(P, δλϕ

C) =

∫

Γ

(λϕ
C + λ

ϕ
L) · δϕΓ dA +Aϕ

L

∫

Γ

(ϕΓ −ϕG) · δλϕ
C dA = 0

(3.37)
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Hence, for an iteration k (3.37) leads to

∫

Γ

(λϕ,k−1
C + λ

ϕ,k
L ) · δϕΓ dA+Aϕ

L

∫

Γ

(ϕ
k, 1

2

Γ − ϕk−1
G ) · δλϕ

C dA = 0. (3.38)

Herein, Aϕ
L is a local augmented stiffness matrix for the deformation which imposed along

interface to permit a regularization of the local Jacobian matrix. By means of (3.38) at
iteration k, the local system of equations for the mechanical problem at the interface (C1)
– (C3) results in the following modified boundary conditions

∫

Γ

λ
ϕ,k
L · δϕΓ dA+Aϕ

L

∫

Γ

ϕ
k, 1

2

Γ · δλϕ
C dA = Λϕ,k−1

L , (C̃1)

∫

Γ

(ϕ
k, 1

2

Γ −ϕk
L) · δλϕ

L dA = 0, (C̃2)

with

Λϕ,k−1
L := ΛL(λ

ϕ,k−1
C ,ϕk−1

G ;Aϕ
L) = A

ϕ
L

∫

Γ

ϕk−1
G · δλϕ

C dA−
∫

Γ

λ
ϕ,k−1
C · δϕΓ dA . (3.39)

Fluid pressure. Analogously to the coupling terms for the deformation introduced
above, we modify the local system of equations for the pressure field at the interface (C4)
– (C6). It results in the following modified boundary conditions

∫

Γ

λp,kL δpΓ dA+Ap
L

∫

Γ

p
k, 1

2

Γ δλpC dA = Λp,k−1
L , (C̃3)

∫

Γ

(p
k, 1

2

Γ − pkL)δλpL dA = 0, (C̃4)

with

Λp,k−1
L := ΛL(λ

p,k−1
C , pk−1

G ;Ap
L) = A

p
L

∫

Γ

pk−1
G δλpC dA−

∫

Γ

λp,k−1
C δpΓ dA. (3.40)

Together with (L), the local system of equations is solved for (ϕk
L, p

k
L,λ

ϕ,k
L , λp,kL ,ϕ

k, 1
2

Γ , p
k, 1

2

Γ )
for the given local Robin-type parameters (Λϕ,k−1

L ,Λp,k−1
L ,Aϕ

L,A
p
L).

Remark 2: In the numerical implementation, the current local fields are computed based
on the old global variables as history fields, see (3.38). Hereby, the deformation ϕΓ and
fluid pressure pΓ at the interface are updated at iteration (k, 1

2
). This choice is essential for

the construction of the Robin-type boundary conditions. Note that, we proved in previous

work that u
(k, 1

2
)

Γ = uk
Γ with ϕ := u+X where X is a fixed initial configuration, see [258].

With this prove at interface the continuity conditions are satisfied yielding a well posed
problem and accelerate the convergence results. Note that other coupling conditions at
the interface, i.e. updating the deformation and pressure at iteration k in (C̃2) and (C̃4)
gives ill-posed problem due to the imposition of both Neumann and Dirichlet boundary
conditions at same time at Γ.
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Robin-type boundary conditions at the global level.
Finite deformation. Accordingly, the new coupling boundary condition to be imposed
at the global level is formulated by means of (C1) and (C3) for the mechanical deformation
as

GϕΓ
(P, δϕΓ) +A

ϕ
GGλ

ϕ
L
(P, δλϕ

L) =

∫

Γ

(λϕ
C + λ

ϕ
L) · δϕΓ dA +Aϕ

G

∫

Γ

(ϕΓ − ϕL) · δλϕ
L dA = 0,

(3.41)

such that for the iteration k (3.41) leads to

∫

Γ

(λϕ,k
C + λ

ϕ,k
L ) · δϕΓ dA+Aϕ

G

∫

Γ

(ϕk
Γ −ϕk

L) · δλϕ
L dA = 0 , (3.42)

where, Aϕ
G is a global augmented stiffness matrix for the deformation imposed to the

interface. By means of the (3.42), the Robin-type boundary condition at the global level
follows ∫

Γ

λ
ϕ,k
C · δϕΓ dA +Aϕ

G

∫

Γ

ϕk
Γ · δλϕ

L dA = Λϕ,k
G , (C̃5)

∫

Γ

(ϕ
k, 1

2

Γ − ϕk
G) · δλϕ

C dA = 0, (C̃6)

with

Λϕ,k
G := ΛG(λ

ϕ,k
L ,ϕk

L;A
ϕ
G) = A

ϕ
G

∫

Γ

ϕk
L · δλϕ

L dA−
∫

Γ

λ
ϕ,k
L · δϕΓ dA . (3.43)

Fluid pressure. Following the same procedure as above, the Robin-type boundary
condition at the global level for the pressure field yields

∫

Γ

λp,kC δpΓ dA+Ap
G

∫

Γ

pkΓ δλ
p
L dA = Λp,k

G , (C̃7)

∫

Γ

(p
k, 1

2

Γ − pkG)δλpC dA = 0, (C̃8)

with

Λp,k
G := ΛL(λ

p,k
L , pkL;A

p
G) = A

p
G

∫

Γ

pkLδλ
p
L dA−

∫

Γ

λp,kL δpΓ dA. (3.44)

Together with (G), the global system of equations has to be solved for (ϕk
G, p

k
G,λ

ϕ,k
C , λp,kC ,ϕk

Γ, p
k
Γ)

for a given (Λϕ,k
G ,Λp,k

G ,Aϕ
G,A

p
G,ϕ

k, 1
2

Γ , p
k, 1

2

Γ ). Here, (Aϕ
G, A

p
G, Λ

ϕ,k
G , Λp,k

G ) stand for global
Robin-type parameters.

By means of the new coupling boundary conditions introduced in (C̃1) – (C̃8) the
imbalanced quantities in the Global-Local iterative framework are derived which read

∫

Γ

(ϕk
Γ − ϕ

k, 1
2

Γ ) · δλϕ
L dA 6= 0 and

∫

Γ

(pkΓ − p
k, 1

2

Γ )δλpL dA 6= 0 (3.45)

For the specific Robin-type boundary conditions, equation (3.45) can be resolved such that
this term does not produce any accumulative error in the Globa-Local iterative procedure,
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Figure 3.3: Description of the predictor-corrector mesh adaptivity scheme, introduced
in [258].

see [258]. Thus, based on our recent work [258], the global and local augmented stiffness
matrices (AG,AL) for both, the deformation and pressure fields, within the Robin-type
boundary conditions are given by

AG = LT
LT

−T
L SL and AL := SC . (3.46)

AG and AL can be seen as augmented stiffness matrices regularize the Jacobian stiffness
matrix at the global and local levels, respectively. For details on the derivation of those
matrices, we refer the interested reader to [258].

Remark 3: Note that the choice of the coupling equations (C1) – (C6) at the local and
global level for the Robin-type boundary conditions are the outcome of precise investiga-
tion of different combinations. However other choices are also possible, but one needs to
adapt/derive the imbalance equations in (3.45) accordingly.

The detailed Global-Local scheme augmented with Robin-type boundary conditions
is depicted in Algorithm 3.3. Basically, this type of formulation illustrates a generic two-
scale finite element models to resolve the full non-linearities within the domain interest,
i.e. BL and not necessarily entire domain.
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Predictor-Corrector mesh adaptivity. To further reduce the computational time,
an adaptive Global-Local approach is used. To this end, a predictor-Corrector mesh adap-
tivity is preformed at tn in Algorithm 3.3 [258]. By the adaptivity procedure, i.e. dynamic
allocation of a local state ,we mean: (a) to determine which global elements need to be
refined; (b) to create the new fictitious and local domain, see Fig. 3.3; (c) to determine
a new local interface; (d) to interpolate the old global solution. For details regarding the
predictor-corrector adaptive scheme applied to the Global-Local formulation, we refer the
interested reader to [162, 258] and Algorithm 2-3 therein.

3.4. Numerical Examples

This section demonstrates the performance of the proposed adaptive Global-Local ap-
proach applied to the phase-field modeling of hydraulic fracture in fluid-saturated porous
media. Two numerical model problems for the GL formulations are investigated. A con-
siderable reduction of the computational cost (up to 100 times) is observed in comparison
with the single-scale solution. The material parameters used in both examples are listed
in Table 6.1 and based on [234, 336]. For the numerical simulation all variables in both,
the global and local domains, are discretized by bilinear quadrilateral Q1 finite elements.

3.4.1. Hydraulically induced crack driven by fluid volume injection. In the
first numerical example, a boundary value problem applied to the square plate is shown
in Fig. 3.4(a). We set A = 40 m hence B = (0, 80)2 m2 that includes a predefined single
notch C1 of length 8 m in the body center with a = (36, 40) m and b = (44, 40) m, as
depicted in Fig. 3.4(a). A constant fluid flow of f̄ = 0.002 m2/s is injected in C1. At the
boundary ∂DB, all the displacements are fixed in both directions and the fluid pressure is
set to zero. Fluid injection f̄ continues until failure for T = 49 s with time step ∆t = 0.1 s
during the simulation.

We start our analysis by illustrating the single-scale results for different deformations
states up to final failure related to Fig. 3.4(a). The vertical displacement uy (first row),
fluid pressure p (second row) and crack phase-field d (third row) evolutions are demon-
strated in Figure 3.6 for four time steps [t = 1.8; 6.5; 20; 48.5 s]. The crack initiates at the
notch-tips due to fluid pressure increase until a threshold energy ψc is reached. There-
after, the crack propagates horizontally in two direction towards the boundaries. In the

Table 3.1: Material parameters used in the numerical examples based on [234, 336].

No. Parameter Name Value Unit
1. E Young’s modulus 15.96 GPa
2. ν Poisson’s ratio 0.2 –
3. M Biot’s modulus 12.5 GPa
4. B Biot’s coefficient 0.79 –
5. K Intrinsic permeability 2× 10−14 m2

6. Kc Spatial permeability in fracture 83.3 m3s/kg
7. ζ Permeability transition exponent 50 –
8. ηF Dynamic fluid viscosity 1× 10−3 kg/(m.s)
9. σc Critical effective stress 0.005 GPa
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Table 3.2: Example1. Time and degrees of freedoms comparison between the single-scale
and GL problems for different reservoir’s size.

Size of reservoir Accumulated time, sec. Total Degrees of freedoms
single-scale g/l ratio single-scale g/l

Small 1.9752e+04 849.0794 23.2632 87723 18315
Medium 6.2474e+04 862.3567 72.4453 171366 18665
Large 1.0559e+05 887.2200 119.0169 256035 19109

fractured zone, p is almost constant due to the increased permeability inside the crack.
Whereas, low fluid pressure in the surrounding is observed due the chosen small time-step
in comparison with the permeability of the porous medium, as outlined in [234]. The
fluid pressure drops down while the crack propagates further as shown in Figure 3.6 (sec-
ond row, middle states). Then, p increases again due to the prescribed fixed boundary
conditions ∂DB, see Fig. 3.6 (second row, last state).

Next the performance of the Global-Local approach related to Fig. 3.4(a) is investi-
gated. To this end, the evolution of the vertical displacement uy (first row), fluid pressure

Figure 3.4: Example 1. Hydraulically induced crack driven by fluid volume injection.
Three different geometries with their boundary conditions and described crack phase-
field d as a Dirichlet boundary conditions at t = 0 s. (a) Small size specimen with
B = (0, 80)× (0, 80) m2 such that a = (36, 40) m and b = (44, 40) m to compare the
GL results with standard reference works e.g. [234]. Medium size with B = (0, 80) ×
(0, 160) m2 such that a = (36, 80) m and b = (44, 80) m in (b) and large size structure
with B = (0, 80)× (0, 240) m2 such that a = (36, 120) m and b = (44, 120) m in (c) to
illustrate the efficient performance of the Global-Local approach.
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Figure 3.5: Example 1. Local-scale results of the hydraulically induced crack driven by
fluid volume injection. Evolution of the vertical displacement uy (first row), fluid pressure
p (second row), crack phase-field d (third row) and local domain (fourth row) for different
fluid injection time steps at [t = 1.8; 6.5; 20; 48.5 s] up to final failure.

p (second row), crack phase-field d (third row) and local domain (fourth row) for different
fluid injection time steps t = 1.8; 6.5; 20; 48.5 s are demonstrated in Fig. 3.5 for the local-
scale and in Fig. 3.7 for the homogenized global scale. Hereby, even with less number of
elements at the global domain the overall response is qualitatively in a good agreement
with the single-scale domain.

Figure 3.8a describes the maximum injected fluid pressure within the crack region
versus the fluid injection time. For a comparison purpose, the Global-Local and single-
scale solutions are both provided related to Fig. 3.4(a). The results obtained from Global-
Local formulation are in a good agreement with the single-scale solution. Furthermore, it
is noted that the injected fluid pressure increases within the crack region before it reaches
to the peak point. Thereafter, as expected a drop of the fluid pressure is observed.
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Figure 3.6: Example 1. Single-scale results of the hydraulically induced crack driven by
fluid volume injection. Evolution of the vertical displacement uy (first row), fluid pressure
p (second row) and crack phase-field d (third row) for different deformation stages up to
final failure at [t = 1.8; 6.5; 20; 48.5 s].

To illustrate the efficiency of the predictor-corrector adaptive scheme, we plot in 3.8b
the corresponding accumulative computational time and in Fig. 3.9a the total number
of unknowns (local and global problems) versus the fluid injection time and compared
with the single-scale problem. It can be observed that the total accumulated time for the
Global-Local formulations took 849 s whereas the single-scale simulation took 19752 s.
Hence, Global-Local formulations performs 23.3 times faster for the small size specimen
in Fig. 3.4(a).

Furthermore, for each jump in Fig. 3.9a, the predictor-corrector adaptive scheme is
active and applied on the Global-Local scheme which increases the number of degrees of
freedoms. At the complete failure state of Fig. 3.4(a), i.e. t = 48.5 s, the total number of
local nodes, elements and the degrees of freedoms are 5985, 5780 and 17955, respectively
for the Global-Local formulations. Whereas for the single-scale the number of nodes,
elements and the degrees of freedoms are 29241, 28900 and 87723, respectively. Hence,
the Global-Local approach leads to significantly less degrees of freedom, as shown in Fig.
3.9a versus single-scale model.
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Figure 3.7: Example 1. Global-scale results of the hydraulically induced crack driven by
fluid volume injection. Evolution of the vertical displacement uy (first row), fluid pressure
p (second row) and crack phase-field d (third row) for different deformation stages up to
final failure at t = 1.8; 6.5; 20; 48.5 s.

Figure 3.8: Example 1. Hydraulically induced crack driven by fluid volume injection.
(a) Fluid pressure p within the crack region versus injection time; and (b) computational
time-injection time curves in terms of the accumulated time.
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Figure 3.9: Number of degrees of freedom for the single scale problem and Global-Local
formulation. (a) Example 1; and (b) Example 2.

Figure 3.10: Example 1. Degrees of freedom Dofs comparison between the single scale
problem and the Global-Local formulation for three different reservoir’s size in (a). For
better illustration of the GL performance, a zoom of the corresponding DoFs is depicted
in (b).

For precise description of the efficient computations using the Global-Local technique,
the above analyzed geometry is further extended to two larger scale structure as shown in
Fig. 3.4(b)-(c). To this end, three different geometries having same local domain (hetero-
geneity/fracture patterns) are compared to demonstrate the powerful performance of the
proposed Global-Local method. The geometrical configuration set for small size specimen
with B = (0, 80) × (0, 80) m2 such that a = (36, 40) m and b = (44, 40) m. Medium
size with B = (0, 80) × (0, 160) m2 such that a = (36, 80) m and b = (44, 80) m
in Fig. 3.4(b) and large size structure with B = (0, 80) × (0, 240) m2 such that a =
(36, 120) m and b = (44, 120) m in Fig. 3.4(c).

The outcome results are depicted in Fig 3.10 and Fig 3.11, representing the accumu-
lated time and degrees of freedoms comparison between the single-scale and GL problems
for three different reservoir’s size (small, medium and large). As a summary, Table 3.2
compares all results related to Fig. 3.4. These results evidently highlight the potential of
the Global-Local approach to treat large-scale problems.
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Figure 3.11: Example 1. Accumulated real computational time comparison between
the single scale problem and the Global-Local formulation for three different reservoir’s
size in (a). For better illustration of the GL performance, a zoom of the corresponding
computational-injection time curves is depicted in (b).

3.4.2. Joining of two cracks driven by fluid volume injection. The second
example is concerned with the capability of the proposed GL approach for handling co-
alescence and merging of crack paths in the local domains. Crack-initiation and curved-
crack-propagation, representing a mixed-mode fracture, are predicted with a Global-Local
formulation.

The geometrical setup and the loading conditions of the specimen is similar to the
benchmark problem of [313] and depicted in Fig. 3.12. We keep all parameters and
loading as in the previous example. The first crack C1 is located near the middle of the
domain with coordinates a = (28, 40) and b = (36, 40). The second crack C2 is vertically-
oriented at n = (50, 44) and m = (50, 36) with a distance of 14 m from C1. A constant
fluid flow of f̄ = 0.002 m2/s is injected in C1 and C2 as sketched in Fig. 3.12. At the
boundary ∂DB, all the displacements are fixed in both directions and the fluid pressure is
set to zero. Fluid injection f̄ continues until failure for T = 28 s with time step ∆t = 0.1 s
during the simulation. The total number of elements for the single-scale problem is 28900
elements and for Global domain is 100 elements. The number of elements for the local

Figure 3.12: Example 2: Joining of two cracks driven by fluid volume injection. (a)
Geometry and boundary conditions; and (b) described crack phase-field d as a Dirichlet
boundary conditions at t = 0 s.
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Figure 3.13: Example 2. Single-scale results of the joining cracks driven by fluid volume
injection. Evolution of the vertical displacement uy (first row), fluid pressure p (second
row) and crack phase-field d (third row) for different deformation stages up to final failure
at [t = 1.8; 6.5; 13.5; 27.7 s].

domain is determined based on predictor-corrector mesh adaptivity.

Figure 3.13 shows the evolutions of the fluid pressure p (first row) and the crack phase-
field d (second row) for the single-scale problem at different times [t = 1.8; 6.5; 13.5; 27.7 s].
Here the crack propagates from the notches. We again observe nearly constant fluid
pressure in the fractured area (d = 1), whereas outside the crack zone p is much lower,
see 3.12 (first row).

The local-scale results with the corresponding mesh are depicted in Fig. 3.14 for
different fluid injection stages. Hereby, the vertical displacement uy (first row), fluid
pressure p (second row), crack phase-field d (third row) and local domain (fourth row)
evolutions of the Global-Local formulation are demonstrated in Fig. 3.14 for four time
steps [t = 1.8; 6.5; 13.5; 27.7 s]. It is remarkably observed that the Global-Local approach
augmented with predictor-corrector mesh adaptivity leads to the optimum number of
elements to be used for the simulation, hence reducing additional cost. Additionally, note
that extending the reservoir domain will significantly increase the computational cost
for the single-scale problem (due to increase the number of elements) but this will not
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Figure 3.14: Example 2. Global-Local scale results of the joining cracks driven by fluid
volume injection. Evolution of the vertical displacement uy (first row), fluid pressure
p (second row), local crack phase-field d (third row), local domain (fourth row) and
global phase-field (fifth row) for different deformation stages up to final failure at [t =
1.8; 6.5; 13.5; 27.7 s].

change the computational cost for Global-Local formulation, thus applicable for the real
large structure, as documented in Table 3.2. Therefore, localize effect (crack phase-field)
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Figure 3.15: Example 2. Joining of two cracks driven by fluid volume injection. (a)
Fluid pressure p within the crack region versus injection time; and (b) computational
time-injection time curves in terms of the accumulated time.

which increase the computational cost is only considered within local domain and hence
globally reduce the computational time. Another advantage of using the GL formulation
is its capability of capturing the crack initiation and propagation at the homogenized
global scale even with less number of elements as illustrated in Fig. 3.14 (fifth row).

Next, the maximum injected fluid pressure within the crack region is analyzed versus
the fluid injection time in Figure 3.15a. The results obtained from Global-Local formula-
tion are in a good agreement with the single scale solution. Figure 3.15b represents the
corresponding accumulative computational time (i.e. CPU simulation time), per injec-
tion fluid time. In this study, we observed that the total accumulated time for the GL
approach took 529 s whereas the single-scale problem took 8784 s. Hence, Global-Local
formulations performs 16.6 times faster.

Finally, Fig. 3.9b demonstrates the total number of degrees of freedoms versus the fluid
injection time for GL scheme and the single-scale problem. At the complete failure state,
i.e. t = 27.7 sec, the total number of local nodes, elements and the degrees of freedoms
for the GL method are 6036, 5780 and 18108, respectively. Whereas for the single-scale
formulation the number of nodes, elements and the degrees of freedoms are 29241, 28900
and 87723, respectively. Thus the Global-Local approach requires significantly less degrees
of freedom.
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Algorithm 3.3: Global-Local iterative scheme combined with Robin-type BCs.

Input: loading data (ϕ̄n, p̄n) on ∂DB;
solution Pn−1 := (ϕG,n−1, pG,n−1,ϕL,n−1, pL,n−1, dL,n−1,ϕΓ,n−1, pΓ,n−1,λ

ϕ
C,n−1,λ

ϕ
L,n−1,

λ
p
C,n−1, λ

p
L,n−1) and HL,n−1 from step n− 1.

Global-Local iteration k ≥ 1:

Local boundary value problem:

• given Aϕ
L,A

p
L,Λ

ϕ,k−1
L ,Λp,k−1

L ,HL,n−1; solve

phase-field part:

∫

BL

[(
2ψc dL + 2(dL − 1) H(∇ϕL)

)
δdL + 2ψc l

2 ∇dL · ∇δdL
]
dV = 0,

mechanical part:



∫

BL

P (∇ϕL, pL, dL) : ∇δϕLdV −
∫

ΓL

λ
ϕ
L · δϕG dA = 0,

∫

Γ
λ
ϕ
L · δϕΓ dA+Aϕ

L

∫

Γ
ϕΓ · δλϕ

C dA = Λϕ,k−1
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∫

Γ
(ϕΓ −ϕL) · δλϕ

L dA = 0,

fluid pressure:



∫

BL

[ 1

M
(pL − pL,n) +B

(
J(∇ϕL)− Jn(∇ϕL)

)]
δpL dV

+

∫
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[(
∆tK(∇ϕL, dL) ∇pL

)
· ∇δpL

]
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∫
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λ
p
L δpL dA = 0,

∫

Γ
λ
p
LδpΓ dA+Ap

L

∫

Γ
pΓδλ

p
C dA = Λp,k−1

L and

∫

Γ
(pΓ − pL)δλpL dA = 0,
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λ
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p
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Γ
λ
p,k
L δpΓ dA.

Global boundary value problem:

• given Aϕ
G,A

p
G,Λ

ϕ,k
G ,Λp,k

G ,ϕ
k, 1

2

Γ , p
k, 1

2

Γ , solve
mechanical part:




∫
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P (∇ϕG, pG, 0) : ∇δϕG dV −
∫
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−
∫

Γ
λ
ϕ
C · δϕG dA−

∫

ΓN

τ̄ · δϕG dA = 0,
∫

Γ
λ
ϕ
C · δϕΓ dA+Aϕ

G

∫

Γ
ϕΓ · δλϕ

L dA = Λϕ,k
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fluid pressure:

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M
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λ
p
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∫
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[
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p
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L

∫
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G · δλϕ
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∫
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λ
ϕ,k
C · δmuΓ dA and Λp,k

L = Ap
L

∫

Γ
pkGδλ

p
C dA−

∫

Γ
λ
p,k
C δpΓ dA.

• if fulfilled, set Pk =: Pn and stop;
• else k + 1→ k.

Output: solution Pn and HL,n.
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4. A microscale model for failure in poro-elasto-plastic media

This chapter provides a micromechanical framework for modeling water-induced fail-
ure mechanisms of concrete in an experimental-virtual lab. The complicated geometry
and content of concrete at a lower scale can be detected by a computed tomography
(micro-CT) scan. Based on the experimental observations, we developed a constitutive
model for the coupled problem of fluid-saturated heterogeneous porous media at fracture.
The poro-plasticity model is additively decomposed into reversible-elastic and irreversible-
plastic parts. The governing formulations are based on an energetic response function and
a dissipated work due to plasticity (Drucker-Prager model), fluid transport (Darcy’s law)
and fracture (phase-field method) for the multiphysics problem. The model performance
is demonstrated through some representative examples in 2D, representing an idealized
microstructure of concrete. The contents of this chapter is based on the following publi-
cation Aldakheel [12].

4.1. Introduction

Concrete is one of the most cost-efficient and durable construction materials in the
world. Its range of applications has been enlarged widely in recent decades. Hence,
nowadays the computational mechanics of concrete has become a very active research
field with various geotechnical engineering applications. Within a multiscale point of view,
concrete is considered as an over-complex system of solid skeletons (e.g. cement paste
and stones), fluid bulk phases (e.g. water), pores with a high degree of heterogeneity.
At the macroscopic level (m) it consists of a homogeneous material, whereas on the
mesoscale (mm) various stone (aggregates) sizes distributed in a matrix of cement paste
and surrounded by an interfacial transition zone (ITZ) are observed. On the microlevel
(µm), this matrix is further decomposed into hydrated and unreacted phases, water/air
pores (capillary/gel pores) whereas at the nanoscale (nm) these phases have complicated
structure (Figure 4.1).

A great number of macro-meso-micro-nano-mechanically motivated approaches exist
in the literature to model concrete failure behavior, see for example [319, 217, 282, 78,
334, 291, 264, 153, 180, 306, 208, 103, 346, 281, 137] and the citations therein. This
work focuses on analyzing the concrete fracture processes at the microscale leading to
accurate material descriptions and a better understanding of the failure mechanism at
the macroscale. Consequently, a micromechanical formulation of a fully saturated porous
media at fracture is developed within this contribution. Hence various effects must be
considered for investigating failure response at the microlevel, i.e. modeling the two solid
skeletons (hydrated cement paste and unhydrated clinker particles), fluid bulk phases
(water/air) and their interaction, see [269, 263].

Several efforts can be found in the literature to study the fracture mechanism of con-
crete microstructure. In this regard, [282] developed a lattice model for simulating the
micromechanical failure analysis of concrete. Hereby, the material is modeled as a lat-
tice of brittle-breaking beam elements. Their fracture law was extremely simple with
few parameters. Here, upon exceeding the maximum strength of a beam element, it will
be removed from the mesh. [172] proposed a continuum thermodynamical approach for
studying microstructure effects on the nonlinear fracture behavior of concrete. An ide-
alized 2D random multi-cracked granular composite was considered numerically at the
microscale. Moreover, viscoelasticity and kinetic energy effects were further investigated.
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Figure 4.1: Representation of the various scales in concrete from the macrostructure to
the nanostructure level.

In [152] a computational homogenization of hardened cement paste (HCP) was introduced
including a thermomechanically coupled finite element model. Their model is capable of
describing damage due to frost using results obtained from the microstructural analysis.
The microscopic investigations were performed for different moistures, temperatures and
micro-structures hence a temperature-moisture-damage correlation was obtained. [209]
introduces an experimental procedure for micromechanical testing of consecutive layers
in cement paste. The obtained properties were used directly as an input for numerical
simulation of fracture behavior of cement paste at the microlevel. Recently [156] inves-
tigated issues on the characterization of cement paste microstructures from µ-CT and
virtual experiment framework for evaluating mechanical properties. Thereby, a crack
phase-field model for simulating crack propagation was used to evaluate the stiffness and
tensile strength of cement paste microstructures and the evaluated properties were linked
to the proposed characterization parameters.

Most of the above-mentioned approaches are based on dry geometries (Dried case D)
which are stored and tested in the air to analyze concrete damage processes. However,
specimens that are submerged in water (directly after the concreting process and during
testing), representing a water-saturated concrete structure (Wet case W), have a signif-
icantly lower failure resistance than dry specimens. This phenomenon was recognized
in the past (e.g. in offshore vs. onshore wind turbines), but how the moisture content
in the concrete microstructure influences its resistance against fracture is still unknown.
This has motivated [303] to study the influence of water-induced damage mechanisms on
fatigue deterioration of high-strength concrete. A numerical model based on those experi-
mental data was developed in [15]. This was achieved by employing a phase-field approach
for hydraulic fracture in poro-elastic media. The outcome results stemmed out from the
DFG-Priority Program SPP 2020 ”Cyclic Damage Processes in High-Performance Con-
cretes in the Experimental Virtual Lab”. Herein, the constitutive formulations based on
the assumption that the solid skeleton (matrix) at the micro-level is homogeneous and
solely consists of cement paste. Furthermore, no inelastic material behavior is considered
in the modeling. Such a choice neglects the experimentally observed plastic deformations
and the two solid phases at the microscale. The goal of this work is to present a theoret-
ical and a computationally efficient framework for modeling concrete microscopic failure
in poro-elasto-plastic media based on experimental observations.
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Dried case (D) Wet case (W)

Figure 4.2: Definition of the concrete idealized microstructure.

The simulation of fracture processes in porous media at the micrometer length-scale
is achieved by utilizing the continuum phase-field method PFM, which is based on the
regularization of sharp crack discontinuities. This avoids the use of complex discretization
methods for crack discontinuities and can account for multi-branched cracks within the
solid skeleton. In recent years, several brittle [188, 162, 259, 270, 6, 285, 258, 160, 79,
295, 80, 119, 17] and ductile [10, 22, 64, 19, 4, 110, 86, 108, 8, 190, 118, 186, 253, 104]
phase-field fracture formulations have been proposed in the literature. These studies
range from the modeling of 2D/3D small and large strain deformations, variational for-
mulations, multi-scale/physics problems, mathematical analysis, different decompositions
and discretization techniques with many applications in science and engineering. All these
examples and the citation therein demonstrate the potential of phase-field for crack prop-
agation. Regarding the plastic deformations, a modified associated Drucker-Prager-type
DP yield criterion function suitable for a wide range of applications in geotechnical and
civil engineering is developed in line with [5, 112, 178, 34]. To eliminate the singularity at
the peak of the cone, an additional term in the yield function is introduced which based on
a constant perturbation-type parameter, see [193, 5]. For the modeling of fluid transport
at the microscale, we assume laminar flow described by the Stokes equation which can
be linked to Darcy’s law in porous media. A review on the foundations and applications
of porous materials can be seen in the pioneering works [58, 93, 99, 114, 283, 214]. The
coupling between those porous-media models and the DP elasto-plasticity formulations at
failure are based on an energetic and a dissipative response functions for plasticity, fluid
flow and fracture. On the computational side, a robust and efficient monolithic scheme is
employed in the numerical implementation to compute the unknowns (displacement, fluid
pressure and crack phase-field) using the software tool AceFEM, see [184].

The Chapter is organized as follows: Section 4.2 outlines the experimental observa-
tions. In Section 4.3 the governing equations for the coupled problem are described. Next,
the weak formulations are derived in Section 4.4. Finally, some numerical tests are carried
out to substantiate our algorithmic developments in Section 4.5.

4.2. Experimental investigation and geometrical set-up

The motivation behind this work emerges from the experimental observations of [303]
under the DFG-Priority Program SPP 2020 ”Cyclic Damage Processes in High-Performance
Concretes in the Experimental-Virtual Lab”. Hence, we focus in the presented contribu-
tion on the numerical aspects at the micro-scale based on detailed microstructural data.
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To this end, a micro-computed tomography (µ-CT) scan has been conducted, as shown
in Figure 4.1. For comparison purposes, two different storage conditions are utilized in
this study:

• Dried case (D): it contains test specimens, that dried at 105 ± 5 ◦C in a drying
chamber to a constant mass.

• Wet case (W): it represents a water-saturated concrete structure. The test specimens
are permanently (directly after the concreting process and during testing) submerged
in water.

At the microscale, we distinguish between two types of pores in the concrete (W) specimen,
visualized in blue color in Figure 4.2 as

• Capillary pores : It ranges between (30nm− 100µm) and developed because of sto-
ichiometrically unnecessary water. For bigger capillary pores water can evaporate
(depends on boundary conditions).

• Gel pores : It ranges between (0.1nm− 30nm) and arises from the chemistry of the
hydration process. A graphical interpretation of the gel pores at the nanoscale level
are given in Figure 4.1.

These CT-scan (.stl file) data are then transferred into a virtual element (VEM) mesh
[332, 170] or a finite element (FEM) mesh [345, 323] for numerical analysis. Material
properties of the matrix are obtained through nano-indentation techniques at the Insti-
tute of Continuum Mechanics IKM. For more details on the experimental set-up, we refer
the interested reader to [303, 339].

Note that, our emphasis in this chapter is on results (i) demonstrating the constitutive
framework and (ii) highlighting the influence of water-induced damage mechanics of our
proposed concrete model at the microscale. Thus, the formulation performance will be
demonstrated utilizing some representative examples in two-dimensional case representing
an idealized microstructure of concrete, as plotted in Figure 4.2. A rigorous numerical
analysis in 3D must be left for future work.

4.3. Governing equations for the multi-field problem

This section outlines a theory of fracture in poro-elasto-plastic media under fully sat-
urated conditions. The constitutive formulations are based on three governing equations
for the mechanical deformation, fluid pressure and the crack phase-field. Strong and weak
formulations of the multi-physics problem are introduced.

4.3.1. Basic kinematics and constitutive formulation. Consider B ∈ Rδ to be
a material body and denote ∂B as its boundary with dimension δ = 2, 3 in space and
time t ∈ T = [0, T ]. We assume Dirichlet boundary conditions on ∂DB and Neumann
conditions on ∂NB, as illustrated in Figure 4.3. The concrete microscopic boundary
value problem for the coupled problem of fluid-saturated heterogeneous porous media at
fracture is a coupled three-field problem. It is characterized at material points x ∈ B
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Figure 4.3: Primary fields and boundary conditions for the concrete specimen at the
microstructure. Light gray color refers to the hydrated cement paste, dark gray color
stands for the unhydrated clinker particles, blue color depicts the water and red color
represents the regularized crack.

by the displacement field of the solid u, the pressure field pF and the crack phase-field d
defined as

u :

{
B × T → Rδ

(x, t) 7→ u(x, t)
; pF :

{
B × T → R
(x, t) 7→ pF (x, t)

; d :

{
B × T → [0, 1]
(x, t) 7→ d(x, t)

,

(4.1)

with ḋ ≥ 0 where d(x, t) = 0 represents the unbroken state of the solid matrix (light gray
regions) and d(x, t) = 1 refers to the fully fractured solid matrix (red region), as sketched
in Figure 4.3.

The gradient of the displacement field defines the symmetric strain tensor of the solid
skeleton as

ε = sym[∇u] := 1

2
[∇u+∇uT ] . (4.2)

The solid is loaded by prescribed deformations and external traction on the boundary,
defined by time-dependent Dirichlet- and Neumann conditions

u = ū(x, t) on ∂DB and σ · n = t̄(x, t) on ∂NB, (4.3)

where n is the outward unit normal vector and t̄ is the prescribed traction vector at the
solid surface ∂B. The stress tensor σ is the thermodynamic dual to ε. To account for
plastic deformations with isotropic hardening/softening response, we define the symmetric
plastic strain tensor εp and the equivalent plastic strain α as

εp :

{
B × T → R6

(x, t) 7→ εp(x, t)
; α :

{
B × T → R
(x, t) 7→ α(x, t)

(4.4)

with

εp(x, 0) = 0 and α(x, 0) = 0 , (4.5)

representing the first and the second local internal variables (history fields) of the solid,
as plotted in Figure 4.3. In small strain setting, the elastic strain tensor is obtained in an
additive format from the total strain ε and the plastic strain tensor εp, yields

εe = ε− εp . (4.6)
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Remark 1:
Regarding the concrete solid skeleton at the microscale, only the hydrated cement paste
undergoes elastic-plastic-fracture deformations. Whereas the unhydrated clinker particles
are stiff, i.e. almost two to three times stiffer than the hydrated phase, as experimentally
documented in [106]. Hence the unhydrated phase is modeled as an elastic material. Fur-
thermore, no interfacial transition zone (ITZ) is observed between those phases in contrast
to the mesoscale case.

The solid skeleton has to satisfy the equation of equilibrium, representing the first partial
differential equation PDE for the coupled problem as

div σ + b̄ = 0 (4.7)

where dynamic effects are neglected and b̄ is the given body force.

For the constitutive modeling of poro-mechanics, the fluid pressure pF in (4.1)2 derives
the evolution of the fluid volume ratio vF which is defined as

vF :

{
B × T → R
(x, t) 7→ vF (x, t)

(4.8)

herein, the fluid volume ratio describes the third local internal variable, as demonstrated
in Figure 4.3. The boundary conditions for the pressure are determined as follows

pF = p̄F (x, t) on ∂DB and H · n = h(x, t) on ∂NB , (4.9)

in terms of the fluid volume flux vector H, the prescribed fluid pressure p̄F and the fluid
transport h. The initial condition for the fluid volume ratio is set vF (x, 0) = nF equal to
the initial porosity in B.

Remark 2:
For the initial condition of the fluid content in such a closed system, we assume two water
sources at the microscale:

• Capillary pores (saturated voids),

• Water in the gel pores as a homogenized quantity by zooming further in the hydrated
cement paste, see Figure 4.1.

The fluid flux vector in (4.9)2 is linked to the negative gradient of the fluid pressure via
the permeability, according to Darcy-type fluid transport as

H := −k(ε, d) ∇pF , (4.10)
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where the permeability tensor k depends on the total strain ε and the crack phase-field
d. It is decomposed into a Darcy-type flow for an unbroken porous medium kDarcy and a
Poiseuille-type flow in a fully fractured material kfrac defined as

k(ε, d) = kDarcy + dζkfrac(ε) with kDarcy =
k

ηF
1 and kfrac = kc ω

2
[
1 −N ⊗N

]

(4.11)

as outlined in [15, 236, 161], where k is the intrinsic permeability in an isotropic pore
space, N = ∇d/||∇d|| is the unit normal to the crack surface Γ, ηF is the dynamic fluid
viscosity, ζ ≥ 1 is a permeability transition exponent, kc is the spatial permeability in
fracture and 1 is the identity tensor. An estimation for the crack width is provided by
ω = (N · εN)he in terms of the characteristic element length he. The fluid has to satisfy
the balance of fluid mass, reflecting the second PDE for the coupled problem as

v̇F + div[H] = 0 (4.12)

where fluid sources describing the injection processes are neglected at this level.

For the phase-field problem, a sharp-crack surface topology Γ → Γl is regularized by
the crack surface functional as outlined in [14, 258]

Γl(d) =

∫

B

γl(d,∇d) dv with γl(d,∇d) =
1

2lf
d2 +

lf
2
||∇d||2 , (4.13)

based on the crack surface density function γl per unit volume of the solid and the fracture
length scale parameter lf that governs the regularization, as plotted in Figure 4.3. To
describe a purely geometric approach to phase-field fracture, the regularized crack phase-
field d is obtained by a minimization principle of diffusive crack topology

d = Arg
{
inf
d
Γl(d)

}
with d = 1 on Γ ⊂ B , (4.14)

yielding d− l2f∆d = 0 in B along with the Neumann-type boundary condition ∇d ·n = 0
on ∂B. Evolution of the regularized crack surface functional (4.13) can be driven by
the constitutive functions as outlined in [10], postulating a global evolution equation of
regularized crack surface as

d

dt
Γl(d) =:=

1

lf

∫

B

[ (1− d)H− ηcḋ ] ḋ dv ≥ 0 , (4.15)

where ηc ≥ 0 is a material parameter that characterizes the artificial/numerical viscosity
of the crack propagation. The crack driving force

H = max
s∈[0,t]

D(x, s) ≥ 0 , (4.16)

is introduced as the fourth local history variable that accounts for the irreversibility of
the phase-field evolution by filtering out a maximum value of what is known as the crack
driving state function D. Then the evolution statement (6.10) provides the local equation
for the evolution of the crack phase-field in the domain B along with its homogeneous
Neumann boundary condition as

[ d− l2f∆d ] + ηcḋ+ (d− 1)H = 0 (4.17)

with ∇d · n = 0 on ∂B. It represents the third PDE for the coupled problem.
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4.3.2. Energetic response function. The multiphysics problem is based on three
primary fields to characterize the poro-elasto-plasticity of fluid-saturated porous media
at fracture as

Global Primary Fields : U := {u, pF , d} , (4.18)

the displacement field u, the fluid pressure field pF and the crack phase-field d. The
constitutive approach to water-induced failure mechanics for concrete focuses on the set

Constitutive State Variables : C := {ε, εp, α, vF , d,∇d} , (4.19)

reflecting a combination of poro-elasto-plasticity with a first-order gradient damage mod-
eling. It is based on the definition of a pseudo-energy density per unit volume contains
the sum

W (C) = Wep(ε, ε
p, α, d) +Wfluid(ε, vF ) +Wfrac(d,∇d) (4.20)

of a degrading elastic-plastic part Wep and a contribution due to fluid Wfluid and fracture
Wfrac that contain the accumulated dissipative energy. The elastic-plastic contribution is
modeled with an isotropic Hookean strain energy function as

Wep(ε, ε
p, α, d) = g(d) ψep(ε, ε

p, α) , (4.21)

with

ψep(ε, ε
p, α) =

λ

2

2
tr[ε− εp] + µ(ε− εp) : (ε− εp) + σy α+

H

2
α2 , (4.22)

in terms of the two Lamé constants λ and µ, the hardening modulus H and the solid
yield stress σy. The degradation function g(d) = (1 − d)2 models the degradation of the
elastic-plastic energy of the solid due to fracture. It interpolates between the unbroken
response for d = 0 and the fully broken state at d = 1 by satisfying the constraints
g(0 ) = 1, g(1 ) = 0, g′(d) ≤ 0 and g′(1 ) = 0. The fluid contribution is assumed to have
the form

Wfluid(ε, vF ) =
M

2

[
B2

2
tr[ε]− 2B vF tr[ε] + v2F

]
, (4.23)

in terms of the Biot’s coefficient B and Biot’s modulus M . Following the Coleman-Noll
procedure, the fluid pressure pF , the Cauchy stress tensor σ and the hardening driving
force q are obtained from the pseudo-energy density function W in (6.15) for isotropic
material behavior as

pF (ε, vF ) := ∂W
∂vF

=M vF −MB tr[ε] ,

σ(εe, pF , d) := ∂W
∂εe

= g(d)σeff(ε
e)−B pF 1 with σeff = λ tr[εe]1 + 2µ εe

q(α, d) := −∂W
∂α

= g(d) q̃(α) with q̃(α) = −
[
σy +Hα

]
,

(4.24)

where the stress tensor is additively decomposed into an effective part σeff and a pressure
part according to the classical Terzaghi split, as outlined in [300, 98]. Using the pressure
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definition in (4.24)1 and the second PDE in (4.12), the balance of mass is modified as
follows

ṗF
M

+B tr[ε̇] + div[H] = 0 , (4.25)

which now depends on the fluid pressure pF and the displacement u.

The fracture part of pseudo-energy density (6.15) is modeled by

Wfrac(d,∇d) = [1− g(d)] ψc + 2ψc lf γl(d,∇d) , (4.26)

where ψc > 0 is a critical fracture energy. It is defined in terms of the critical effective
stress σc

ψc =
σ2
c

2Ecement
, (4.27)

as outlined in [6], where Ecement is the Young’s modulus for the hydrated cement paste.
By taking the variational derivative δdW of (6.15) with respect to d along with some
manipulation as documented in [8], the third PDE in (6.12) yields for the rate-independent
setting as follows

2ψc[d− l2f∆d] + 2(d− 1)H = 0 , (4.28)

in terms of the history field H, introduced in (6.11). The crack driving state function D
is defined by

D :=
〈
ψep(ε

e
+, α)− ψc

〉
+
≥ 0 , (4.29)

with the Macaulay bracket 〈x〉+ := (x + ||x||)/2, that ensures the irreversibility of the
crack evolution. Note that only the tensile/positive part of the elastic energy in (6.16)
is considered for computing the crack driving force. It is defined in terms of the positive
strain tensor εe+ :=

∑3
a=1〈εea〉+ na ⊗ na. Here, {εea}a=1..3 are the principal elastic strains

and {na}a=1..3 are the principal strain directions.

4.3.3. Plastic Dissipation. The elastic-plastic model requires additionally the for-
mulation of a yield function, a hardening law and an evolution equation for the plastic
variables. The yield function restricts the elastic region. To this end, a modified associated
Drucker-Prager-type DP yield criterion function is developed within this contribution, in
line with [112, 178, 34]. To overcome the singularity at the peak of the cone in Figure
4.4, an additional term in the yield function is introduced, see [193, 5], that based on a
constant perturbation-type parameter, yields

Φ̂plastic(σeff , q̃) =
√
|| dev[σeff ]||2 + P 2

φ + βφ(
1

3
tr[σeff ]− P0) +

√
2
3
q̃ (4.30)

governed by the additional term Pφ which provides a smoothing–out of the peak of the
Drucker–Prager cone. It is defined as

Pφ := βφS with βφ =
6 sinχ

3± sinχ
, S = P ∗

0 − P0 and P0 = C cotχ (4.31)
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Figure 4.4: Visualization of the modified associated Drucker-Prager-type yield criterion
function.

with the perturbation parameter S, the yield slope βφ and the peak position P0 in terms of
the friction angle χ and cohesion C. A graphical interpretation of the modified associated
Drucker-Prager yield criterion surface is given in Figure 4.4. The plastic flow rule of the
solid skeleton takes the associate form

ε̇p = λpN with N := ∂σeff
Φ̂plastic(σeff , q̃) =

dev[σeff ]√
|| dev[σeff ]||2 + P 2

φ

+
1

3
βφ1 , (4.32)

and the evolution of the equivalent plastic strain is derived as

α̇ = λp ∂ q̃ Φ̂plastic(σeff , q̃) =
√

2
3
λp (4.33)

in terms of the plastic Lagrange multiplier λp that describes the amount of the plastic
flow. For further details on the algorithmic treatment of the plastic history variables
{εp, α}, we refer to the works [5, 112, 178, 34, 193].

4.4. Weak formulations for the coupled problem

The update of the primary fields U in (6.13) in a typical time increment [tn, tn+1] with
time step ∆t > 0 is governed by three PDEs in (6.7), (4.25) and (6.12) in a strong form
setting. Next, we define three test functions for the displacement δu(x) ∈ {H1(B)δ :
δu = 0 on ∂DB}, fluid pressure δpF (x) ∈ {H1(B) : δpF = 0 on ∂DB} and crack phase-
field δd(x) ∈ H1(B). The weak formulations for the above introduced three PDEs of
the coupled poro-elasto-plastic media problem at fracture are derived from a standard
Galerkin procedure as

Gu(U, δu) =
∫
B

[
σ : ∇δu− b̄ · δu

]
dv −

∫
∂NB

t̄ · δu da = 0 ,

GpF (U, δpF ) =
∫
B

[(
1
M
(pF − pF,n) +B

(
tr[ε]− tr[εn]

))
δpF + (∆t k ∇pF ) · ∇δpF

]
dv

+
∫
∂NB

h δpF da = 0 ,

Gd(U, δd) =
∫
B

[(
2ψc d+ 2(d− 1)H

)
δd+ 2ψc l

2
f ∇d · ∇δd

]
dv = 0 ,

(4.34)
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where pF,n represents the fluid pressure at time tn. This set of equations fully describes
the constitutive model.

Remark 3:
In a small strain setting, the total strain tensor is additively decomposed into an elas-
tic and a plastic part, see (4.6). Similarly, the scalar fluid volume ratio vF can also be
decomposed into reversible-elastic veF and irreversible-plastic vpF parts, according to [34],
yields

vF = veF + vpF .

Evolution of those history fields are defined as:

v̇eF =
1

M
ṗF +B tr[ε̇e] and v̇pF = B tr[ε̇p] .

This decomposition will be further investigated in future works.

4.5. Representative numerical example

This section demonstrates the performance of the proposed phase-field model for water-
induced damage mechanics in poro-elasto-plastic media. Two different cases are analyzed
and compared as explained in Section 4.3. As a geometrical setup, we consider a bound-
ary value problem applied to the square plate as shown in Figure 4.2. It represents an
idealized microstructure of the concrete specimen in two-dimensional setting.
The size of the square specimen is chosen to be L = 100 µm. Unhydrated clinker par-
ticles demonstrated as big circles (ranging between 4.0 − 10.0 µm) with the dark gray

Table 4.1: Material parameters used in the numerical examples.

No. Parameter Name Value Unit
1. Ecement Young’s modulus for hydrated phase 20.0 GPa
2. Eclinker Young’s modulus for unhydrated phase 3× 20.0 GPa
3. ν Poisson’s ratio 0.2 –
4. βφ Yield slope 0.95 –
5. S Perturbation parameter 1× 10−3 MPa
6. P0 Cone peak position 0.002 MPa
7. H Hardening modulus 0.35 MPa
8. σy Solid yield stress 5.0 MPa
9. M Biot’s modulus 100 MPa
10. B Biot’s coefficient 1.0 –
11. k Intrinsic permeability 1× 10−16 m2

12. kc Spatial permeability in fracture 10.0 m3s/kg
13. ζ Permeability transition exponent 50 –
14. ηF Dynamic fluid viscosity 1× 10−6 kg/(m.s)
15. ηc Fracture viscosity 1× 10−6 GPa
16. lf Fracture length scale 0.50 µm
17. σc Critical effective stress 0.14 MPa
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color in Figure 4.2. Small blue/white circles (ranges between 1.2 − 3.0 µm) refer to the
saturated/dry pores. The circles are arbitrarily distributed inside the hydrated cement
paste (plotted in light gray color). We fix the bottom edge of the plate and apply a com-
pression load at the top edge until the plate is fully broken. Material properties of the
concrete solid phases are obtained through nano-indentation techniques. Other material
parameters used in the simulation are listed in Table 6.1.
For the finite element simulation, all variables are discretized by quadratic shape functions.
Similar results have been observed using the recently developed virtual element method
(VEM) with 8 noded quadrilateral elements Q2S, representing a first-order VEM, see
[8, 7]. Furthermore, the computations are performed by using a nested Newton-Raphson
algorithm. Load stepping is applied when necessary. Since all formulations are linearized
in a consistent manner using AceGen see [184], quadratic convergence is achieved within
a load step.

The key goal of this investigation is to illustrate the water effects on concrete failure
at the microscopic length scale. To this end, we compare the idealized concrete specimen
under two different environments.

4.5.1. Dried case (D). reduced to standard phase-field modeling of ductile fracture
in the heterogeneous microstructure. For the numerical implementation, two primary
fields are solved, namely the displacement field u and the crack phase-field d.
Figure 4.5 illustrates the equivalent plastic strain α (first row) and the crack phase-
field d (second row) evolutions for different deformation states up to final failure

{
ū =

0; 0.0064; 0.0076; 0.0082 µm
}
. We observe an accumulation of α around the stiff clinker

particles and the pores until a threshold energy ψc is reached. Thereafter the crack
phase-field d initiates around the heterogeneous regions where the maximum equivalent
plastic strain is concentrated. Then it propagates in random directions inside the hydrated
cement paste (plotted in light gray color) and joins other cracks till final rupture as shown

Figure 4.5: Compression test for the idealized microstructure of dry concrete: Evolution
of equivalent plastic strain α (first row) and crack phase-field d (second row) for different
deformation states up to final failure

{
ū = 0; 0.0064; 0.0076; 0.0082 µm

}
.
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in Figure 4.5 (second row).

4.5.2. Wet case (W). The second model problem is concerned with analyzing the
concrete failure phenomena of an idealized microstructure geometry underwater (wet en-
vironment). To this end, the fracture phase-field formulations are extended towards fluid-
saturated heterogeneous porous media at microscale as discussed in Section 4.3. In this
case, all the pores are assumed to be filled with the water phase (i.e. partially saturated
condition with mixed air/water pores is excluded).
The evolution of the equivalent plastic strain α (first row), the crack phase-field d (second
row) and the fluid pressure pF (third row) are depicted in Figure 4.6. The plasticity
starts to accumulate around the stiff unhydrated clinker particles and the fluid pressure
increases from the saturated pores. Then, the crack initiates in the plastic zones when
the elastic-plastic energies reach a critical value. As expected, the fluid pressure drops in
the fractured areas as shown in Figure 4.6 (third row).

Next, we compare the load-displacement curves of the dried and wet concrete speci-
mens in Figure 4.7(a). It has been demonstrated that concrete tested underwater shows
earlier damage behavior compared to the dry case. This is due to the water influences
which is in good agreement with the experimental observation in [303, 302]. For a better
understanding of the water effects, we plot in Figure 4.7(b) the averaged fluid pressure
evolution with load in the saturated pores until the final rupture. We notice an accumu-

Figure 4.6: Compression test for the idealized microstructure of wet concrete: Evo-
lution of equivalent plastic strain α (first row), crack phase-field d (second row)
and fluid pressure pF (third row) for different deformation states up to final failure{
ū = 0; 0.0030; 0.0036; 0.0044 µm

}
.



108 A microscale model for failure in poro-elasto-plastic media

(a) (b)

Figure 4.7: Compression test for the idealized microstructure of concrete: (a) Load
[N] - displacement [µm] comparison between the dry and wet cases; and (b) the average
pressure [MPa] in the wet pores.

lation of pF in the saturated pores until fracture initiation, then the pressure drops in
those areas, as outlined in Figure 4.6 (third row).
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5. 2D Virtual elements for phase-field modeling of brittle fracture

This chapter addresses an efficient low order virtual element method (VEM) for the
phase-field modeling of isotropic brittle fracture. The discussion in this chapter is based
on the recent work of Aldakheel et al. [6].

Virtual elements were introduced in the last decade and applied to various problems
in solid mechanics. The phase-field approach regularizes sharp crack surfaces within a
pure continuum setting by a specific gradient damage modeling with constitutive terms
rooted in fracture mechanics, see Miehe et al. [225, 230]. In the presented contribution,
we propose a rigorous variational-based framework for the phase-field modeling of brittle
fracture in elastic solids undergoing small strains. The key goal here, is the extension
towards the recently developed virtual element formulation due to the flexible choice of
nodes number in an element which can be changed easily during the simulation process,
as outlined in Wriggers et al. [328, 329]. To this end, the potential density is formu-
lated in terms of suitable polynomial functions, instead of computing the unknown shape
functions for complicated element geometries, e.g. arbitrary convex or concave polygonal
elements. An important aspect of this work is the introduction of an incremental mini-
mization principle, with a novel construction of the stabilization density for the coupled
multi-field problem. On the computational side, a robust and efficient monolithic scheme
is employed using the software tool AceFEM program in the numerical implementation
to compute the unknowns (displacement and crack phase-field), see Korelc & Wrig-
gers [184]. The performance of the formulation is underlined by means of representative
examples.

5.1. Introduction

The finite element method (FEM) is a well established tool for solving a wide range of
boundary value problems in science and engineering, see e.g. Bathe [43], Zienkiewicz
et al. [345] and Wriggers [323]. However in recent years different methods like the
isogeometric analysis outlined in Hughes et al. [174, 92] and the virtual element method
proposed in Beirão da Veiga et al. [46] were introduced as tools that bring some new
features to the numerical solution of problems in solid mechanics. The virtual element
method is a generalization of the finite element method, which has inspired from modern
mimetic finite difference schemes, rooted in the pioneering work of Brezzi et al. [71]. It
has proven to be a competitive discretization scheme for meshes with irregularly shaped
elements that can even become non-convex. Furthermore, VEM allows exploration of
features such as flexibility with regard to mesh generation and choice of element shapes,
e.g. use very general polygonal and polyhedral meshes. In this regard, a stabilization pro-
cedure is required in the virtual element method, as described in Cangiani et al. [77]
for linear Poisson problems. So far applications of virtual elements have been devoted to
linear elastic deformations in Gain et al. [135] and Artioli et al. [36], contact prob-
lems in Wriggers et al. [328], 3D finite elasto-plastic deformations in Hudobivnik
et al. [169], anisotropic materials at finite strains in Wriggers et al. [330, 331], 2D
magnetostatic problems in Beirão da Veiga et al. [48], inelastic solids in Taylor &
Artioli [298] and hyperelastic materials at finite deformations in Chi et al. [85] and
Wriggers et al. [329]. In this contribution, we examine the efficiency of the VEM for
predicting the failure mechanisms in solids due to crack initiation and propagation.

The structure of the VEM typically comprises a term in the weak formulation or the
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potential density functional in which the displacement field u and the fracture phase-field
d, being sought are replaced by their projection: uΠ and dΠ onto a polynomial space.
This results in a rank-deficient structure, therefore it is necessary to add a stabilization
term to the formulation, see Beirão da Veiga et al. [46], Beirão Da Veiga et al.
[47] and Chi et al. [85], where in the latter the scalar stabilization parameter of the
linear case was replaced by one that depends on the fourth-order elasticity tensor.

A new stabilization technique for VEM was recently developed in Wriggers et al.
[329] who use a technique that was first described in Nadler & Rubin [249], generalized
in Boerner et al. [60] and simplified in Krysl [187] in the context of hexahedral finite
elements. The essence of the method is the addition of the positive semi-definite potential
density function π(∇suΠ, dΠ,∇dΠ) to a positive-definite potential π̂(∇su, d,∇d) which
is evaluated using full quadrature. For consistency the subtraction of a term involving
π̂(∇suΠ, dΠ,∇dΠ) as a function of the projected displacement and the phase-field is made.

This chapter represents an initial contribution to the use of the virtual element method-
ology for numerically solving fracture-mechanics problems. In contrast to the projection of
the displacement field as the only global field being sought in most virtual element method
applications up to now, this work further extends VEM towards multi-physics problems.
For this purpose, the crack phase-field is also projected onto a polynomial space. The
modeling of crack formation can be achieved in a convenient way by continuum phase-field
approaches to fracture, which are based on the regularization of sharp crack discontinu-
ities. Phase-field modeling of fracture has been attracting considerable attention in recent
years due to its capability of capturing complex crack patterns in various problems in solid
mechanics. Many efforts have been focused on the regularized modeling of Griffith-type
brittle fracture in elastic solids. In this regard, Miehe et al. [225] proposed a phase-
field approach to fracture with a local irreversibility constraint on the crack phase-field.
It incorporates regularized crack surface density functions as central constitutive objects,
which is motivated in a descriptive format based on geometric considerations. Recent
works on brittle fracture have been devoted to the dynamic case in Borden et al. [62],
cohesive fracture in Verhoosel & de Borst [307], multiplicative decomposition of the
deformation gradient into compressive-tensile parts in Hesch & Weinberg [164], differ-
ent choices of degradation functions in Kuhn et al. [189] and Sargado et al. [280],
coupled thermo-mechanical and multi-physics problems at large strains in Miehe et al.
[231], a new fast hybrid formulation in Ambati et al. [24], to model fracture of arterial
walls with an emphasis on aortic tissues in Gültekin et al. [149], finite-deformation
contact problems in Hesch et al. [165], emphasis on a possible formula for the length
scale estimation in Zhang et al. [341], anisotropic material behavior at small and large
deformations in Teichtmeister et al. [299], for the description of hydraulic fracturing
in Heider & Markert [159] and Ehlers & Luo [115], to describe fatigue effects for
brittle materials in Alessi et al. [20], crack penetration or deflection at an interface in
Paggi & Reinoso [259] and material point method in Kakouris & Triantafyllou
[176]. Extensions of these models towards the phase-field modeling of ductile fracture can
be achieved by coupling of gradient damage mechanics with models of elasto-plasticity, as
proposed in the works of Aldakheel et al. [4, 14], Miehe et al. [230, 232, 237, 238],
Ambati et al. [23], Borden et al. [64], Alessi et al. [19], Dittmann et al. [107]
and Na & Sun [248].

The goal of this work is to present a consistent variational-based framework for the
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Figure 5.1: Solid with a regularized crack and boundary conditions.

phase-field modeling of brittle fracture using an efficient virtual element method. On
the computational side, one may employ either a monolithic or a staggered algorithm to
compute the unknowns, in which the displacement and the crack phase-field are com-
puted simultaneously or alternatively, respectively. In this work, a robust and efficient
monolithic scheme is employed in the numerical implementation using the software tool
AceFEM, see Korelc & Wriggers [184].

The chapter is organized as follows: Section 5.2 outlines the primary fields and consti-
tutive state variables of the multi-field problem. Section 5.3 is devoted to the construction
of a variational phase-field approach to brittle fracture in elastic solids. The development
of the virtual element method is formulated in Section 5.4. Finally, Section 5.5 presents
numerical results that demonstrate the modeling capabilities of the proposed approach.
The formulation performs extremely well in benchmark tests involving regular, distorted
and Voronoi meshes. For comparison purposes, results of the standard finite element
method (FEM) are also demonstrated.

5.2. Basic kinematics at small strains

5.2.1. Displacement and crack phase-field. Let Ω ∈ Rδ with δ = 2, 3 be a solid
domain. The response of fracturing solid at material points x ∈ Ω and time t ∈ T = [0, T ]
is described by the displacement field u(x, t) and the crack phase-field d(x, t)

u :

{
Ω× T → Rδ

(x, t) 7→ u(x, t)
and d :

{
Ω× T → [0, 1]
(x, t) 7→ d(x, t)

with ḋ ≥ 0 (5.1)

with d(x, t) = 0 and d(x, t) = 1 for the unbroken and the fully broken state of the material
respectively, as depicted in Figure 5.1. The gradient of the displacement field defines the
symmetric strain tensor of the geometrically linear theory

ε = ∇su = sym[∇u] := 1

2
[∇u+∇uT ] . (5.2)

The time-dependent Dirichlet- and Neumann boundary conditions of the solid are defined
as

u = u on ∂Ωu and σ ·N = t on ∂Ωt (5.3)
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l l
x ∈ Ω

1

d

Figure 5.2: One dimensional cracked bar. Black thick line represents a sharp crack at
x = 0. Red and blue lines represent diffusive crack modeling. For the red thick line:
γl = d2/2l + l|∇d|2/2 with regularization profile exp[−|x|/l] satisfying d(0) = 1 and
for the blue dotted line: γl = d2/2l + l|∇d|2/4 + l3(∆d)2/32 with regularization profile
exp[−2|x|/l](1 + 2|x|/l) satisfying d(0) = 1 and d′(0) = 0.

with a prescribed displacement and external traction on the surface ∂Ω = ∂Ωu∪∂Ωt of the
solid domain, where ∂Ωu ∩ ∂Ωt = ∅. For the phase-field problem, a sharp-crack surface
topology Γ → Γl is regularized by the crack surface functional as outlined in Miehe
et al. [225, 230]

Γl(d) =

∫

Ω

γl(d,∇d) dV with γl(d,∇d) =
1

2l
d2 +

l

2
|∇d|2 (5.4)

based on the crack surface density function γl per unit volume of the solid and the frac-
ture length scale parameter that governs the regularization, as plotted in Figure 5.1. The
function γl already appears in the approximation by Ambrosio & Tortorelli [25]
of the Mumford & Shah [247] functional of image segmentation. For vanishing frac-
ture length scale l → 0, the functional Γl(d) converges to a sharp-crack topology Γ as
schematically visualized in Figure 5.2 for a one dimensional cracked bar, which depicts
in addition a possible higher order approximation suggested by Borden et al. [63]
and Dittmann et al. [107]. To describe a purely geometric approach to phase-field
fracture, the regularized crack phase-field d is obtained by a minimization principle of
diffusive crack topology

d = Arg{inf
d
Γl(d)} with d = 1 on Γ ⊂ Ω (5.5)

yielding the Euler equation d − l2∆d = 0 in Ω along with the Neumann-type boundary
condition ∇d ·N = 0 on ∂Ω, where N is the outward normal on ∂Ω. Figure 5.3 demon-
strates a numerical solution for (5.5) in two-dimensional setting using an efficient virtual
element method (VEM). The Γ–limit of the above variational principle gives for l → 0 the
sharp crack surface Γ, as plotted in Figure 5.3(d) for the VEM specimen with a voronoi
mesh.
The above introduced variables will characterize the brittle failure response of a solid,
based on the two global primary fields

Global Primary Fields: U := {u, d} , (5.6)
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(a)

(b)

(c)

(d)

0.0 1.0d

Figure 5.3: A purely geometric approach to phase-field fracture based on virtual element
method (VEM). (a) Geometry and discretization of the specimen using Voronoi meshes.
(b)–(d) Solutions of the variational problem (5.5) for a rectangular specimen Ω with a
given VEM-shape for the sharp crack Γ, prescribed by the Dirichlet condition d = 1 on
Γ ⊂ Ω for different fracture length scales lb > lc > ld.

the displacement field u and the crack phase-field d. The subsequent constitutive approach
to the phase-field modeling of brittle fracture focuses on the set

Constitutive State Variables: C := {ε, d,∇d} , (5.7)

reflecting a combination of elasticity with a first-order gradient damage modeling.

5.2.2. Constitutive evolution of crack phase-field. Following the recent works
of Miehe et al. [230], Aldakheel [10] and Aldakheel et al. [14], the evolution of
the regularized crack surface functional is driven by the constitutive functions, postulating
a global evolution equation of regularized crack surface as

d

dt
Γl(d) =

∫

Ω

δdγl(d,∇d) ḋ dV :=
1

l

∫

Ω

[ (1− d)H− ηḋ ] ḋ dV ≥ 0 (5.8)

where η ≥ 0 is a material parameter that characterizes the viscosity of the crack propa-
gation. The crack driving force

H = max
s∈[0,t]

D(x, s) ≥ 0 , (5.9)

is introduced that accounts on the irreversibility of the phase-field evolution by filtering
out a maximum value of what is known as the crack driving state function D. Then
the evolution statement (5.8) provides the local equation for the evolution of the crack
phase-field in the domain Ω along with its homogeneous Neumann boundary condition as

ηḋ = (1− d)H− [ d− l2∆d ] with ∇d ·N = 0 on ∂Ω (5.10)
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5.3. Variational based phase-field approach to brittle fracture

In this section, we outline a variational approach to brittle fracture in elastic solids at
small strains, in line with [10, 232].

5.3.1. Constitutive work density function. The constitutive work density func-
tion W is assumed to depend on the constitutive state variables C introduced in (5.7). It
consists of the sum

W (C) =Wbulk(ε, d) +Wfrac(d,∇d) (5.11)

of a degrading elastic bulk energy Wbulk and a contribution due to fracture Wfrac, which
contains the accumulated dissipative energy, as already suggested in Aldakheel [10] and
Miehe et al. [232] for coupled gradient plasticity-damage problem. The elastic bulk
contribution in (5.11) is assumed to be a quadratic function as

Wbulk(ε, d) = g(d) ψ(ε) with ψ(ε) =
λ

2
tr2[ε] + µ tr[ε2] and g(d) = (1− d)2 , (5.12)

where, λ > 0 and µ > 0 are the elastic Lame constants. g(d) is a degradation function
that models the degradation of the stored elastic energy of the solid due to fracture.
It interpolates between the unbroken response for d = 0 and the fully broken state at
d = 1 by satisfying the constraints g(0 ) = 1, g(1 ) = 0, g′(d) ≤ 0 and g′(1 ) = 0. In
order to enforce a crack evolution only in tension, the stored elastic energy of the solid is
additively decomposed into a positive part ψ̃+ due to tension and a negative part ψ̃− due
to compression, outlined in the pioneering work of Miehe et al. [225] as

Wbulk(ε, d) = (1− d)2ψ̃+ + ψ̃− with ψ̃± =
λ

2
〈tr[ε]〉2± + µ tr[(ε±)

2] (5.13)

in terms of the two ramp functions 〈x〉+ := (x+ |x|)/2 and 〈x〉− := (x−|x|)/2 of R+ and
R−,respectively, and the positive and negative strain tensors ε+ :=

∑3
a=1〈εa〉+ na ⊗ na

and ε− := ε − ε+. {εa}a=1..3 are the principal strains and {na}a=1..3 are the principal
strain directions. The second term in (5.11) models the accumulated dissipation

Wfrac(d,∇d) = [1− g(d)] ψc + 2
ψc

ζ
l γl(d,∇d) (5.14)

where, ψc > 0 is a critical fracture energy and ζ controls the post-critical range after crack
initialization.

5.3.2. Dissipation potential function. The crack phase-field evolution ḋ is based
on a dissipation potential related to a threshold function. This function is formulated in
terms of an energetic driving force F f and a dissipative resistance force Rf , defined as

F f := −∂dWbulk and Rf := δdWfrac := ∂dWfrac − Div[∂∇dWfrac] (5.15)

A crack resistance domain associated with the crack propagation in the space of the crack
driving force is defined by

Efrac := { (F f − Rf) | φf(F f − Rf ) ≤ 0 } with φf(F f −Rf ) = F f − Rf (5.16)
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based on the crack threshold function φf . With this function at hand, a dissipation poten-
tial function can be constructed based on the standard concept of maximum dissipation.
A rate-dependent dissipation potential function in a non-constrained manner is defined
as

V (Ċ) = sup
F f−Rf

[ (
F f −Rf

)
ḋ− V ∗(F f −Rf )

]
with V ∗(F f − Rf) =

1

2η

〈
φf(F f −Rf )

〉2
+
,

(5.17)

based on the dual dissipation potential function. The necessary condition of the local
optimization problem (5.17)1 yields the crack phase-field evolution

ḋ = λf∂F f−Rfφf with λf :=
1

η

〈
φf(F f − Rf)

〉
+
≥ 0 (5.18)

where the positiveness of the viscous constitutive function λf implies via (5.18) a monotonous
growth ḋ ≥ 0 of the fracture phase-field.

5.3.3. Variational principle for the two-field evolution problem. The rate-
type minimization principle is governed by the global rate potential functional

Π(U̇) =

∫

Ω

π(Ċ) dV − Πext(u̇) with Πext(u̇) :=

∫

Ω

f · u̇ dV +

∫

∂Ω

t · u̇ dA (5.19)

in terms of the constitutive rate potential density per unit volume

π(Ċ) =
d

dt
W (C) + V (Ċ) (5.20)

and the external load functional Πext(u̇), where f is a given body force per unit volume
of the solid and tN is a given traction field on the surface. The evolution of two primary
fields is determined by the minimization principle

{u̇, ḋ} = Arg{ inf
u̇,ḋ

Π(U̇) } . (5.21)

The combination of the global minimization principle (5.21) with the local maximum
problem (5.17) for the definition of the dissipation potential V provides a mixed variational
principle, that defines all equations of fracture in elastic solids. When introducing the
mixed potential density

π∗ =
d

dt
W + (F f − Rf)ḋ− V ∗ , (5.22)

the Euler equations of the variational principle for the quasi-static case, where inertia
effects are neglected, appear in the form:

1. Stress equilibrium δu̇π
∗≡ Div [ ∂εW ] + f = 0

2. Fracture force δḋπ
∗≡ ∂dW − Div [ ∂∇dW ] + (F f − Rf) = 0

3. Fracture phase-field ∂(F f−Rf )π
∗≡ ḋ− ∂(F f−Rf )V

∗ = 0

(5.23)

along with Neumann-type boundary conditions of the form defined as

∂εW ·N = t on ∂Ωt and ∇d ·N = 0 on ∂Ω∇d (5.24)
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5.3.4. Time-discrete incremental variational formulation. This section pro-
vides the time discretization of the above introduced rate type-variational formulation.
Consider a discrete time interval [tn, tn+1], where τ := tn+1 − tn > 0 denotes the step
length. Next, we assume all fields variable at time tn to be known. The aim is to de-
termine all variables at the current discrete time tn+1 (fields without subscript) based on
variational principle valid for the time increment under consideration. In particular,

C∗ := {ε, d,∇d, F f − Rf} and C∗
n := {εn, dn,∇dn, F f

n −Rf
n} (5.25)

denoted as the state variables at time tn+1 and time tn, respectively. The incremental
potential density functional for the coupled problem is defined as

Πτ (U) =

∫

Ω

πτ (C) dV − Πτ
ext(u) with πτ (C) = Algo

{ ∫ tn+1

tn

π(Ċ) dt

}
(5.26)

based on an algorithmic approximation of the incremental potential density per unit vol-
ume πτ . Using a fully implicit Euler scheme and following same procedure as in (5.22),
we end up with the incremental mixed potential density function

π∗τ (C∗) =W + (F f − Rf)(d− dn)− τV ∗ (5.27)

based on the state variables C∗ at time tn+1 defined in (5.25). The development of the
virtual element that handle phase-field brittle fracture in elastic solids can start from the
particular form of the potential density functional, defined in (5.26). This has advantages
when the code is automatically generated using the software tool AceGen, see Korelc
& Wriggers [184]. Next, we define the governing partial differential equations describing
the multi-field approach to phase-field-type crack propagation in elastic solids:

Balance of linear momentum. The first equation is the stress equilibrium for the
quasi-static form of the balance of linear momentum defined as

Div [σ] + f = 0 . (5.28)

The stress tensor is obtained from the potential W in (5.11) by

σ := ∂εW = (1− d)2σ̃+ + σ̃− with σ̃± = λ〈tr[εe]〉±1 + 2µε± (5.29)

where σ̃ is the effective stress tensor dual to the strain tensor ε.

The fracture phase-field equation. Equation (5.23)2 determines the PDE for the
fracture phase-field update equation. It defines the fracture driving force

F f −Rf = 2(1− d)[ ψ̃+(ε)− ψc ]− 2
ψc

ζ
[ d− l2∆d ] . (5.30)

This partial differential equation is accompanied by equation (5.23)3 for the update of the
crack phase-field, which reads

(d− dn)/τ = λf∂(F f−Rf )φ
f = λf . (5.31)

For brevity, we introduce a modified viscosity of the crack propagation as

ηf :=
ζ

2ψc
η , (5.32)
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the combination of (5.30) and (5.31) characterizes a generalized Ginzburg-Landau- or
Allen-Cahn-type equation for the update of the crack phase-field d

(d− dn)/τ =
1

ηf

〈
(1− d) ζ

[ ψ̃+

ψc
− 1

]
− [ d− l2∆d ]

〉

+

(5.33)

where the Macaulay bracket ensures the irreversibility of the crack evolution. Following
the recent works Aldakheel [10], Miehe et al. [238] and Aldakheel et al. [14],
(5.33) may be recast using (5.10) as

ηf(d− dn)/τ = (1− d)H− [ d− l2∆d ] (5.34)

with the crack driving force H, that accounts for the irreversibility of the phase-field
evolution by filtering out the maximum value of the crack driving state function D. It is
defined by

H := max
s∈[0,t]

D(C; s) ≥ 0 with D := ζ

〈
ψ̃+

ψc

− 1

〉

+

(5.35)

5.3.5. Crack driving state functions for different fracture criteria. The def-
inition of the effective crack driving state function D allows a strong flexibility, with
regard to alternative crack driving criteria. In the previous section, we constructed an
energetic criterion with threshold based on the fracture contribution of the work density
function. In the following, other examples are presented to complete specific definitions
of the phase-field equation (5.34).

Stress-based criterion. To distinguish between energetic tensile and compressive
parts of the elastic bulk energy, the effective stress tensor is decomposed into a positive
and negative part

σ̃ = σ̃
+ + σ̃

− with σ̃
± =

3∑

a=1

〈σ̃a〉± na ⊗ na =
3∑

a=1

[
λ
〈
ε1 + ε2 + ε3

〉
±
+ 2µ

〈
εa
〉
±

]
na ⊗ na

(5.36)

for which the principal directions of the stress and strain tensor do coincide for isotropic
materials. Based on this split, Miehe et al. [231, 232] proposed a simplified stress-based
brittle failure criterion for mixed tensile-compression stress modes, characterized by the
threshold-type crack driving state function

D = ζ

〈 3∑

a=1

(〈σ̃a〉+
σc

)2

− 1

〉

+

(5.37)

with the critical fracture stress σc > 0. This models an isotropic failure surface in the
principal effective stress space.

Energetic criterion without threshold. A strain criterion for brittle fracture
without threshold was first proposed by Miehe et al. [225] and results with a damage-
type degradation at low stress levels. Such a criterion is based on the following fracture
contribution to the work density function (5.11)

Wfrac(d,∇d) = gcγl(d,∇d) . (5.38)
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in terms of the crack surface density function γl. Here, gc is the Griffith’s critical energy
release rate, that enters the formulation as the key material parameter on the side of
fracture mechanics. Next, the fracture driving force takes the form

F f − Rf = 2(1− d)ψ̃+(ε)− gc
l
[ d− l2∆d ] . (5.39)

Following same procedure as the case with threshold in previous section, the crack driving
state function D yields

D :=
2ψ̃+

gc/l
(5.40)

It is defined as the ratio between the locally stored positive effective elastic energy ψ̃+

and the Griffith’s critical energy release rate parameter gc, which is smeared out over the
fracture length scale l. The modified viscosity of the crack propagation ηf in (5.34) for
this case reads

ηf :=
l

gc
η . (5.41)

A relation between the above introduced fracture parameters: gc, ψc and σc, can be
deduced for the isotropic brittle fracture case, based on an analytical study of homoge-
neous and localized solutions of gradient damage models outlined in the works of Pham
et al. [268] and Sicsic & Marigo [286] as

gc =
4

3
w ψc and σc =

√
2Eψc with w = 2l

√
2 (5.42)

in terms of the Young’s modulus E and the width of the crack band w.

5.4. Formulation of the virtual element method

Following the work of Brezzi et al. [71], the main idea of the virtual element
method is a Galerkin projection of the unknowns onto a specific ansatz space. The
domain Ω is partitioned into non-overlapping polygonal elements which need not to be
convex and can have any arbitrary shape with different node numbers, as plotted in
Figure 5.4 representing a bird-like element with vertices xI . Here a low-order approach is
adopted, see Wriggers et al. [329] and Wriggers & Hudobivnik [324], using linear
ansatz functions where nodes are placed only at the vertices of the polygonal elements.
Furthermore, the restriction of the element shape functions to the element boundaries are
linear functions.

5.4.1. Ansatz functions for VEM. The virtual element method relies on the split
of the ansatz space into a part UΠ representing the projected primary field defined in
(5.6) and a remainder

Uh = Uh
Π + (Uh −Uh

Π) with Uh
Π := {uh

Π, d
h
Π} (5.43)

The projection Uh
Π is defined at element level by a linear ansatz function NΠ as

Uh
Π =



uΠx

uΠy

dΠ


 = a ·NΠ =



a1 a4 a7
a2 a5 a8
a3 a6 a9





1
x
y


 (5.44)
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Figure 5.4: Polynomial basis function for the virtual element ansatz with vertices xI .

with the unknowns a. The projection Uh
Π is now defined such that it satisfies

∫

Ωe

∇Uh
Π dV

!

=

∫

Ωe

GradUh dV (5.45)

which yields, with the linear ansatz in (7.30) that ∇Uh
Π is constant,

∇Uh
Π

∣∣
e

!

=
1

Ωe

∫

Ωe

GradUh dV =
1

Ωe

∫

∂Ωe

Uh ⊗N dA (5.46)

where N is the normal at the boundary ∂Ωe of the domain Ωe of a virtual element e, see
Figure 5.5. Thus label �|e represents element quantities that have constant value within
an element e. A direct computation of the projected gradient yields with the linear ansatz
in (7.30) the simple matrix form

∇Uh
Π

∣∣
e
=



∇uΠx

∇uΠy

∇dΠ


 =



a4 a7
a5 a8
a6 a9


 (5.47)

The boundary integral in (7.34) has to be evaluated. To this end, a linear ansatz for the
primary fields along the element edges is introduced as

(Uh)k = (1− ξk)U1 + ξk U2 =Mk 1U1 +Mk 2U2 with ξk =
xk
Lk

(5.48)

for a boundary segment k of the virtual element. The local nodes: 1–2 are chosen in
counter-clockwise order and can be found in Figure 5.5. In (7.37) Mk 1 is the ansatz
function along a segment k, related to node 1, ξk is the local dimensionless coordinate
and U1 is the nodal value at that node. The ansatz function Mk 2 is defined in the same
way. From (7.34)–(7.37), the unknowns a4–a9 can be computed from the normal vectors
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Ωe

(1) (2)

(i-1)

(i)

(nV)

1

k

nE

○1

○2

xc

Nk

ξ

Lk

Figure 5.5: Virtual element with nV nodes and local boundary segment of the bird-like
polygonal element.

of the boundary segments in elements and nodal displacement as



a4 a7

a5 a8

a6 a9


 =

1

Ωe

∫

∂Ωe

Uh ⊗N dA =
1

Ωe

nV∑

k=1

∫

∂Ωk



ux(x)Nx ux(x)Ny

uy(x)Nx uy(x)Ny

d(x)Nx d(x)Ny


 dA (5.49)

where we have used N = {Nx , Ny }T and U = { ux , uy, d }T , furthermore nV is the
number of element vertices which coincides with the number of segments (edges) of the
element, for first order VEM. Note that the normal vector N changes from segment to
segment. In the 2D case it can be computed for a segment k as

N k =

{
Nx

Ny

}

k

=
1

Lk

{
y1 − y2
x2 − x1

}

k

(5.50)

with {xi, yi}i=1,2 being the local coordinates of the two vertices of the segment k. The
integral in (7.38) can be evaluated for the ansatz functions (7.37) exactly by using the
trapezoidal or Gauss-Lobatto rule. By selecting the vertices as the Gauss-Lobatto points
it is sufficient to know only the nodal values

Ue = {U1,U2, . . . ,UnV
} (5.51)

at the nV vertices V in Figure 5.5. Since the ansatz function in (7.37) fulfills the property
MI(xJ ) = δIJ the actual form of the function M does not enter the evaluation of the
boundary integrals which makes the evaluation extremely simple. Finally, by comparing
(7.35) and (7.38) the unknowns a4 to a9 are obtained by inspection, for further details
see e.g. Wriggers et al. [329]. The projection in (7.34) does not determine the ansatz
Uh

Π in (7.30) completely and has to be supplemented by a further condition to obtain the
constants a1, a2 and a3. For this purpose we adopt the condition that the sum of the
nodal values of Uh and of its projection Uh

Π are equal. This yields for each element Ωe

1

nV

nV∑

I=1

Uh
Π(xI) =

1

nV

nV∑

I=1

Uh(xI) (5.52)
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Ω1
i

Ω2
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Ωm
i

ΩnT

i

○1

○2

○3

Ωm
i

xc,m
i

ξ

η

Figure 5.6: Internal triangular mesh of the bird-like polygonal element.

where xI are the coordinates of the nodal point I and the sum includes all boundary
nodes. Substituting (7.30) and (7.37) in (6.38), results with the three unknowns a1, a2
and a3 as



a1

a2

a3


 =

1

nV

nV∑

I=1

[
UI −∇UΠI · xI

]
=

1

nV

nV∑

I=1



uxI − ux,x xI − ux,y yI
uyI − uy,x xI − uy,y yI
dI − d,x xI − d,y yI


 (5.53)

Thus, the ansatz function Uh
Π of the virtual element is completely defined.

5.4.2. Construction of the virtual element. A virtual element is based only
on the projection Uh

Π of the displacement and fracture phase-field would lead to a rank
deficient element once the number of vertices is greater than 3. Thus the formulation has
to be stabilized like the classical one-point integrated elements developed by Flanagan
& Belytschko [125], Belytschko & Bindeman [50], Reese et al. [276], Reese &
Wriggers [275], Mueller-Hoeppe et al. [246], Korelc et al. [185] and Krysl
[187]. In the following we will develop a virtual element for phase-field modeling of brittle
fracture in isotropic elastic solids. To this end, the potential density functional defined in
(5.26) can be rewritten by exploiting the split in (7.29). Thus we have, by summing up
all element contributions for the ne virtual elements

Πτ (U) =
ne

A
e=1

Πτ (Ue) with Πτ (Ue) =
[
Πτ

c (U
h
Π)
∣∣
e
+ Πτ

stab(U
h −Uh

Π)
∣∣
e

]
, (5.54)

based on a constant part Πτ
c and an associated stabilization term Πτ

stab. Herein, the crack
driving force H is a local history variable evaluated only once at the element level and
used in both parts of the potential density functional. The first part in (6.40)2 can be
computed as

Πτ
c (U

h
Π)
∣∣
e
=

∫

Ωe

πτ (Ch
Π) dV −

∫

Ωe

f · uh
Π dV −

∫

∂Ωe

t · uh
Π dA with Ch

Π = {εhΠ, dhΠ,∇dhΠ}
(5.55)

The projected strain tensor can be computed from the projected displacement as

εhΠ =
1

2

[
∇uh

Π +∇Tuh
Π

]
. (5.56)
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The primary fields Uh
Π are linear functions and their gradient ∇Uh

Π is constant over
the area of the virtual element Ωe, as a consequence, the potential πτ is integrated by
evaluating the function at the element centroid xc as shown in Figure 5.5 and multiplying
it with domain size Ωe analogous to the standard Gauss integration scheme in FEM

∫

Ωe

πτ (Ch
Π) dV = πτ (Ch

Π)
∣∣
c
Ωe (5.57)

with the label �|c refers to quantities evaluated at the element centroid xc. The potential
density function πτ (Ch

Π) is still a nonlinear function with respect to the displacement and
the crack phase-field nodal degrees of freedom.

Next, the stabilization potential has to be derived for the coupled problem based on
the potential (5.26). Following the recent work of Wriggers et al. [329], we introduce
a non-linear stabilization procedure, that takes the form

Πτ
stab(U

h −Uh
Π)
∣∣
e
= Π̂τ (Uh)

∣∣∣
e
− Π̂τ (Uh

Π)
∣∣∣
e

(5.58)

For the stabilization density function π̂τ , we propose a similar function to the original
density function (5.26), however scaled by a constant value β as: π̂τ = β πτ . In (6.44), the

stabilization with respect to the projected primary fields Π̂τ (Uh
Π)
∣∣∣
e
can be then calculated

as (6.43), yielding

Π̂τ (Uh
Π)
∣∣∣
e
= β πτ (Ch

Π)
∣∣
c
Ωe (5.59)

The potential Π̂τ (Uh)
∣∣∣
e
is computed by applying standard FEM procedure, i.e. by first

discretizing the virtual element domain Ωe into internal triangle element mesh consisting
of nT = nE − 2 triangles as plotted in Figure 5.6 for the bird-like polygonal element.
Then the integral over Ωe is transformed into the sum of integrals over triangles. By
using a linear ansatz for the primary fields U, an approximation can be computed for the
constitutive variables C within each triangle Ωi

m of the inscribed mesh, see Wriggers
et al. [329]. This gives

Π̂τ (Uh)
∣∣∣
e
=

∫

Ωe

π̂τ (Ch) dV = β

∫

Ωe

πτ (Ch) dV = β

nT∑

i

Ωi
e π

τ (Ch)
∣∣
c

(5.60)

where πτ (Ch)
∣∣
c
is the potential density function evaluated at the triangle centroid xi

c and

Ωi
e is the area of the i th triangle in the element e, as plotted in Figure 5.6.

To compute the stabilization parameter β, a connection to the bending problem was
imposed regarding to the bulk energy as outlined inWriggers & Hudobivnik [324]. By
limiting the element size Ωe towards 0, the difference between the potentials of projected
values Π̂τ (Uh

Π) and the true values Π̂τ (Uh) will also approach towards 0, thus stabilization
will disappear in limit. Due to the finer mesh requirements of the fracture phase field
problem compared with [324], the choice of β factor term is less relevant, since it is only
relevant for coarse meshes. In this regard we propose a constant value for β taken from
the interval:

0 < β ≤ 1 (5.61)
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Note that for β approaching zero, the potential Πτ (Uh) in (6.40) will depend only on the
projection part Πτ

c (U
h
Π) , leading to rank deficiency. However when β = 1 the FEM results

related to the internal mesh will be reproduced. A numerical study of the stabilization
parameter influence on the load-deflection curves of the overall structural response will
be investigated in Section 5.5.

All further derivations leading to the residual vector Re and the tangent matrix Ke

of the virtual element were performed with the symbolic tool AceGen. This yields for
(6.40) along with the potentials (6.41) and (6.44)–(6.46) the following:

Re =
∂Πτ (Ue)

∂Ue
and Ke =

∂Re

∂Ue
(5.62)

With these expressions at hand, we adopt a global Newton-Raphson algorithm for the
coupled problem, resulting to the following linearized system

R+K ∆U = 0 with R =
ne

A
e=1

Re, K =
ne

A
e=1

Ke and U =
ne

A
e=1

Ue (5.63)

that determines at given global primary fields U their linear increment ∆U in a typical
Newton-type iterative solution step. This system of nonlinear equations has to be solved
in a nested algorithm, where the displacement and the crack phase-field are the global
unknown variables.

5.5. Representative numerical examples

We now demonstrate the performance of the proposed virtual element formulation for
the phase-field modeling of brittle fracture at small deformations by means of representa-
tive numerical examples. For comparison purposes, results of the standard finite element
method (FEM) are also demonstrated. All computations are performed by using a nested
Newton-Raphson algorithm. Load stepping is applied when necessary. Due to the fact
that all formulations are linearized in a consistent manner using AceGen, quadratic con-
vergence is achieved within a load step. In Section 5.5.1, we compare VEM and FEM
results for the standard single-edge-notched tension test of Miehe et al. [225]. Further-
more different studies will be discussed here to demonstrate the efficiency of the virtual
element scheme for solving fracture-mechanics problems. Next, a symmetric three-point
bending test is investigated in Section 5.5.2. Thereafter, a crack initiation and branch-
ing in a bi-material specimen is analyzed in Section 5.5.3. Finally, in Section 5.5.4, a
tensile specimen with double notched or two holes, representing a mixed-mode fracture,
is considered to demonstrate the performance of the proposed method for curved crack
propagation.

5.5.1. Investigation of single-edge notched tension test. The first benchmark
test considers a square plate with a horizontal notch placed at the middle height from the
left outer surface to the center of the specimen. The geometrical setup and the loading
conditions of the specimen are depicted in Figure 6.5(a). The size of the square specimen
is chosen to be L = 0.5 mm. We fixed the bottom edge of the plate in y-direction
and applied a vertical displacement at the top edge until the plate is fully broken. The
material parameters used in the simulation are the same as in the reference work of
Miehe et al. [225]. The elastic parameters are chosen as λ = 121.1538 kN/mm2 and
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u

he=l/r

L L

L

L
2l

a) b) c)

Figure 5.7: Single-edge notched tension test. a) Geometry and boundary conditions, b)
VEM with Voronoi mesh and c) triangular finite element mesh.

µ = 80.7692 kN/mm2, the viscosity of the crack propagation η = 10−6 kNs/mm2 and the
critical energy release rate as gc = 2.7×10−3 kN/mm. The specimen is discretized by using
different virtual elements (VEM) in Figure 6.5(b) and finite element (FEM) formulations
Figure 6.5(c). Here we use the following notations: VEM-VO with a Voronoi mesh ;
VEM-T2 with 6 noded triangle representing a first order VEM (Note that: T2 in this
case implies that, the triangle mesh used is the same as for the second order FEM and
not second order VEM) ; FEM-T1 with linear triangle and FEM-T2 with quadratic
triangle, to test the robustness of the virtual element formulation. A mesh refinement in
the expected fracture zone is applied; this is based on the ratio r := l/he between the
mesh size he and the fracture length scale l, as sketched in Figure 6.5(a).

Figure 6.6 shows the contour plot of the fracture phase-field d simulated using the
virtual element formulations with a Voronoi mesh, for two different length scales l1 =
0.0375 mm and l2 = 0.0075 mm with the same length/mesh ratio r = 8. The crack phase-
field initiates at the notch-tip and propagates horizontally till separation, as outlined
in Miehe et al. [225]. To illustrate the length scale effect on the overall structural
response, we plot in Figure 6.7 the load-displacement curves for four different elements
and two length scales. For the smaller length scale parameter l, we observe: i) a higher
peak force F as outlined in Figure 6.7(b) thereafter F drops to zero at cracking, ii) a
sharp crack pattern is obtained as expected, see Figure 6.6(d)–(f). The VEM results are
in a good agreement with the reference work [225]. Table 6.2 compares the different FEM
and VEM discretization, related to the force-displacement F -u curves in Figure 6.7(a),

Table 5.1: A comparison between different FEM and VEM discretizations, related to
F -u curves in Figure 6.7(a).

FEM-T1 FEM-T2 VEM-T2 VEM-VO
Number of elements 37981 37981 37981 44473
Number of nodes 19040 76060 76060 88950
Number of degrees of freedom 57160 228155 228155 266831
Total Number of steps 804 1596 673 645
Total number of iterations 6286 13236 5737 5586
Average iterations/step 7.8 8.3 8.5 8.6
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(a)

(b)

(c)

(d)

(e)

(f)

d0.0 1.0

Figure 5.8: Single-edge notched tension test. Contour plots of the fracture phase-field d
for two fracture length scales l and three different deformation states up to final rupture.
(a)–(c) l = 0.0375 mm and (d)-(f) l = 0.0075 mm.

Table 5.2: Number of degrees of freedom for different FEM and VEM discretizations,
related to the convergence study in Figure 5.10(b).

r = l/he
1
4

1
2

1 2 4 8 12 16
FEM-T1 142 264 542 1310 3759 12217 25706 43975
FEM-T2 521 993 2080 5116 14859 48629 102499 175505
VEM-T2 521 993 2080 5116 14859 48629 102499 175505
VEM-VO 378 886 1978 4265 16119 56599 98624 170130

with respect to robustness and efficiency.

Next, we investigate mesh objectivity and convergence of the virtual element formula-
tions for the phase-field approach with respect to the mesh size. To this end, Figure 5.10(b)
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Figure 5.9: Load–displacement responses for single-edge notched tension test. A com-
parison between different VEM and FEM discretization for two different fracture length
scales. (a) l = 0.0375 mm and (b) l = 0.0075 mm.
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Figure 5.10: Single-edge notched tension test. a) Load–displacement response for VEM-
Voronoi mesh, resulting with mesh objective results when r = l/he ≥ 2. b) Convergence
of the VEM and FEM results for the phase-field approach with respect to mesh size.
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Figure 5.11: Single-edge notched tension test. a) A numerical study of the stabilization
parameter influence on the load-deflection curves of the overall structural response for
VEM with Voronoi mesh. b) Comparison of the FEM and VEM peak force results for
different values of the stabilization parameter β and different mesh size l/h.
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demonstrates the load versus the logarithmically scaled mesh size/length scale ratio r for
four different element formulations at the crack initiation. A converged solution for the
critical force at crack initiation can be obtained for mesh-size/length-scale ratio: r ≥ 2.
As a consequence mesh objectivity is achieved for r ≥ 2 as illustrated in Figure 5.10(a)
using VEM-VO with fixed length scale l = 0.0375 mm. Furthermore, Figure 5.10(b)
shows that the virtual element method performance is comparable to using finite ele-
ments of higher order, e.g. FEM-T2. In this regard, Table 5.2 outlines a description of
the number of degrees of freedom for different FEM and VEM discretizations related to
the convergence study in Figure 5.10(b).

Finally, Figure 5.11 points out the influence of the stabilization parameter β on the
load-deflection curves of the overall structural response. Note that, for 0 < β ≤ 1 the
same F -u results are obtained in Figure 5.11(a), using VEM-VO with the length scale l =
8he = 0.0375 mm. In order to check the convergence of the virtual element stabilization
formulation, we plot in Figure 5.11(b) the load versus stabilization parameter for different
mesh-size/length-scale ratio r and compare them with the FEM-T2 element. We observe
that, by increasing r a better result close to the quadratic FEM is achieved. However, the
difference in the critical force at crack initiation for all β is very small. As a consequence,
we chose a value for the stabilization parameter as β = 0.4 in all the simulations, in which
VEM coincide with FEM results.

5.5.2. Analysis of a three-point bending test. The second model problem is con-
cerned with analyzing brittle fracture of three point bending test of a supported notched
beam. The geometry and the loading of the specimen are given in Figure 5.12(a). The size
of the specimen is chosen to be: H = 2 mm, L = 4 mm, Hg = 0.4 mm and Lg = 0.2 mm.
The material parameters used in the simulation are the same as in the reference work

u
_

L L

H
2l

Lg

Hg

(a)

(b)

(c)

Figure 5.12: Three-point bending test. a) Geometry and boundary conditions, b) VEM
with Voronoi mesh and c) triangular finite element mesh.
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d0.0 1.0 σ11 [kN/mm2]−0.3 0.3

Figure 5.13: Three-point bending test. a) Contour plots of the fracture phase-field d in
(a)–(c) and the normal stress σ11 during the crack evolution in (d)-(f).
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Figure 5.14: Three-point bending test. Evolution of the crack phase-field d in (a) and
the stress σ11 in (b) for three different deformation states corresponding to the contour
plots in Figure 5.13 at a cut in the center of the beam.

of Miehe et al. [225]. The elastic parameters are chosen as λ = 12.0 kN/mm2 and
µ = 8.0 kN/mm2, the viscosity of the crack propagation η = 10−6 kNs/mm2, the critical
energy release rate as gc = 5.0×10−4 kN/mm and the stabilization parameter as β = 0.4.
Different element formulations are studied to illustrate the robustness of the proposed
VEM. A mesh refinement in the expected fracture zone is applied, see Figure 5.12(b)-(c).

Figure 5.13 demonstrates contour plots of the fracture phase-field d and the normal
stress σ11 simulated using VEM-VO with length scale parameter l = 0.03 mm and
length/mesh ratio r = 8. The evolution of the phase-field and the normal stress at a cut
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Figure 5.15: Load–displacement responses for three-point bending test. (a) Comparison
between different VEM and FEM discretization and (b) numerical study of the stabiliza-
tion parameter influence on the load-deflection curves of the overall structural response
for VEM with Voronoi mesh.
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Figure 5.16: Convergence properties for three-point bending test. (a) Comparison be-
tween the total number of iterations in each time step of the different VEM and FEM
discretization that required to achieve convergence and (b) the residual norm for the final
time step versus the number of iterations needed to obtain convergence.

in the beam center for three different deformation states corresponding to Figure 5.13 is
plotted in Figure 5.14. Tensile stresses are observed at the notch-tip when the beam is
loaded, see Figure 5.13(d) and Figure 5.14(b). The crack starts to initiate in this tensile
area and propagates straight to the load, resulting in a pure Mode-I failure of the beam as
shown in Figure 5.13(c) and Figure 5.14(b). For visualization of crack surface, deformed
regions with a crack phase-field d ≈ 1 are not plotted in the stress distribution, see Figures
5.13(d)–(f).

Load-displacement curves of the overall structural response are plotted for different
elements formulations of FEM and VEM for comparison purposes in Figure 5.15(a). Next,
the influence of the stabilization parameter β is illustrated in Figure 5.15(b). As observed
in the single-notch test above, for 0 < β ≤ 1 the same F -u results are obtained. Finally,
Figure 5.16 illustrates the convergence properties for the different element formulations
plotted in Figure 5.15(a). Note that we employed an efficient and robust monolithic
scheme for all elements in the numerical implementations. Here, quadratic convergence
for VEM and FEM discretization is achieved, see Figure 5.16(b). Furthermore, virtual
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Figure 5.17: Bi-material specimen. a) Geometry and boundary conditions, b) triangular
finite element mesh and c) VEM with Voronoi mesh.

elements required fewer steps and iterations for final convergence compared with finite
element method, as shown in Figure 5.16(a). Thus here, VEM is more robust than FEM,
however, this comes with extra computational costs.

5.5.3. Analysis of a crack in a Bi-Material plate. We model the fracture phe-
nomena of a bi-material specimen under tensile loading as reported in the recent work of

(a) (b) (c) (d)

(e) (f) (g) (h)

d0.0 1.0

Figure 5.18: Bi-material specimen. Contour plots of the fracture phase-field d for two
fracture length scales l and four different deformation states up to final rupture. (a)–(d)
l1 = 1.25 mm and (e)-(h) l2 = 5.0 mm.
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Figure 5.19: Load–displacement responses for the Bi-material test with two different
fracture length scales. (a) A comparison between different VEM and FEM discretization
and (b) numerical study of the stabilization parameter influence β for VEM with Voronoi
mesh.

Sargado et al. [280]. The aim here is to demonstrate crack phase-field initiation and
branching. The geometrical setup and the loading conditions of the specimen are depicted
in Figure 5.17(a). The size of the specimen is chosen to be: L = 50 mm and the diameter
of notch is D = 10 mm. We fixed the right edge of the plate in x-direction and applied
vertical displacement to the top and bottom edges until final failure. The material param-
eters used in the simulation are the same as in the reference work of Sargado et al.
[280]. B-material is stiffer than A-material and represents purely elastic material behavior
without fracturing. Young’s modulus is chosen for A-material as EA = 100 kN/mm2 and
for B-material as EB = 200 kN/mm2, Poisson’s ratio is set to ν = 0.2, the viscosity of
the crack propagation ηA = 10−6 kNs/mm2, the critical energy release rate for A-zone as
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Figure 5.20: Tensile test with two notches or holes. a)-b) Geometry and boundary
conditions. c)-d) VEM with Voronoi mesh.
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gAc = 10−4 kN/mm and the stabilization parameter as β = 0.4. Different element formu-
lations are studied to illustrate the robustness of the proposed VEM. A mesh refinement
in the expected fracture zone is applied, see Figure 5.17(b)-(c).

Figure 5.18 shows the contour plot of the fracture phase-field d simulated using the
virtual element formulations with a Voronoi mesh, for two different length scales l1 =

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

d0.0 1.0

Figure 5.21: Tensile test with two notches or holes. Contour plots of the fracture phase-
field d for the double edge notched specimen in (a)–(d) and for the two-holes specimen in
(e)–(h).
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1.25 mm and l2 = 5.0 mm with same length/mesh ratio r = 8. The crack phase-field
initiates at the notch-tip and propagates horizontally up to the interface between A-
and B-zones. Thereafter it branches along the interfaces vertically till final failure, as
documented in the work of Sargado et al. [280]. A sharp crack pattern is obtained
for the smaller length scale parameter l, as demonstrated in Figure 5.18(d).

Load-displacement curves for different length scales and elements formulations of FEM
and VEM are displayed in Figure 5.19(a). All simulations show similar behavior before
crack initiation. Thereafter, the force drops sharply at cracking to a lower level, which
represents the residual forces of the undamaged B-zone of the specimen. Next, the influ-
ence of the stabilization parameter β is illustrated in Figure 5.19(b). As observed in the
above two examples, for 0 < β ≤ 1 comparable F -u results are obtained.

5.5.4. Tensile test with two notches or holes. The last example is concerned
with the capability and the flexible choice of the number of nodes in an element for
VEM. To this end, a tension test of a double edge notched or two holes specimen is
investigated. The purpose of this test is to illustrate the effects of the hole/notch shape
on the crack-initiation and curved-crack-propagation, representing a mixed-mode fracture.
The geometrical setup and the loading conditions of the notched specimen are depicted in
Figure 5.20(a) and for the holes-specimen in Figure 5.20(b). The size of the specimen is
chosen to be: L = 20 mm, H = 10 mm, R = 2 mm, A = 3 mm and B = 1 mm. We fixed
the bottom edge of the plate in x- and y-directions, the top edge in x-direction and applied
a vertical displacement at the top edge until final failure. The shear modulus is chosen
as µ = 8.0 kN/mm2, Poisson’s ratio ν = 0.3, the viscosity of the crack propagation
η = 10−6 kNs/mm2, the critical energy release rate as gc = 1.0 × 10−3 kN/mm, the
stabilization parameter as β = 0.4 and the fracture length scale parameter l = 0.1 mm.

Virtual element formulation with various animals-shaped Voronoi cells (bird, horse,
snake, frog, koala, fish, kangaroo, ...) are employed in the undamaged zones, whereas
we applied a mesh refinement with standard Voronoi mesh in the expected fracture zone
having the length/mesh ratio r = 8, as outlined in Figure 5.20(c)-(d).

The crack phase-field initiates at the two notch-tip in Figure 5.21(a) or around the two
holes in Figure 5.21(e). Thereafter, the left crack propagates towards the bottom surface
while the right crack propagates towards the top surface, resulting with a mixed-mode
fracture, see Figure 5.21(b)–(d) for the notched specimen and Figure 5.21(f)–(h) for the
holes-specimen.
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6. 2D Virtual elements for phase-field modeling of ductile frac-

ture

An efficient low order virtual element method (VEM) for the phase field modeling
of ductile fracture is outlined within this chapter. The recently developed VEM is a
competitive discretization scheme for meshes with highly irregular shaped elements. The
phase-field approach is a very powerful technique to simulate complex crack phenomena
in multi-physical environments. The formulation in this contribution is based on a min-
imization of a pseudo-potential density functional for the coupled problem undergoing
large strains. Main aspect of development is the extension towards the virtual element
formulation due to its flexibility in dealing with complex shapes and arbitrary number of
nodes. Two numerical examples illustrate the efficiency, accuracy and convergence prop-
erties of the proposed method. The recent publication of Aldakheel et al. [8] serve
as the basis for the content of this chapter.

6.1. Introduction

The virtual element method (VEM) has been developed over the last decade and ap-
plied to various problems in solid mechanics. It is a generalization of the finite element
method (FEM) [43, 345, 323], which has been inspired from modern mimetic finite dif-
ference schemes [71]. VEM allows exploration of features such as flexibility with regard
to mesh generation and choice of element shapes, e.g. the use of very general polygonal
and polyhedral meshes. In this regard, a stabilization procedure is required in the virtual
element method, as described in [77] for linear Poisson problems. Up to now applications
of virtual elements have been devoted to linear elastic deformations in [135, 36], contact
problems in [328], finite elasto-plastic deformations in [324, 169], anisotropic materials at
finite strains in [330, 331], small strain isotropic damage in [96], inelastic solids in [298]
and hyperelastic materials at finite deformations in [85, 329]. Recently, [6] propose an
efficient virtual element scheme for the phase-field modeling of brittle fracture at small
strains. This chapter extends VEM towards finite deformations ductile fracture using the
phase-field approach.

The development of a virtual element methodology for solving fracture-mechanics
problems numerically includes a projection step and a stabilization step. In the pro-
jection step, the deformation map ϕ and the fracture phase-field d which appear in the
pseudo-potential density functional are replaced by their projection: ϕΠ and dΠ onto a
polynomial space. This results in a rank-deficient structure, therefore it is necessary to
add a stabilization term to the formulation, see [46, 47, 85], where in the latter the scalar
stabilization parameter of the linear case was replaced by one that depends on the fourth-
order elasticity tensor. A new stabilization technique for VEM was recently developed
in [329] who use a technique that was first described in [249], generalized in [60] and
simplified in [187] in the context of hexahedral finite elements. The essence of the method
is the addition of the pseudo-energy density function W (∇ϕΠ, dΠ,∇dΠ,h) to a density

function Ŵ (∇ϕ, d,∇d,h) which is evaluated using full quadrature. For consistency the

subtraction of a term involving Ŵ (∇ϕΠ, dΠ,∇dΠ,h) as a function of the projected defor-
mation map and the crack phase-field is made. Here h is the history field array for the
plastic strain measures and the crack driving force. This history array is locally evaluated
only once at the element level and used in all parts of the pseudo-energy density function.
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In the presented work, we examine the efficiency of VEM for predicting ductile failure
mechanisms in solids due to crack initiation and propagation. The modeling of crack
formation can be achieved in a convenient way by continuum phase-field approaches to
fracture, which are based on the regularization of sharp crack discontinuities. Phase-field
modeling of fracture has been attracting considerable attention in recent years due to
its capability of capturing complex crack patterns in various problems in solid mechanics.
Many efforts have been focused on the regularized modeling of Griffith-type brittle fracture
in elastic solids. In this regard, [225] proposed a phase field approach to fracture with
a local irreversibility constraint on the crack phase field. It incorporates regularized
crack surface density functions as central constitutive objects, which is motivated in a
descriptive format based on geometric considerations. Recent works on brittle fracture
have been devoted to the dynamic case in [62], cohesive fracture in [307], multiplicative
decomposition of the deformation gradient into compressive-tensile parts in [164], different
choices of degradation functions in [189], coupled thermo-mechanical and multi-physics
problems at large strains in [231, 109], to model fracture of arterial walls with an emphasis
on aortic tissues in [149], finite-deformation contact problems in [165], emphasis on a
possible formula for the length scale estimation in [341], anisotropic material behavior at
small and large deformations in [299, 59], for the description of hydraulic fracturing in
[159, 115], to describe fatigue effects for brittle materials in [20], to the modeling of fracture
in polymeric hydrogels in [61], for enhanced assumed strain shells at large deformations
in [277] and the virtual element method in [6].

Extensions of these models towards the phase field modeling of ductile fracture can
be achieved by coupling of gradient damage mechanics with models of elasto-plasticity.
In this regard, [113] investigates a setting of brittle fracture in elastic-plastic solids. In
[230], the modeling of dynamic fracture in the logarithmic Lagrangian strain space has
been presented with emphasis on the brittle to ductile transition in thermo-elastic-plastic
solids. The model suggested in [22] uses a characteristic degradation function that couples
damage to plasticity in a multiplicative format. [64] proposes a mechanism for including
a measure of stress triaxiality as a driving force for crack initiation and propagation.
The coupling of gradient plasticity with gradient damage at finite strains is considered
in [4, 10, 232, 238, 233, 237, 107, 108] based on a rigorous variational principle. In
[18] a comparative study between different phase-field models of fracture coupled with
plasticity is outlined. A coupled phase-field and plasticity modeling of geological materials
is recently proposed by [86, 5]. Recently, [14] extend the phase field modeling of fracture
towards porous finite plasticity to account for complex phenomena at the micro-scale,
such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at
the macro-scale.

A minimization of a pseudo-potential density functional for the phase field modeling of
ductile fracture is presented as a key goal of this work by using an efficient virtual element
method. It is based on the definition of a pseudo-energy density per unit volume, that
contains the sum of a degrading elastic-plastic part and a contribution due to fracture, in
line with [10, 232, 230]. On the computational side, a robust and efficient monolithic
scheme is employed in the numerical implementation to compute the unknowns (the
deformation map and the crack phase-field) using the software tool AceFEM, see [184].

The chapter is organized as follows: Section 6.2 outlines the governing equations for
the phase-field approach to ductile fracture in elastic-plastic solids undergoing large de-
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formations. The development of the virtual element method is formulated in Section 6.3.
Finally, Section 6.4 presents numerical results that demonstrate the modeling capabilities
of the proposed approach. The formulation performs extremely well in benchmark tests
involving regular, distorted and Voronoi meshes. For purpose of comparison, results of
the standard finite element method (FEM) are also demonstrated.

6.2. Governing equations for phase field ductile fracture

This section outlines a theory of fracture in elastic-plastic solids at large deformations.
It is based on a minimization of a pseudo-potential energy for the coupled problem. To
this end, let Ω ∈ Rδ with δ = 2, 3 be the reference configuration of a solid domain. The
response of fracturing solid at material points X ∈ Ω and time t ∈ T = [0, T ] is described
by the deformation map ϕ(X, t) and the crack phase-field d(X, t) as

ϕ :

{
Ω× T → Rδ

(X, t) 7→ x = ϕ(X , t) = X + u(X, t)
and d :

{
Ω× T → [0, 1]
(X, t) 7→ d(X, t)

(6.1)

with ḋ ≥ 0 where x is the position of a material point in the deformed configuration and
u(X, t) is the displacement field. The crack phase-field d(X, t) = 0 and d(X, t) = 1
refer to the unbroken and fully broken state of the material respectively. The material
deformation gradient is defined by F := ∇ϕt(X) = Gradϕ with the Jacobian J :=
det[F ] > 0. The solid is loaded by prescribed deformations and external traction on the
boundary, defined by time-dependent Dirichlet- and Neumann conditions

ϕ = ϕ̄(X, t) on ∂Ωϕ and PN = t̄(X, t) on ∂Ωt (6.2)

where N is the outward unit normal vector on the surface ∂Ω = ∂Ωϕ ∪ ∂Ωt of the unde-
formed configuration. The first Piola-Kirchoff stress tensor P is the thermodynamic dual
to F . In finite strain plasticity, the deformation gradient is multiplicatively decomposed
into an elastic and a plastic part as

F = F eF p with J = JeJp = Je = det[F e] and Jp = det[F p] = 1 (6.3)

where the constraint of plastic incompressibility holds for the case of von Mises J2-
plasticity. The elastic part of the right Cauchy-Green tensor C = F TF can be computed
as

C = F T
pF

T
e F eF p = F T

pCeF p yields Ce = F−T
p CF−1

p . (6.4)

Furthermore, the elastic left Cauchy-Green tensor be is defined as

be = F eF
T
e = FC−1

p F T with Cp = F T
pF p (6.5)

where Cp is the plastic part of the right Cauchy-Green tensor. To account for phenomeno-
logical hardening/softening response, we define the equivalent plastic strain variable by
the evolution equation

α̇ = γ̇ with α̇ ≥ 0 . (6.6)

as a local internal variable, where γ̇ ≥ 0 is the plastic Lagrange multiplier. The hardening
variable starts to evolve from the initial condition α(X, 0) = 0 .
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The solid Ω has to satisfy the equation of equilibrium as

Div P + f = 0 (6.7)

where dynamic effects are neglected and f is the given body force.

For the phase-field problem, a sharp-crack surface topology Γ → Γl is regularized by
the crack surface functional as outlined in [225, 230]

Γl(d) =

∫

Ω

γl(d,∇d) dV with γl(d,∇d) =
1

2l
d2 +

l

2
|∇d|2 (6.8)

based on the crack surface density function γl per unit volume of the solid and the fracture
length scale parameter l that governs the regularization. To describe a purely geometric
approach to phase-field fracture, the regularized crack phase-field d is obtained by a
minimization principle of diffusive crack topology

d = Arg{inf
d
Γl(d)} with d = 1 on Γ ⊂ Ω (6.9)

yielding the Euler equation d − l2∆d = 0 in Ω along with the Neumann-type boundary
condition ∇d ·N = 0 on ∂Ω. Evolution of the regularized crack surface functional (6.8)
can be driven by the constitutive functions as outlined in [230, 10, 14], postulating a
global evolution equation of regularized crack surface as

d

dt
Γl(d) =

∫

Ω

δdγl(d,∇d) ḋ dV :=
1

l

∫

Ω

[ (1− d)H− ηf ḋ ] ḋ dV ≥ 0 (6.10)

where ηf ≥ 0 is a material parameter that characterizes the artificial/numerical viscosity
of the crack propagation. The crack driving force

H = max
s∈[0,t]

D(X, s) ≥ 0 , (6.11)

is introduced as a local history variable that accounts on the irreversibility of the phase-
field evolution by filtering out a maximum value of what is known as the crack driving
state function D. Then the evolution statement (6.10) provides the local equation for the
evolution of the crack phase-field in the domain Ω along with its homogeneous Neumann
boundary condition as

ηf ḋ = (1− d)H− [ d− l2∆d ] with ∇d ·N = 0 on ∂Ω (6.12)

The above introduced variables will characterize the ductile failure response of a solid,
based on the two global primary fields

Global Primary Fields : U := {ϕ, d} , (6.13)

the deformation map ϕ and the crack phase-field d. The constitutive approach to the
phase-field modeling of ductile fracture focuses on the set

Constitutive State Variables : C := {be, α,H, d,∇d} , (6.14)
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Figure 6.1: Third invariant decomposition. (a) Positive part defined as I+3 := max{I3, 1}
and (b) negative part defined as I−3 := min{I3, 1}.

reflecting a combination of elasto-plasticity with a first-order gradient damage modeling.
It is based on the definition of a pseudo-energy density per unit volume contains the sum

W (C) = Welas(be, d) +Wplas(α, d) +Wfrac(H, d,∇d) (6.15)

of a degrading elastic Welas and plastic energies Wplas and a contribution due to fracture
Wfrac, which contains the accumulated dissipative energy in line with [10, 232]. The elastic
contribution is the Neo-Hookean strain energy function for a homogeneous compressible
isotropic elastic material

Welas(be, d) = g(d)
[
ψvol(be) + ψiso(be)

]
with

ψvol = κ
4
(I3 − 1− ln I3)

ψiso = µ
2
(I

−1/3
3 I1 − 3)

(6.16)

in terms of the bulk modulus κ > 0, the shear modulus µ > 0 and the invariants: I1 = tr be
and I3 = det be. The plastic contribution is assumed to have the form

Wplas(α, d) = g(d) ψp(α) with ψp = Y0 α +
H

2
α2 + (Y∞ − Y0)

(
α + exp[−δα]/δ

)
(6.17)

with the initial yield stress Y0, infinite yield stress Y∞ ≥ Y0, the isotropic hardening
modulus H ≥ 0 and the saturation parameter δ.

The degradation function g(d) = (1−d)2 models the degradation of the elastic-plastic
energy of the solid due to fracture. It interpolates between the unbroken response for
d = 0 and the fully broken state at d = 1 by satisfying the constraints g(0 ) = 1, g(1 ) = 0,
g′(d) ≤ 0 and g′(1 ) = 0.

In order to enforce a crack evolution only in tension, the volumetric elastic energy is
additively decomposed into a positive part ψ+

vol due to tension and a negative part ψ−
vol

due to compression, outlined in the pioneering work of [28] as

Welas(be, d) = g(d)
[
ψ+
vol(be) + ψiso(be)

]
+ ψ−

vol(be) with ψ±
vol =

κ

4
(I±3 − 1− ln I±3 )

(6.18)

in terms of the positive I+3 and the negative I−3 third invariant defined as

I+3 := max{I3, 1} = 〈I3 − 1〉+ + 1 = 1
2

[(
I3 − 1

)
+
∣∣I3 − 1

∣∣
]
+ 1

I−3 := min{I3, 1} = 〈I3 − 1〉− + 1 = 1
2

[(
I3 − 1

)
−

∣∣I3 − 1
∣∣
]
+ 1

(6.19)
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as visualized in Figure 6.1. Following the Coleman-Noll procedure, the Kirchhoff stresses
tensor τ and the first Piola-Kirchoff stress tensor P are obtained from the elastic strain
energy function Welas(be, d) in (6.18) for isotropic material behavior as

τ = 2be
∂Welas

∂be
and P = τF−T (6.20)

The fracture part of pseudo-energy density (6.15) takes the form

Wfrac(H, d,∇d) = 2
ψc

ζ
l γl(d,∇d) +

ηf
2∆t

(d− dn)2 + g(d) H (6.21)

where ∆t := t − tn > 0 denotes the time step, ψc > 0 is a critical fracture energy and
ζ controls the post-critical range after crack initialization. Following the recent works
[10, 232, 237], the history field H is defined by

H := max
s∈[0,t]

D(be, α; s) ≥ 0 with D :=

〈
ψ+
vol + ψiso + ψp − ψc

〉

+

(6.22)

with the Macaulay bracket 〈x〉+ := (x+ |x|)/2, that ensures the irreversibility of the crack
evolution.

The finite elasto-plastic model requires additionally the formulation of a yield function,
a hardening law and an evolution equation for the plastic variables. The yield function
restricts the elastic region. By assuming J2-plasticity with nonlinear isotropic hardening
the yield function has the form

χ =
√

3/2 |fp| − rp with f p := dev[τ ] = τ − 1

3
tr[τ ]1 and rp := ∂αWplas (6.23)

in terms of the deviatoric plastic driving force fp and the resistance force rp. With
the yield function at hand, we define the dual dissipation function for visco-plasticity
according to Perzyna-type model as

Φ∗(f p, rp) =
1

2ηp

〈√
3/2 |fp| − rp

〉2

+
(6.24)

with ηp being the viscosity parameter of the rate dependent plastic deformation. The
evolution equations for the plastic variables are, see e.g. [323, 324, 288, 151]

−1
2
Lvbe = γ̇ nbe with n =

∂χ

∂f p and α̇ = γ̇ :=
1

ηp

〈
χ
〉
+
, (6.25)

where Lv denotes the Lie derivative in time. The evolution equation (7.19)1 can be recast
with (7.4) in an alternative form

Ċ
−1

p = −2 γ̇ F−1nF C−1
p (6.26)

which will be used later for the algorithmic treatment of plasticity within the numerical
solution algorithm, see e.g. [183]. The Kuhn-Tucker conditions for the elasto-plastic
model are

χ ≤ 0 , γ̇ ≥ 0 and χ γ̇ = 0 (6.27)



6.3 Formulation of the virtual element method 141

The development of the virtual element formulation for the phase-field ductile fracture in
elastic-plastic solids can start from a pseudo potential density functional instead of using
the weak form. This has advantages when the code is automatically generated using the
software tool AceGen, see [184]. The pseudo potential density functional depends on
the elastic and the fracture parts and keeps the plastic history variables and the crack
driving force constant during the first variation. The pseudo potential density functional
can then be written as

Π(U,h) =

∫

Ω

W (C) dV − Πext(ϕ) with Πext(ϕ) :=

∫

Ω

f · ϕ dV +

∫

∂Ωt

t̄ · ϕ dA
(6.28)

Here h := {C−1
p , α,H} is the history field array for the plastic strain measures and the

crack driving force.

6.3. Formulation of the virtual element method

Following the work of [71], the main idea of the virtual element method is a Galerkin
projection of the unknowns onto a specific ansatz space. The domain Ω is partitioned
into non-overlapping polygonal elements which need not to be convex and can have any
arbitrary shape with different node numbers, as plotted in Figure 6.2 representing a horse-
like element with XI vertices. Here a low-order approach is adopted, see [329] and [324],
using linear ansatz functions where nodes are placed only at the vertices of the polygonal
elements. Furthermore, the restriction of the element shape functions to the element
boundaries are linear functions.

6.3.1. Ansatz functions for VEM. The virtual element method relies on the split
of the ansatz space into a part UΠ representing the projected primary field defined in

Figure 6.2: Polynomial basis function for the virtual element ansatz with vertices XI .
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(6.13) and a remainder

Uh = Uh
Π + (Uh −Uh

Π) with Uh
Π := {ϕh

Π, d
h
Π} (6.29)

The projection Uh
Π is defined at element level by a linear ansatz function NΠ as

Uh
Π =



ϕΠX

ϕΠY

dΠ


 = a ·NΠ =



a1 a4 a7
a2 a5 a8
a3 a6 a9





1
X
Y


 (6.30)

with the unknowns a. The projection Uh
Π is now defined such that it satisfies

∫

Ωe

∇Uh
Π dV

!

=

∫

Ωe

GradUh dV (6.31)

which yields, with the linear ansatz in (7.30) that ∇Uh
Π is constant as

∇Uh
Π

∣∣
e

!

=
1

Ωe

∫

Ωe

GradUh dV =
1

Ωe

∫

∂Ωe

Uh ⊗N dA (6.32)

where N is the normal at the boundary ∂Ωe of the domain Ωe of a virtual element e, see
Figure 6.3. Thus label �|e represents element quantities that have constant value within
an element e. A direct computation of the projected gradient yields with the linear ansatz
in (7.30) the simple matrix form

∇Uh
Π

∣∣
e
=



∇ϕΠX

∇ϕΠY

∇dΠ


 =



ϕΠX,X ϕΠX,Y

ϕΠY,X ϕΠY,Y

dΠ,X dΠ,Y


 =



a4 a7
a5 a8
a6 a9


 (6.33)

The boundary integral in (7.34) has to be evaluated. To this end, a linear ansatz for the
primary fields along the element edges is introduced as

(Uh)k = (1− ξk)U1 + ξk U2 =Mk 1U1 +Mk 2U2 with ξk ∈ [0, 1] (6.34)

for a boundary segment k of the virtual element. The local nodes: ➀–➁ are chosen
in counter-clockwise order and can be found in Figure 6.3. In (7.37) Mk 1 is the ansatz
function along a segment k, related to node ➀, ξk is the local dimensionless coordinate
and U1 is the nodal value at that node. The ansatz function Mk 2 is defined in the same
way. From (7.34)–(7.37), the unknowns a4–a9 can be computed from the normal vectors
of the boundary segments in elements and the nodal primary fields as



a4 a7

a5 a8

a6 a9


 =

1

Ωe

∫

∂Ωe

Uh ⊗N dA =
1

Ωe

nV∑

k=1

∫

∂Ωk



ϕX(X)NX ϕX(X)NY

ϕY (X)NX ϕY (X)NY

d(X)NX d(X)NY


 dA (6.35)

where we have used N = {NX , NY }T and U = {ϕX , ϕY , d }T , furthermore nV is the
number of element vertices which coincides with the number of segments (edges) of the
element, for first order VEM. Note that the normal vector N changes from segment to
segment. In the 2D case it can be computed for a segment k as

N k =

{
NX

NY

}

k

=
1

Lk

{
Y1 − Y2
X2 −X1

}

k

(6.36)
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Ωe

(1)

(2)

(i-1)
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○1

○2

X C

Nk

ξ

Lk

Figure 6.3: Virtual element with nV nodes and local boundary segment of the horse-like
polygonal element.

with {Xi, Yi}i=1,2 being the local coordinates of the two vertices of the segment k. The
integral in (7.38) can be evaluated for the ansatz functions (7.37) exactly by using the
trapezoidal or Gauss-Lobatto rule. By selecting the vertices as the Gauss-Lobatto points
it is sufficient to know only the nodal values

Ue = {U1,U2, . . . ,UnV
} (6.37)

at the nV vertices V in Figure 6.3. Since the ansatz function in (7.37) fulfills the property
MI(XJ) = δIJ the actual form of the function M does not enter the evaluation of the
boundary integrals which makes the evaluation extremely simple. Finally, by comparing
(7.35) and (7.38) the unknowns a4 to a9 are obtained by inspection, for further details see
e.g. [329]. The projection in (7.34) does not determine the ansatz Uh

Π in (7.30) completely
and has to be supplemented by a further condition to obtain the constants a1, a2 and a3.
For this purpose we adopt the condition that the sum of the nodal values of Uh and of
its projection Uh

Π are equal. This yields for each element Ωe

1

nV

nV∑

I=1

Uh
Π(XI) =

1

nV

nV∑

I=1

Uh(XI) (6.38)

where XI are the coordinates of the nodal point I and the sum includes all boundary
nodes. Substituting (7.30) and (7.37) in (6.38), results with the three unknowns a1, a2
and a3 as



a1

a2

a3


 =

1

nV

nV∑

I=1

[
UI −∇UΠI ·XI

]
=

1

nV

nV∑

I=1



ϕXI − ϕΠX,X XI − ϕΠX,Y YI

ϕY I − ϕΠY,X XI − ϕΠY,Y YI

dI − dΠ,X XI − dΠ,Y YI


 (6.39)

Thus, the ansatz function Uh
Π of the virtual element is completely defined.

6.3.2. Construction of the virtual element. The virtual element method relies
on the projection Uh

Π of the deformation map and fracture phase-field. This was approx-
imated in the last section by a first order polynomial leading to a gradient which has a
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Figure 6.4: Internal triangular mesh of the horse-like polygonal element.

constant value. This is called consistency term, but it does not lead to a stable formulation
once the number of vertices is greater than 3. Thus the formulation has to be stabilized like
the classical one-point integrated elements developed by [125, 50, 276, 275, 246, 185, 187].

In the following development of the virtual element for the phase-field modeling of
ductile fracture, the plastic variables and the crack driving force are computed from the
consistency term. These variables are then used as given and fixed history values in the
stabilization procedure.

To this end, the potential density functional defined in (6.28) can be rewritten by
exploiting the split in (7.29). Thus we have, by summing up all element contributions for
the ne virtual elements

Π(U,h) =
ne

A
e=1

Π(Ue,he) with Π(Ue,he) =
[
Πc(U

h
Π,h)

∣∣
e
+ Πstab(U

h −Uh
Π,h)

∣∣
e

]
,

(6.40)

based on a constant part Πc and an associated stabilization term Πstab. Here the history
fields array he are local variables evaluated only once at the element level and used in
both parts of the potential density functional. A summary of the algorithmic treatment
for the finite strain plasticity and the crack driving force is outlined in Box 6.1, for further
details we refer to the work [324].
The first part in (6.40)2 can be computed as

Πτ
c (U

h
Π,h)

∣∣
e
=

∫

Ωe

W (Ch
Π) dV −

∫

Ωe

f ·ϕh
Π dV −

∫

∂Ωe

t̄ · ϕh
Π dA , (6.41)

with Ch
Π = {bheΠ, α,H, dhΠ,∇dhΠ}. The projected elastic left Cauchy-Green tensor bheΠ

can be computed from the projected deformation map and the plastic part of the right
Cauchy-Green tensor as

bheΠ = F h
ΠC

−1
p F h

Π

T
with F h

Π = ∇ϕh
Π , (6.42)

The primary fields Uh
Π are linear functions and their gradient ∇Uh

Π is constant over the
area of the virtual element Ωe, as a consequence, the pseudo-energy density per unit
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volume W is integrated by evaluating the function at the element centroid Xc as shown
in Figure 6.3 and multiplying it with domain size Ωe analogous to the standard Gauss
integration scheme in FEM

∫

Ωe

W (Ch
Π) dV = W (Ch

Π)
∣∣
c
Ωe (6.43)

with the label �|c refers to quantities evaluated at the element centroid Xc. The pseudo
potential is still a nonlinear function with respect to the deformation map and the crack
phase-field nodal degrees of freedom and the history field array.

Next, the stabilization potential has to be derived for the coupled problem based on
the potential (6.28). Following the recent work of Wriggers et al. [329], we introduce
a non-linear stabilization procedure, that takes the form

Πstab(U
h −Uh

Π,h)
∣∣
e
= Π̂(Uh,h)

∣∣∣
e
− Π̂(Uh

Π,h)
∣∣∣
e

(6.44)

For the stabilization density function Ŵ , we propose a similar function to the original
density function (6.28), however scaled by a constant value β as: Ŵ = β W . In (6.44),

the stabilization with respect to the projected primary fields Π̂τ (Uh
Π,h)

∣∣∣
e
can be then

calculated as (6.43), yielding

Π̂(Uh
Π,h)

∣∣∣
e
= β W (Ch

Π)
∣∣
c
Ωe (6.45)

Whereas, the potential Π̂(Uh,h)
∣∣∣
e
is computed by applying standard FEM procedure,

i.e. by first discretizing the virtual element domain Ωe into internal triangle element mesh

Given: F h
Π, dΠ, C

−1
pn , αn, Hn Find: C−1

p , α, H

bheΠ = F h
Π C−1

pn F h
Π

T

Welas(b
h
eΠ, dΠ) = g(dΠ)

[
ψ+
vol(b

h
eΠ) + ψiso(b

h
eΠ)

]
+ ψ−

vol(b
h
eΠ)

Wplas(α, dΠ) = g(dΠ) ψp(α)

fp := dev[τ ] with τ = 2 bheΠ
∂Welas

∂bheΠ

rp = ∂αWplas(α, dΠ)

χ(fp, rp) =
√

3/2 |fp| − rp

C−1
p = F h

Π

−1
exp

[
− 2(α− αn)

√
3/2 fp

|fp|

]
F h

Π C−1
pn

α = αn +∆γ

∆γ = ∆t
ηp

〈
χ(f p, rp)

〉
+
≥ 0

H := maxD(bheΠ, α) ≥ 0 with D :=

〈
ψ+
vol + ψiso + ψp − ψc

〉

+

Box 6.1: Algorithmic treatment of the history field array for the plastic strain measures
and the crack driving force.
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consisting of nT = nE − 2 triangles as plotted in Figure 6.4 for the horse-like polygonal
element. Then the integral over Ωe is transformed into the sum of integrals over triangles.
By using a linear ansatz for the primary fields U, an approximation can be computed for
the constitutive variables C within each triangle Ωi

m of the inscribed mesh, see Wriggers
et al. [329]. This gives

Π̂(Uh,h)
∣∣∣
e
=

∫

Ωe

Ŵ (Ch) dV = β

∫

Ωe

W (Ch) dV = β

nT∑

i

Ωi
e W (Ch)

∣∣
c

(6.46)

where W (Ch)
∣∣
c
is the potential density function evaluated at the triangle centroid X i

c

and Ωi
e is the area of the i th triangle in the element e, as plotted in Figure 6.4.

To compute the stabilization parameter β, a connection to the bending problem was
imposed regarding to the bulk energy as outlined in [324]. By limiting the element size

Ωe towards 0, the difference between the potentials of projected values Π̂(Uh
Π,h) and the

true values Π̂(Uh,h) will also approach towards 0, thus stabilization will disappear in
limit. Due to the finer mesh requirements of the fracture phase field problem compared
with [324], the choice of β factor term is less relevant, since it is only relevant for coarse
meshes. In this regard we propose a constant value for β taken from the interval:

0 < β ≤ 1 (6.47)

Note that for β approaching zero, the potential Π(Uh,h) in (6.40) will depend only on
the projection part Πc(U

h
Π,h), leading to rank deficiency. However when β = 1 the FEM

results related to the internal mesh will be reproduced. Following our previous work on
VEM for phase field brittle fracture [6], we chose a value for the stabilization parameter
at fracture as β = 0.4 in all the simulations in Section 6.4, in which VEM coincide with
FEM results. In case of a pure elastic-plastic state, the stabilization parameter follows
the same procedure introduced in our previous works [169, 324] and takes the form

β = min
{
0.4 ,

σVM

E α

}
, (6.48)

where σVM =
√

3/2 |fp| is the von Mises stress, E is the Young’s modulus and α is
the equivalent plastic strain providing an approximation for the tangent of the hardening
curve.

All further derivations leading to the residual vector Re and the tangent matrix Ke

of the virtual element were performed with the software tool AceGen. This yields for
(6.40) along with the potentials (6.41) and (6.44)–(6.46) the following:

Re =
∂Π(Ue,he)

∂Ue

and Ke =
∂Re

∂Ue

(6.49)

where the history variables are treated as fixed fields in (6.49)1, i.e. ∂Ue
he = 0 . With

these expressions at hand, we adopt a global Newton-Raphson algorithm for the coupled
problem, resulting to the following linearized system

R +K ∆U = 0 with R =
ne

A
e=1

Re , K =
ne

A
e=1

Ke and U =
ne

A
e=1

Ue (6.50)

that determines at given global primary fields U their linear increment ∆U in a typical
Newton-type iterative solution step. This system of nonlinear equations has to be solved
in a nested algorithm, where the deformation map and the crack phase-field are the global
unknown variables.
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Table 6.1: Material parameters used in the numerical examples.

No. Parameter Name Value Unit
1. E Young’s modulus 206.9 GPa
2. ν Poisson’s ratio 0.29 –
3. H hardening parameter 0.13 GPa
4. Y0 initial yield stress 0.45 GPa
5. Y∞ infinite yield stress 0.45/1.165 GPa
6. δ saturation parameter 16.93 –
7. ψc critical fracture energy 0.025/2.0 GPa
8. ηp plastic viscosity 10−8 GPa.s
9. ηf fracture viscosity 10−8 GPa.s
10. l fracture length scale 0.008/0.02 mm
11. ζ fracture parameter 8.0/1.0 –

Table 6.2: A comparison between different FEM and VEM discretizations, related to
F-U curves in Figure 6.7(a).

VEM-VO VEM-T2 FEM-T2 FEM-T1
Number of elements 12369 11109 11109 11109
Number of nodes 24744 22291 22290 5591
No. of equations 74195 66826 66826 16749
Number of steps 280 234 305 232
Total number of iterations 2372 1504 2610 1599
Average iterations/step 6.1134 5.76245 6.97861 6.07985

6.4. Representative numerical examples

We now demonstrate the performance of the proposed virtual element formulation
for the phase-field modeling of ductile fracture at finite deformations by means of two
representative numerical examples. For comparison purposes, results of the standard
finite element method (FEM) are also demonstrated. All computations are performed
by using a nested Newton-Raphson algorithm. Load stepping is applied when necessary.
Due to the fact that all formulations are linearized in a consistent manner using AceGen,
quadratic convergence is achieved within a load step. The material parameters used in
this section are the same for all examples and given in Table 6.1. They are used by many
authors in the literature as a reference for metals [287, 155, 10]. In the first example,
we compare VEM and FEM results for the standard single-edge-notched shear test of
[10, 238, 22]. Next, an axial stretch of a bar is investigated.

To illustrate the capability and the flexible choice of the number of nodes in an ele-
ment for VEM, various animals-shaped Voronoi cells (bird, horse, snake, frog, koala, fish,
kangaroo, ...) are employed in the undamaged as well as the damaged zones (i.e. an area
of interest) for the virtual element formulation in the following subsections.

6.4.1. Single-edge notched shear test. The first benchmark test considers a
square plate with a horizontal notch placed at the middle height from the left outer
surface to the center of the specimen. The geometrical setup and the loading conditions
of the specimen are depicted in Figure 6.5(a). The size of the square specimen is chosen
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Figure 6.5: Single-edge notched shear test. a) Geometry and boundary conditions, b)
VEM with Voronoi mesh and c) triangular finite element mesh.

Figure 6.6: Single-edge notched shear test. Contour plots of the equivalent plastic strain
α in (a)–(c) and the fracture phase-field d in (e)–(g) for three different deformation states
up to final rupture.

to be L = 0.5 mm. We fixed the bottom edge of the plate and applied shear loading
to the top edge until the plate is fully broken. The specimen is discretized by using dif-
ferent virtual elements (VEM) in Figure 6.5(b) and finite element (FEM) formulations
Figure 6.5(c). Here we use the following notations: VEM-VO with a Voronoi mesh ;
VEM-T2 with 6 noded triangle representing a first order VEM (Note that: T2 in this
case implies that, the triangle mesh used is the same as for the second order FEM and
not second order VEM) ; FEM-T1 with linear triangle and FEM-T2 with quadratic
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Figure 6.7: Single-edge notched shear test. (a) Load–displacement responses for different
VEM and FEM discretization. (b) Comparison between the total number of iterations in
each time step that required to achieve convergence for different discretization.

triangle, to test the robustness of the virtual element formulation. A mesh refinement in
the expected fracture zone is applied, this is based on the ratio r := l/he between the
mesh size he and the fracture length scale l, as sketched in Figure 6.5(a).

The evolution of the crack phase field d in comparison to the evolution of the equiva-
lent plastic strain α for three different deformation stages up to final rupture are depicted
in Figure 6.6. This was achieved by using the virtual element formulations with various
animals-shaped Voronoi cells, for fracture length scale l = 0.008 mm and the length/mesh
ratio r = 4. The crack phase-field initiates at the notch-tip, see Figure 6.6(e), where the
maximum equivalent plastic strain α is concentrated as shown in Figure 6.6(a). There-
after, the crack propagates horizontally till separation in Figure 6.6(g), as outlined in
[10, 238, 22].

Load-displacement curves of the overall structural response are plotted for different
elements formulations of FEM and VEM for comparison purposes in Figure 6.7(a). The
VEM results are in a good agreement with the reference works. Table 6.2 compares
the different FEM and VEM discretization, related to F-U curves in Figure 6.7(a), with
respect to robustness and efficiency. Figure 6.7(b) illustrates the convergence properties
for the different element formulations plotted in Figure 6.7(a) at the final deformation
state ū = 0.0048 mm. We observe that virtual elements required fewer steps and iterations
for final convergence compared with finite element method of higher order. Thus here,
VEM is more robust than FEM, however, this comes with extra computational costs.

6.4.2. Axial stretch of a bar. The second numerical example is concerned with
analyzing the ductile failure behavior of a bar due to a prescribed displacement ū along
axial direction at the right side. It is a standard benchmark problem of finite plasticity
and has been analyzed by many authors, see [11, 229, 13, 288]. Experimental observation
shows that a necking zone takes place before final ductile rupture. The localized plastic
strains in the necking area and the subsequent ductile failure response will be used to
test the robustness of the virtual element formulation. The geometrical setup and the
boundary conditions of the bar with height H = 2 mm and length L = 10 mm are
illustrated in Figure 6.8. To trigger localization and necking in the center of the bar,
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Figure 6.8: Axial stretch of a bar. a) Geometry and boundary conditions, b) VEM with
Voronoi mesh and c) triangular finite element mesh.

Figure 6.9: Axial stretch of a bar. Contour plots of the equivalent plastic strain α in
(a)–(e) and the fracture phase-field d in (g)–(k) for five different deformation states up to
final rupture.

a geometrical imperfection is introduced in the central zone. Here, a reduction of the
specimen net section at the central zone is applied, in which the height at the center is
chosen to be Hc = 0.99 H . At the left edge of the bar we applied a Dirichlet boundary
condition of ū = 0 and applied a horizontal displacement at the right edge that has the
magnitude of 20 % of the bar length e.g. ū = 0.2L. A mesh refinement in the expected
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Figure 6.10: Axial stretch of a bar. Load–displacement responses for different VEM and
FEM discretization.

fracture zone is applied for all VEM and FEM element formulations, see Figure 6.8(b)-(c).

Figure 6.9 shows the contour plots of the equivalent plastic strain α and the fracture
phase field d simulated using the virtual element formulations with various animals-shaped
Voronoi cells, for fracture length scale l = 0.02 mm and different deformation stages up to
final failure. We observed a huge plastic deformation as a necking zone with concentration
hardening in Figure 6.9(b)-(c) at the specimen center, resulting with crack initiation at
center zone as demonstrated in Figure 6.9(i). Thereafter, the crack phase-field propagates
outward following the equivalent plastic strain path till the complete failure as shown in
Figure 6.9(j)-(k). Load-displacement curves for different elements formulations of FEM
and VEM are displayed in Figure 6.10. All simulations show similar behavior before crack
initiation. Thereafter, all elements show almost closer results, except the FEM-T1 which
exhibit a stiffer response. As a consequence, the capability of VEM element with Voronoi
mesh is comparable to using finite elements of higher order.
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7. 3D Virtual elements for finite thermo-plasticity problems

In the previous analysis of the virtual element formulations (Chapter 5 and Chapter
6) only two-dimensional problems were considered for various engineering applications in
solid mechanics. The successful application of the method to non-linear setting in 2D leads
naturally to the question of its effectiveness and robustness in the third dimension under
large deformations for coupled problems. This chapter is concerns with the extensions
of the virtual element method to problems of 3D finite strain thermo-plasticity. Low-
order formulations for problems in multi-dimensions, with elements being arbitrary shaped
polyhedra, are considered. The formulation is based on minimization of a pseudo energy
expression, with a generalization of a stabilization techniques. The resulting discretization
scheme is investigated using different numerical examples that demonstrate efficiency,
accuracy and convergence properties. For comparison purposes, results of the standard
finite element method (FEM) are also demonstrated. The contents of this chapter is based
on the following publications Aldakheel et al. [7, 169].

7.1. Introduction

Heat treatment processes are a field of research with various engineering applications.
This covers forming, machining and cutting of different components. For instance, heating
of a steel bolt and cross wedge rolling are processes under thermo-mechanical loading
conditions. These processes exhibit complex coupling phenomenon: i) the heat effects
the mechanical response by thermal expansion and temperature dependent mechanical
properties. ii) On the contrary, the mechanical load action on the thermal field leads
to high-temperature distribution and heat dissipation. All applications in this area can
significantly benefit from a precise predictive computational tool to model this coupling
during and after the forming phases of products to improve the structural reliability.

A great number of pure phenomenological and micro-mechanically motivated ap-
proaches exists in literature for thermo-mechanical coupling. In this regard, [32, 33]
developed several numerical concepts for the coupled processes based on the so-called
natural formulation. [288, 327] investigated the coupled associative thermo-plasticity at
finite strains, addressing in detail the numerical analysis aspects. A micro-mechanical ap-
proach for modeling the coupled thermo-crystal-plasticity can been found in [294, 83, 81].
A physical approach based on nonlinear rheological models was introduced in [205] to
describe finite thermoviscoplasticity. [30, 226] outlined a constitutive model for finite
thermo-visco-plastic behavior of amorphous glassy polymers and considered details of its
numerical implementation. A variational formulation for the coupled multi-field problem
is outlined in [76, 42] based on the works [337, 293].

Most of the approaches existing in the literature for solving thermo-mechanical prob-
lems are based on the finite element method (FEM) as a discretization scheme, see
[323, 344]. However in recent years different methods were introduced as tools that bring
some new features to the numerical analysis aspects of problems in solid and fluid mechan-
ics, like the isogeometric analysis outlined in Hughes et al. [174, 92]. In this contribution
a relatively new method, the virtual element method (VEM), will be presented as an al-
ternative approach. The method was developed by F. Brezzi and coworkers [46]. Despite
being only five years under development the application range in engineering of VEM
has been enlarged such that it includes small/large strain formulations for inelastic re-
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sponses. VEM is a competitive discretization scheme for meshes with highly irregular
shaped elements. Recent works on virtual elements have been devoted to linear elastic
deformations in [47, 135, 36], contact problems in [328], finite elasto-plastic deforma-
tions in [169], anisotropic materials in [330, 331, 273], small strain isotropic damage in
[96], inelastic solids in [298], hyperelastic materials at finite deformations in [85, 329] and
crack-propagation for 2D elastic solids at small strains in [175]. Recently, [6, 8] propose an
efficient virtual element scheme for the phase-field modeling of brittle and ductile fracture.

This chapter extends VEM towards finite strain thermo-plasticity problems. Low-order
formulations for problems in two and three dimensions are considered, with elements be-
ing arbitrary polygons or polyhydra. The various formulations considered are based on
minimization of a pseudo energy, with a novel construction of the stabilization energy.
In the mechanical part, the model problem of von Mises J2-plasticity is used in this pa-
per which includes incompressibility of the plastic deformation and nonlinear isotropic
hardening as discussed in [288, 169]. In the thermal part, we follow the investigations of
[288, 10] that demonstrate the effect of temperature on the mechanical fields resulting in
a thermal expansion and also the change of geometry during heat conduction.

The development of a virtual element typically includes a projection step and a sta-
bilization step. In the projection step, the deformation ϕh and the temperature field Th
which appear in the weak formulation or energy functional are replaced by their projec-
tion: ϕΠ and TΠ onto a polynomial space. This results in a rank-deficient structure, so
that it is necessary to add a stabilization term to the formulation, see [46] and [47] which
depends in the linear case on a scalar value computed from the elasticity tensor. In [85]
the scalar stabilization parameter was replaced by one that computed using the defor-
mation depending fourth-order elasticity tensor. A new stabilization techniques for the
virtual element method was lately developed in [329] who use a technique that was first
described in [249], generalized in [60] and simplified in [187] in the context of hexahedral
finite elements. This stabilization is also applied in this work where some correction were
needed in case of plastic deformations.

The chapter is organized as follows: Section 7.2 outlines the governing equations for
finite strain thermo-elasto-plasticity. The development of the virtual element method is
formulated in Section 7.3. Finally, a number of numerical tests are presented and discussed
in Section 7.4. For comparison purposes, results of the standard finite element method
(FEM) are also included.

7.2. Governing equations

This section summarize the theory of coupled thermo-plasticity at large deformations,
see e.g. [327, 184, 288, 13].

7.2.1. Basic kinematics at finite strains. Let Ω ∈ Rd with d = 2, 3 be the
reference configuration of the solid as depicted in Figure 7.1 and ϕ(X, t) is the nonlinear
deformation map at time t ∈ R+ and initial position X defined as

x = ϕ(X, t) = X+ u(X, t) (7.1)

where x is the position of a material point in the deformed configuration and u(X, t)
is the displacement field. The material deformation gradient is defined by F(u) :=
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∇ϕ(X, t)= 1+∇u(X, t) with Jacobian J(u) := detF > 0. This deformation gradient
tensor is decomposed into an elastic Fe and a plastic Fp parts as

F = Fe Fp (7.2)

representing finite deformation plasticity. In this work, the isochoric von Mises J2-
plasticity theory is considered. Thus, the volume change due to plasticity can be neglected

Jp = detFp = 1 yields J = JeJp = Je = detFe , (7.3)

in terms of the elastic Je and the plastic Jp parts of the Jacobian. The elastic part of
the left Cauchy-Green tensor be is formulated by the total deformation gradient and the
inverse of the plastic part of the right Cauchy-Green tensor Cp as

be = J
2
3
e be = FeF

T
e = FC−1

p FT with Cp = FT
p Fp and det be = J2

e (7.4)

where be is the deviatoric part of the elastic left Cauchy-Green tensor be with det be = 1.
The solid is loaded by a Dirichlet- and Neumann-type boundary conditions as

ϕ(X, t) = ϕ̄(X, t) on ∂Ωϕ and PN = t̄(X, t) on ∂Ωt (7.5)

with a prescribed deformation ϕ̄, external traction t̄ and outward normal N to the surface
∂Ω = ∂Ωϕ ∪ ∂Ωt of the undeformed configuration, as depicted in Figure 7.1(a). The first
Piola stress tensor P is the thermodynamic dual to F. To account for phenomenological
hardening/softening response, we define the equivalent plastic strain variable α by the
evolution equation

α̇ = γ̇ with α̇ ≥ 0 (7.6)

as a local internal variable, where γ̇ ≥ 0 is the plastic Lagrange multiplier. The hardening
variable starts to evolve from the initial condition α(X, 0) = 0.

For the thermal problem, we define the absolute temperature field T (X, t) > 0 on the
reference configuration Ω of the solid along with the boundary conditions as

T = T on ∂ΩT and QN = h̄ on ∂Ωh (7.7)

(a) deformation map (b) temperature field

Figure 7.1: Solid with boundary conditions for the coupled problem.
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with a prescribed temperature field T and heat flux h̄, as shown in Figure 7.1(b). The
Lagrangian heat flux vector Q is assumed to be governed by a Fourier-type law

Q = −JKTF
−1F−T∇T (7.8)

where ∇T is the material temperature gradient and KT is the thermal conductivity which
must be positive (KT > 0) in order to achieve thermodynamical consistency. In this con-
tribution, the gradient operator is a referential quantity, i.e. ∇ ≡ ∇X.

The above introduced variables will characterize a multi-field setting of thermo-mechanical
finite strain plasticity based on two global primary fields

U := {u, T} . (7.9)

The subsequent constitutive approach to the coupled problem focuses on the set

C := {F, T,∇T,h} with h := {C−1
p , α} , (7.10)

in terms of the history field array h for the plastic strain measures and the hardening
variable.

7.2.2. Energetic and dissipative response functions. Following the works [288,
327, 13, 11], the free energy function for the coupled thermo-plasticity problem at finite
strains takes the form

Ψ̂(C) = ψe,vol(Je) + ψe,iso(be) + ψe,th(Je, T ) + ψth(T ) + ψp(α, T ) (7.11)

in terms of the state variables introduced in (7.10). The volumetric and isochoric elastic
parts of the isotropic energetic response function are assume to have the form

ψe,vol(Je) =
κ

4
(J2

e − 1− 2 lnJe) and ψe,iso(be) =
µ

2
(tr be − 3) (7.12)

in terms of the elastic bulk modulus κ, the shear modulus µ and the elastic part of
the Jacobian computed as Je =

√
det be. Following the Coleman-Noll procedure, the

Kirchhoff stress tensor τ and the first Piola-Kirchoff stress tensor P are obtained from the
volumetric-isochoric elastic parts of the free energy function Ψ̂(C) for isotropic material
behavior as

τ = 2be
∂Ψ̂

∂be
and P = τF−T (7.13)

The coupled thermoelastic part and the pure thermal contribution of the free energy are
defined as

ψe,th(Je, T ) = −3αT (T − T0) ∂Jeψe,vol and ψth(T ) = c

(
T − T0 − T log

T

T0

)
(7.14)

where ∂Jeψe,vol =
κ
2
(Je− 1

Je
), T0 is the reference temperature, αT is the thermal expansion

coefficient and c is the heat capacity. The absolute temperature field T > 0 is strictly
positive. The plastic potential is given by

ψp(α, T ) = Y0(T ) α +
H(T )

2
α2 + [Y∞(T )− Y0(T )]

[
α + exp(−δα)/δ

]
(7.15)
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in terms of the temperature dependent material parameters Y0 > 0, Y∞ ≥ Y0 and H ≥ 0
defined as

Y0(T ) := Y0
[
1− w0(T − T0)

]

Y∞(T ) := Y∞
[
1− wh(T − T0)

]

H(T ) := H
[
1− wh(T − T0)

]
(7.16)

as outlined in [288], where wh is the hardening/softening parameter, w0 is the flow stress
softening parameter and δ is the saturation parameter.

The yield function of von Mises-type finite thermo-plasticity χ restricts the elastic
region and has the form

χ =
√

3/2 |s| − σy(α, T ) with s := devτ = τ − 1

3
trτ1 and σy(α, T ) := ∂αΨ̂ (7.17)

in terms of the deviatoric plastic driving force s and the resistance force σy. With the
yield function χ at hand, we can define the dual dissipation function for visco-plasticity
according to Perzyna-type model as

Φ∗(s, σy) =
1

2ηp

〈
χ
〉2

+
(7.18)

with ηp being the viscosity parameter of the rate dependent plastic deformation. The
evolution equations for the plastic variables are

−1
2
Lvbe = γ̇ nbe with n =

∂χ

∂s
and α̇ = γ̇ :=

1

ηp

〈
χ
〉
+
, (7.19)

where Lvbe denotes the Lie derivative or Oldroyd rate of be and n is the flow direction.
The evolution equation (7.19)1 can be recast with (7.4) in an alternative form

Ċ
−1

p = −2 γ̇F−1 nFC−1
p (7.20)

which will be used later for the algorithmic treatment of plasticity within the numerical
solution algorithm, see e.g. [183]. The Kuhn-Tucker conditions for the elasto-plastic
model are

χ ≤ 0 , γ̇ ≥ 0 and χ γ̇ = 0 (7.21)

The discretized form of the evolution equation (7.20) follows from [288, 183], and together
with the conditions (7.21) forms the local residual of the problem:

FC−1
p − exp[−2(α− αn)n]FC

−1
p,n = 0 and χ = 0 , (7.22)

where C−1
p,n and αn are the converged history values at the previous step. The system of

equations (7.22) has to be solved locally at the element level only when χ > 0. This yields
an updated history field array h = {C−1

p , α}. If χ < 0, then the history field will remain

same, i.e. C−1
p = C−1

p,n and α = αn. For further details on the algorithmic treatment of
the plastic history field array h, we refer to the works [288, 169, 323].

With regard to the spatial discretization, the plastic history variables are computed
from the consistency term, introduced in Section 7.3. These variables are then used as
given and fixed history values in the stabilization procedure.
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7.2.3. Global constitutive equations. The global governing equations describing
the coupled problem are the balance of linear momentum and the absolute temperature
evolution defined as

Div[P] + f = 0

c Ṫ +Div[Q]−Dred
loc +H−R = 0

(7.23)

along with the Neumann-type boundary conditions in (7.5),(7.7) and the prescribed body
force f and heat source R. The reduced local dissipation density function takes the form

Dred
loc := ζ σy(α, T ) α̇ with α̇ :=

α− αn

∆t
(7.24)

where ζ ∈ [0, 1] is a constant dissipation factor, as outlined in the work of [288]. The heat
capacity c and the latent heating H in (7.23) are defined as

c := −T∂2TT Ψ̂(C) and H := −T∂T
[
P · Ḟ−Dred

loc

]
(7.25)

With the above set of constitutive equations, the coupled thermo-mechanical problem
is formulated. As a starting point for the development of a discretization method, the
weak form of equilibrium can be used. In this work, the weak form is decomposed into
mechanical M and thermal T parts as

G(u, T ) = GM(u) + GT (T )

GM(u) =
∫
Ω

[
P(u,h) · F(δu)− f · δu

]
dΩ−

∫
∂Ω

t̄ · δu dΓ

GT (T ) =
∫
Ω

δT
[

c
∆t
(T − Tn) +H−Dred

loc −R
]
dΩ−

∫
Ω

∇δT ·Q dΩ−
∫
∂Ω

hδT dΓ

(7.26)

here δu, δT are the test functions for the displacement and the temperature fields, re-
spectively. However, it is computationally more efficient to start the development of the
thermo-elasto-plastic formulations from a pseudo-potential energy function directly in-
stead of using the weak form (7.26). This is especially advantageous when the code is
automatically generated using the software tool AceGen, see [184]. The pseudo-potential
energy depends on the thermo-elastic parts and keeps the plastic history field array h
constant during the first variation

U(u, T ;h) =

∫

Ω

[
Ψ (C;h)− f · u −RT

]
dΩ−

∫

∂Ω

[
t · u+ hT

]
dΓ (7.27)

in terms of the thermo-mechanical energy function

Ψ (C;h) = ΨM + ΨT with
ΨM = ψe,vol + ψe,iso −

[
3αT (T − T0)

]
ct
∂Jeψe,vol

ΨT = c
2∆t

(T − Tn)2 + T
[
H−Dred

loc

]
ct
−∇T ·

[
Q
]
ct
(7.28)

the components inside square bracket [−]ct are kept constant during the variation of
potential in AceGen. For more information about the construction of such a pseudo-
potential, we refer the interested reader to [184]. It can be shown that the first variation
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of (7.27) when keeping part [−]ct constant leads to the same results as the weak form
(7.26).

On the computational side, one may employ either a monolithic or a staggered algo-
rithm to compute the unknowns, in which the displacement and the absolute temperature
field are computed either simultaneously or alternatively. In this work, a robust and effi-
cient monolithic scheme is employed in the numerical implementation using the software
tool AceGen, see [184].

7.3. Virtual element discretization

Within the virtual element method (VEM), proposed in [47] for the linear elastic case,
a Galerkin projection of the deformation or displacement is made that maps the unknown
variables onto a specific polynomial ansatz space. The special advantage is that the
domain Ω can be partitioned into non-overlapping polyhedral elements which are allowed
to have arbitrary shapes including non-convex forms. For large strain applications VEM
was used so far to formulate different models with hyperelastic material equations in two
and three-dimensions, see e.g. [85] and [329]. Elasto-plastic problems of two dimensions
were investigated in [37] using higher order virtual elements. This chapter extends VEM to
finite strain thermo-elasto-plasticity employing a low order virtual element ansatz space.
Here the domain Ω is partitioned into arbitrary non-overlapping polyhedral elements with
polygonal faces.

In this work the ansatz for the virtual elements will be based on linear functions.
Using this low order ansatz the element nodes can be placed entirely at the vertices of the
polyhedral elements, see e.g. [47]. The discrete space of test functions on Ω is denoted by
Vh, and for a conforming approach we require that Vh ⊂ V . This requirement is met by
defining the shape or basis functions in Vh as linear functions in the 3D space. This yields
continuous functions within an element Ωe. Furthermore, the restriction of the element
shape functions to the element boundaries are linear functions, see Figure 7.2.

Figure 7.2: The deformation map of polynomial basis function for the virtual element
ansatz.

Generally the virtual element method for finite strains has to discretize the deformation
map ϕ = X+u. Since the coordinates X are exactly known in the initial configuration,
we can restrict the discretization to the displacement field u = uiEi where Ei are the basis
vectors with respect to the initial configuration in the three-dimensional space i ∈ {1, 2, 3}.
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Based on that, the virtual element method relies on the split of the ansatz space into a
part UΠ representing the projected primary fields defined in (7.9) and a remainder

U = UΠ + (U−UΠ) with UΠ := {uΠ, TΠ} (7.29)

The simplest form for the projection UΠ is given at element level by the linear ansatz

UΠ =




uXΠ

uY Π

uZΠ

TΠ


 = a ·NΠ =




a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16







1
X
Y
Z


 (7.30)

with the sixteen unknowns a which have to be determined. Here the same procedure as
in [169, 6, 8] will be applied to define the ansatz function of the virtual element. This is
based on two conditions for the low order ansatz space:
(i) The gradient ∇UΠ of the projection ansatz (7.30) is constant at the element level
and is defined as the mean value of the true gradient GradU. The value of GradU is
unknown, however the mean value can be evaluated over the element boundary as follows:

∫

Ωe

∇UΠ dΩ
!

=

∫

Ωe

GradU dΩ → ∇Ue
Π =

1

Ωe

∫

∂Ωe

U⊗N dΩ , (7.31)

with an ansatz for U at the boundary ∂Ωe of the virtual element domain Ωe. N is the
normal at the boundary of a virtual element e, as shown in Figure 7.3.

Figure 7.3: Virtual element ansatz. Internal tetrahedral mesh and virtual element faces
split into multiple triangles.
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(ii) The sum of the nodal values U and of its projections UΠ are equal, as follows

1

nV

nV∑

I=1

UΠ(XI) =
1

nV

nV∑

I=1

U(XI) , (7.32)

where XI are the initial coordinates of the nodal point I and the sum includes all nV

element nodes. UΠ is now computable in terms of the nodal values of U.

Based on the split in (7.29), the psudo-potential function defined in (7.27) can be
rewritten by summing up all element contributions for the ne virtual elements as

U(U;h) =
ne

A
e=1

U(Ue;he) with U(Ue;he):= Uc(UΠ,h)|e + Ustab(U−UΠ,h)|e , (7.33)

with a constant compatibility part Uc and an associated stabilization term Ustab. Hereby
the history field array he contains local variables evaluated by local Newton-Raphson
iteration procedure at element centroid Xi

c as a single Gauss point of the element and used
in both parts (compatibility Uc and stabilization Ustab) of the pseudo-potential function.
A summary of the algorithmic treatment of the history field for the plastic strain measures
is outlined in Box 1 of the reference works [169, 8]. By neglecting the body and traction
forces of the coupled problem, the compatibility part in (7.33) can be computed for each
virtual element by integrating specific pseudo-potential energy Ψ (7.28) over element
domain Ωe as

Uc(UΠ,h)|e =
∫

Ωe

Ψ (CΠ) dΩ = Ψ (CΠ)|c Ωe with CΠ := {∇ϕΠ, TΠ,∇TΠ,h} (7.34)

where the primary fieldsUΠ are linear functions and their gradient ∇UΠ are constant over
the area of the virtual element Ωe. As a consequence, the pseudo-energy Ψ is integrated
by evaluating the function at the element centroid Xc and multiplying it with domain
size Ωe (element volume). This procedure is analogous to the standard Gauss integration
scheme in FEM. The label �|c refers to quantities evaluated at the element centroid Xc,
as depicted in Figure 7.3.

Next, the stabilization potential has to be constructed for the coupled problem. Fol-
lowing the recent works [6, 8, 169, 324], we introduce a non-linear stabilization procedure,
that takes the final form

Ustab(U−UΠ,h)|e =
∑

s∈{M,T}

βs

( nT∑

i

Ωi
e Ψs(C)|c − Ψs(CΠ)|c Ωe

)
(7.35)

with Ωi
e being the area of the i th triangle in the element e and nT is the number of

the internal triangles in e. The potential Ψs(C)|c is computed by applying a standard
FEM procedure, i.e. by first discretizing the virtual element domain Ωe into an internal
triangle (2D) / tetrahedral (3D) mesh as plotted in Figure 7.3. Then the potential is
evaluated at the centroid Xi

c of triangle i using a linear ansatz for the primary fields U,
see [329, 6, 169]. To obtain the triangularization of the virtual element, we have used the
triangulation algorithms provided byWolfram Mathematica 11.3 (www.wolfram.com)
software tool (Commands ToElementMesh or TriangulateMesh), which are very robust.
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Furthermore, the quality of the created triangulation can be controlled by user. The set
of stabilization parameters β for the coupled problem composes of

β :=
{
βM , βT

}
(7.36)

mechanical (elastic-plastic) part (M) and a thermal part (T). For the thermal problem,
we propose a constant value for βT taken from the interval:

0 < βT ≤ 1 . (7.37)

Note that for βT approaching zero, the thermal part of the potential U(U,h) in (7.33) will
depend only on the projection part Uc(UΠ,h), leading to rank deficiency. However when
βT = 1 the FEM results related to the internal mesh will be reproduced. The optimal ratio
extrapolated from various numerical examples is around βT ∈ [0.2, 0.6] see e.g. [6, 169],
here we chose βT = 0.4 in all the simulations. In case of a pure elastic-plastic state, the
stabilization parameter βM derives from the same procedure introduced in [169, 324, 8].
It takes the form

βM = min
{
0.4 ,

σVM

E α

}
, (7.38)

where σVM =
√

3/2 |s| is the von Mises stress, E is the Young’s modulus and α is the
equivalent plastic strain providing an approximation for the tangent of the hardening
curve. A numerical study of the influence of the stabilization parameter on the load-
deflection curves of the overall structural response will be investigated in Section 7.4.
Therein, the necessity of utilizing the softening part (σVM/E α) in the plastic state is
illustrated by means of the 3D Necking example, see Figure 7.11.

All further derivations leading to the residual vector Re and the tangent matrix Ke of
the virtual element were performed with the software tool AceGen. This yields for (7.33)
along with the potentials (7.34) and (7.35) the following:

Re =
∂U(Ue;he)

∂Ue

∣∣∣
he=const

and Ke =
∂Re

∂Ue

(7.39)

where the already calculated history variables are treated as fixed fields in (7.39) during
the first variation only, i.e. ∂Ue

he = 0. With these expressions at hand, we proceed further
to compute the global primary fields U in a typical Newton-type iterative solution step,
similar to standard FEM.

we adopt a global Newton-Raphson algorithm for the coupled problem, resulting to
the following linearized system

R+K ∆U = 0 with R =
ne

A
e=1

Re , K =
ne

A
e=1

Ke and U =
ne

A
e=1

Ue (7.40)

that determines at given global primary fields U their linear increment ∆U in a typical
Newton-type iterative solution step. This system of nonlinear equations has to be solved
in a nested algorithm, where the deformation map and the temperature field are the global
unknown variables.
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7.4. Representative numerical examples

In this section, the performance of the proposed two and three dimensional virtual ele-
ment formulation for modeling finite strain thermo-elasto-plastic problems will be demon-
strated by means of representative numerical examples. For comparison purposes, results
of standard finite elements (FEM) are also included. The material parameters for met-
als used in the simulations are obtained from the reference works [10, 287, 155] and are
outlined in Table 7.1.

Table 7.1: Material parameters used for the numerical examples.

No. Parameter Label Value Unit
1 Elastic modulus E 206.9 kN/mm2

2 Poisson ratio ν 0.29 –
3 Initial yield stress Y0 0.45 kN/mm2

4 Infinite yield stress Y∞ 1.165 kN/mm2

5 Hardening coefficient H 0.129 kN/mm2

6 Saturation exponent δ 16.93 –
7 Flow stress softening ω0 0.002 1/K
8 Hardening softening ωh 0.002 1/K
9 Dissipation factor ζ 0.9 –
10 Thermal expansion coefficient αT 0.000012 1/K
11 Thermal conductivity KT 0.045 kN/(sK)
12 Heat capacity c 0.003588 kN/(mm2K)

The following mesh types are introduced for the computations using the virtual element
method:

• 2D regular mesh with 4 noded quadrilateral elements denoted as Q1,

• 3D regular mesh with 8 noded hexahedral elements denoted as H1,

• 2D regular mesh with 8 noded quadrilateral elements denoted as Q2S,

• 2D/3D Voronoi cell mesh with arbitrary number of element nodes denoted as VO.

Note that all these meshes represent a first order virtual element discretization. In order
to test the robustness of VEM, the following finite element formulations were selected for
comparison:

• FEM-Q1/H1 denotes a standard first order finite element with linear interpolation
representing the Q1/H1 element types for 2D/3D, run on meshes introduced above,

• FEM-Q1P0/H1P0 denotes a Hu-Washizu mixed finite element with two addi-
tional element degrees of freedom p/θ yielding: ΨHW = ΨM(θ, be) + p(Je − θ). This
represents a regular mesh with a mixed Q1P0/H1P0 finite element which does not
lock in case of plastic incompressibility, see [289, 323, 227],
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• FEM-CG4/CG9 denotes a modified enhanced assumed strain, representing a stan-
dard first order finite element with linear interpolation of primary field and addi-
tionally a modified displacement gradient with internal 4/9 enhanced modes F :=

1+∇u+ H̃, where the enhanced displacement gradient H̃ is condensed out at the
element level. See [178, 325, 185, 326].

7.4.1. Necking of a bar. In the first numerical example, a high temperature dis-
tribution and heat dissipation arising due to mechanical loading are considered. To this
end, we investigate the necking phenomenon in a bar due to prescribed displacement along
axial direction, as outlined in [13, 11, 169]. This will be used to test the robustness of the
proposed virtual element formulation.

Two dimensional case:. For the 2D case, the geometrical setup and the boundary
conditions of the rectangular bar with height H = 1 mm and length L = 10 mm are
illustrated in Fig. 7.4. Plane strain is considered in this investigation. A geometrical
imperfection is introduced in the central zone to trigger necking and localization in the bar
center. Both edges of the bar are fixed, additionally a prescribed horizontal displacement
with magnitude of ū = 0.2L = 2 mm is applied at the right side.

Figure 7.4: 2D Necking of a bar. (a) Geometry and boundary conditions, (b) VEM
with Voronoi mesh and (c) regular Q1/Q2S finite element mesh.

Figure 7.5: 2D Necking of a bar. Contour plots of the equivalent plastic strain in
(a)–(d) and the absolute temperature field in (e)–(h) at different deformation states using
VEM-VO.
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Figure 7.6: 2D Necking of a bar: (a) Force-displacement and (b) temperature-
displacement curves for different types of elements.

Figure 7.7: 2D Necking of a bar. Distribution of the equivalent plastic strain α and the
absolute temperature field T at the final deformation state for all elements.

Figure 7.5 depicts the evolution of the equivalent plastic strain α in (a)–(d) and the
absolute temperature field T in (e)–(h) at different stages of deformations usingVEM-VO
mesh. We observe a huge plastic deformations as a necking zone and heat concentration
at the centre of the bar.

The load-displacement curves for different element formulations are demonstrated in
Figure 7.6(a). All elements recover the constant strain part before the necking occurs.
Thereafter, the virtual elements with regular meshes and the mixed finite element for-
mulation (FEM-Q1P0) yield close result, showing the very good response for very large
strains. Due to the thermo-mechanical coupling, a further softening response is noted
compared with the isothermal case as in [169]. The corresponding temperature evolution
is illustrated in Figure 7.6(b) for all element types at the centre of the bar. The results
for VEM-VO are a bit stiffer due to the distorted nature of the mesh. It was shown in
[169], that the distorted H1 mesh preforms much worse than regular H1 mesh.

Figure 7.7 shows a good agreement between all elements,except standard FEM-Q1,
in the necking area and the capability of the virtual element to solve finite thermo-
elasto-plastic strain problems. The meshes with FEM-Q1P0 and VEM-Q2S produce more
localized shapes than the other meshes. The Voronoi and especially Q1 example exhibit
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a stiffer response, which results in a larger necking diameter. This applies especially to
the deformation range of post initial softening behaviour.

Figure 7.8: 3D Necking of a cylindrical bar. Distribution of the equivalent plastic strain
α in (a)–(d) and the absolute temperature field T in (e)–(h) for different deformation states
using VEM-Voronoi.

Figure 7.9: Three dimensional necking of a cylindrical bar: (a) Force-displacement and
(b) Temperature-displacement curves for different types of elements.

Three dimensional case:. To illustrate the necking zone along with the temperature
evolution in a cylindrical bar under tension loading, we extend the two dimensional BVP
introduced in Figure 7.4 to three dimensional setting. The cylindrical bar diameter is
chosen to be D = H and the length is set to L. Figure 7.8 demonstrates the equivalent
plastic strain α and the absolute temperature field T evolutions for different deformation
stages using VEM-Voronoi. Furthermore, Figure 7.9 illustrates the load-displacement
curves and the corresponding temperature evolution for different element formulations.
Similar to the 2D case, the capability of VEM is comparable to using mixed/enhanced
finite elements (FEM-H1P0/CG9).

Next, the mesh convergence study was preformed based on three different FEM dis-
cretizations versus the virtual element formulation VEM-H1. Figure 7.10a demonstrates
the peak force versus the logarithmically scaled mesh sizes (N = {1, 2, 4, 8, 10}) of a hexa-
hedronal mesh with element division: NElements = 10N×N×N . The peak force converges
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Figure 7.10: Three dimensional necking of a cylindrical bar for various mesh sizes
(NElemnts = 10N ×N × N): (a) Convergence of the VEM and FEM resulting peak force
and (b) error estimate analysis at the peak force |F − F̄ | at logarithmic scale.

Figure 7.11: Three dimensional necking of a cylindrical bar with mesh size NElements =
80×8×8: Force-displacement curves for various values of β based on two different criteria:
(a) As proposed in eq. (7.38) and (b) for constant choice of β.

with the same ratio towards a constant value of around 0.711 for VEM-H1, FEM-CG9
and FEM-H1P0 elements compared with FEM-H1. The error analysis of the peak force
|F − F̄ | versus the mesh size is depicted in Figure 7.10b, where F̄ is the mean value of the
finer mesh. Thus we can conclude that VEM can reproduce the results of the enhanced
and mixed FEM on the same mesh. However convergence in the softening regime can-
not be achieved by standard FEM and VEM due to the mesh dependent nature of the
problem. One possibility to overcome this non-physical behavior are gradient-enhanced
plasticity models as regularization methods, which introduce a length scale, see for exam-
ple [10, 4, 229].

Finally, Figure 7.11 depicts the influence of the stabilization parameter β on the load-
deflection curves of the overall structural response. In Figure 7.11a, the proposed criteria
for the mechanical stabilization parameter βM := min

{
β , σV M

E α

}
in eq. (7.38) is used,

while in Figure 7.11b a constant β was chosen for the entire simulation βM := β. Note
that the thermal stabilization parameter, due to its small influence on the simulation, was
set to βT = β. Since the major heat generation is related to the mechanical part. The
results show that the value of β has barely any influence on the result until the peak force
is reached. In fact the error is in a range of 10−8. However β has a pronounce influence
in the softening response. In case of the constant stabilization parameter β, the elements
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exhibit volumetric locking behavior for bigger β, due to the internal tetrahedral mesh,
which prevents the triggering of softening behavior, as outlined in Figure 7.11b. However,
by defining β in terms of the plastic stress and strain ratio (7.38), our choice of β has
no influence on the softening part since the ratio will be active, i.e. β > σVM/E α, see
Figure 7.11a.

7.4.2. Forming of a steel bolt. The second model problem is concerned with
forming process of a steel bolt under both thermal and mechanical loading conditions, as
discussed in the reference works [32, 33].

Two dimensional case:. For the 2D case, the geometry and the coupled loading
on the specimen are given in Figure 7.12(a). The size of the specimen is chosen to be:
H = 50 mm and L = 20 mm under plane strain conditions. In the lower and upper parts
of the specimen the vertical displacement is constrained, as depicted in Figure 7.12(a).
The external heat source of h̄ = 5 kN/mms is applied for 1.6̄ s at the top face. After
that time the h̄ is set to zero and the specimen ”rests” without any load for 1.6̄ s. Then
a vertical displacement with magnitude of ū = 0.125H is applied at the upper part of the
specimen in 0.83̄ s.

The evolutions of the absolute temperature field T and the equivalent plastic strain α
for different states of the forming process are shown in Figure 7.13. Herein, we first apply
thermal loading as illustrated in Figure 7.14(b), resulting with thermo-elastic deformation
and increase of the temperature, as depicted in Figure 7.13(f)–(g). The plasticity starts to
initiate when the applied load reaches to a threshold, resulting in a cross shear localization,
as plotted in Figure 7.13(d). Thereafter thermo-plastic deformation continue to evolve
until the final forming of the bolt, see Figure 7.13(e),(j). The corresponding thermo-
mechanical load versus time curves for different element formulations are demonstrated
in Figure 7.14. All VEM type elements yield the same result as the FEM-Q1P0 and
CG4 elements. Figure 7.15 shows a good agreement between all elements for this forming
process of steel bolt.

Figure 7.12: Forming of a steel bolt. (a) Geometry and boundary conditions, (b) VEM
with Voronoi mesh and (c) regular Q1/Q2S finite element mesh.
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Figure 7.13: Forming of a steel bolt. Contour plots of the equivalent plastic strain in
(a)–(e) and the absolute temperature field in (f)–(j) at different deformation states using
VEM-Voronoi.

Figure 7.14: Forming of a steel bolt. (a) Force-time and (b) temperature-time curves
for different types of elements.

Three dimensional case:. In this case, a 3D extension of the two dimensional steel
bolt using VEM-VO is investigated as illustrated in Figure 7.16. The cylindrical bar
diameter is chosen to be D = L and the height is set to H . Hereby the shear band is
not that pronounced, since in this case an axisymmetrical response is obtained compared
with the 2D plane strain problem of Figure 7.13. Therefore the displacement load was
increased to ū = 0.25H until the final forming process. The load-displacement curves and
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Figure 7.15: Forming of a steel bolt. Distribution of the equivalent plastic strain α and
the absolute temperature field T at the final deformation state for all elements.

Figure 7.16: 3D Forming of a steel bolt. Distribution of the equivalent plastic strain α
in (a)–(f) and the absolute temperature field T in (g)–(l) at different deformation states
using VEM-VO.

the corresponding temperature evolution are qualitatively similar to the two dimensional
case and thus not shown here.
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8. Micromorphic approach for 3D gradient thermo-plastic solids

In the previous investigation of inelastic deformations (Chapter 6 and Chapter 7) the
local theory of plasticity was considered in the constitutive modeling. However, a sig-
nificant numerical limitation of that using the virtual/finite element techniques is the
pathological mesh dependency which leads to loss of ellipticity of the governing equa-
tions. To overcome this non-physical behavior in a coupled thermo-mechanical response,
an extended-gradient theory that accounts for micro-structure based size effects is out-
lined within this chapter. From the computational viewpoint, the finite element design of
the coupled problem is not straightforward and requires additional strategies due to the
difficulties near the elastic- plastic boundaries (EPBs). To simplify the finite element for-
mulation, we extend it towards the micromorphic approach to gradient thermo-plasticity
model in the logarithmic strain space. The key point is the introduction of dual local-
global field variables via a penalty method, where only the global fields are restricted by
boundary conditions. Hence, the problem of restricting the gradient variable to the plastic
domain is relaxed, which makes the formulation very attractive for finite element imple-
mentation. The contents of this chapter is based on the following publication Aldakheel
[11].

8.1. Introduction

The modeling of size effects in elastic-plastic solids must be based on non-standard
theories which incorporate length-scales. Hereby, additional internal variables and their
nonlocal counterparts can be introduced to reflect the micro-structural response. Vari-
ous observations underline the need for such extended continuum theories of inelasticity.
A first physically–based motivation is the experimentally observed increase in strength
of metallic structures with diminishing size, resulting from dislocation related hardening
effects, see for example Fleck et al. [128]. A further key motivation for the use of
strain gradient theory arises from the computation of localized plastic deformation in
softening materials with finite element techniques, yielding for local theories the patho-
logical mesh dependencies for zero length scale. To overcome this non-physical behavior,
gradient-enhanced plasticity models are used as regularization methods, which provide
the existence of a length scale, see for example De Borst & Mühlhaus [100], Liebe
& Steinmann [204] and Engelen et al. [116]. The gradient-enhanced models are
naturally rooted in the micro-mechanical descriptions of the dislocation flow in crystals,
where the plastic length scale is related to the lattice spacing. Associated models of gra-
dient crystal plasticity are proposed by many authors, e.g. Gurtin [150], Svendsen
& Bargmann [296], Wulfinghoff & Böhlke [335], Klusemann & Yalcinkaya
[182] and Miehe et al. [228]. In contrast, pure phenomenologically-based theories of
gradient plasticity often use plastic length scales as limiters of localized zones determined
by macroscopic experiments, see for example Forest & Sievert [132], Gudmundson
[148], Anand et al. [29], Reddy et al. [274], Fleck & Willis [126, 127], Poliz-
zotto [271], Forest [129, 130], Voyiadjis et al. [308], Kuroda & Tvergaard
[192] and Miehe et al. [227, 229].

Despite the fact that temperature distribution during heat accumulation has a strong
influence on the mechanical properties, thermal effects were not included in the consti-
tutive formulation of most of the recently developed strain gradient theories. Thermo-
mechanical problems can be seen in different engineering applications [87], which exhibit
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a two-side coupling phenomenon. First, the effects of the thermal field on the mechan-
ical field resulting in thermal expansion and temperature dependence of the mechanical
properties, for instance the bridge joint expansion/contraction and the buckled railway-
tracks as a result of changes in the ambient temperature. On the contrary, the action
of the mechanical field on the thermal field which lead to high temperature distribution
and heat dissipation, such as the frictional heating of disc brakes in automotive industry.
To this end, Wriggers et al. [327] investigate the thermo-mechanical behavior of the
necking problem in classical elasto-plasticity. Here the authors observed that, the devel-
opment of a neck in a uniaxial tension test is influenced by the heat production due to
inelastic deformation. Anand et al. [30] proposed a coupled thermo-mechanical elasto-
viscoplasticity theory to model strain rate and temperature dependent large-deformation
response of amorphous polymeric materials. A variational formulation for the thermo-
mechanical coupling in finite strain plasticity theory with non-linear kinematic hardening
is outlined in Canadija & Mosler [76] based on the works Yang et al. [337] and
Stainier & Ortiz [293]. However no size effects were involved in the constitutive for-
mulation. This has motivated Voyiadjis & Faghihi [309] and Faghihi et al. [117] to
propose a nonlocal thermodynamic consistent framework with energetic and dissipative
gradient length scales that addressing the coupled thermal and mechanical responses of
materials in small scales and fast transient process. In this context, Forest & Aifan-
tis [131] introduced some links between recent gradient thermo-elasto-plasticity theories
and the thermo-mechanics of generalized continua based on the micromorphic approach.
Extensions to an anisotropic model for gradient thermo-plasticity can be seen in the work
of Bertram & Forest [56]. Recently Wcislo & Pamin [311] developed a gradient-
enhanced thermomechanical model that is strictly related to the phenomenon of thermal
softening. It incorporates higher order gradients of the temperature field. In this work,
we extend the above mentioned gradient plasticity model introduced in Miehe et al.
[229] to account for thermal effects at finite deformations in the logarithmic strain space.
The key goal of this work is the extension towards the micromorphic regularization of
the coupled problem to simplify the mixed finite element formulation as outlined in the
recent works Miehe et al. [238, 233]. This is achieved by considering an extended set
of plastic variables which are linked by penalty term in a modified energetic response
function as discussed in Forest [129, 130] and Miehe et al. [238]. The advantage of
such a formulation lies on the computational side, in particular on the side of gradient
plasticity. It allows a straightforward finite element formulation of gradient plasticity that
does not need to account of sharp plastic boundaries. From the numerical implementation
aspects, an operator split scheme is considered for the coupled problem, in line with our
recent works Aldakheel [10] and Aldakheel & Miehe [13] at small strains. It leads
to a two step solution procedure ALGOTM = ALGOThermo ◦ ALGOMech, where the me-
chanical and thermal problems are solved separately. The idea here is to decompose the
coupled field equations of finite gradient thermo-plasticity into an elasto-plastic problem
ALGOMech with frozen temperature, followed by a heat conduction problem ALGOThermo

at fixed updated mechanical configuration. These two sub-problems are then coupled via
the plastic structural heating and the mechanical dissipation. Due to the two steps solu-
tion procedure, we end up with a symmetric structure for each sub-problem, for further
details on the numerical analysis, we refer to our recent work Aldakheel & Miehe [13]
at small strains.
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Figure 8.1: Primary fields. a) The macro-motion field ϕ is constrained by the
Dirichlet- and Neumann-type BCs ϕ = ϕD on ∂Bϕ and P ·n = t̄ on ∂Bt. b) The absolute
temperature field θ is constrained by the Dirichlet- and Neumann-type BCs θ = θD on ∂Bθ

and Q · n = h̄ on ∂Bh. c) The long-range micro-motion field α is restricted by the con-
ditions α = αD on ∂Bα and ∂∇αΨ · n = 0 on ∂Bf . d)-e) The short-range micro-motion
fields εp and ᾱ are locally defined and not constrained by boundary conditions.

8.2. Introduction of Primary Field Variables

8.2.1. Deformation map and temperature field. Let B ∈ Rd with d = 2, 3 be
the reference configuration of the body of interest. We study thermo-elasto-plastic defor-
mations at time t ∈ R+, described by the deformation map ϕ(X, t) and the temperature
field θ(x, t) > 0

ϕ :

{
B × T → R3

(X, t) 7→ x = ϕ(X, t)
θ :

{
B × T → R
(X, t) 7→ θ(X , t)

(8.1)

as depicted in Figure 8.1. The material deformation gradient is defined by F := ∇ϕt(X)
with J := det[F ] > 0. The solid is loaded by prescribed deformations and external
traction on the boundary, defined by time-dependent (”active”) Dirichlet- and Neumann
conditions

ϕ = ϕ̄(X, t) on ∂Bϕ and Pn = t̄(X, t) on ∂Bt (8.2)

on the surface ∂B = ∂Bϕ ∪ ∂Bt of the undeformed configuration. The first Piola stress
tensor P is the thermodynamic dual to F . For the thermal problem, the time-dependent
(”active”) Dirichlet- and Neumann conditions of the absolute temperature field θ are
defined as

θ = θD on ∂Bθ and Q · n = h̄ on ∂Bh (8.3)

with a prescribed temperature field θD and heat flux h̄. Note that the nominal heat flux
vector Q = JF−1q is given by Fourier’s law which states that heat exchanges always from
hotter to colder regions, i.e.

q := −K∇θ (8.4)

where ∇θ is the gradient of the temperature field and K is the thermal conductivity which
must be positive (K > 0) in order to achieve thermodynamical consistency. Following
Miehe et al. [223], we focus on a phenomenological setting of finite thermo-plasticity
based on an additive decomposition of a Lagrangian Hencky strain ε. This allows to
defines a stress producing elastic strain measure

εe := ε− εp − εθ with ε :=
1

2
lnC and C := F TgF , (8.5)
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where C is the right Cauchy-Green tensor, i.e. the representation of the Eulerian standard
metric g in the reference configuration. The Lagrangian plastic strain measure εp is chosen
as a local internal variable. It starts to evolve from the initial condition εp(X, t0) = 0 .
The thermal contribution to the total deformation is defined as

εθ = αT (θ − θ0)1 (8.6)

representing an expansion of the body under thermal loading. Here, αT is the linear
thermal expansion modulus and θ0 a reference temperature.

8.2.2. Isotropic strain-gradient plasticity. We consider a framework of isotropic
gradient plasticity in the micromorphic regularization setting. To this end, a scalar
isotropic hardening variable α(X, t) is introduced, that defines the micromorphic harden-
ing variable by the modified Helmholtz equation

α− l2mp∆α = ᾱ (8.7)

determining the link of the local equivalent plastic strain variable ᾱ to the micromorphic
variable α, in line with the pioneering works of Engelen et al. [116], Geers et al.
[139], Peerlings et al. [265, 266] and Forest [129]. lmp is the plastic length scale in the
micromorphic setting, that accounts for size effects to overcome the non-physical mesh
sensitivity of the localized plastic deformation in softening materials. The generalized
internal variable field α is considered as passive in the sense that an external driving
is not allowed. This is consistent with the time-independent (passive) Dirichlet- and
Neumann conditions

α = 0 on ∂Bα and ∇α · n = 0 on ∂B∇α (8.8)

on the surface ∂B as illustrated in Figure 8.1, defining ”micro-clamped” and ”free” con-
straints for the evolution of the plastic deformation. Note carefully, that the variable α is
now defined in the full domain, and not restricted to the plastic zone. Whereas the linear
hardening variable ᾱ is locally defined by the ordinary differential evolution equation

˙̄α =

√
2

3
||ε̇p|| with ˙̄α ≥ 0 . (8.9)

8.2.3. Global primary fields and constitutive state variables. The above intro-
duced variables will characterize a multi-field setting of thermo-mechanical strain gradient
plasticity based on three global primary fields

U := {ϕ, θ, α} , (8.10)

the deformation map ϕ, the absolute temperature field θ and the micromorphic hardening
variable α. In addition, the plastic strain field εp and the local equivalent plastic strain
ᾱ serve as additional local primary fields, as demonstrated in Figure 8.1. The subsequent
constitutive approach to the coupled gradient thermo-plasticity focuses on the set

C := {ε, εp, ᾱ, θ, α,∇θ,∇α} . (8.11)

The gradient of the plastic strains do not enter the constitutive state. Thus, εp and ᾱ are
short-range variables, whose evolution are described by an ODE, while the micromorphic
hardening variable α is a long-range field with a PDE-type evolution.
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8.3. Constitutive Functions of the Coupled Problem

8.3.1. Energetic response function. With the constitutive state variables intro-
duced in (8.11), the free energy function for the coupled thermo-mechanical strain gradient
plasticity at finite strains takes the form

Ψ̂(C) = U(J) + Ψ̄e
log(ε̄

e) + Ψ̄p(ᾱ, α,∇α; θ) +M(J, θ) + T (θ) . (8.12)

Elastic contribution. The isotropic elastic contribution is assumed to be a quadratic
function and is decomposed into volumetric and isochoric parts as

U(J) =
κ

2
(J − 1)2 and Ψ̄e

log(ε̄
e) = µ ||ε̄e||2 , (8.13)

in terms of the elastic bulk modulus κ and the shear modulus µ. In this model, both κ
and µ are considered as constants material parameters. The isochoric elastic strain tensor
is defined in the logarithmic strain space as

ε̄e := ε̄− εp with ε̄ :=
1

2
ln C̄ and C̄ := J−2/3C (8.14)

Plastic contribution. The plastic part of the energy function (8.12) is decomposed
into local and gradient parts, in terms of variables which describe the strain gradient
hardening effect. For the modeling of length scale effects in isotropic gradient plasticity,
we focus on the micromorphic hardening variable α and its gradient ∇α in addition to
the local equivalent plastic strain ᾱ. It is assumed to have the form

Ψ̄p =
h(θ)

2
ᾱ2 + [y∞(θ)− y0(θ)](ᾱ + exp[−δᾱ]/δ) +

µl2p
2
||∇α||2 + ǫp

2
(ᾱ− α)2 . (8.15)

The first and second contributions characterize a local plastic hardening and thermal
softening mechanism. lp ≥ 0 is a plastic length scale related to a strain-gradient hardening
effect. The local variable ᾱ is then linked to the global micromorphic field variable α by
the quadratic penalty term, where ǫp is an additional material parameter. Note that for
ǫp → ∞ the above micromorphic extensions recover the original setting of the gradient-
extended theory introduced in Miehe et al. [229]. The three temperature dependent
material parameters y0 > 0, y∞ ≥ y0 and h ≥ 0 in (8.15) defined as

h(θ) := h
[
1− wh(θ − θ0)

]

y0(θ) := y0
[
1− w0(θ − θ0)

]

y∞(θ) := y∞
[
1− wh(θ − θ0)

]
(8.16)

as outlined in Simo & Miehe [288], where wh is the hardening/softening parameter, w0

is the flow stress softening parameter and δ is the saturation parameter. The initial yield
stress y0 determines the threshold of the elastic response. Note that the parameters: δ,
µ, lp and ǫp are considered as constants in equation (8.15).3

3The shear modulus µ could be also dependent on the temperature as suggested in Boyce et al.
[70] through the empirical relation

µ̂(θ) = exp
[
log(µ0)− Cs(θ − θ0)

]
(8.17)

in terms of the modulus µ0 at the reference temperature θ0 and a sensitivity parameter Cs.
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Figure 8.2: Canonical versus micromorphic formulation of gradient plasticity. Standard
one-dimensional finite element solutions of gradient plasticity for a) canonical setting
results in nonphysical oscillations at the elastic-plastic boundary, which are relaxed in b)
by the micromorphic approach according to equation (8.24).

Thermoelastic contribution. The coupled thermoelastic part of the free energy is
linear and has the simple form

M(J, θ) = −καT (J − 1)(θ − θ0) , (8.18)

where αt is the thermal expansion coefficient and θ0 is the reference temperature.

Thermal contribution. The purely thermal part is defined as

T (θ) = c
[
(θ − θ0)− θ ln

θ

θ0

]
, (8.19)

where c is the heat capacity coefficient.

8.3.2. Dissipative response function. For the subsequent modeling of thermo-
plasticity, we introduce dissipative force fields on the solid domain B dual to the consti-
tutive state C introduced in (8.11) as

s̄ := −∂εpΨ̂ , fα := ∂ᾱΨ̂ , δαΨ̂ = 0 . (8.20)

where s̄ is dual to εp and fα dual to ᾱ. For a simple model of von Mises-type gra-
dient thermo-plasticity, the yield criterion function based on the driving forces and the
temperature field θ is defined as

χ(fα, s̄, θ) := ||s̄|| −
√

2
3

[
y0(θ) + fα

]
(8.21)
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where y0(θ) is the temperature dependent yield strength defined in (8.16). With the yield
function at hand, one can define the dual dissipation function for gradient-type thermal
viscoplasticity according to Perzyna–type viscoplasticity model as

Φ∗(fα, s̄, θ) :=
1

2ηp

〈
||s̄|| −

√
2
3

[
y0(θ) + fα

]〉2

(8.22)

with ηp being the viscosity parameter that accounts for rate dependency. Here, 〈x〉 :=
(x + |x|)/2 is the Macaulay bracket. In equation (8.20), δαΨ̂ denotes the variational

derivative of Ψ̂ with respect to the global micromorphic variable α, defining the additional
micromorphic balance equation that links the local variable ᾱ to the global field α

δαΨ̂ = ∂αΨ̂− Div [ ∂∇αΨ̂ ] = 0 , (8.23)

along with the Neumann-type boundary conditions defined in equation (8.8). Taking the
necessary derivatives, we end up with the modified Helmholtz equation determining the
link of the local variable ᾱ to the micromorphic variable α

α− l2mp∆α = ᾱ with lmp := lp
√
µ/ǫp (8.24)

where lmp is the plastic length scale of the micromorphic theory4. Note carefully, that
the variable α is now defined in the full domain, and not restricted to the plastic zone.
Whereas the linear hardening variable ᾱ is locally defined by the ordinary differential
evolution equation introduced in (8.9). This provides a substantial simplification with
regard to the finite element implementation without tracking of elastic-plastic boundaries.
To this end, we depict in Figure 8.2a a one-dimensional finite element solutions of gradient
plasticity for canonical setting in which the global equivalent plastic strains evolution is
˙̄α = ∂fαΦ∗, see Miehe et al. [229], which is restricted to the plastic domain resulting in
nonphysical oscillations at the elastic-plastic boundary, these are relaxed in Figure 8.2b
by the micromorphic approach according to equations (8.23) and (8.24).

8.3.3. Local-global constitutive equations. The balance and evolution equations
describing the coupled problem are split up into Local and Global constitutive equations
in the micromorphic regularization setting as

1. Stress equilibrium Div [ ∂F Ψ̂ ] = 0

2. Micromorphic hardening ∂αΨ̂− Div [ ∂∇αΨ̂ ] = 0

3. Temperature field c θ̇ +Div [Q]−Dred
loc = 0





(G)

4. Hardening force ∂ᾱΨ̂− fα = 0

5. Plastic force ∂εpΨ̂ + s̄ = 0

6. Equivalent strain − ˙̄α + ∂fαΦ∗ = 0

7. Plastic strains ε̇p − ∂s̄Φ∗ = 0





(L)

(8.26)

4If the shear modulus µ = µ̂(θ) is assumed to be temperature dependent, additional term must be
defined in equation (8.24) to account for thermal effects

α− l2p

ǫp
µ̂(θ) ∆α− l2p

ǫp
∂θµ̂(θ) ∇θ · ∇α = ᾱ with ∂θµ̂(θ) = −Cs µ̂(θ) (8.25)

as outlined in the work of Forest [129].
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26.67

26.67
ū

Figure 8.3: Necking of cylindrical bar. Geometry and boundary conditions. Due to the
symmetry of the boundary value problem only the shaded area is discretized.

in terms of the reduced local dissipation density function defined as

Dred
loc = ∂ε̄Ψ̂ : ε̇p − ∂ᾱΨ̂ ˙̄α− ∂αΨ̂α̇− ∂∇αΨ̂ · ∇α̇ (8.27)

along with the Neumann-type boundary conditions

∂F Ψ̂ · n = t̄ on ∂Bt , ∂∇αΨ̂ · n = 0 on ∂Bf and Q · n = 0 on ∂Bh (8.28)

associated with the macro-motion field ϕ, the micromorphic hardening variable α and
the absolute temperature field θ. Here, P is denoted as the energetic first Piola nominal
stress defined as

P := ∂F Ψ̂ = ∂εΨ̂ : Plog with Plog := ∂F ε (8.29)

in terms of the fourth-order nominal transformation tensor Plog outlined in the work of
Miehe & Lambrecht [222]. To solve for the above system of equations (8.26), we
applied staggered solution scheme in line with our recent work Aldakheel & Miehe
[13].

8.4. Representative Numerical Example

The capability of the model is pointed out by investigating the necking of cylindrical
bar subjected to tensile loading. The geometric setup and the boundary conditions of the

Table 8.1: Material parameters used for the numerical examples.

No. Parameter Name Value Unit
1. κ bulk modulus 164.2 GPa
2. µ shear modulus 80.2 GPa
3. h hardening parameter ± 0.13 GPa
4. ǫp penalty parameter 4.0 GPa
5. y0 yield stress 0.45 GPa
6. ηp viscosity 10−7 GPa.s
7. αt expansion coefficient 10−5 K−1

8. K thermal conductivity 0.045 KN/sK
9. c heat capacity 3.588 · 10−3 GPa/K
10. wh thermal softening 0.002 K−1

11. w0 flow stress softening 0.002 K−1

12. y∞ infinite yield stress 1.165 GPa
13. δ saturation parameter 16.96 –
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Figure 8.4: Necking of cylindrical bar. Distribution of the micromorphic hardening
variable α and the incremental temperature field θ at the final deformation ū = 10.0 mm
in combination with several plastic length scales parameter. a)–b) Local analysis (lp = 0.0
mm), c)–d) lp = 0.2 mm, and e)–f) lp = 0.5 mm.
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Figure 8.5: Necking of cylindrical bar. Temperature-time curves at the center of the
specimen for three different plastic length scales lp.

cylindrical bar with radius 6.4135 mm are illustrated in Figure 8.3. To trigger localization
in the center of the specimen, the yield limit y0 in the center is reduced by 10%. The
material parameters used in this example are given in Table 8.1 for metals. Regarding to
the selection of the material parameters we refer to the works of Hallquist [155], Simo
[287] and Simo & Miehe [288]. Figure 8.4 depicts the distribution of the micromorphic
hardening variable α and the incremental temperature field θ at the final deformation
ū = 10.0 mm for several plastic length scales parameter lp. For local plasticity, a sharp
necked zone with concentrated micromorphic hardening variable α and temperature field
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Figure 8.6: Necking of cylindrical bar. Load-displacement curves for two different mesh
sizes: a) For local plasticity lp = 0 mm and b) gradient plasticity with lp = 0.2 mm.

θ is illustrated in Figure 8.4a for α and Figure 8.4b for θ. By increasing lp the necking
zone smears out and the hardening variable α as well as the temperature field θ will spread
over several elements. Figure 8.5 demonstrates the influence of the plastic length scale
on the temperature evolution over time at the center of the specimen. As documented
in Figure 8.4, for local plasticity the temperature field θ has the highest value and by
increasing the plastic length scale lp the maximum value will be decreased. As the length
scale parameter lp ∝ 1/L with L being the macroscopic characteristic size, increasing the
plastic length scale is equivalent to a decrease in specimen size and, thus, temperature
dissipates faster from a small size medium as illustrated in the work of Faghihi et al.
[117], Voyiadjis & Faghihi [309]. The load-displacement curves of the overall structural
response are illustrated in Figure 8.6. For local theory of plasticity, mesh sensitive results
are observed in Figure 8.6a. In contrast, Figure 8.6b shows results for gradient plasticity
with lp = 0.2 mm and two different mesh sizes, where mesh objectivity is obtained.
Thus, the incorporation of the length scale parameter lp enables us not only to predict a
size-independent structural response, but also to control the shape of the necking zone.
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9. Conclusion and outlook

9.1. Global-Local approach for multi-physics problems at fracture

In Part I of this work, a robust and efficient Global-Local (GL) approach for treating
phase-field fracture problems was developed. Such a multi-scale schemes are advantageous
when large-scale problems are considered in which the fracture state only develops in
smaller, localized, regions. The first aim was to extend the phase-field model to multi-
physics problems at fracture. Next, an adaptive scheme was utilized in which the local
domains were advanced dynamically during a computation. This approach was realized
in terms of a predictor-corrector scheme. Hereby the new local domains are predicted and
then the solution is again computed considering the new local regions. In this regard,
the interface conditions represent an important challenge for the coupling of the two-
nested models denoted by the local and global domains in a variational consistent way.
For that purpose Robin-type boundary conditions were formulated to efficiently relax
the stiff Local response at the Global scale and enhance the stabilization of the iterative
Global-Local approach. Moreover, non-matching grids were allowed such that the local
and global domains can be updated independently of any additional conditions on the
mesh.

In the numerical tests, it was shown that the GL approach besides its feasibility
for having two different element formulations for the global and local domain, enabled
computations with legacy codes. Additionally, it required significantly less degrees of
freedom than the single-scale model, leads to a remarkable reduction of the computational
time. In particular, the GL approach was up to few hundred times faster than the standard
phase-field formulation (single-scale solution) in the numerical examples. Yet, an excellent
performance of the proposed framework in all examples was observed.

In summary, key aspects of Part I were:

• A modular framework for a phase-field formulation of fracture;

• GL approach in order to capture the full Local resolution at the Global level;

• Robin-type boundary conditions between the Local and the Global domains;

• A non-matching element discretization for achieving sufficient regularity along the
coupling interface;

• A predictor-corrector adaptive scheme in which the Local domains are dynamically
updated during the computation;

• A coarse representation of the crack phase-field at the Global level;

• A microscale model for Local failure in multi-physics environments.

In the last section of this Part, the focus was put on the Local (lower) scale by developing
a micromechanical model for failure in multi-physics problems. Here, the average size of
this heterogeneous Local domain is much smaller than its Global specimen size. This was
achieved using the recently developed virtual element method (VEM).

As a future direction, the 2D multi-scale approach will be further extended to a three-
dimensional setting at finite strains.
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9.2. Virtual Elements for engineering applications

Part II of this work explored the recently developed virtual element method (VEM)
as a new discretization scheme for solving failure-mechanics problems numerically. In
comparison with different element technologies VEM had proven to be a competitive
discretization scheme for meshes with highly irregular shaped elements that can even
become non-convex. It represents a generalization of the finite element method FEM,
which has inspired from modern mimetic finite difference schemes. In this regard, a
stabilization procedure was required in the virtual element method.

The performance of the virtual element method was comparable to using finite ele-
ments of higher order. Moreover, locking-free behavior was observed here, even at finite
plastic strain states. In case of a severe distortion of the element, VEM showed more ro-
bust behavior than FEM. However, this comes with extra computational costs due to the
additional amount of data required in the stabilization term to store the triangulation.
Furthermore the preprocessing of meshes was more demanding in VEM (e.g. voronoi
3D cells). Numerically, a robust and efficient monolithic scheme was employed using the
software tool AceFEM program in the implementation to compute the unknowns;

In summary, the key points of this Part were:

• VEM for the variational phase field modeling of isotropic brittle and ductile fracture;

• Extension towards three-dimensional multi-physics problems;

• Coupled thermomechanical response of gradient plasticity.

In the last section of this Part, the focus was put on gradient-extended framework of
inelasticity to overcome the non-physical mesh dependency response of local theory.

This element technology is amenable to extensions of various kinds: for example to
solid-fluid interaction, 3D contact mechanics and 3D fracture and damage mechanics
problems. These topics await investigation. Finally, in Part I of this Habilitation, we
demonstrated the flexibility of the Global-Local approaches in handling different spatial
discretizations, i.e. VEM (Local-domain) / FEM (Global-domain) as sketched in Figure
1.3. Hence, a link between Part II and part I of this contribution is an open challenging
task to be considered in future works.
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[109] Dittmann, M.; Krüger, M.; Schmidt, F.; Schuß, S.; Hesch, C.
[2018]: Variational modeling of thermomechanical fracture and anisotropic fric-
tional mortar contact problems with adhesion. Computational Mechanics.
https://doi.org/10.1007/s00466-018-1610-9.

[110] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.;
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