Descriptive Complexity of
Circuit-Based Counting Classes

Von der Fakultat fur Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor rerum naturalium
(abgekurzt: Dr. rer. nat.)
genehmigte

Dissertation

von Herrn

M. Sc. Anselm Haak

2021

1. Referent: Prof. Heribert Vollmer, Leibniz Universitat Hannover
2. Referent: Prof. Till Tantau, Universitat zu Libeck

Tag der Promotion: 29.09.2021

Acknowledgements

I wish to thank my supervisor Heribert Vollmer, who introduced me to the beauty
of theoretical computer science in his lectures and taught an intuitive and accessible
approach to theory. I'm deeply grateful for the support and joint research during my
time as a PhD student, and for him being a great boss.

I thank Arnaud Durand and Juha Kontinen, who were co-authors for some of the
papers this thesis is based on, for productive and fruitful collaboration. Also, I thank
Raghavendra Rao for our recent collaboration, as well as Lauri Hella for interesting
discussions on a few occasions (leading in particular to the use of game semantics in
Definition [3.1).

I thank my colleagues Arne Meier, Jonni Virtema, Fabian Miiller, Yasir Mahmood,
Rahel Becker, Timon Barlag and Sabrina Gaube, and former colleagues Martin Luck,
Maurice Chandoo, Irina Schindler, and Anca Vais for many discussions and conversa-
tions, both theory-related and on other aspects of life. Martin, Maurice and Fabian in
particular already accompanied me during undergraduate studies. I'm thankful for
valuable feedback and comments on my thesis by Fabian, Timon, Sabrina, Arne, and
Gerion.

I deeply thank my parents and sister for always being there for me, and always having
an open ear for me.

Danksagung

Ich danke meinem Doktorvater Heribert Vollmer, der mir die Schonheit der Theoreti-
schen Informatik in seinen Vorlesungen nahergebracht und immer ein intuitives und
zugangliches Herangehen an die Theorie gelehrt hat. Ich bin ihm sehr dankbar fiir seine
Unterstiitzung und Zusammenarbeit wahrend meiner Zeit als Doktorand und dafiir,
dass er ein fantastischer Chef ist.

Ich danke Arnaud Durand und Juha Kontinen, Mitautoren eines Teiles der Paper, die
dieser Arbeit zugrunde liegen, fiir die produktive und ergebnisreiche gemeinsame For-
schung. Auch danke ich Raghavendra Rao fiir unsere kurzliche gemeinsame Forschung,
und Lauri Hella fir interessante Diskussionen zu verschiedenen Gelegenheiten. (Diese
fuhrten insbesondere dazu, Spielsemantik fir Definition [3.1]zu verwenden.)

Ich danke meinen Kollegen Arne Meier, Jonni Virtema, Fabian Miiller, Yasir Mahmood,
Rahel Becker, Timon Barlag und Sabrina Gaube, und meinen ehemaligen Kollegen
Martin Liick, Maurice Chandoo, Irina Schindler und Anca Vais fiir viele Diskussionen
und Gesprache, sowohl fachlich als auch zu anderen Aspekten des Lebens. Martin,
Maurice und Fabian haben mich insbesondere bereits wahrend meiner Zeit im Studium
begleitet. Ich bin Fabian, Timon, Sabrina, Arne und Gerion dankbar fiir wertvolles
Feedback und Kommentare zu meiner Dissertation.

Ganz besonders danke ich meinen Eltern und meiner Schwester dafiir, dass sie immer
fir mich da sind und immer ein offenes Ohr fur mich haben.

iii

Abstract

In this thesis, we study the descriptive complexity of counting classes based on Boolean
circuits. In descriptive complexity, the complexity of problems is studied in terms of
logics required to describe them. The focus of research in this area is on identifying
logics that can express exactly the problems in specific complexity classes. For example,
problems are definable in ESO, existential second-order logic, if and only if they are
in NP, the class of problems decidable in nondeterministic polynomial time. In the
computation model of Boolean circuits, individual circuits have a fixed number of inputs.
Circuit families are used to allow for an arbitrary number of input bits. A priori, the
circuits in a family are not uniformly described, but one can impose this as an additional
condition, e.g., requiring that there is an algorithm constructing them. For any circuit
there is a function counting witnesses (or proofs) for the circuit producing the output
1. Consequently, any class of Boolean circuits has a corresponding class of counting
functions.

We characterize counting classes in terms of counting winning strategies in the model-
checking game for different logics extending first-order logic, namely the classes #ACY,
#NC!, #SAC!, and #AC!. These classes restrict circuits to constant or logarithmic
depth and in some cases also with respect to the fan-in of gates. In the case of the
logarithmic-depth classes, this also requires new characterizations of the corresponding
classes of Boolean circuit, as known results do not seem suitable for this approach. Our
characterization of #AC? also leads to a new characterization of the related class TCY.
Our results apply both in the non-uniform as well as the uniform setting.

We put our new characterization of #AC? into perspective by studying connections to
another logic-based counting class, #FO. This class is known to coincide with #P, the
class of functions counting the number of accepting computation paths of NP-machines.
We study a variant of #FO and the alternation hierarchy inside this class, as well as its
connections to the class #AC°.

Finally, we observe that often it is easier to characterize non-uniform circuit complex-
ity classes than their uniform counterparts. This lends hope to the idea that characteriza-
tions of uniform classes could directly imply corresponding results in the non-uniform
setting. We prove that this is true for a wide variety of classes, in particular for all classes
we consider in this thesis.

Keywords: descriptive complexity, Boolean circuits, arithmetic circuits, counting com-
plexity, finite model theory

iv

Zusammenfassung

In dieser Arbeit untersuchen wir die deskriptive Komplexitat von Zahlklassen, die auf
Boole’schen Schaltkreisen basieren. In der deskriptiven Komplexitat wird die Kom-
plexitat von Problemen anhand zur Beschreibung erforderlicher Logiken untersucht.
Im Fokus steht dabei die Suche nach Logiken, die genau die Probleme in bestimmten
Komplexitdtsklassen ausdriicken konnen. Zum Beispiel lassen sich Probleme genau
dann in ESO, existenzieller Pradikatenlogik zweiter Stufe, ausdriicken, wenn sie in der
Klasse NP liegen, also nichtdeterministisch in Polynomialzeit entscheidbar sind. Im
Berechnungsmodell der Boole’schen Schaltkreise haben einzelne Schaltkreise eine feste
Anzahl von Eingangen. Deshalb werden Schaltkreisfamilien verwendet, um beliebi-
ge Eingabeldangen zu ermoglichen. A priori sind die Schaltkreise einer Familie nicht
uniform beschrieben, aber dies kann zusatzlich gefordert werden, z. B. in Form eines
Algorithmus, der sie konstruiert. Es konnen zudem Funktionen betrachtet werden, die
Zeugen (oder Beweise) dafur zahlen, dass ein Schaltkreis seine Eingabe akzeptiert. So
ergibt sich fiir jede Klasse von Boole’schen Schaltkreisen eine entsprechende Klasse von
Zahlfunktionen.

Wir charakterisieren Zahlklassen mittels des Zahlens von Gewinnstrategien in Mo-
dellprifspielen verschiedener Erweiterungen der Pradikatenlogik, genauer die Klassen
#ACO, #NC!, #SAC! und #AC!. Diese sind auf konstante oder logarithmische Tiefe und
teils auch in Bezug auf den Eingangsgrad von Gattern beschrankt. Im Falle logarith-
mischer Tiefe erfordert dies neue Charakterisierungen der entsprechenden Klassen
Boole’scher Schaltkreise, da die bekannten Resultate fiir diesen Ansatz nicht geeignet
erscheinen. Unsere Charakterisierung von #AC? fiihrt zudem zu einer neuen Charakte-
risierung der verwandten Klasse TC?. Unsere Resultate gelten im uniformen wie auch
im nicht-uniformen Fall.

Wir setzen unsere Charakterisierung von #AC? in Bezug zu bekannten Resultaten.
Dazu untersuchen wir Beziehungen zu einer weiteren logikbasierten Zahlklasse, #FO.
Diese fallt bekanntermafen mit #P zusammen, der Klasse aller Funktionen, die die An-
zahl der akzeptierenden Berechnungspfade von NP-Maschinen zahlen. Wir betrachten
eine Variante von #FO und die Alternierungshierarchie darin, sowie ihre Verbindungen
zur Klasse #ACY.

Schliefslich beobachten wir, dass nicht-uniforme Klassen oft einfacher zu charakteri-
sieren sind als ihre uniformen Gegenstiicke. Das fiihrt zu der Hoffnung, dass Charakteri-
sierungen uniformer Klassen direkt entsprechende Resultate fiir nicht-uniforme Klassen
implizieren. Wir beweisen, dass dies fiir eine Vielzahl von Klassen, insbesondere alle
hier betrachteten, der Fall ist.

Schlagworte: Deskriptive Komplexitat, Boole’sche Schaltkreise, Arithmetische Schalt-
kreise, Zahlkomplexitat, Endliche Modelltheorie

Contents

(1__Introductionl

[I.T First-Order Logic|,
(2 Counting CompIexity] - « - - « « v v v oo e
[I.3 Circuit Complexity] 5
.4 Descriptive Compleriiy] . « - « « « v v o e e e e 11

S Q=

[L5 Contributions| 13
(1.6 Publicationsl 15
l2_Preliminariesl 17
[2.1 Complexity Theory|, 17
[2.2 First-Order Logic and Extensions| 35
[2.3 Descriptive Complexity] 48
[2.4 Choice of Uniformity| 53
[3 Counting Witnesses in First-Order Logic| 57
[3.1 A Counting Class Based on First-Order Logic| 57
[3.27 Counting in First-Order Logic: Choice of Modell 63
B3 Conclusion| 67
[4 Characterizing Constant-Depth Classes| 69
4.1 A Model-Theoretic Characterization of #ACY. 69
4.2 A Model-Theoretic Characterization of TCY 78
43 Conclusion] L 85
[5 Putting the Characterization of #AC" into Perspective| 87
5.1 Relationship Between the Characterizations of #ACY and #P|. 89
5.2 An Alternation Hierarchy in #FO] 91
5.3 Feasibilityof #3| L 98
5.4 Hierarchy Based on the Number of Universal Quantifiers| 103
5.5 #AC' Compared to the Classes of Salujaetal| 106
5.6 Conclusion and Outlookl L. 108
[6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes| 111
6.1 Guarded Predicative Recursion| 112
[6.2 Model-theoretic Characterizations of Small Depth Decision Classes| . . 117
[6.3 Model-theoretic Characterizations of Small Depth Counting Classes| . . 125
6.4 Conclusion and Outlook| 131

vi

Contents

[/ Transferring Characterizations from the Uniform to the Non-uniform Setting| 133

[7.1 Non-uniformity Via Advice Functions in Circuit Complexity| 134
[7.2Non-uniformity Via Advice Functions in Logics| 149
73 Conclusionand Outlookl 160
: grap 171
ICurriculum Vitael 173
LList of Publicationsl 175

vii

List of Figures

(1.1 An example of a Boolean circuiton 7 inputs| 6
1.2 Relationship between central counting classes in this thesis| 10
1.3 Alternation hierarchy in #FO and relationship to #AC%. 14
[2.1 Relationship between central counting classes in this thesis and relevant |

relationships tootherclasses| 30
[2.2 Counting arithmetic circuit for the function f(w) = [w|™V21| 33
[2.3 The structure A in Example[2.25[. 46
4.1 Construction of an alternating circuit{. 71
4.2 #ACY is closed under polynomially padded concatenation| 83
[5.1 Alternation hierarchy in #FO and relationship to #AC°[. 97
[7.1 Using advice bits to determine the inputs to a disjunction gate| 135
7.2 Replace non-uniformity by advice bits, subcircuit D¢, | 138
7.3 Replace non-uniformity by advice bits, subcircuit Dy|. 139
7.4 Replace non-uniformity by advice bits, subcircuitC| 139
7.5 Batching construction for classes NC'|. 142

viii

1 Introduction

How difficult is it to solve different problems on a computer? More specifically, what
resources are required to do so, that is, how much time do the computations take and
how much storage space is required for them? These and similar questions are at the
heart of complexity theory. In other words, the main goal of this area is to understand
the computational complexity of problems by determining what resources are required
and sufficient to solve them.

Classically, this study focused on decision problems, which are problems that can
be answered with either yes or no. Many natural problems are of this form, or can be
formulated in this way. With regard to the domain of arithmetic, one could ask whether
a+ b = c for three numbers a, b and c. In graph theory, one might ask whether there is a
path between two given vertices in some directed graph. In logics, the question could be
whether a given propositional formula is satisfiable. Formally, decision problems, or
languages, are sets of strings over some fixed alphabet, for example sets of binary strings.
In order to study the computational complexity of such problems, a computation model
is fixed. Most prominently, machine-based models are used, which are abstractions
of how computer programs work. Next, relevant complexity measures have to be
determined. Classically, the running time and the storage space are mainly considered,
but there are many other complexity measures such as the number of processors for
parallel computations, or specific complexity measures with regard to randomization
or nondeterminism. The latter allows a program to check several possible solutions in
parallel without requiring additional time or storage space.

Most fundamentally, tractable and intractable problems are distinguished. Here, the
line often is drawn between those problems that can be solved in polynomial time and
those that cannot be solved in polynomial time, where the running time is measured
with respect to the length of the encoding of the input. More generally, complexity
theory studies upper and lower bounds for the complexity of problems. Upper bounds
are results stating that problems can be solved using certain resources, and are often
directly shown by finding a clever algorithm to solve them. On the other hand, lower
bounds are results stating that problems cannot be computed within certain resource
bounds. Towards obtaining lower bounds, classes of problems, called complexity classes
are considered. For example, the class of problems solvable in polynomial time is usually
called P. When looking for evidence that certain resource bounds are strictly required
to solve a problem, it is necessary to better understand these classes. Here, the central
notion of completeness comes into play. Different variants of the notion of problems
being complete for a class intuitively capture the concept of problems being among the
most difficult problems in that class. Completeness can be used to show that problems
cannot be solved within certain resource bounds: A problem complete for a class cannot

1 Introduction

be contained in a strict subclass of it, as otherwise the most difficult problems in the
class would be contained in the subclass and the two classes would collapse.

While tools like the notion of completeness help to understand how problems fit
into different complexity classes, understanding the relations between different classes,
and especially proving separations between them, is still a huge challenge. Many
questions in this regard are open and we often only gather evidence that a problem
cannot be solved within certain resource bounds instead of outright proving it. An
example is the famous P-NP-problem, which asks whether the class P mentioned above
coincides with the class NP, which allows for the same running time of computations,
but additionally allows the usage of nondeterminism, that is, algorithms can check
several possibilities in parallel. This problem was first precisely stated in seminal
papers by Cook and Levin independently [Coo71}[Lev73]] and the complexity of many
natural computational problems depends on it, see for example an early paper by
Karp establishing NP-completeness of 21 natural problems [Kar72]]. The P-NP-problem
is one of the major open problems in computer science and one of the “Millenium
Problems” of the Clay Mathematics Institute, which contains 7 of the most important
open problems in mathematics [Cla]]. There have been many attempts to solve it, and a
continuously updated list of such attempts is maintained by Woeginger [Woel 6], but
none of the attempts has been successful, yet. Still, P = NP is considered very unlikely
by most researchers and would be a major breakthrough, since many NP-complete
problems were studied for decades without much progress towards solving them in
polynomial time. Consequently, NP-completeness can still be used as evidence that
a problem cannot be solved in polynomial time, as otherwise P and NP would be
equal. To help with the understanding of complexity classes, both out of theoretical
interest and in hopes of obtaining new upper and lower bounds with respect to those
classes, another important topic of complexity theory is to study structural properties
of the classes. Structural properties are for example closure properties of the classes or
characterizations of them in terms of different computation models or using entirely
different frameworks, possibly far outside the scope of complexity theory a priori.

The approach of classifying problems by their computational complexity with respect
to certain resource bounds on some computation model has been applied to a variety of
settings. So how does this thesis fit into this landscape? The classical setting sketched
above considers classes of decision problems, defined based on running time or storage
space required to algorithmically solve them. In contrast, we study classes of counting
problems with respect to certain resource bounds on Boolean circuits (or, equivalently,
counting arithmetic circuits). Next, we briefly explain these terms and their relations to
classical complexity theory.

Counting problems ask for the number of solutions to a problem, so the answer to such
a problem is a natural number. Just like decision problems, counting problems occur
naturally in many areas. Even more, many decision problems have a corresponding
counting version, which asks for the number of solutions to the decision problem. As
examples, recall the decision problems mentioned earlier. The counting version of the
problem of determining whether there is a path between two vertices in a directed graph
asks for the number of such paths instead, at least if there are no cycles. The counting

1 Introduction

version of the satisfiability problem asks how many satisfying assignments there are
for a given propositional formula ¢. The latter problem is called #Sar and just as its
decision counterpart is widely believed to be intractable.

Boolean circuits and (counting) arithmetic circuits are computation models that
are an abstraction of actual electronic circuits. Recall that in comparison, machine-
based models such as the Turing machine are an abstraction of algorithms in some
programming language. Consequently, these circuits can be seen as a model of lower
level computation. A different view on circuits also allows to use them as a model for
parallel computation.

We study classes of counting problems defined in terms of Boolean circuits with
regard to their descriptive complexity. This means that we are interested in logics that
can define exactly the problems in such complexity classes. Usually, this approach
focuses on characterizations in terms of logics based on first-order logic. Descriptive
complexity aims to improve the understanding of complexity classes by providing a
different view on them and allowing to use methods from logic to further study them.

We will now cover these topics in more detail. First, we will remind the reader
of required foundations of first-order logic. Then we cover counting problems and
prominent classes of such problems. We then go into more detail on circuit complexity,
also covering counting classes in this context. Having introduced the objects of our
study, that is, counting classes in circuit complexity, we then go on to discuss previous
research in descriptive complexity. Finally, we list our contributions to the field as well
as what parts of this thesis have previously been published.

1.1 First-Order Logic

In first-order logic, properties of first-order structures are expressed. We restrict our-
selves to the case of relational structures. Such structures consist of a universe or
domain, which is a non-empty set, and relations over that set. First-order formulae can
quantify elements, that is, make statements of the form “there is an element” or “for
all elements”, and talk about elements or tuples of elements being in certain relations.
Furthermore, arbitrary Boolean combinations of such statements can be made. In order
to have a limited number of symbols usable in these formulae, a vocabulary is fixed in
advance. It defines what relation symbols can be used as well as their arities. In doing
so, they also restrict the kind of structures under consideration. For example, directed
graphs can be seen as first-order structures over the vocabulary (E), where E is a binary
relation symbol. A graph is represented as a structure over this vocabulary by using the
set of nodes as the universe and interpreting the symbol E as the edge-relation of the
graph. Similarly, many kinds of algebraic structures can be seen as first-order structures,
albeit relational structures might not always be sufficient. As an example, consider the
following first-order formula over vocabulary (E):

Vx—E(x,x) AVxVYE(x,p) & E(y, x).

1 Introduction

This formula expresses that a graph is undirected and contains no loop. For this, it
states that for all nodes, there is no loop on that node, and for all pairs of nodes,
there is an edge from the first to the second if and only if there is an edge from the
second to the first. Structures satisfying a formula are also called models of the formula.
Generally, first-order logic is very powerful and solving problems on first-order formulae
algorithmically is very difficult, if not impossible. For example, Church’s Theorem states
that determining whether a given first-order formula is valid is not decidable, see for
example the textbook by Boolos and Jeffrey [BJ87]]. This changes drastically when we
only consider finite structures, bringing us to the area of finite model theory. Here,
problems, often have very low complexity, as will become evident for the case of model-
checking in Section

There are different ways of defining semantics of first-order logic, some of which are of
particular value to us. Usually, semantics are defined compositionally, defining whether
a structure A is a model of a formula ¢ based on the corresponding statement for the
direct subformulae of ¢. Instead, game semantics can be used, where a structure is a
model of a formula, if a certain player has a winning strategy in a suitable two-player
game. Skolem functions provide yet another view on semantics of first-order logic: An
existential quantifier 3y expresses the existence of an element depending on all variables
quantified to the left of the quantifier. Let these be the variables x,...,x,. Then the
variable y can be equivalently replaced by a suitable function symbol, getting variables
X1,...,X, as arguments. Satisfying assignments to these function symbols are called
Skolem functions.

1.2 Counting Complexity

As mentioned earlier, while decision problems ask for the existence of a solution for a
given input, counting problems ask for the number of solutions. In other words, they ask
for the number of witnesses for an input being a positive instance of the corresponding
decision problem. In the case of propositional formulae, satisfying assignments are
witnesses for the satisfiability of a given formula. Consequently, counting witnesses
for SAT amounts to counting satisfying assignments, as requested by the problem #Sar.
While it is often possible to define and study a related decision problem for a counting
problem and this approach has its merits, it is also interesting to study the complexity
of the actual counting problems. This is supported by the fact that there are many
intractable counting problems whose corresponding decision problems are tractable.
For example, we have evidence that the problem of counting satisfying assignments of
propositional formulae in disjunctive normal form is intractable [DHKO05], while the
corresponding decision problem can trivially be solved in polynomial time.

Formally, while decision problems are sets of strings, counting problems are functions
mapping such strings to natural numbers. This means that counting problems do not
actually need to be defined in terms of counting solutions. For example, the problem of
computing the the sum of two numbers given in binary, or the problem of computing
the permanent of a matrix, a function defined similarly to the determinant, are also

1 Introduction

counting functions. It should be noted though, that the permanent has characterizations
in terms of counting certain substructures inside of graphs. Namely, both counting
cycle-covers of directed graphs and counting perfect matchings of bipartite graphs are
equivalent to computing the permanent of a corresponding matrix.

The area of counting complexity was initiated by Valiant in 1979. In his seminal
paper, he studied the complexity of computing the permanent of a matrix [Val79b].
Valiant introduced the class #P, which can be seen as the counting version of the class
NP. This class contains all those counting functions that arise as the number of different
nondeterministic choices of an NP-machine that lead to the machine accepting an input.
Valiant showed that while the determinant can be computed in polynomial time, the
permanent is complete for the class #P. As he showed that #5SaT and several other well-
known problems share this property, this yielded evidence that the permanent cannot
be computed in polynomial time. Further research also studied the class #L, which is
the restriction of #P to computations that can be done with storage space logarithmic in
the input length, and showed that this class actually characterizes the complexity of the
determinant [AJ93} [Vin91} [Tod91a), Val92, MV97].

Beside independent interest in a complexity theory for counting problems, the re-
search in this area also yielded results relating back to classical complexity theory, such
as Toda’s Theorem [Tod91b].

1.3 Circuit Complexity

Circuit complexity, as a subfield of complexity theory, studies the computational com-
plexity of problems on computation models that resemble the structure of actual elec-
tronic circuits. This area goes back to work on so-called switching circuits by Shannon,
Riordan and Lupanov as early as 1938 [Sha38| [RS42,/Sha49, [Lup58|. The most common
type of circuits, which were studied extensively, are Boolean circuits. These give a very
low-level view on computations, with circuits consisting of gates computing very simple
operations on bits, often just conjunction, disjunction and negation. These gates are
connected by wires or edges to form a circuit. In Figure an example of such a
Boolean circuit can be seen.

While Boolean circuits correspond to lower level computations than machine-based
models, they are still a very abstract model. For example, timing-related issues like race
conditions as well as restrictions with regard to the fan-out of gates are not considered.
From a broader perspective, Boolean circuits are a special case of the model of arithmetic
circuits. Here, gates compute addition and multiplication as well as possibly different
operations over an arbitrary semiring, which is a certain kind of algebraic structure.
Boolean circuits can be seen as arithmetic circuits over the Boolean semiring, with
conjunction as multiplication and disjunction as addition on that semiring, and with
negation as the only additional operation. Arithmetic circuits are sometimes used as a
model for a slightly more high-level view on circuit complexity, by for example allowing
addition and multiplication on larger numbers to be computed by individual gates. In
contrast, in Boolean circuits these operations already require relatively big circuits, as

1 Introduction

output gate

a wire, direction is from bottom to top
disjunction-gate g1

Y
85 84
X0 X1 —X) X3 X4 X5 X6

Figure 1.1: An example of a Boolean circuit on 7 inputs.

they have to be implemented using bitwise operations.

In complexity theory, and hence also in the field of circuit complexity, we are mostly
interested in the asymptotic complexity of problems, that is, the question of how
resource requirements increase for inputs of increasing sizes. The complexity theoretic
approach to circuit complexity was heavily influenced by a textbook by Savage [Sav76].
Since circuits are just a finite set of gates connected by wires, they only work on fixed
input sizes, though. Consequently, in order to be able to consider asymptotic resource
bounds in the models of Boolean and arithmetic circuits, we need to consider families
of such circuits. A circuit family is a collection of circuits that contains one circuit for
each potential input size, that is, for each number of Boolean inputs. Ultimately, this
means that a circuit family is an infinite object, as it contains one circuit for each natural
number.

In circuit complexity, the resource bounds we are most interested in are the size of
circuits, that is, how many gates they contain, as well as their depth, that is, the length
of a longest path from one of their input gates to their output gates. Size and depth
of circuit families refer to the size and depth of the circuits in the family measured in
relation to the input length. A central complexity class in circuit complexity is ACC.
Here, families of Boolean circuits of polynomial size and only constant depth are allowed,
with gates computing conjunctions, disjunctions and negations, and potentially having
unbounded fan-in. A typical problem in AC? is the decision problem for addition of
natural numbers mentioned in the beginning of the introduction. Note that the depth of
a circuit relates to the time it takes to do its computation, since operations of gates that
are not on the same path to the output gate can be done in parallel. By this argument,
addition being in AC? can be interpreted as addition being doable in a constant number
of steps for numbers with an arbitrary amount of digits. Intuitively, one could expect
that this would not be possible, as doing addition using the method learned in school
requires to go through the number digit by digit and remember the carry in each step.
The actual circuit family showing that addition is possible in constant depth uses a
method called carry-lookahead instead. This method looks at all digits in parallel and
determines each digit of the outcome of the addition, in a sense, in parallel. As this

1 Introduction

method allows to add to numbers with arbitrarily many digits in constant time, this
result is also relevant in practice, and gates for addition in microelectronics use more
involved variants of the same method, see for example the spanning tree carry lookahead
adder by Lynch and Swartzlander [LS92]].

Other prominent classes in circuit complexity, which capture the complexity of
interesting natural problems such as multiplication and division of binary numbers,
or multiplication in a non-solvable group, are TC?, NC!, SAC!, and AC!. The class
TCY is defined similarly to AC?, but allowing for gates that can determine whether the
majority of their Boolean inputs are 1. Equivalently, this class can be defined using
gates that can determine whether the number of their input bits that are 1 exceeds a
certain threshold. In contrast to AC? and TCY, the other three classes allow for circuit
families of logarithmic depth, with AC! being otherwise defined exactly like AC°. The
classes NC! and SAC! are defined similarly to AC!, but with additional restrictions:
For NC!, gates may only have bounded fan-in, that is, each gate can take only 2 inputs.
For SAC!, this restriction only applies to conjunction gates, but disjunction gates can
have arbitrary fan-in. The names of these classes go back to Cook, who used NC as an
abbreviation for Nick’s class, as Nick Pippenger first studied this class [Pip79]. Here,
NC is the generalization of NC! to depth O(logn)’. Correspondingly, the first letters
in AC, TC, and SAC stand for alternation, threshold, and semi-unbounded alternation,
respectively. Complete problems for the class TC? are problems related to computing
summation, multiplication and division, where the latter was long open in the uniform
setting, which we will talk about in more detail later, and finally shown by Hesse [Hes01]].
It is also known that these operations cannot be done in AC? [FSS84]. On the other
hand, it is known that all of these operations can also be done in NC!, but it is unknown,
whether NC! provides any additional power: The question whether TC? = NC! is one of
the central open problems of this area, sometimes called the P-NP-problem of circuit
complexity. For SAC! and AC!, natural complete problems are based on logics: The
problem of evaluating so-called acyclic Boolean conjunctive queries is complete for
SAC! [GLS01], while the model-checking problem for intuitionistic propositional logic
with one variable is complete for AC' [MW14].

All of the above classes are in a sense tractable: When the circuits are provided
to us, they can be evaluated sequentially in polynomial time, as they only contain a
polynomial number of gates. Even more, as already argued, given enough processors to
compute the operations of as many gates as possible in parallel, the depth of circuits
determines the time required for the computation. This means that in the case of the
above classes, when the circuits are provided to us and with a polynomial number of
processors, problems in these classes can be solved in logarithmic time, and potentially
even in constant time in case of AC? and TC’—depending on the model of computation.
More precisely, if we only allow operations on a bounded number of bits to be computed
in a single computation step, AC? and TC? would still require logarithmic time. This
relationship between resource bounds for circuits and for related models of parallel
computation were studied by Borodin in 1977 [Bor77). It also illustrates that beside
their importance as a model for low level computations, circuits can also be seen as a
model for parallel computation.

1 Introduction

For these arguments, we need access to the correct circuit for a given input. Circuit
families are an inherently non-uniform model of computation, though. This refers to the
fact that they are an infinite collection of individual circuits, with a priori no efficient
way to obtain the circuit for a given input size. In contrast, machine-based models are
usually inherently uniform, as in their case a single, finite description of the machine
or program uniformly describes the behavior for inputs of arbitrary sizes. Of course,
studying the complexity of problems with regard to solving them with (non-uniform)
circuit families is still interesting: It helps understand the possibilities and limits for
the construction of Boolean circuits for a problem—for example designed by humans
for specific input sizes.

From a complexity theoretic standpoint, though, the non-uniformity of circuit families
in a sense hides the actual power of the circuits as a computation model, because it
adds additional power by handling arbitrary properties that depend only on the size
of the input. For this reason, uniform variants of the classes are considered, where the
actual computational power of the circuits is not overshadowed by the fact that circuits
are provided non-uniformly. Uniform circuit families were first introduced for this
purpose by Borodin [Bor77]]. Here, a uniformity condition is added separately, outside
the circuits themselves. For a uniform circuit family, we require that the circuits for
specific input sizes can be produced in an efficient manner, for example in polynomial
time in a machine-based computation model such as the Turing machine. Depending on
the considered classes, different forms of uniformity are adequate. In case of the classes
discussed above, our intuition tells us that these classes are close in power to machine-
based models with logarithmic running time. To avoid still hiding the actual power of
the circuits by too much computational power given to the uniformity, the power of
the model for the uniformity should be similar to the expected power of the circuits.
Consequently, the usual uniformity conditions in this setting use variants of computation
models allowing for logarithmic running times. Note that in this case, instead of
requiring that the correct circuit can be computed within certain resource bounds, it is
required that relevant information on the circuit can be queried efficiently. For example,
it is required that the question whether there is a wire between two specific gates in
the circuits can be answered within the desired resource bounds. Such a query-based
definition is necessary, as the computation model might not even be powerful enough
to even output all gates in the circuits. The different forms of uniformity and their
suitability for different circuit complexity classes have been studied extensively [Ruz81],
BIS90, BI94]. Also, in the context of discussing suitable uniformity conditions for our
setting, we discuss known results in detail, see Section

Using uniform circuit families, it was possible to characterize circuit complexity
classes in terms of other models of parallel computation, most prominently alternating
Turing machines, making the relations between resource bounds of circuit families
and other computation models precise. Alternations here refer to alternations in using
either existential or universal nondeterministic steps: While usual nondeterminism is
existential, as it asks for the existence of a computation with a certain result, universal
nondeterminism asks whether all possible computations have a certain result. As an
example for such a characterization, the class AC? coincides with the class LH of all

1 Introduction

decision problems that can be solved by alternating Turing machines in logarithmic time
and using a bounded number of alternations [SV84]. Similarly, the class NC! coincides
with the class ALOGTIME of all decision problems that can be solved by such machines
in logarithmic time (but any number of alternations) [Ruz81]. Other classes can be
characterized in a similar manner.

Using reasonable uniformity conditions, we also know the following connections
between the above circuit complexity classes and classical complexity classes:

AC’ c TC® CNC!' CL CNL CSAC! CAC! CP.

Here, L and NL refer to the classes of problems that are decidable in logarithmic
space on deterministic and nondeterministic Turing machines, respectively. It is also
worth mentioning that important classes from classical complexity theory often have
characterizations in terms of circuit complexity. For example, P coincides with the class
of problems that can be solved by polynomial-size families of Boolean circuits [Lad75)}
PF79]. More characterizations of this kind, in particular for nondeterministic classes,
were proven by Venkateswaran [Ven92]. These connections to classical complexity theory
in combination with lower bound results in circuit complexity, such as AC® = TC, also
lend some hope to the idea of obtaining new lower bounds in classical complexity theory
using lower bound techniques from circuit complexity.

Often, circuit complexity classes also have characterizations in other computation
models besides alternating Turing machines and similar models. For example, NC!
coincides with the class of problems that can be solved by so-called bounded-width
branching programs, another relatively low-level model of computation [Bar89]. More-
over, the class SAC! coincides with the maybe better known class LOGCFL, which is
the class of languages that are in a certain sense similar to context-free languages, that
is, to languages that can be accepted by nondeterministic pushdown automata. This
class can also be defined in terms of so-called nondeterministic auxiliary pushdown
automata [Ven91].

Counting Classes in Circuit Complexity

Due to their success in classical complexity theory, counting classes were also considered
in the context of Boolean circuits, at least in case of circuits using only conjunction
and disjunction freely as well as negation for input gates. Typically, counting classes
are defined by introducing a form of counting witnesses for acceptance into a com-
putation model. In the case of Boolean circuits, the type of witness most commonly
considered are so-called proof trees. Intuitively, a proof tree is a simple structure that
is minimal with the property that it constitutes proof that a certain circuit accepts
its input. The notion of counting proof trees of Boolean circuits leads to counting
variants of most of the classes covered earlier, namely we obtain the classes #AC?,
#NC!, #SAC!, and #AC!, which are defined as the classes of functions that arise as
the number of proof trees of AC?, NC!, SAC!, and AC! circuit families, respectively.
The study of counting classes in circuit complexity was initiated by Vinay in 1991,
who studied the class #SAC' [Vin91]]. Papers followed on the counting classes #AC°

1 Introduction

Figure 1.2: Relationship between central counting classes in this thesis, assuming P = NP.
Dashed lines indicate that separations are not known.

by Agrawal et al. and Ambainis et al. [AADQQ, [ABL98], as well as #NC! by Buss et al.
and Caussinus et al. [BCGR92,ICMTV98]. Note that due to connections to arithmetic
formulae obtained by Buss et al., the class #NC! was in fact considered much earlier,
at least as early as 1979 by Valiant [Val79a]). Alternatively, these classes can also be de-
fined in terms of so-called counting arithmetic circuits using the same resource bounds.
These are arithmetic circuits as introduced earlier, but the semiring is fixed to be the
natural numbers with usual addition and multiplication. Furthermore, inputs are re-
stricted to only 0 and 1, in other words Boolean inputs, but may be negated. Note that
#NC! and #SAC! can be characterized by counting accepting paths in bounded-width
branching programs and nondeterministic auxiliary pushdown automata, respectively,
corresponding to the characterizations of their classical counterparts [CMTV 98| [Vin91].
Arithmetic circuits and their computational power are of current focal interest of re-
search in computational complexity theory, see for example recent surveys by Kayal and
Saptharishi, and Mahajan [KS14, Mah14] as well as the continuously maintained survey
by Saptharishi [Sap15].

In the uniform setting, the same uniformity conditions are considered for the above
counting classes as for their classical counterparts. The different forms of uniformities
have not been extensively studied in this context, though. The relationships between the
central counting complexity classes considered in this thesis, assuming adequate forms
of uniformity, are illustrated in the inclusion diagram in Figure The assumption
#P = NP is required for #P ¢ #AC!.

The importance of counting classes based on circuits is further emphasized by the
fact that classical counting complexity classes often have characterizations in this model.
For example, #P can be characterized in terms of counting arithmetic circuit families
of polynomial size and additionally bounded degree, which refers to the degree of
the polynomial obtained when expanding the arithmetic expression computed by the
circuit [Ven92]. Similarly, the class #L has a characterization in terms of so-called skew
circuits, where multiplication gates may only have two inputs and one of them needs to
be an input gate or a constant [Tod92].

10

1 Introduction

1.4 Descriptive Complexity

In descriptive complexity theory, one studies the complexity of describing problems with
formulae, in contrast to computational complexity where the complexity of computing
solutions to problems is studied. Here, by a problem being described by a formula,
we mean that the set of finite models of the formula is exactly the set of positive
instances of the problem. The primary goal of this area is to identify logics that exactly
capture complexity classes, that is, logics that can describe exactly those problems
that are in a certain complexity class. Such characterizations are often called model-
theoretic, as complexity classes are characterized as classes of models of certain formulae.
Consequently, this field lies in the intersection of finite model theory, the theory of finite
models of formulae, and computational complexity theory. The goal of this approach is
to better understand the structure of classes, getting a different view on their defining
properties. In doing so, the hope is to be able to use tools from finite model-theory to
get new insights, especially in the direction of new lower bounds. For example, the
famous result that the parity-function cannot be computed in AC? [FSS84], separating
ACY from TC®, was independently obtained by Ajtal in a purely logical way [Ajt83].

The area of descriptive complexity was started in 1974 by Fagin, who famously showed
that existential second-order logic, or ESO, captures the complexity class NP [Fag74].
Here, ESO refers to the logic obtained by extending first-order logic by existential
quantifiers for relations, that is, existential second-order quantifiers. But what does it
even mean for a logic to capture a complexity class? For this, finite first-order structures
are suitably encoded as binary strings and structures are identified with their encodings.
This way, properties defined in logics, that is, sets of first-order structures, are associated
with languages. More precisely, the set of models of a fixed sentence is associated with
the set of encodings of these models. In consequence, a logic £ can be said to capture a
complexity class €, if the set of languages associated with £-formulae is exactly €. On a
technical level, a unique encoding of structures requires to introduce a built-in order
on the domains of first-order structures. There are ways to formulate model-theoretic
characterizations without built-in order, but in the case of very weak complexity classes
this is often not possible. For the purpose of this introduction, assume that a built-in
order is always present.

In the following years, much progress was made in the area of descriptive com-
plexity. In 1977, Stockmeyer introduced the polynomial hierarchy, which generalizes
the class NP, and pointed out the implications of Fagin’s Theorem for its descriptive
complexity [Sto76]. In 1982, Immerman and Vardi independently showed that P is
captured by first-order logic with an operator computing least fixed points of certain
subformulae, denoted by FO(LFP) [Imm82, Imm86) Var82]]. This characterization uses
built-in order. The question whether P can also be captured by a logic without built-in
order (in a suitable sense) is open and an active area of research [Gro08]. Also in 1982,
building on Fagin’s characterization of NP, Lynch studied the descriptive complexity
of languages decidable in nondeterministic polynomial-time in a more fine-grained
manner [Lyn82]. Many results followed, and descriptive complexity was also extended
to circuit complexity classes. In 1987, Immerman proved characterizations of many

11

1 Introduction

classes, including NL and L, and gave an overview of known model-theoretic charac-
terizations [Imm87]. In 1989, he showed that first-order logic captures AC?, as well
as a generalization of this result to all classes AC’ in the AC-hierarchy. This hierarchy
is a generalization of the classes AC? and AC!, with the class AC' allowing for circuit
families of depth O(logn)’ [Imm89]. For the latter, he introduced the logic FO[t(n)] for
functions ¢, in which certain parts are repeated #(n) times before evaluating the formula.
After this, two characterizations were obtained for the class NC!. Based on ideas related
to Barrington’s characterization of NC! in terms of bounded-width branching programs,
Barrington et al. showed that NC! is captured by first-order logic extended by certain
generalized quantifiers for multiplication in a non-solvable group [BIS90]. Generalized
quantifiers are a generalization of existential and universal quantifiers well-known in
model-theory and finite model-theory. Barrington et al. also obtained a characterization
of TC? in terms of first-order logic with majority quantifiers, which express that the
majority of elements have a certain property. The second characterization of NC! was
obtained by Compton and Laflamme, who showed that NC! is captured by first-order
logic with an operator for a variant of primitive recursion for relations [CL90]. Primitive
recursion is a concept from computability theory, see for example the monograph by
Soare [S0a87]. Using a different approach than the previous characterization of P, Gradel
characterized this class and several others by facilitating that the satisfiability problems
for certain fragments of propositional logic are complete for said classes [Gra92]. For
example, the class P was characterized by the fragment SO-HORN of second-order
logic, where the quantifier-free part is a HORN-formula. This means that when treating
atoms as literals of propositional logic, the quantifier-free part is a HORN-formula,
that is, each clause has at most one positive literal. Similarly, NL was characterized
by SO-KROM defined analogously using KROM-formulae, meaning that each clause
has only two literals. Note that in the setting of propositional logic, the satisfiability
problems for HORN- and KROM-formulae are complete for P and NL, respectively. The
former follows from Cook’s original proof that Sat is NP-complete, while the latter was
shown by Jones et al. [JLL76]]. In 2001, Lautemann et al. showed that SAC! can be char-
acterized using generalized quantifiers, similar to the earlier characterization of NC! by
Barrington et al. More precisely, they proved that this class is captured by first-order
logic extended by so-called groupoidal quantifiers [LMSVO01]]. Also, a characterization
of the class PP, which can be seen as the decision version of #P, as well as the counting
hierarchy based on this class, was obtained by Kontinen in 2009 [Kon09].

There was considerably less progress in descriptive complexity in the setting of
counting complexity. In 1994, Frandsen et al. studied the descriptive complexity of
the class #AC? in terms of arithmetic expressions in the uniform setting [FVB94]. In
1995, Saluja et al. transferred Fagin’s Theorem to the counting setting [SST95]|. They
introduced a counting version of the class ESO by using free relation variables instead
of existentially quantified ones, and asking for the number of satisfying assignments to
these relation variables. They showed that the resulting class #FO captures the counting
complexity class #P. As long as a notion of counting is defined, a logic capturing a
class has a similar meaning as in the case of decision problems. By identifying first-
order structures with their encodings, each formula of such a logic £ has an associated

12

1 Introduction

counting function. We say that £ captures a counting complexity class #¢, if the class of
counting functions associated with £-formulae is exactly #€. Saluja et al. also studied
the alternation hierarchy inside of #FO, that is, the hierarchy where the quantifier
prefix of formulae is restricted. In 1996, Compton and Griadel [CG96] obtained a
characterization of SpanP, another counting complexity class, by an extension of #FO™!,
and studied the effect of omitting the built-in order both from said extension and from
the class #FO™!. Recently, there were some further developments, starting in 2016 with
another characterization of #AC° by Haak and Vollmer [HV16], which is also part of
this thesis. In the following year, Arenas at el. developed an extensive framework for
descriptive complexity of counting complexity classes, called quantitative second-order
logic or QSO [AMR17, [AMR20]]. In this framework, they obtained model-theoretic
characterizations of many prominent counting classes, among others for the classes #P
and #L. It should be noted that the characterization of #AC? in terms of arithmetic
expressions mentioned above could also be embedded in the QSO framework. In 2019,
Haak et al. [HKM™19] studied the descriptive complexity of counting classes in the
range from #P to # - NP in terms of team logics.

1.5 Contributions

In this thesis, we study the descriptive complexity of counting classes in circuit complex-
ity. All model-theoretic characterizations we obtain apply both in the non-uniform and
in the uniform setting. As a starting point, we transfer Immerman’s AC® = FO [Imm89]
to the counting setting. For this, we introduce notions of counting witnesses for first-
order logic in Chapter[3] Here, we consider different forms of witnesses, namely winning
strategies in Hintikka’s model-checking game [Hin82[, winning strategies in the full
first-order model-checking game obtained by extending Hintikka’s game by rules for
Boolean connectives, and Skolem functions. We show that all three variants lead to the
same counting class when disregarding inputs of length 1. We call the resulting class
#Win-FO.

In Chapter[4, we study the descriptive complexity of constant-depth classes, using the
logical counting classes introduced in the previous chapter. We show in Section [4.1]that
the newly defined counting class captures #AC?, that is, #AC? = #Win-FO. Here, the
difference to the earlier approach to characterizing #AC, that is, in terms of arithmetic
expressions, is that our definitions provide an interpretation in terms of counting
witnesses. Also, our result is the first characterization of the non-uniform version of
#ACY. Furthermore, this result leads to a new model-theoretic characterization of TC?
in Section [4.2] showing that the class coincides with the class of languages definable in
first-order logic extended by bitwise excess to #Win-FO-functions.

When viewing functions in our new class #Win-FO as functions counting Skolem-
functions, this class is very similar to the class #FO, which captures #P as mentioned
earlier. When allowing free function variables instead of free relation variables in
the definition of #FO, both classes are defined in terms of counting assignments to
certain function variables. For this reason, we investigate the relationship between both

13

1 Introduction

#T1, = #FO = #P

Figure 1.3: Alternation hierarchy in #FO and relationship to #AC°. Dashed lines indicate
that separations are not known.

classes in Chapter|[5| It turns out that #Win-FO coincides with a syntactical fragment

#HII)reﬁx of #I1; C #FO. Here, #I1; refers to the fragment of #FO only allowing universal
first-order quantifiers. This is shown in Section Due to this connection, we study
the alternation hierarchy inside our version of #FO in Section The results we
obtain are illustrated in the inclusion diagram in Figure disregarding inputs of
length 1. This shows that our classes behave differently to the versions studied by
Saluja et al. [SST95]. In Section [5.3] we show that the class #3;, while containing some
#P-complete problems, can be approximated efficiently in the sense of fully polynomial-
time randomized approximation schemes, FPRAS for short. Furthermore, as the whole
alternation hierarchy collapses to the class #I1;, we study the hierarchy based on the
number of universal quantifiers inside of #IT; in Section 5.4}, showing that this hierarchy
is strict. For this result, we build on results by Grandjean and Olive for related classes
in the decision setting [GO04]. Additionally, we consider the potential of the original
hierarchy by Saluja et al. [SST95] for studying #AC° in Section Here, we show
that #ACC is incomparable to all but the smallest and the full class in their framework,
indicating that their hierarchy does not help in better understanding the class.

In Chapter @ we turn our attention to logarithmic-depth classes, namely #NC!,
#SAC! and #AC!. As the known model-theoretic characterizations for the corresponding
decision classes do not seem to transfer to the counting setting, we first identify suitable,
new characterizations in the decision setting. For this, we introduce a new operator for
what we call guarded predicative recursion, GPR for short, in Section which allows
recursive definitions of predicates. Conceptually, this operator is similar to the relational
primitive recursion used by Compton and Laflamme [CL90], and the definition is
inspired both by their logic FO+RPR as well as Immerman’s logic FO[#(n)]. In Section[6.2}
we show that first-order logic extended by different variants of GPR captures NC!, SAC!
and AC!. As intended, the new logics resemble the structure of circuits more directly
than previous characterizations of the classes. This allows us to transfer the above
result to the counting setting by considering functions counting winning strategies in a
suitable model-checking game, leading to model-theoretic characterizations of #NC!,
#SAC! and #AC! in Section Together with our results in Section this means we

14

1 Introduction

prove model-theoretic characterizations of the counting versions of the central classes
in circuit complexity in a unified framework based on counting winning strategies in
the first-order model-checking game.

In Chapter (7], we observe that it is often easier to prove model-theoretic characteri-
zations for non-uniform classes than for their uniform counterparts. This leads to the
idea that uniform characterizations might generally imply a corresponding result in the
non-uniform setting. We prove this to be true for a wide range of classes. For this, we
note that the result becomes trivial when providing the non-uniform information in
a specific way: Assume that two uniform classes coincide. Consider for both of these
classes the non-uniform version obtained by providing an advice in addition to the
actual input to a problem, which can hold arbitrary information that only depends on
the size of the input. As the non-uniformity is independent of the computation model
and uses the uniform classes only in a black-box manner, these non-uniform versions
of the classes also coincide. Consequently, we show in Sections and that for
a wide range of circuit complexity classes and logical classes, respectively, the above
notion of non-uniformity coincides with the notion usually used in the respective model.
As these are general results for the two models, they could potentially also be used
to transfer different results from the uniform to the non-uniform setting, apart from
model-theoretic characterizations.

1.6 Publications

Chapters [3|and (4| are based on a paper that was published at the Workshop on Logic,
Language, Information and Computation [HV16]] and a corresponding journal article in
the Annals of Pure and Applied Logic [HV19]. The thorough investigation of different
ways of defining the class #Win-FO in Chapter [3| goes beyond the content of those
papers: There, what we now call #Win-POHintikka 1y a4 styudied under the name #Win-FO.
Also, the observations on differences with regard to inputs of length 1, which also affect
other chapters, are new. The results in Chapter [5|have been published at Computer
Science Logic [DHKV16] and the Journal of Computer and System Sciences [DHKV21]].
Here, the proofs for our result for the variable hierarchy, covered in Section of this
thesis, were rewritten, going into more detail especially regarding subtle differences
to the framework for related decision classes by Grandjean and Olive. The model-
theoretic characterizations of logarithmic-depth classes in the FO[BIT]-uniform setting,
which appear in Chapter [6} were published at the Symposium on Logic in Computer
Science [DHV18]]. Here, we complete the picture by proving the corresponding non-
uniform characterizations, which were not published before. Finally, the results in
Chapter|7|are new and unpublished. This applies both to the results on the correspon-
dence of different forms of non-uniformity in circuit complexity and logics, as well as
their implications for the transfer of model-theoretic characterizations from the uniform
to the non-uniform setting.

15

Page left intentionally blank to have matching page numbers with the printed version.

2 Preliminaries

In this chapter we introduce definitions and preliminary results required for descriptive
complexity in general and descriptive complexity of counting classes in circuit com-
plexity in particular. Since descriptive complexity is concerned with model-theoretic
characterizations of complexity classes, we then need to cover both topics from com-
plexity theory, especially circuit and counting complexity, as well as first-order and in
a limited setting second-order logic. We also present known results from descriptive
complexity, expanding on the non-technical overview given in the introduction.

We now begin by listing some general notation used throughout the thesis. For a set
A and n € N, we denote by A" the Cartesian product of n copies of A. For two sets A, B
with AN B =0, we denote by A LI B the disjoint union of A and B. For a statement A, we
denote by [[A]] the truth value of statement A as a value from {0, 1}.

For any function f, we denote by dom(f) the domain of f. For big O notation, we use
the calligraphic letter O, i.e., for f: IN — IN, O(f) is the set of functions growing at most
as fast as f, modulo constant factors. Let A, B, C be sets. For any functions f: A — B
and g: B — C, we denote by go f the composition of f and g, i.e., for any x € A, we
have go f(x) = g(f(x)). For any function f: AxB — C, we denote by f(x,-) the function
f’: B — C with f’(a) = f(x,a) obtained by currying and fixing the first argument to
x. This extends to functions with more than two arguments as well as fixing different
arguments than the first one.

Let X be a finite set, or alphabet. A word over ¥ is a finite sequences of elements, or
symbols, of X. The set of all words over ¥ is denoted by X*. We also call sets of words
languages. For v,w € ¥, we denote by v o w or vw the concatenation of v and w. If a€ ¥,
|w|, denotes the number of occurrences of a in w. Finally, for any language L C X" we
denote by ¢;: ¥* — {0,1} the characteristic function of L, which is the function with
cr(x) =1 if and only if x € L for all x € X*. In this thesis we will limit ourselves to the
alphabet {0, 1} and languages over this alphabet. For an introduction to formal languages
and related notions and notations, see [HMUO07].

2.1 Complexity Theory

We assume the reader to be familiar with the standard concepts of complexity theory,
in particular with the notion of (nondeterministic) Turing machines and related no-
tions. For an introduction to the area, see the textbook by Arora and Barak [AB09] or
Sipser [Sip97]. Classically, decision problems were in the focus of research in complexity
theory, that is, languages L C {0, 1}*. The resource bounds most commonly considered
are time and space, i.e., the runtime and storage space required by algorithms deciding

17

2 Preliminaries

a language. Furthermore, nondeterminism often helps characterize the complexity of
natural problems. A nondeterministic algorithm or machine can guess how to continue
its computation, and is considered to accepts its input if there is a sequence of guesses
that lead to the machine accepting. This can also be seen as verifying multiple possible
solutions at once. Nondeterminism can further be generalized to both existential and
universal nondeterminism. Existential nondeterminism is the usual kind of nondeter-
minisnm mentioned above, while universal nondeterminism means that the machine
accepts if all possible guesses lead to the machine accepting. Based on this, one can
also consider alternating machines, where steps in the computation use existential and
universal nondeterminism alternatingly.

We want to recall a few complexity classes that stem from this classical approach, and
which are relevant for this work. P (NP) is the class of languages that can be decided
by deterministic (nondeterministic) polynomial-time Turing machines. L (NL) is the
class of languages that can be decided by deterministic (nondeterministic) logarithmic-
space Turing machines. DLOGTIME is the class of languages that can be decided by
deterministic logarithmic-time Turing machines. In this case, the machine has random
access to the input, as otherwise it would not have any meaningful power. Similarly,
ALOGTIME is the class of languages that can be decided by alternating logarithmic-time
Turing machines, and LH is the class of languages that can be decided by alternating
logarithmic-time Turing machines with a bounded number of alternations.

We now want to briefly recall the notion of completeness of a problem for a class. If <
is a reducibility, that is, a reflexive and transitive relation between languages, and € a
complexity class. Then we say that a language L is complete for € under < (or complete for
¢ under <-reductions), if L € € and for all L’ € €, we have L’ < L. We say that € is closed
under <, if forall Le € and L’ < L, we have L’ € €. In this case, completeness formalizes
the notion of a language being among the most computationally difficult languages in
¢. Whenever we encounter specific reducibilities in this thesis, we will introduce the
required notions before.

For the classes mentioned above, we have the following inclusion structure:

DLOGTIME CL C NL C P C NP.

In the following, when mentioning completeness results, we assume suitable reducibili-
ties. P is often considered the class of tractable problems. Typical complete problems
for this class are satisfiability of HORN-formulae as well as reachability in hypergraphs
and the circuit value problem, denoted CVP, that is, the problem of evaluating a given
Boolean circuit on a given input. Recall that a HORN-formula is a propositional for-
mula in conjunctive normal form with at most one positive literal in each clause. For
the hardest problems in NP no sub-exponential time algorithms are known. Typical
complete problems are the general propositional satisfiability problem Sar as well as
several problems on graphs such as Crioue. For NL, typical complete problems are
satisfiability of KROM-formulae as well as reachability in directed graphs. Recall that a
KROM-formula is a propositional formula in conjunctive normal form with at most two
literals in each clause. Typical complete problems for L are the problem to determine

18

2 Preliminaries

whether an undirected graph is acyclic and the undirected graph accessibility problem,
i.e., answering the question whether the is a path between two given vertices in a given
undirected graph. Furthermore, many important arithmetic operations such as addition
and multiplication can be computed in L. Although DLOGTIME is a very weak class
it allows for computations such as computing the length of an input or arithmetic on
numbers with logarithmically many bits, which also allows to decode and encode simple
pairing functions on binary words.

While not in the focus of this work, we want to briefly mention non-uniformity in
the context of classical complexity classes. This notion of non-uniformity will have
significance to the proofs in Chapter [7| Intuitively, a computation model is called
non-uniform, if it can show different behavior on inputs of different lengths, or in
other words, there is no uniform description of the behavior for arbitrary input lengths.
As Turing machines are inherently uniform, since there is always a single machine
describing the behavior on arbitrary inputs, non-uniformity has to be added separately
in this case. In order to add non-uniformity to a Turing machine, apart from the actual
input we give the machine access to an additional advice. This advice is described by
a function only depending on the input length and provides additional information
that is not necessarily computable from the input. Let € be a class of languages and §
be a class of functions from {0, 1}* to {0,1}*. A language L is in the class ¢/ if there is
a language B € € and a function A € §, the advice function, such that x € L if and only
if (x,A(1")) € B. Here, (-,-) denotes a suitable pairing function. The most common
example of non-uniform classes are those where § is poly, which is the class of all
polynomially length-bounded functions, leading to classes like P/poly and NL/poly.
For these classes, concatenation is typically used as the pairing function.

An important variant of Turing machines are so-called probabilistic Turing machines.
A probabilistic Turing machine can be viewed as a nondeterministic Turing machine,
where instead of nondeterministically guessing bits, additional bits are obtained as the
result of fair coin tosses. This way, one can assign a probability to the machine accepting.
While a multitude of classes arise from this concept, we will only cover the case of
classes based on majority here. This means that a machine in this setting accepts an
input if it accepts it with probability greater than % For a complexity class € based on
deterministic Turing machines, the corresponding probabilistic class defined in this way
is denoted by PC. The most prominent examples of such classes are PP and PL, which
were first studied by Gill [Gil77]. Important problems captured by such classes are, e.g.,
the problem MajoriTy-Sar.

Before talking about actual counting classes defined by introducing a notion of count-
ing into certain computational models, we want to briefly mention function classes based
on deterministic complexity classes. For any complexity class defined via deterministic
Turing machines by certain resource bounds, one can also define a functional version
of the class. These classes are denoted by adding an F in front of the class and are
classes of functions mapping from {0,1}* to IN. For example, FP is the class of functions
f:1{0,1}* - IN computable in deterministic polynomial time.

19

2 Preliminaries

2.1.1 Counting Classes

A counting problem is a function f: {0,1}* — IN. The term counting problem stems from
the fact that many of these problems count witnesses for the membership of inputs in
some decision problem: For example, the NP-complete problem Sat mentioned above
asks whether a given propositional formula is satisfiable. Hence, a satisfying assignment
of the formula is called a witness for the formula being in Sar. The corresponding
counting problem is the problem #Sar, asking for the number of witnesses for a given
formula being in Sart, that is, the number of satisfying assignments of the formula.
The study of counting classes was started by Valiant [Val79b]. He introduced #P, the
class of counting problems that correspond to the number of accepting computation
paths of a nondeterministic polynomial-time Turing machine. For a nondeterministic
Turing machine M let accy;(x) and rej,;(x) denote the number of accepting and rejecting
computation paths of M on input x, respectively.

Definition 2.1. A function f: {0,1}* — IN is in #P, if there is a nondeterministic
polynomial-time Turing machine M such that for all inputs x € {0, 1}",

£(x) = acey ()

Obviously this definition uses a form of witness counting as well: An accepting
computation path can be seen as a witness for an NP-machine accepting its input. In a
similar vein, counting versions of other classes were introduced, such as #L, the counting
version of the class L [AJ93,Vin91) Tod91al, MV97].

A typical complete problem for #P (under reasonable reductions) is the problem
#Sat while a typical complete problem for #L is the problem, given a directed graph
G =(V,E) and two nodes s,t € V, to count the number of s-t-paths in G. These classes
also capture the complexity of important and natural problems that are not necessarily
defined in terms of counting of witnesses: The problem of computing the permanent of a
matrix is complete for #P [Val79bl, while the complexity of computing the determinant
is characterized by the class #L [Vin91}[Tod91a} [Val92,[MV 97]. For the latter, the closure
of #L under subtraction, called GapL, is required, as the determinant function maps
to the integers. It should be noted, though, that such counting problems might also
have characterizations in terms of counting witnesses. For example, the permanent of
a matrix M is exactly the function counting cycle-covers of the directed graph whose
adjacency matrix is M, which are disjoint sets of cycles that contain all nodes of the
graph.

2.1.2 Circuit Complexity Theory

While machine-based models resemble (potentially high-level) programming languages,
circuits model how problems can be solved in hardware. Besides their importance in
the context of solving problems in hardware, they are also useful in the context of weak
complexity classes and parallel computation. For a thorough introduction to the topic,
see the textbook by Vollmer [Vol99]. We begin with the common special case of Boolean
circuits, which are circuits that only work with values 0 and 1.

20

2 Preliminaries

Boolean Circuits

We first need to define a few notions concerning Boolean functions. A Boolean function
is a function f: {0,1}" — {0, 1} for some n € IN. A family of Boolean functions is a family
(fi)iew, where f; is an i-ary Boolean function for all i € IN. Typical examples of Boolean
functions are the the k-ary disjunction Vv and the k-ary conjunction Vj for k € IN, the
negation — as well as the families V = (Vg)xew and A = (Ag)xen, which are the families of
Boolean functions corresponding to disjunction and conjunction for an arbitrary number
of inputs, respectively. A Boolean basis is a finite set of Boolean functions and families
of Boolean functions. In the context of Boolean circuits, the bases By = {Ay, V3,)},
B1 ={A,V,=} and B, := {A,, V, —} are of special importance.

Definition 2.2. Let B be a Boolean basis and n € IN. A Boolean circuit over B on n inputs
is a tuple (V, E, a, p,out) with the following properties:

* (V,E)is a directed acyclic graph (or dag),
* «is an injective function E — IN,
* Bisafunction V —{0,...,n-1}U B,

 if f(g) €{0,...,n—1} for some g € V, then g has in-degree 0 in the graph (V,E),

if f(g) € B for some g € V and m is the in-degree of g in (V,E), then f(g) either is
a Boolean function with arity m or a family of Boolean functions, and

e oute V.

Elements of V are also called gates and out is called the output gate of the circuit. We say
that § labels the gates of the circuit (by the index of an input bit or a function from 8).
Note that 0-ary functions in the base correspond to constants 0 or 1. Gates labeled with
the index of an input bit by g are called input gates.

Remark 2.3. Throughout most of this work we use a restricted definition of Boolean
circuit adapted for the considered complexity classes, see Remark[2.7]and Definition [2.8]

We now want to define the function computed by a circuit. Intuitively, this function
is obtained by evaluating any gate according to its label and returning the value of the
output gate. For this, a label i € N means that the gate accesses the i-th input bit. The
function «a is used to get an ordering of the inputs of any gate.

For a formal definition, we first define a function giving the value of an arbitrary gate
in a circuit on a given input. Let n € N, C = (V,E, a, ,0out) be a Boolean circuit on n
inputs and xg,...,x,_1 €{0,1}. Let g € V and gy,...,g,, be the predecessors of g in (V,E)
with a(g1) <--- < a(g,,). The value of g in C on input x = x...x,_1, denoted by val(C, g, x),
is defined as follows:

 if B(g) €{0,...,n—1}, then val(C, g, x) = Xp(g)

21

2 Preliminaries

* if f(g) is a Boolean function, then the value val(C, g, x) is inductively defined as
(B(g))(val(C, g1, x),...,val(C, gy, X)),

* if f(g) = (fi)ien is a family of Boolean functions, then val(C, g, x) is inductively
defined as f,,(val(C, g1,x),...,val(C, g, x)).

The function computed by C is val(C,out,-), the function mapping any input to the value
of the output gate of C on that input. By abuse of notation we denote by C not only
the circuit but also the function computed by it. As for a non-input gate g the values
of its predecessors are used as arguments for the function (g), we sometimes call its
predecessors the inputs of g.

By viewing the concatenation of the input bits of a Boolean circuit as a word over {0, 1},
Boolean circuits can compute functions taking binary strings as inputs. As a Boolean
circuit has a fixed number of input bits, we need to consider families of such circuits
when we want to compute functions on binary strings of arbitrary lengths, for example
characteristic functions of languages over {0, 1}.

Definition 2.4. A family of Boolean circuits over 8B is a family C = (C,,),,en, where C, is a
Boolean circuit over B on n inputs for all n € IN.

More generally we also call families of Boolean circuits over any base as well as
families of other kinds of circuits, introduced later in this section, circuit families. Let
C =(C,))en be a family of Boolean circuits. The function computed by C is the Boolean
function mapping x + C,(x) for all x € {0, 1}*. Similar is for individual Boolean circuits,
we denote this function by C by abuse of notation.

The complexity measures used with regard to families of Boolean circuits are typically
the Boolean base as well as size and depth of the circuit families with respect to the
input length. The size of a circuit is the number of gates and the depth is the length of
a longest path from any input gate to the output gate. For functions s,d: N — N, a
circuit family C = (C,,),,cn is of size s and depth d, if the size and depth of C, are at most
s(n) and d(n), respectively, for all n € IN. Let B be a Boolean basis and s,d: IN — IN. We
denote by CIRCUIT(8,s,d) the class of circuit families over B of size O(s) and depth
o(d).

Sometimes it is useful to consider Boolean circuits in input normal form, which means
that negations only occur on the level of inputs. This notion corresponds to the no-
tion of negation normal form in the context of formulae. If - € 8, we denote by
CIRCUITinput’nf(B, s,d) the class of circuit families in input normal form over 8 of size
O(s) and depth O(d).

For a Boolean basis 8 and sets S and D of functions on the natural numbers, we
denote by CIRCUIT(8, S, D) the class of circuit families over 8 of size s € O(S) and
depth d € O(D) and similarly for CIRCUIT"PU-"f(8 S D) in case that — € B.

We say that a family of Boolean circuits C accepts a language L, if C(x) = c;(x) for
all x € {0,1}*. By abuse of notation, we also denote by CIRCUIT(8,s,d) the class of
languages accepted by circuit families from CIRCUIT(8,s,d) and similarly for sets S
and D of functions.

We are now in a position to define the usual complexity classes in circuit complexity.

22

2 Preliminaries

Definition 2.5. For i € IN we define
« NC' := CIRCUIT(B, U {fy, f1}, n°1), (log n)"),
* SAC! := CIRCUIT™P"2{(8, U {fy, f1}, P, (log n)?),
« AC' := CIRCUIT(8, U {fy, f1}, 1%, (logn)’), and
« TC' := CIRCUIT(8B, U (May, fy, f1},n°W), (log n)’),

where f; is the 0-ary constant function with output i and Maj is the family (May,),cn of
majority functions, formally May,, (xy,...,x,) = [~ x; > 5]

We will also call circuit families with the corresponding restrictions on their resources
AC!, NC!, SAC' and TC' circuit families, respectively.

The classes SAC' for i > 1 can equivalently be defined using the base {V,, A, -} instead
of B,. By De Morgan’s law, it is then clear that all of the above classes are closed under
complementation, as all other classes already allow the usage of negations arbitrarily.
Also note that NC’, AC’, and TC' can equivalently be defined using input normal form
for all i. For NC' and AC’ this follows from De Morgan’s law. For TC' it is easy to see
that for all n € N and x4,...,x, €{0,1}:

[n
n
—Maj(xq,...,%,) = —|in > E]l
L =1

= ixiﬁgm

:MAI(ﬂXl,...,—!Xn,1,...,1,0,...,0).
— —

[} 31

Note that n = I_%J +1+ [ﬂ —1 for all n € IN. Together with De Morgan’s law this shows that
TC' can equivalently be defined using input normal form. In the context of counting

in Boolean circuits, which is covered in the following subsection, it is standard to only
work with circuits in input normal form.

Remark 2.6. Due to Ag = f and V, = f;, we could omit fy, f; from the definitions of AC'
and TC and f; from the definition of SAC’ with only minor changes on the syntactical
level. Furthermore, for all the classes the constants are computable using non-constant
gates in circuits with at least one input bit.

The most important classes among these both in general as well as for this work are
AC?, NC!, SAC!, TCY and AC!. We now want to give some intuition on the power of
these classes by stating known connections between them as well as connections to

23

2 Preliminaries

other complexity classes. For this it should be noted that all of the classes are inherently
non-uniform: The computation model uses a different circuit for each input length. Due
to this, they are not contained in any of the classical classes. To overcome this one can
add a separate uniformity condition, e.g., by requiring that the circuits of a family are
computable from the input length (given in unary) in polynomial time. We will cover
the topic of uniformity more thoroughly in Subsection as well as Section For
the moment we just want to state that the following connections are well known using
suitable uniformity conditions, such as FO[BIT]-uniformity introduced later, see, e.g.,
the monograph by Vollmer [Vol99]:

DLOGTIME C AC° ¢ TC? c NC! c L ¢ NL € SAC! Cc AC! CP.

Here, it is worth mentioning that P can be characterized in terms of polynomial size
families of Boolean circuits. We also know that TC? C PP [AII99]. Besides these rela-
tions to classical classes, there are also very close relations to other models of parallel
computation, most prominently to alternating Turing machines. It is known that AC°
coincides with LH [SV84] and NC! coincides with ALOGTIME [Ruz81]. More generally,
depth and size of bounded fan-in circuit families are related to time and space on
alternating Turing machines, respectively, with these relations changing slightly when
using unbounded fan-in gates, as studied for example in early work by Borodin [Bor77].
Moreover, the class SAC! has several characterizations on different models, as was shown
by Venkateswaran [Ven91]. Most notable, he showed that SAC! = LOGCFL, the latter
being the class of all languages reducible in logarithmic space to a context-free language
(a definition of the standard notion of context-free languages can be found in [HMUOQ7])).
Furthermore, he gave a characterization of SAC! in terms of so-called nondeterministic
auxiliary pushdown automata. Separations apart from AC? = TC? are not known. The
question whether the classes TC? and NC! coincide is one of the central open problems
in circuit complexity.

All of the above circuit complexity classes share the following important property: All
functions in their bases are commutative. For that reason, we do not need the function
a from the definition of Boolean circuits when only dealing with circuits from these
classes.

Remark 2.7. Removing the function « from the model of Boolean circuits and limiting
all of the above classes to only allow circuits in input normal form does not change
the considered classes (for SAC! input normal form is already given by definition). In
the context of counting (see next section), this model is more natural. Hence, we will
generally use this model for the sake of consistency.

For completeness, we give the formal definition of the modified model next.

Definition 2.8. Let 8 be a Boolean basis with — € B such that for for all f € B, f
is commutative. A Boolean circuit in input normal form over B on n inputs is a tuple
(V,E, B,out) with the following properties:

* (V,E)is adag,

24

2 Preliminaries

* Bisalabeling function V —{0,...,n—1,-0,...,-n -1} U B\ {-},

« if B(g) €10,...,n—=1,-0,...,-n—1} for some g € V, then g has in-degree 0 in the
graph (V,E), and

* if B(g) € B for some g € V and m is the in-degree of g in (V,E), then p(g) either is
a Boolean function with arity m or a family of Boolean functions.

Let n € N, C = (V,E, B,out) be a Boolean circuit in input normal form on # inputs,
and xq,...,x,_1 €{0,1}. Let g€ V and g,..., g, be the predecessors of g in (V,E). The
value of g in C on input x = xy...x,_1, denoted by val(C, g,x), is defined as follows: If
p(g) = —i for i € {0,...,n -1}, then val(C, g, x) := —x;. Otherwise, val(C, g, x) is defined
in the same way as for general Boolean circuits. The function computed by C is again
defined as C := val(C, out,). Families of Boolean circuits in input normal form are families
C = (C,)uen, where C,, is a Boolean circuit in input normal form on # inputs for all
n € IN. The function computed by C is the function C(x) := Cy(x).

To give an overview of the computational power of the different classes of circuits,
we will now recall typical problems for each of them, if possible problems that are
complete for the classes under suitable reducibilities. In AC? it is possible to compute
addition and subtraction. Typical complete problems for TC? are the problems of com-
puting polynomial sums and products as well as division. This also means that matrix
multiplication and similar problems can be solved in TC®. The breakthrough result
that polynomial products and division can be computed in TC? even when using very
restrictive forms of uniformity, in particular FO[BIT]-uniformity used throughout this
thesis, was proven by Hesse in 2001 [Hes01]. As TC® € NC! and it is not known whether
these classes coincide, all of the above problems are also in NC!, but we do not know
any problems in NC! that are not in TC?. A complete problem for SAC! is the problem
of evaluating a given acyclic Boolean conjunctive query in a given database, called
ABCQ (for acyclic Boolean conjunctive query), as was shown by Gottlob et al. [GLS01]].
To obtain a natural complete problem for AC! one can define a variant of the circuit
value problem CVP that ensures that the circuit can be evaluated in logarithmic depth.
This can be achieved by adding a vector containing the depth of each gate to the input
and only allowing monotone, strictly alternating circuits, yielding the problem called
AC1CVP, as was shown by Chandra and Tompa [[CT90]. Mundhenk and Weif8 showed
that the model-checking problem for intuitionistic propositional logic with one variable
is complete for AC! [MW14].

There was also some work on problems based on two-player games complete for SAC!
and AC!. Chandra and Tompa introduced a game called Shortcake and showed that
determining the existence of winning strategies in this game is AC!-complete. They
also defined a variant that yields an SAC!-complete problem. These problems nicely
illustrate the power of the respective class. We will use a slightly modified variant
of the game Shortcake here, using the same name. A similar proof to theirs shows
completeness, but the problem is slightly better suited for our purpose.

The game Shortcake is defined as follows. Two players, H (or 0) and V (or 1) alternately
move a token on an n x n Boolean matrix M. A configuration of the game is a contiguous

25

2 Preliminaries

submatrix of M given by the indices of its first and last rows and columns as well
as a bit specifying the player whose turn it is. To be more precise, the submatrix is
specified by a tuple (ig, i, jo, j1), where iy and i; are the indices of the first and last
row of the submatrix, respectively, while j, and j; are the indices of the first and last
column, respectively. The token is always on the top-left corner of the current submatrix.
Due to this we do not need to explicitly store the token location. In the beginning the
submatrix is given by (1,n,1,n) and H starts to play. In his turn, H tries to move the
token horizontally in the submatrix to some entry (i, j), jo <j < j; satisfying M; ; = 1.
After H’s move either all columns to the left of j or all columns to the right of j are
removed from the current submatrix, whichever number of columns is greater. The
token is then placed on the top-left corner of the current submatrix. This means that
the new submatrix is given by

(io 11,7, 71), if (j1 +jo)/2<j<j;, and
(ip,11,jo,j), otherwise.

In his turn, V plays similarly but vertically on the rows. The first player with no
move left loses. A straightforward definition of winning strategies (cf. our definition
of winning strategies in the first-order model-checking game on page[45) in the above
game then yields the AC!-complete problem SHorTCakE defined as follows.

Problem: SHORTCAKE
Input: Boolean matrix M
Question: Does player H have a winning strategy in the Short-
cake game on M?

In a similar vein, one can also define the game Semicake. Here, the players are called
P and C and move alternatingly again, but the game is played on a matrix with values
from {-1,0,1}. The main difference is that now P chooses the new position for the token
in his move while C chooses which of the possible submatrices the game continues on.
The player P wins if the token ever moves to a cell of the matrix containing the entry
~1 and loses if there is no legal move left. This results in the SAC!-complete problem
SemICakE asking whether the player P has a winning strategy in the Semicake-game on
a given {—1,0, 1}-valued matrix.

While there are also probabilistic classes in the vein of PP and PL in circuit complexity,
these classes are directly defined in terms of corresponding counting classes. For this
reason, we will cover this topic in the following section, where counting classes are
defined.

Similar as in classical complexity theory, for all of the classes defined above one can
also consider functional versions, that is, classes of functions mapping from {0, 1}* to N
computable by the respective computational model. More precisely, in the context of
circuit complexity this means that the output can be produced as a sequence of bits by a
circuit family with multiple output gates within the required resource bounds. As the
outputs are numbers encoded as binary strings, the order of the output gates also needs
to be specified. This can be done by using a relation OUT between gates and natural

26

2 Preliminaries

numbers—instead of having a single element as the output gate—with the intended
meaning that (g,i) € OUT if and only if g is the i-th output gate of the circuit. As in
classical complexity theory, we denote function classes arising in this way by using the
prefix F in the name of the class. For example, FAC? is the class of functions that can be
computed by AC? circuit families with multiple output gates.

Counting in Boolean Circuits

As for Turing-machine based classes, counting analogues can also be defined for circuit
complexity classes by introducing a process of witness-counting. Let C be a Boolean
circuit and x an input that is accepted by C. A witness for the fact that C accepts x is a
minimal substructure of C that is sufficient to see that the output gate of C evaluates
to 1 on input x, that is, a set of gates that have to be evaluated to verify this. There are
two ways to precisely define witnesses for such circuits: Either a witness is a minimal
subcircuit of C that is sufficient to see that the output gate evaluates to 1 or it is a
minimal subtree of C unrolled into tree-shape with the same property. Here, we work
with the latter notion. For a precise definition we now limit ourselves to circuits in input
normal form over some basis 8 C {A,V, Ax, Vi, -, fo, f1 | k € N}

Let B C{A,V, A, Vi, fo, fi | k € N} and n e N. Let C = (V,E, ,out) be a Boolean
circuit in input normal form over 8 on n inputs, x € {0,1}", and let d be the depth of
C. The underlying graph of Cis (V,E) and the underlying graph of C unrolled into
tree-shape is the graph (V}, E;) defined as follows:

V,=| |V'and

-

1

~
Il

I
i
=~

-
I
—_

{((vl!""vi)r(vlw"rvi’vi+1)) | (vilvi+1) EE}'

Here, we view elements v € V as tuples (v) of arity 1. The idea is that, starting from the
output gate, for each gate we create one copy for each path leading up to that gate. For
simplicity we even create one copy for each potential path leading up to the gate. The
output gate in that graph is still the gate out.

Definition 2.9. Let B8 C{A,V, A, Vi, fo, fi | k € N}, n € N, and x € {0,1}". Let C =
(V,E, B,out) be a Boolean circuit in input normal form over 8 on n inputs and let d be
the depth of C. Let (V;, E;) be the underlying graph of C unrolled into tree-shape and
Bi(vi,...,v;) = P(v;) for all 1 <i <d. A proof tree of C on input x (or proof tree of C(x)) is
an inclusion-minimal induced subtree (V), E,) of (V}, E;) with the following properties:

e oute Vp,

¢ for any v € V, with B(v) € {A, Ar | k € N} and for all w with (w,v) € E;, we also
havew e V,,

s forany v € V, with ;(v) € {V, Vi | k € N} there is a w € V, with (w,v) € E;,

27

2 Preliminaries

e for any v € V, that has in-degree 0 in (V, E), we have val(C,v,x) = 1.
Here, (V), E,) being an induced subtree of (V}, E;) means that V,, C V;and E, = E;NV,xV,,.

Let B C{A,V,Ar, Vi, fo, f1 | k € N} be a Boolean basis and C = (V,E, §,out) be a
circuit over 8 on n inputs for some n € IN. Similar to the definition of val(C, g, x), we
denote by proof(C, g, x) the set of proof trees of (V,E, 8, g) on input x for any x € {0, 1}".
Furthermore, we write proof(C, x) instead of proof(C,out,x). The counting function
computed by C is the function #C := |proof(C,-)|, that is, the function mapping any
x € {0,1}" to the number of proof trees of C on input x. Accordingly, the counting
function computed by a circuit family C = (C,,),,c over B is the function #C: {0,1}* > N
with #C(x) := #Cy((x) for all x € {0, 1}".

Definition 2.10. Let B C{A,V, A, Vi, fo, fi | k € N} and s,d: N — IN. We denote by
#CIRCUIT(8,s,d) the class of functions f: IN — IN that arise as the function #C for a
family C of Boolean circuits in input normal form over 8B of size O(s) and depth O(d).

In the same way as for the corresponding classes of Boolean circuits, we also use
#CIRCUIT(8, S, D) to denote the class of functions that arise as functions #C for families
C of Boolean circuits over 8B of size s € O(S) and depth d € O(D) in case of sets of
functions S, D.

Since the bases used in the definitions of NC’, SAC! and AC! are of the required form,
we can define counting versions of these classes as follows.

Definition 2.11. For i € N we define
« #NC' := #CIRCUIT(B, U {fy, 1}, n°W), (log n)?),
« #SAC' := #CIRCUIT(B, U {fy, fi},n°W), (logn)’) and
« #AC! := #CIRCUIT(B, U {fy, f1}, n°W, (log n)").

As for the decision versions of these classes, we could omit f, and f; from the definition
of #AC' and f; from the definition of #SAC’, cf. Remark

Similar to the decision case, the most studied classes among these are #ACY, #NC!,
#SAC! and #AC!. The following inclusions between these classes are obvious from the
definitions:

#AC C #NC! C #SAC! C #AC!.

As for classical circuit complexity classes, we want to cover the topic of what is known
with regards to connections of these classes to other counting complexity classes. For this,
we again assume suitable notions of uniformity (cf. Subsection and Section 2.4).
Note that, already at the first level, the classes #AC!, #NC!, #SAC!, though based
on relatively similar circuit classes, have a quite different computational power. From
known results, it can be seen that #SAC! C #P: The class #SAC! can be characterized
in terms of multiplicatively disjoint circuits and for such circuits, the degree of the
resulting polynomial is always bounded in the size of the circuit, as shown by Malod and

28

2 Preliminaries

Portier [MP08]]. On the other hand, the class #P can be characterized in terms of arith-
metic circuits with polynomial degree, which was shown by Venkateswaran [Ven92]. In
contrast to functions in #SAC!, functions in #AC! can output numbers bigger than e
for inputs of length n, that is, numbers whose encodings have lengths super-polynomial
in the input length. The reason is that unfolding a polynomial size, logarithmic depth cir-
cuit into tree-shape may result in a graph of size n?(1°8") As #P-functions are bounded
by 2”0(1), this means that #AC! ¢ #P.

Actually, the classes #AC! and #P are incomparable if P # NP. For the remaining
separation #P ¢ #AC!, we first define the operator 3 on function classes. For any class
§ of counting functions, let 3 - § be the class of languages L for which there is an
f € § such that for all x € (0,1}, x € L &= f(x) > 0. Assuming #P C #AC! we get
NP =3-#PC3-#AC! = AC' CP.

A similar argument as that for #AC! ¢ #P shows that, in contrast to the situation in
the setting of decision classes, #SAC’ cannot be equivalently defined using the base
{Va, A,—): The class #CIRCUIT({V,, A, =} U {fo, 1}, 1), (log n)’) contains the function

p(ntsy (by the same argument showing that #AC! can compute the function 21",
while this function is not contained in #SAC'. This also shows the separation #SAC! #
#AC!. On the other hand, analogously to the situation in the classical setting, #SAC!
can be characterized in terms of counting in nondeterministic auxiliary pushdown
automata [Vin91]].

We now want to give a bit more context for the power of these classes by covering
relevant relations to other complexity classes. Agrawal et al. showed that FAC? C #AC?,
so FAC? is a lower bound for the counting classes we consider [AAD00]. We also
know that multiplication cannot be in FAC?, as otherwise the completeness of the
corresponding decision problem for TC? would imply AC? = TC®. Consequently, we
have FAC? C #ACP.

As polynomial sums and products can be computed in FTC’, we have #AC° C FTC.
Even more, this inclusion is strict by a similar argument as FAC? = #AC?: As all {0, 1}-
valued functions in #AC? are also in AC?, #AC® = FTC® would imply AC? = TC®. On
the other end of the spectrum, it is easy to see that FTCY C #P: As FTCC-circuits can
be evaluated in polynomial time, we have FTC? C FP C #P. For the separation, assume
FTC? = #P for the sake of contradiction. For any class § of counting functions, let C-§
be the class of all languages L for which there are f, g € § such that for all x € {0,1}",
x €L & f(x)> g(x). We obtain PP = C-#P C C-FTC? = TC?, which is a contradiction
to TC® ¢ PP. Here, C-FTC® = TCC is obvious from the definition: Computing two
FTCC-functions and comparing them can be done in TC?, while for the converse we can
just use the characteristic function of any language in TC? and the constant-0 function to
show that the corresponding language is also in C-FTC’. Regarding the relationship of
FTC? to the other circuit-based counting classes, we have FTC? C FNC! C #NC!, where
the latter inclusion was shown by Caussinus et al. [CMTV98]].

For later reference, we compactly restate the above relations between the central
classes of this thesis as well as relevant relations to other classes in the following
proposition. These relations are also illustrated in the inclusion diagram shown in

29

2 Preliminaries

Figure 2.1: Relationship between central counting classes in this thesis and relevant
relationships to other classes, assuming P # NP. Dashed lines indicate that
separations are not known.

Figure

Proposition 2.12. Using suitable uniformity conditions and assuming P = NP, we have:

#AC!
&
FAC? C #ACY C FTCO C #NC! C #SAC! mw
Cup

Also, FTC? = #P. Here, P = NP is only required for #P ¢ #AC!.

There are also characterizations of #NC! and #SAC! in terms of counting accepting
paths in different computation models. More precisely, Caussinus et al. showed that
#NC! can be characterized in terms of counting paths in bounded width branching
programs [CMTV98|] and Vinay showed that #SAC! can be characterized in terms of
counting accepting paths of nondeterministic auxiliary pushdown automata [Vin91].

As mentioned in the previous section, classes in the vein of PP were also introduced
from these counting classes.

Definition 2.13. Let #& be a counting complexity class for a circuit complexity class €.
Then define P€ :={L|3f,g e #€ such that x e L < f(x)—g(x) > 0 for all x}.

In this vein, the classes PACY? and PNC! were studied [AAD00, [ABL98), [CMTV98].
Note that the above definition is related to so-called Gap- and Diff-classes (cf. GapL, the
closure of #L under subtraction) and to the fact that for #AC? and #NC!, these classes co-
incide [ABL98,ICMTV98|. Interestingly, Agrawal et al. [AADOQO]| further showed that the
class PACY coincides with TC? in the non-uniform setting and Ambainis et al. [ABL9S]]
showed that TC® C PACY also holds in the Up-uniform setting. While they were not able

30

2 Preliminaries

to show the converse, it follows immediately from division (and hence polynomial prod-
ucts) being computable in TC?. Consequently, TC? = PAC? also holds in the Up-uniform
setting.

Regarding complete problems, much less is known for the above counting complexity
classes than for their decision counterparts. Certain counting problems on nondeter-
ministic auxiliary pushdown automata are complete for #SAC! [Vin91]. Evaluating
arithmetic formulae over the natural numbers and over the integers is complete for
#NC! and GapNC!, respectively [BCGR92]. The latter is the closure of #NC! under
subtraction and is one of the Gap-classes mentioned above [CMTV98|]. Computing
specific entries of the product of a sequence of matrices of constant dimension with
integer entries as well as counting paths in bounded-width graphs are also complete
for this class. Furthermore, counting accepting paths in so-called visible pushdown
automata is complete for #NC! [KLM12]. With regard to constant-depth circuits, there
is a problem based on counting paths in a specific family of graphs that is complete for
#ACY [AAB99].

Counting Arithmetic Circuits

We now want to give a different view on the counting classes covered above by pointing
out a connection to arithmetic circuits. For many tasks regarding structural analysis,
the definitions of counting classes in terms of arithmetic circuits are better suited.
It is folklore, though, that these classes can be characterized in terms of a variant
of arithmetic circuits, called counting arithmetic circuits. Arithmetic circuits are a
generalization of Boolean circuits, where instead of Boolean values (elements of the
Boolean semi-ring), elements of an arbitrary semi-ring can occur. Gates then compute
functions over that semi-ring.

Counting arithmetic circuits are for the most part just a specific kind of arithmetic
circuit: The semi-ring is fixed to be the natural numbers and the basis is a finite
subset of {+, X, +, Xk, fo, f1 | k € N}, where + and x are unbounded fan-in addition and
multiplication, respectively, and +; and x; are addition and multiplication of fan-in k,
respectively. They differ from usual arithmetic circuits in that inputs are not arbitrary
elements of the chosen semi-ring, but rather only 0 or 1, i.e., Boolean inputs. Also, input
gates can be negated in analogy to Boolean circuits in input normal form. We will now
give a formal definition.

Definition 2.14. Let 8 C {+,X,+,+k, Xk, fo, f1 | k € N} and n € IN. A counting arithmetic
circuit over B on n inputs is a tuple (V, E, ,out) with the following properties:

* (V,E)is adag,

* pisafunction V —{0,...,n-1,-0,...,-n-1}U B,

if p(g) €{0,...,n—1,-0,...,~n—1, fy, f1} for some g € V, then g has in-degree 0 in
the graph (V,E), and

if B(g) € B for some g € V and m is the in-degree of g in (V,E), then B(g) €
{4, %+ X}

31

2 Preliminaries

Families of counting arithmetic circuits as well as size and depth of counting arithmetic
circuits and families of such circuits are defined in analogy to the respective notions
for Boolean circuits. Let B8 C {+, X, +k, Xk, fo, fi | k € N}. The value of a gate g in some
counting arithmetic circuit C over B on an input x of adequate length is denoted by
val(C, g,x) in analogy to the case of Boolean circuits. The function computed by a
counting arithmetic circuit C over 8B, denoted by C, and the function computed by a
family C of counting arithmetic circuits over B, denoted by C, are defined accordingly.

There is a close correspondence between Boolean circuits in input normal form and
counting arithmetic circuits. More precisely, for any Boolean circuit C in input normal
form that only uses conjunction, disjunction and negation, the corresponding counting
arithmetic circuit obtained by replacing conjunction by multiplication and disjunction
by addition computes exactly the number of proof trees of C. Venkateswaran proved
this fact in high generality [Ven92], and we state it in the following proposition.

Proposition 2.15. Let B C{A,V,Ax, Vi, = fo, fi | k € IN}and n € N. Let C = (V,E, B,out)
be a Boolean circuit in input normal form over 8 on n inputs. Then the counting arithmetic
circuit C' = (V,E, p’,out), where B’ is obtained from B by replacing V by + and A by X,
computes the function #C. Formally, B’ is defined as follows:

B(g), if p(g)€{0,...,n=1,-0,...,-n -1, fo, fi}
+ ifplg=V
B(g)=13x ifp(g)=A
tm lfﬁ(g) =V
X lfﬁ(g) =Am

As the circuit C’ defined in the statement of this proposition has the same size, depth
and fan-in as the circuit C and any counting arithmetic circuit D is equal to C’ for
some Boolean circuit C, this means that we can equivalently define the classes #NC/,
#SAC!, and #AC' for i € N in terms of counting arithmetic circuits instead of counting
in Boolean circuits. We will use both definitions depending on the context. To illustrate
the definition of counting arithmetic circuits, Figure [2.2|sketches an arithmetic circuit
family of polynomial size and constant depth computing the function f (w) = |w|/*V21,
In other words, this circuit family shows that f € #AC°.

Uniformity

When using circuits as a computational model, circuit families are used to be able to
process inputs of arbitrary length. As defined before, a circuit family contains a circuit
for each input length n € IN. Since there are no limitations to how these circuits are
constructed, this model has unlimited power regarding properties that only depend on
the input length. This means that any unary language—in particular any undecidable
unary language—is trivially contained in all of the defined circuit complexity classes.

32

2 Preliminaries

&1 8rwl/21
1 1 1 1
%/—/ %/—/
[w| [w|

Figure 2.2: Counting arithmetic circuit for the function f(w) = [w|*V21,

Proposition 2.16. Let L be a unary language over {0,1}, that is, there is a set M C IN such
that

L={w]|lwleM}.

L can be accepted by a family C = (C,),ew of Boolean circuits, where C,, is of size 1 and depth
0 for all n € N.

Proof. For all n € N, let C,, := ({v},0, 8,v) with B(v) = f, 1), i-e., v is a gate for the
constant ¢y (1"). Recall that ¢ is the characteristic function of L. By construction
C = (C,) e has the desired properties. O

When circuits are used as a model of parallel computation and generally in a com-
plexity theoretic sense, it is desirable to obtain classes of decidable problems. Also,
for many classes in circuit complexity, in particular the classes we consider in this
thesis, the computational model itself is relatively weak. Hence, to use these classes in a
meaningful way in complexity theory—e.g., obtaining connections to other complexity
classes—artificially adding power with respect to the length of the input should be
avoided.

These issues justify to introduce a form of uniformity to circuit families. A uniform
circuit family (C,,),cn is one where the circuits arise from the respective input length in
a uniform manner. This is usually formalized by imposing that the circuit C,, should be
computable from n within reasonable resource bounds. Simple forms of uniformity are
P-uniformity and L-uniformity, that is, C, can be computed from 7 in polynomial time
or logarithmic space, respectively.

Many of the usual classes from circuit complexity are weak even compared to P or
L. For this reason, even weaker forms of uniformity are of interest from a theoretical
standpoint. As mentioned above, the goal of this approach is to find a type of unifor-
mity that does not add any power to the model. In this regard, we want to introduce
Up-uniformity, which is based on the class DLOGTIME. Since this uniformity only
allows for deterministic computations in logarithmic time, it is standard to not impose
that the circuits are computable within these resource bounds. Instead, it should be

33

2 Preliminaries

possible to query all information needed to specify the circuit within that bound, which
is why it can be considered a query-based uniformity condition. Note that L-uniformity
mentioned above, where the whole circuits have to be computable in logarithmic space,
for polynomial-size circuit families coincides with a suitably defined query-based uni-
formity where logarithmic-space computations are allowed. To make the notion of
Up-uniformity precise, we first need to make the encoding of circuits precise. Here, we
describe the general version including the function a providing an ordering of the edges.
When this order is not required the conditions referring to @ can simply be omitted.
Note that in this context it is standard to assume that circuits have exactly one input
gate for each input bit. For the usual classes this is not a restriction, as one can simply
use additional conjunction- or disjunction-gates that copy the value of certain input
gates.

Definition 2.17. Let C = (C,,),,en be a family of Boolean circuits over 8B of size s. An
admissible encoding scheme of C is obtained as follows. Fix a numbering of elements of
B. Also, for each n fix a numbering of all gates of C,, with the following properties:

* Input gates in C,, are numbered by 0,...,n—1.
* The output gate has number n.

* There is a polynomial p such that the highest number of any gate in C,, is bounded
by p(s(n)).

The encoding scheme now describes how individual gates in any circuit C, are encoded.
Let C, = (V,E,a,B,out). Let v be a gate in C,, with predecessors vy,...,v; such that
a(vy,v) < a(vy,v) <--- < a(vg,v). Then v is encoded by v :=(g,b,41,...,4k), where g is
the number of v, b is the number of f(v) and gi,..., g, are the numbers of vy,...,vg. The
circuit C, is then encoded by listing the encodings of all non-input gates of C,, in an
arbitrary order: (vy,...,v;), where V = {vy,..., v} U{v € V| v is an input gate}.

Next, we will define the direct connection language of a circuit family, which describes
a family of Boolean circuits by allowing for queries to its relations.

Definition 2.18. Let C = (C,,),,cn be a family of Boolean circuits over 8. Fix an admis-
sible encoding scheme of C. The direct connection language (dcl) of C with respect to
that encoding scheme is the set Lp(C) containing for each n € IN all tuples (v, g,p,b)
with the following properties:

* lyl=mn,

* g is the number of a gate vin C,,

* pelo1y,

e if p = ¢: b is the number of f(v), and

* if p = bin(k) for some k > 0: b is the number of the k-th predecessor of v respecting
the order given by a.

34

2 Preliminaries

Now a circuit family C is called Up-uniform, if there is an admissible encoding scheme
such that the direct connection language of C with respect to that encoding scheme is in
DLOGTIME. This notion of uniformity is equivalent to so-called first-order uniformity
for many circuit complexity classes, which will be used throughout the paper. As certain
concepts from first-order logic are required to introduce first-order uniformity, it will
be introduced later (see Definition[2.29). We will defer a discussion of the suitability
of different forms of uniformity for the different circuit complexity classes as well as
of the choice of the notion of uniformity for this thesis to Section since first-order
uniformity and some related topics regarding first-order logic are required to adequately
cover this topic.

2.2 First-Order Logic and Extensions

In this section we recall important definitions from first-order logic (FO) and some
related notions. For a thorough introduction to the topic, we refer the reader to the
textbook by Ebbinghaus et al. [EFT94].

2.2.1 Basics of First-order Logic

An FO-vocabulary (or vocabulary) is a tuple (Ry,...,Rx;Fy,...,F¢;cq,...,¢ppy) containing rela-
tion symbols Ry,..., Ry, function symbols Fy,...,F, and constant symbols cq,...,c,,. Each re-
lation symbol R € {Ry,..., R} and each function symbol F € {Fy,...,F;} have an associated
arity, which is a natural number, given by ar(R) and ar(F), respectively. A vocabulary is
relational if it contains no function symbols and no constant symbols. For such vocabular-
ies we omit the semicolons, that is, (Ry,...,Ry) is a vocabulary containing relation symbols
Ry,...,Rx. When defining vocabularies, we often use superscripts to specify arities of rela-
tions and functions. For example, (R?,R3) refers to a vocabulary containing relation sym-
bols Ry and R, with ar(R;) = 2 and ar(R;) = 3. We use U to denote the union of two disjoint
vocabularies. More precisely, for two vocabularies o = (Ry,..., Ry ;F1,...,Fg5¢1,...,¢)),
T =(Ri, 41+ Rk ks Fey 415+ F e, 40,5 Cmy 415+ Cony 4,) We define

oUT:=(Ry,...,Re 4k, F 1o Fehe,5C10 00 Conyvmy)-

Let 0 =(Ry,...,R;Fq,...,Fpcq,...,¢py) be a vocabulary. Formally, we use the countable
set Vargp = {x; | i € N} as the set of first-order variables. In practice, we will also use
different names for variables for readability. The set of terms over o (or o-terms) is
described by the following grammar:

tu=x|c|F(t,...,t),
—_—
ar(F)-many
where x € Varpg, c€{c; |1 <i<m}and Fe{F;|1 <i <{}. Terms that are variables or
constant symbols are also called atomic terms. Now, the set of FO-formulae over ¢ (or
o-formulae) is described by the following grammar:

=011t =t [R(ty,.. ., tar) | @A QL@ V@ |~ |Txp | Vo,

35

2 Preliminaries

where R € {Ry,...,R¢}, and #4,..., thax(2,ar(R)),...ar(R,)) @T€ O-terms and x € Vargg. Formulae
of the form #; = t; or R(ty,...,t.y(r)) are called atomic formulae. We will use t # t’
instead of =t = t" as well as the shorthands — and « for implication and biimplication,
respectively. More precisely,

p—=9Pi=-¢VvyY and Qo P=(PAP)V (=@ A).

Let ¢ be an FO-formula. If 3 and V do not occur in ¢, we call the formula quantifier-free.
We denote by SF(¢p) the set of subformulae of ¢. Further, the set of variables occurring
in @ is denoted by Vars(¢). An occurrence of a variable x in an FO-formula ¢ is called
bound, if it appears in the scope of a quantifier 3x or Vx. Otherwise it is called free.
Similarly, a variable is called free in ¢, if there is a free occurrence of the variable in ¢
and it is called bound if there is a bound occurrence of it in ¢. For an FO-formula ¢ the
set of all free variables in ¢ is denoted by free(¢) while the set of all bound variables in
@ is denoted by bound(¢). Note that bound(¢) N free(¢) can be non-empty. A formula
without free variables is called a sentence. A o-sentence is a o-formula that is a sentence.

Models in first-order logic are first-order structures, which will be defined next. For ¢
as above, an FO-structure A over o (or o-structure) is a tuple

(A;RA,...,RA;FA,...,FA;cf‘,...,cﬁ),

where A is a non-empty set and Rf‘

symbols from o over that set:

, Ff‘ and cf‘ are interpretations of the respective

R? c AR is a relation of arity ar(R;) for 1 <i <k,
F?: AT 5 is a function of arity ar(F;) for 1 <i <¢, and
Cf‘ €A is a constant for 1 <i <m.

The set A is called the universe (or domain) of A, denoted by dom(A). We generally
denote the interpretation of a relation symbol R in the structure A by RA and similarly
for functions and constants even when not explicitly stated. In this thesis we will
only consider finite FO-structures, that is, FO-structures with a finite universe. The
set of all finite o-structures is denoted by STRUC|[¢]. Similar to the notation used for
vocabularies, we use U to denote the operation of adding additional interpretations of
relation-, function- and constant-symbols to a structure. For a formal definition, let

o=(Ry,...,Rg;;F1,..,Fe5¢q,..0,¢p,) and
T= (Rk1+1" e Rk1+k2;F€1+1" e F€1+€2;Cm1+11’ . "le+m2)
be vocabularies, let A be a o-structure, and let
T = (Re, 115+ Riyikys Foov15 -0 Fooeys Cony w10+ Cony)
be a tuple of interpretations of the symbols in 7 as relations over dom(A). We define
. .RA A .
AUT = (dom(A),R "'"Rkl’Rk1+1""'Rk1+kz’

A A .
P P8 Frate o Frveys

A A
Cloev s Comyr Cny 41+ r Cony oy)-

36

2 Preliminaries

We also need a notion of assignments to variables, which is especially important in
the context of formulae with free variables. An FO-assignment s in a structure A is
a partial function s: Vargg — dom(A). For such an assignment s, we denote by s[x/a]
for x € Vargp and a € dom(A) the substitution of a for x in s, i.e., the assignment with
s[x/a](x) = a and s[x/a](y) = s(y) for p = x.

Semantics of FO is defined inductively over the compositional structure of the formula.
First, we inductively define the value of an arbitrary term ¢ in a structure A under an
FO-assignment s assigning values to all variables occurring in ¢:

x(A9) = 5(x), if x € Vargq,
AS) . A if c€fcy,..., cp), and

F(tl, . tr)(A,S) = FA(tiA,S)’ ., t}(,A,S)

c!
), if Fe{Fy,...,Fy} and t,...,t, are terms.

The model relation | assigns a truth value to a formula ¢ in a given structure A under
a given FO-assignment s assigning a value to all free variables. This relation is defined
inductively as follows:

AsHO for all (A, s),
AsE1 for all (A, s),
AskEt =t if tgA’S) = t(QA’S),
(A, A,
ASER(t,... tyw) if <t§ s),...,tir(;))) eRA,
AsEpAY, ifA,sEpand A,sE v,
AsEeVy, ifA,sEporAskEy,
A,S':—|(P, ifA,Sbé(P,
A s Edxg, if there is an a € dom(A) with A, s[x/a] E ¢, and
A, s EVxo, if for all a € dom(A) it holds that A, s[x/a] E ¢.

When ¢(x1,...,x) is a o-formula for some vocabulary o, A a o-structure, a = (ay,...,a)
a tuple of elements of dom(A), and s: {xy,...,x;} = dom(A) with s(x;) = a; for all i, we
also write A | @(a) instead of A,s | ¢. In particular, if ¢ is a sentence, we also write
AEo.

An important normal form of first-order logic is the so-called prenex normal form. A
formula in prenex normal form is of the form

P(x1,.x) = Q1 Qeye P(X1, ., Xk, Y15, Ve)s

where Qq,...,Q, € {3,¥} and ¢(xy,..., Xk, v1,...,V¢) is a quantifier-free formula. We call
Q191 ... Qrye the quantifier prefix of ¢. Based on this normal form one can also define
fragments ¥ and Iy of FO, the classes of the alternation hierarchy. The fragment ¥ is
the set of formulae in prenex normal form that start with an existential quantifier and
have exactly k alternations between existential and universal quantifiers. More precisely,
a formula in ¥ is of the form

e(X) =311 IV16, Y921 V92,0, - QkVk,1 - - Qi Wkt P(X,7),

37

2 Preliminaries

where Qy is V, if k is even, and Qy is 4 otherwise. The fragment I'l; is defined analogously
with the quantifier prefix starting with a universal quantifier.

The following properties are folklore. Formulae in ¥, are preserved under extension,
that is, for any ¢ € ¥, and any structure A and assignment s with A,s E ¢, we also
have A’,s £ ¢ for any A’ that is obtained by adding new elements to the universe of A
(without changing interpretations of relations). Similarly, formulae in IT; are preserved
under taking induced substructures, that is, for any ¢ € Il the same holds for any A’
that is obtained from A by removing elements not occurring in s from the universe and
all tuples involving those elements from the interpretations of relation symbols.

Another important normal form exists for quantifier-free formulae. In analogy to
disjunctive normal form in propositional logic, one can also define disjunctive normal
form (DNF) for quantifier-free first-order formulae. Here, atoms and negated atoms are
treated as literals so a quantifier-free FO-formula in DNF is of the form

n

m
.\/ /\fi,j,

i=1 j=1

where ¢; ; is an atom or negated atom. Analogously one can define conjunctive normal
form (CNF) for quantifier-free first-order formulae.

2.2.2 Encodings of Structures and FO-Definable Languages

In the context of complexity theory and especially when aiming to define complexity
classes from classes of logics, it is useful to be able to view structures as strings. For
this, we will introduce the standard encoding of structures as binary strings from the
literature. As this requires an order on the elements of the domain, we assume that
domains are always of the form {0,...,n — 1} for some n € IN in this context. This is
customary when working with encodings of structures as binary strings, and still allows
us to talk about arbitrary structures modulo isomorphisms.

In the context of encodings of structures we restrict ourselves to relational vocabular-
ies, since in this thesis we will only work with relational structures as inputs. Function
symbols may occur as free variables (see Subsection and constants may occur
as built-in numerical constants (see Subsection and hence they might occur in
some vocabularies, but they will not be part of structures that are encoded in binary.
Furthermore, note that delimiters in the encoding are not necessary, since the positions
of certain bits in the encoding are determined by the cardinality of the universe.

We now fix a suitable encoding of structures as binary strings that is standard in the
literature.

Definition 2.19. Let 0 = (Ry,...,Rg) be a vocabulary and let A be a o-structure. Then the
encoding enc,(A) of A is the concatenation of the encodings of its relations. A relation
R C dom(A)™ for m € N is encoded by a string of length |dom(A)|™. The i-th bit of this
encoding states whether the i-th tuple in dom(A)™” (in lexicographic order) is contained
in R.

38

2 Preliminaries

The case of the empty vocabulary needs to be treated separately, as the encoding of
structures over the empty vocabulary would always be the empty string according to
the above definition. As a work-around, Immerman treats such structures in the same
way as if they had a single, empty, 1-ary relation. Instead, we will simply assume that
relational vocabularies are always non-empty. By the above, properties of structures
over the empty vocabulary can still be formulated as structures over a vocabulary with a
single 1-ary relation symbol. Note that by this definition, the empty string ¢ is not the
encoding of any structure. Furthermore, the following is obvious.

Observation 2.20. Let 0 = (Ry,...,Rg) be a vocabulary. Then for every A € STRUC[c], the
length of the encoding of A is

k
lenc, (A)) =) " |dom(A)P"R,

i=1

It immediately follows that only over vocabularies that contain only a single relation
symbol encodings of structures can have length 1. Moreover, among vocabularies with a
single relation symbol, only if that symbol is unary there are encodings of length 2 or 3.
Consequently, there is only a single vocabulary o, such that strings of length 1 and 2 (or
3) occur as encodings of o-structures. This is the vocabulary o = (S!).

We are now in a position to define complexity classes from classes of FO-formulae.

Definition 2.21. Let € be a class of FO-formulae and ¢ a vocabulary. A language L is
definable in € if there is a 0-sentence ¢ € € such that for all x € {0, 1}* we have

xel & enc;!(x) E o,

if x is the encoding of a o-structure, and x ¢ L otherwise. By abuse of notation, we also
denote by € the class of languages definable in €.

Intuitively, this means that for L and ¢ as above, a binary string x is contained in L if
and only if it is the encoding of a model of ¢.

2.2.3 Built-in Predicates and Classes of Definable Languages

Sometimes it is helpful to allow certain built-in predicates in FO. This is especially
helpful when relating known complexity classes to classes definable by formulae. The
main reason is that most computational models get an encoding of an input as a string
and the bits in these encodings are inherently ordered. Also, for certain classes there are
reasons to add predicates beyond an order. Formally, built-in predicates (or numerical
predicates) and built-in constants (or numerical constants) are relation symbols (and
constant symbols, respectively) whose interpretation is implicitly given based on the
cardinality of the universe of the input structure. A typical example of a built-in
predicate is the natural order on the set {0,...,n—1}.

Formally, we use relation symbols N; for i € IN as numerical predicate symbols
and n; for i € IN as numerical constant symbols. Each numerical predicate symbol

39

2 Preliminaries

N; has an associated arity ar(N;). Now a (non-uniform) family of interpretations (of
the numerical predicates and constants) is a family 7 = (I,,),,cn, where I,, maps each
numerical predicate symbol N; to a relation I,,(N;) € {0,...,n—1 1arNi) and each numerical
constant symbol to a number I,,(n;) € {0,...,n—1}.

Let 0 be a vocabulary and ¢ a o-sentence using the vocabulary 7 of numerical
predicate symbols, where 7 = (Nij,eees Nik;;nh,..., njc) for some k,¢,iy,..., i, j1,...,je € N.
We say that ¢ holds in a o-structure A with a family of interpretations 7 = (I,,),eN,
denoted by A =7 ¢, if and only if A U (I|gom(a)|(7)) E @. Here, I|gom(a)(T) denotes the
tuple of interpretations of the symbols in T by I}gom(a)-

We now define classes of languages definable by classes of first-order formulae with
additional built-in predicates and constants.

Definition 2.22. Let € be a class of FO-formulae, ¢ a vocabulary, R a set of relations
over N, and M C N a set of constants. A language L is contained in the class €[?R, M| if
thereisa 0 U(Ny,Np,...)U(;;ny,ny,...)-sentence ¢ € € and a family of interpretations
I =(I,),,en, where I,(N;) is the restriction of a relation in R to {0,...,n—1}and I,,(n;) e M
for all n,i € IN, such that for all x € {0, 1}* we have

xel < enc;'(x) Er @,

if x is the encoding of a o-structure, and x ¢ L otherwise.

For a finite set R = {Ry,..., Ry, } of relations over IN and a finite set M = {cy,...,¢,} €N,
we also write €[Ry,..., Ry ,cy,...,c,] instead of C[R, M]. The case where just one of R
and M is finite or even empty is treated similarly. For example, we write €[R] instead of
¢[9R, 0]. Moreover, we use the term €[R, M |-sentence to refer to a sentence as it occurs in
the definition of the class €[R, M]. Similarly, we also use the term FO[R]-query to refer
to FO-queries J: STRUC[o] — STRUC|7] where ¢ contains built-in predicate symbols
whose interpretation by relations from R is understood from the context.

The most common examples of classes definable by first-order formulae with built-
in predicates are the classes FO[Arb], and FO[BIT], and FO[+,x]. Here Arb refers to
the set of all relations over IN The BIT-predicate gives bitwise access to the binary
representation of numbers from IN. More precisely, (i,x) € BIT if and only if the i-th
bit in the binary representation of x is 1. Here, for an n-bit number, the 0-th bit is
the LSB while the n — 1-th bit is the MSB. The relations + and x are the usual addition
and multiplication in IN given as ternary relations. The classes FO[+, x] and FO[BIT]
coincide [Imm99]]. We will formally use FO[BIT] in the following, which is relevant in
the context of fragments for which the different versions do not coincide. In case of
the full logic we will sometimes still make use of the predicates for + and x as they are
expressible in FO[BIT].

In the case of classes such as FO[BIT] one asks for the existence of an FO[BIT]-sentence
and a family of interpretations 7 with certain properties. For this reason it can be useful
to make the presentation more simple by directly using numerical predicates and
constants inside of formulae instead of numerical predicate symbols and numerical
constant symbols. While this adds semantics to the syntax to some degree, this is

40

2 Preliminaries

justified in this context as one can simply choose 7 as required as we are only interested
in the existence of an appropriate family 7. This is the case throughout this thesis: We
will use predicates such as +, x, and BIT as well as constants such as min and max,
referring to the minimal and maximal element of the universe, respectively, inside of
formulae with access to these numerical predicates. In this case, the interpretation of
the numerical predicates is implicit and clear from the context and the used symbols.
We will for example write A [¢ for an FO-structure A and FO[BIT]-formula ¢ if and
only if A =7 ¢’, where ¢’ is obtained from ¢ by replacing BIT by a numerical predicate
symbol and 7 interprets that symbol as the relation BIT restricted to dom(A).

Note that numerical predicates do not change the encoding of structures as for a
given structure A and family I of interpretations, the interpretation of the numerical
predicate symbols is uniquely determined by 7 and |dom(A)|.

2.2.4 Important Vocabularies

Two important vocabularies for the following topics are the vocabulary Ty ing of binary
strings and the vocabulary 7., of Boolean circuits defined as follows:

. 1
Tstring = (S),
Teire °= (Ez, GlA, G\l,, Inputz, negatedlnputz, out!).

A Tgyring-structure A with universe {0,...,n — 1} for some n € N encodes a binary string
by using the elements of the universe as positions while SA specifies the symbols of the
word, more precisely: Let w = wy...w,_; € {0,1}* with w; € {0,1}. Then w is encoded by
the structure ({0,...,n—1},{i | w; = 1}), which we denote by A,,.

A Tgc-structure with universe {0,...,n — 1} for some n € IN encodes a Boolean circuit
with A-and V-gates in input normal form. For this, the intended meaning of the symbols
from 7 ;. is as follows:

* E(x,v): gate x is a predecessor of gate v,

* G,(x): gate x is an and-gate,

* Gy(x): gate x is an or-gate,

* Input(x,i): gate x is associated with the i-th input bit,

* negatedlnput(x,i): gate x is associated with the negation of the i-th input bit, and
* out(x): gate x is the output gate.

Note that we do not allow constants here to keep the definition simple. As mentioned
earlier, the classes we consider do not change when disallowing constants.

As we also consider TC-circuits, we also require a vocabulary that allows to encode
circuits that also use majority-gates. For this, we can simply add an additional predicate
stating whether a gate is of this additional type, leading to the following vocabulary:

. 2 ~1 1 1 2 2 1
Tmaj-circ *= (E ,Gp, Gy, G,y INPUt”, negatedinput®, out ™).

41

2 Preliminaries

All predicates shared with 7., have the same intended meaning as before, while x € GMA]
has the intended meaning that x is a majority-gate in the circuit C.

Furthermore, we already mentioned the concept of classes of counting functions in the
context of circuit complexity that are defined in terms of circuits with multiple output
gates. When encoding such circuits as FO-structures, we need to replace the predicate
out in the vocabulary by a new 2-ary relation symbol OUT, where (g,i) € OUTC has the
intended meaning that gate g is the i-th output gate of the circuit C.

2.2.5 FO-Queries

We will also need the notion of FO-queries [Imm99]], which are sometimes also called
FO-interpretations [Daw15|] or FO-transductions [Grol7]]. An FO-query is a description of
a T-structure by FO-formulae over ¢, where o and 7 are relational vocabularies, which
means that it is a way to describe a mapping from o-structures to 7-structures using
FO-formulae. We will give the formal definition next.

Definition 2.23. Let o, T be relational vocabularies, T = (Ry,...,R;), and k € N. An
FO-query is a mapping

J: STRUC[o] — STRUC|7]

given by a tuple (¢g, PR,,---, Pr), Wwhere @g, or,,..., r, are o-formulae. The formula ¢,
has k free variables and ¢p. has k-ar(R;) free variables for all i > r. For any structure
A € STRUC[o], these formulae define the structure

J(A) := (dom(I(A);RIY,.. . RI™) e STRUC]7],
where dom(J(A)) is defined by ¢ (sometimes also @ypjverse) and the relations are defined
by @R,,..., g, in the following way:

dom<<)) {(ar,... >edom< A |AE polay,...,)} and
= {(by,..., bar(r,) € dom(I(A)™ RV | Ak g (by,..., barr,) -

Note that the composition of two FO-queries is again an FO-query.

2.2.6 Free Second-Order Variables in First-Order Logic

Second-order logic extends first-order logic by allowing variables for second-order ob-
jects, that is, relations and functions, as well as quantifiers for such objects. For this
thesis, a more limited notion is sufficient: While we will need second-order variables,
we will not need second-order quantifiers. Syntax and semantics for this case can be
fully defined in terms of usual first-order syntax and semantics by simply extending
the vocabulary and adding the assignments to second-order variables to the structure
in the form of additional relations or functions. Let o be vocabulary not contain-
ing the symbols Ry,...,R,,Fy,...,F,. A first-order formula over o with free relational

42

2 Preliminaries

variables Ry,...,R,, and free functional variables Fy,...,F,, is a first-order formula over
o U(Ry,...,R,;Fq,...,F,;). Since the intended use is that we evaluate first-order formulae
over o with free relational and functional variables in o-structures with separately
given assignments to the free second-order variables, we use the following notation:
Let ¢ be such a formula. We write ¢ as ¢(Ry,...,R,,Fy,...,F,). Let Ry,...,R,, Fq,..., Fy,
be interpretations of the corresponding free second-order variables of adequate ar-
ity and let A be a o-structure. Then we write A | ¢(Ry,...,R,, Fy,...,F,,) instead of
AU (er""Ranl""lFm) IZ (P

2.2.7 The First-Order Model-Checking Game

Another way to view semantics of first-order logic is in terms of a two-player game.
We begin with an intuitive explanation of this game and will give formal and precise
definitions afterwards. Let ¢ be a first-order formula over some vocabulary o, A a
o-structure and s an assignment to the free variables in ¢. The game progresses as
follows: Player 1 is the verifier. Their goal is to show that in fact A, s | ¢. Player 2 on the
other hand tries to show the converse and is hence called falsifier.

The game builds on the fact that for each operator and for each quantifier either a
single witness is sufficient to show that said operator or quantifier evaluates to true or
a single witness is sufficient to show that said operator or quantifier evaluates to false.
For example, in order to show that a disjunction ¢ V 1 evaluates to true in a structure
A under some assignment s, it is sufficient for the verifier to choose between ¢ and ¥
and show that the chosen formula evaluates to true in A under assignment s. As another
example, consider a formula Vx ¢ starting on a universal quantifier, a structure A and an
assignment s. In order to show that A,s }£ Vx ¢, it is sufficient for the falsifier to choose
an element a € dom(A) and show that ¢ evaluates to false in A under assignment s[x/a].

The verifier tries to show that the formula evaluates to true in the given structure
under the given assignment by making choices whenever a single witness it sufficient
for this and the falsifier tries to show the converse by making choices when this is not
the case. The goal of the verifier is to reach an atom that is true in the structure under
the current assignment; the goal of the falsifier is to reach an atom that is false in the
structure under the current assignment. Now A,s | ¢ if and only if the verifier can
always reach their goal independent of the choices made by the falsifier in the described
game.

If ¢ contains negations, then the players simply switch their roles whenever a negation
occurs: the current verifier becomes the new falsifier and the current falsifier becomes
the new verifier. Despite the roles changing, we still usually refer to player 1 as the
verifier and to player 2 as the falsifier, as their goal with regard to the whole formula
stays the same. In cases where it is important to distinguish the players from the current
roles, we make this distinction clear.

In the context of the counting classes considered in this thesis, it is necessary that
strategies can vary for identical copies of the same subformula, i.e., a strategy can show
different behavior for different copies of the same subformula. For this reason we define
the model-checking game using a syntax tree representation of the formula. We now

43

2 Preliminaries

formally defined the game.

For any vocabulary o, a o-formula ¢ represented as a syntax tree is a tuple ¢ =
(V,E,r, A) with the following properties. The tuple (V,E,r) is a rooted directed tree,
which means that (V,E) is a directed graph and r € V is a node without out-going
edges in that graph such that from any node v € V there is a path from v to r in (V,E).
Moreover, A is a function assigning to each node in V either one of the Boolean operators
A, V and -, a quantifier dx or Vx for any variable x € Vargg or an atom R(x). Similar
as for the function f in circuits, we also say that A labels the nodes in V. Here, Ris a
relation symbol from ¢ and X is a tuple of first-order variables of the appropriate arity.
Occurrences of subformulae of ¢ correspond to nodes in this syntax tree, allowing a
distinction between identical subformulae.

Let ¢ =(V,E,r, 1) be an FO-formula over some vocabulary o represented as a syntax
tree and A € STRUC[c]. Let s: free(¢p) — dom(A) be an assignment to the free variables
of ¢ in A. Then configurations of the game for A,s |= ¢ are of the form

(v,s’,swap)
with the following properties:
s veV,

* s’ is an assignment from the free variables in the subformula of ¢ rooted in v to
elements of dom(A) that agrees with s for variables that are not quantified on the
path from v to r, and

* swap is a bit specifying whether the players have currently swapped roles: If
swap = 0, player 1 is the current verifier and player 2 is the current falsifier and if
swap = 1 the roles are reversed.

The full first-order model-checking game for A, s | @ starts in configuration
(r,s,0).
The game proceeds as follows: Let
(v,s’,swap)

be a configuration of the game for A,s | ¢. Depending on the label A(v), the next move
is either fixed or a specific player can make a choice as follows: If A(v)is ...

* V or A: The current verifier or falsifier, respectively, chooses a child v’ of v in
(V,E,r), game continues in (v’,s’,swap),

* —: Game continues in (v’,s’,1 —swap), where v’ is the single child of v in (V,E, 1),
and

* Jx or Vx, where x € Vargg: The current verifier or falsifier, respectively, chooses an
element ¢ € dom(A); the game continues in configuration (v’,s’[x/c],swap), where
v’ is the single child of v in (V, E, r).

44

2 Preliminaries

We say that a configuration as above is terminating, if A(v) is an atom. It is called
a winning configuration of player 1 (or winning configuration of the verifier) if it is
terminating and either swap =0 and A,s” | A(v) or swap =1 and A, s’ £ A(v).

A strategy of player 1 (or a strategy of the verifier) in this game is a function mapping
configurations to moves in such a way that a move is specified for all configurations that
give player 1 a choice and are reachable from the starting configuration if player 1 acts
according to this strategy and player 2 makes arbitrary moves. This can be made formal
by defining the configuration tree of the game. Strategies of player 1 then are subtrees,
which contain the root and contain exactly one child of each configuration that gives
player 1 a choice and all children of configurations that do not give player 1 a choice.

A winning strategy of player 1 (or a winning strategy of the verifier) is a strategy of player
1 such that every terminating configuration in the strategy is a winning configuration of
player 1. Intuitively this means, that using a winning strategy, player 1 wins independent
of the choices of player 2.

The above game captures first-order model-checking in the following sense.

Proposition 2.24. Let ¢ be a vocabulary, ¢ a o-formula, A € STRUC[o] and s: free(¢) —
dom(A). Player 1 has a winning strategy in the first-order model-checking game for A,s = ¢

if and only if A,s | @.

This can be proven by first observing that our game is a combination of the original
first-order model-checking game by Hintikka [Hin82] and the propositional logic model-
checking game, which is folklore. Hintikka’s model-checking game does not not contain
rules for Boolean connectives. Instead, the game is played on formulae in prenex normal
form and ends once the quantifier-free part is reached. Note that Hintikka’s model-
checking game is closely related to earlier work on game semantics for classic logic
by Lorenzen and Lorenz [LL78]. As the game presented above is the combination of
both these games, it is defined for formulae that are not in prenex normal form. Also
the condition that needs to be checked to determine the winner is even simpler than
in Hintikka’s game. The proposition can then be shown by a simple induction over
the compositional structure of the formula using the correctness of the two games.
Intuitively, when A, s = ¢, whenever player 1 has to make a choice there is a witness,
while whenever player 2 has to make a choice there is no witness. Conversely, the choices
made by player 1 yield witnesses that ¢ evaluates to true in A under assignment s.

We now want to give a simple example to illustrate the full first-order model-checking
game.

Example 2.25. We want to express a simple property of Boolean circuits with input in
FO and evaluate this formula in an exemplary circuit. As mentioned before, Boolean
circuits are represented as first-order structures over the vocabulary 7 ;.. A natural way
to also add an input for the circuit is to use the vocabulary o = T¢jrc U Totring- A circuit
on n inputs for n € IN is now represented by a structure A € STRUC[o] as follows: The
universe dom(A) := {0,...,n— 1)K with k € N is the set of gates of the circuit represented
by tuples over {0,...,n —1}. Potentially, some dummy-gates have to be added to ensure
that the universe has this form. The relation symbols from 7., are interpreted according

45

2 Preliminaries

Figure 2.3: The structure A in Example

to their intended meaning. For example, g € G/ if and only if g is an A-gate. The relation
SA from Tstring ONly contains elements (0,...,0,i) for i €{0,...,n— 1} with the intended
meaning that the i-th input bit is 1 if and only if (0,...,0,i) € SA.

Now let

Q= Vg(ﬁG,\(g) \Y% Hg'(E(g',g) A (PtrueLiteral(g,)))r

where @ uelLiteral (X) = 31 (Input(x, i) AS(i) V negatedinput(x, i) A —|S(i)).

Furthermore, let A be the o-structure representing the Boolean circuit shown in Fig-
ure [2.3|with input x...xs = 0100011. Note that this is the same circuit as in Figure[L.1}
but additional explanation has been omitted.

First note that A satisfies ¢ as every A-gate in the circuit has at least one predecessor
that is a literal evaluating to true: The only A-gates are gy and g,. Gate g, has predecessor
g4 associated with x4, which is 1. Gate g, has predecessor g7 associated with the negation
of x,, which is 1 (as x, is 0).

Now consider the first-order model-checking game for A, f, E ¢ (where f; is the empty
assignment). This game starts in configuration (@ = @, sy := fy,0). As no subformula
occurs more than once in ¢ except for the atomic formula S(i), we do not need to work
with the syntax tree representation of the formula in this example and simply specify
the current subformula in the first component. By Proposition the fact that the
formula holds in A means that the verifier has a winning strategy in this game.

We now describe how the game proceeds and how the winning strategy of player 1
can be obtained from the above argument for A [¢.

* Configuration (¢y = ¢,s¢9 = fy,0). As the outermost operator or quantifier is Vg,
the falsifier moves first. They can choose any element a € dom(A) to assign to the
variable g.

* Configuration (¢y,s1,0), where ¢y := =G,(g) v 3g’(E(g’,g) A <Ptrueutera1(g’)) and
s1 == sg[g/a]. Here, the outermost operator or quantifier is the disjunction, so the

46

2 Preliminaries

verifier chooses which subformula to continue with. Obviously, if s;(g) ¢ G2, the
verifier can simply choose the subformula =G, (g). The game then continues to
configuration (=G, (g),s1,0) and as the outermost operator or quantifier now is a
negation further to (G,(g),s1,1). As A,s; | G,(g), this is a winning configuration
of the verifier, or more precisely player 1. On the other hand, if s,(g) € G4, the

verifier has to choose the subformula ¢, =3¢’ (E(g’,g) A (ptrueLiteral(g’)).

* Configuration (¢,,s1,0). This only applies for s;(g) € {g0,4>} as observed above.
We cover the case where s1(g) = g in detail. Here, the verifier chooses g4 to assign
to the variable g’, since g4 is both a predecessor of gy and a (possibly negated)
input gate that evaluates to true.

* Configuration (E(g’,2) A QirueLiteral(€”), $2,0) with s, := s1[g’/g4]. As the outermost
operator or quantifier now is a conjunctions, the falsifier chooses which subfor-
mula to continue with. As s,(g’) = g4 is a predecessor of s(g) = go, the falsifier
immediately loses when choosing E(g’,g). Hence, we only need to consider the
falsifier choosing @i;ueliteral(¢”) With regard to strategies of the verifier.

» Configuration (@iyeLiteral(g’) 52,0). As the outermost operator or quantifier is
again an existential quantifier, the verifier chooses an assignment again. Obviously,
for a winning strategy, 6 has to be assigned to i, as g4 is associated to x4 and in
the following step the subformula Input(x,i) A S(i) has to be chosen as g4 is not
associated with a negated input bit.

* Configuration (Input(x, i) AS(7), s3,0), where s3 := 5,[i/6]. As the outermost operator
or quantifier is a conjunction, the falsifier makes the final choice. As A,s;3 |
Input(x,i) and A, s3 = S(i), no matter what choice is made, a winning configuration
of the verifier is reached.

* The case where s;(g) = g, is handled similarly.

The first-order model-checking game can also be used in the context of structures with
built-in predicates. In case of a logic FO[R] where R is a set of relations over IN, a game
is defined for any tuple (A, ¢, s) again and the interpretations of the numerical predicates
are implicit. In particular, this applies to FO[BIT]-sentences and FO[Arb]-sentences.

2.2.8 Skolemization and Skolem Functions

Yet another view on semantics of first-order logic—albeit related to the game-semantic
view presented in the previous section—arises from what is called Skolemization.
Skolemization is a tool used in the context of first-order satisfiability. Consider a
formula in prenex normal form. Skolemization is the process of replacing existential
quantifiers in the formula by new function symbols in a certain way, which yields an
equisatisfiable formula in Skolem normal form. Here, equisatisfiable means that the
new formula is satisfiable if and only if the original formula is satisfiable, and Skolem

47

2 Preliminaries

normal form means that the formula is in prenex normal form and does does not contain
existential quantifiers. For an intuitive explanation consider a o-formula

@ =3Ax1Yxo3x3 1 (x1, %2, X3)

for some vocabulary 0. Now instead of asking for the existence of an x; we can sim-
ply ask for the existence of a constant a; (or equivalently a 0-ary function) with the
same properties. Also, instead of asking whether for all x, there is an x5 with prop-
erty ¥ (xq,x,,x3) we can ask for the existence of a 1-ary function f; with the property
P(x1,%,, f3(x2)). Now, the Skolem normal form of ¢ is obtained by removing the existen-
tial quantifiers and replacing every occurrence of x; in ¢ by a; and every occurrence
of x3 in 1 by f;3(x;), yielding a formula over o extended by the constant symbol a; and
the 1-ary function symbol f3. Since first-order satisfiability asks for the existence of a
structure that contains interpretations of a; and f3, this new formula is equisatisfiable
to ¢. The function symbols replacing existential variables are called Skolem functions
(or Skolem function symbols) and assignments to these function symbols correspond
to winning strategies of the verifier in Hintikka’s first-order model-checking game. In-
tuitively, this correspondence is due to the fact that Skolem functions directly specify
the choices of the verifier for any combination of choices made by the falsifier. This
correspondence was observed in a much more general setting, see [Gral3].

For the purposes of this thesis, we describe the process of Skolemization formally using
first-order formulae with free second-order variables instead of extending the vocabulary.
Let o be a vocabulary and ¢ be a o-formula. If ¢ does not contain any existential
quantifier, then ¢ is already in Skolem normal form. Otherwise, ¢ = Vx;...Vxdy ¢ for
some k € N and some o-formula 1, i.e., 3y is the outermost existential quantifier in ¢.
Now let ¢’ :=Vx;...Vxp ¢[y/f (x1,...,x¢)], where f is a new free k-ary function variable.
The above transformation removes the outermost existential quantifier and replaces it
by a new function variable. By applying this procedure for each existential quantifier in
@ successively, we obtain a formula without existential quantifiers, that is, a formula in
Skolem normal form.

2.3 Descriptive Complexity

In descriptive complexity, the complexity of problems is measured by the logics required
to describe them. For this, complexity classes are defined from logics. In Definition [2.22]
we have already seen how this can be done for the example of first-order logic, using
the fact that first-order structures can be encoded as binary words. Note that due to
the definition of the standard encoding of structures (and the fact that the universe of
structures is non-empty), the empty string ¢ is not considered as an input in this context.
Characterizations of complexity classes in the sense of descriptive complexity are also
called model-theoretic, as languages are viewed as sets of models of certain formulae.
In this section we want to give some intuition on how to approach model-theoretic
characterizations, explaining the proof ideas for a few examples relevant to us. We
will also repeat results from descriptive complexity of circuit complexity classes closely

48

2 Preliminaries

related to this thesis in more detail compared to the presentation in overview given in
the introduction. For more details on the topic we refer the reader to monographs by
Immerman and Libkin [Imm99) Lib04].

The area of descriptive complexity was started by Fagin [Fag74] with the following
theorem.

Theorem 2.26. NP = ESO.

Here, ESO refers to the class of languages definable in existential second-order logic,
which can be defined as follows using the definitions from Subsection[2.2.6]

Definition 2.27. A language L is in ESO if there is a vocabulary o and a o-formula with
free relational variables ¢(Ry,...,R,) such that for all A € STRUC|0]

enc,(A) € L < there are relations Ry, ..., R,, over dom(A) with arities
ar(Ry),...ar(R,), respectively, such that A E ¢(Ry,...,R,),

and x ¢ L, if x is not the encoding of a o-structure.

We now give a proof sketch for Fagin’s Theorem, briefly explaining the intuition
behind it.

Proof sketch for Theorem[2.26] A formula showing that a language is in ESO is an FO-
formula ¢(Ry,...,R,) with free relational variables Ry, ...,R,, such that any x € {0, 1}" is
in the language if it encodes a structure in which there is an assignment to the relational
variables satisfying ¢. An NP-algorithm can simply nondeterministically guess an
assignment, that is, a relation for each relation symbol, and then check whether it
satisfies ¢. This is basically FO model-checking (by extending the input structure by
the guessed relations) and can hence be done in P.

On the other hand, a computation path of an NP-machine can be represented by a
tableau with polynomially many rows and columns by having the rows contain the
configurations in the order of their occurrence during the computation. Both the number
of rows as well as the size of configurations is polynomial due to the polynomial runtime
of the machine, which allows us to encode the whole tableau in a tuple of relations of
high enough arity. This further requires an order on tuples over the universe, which
can for example be obtained by adding two more free relational variables: one will be
an order on the universe (which can be expressed in FO), the other is the lexicographic
order on tuples defined from the first order (also expressible in FO). O]

The name ESO stands for existential second-order logic. This refers to second-order
logic with only existential second-order quantifiers, but arbitrary first-order quantifiers.
While omitting the formal definition, we want to point out that it is easy to see that the
complexity class ESO defined above is exactly the class of languages definable in the
logic ESO. We also say that the logic ESO captures the class NP. More generally, when
the class of languages definable in a logic (cf. Definition [2.21)) are exactly the languages
in a complexity class, we also say that the logic captures that class.

49

2 Preliminaries

Remark 2.28. In all of the model-theoretic characterizations in this work, we allow
to use arbitrary vocabularies. This allows for more direct logical definitions of many
natural problems. Immerman [Imm99] showed that for any vocabulary o, there is an
FO-query bin, : STRUC[o U(BIT)] — STRUC|Tyring U (BIT)] such that bin, (A) = Aenc,(a)
and BIT is interpreted in the intended way in bin;(A). This means that each structure
A is mapped to the Ty ing-structure representing the encoding of A. There is also an

FO-query for the inverse bin,! of bin, for any vocabulary o.

The model-theoretic classes used in our characterizations are closed under applying
partial first-order queries (cf. Definition [7.19). Furthermore, every string occurs as the
encoding of some Ty ing-structure. For this reason, one could equivalently define the
model-theoretic classes we use in our characterizations only in terms of the vocabulary
Tstring- 1 is does not apply to some weaker fragments considered in Chapter

2.3.1 Descriptive Complexity of Circuit Complexity Classes

We will now turn our attention to descriptive complexity of circuit complexity classes.
Here, we first introduce a notion of uniformity often used in this context. It is based
on logics, more precisely on FO[BIT]-queries, and is therefore especially suitable in the
context of descriptive complexity.

Definition 2.29. A circuit family C = (C,,),,cn+ is said to be FO[BIT]-uniform if there
is an FO[BIT]-query J: STRUC|[%syring] — STRUC][i, | mapping the structure A, over
Tstring tO the circuit Cp,| given as a structure over vocabulary 7., for any w € {0, 1}*.

Notice that implicitly, the mapping J for a FO[BIT]-uniform circuit family only de-
pends on the length of the input and not the specific input bits, as for any n € IN all input
structures A,, with |w| = n are mapped to the same circuit Cp,,. Also, for any structure
A and FO[BIT]-query J, the universe of J(A) is a subset of dom(A)* for some k € IN.
Consequently, FO[BIT]-uniform circuit families are always of polynomial size. As all of
the classes we are interested in are based on polynomial size circuit families, this is not
an issue. In the case of FO[BIT|-uniformity, a circuit family is uniformly described by an
FO-query. This can be interpreted as the property that queries to the circuits in a circuit
family (as 7.c-structures) can be answered by evaluating FO-formulae. In consequence,
this uniformity can be seen as another query-based uniformity condition, similar to
Up-uniformity, where answers to similar queries have to be computable in deterministic
logarithmic time.

Remark 2.30. By this definition, circuit families in this context do not contain a circuit
for n = 0. The reason is that there is no structure whose encoding is the empty string.
Consequently, all characterizations in this context are with respect to words of length
> 0. We will still often talk about circuit families C = (C,,),,en being FO[BIT]-uniform,
implicitly meaning that the circuit C is omitted from the family.

We have already seen classes similar to the complexity class ESO in the context of
build-in vocabularies (see Section [2.2.3)), namely classes FO[R] for sets R of relations

50

2 Preliminaries

over IN. As already mentioned, the important cases for us are those where A is either Arb
or {BIT}. The predicate BIT has proven essential for many of the descriptive complexity
results regarding uniform circuit complexity classes, while Arb is required in the context
of non-uniform classes. Note that there was also work on the classes obtained with
even weaker built-in predicates, e.g., only allowing the built-in order < instead of BIT
(cf. results on weaker logics and their relations to presumably smaller, non-standard
complexity classes [BLO6]).

The first model-theoretic characterization in circuit complexity were proven by Immer-
man and the result was generalized in the following years [Imm89}, BIS90), BI94, Imm99].

Theorem 2.31. For i > 0, AC' = FO[(logn)'] both in the FO[BIT]-uniform and the non-
uniform setting.

Here, FO[t(n)] denotes the class of languages definable in first-order logic with t(n)
iterations of a quantifier block, see [Imm99]] for a formal definition. As usual in this
context, arbitrary numerical predicates are used for the non-uniform version. While this
result yielded a characterization of all classes AC', all classes apart from the characteri-
zation of ACP use an external mechanism of repeating a certain part of the formula. We
will now give a short proof sketch for the base case (i = 0) of the above theorem, as the
proof idea is the foundation for our characterizations of counting classes.

Proof Sketch for Theorem We briefly give some intuition on how to prove the case
for i = 0, that is, FO[BIT]-uniform AC® = FO[BIT]. The main idea is that existential
and universal quantifiers over a polynomial domain correspond to polynomial fan-in
disjunctions and conjunctions, respectively.

For the inclusion from left to right, the circuit family is first transformed into a normal
form where circuits are layered and each layer has a fixed type of gate (either A or V).
Then we can use the correspondence between Boolean connectives and quantifiers to
construct a formula expressing that the circuits evaluate to 1. Uniformity of the circuit
family is used to access the circuit for inputs of length #n from any input structure A,
with |w| = n.

For the converse direction, the correspondence of Boolean connectives and quantifiers
can be used to evaluate the quantifiers. What remains is to evaluate atoms. For this, the
numerical predicates of the uniformity can be used to determine the required input bit
to get the value of a given atom. O

The following characterization by Barrington et al. [BIS90] is based on the ground-
breaking result by Barrington [Bar89] showing that bounded-width branching pro-
grams characterize NC! and that the word problem for any non-solvable group is
NC!-complete. Here, FO + Qo refers to first-order logic with so-called monoidal quan-
tifiers. Ultimately, it is sufficient to have monoidal quantifiers for a single non-solvable
group. For details on the definition of monoidal quantifiers, see the original paper. The
uniformity condition used in this result, Up-uniformity, will be covered in Section

Theorem 2.32. NC! = FO[Arb] + Qpjon and Ug-uniform NC! = FO[BIT] + Qpjon-

51

2 Preliminaries

Based on the same ideas, NC! can also be characterized by first-order logic extended
by the width-5 transitive closure operator [BIS90].

Another characterization of NC! in the U}-uniform setting was obtained by Compton
and Laflamme [CL90] and adds a kind of recursive definition of predicates to FO, called
relational primitive recursion. Their logic FO[BIT]+ RPR allows recursive definitions of
the form [P(x,y) = 6(X,y,P(x,y — 1))] inside of formulae. This definition allows the usage
of the predicate symbol P in the formula following afterwards, where the interpretation
of P(x,v) is determined recursively by the given equivalence. It should be noted that
numerical predicates are required for this operator to make sense since the term y —1 is
used.

Theorem 2.33. Uj-uniform NC' = FO[BIT] + RPR.

Lautemann et al. [LMSV01]] characterized LOGCFL in the spirit of the characterization
of NC! by FO with group quantifiers. They showed that LOGCFL, or equivalently SAC!,
can be characterized by FO with groupoid quantifiers. Similar to above, FO + Qg
denotes first-order logic with so-called groupoidal quantifiers. We again refer the reader
to the original paper for details on the definition of these quantifiers.

Theorem 2.34. L-uniform SAC! = FO[BIT] + QGrp-

2.3.2 Descriptive Complexity of Counting Complexity Classes

The study of descriptive complexity of counting complexity classes was started by
Saluja et al. [SST95]]. They transferred the result NP = ESO to the counting setting,
obtaining a characterization of #P by counting the number of satisfying assignments
to free second-order variables in an otherwise first-order formula. To emphasize that
free relation variables are used in this setting, we denote this class by #FO"!. For this
result, they considered counting functions that map structures over a fixed vocabulary
to natural numbers instead of functions from {0, 1}* to IN. We adapt the definition to our
presentation of descriptive complexity results, defining #FO™! as follows. Note that due
the limitations of first-order logic, we restrict our counting functions to inputs of length
> 1 in this context. We will sometimes still talk about functions mapping from {0, 1}* to
IN being in classes such as #FO™!, implicitly restricting the function to inputs of length
>1.

Definition 2.35. A function f: {0,1}* — N is in #FO™!, if there is a vocabulary ¢ and
an FO[<]-formula ¢(Ry,...,Rk, x1,...,x¢) over o with free relation variables Ry,...,R; and
free individual variables x,...,x, such that for all A € STRUC[o],

f(enco(A)) = |{(Sl,...,5k,C1,...,Cg) |A|:(p(Sl,...,Sk,Cl,...,Cg)}l,

and f(x) =0, if x is not the encoding of a o-structure.
The result by Saluja et al. can now be stated as follows.

Theorem 2.36. #P = #FOrel,

52

2 Preliminaries

Proof sketch. This result is obtained similarly to NP = ESO. For the inclusion #FO™! C #P,
it is again straightforward to guess an assignment to the free relation variables in a fixed
formula and check if it is indeed satisfying in polynomial time, yielding a #P-algorithm.
For the converse, a more careful analysis is required. First, one has to ensure that there is
indeed a 1-1 correspondence between accepting computation paths of the given machine
and satisfying assignments to the free relation variables of the constructed formula.
Furthermore, an order on the elements is still required to talk about computations and
more precisely successive computation steps and adjacent cells of the band. While this
was easily quantifiable in the proof for NP = ESO, this is not possible here, as there is
not a unique order. Hence, the result only holds over ordered structures. O]

2.4 Choice of Uniformity

In descriptive complexity, it is natural and convenient to work with a uniformity condi-
tion for circuit families that is based on logic. The usual choice is FO[BIT]-uniformity,
which was defined in Definition But is this uniformity suitable for the classes we
consider? There has been extensive research on different forms of uniformity and their
relationships for Boolean circuits in the setting of classes of decision problems. Unfortu-
nately, the same is not true in the setting of counting classes in circuit complexity. When
counting classes in circuit complexity were first studied, uniform versions were defined
in terms of uniformity conditions that were usually used for the corresponding classes
of Boolean circuits: Vinay defined the class #SAC! using L-uniformity [Vin91]]. Caussi-
nus et al. used Up-uniformity for the class #NC! [CMTV98]. Agrawal et al. [AADOQQ]
and Ambainis et al. [ABL98]| considered different kinds of uniformity for the class #AC?,
but mentioned that Up-uniformity is usually considered suitable in the context of con-
stant depth, referencing results in the decision setting. This is a reasonable approach.
Intuitively, this means that these notions of uniformity are not too powerful, as counting
classes can in a sense be seen as generalizations of the corresponding decision classes.
This is, e.g., evidenced by the fact that FAC? C #AC" as well as the fact that, using an
adequate model of computation, counting arithmetic circuits can be evaluated in the
same parallel time as Boolean circuits of the same depth. An adequate model in this
context would be able to compute the arithmetic operations computed by gates in the
circuits in constant time—instead of Boolean operations on individual bits. On the
other hand, the ability of these uniformities to desribe meaningful circuit families in the
decision setting is evidence that they are not too restrictive. Similarly, we will base our
choice of uniformity on what is known with regard to different uniformity conditions
for the decision versions of the classes we consider. For this reason, we will give an
overview of what is known about the properties and connections between different
forms of uniformity for classes in the NC-, SAC-, AC-, and TC-hierarchies.

We want to begin by going into a bit more detail on what properties a suitable
uniformity condition should have. On one hand, a suitable uniformity should not be too
restrictive, meaning that it does not make trivial constructions impossible. On the other
hand, it should not be too powerful, as this would in a sense hide or obscure the true

53

2 Preliminaries

power of the class, similar to how non-uniformity allows to solve arbitrary problems that
are defined with respect to only the input length (see Proposition[2.16). In consequence,
a good choice for a suitable uniformity condition is one that is based on a complexity
class characterizing the resulting circuit complexity class. For example, we know that P
coincides with the class of languages accepted by P-uniform polynomial-size families of
Boolean circuits. Hence, P-uniformity is a natural and suitable uniformity condition for
polynomial-size circuits. Another desirable property is a certain robustness, i.e., slight
modifications of the uniformity condition should not change the resulting complexity
class. In fact, in many cases very restrictive uniformity conditions coincide with more
powerful ones, as long as they are not more powerful than the resulting complexity class.
Again using the above example, the characterization of the class P in terms of polynomial
size families of Boolean circuits holds using either P-uniformity, L-uniformity, or Up-
uniformity.

We will now present results on the relationships between different uniformity condi-
tions in the context of the relevant decision classes. As FO[BIT]-uniform AC° = FO[BIT],
this uniformity can be seen as a perfect choice for AC®. It was also shown that
Up-uniform ACY coincides with FO[BIT]-uniform AC?, where a main part of the proof
was to show DLOGTIME C FO[BIT] [Imm89}, BIS90]]. The suitability of Up-uniformity
for this class can also be seen from the fact that evaluating an Up-uniform AC? circuit
tamily is possible in logarithmic time and with a constant number of alternations, that is,
in LH, which is another characterization of AC®. The above result on Up- and FO[BIT]-
uniformity was generalized to all classes in the AC-hierarchy, potentially extended
by an additional operation [BI94]. As TC' is the class AC' extended by gates for the
majority-operation, this means that for all classes from the AC- and TC-hierarchies,
Up-uniformity and FO[BIT]-uniformity coincide. It should be mentioned that for
classes of circuits containing SAC!, usually L-uniformity is used. The reason is that
L C L-uniform SAC! and hence, intuitively, L-uniformity does not give any additional
power to these classes. We will cover the relationship of the above, more restrictive,
uniformity conditions to L-uniformity for these classes in more detail at the end of this
section.

Regarding classes based on bounded fan-in circuits, the situation is slightly different.
Here, we know that NC! = ALOGTIME. Of course, DLOGTIME C ALOGTIME, but
still, evaluating an Up-uniform NC! circuit family on an alternating Turing machine
takes time O((log#)?), as in each step from a gate to a predecessor, the machine for the
uniformity has to be simulated. For this reason, different uniformity conditions were
introduced for the class NC! [Ruz81]). Similar to Up-uniformity they are query-based,
but they use a modified version of the direct connection language. Let C = (C,)),,cn be a
circuit family of size s and depth d. Recall that the direct connection language Lpc(C) of
this family consists of tuples (y, g, p, b) and allows to query edges of the circuits in C: For
p €{0,1}", we have (y,¢,p, b) € Lpc(C), if and only if b is the p-th predecessor of g in Cyy,
(interpreting p as a natural number). In contrast, the extended connection language Lgc(C)
allows to query paths of length < logs(n): For p € {0,1}*, we have (y,g,p,b) € Lgc(C),
if and only if b is the gate reached from g using the (reversed) path described by p.
Otherwise, Lgc(C) is defined in the same way as Lpc(C). As this notion is usually only

54

2 Preliminaries

considered for bounded fan-in circuit families, we have |p| <logs(|y|) and each bit of p
specifies whether the first or second predecessor should be chosen from one gate on the
path. Based on the extended connection language, two further uniformity conditions are
defined. The family C is called Ug-uniform, if Lgc(C) can be decided by a deterministic
Turing machine in time O(logs(n)). It is called U}-uniform, if Lgc(C) can be decided by
an alternating Turing machine in space O(logs(n)) and time O(d(n)). For the classes of
the NC-hierarchy, the following is known regarding Ug- and Up-uniformity.

Theorem 2.37.
1) Ug-uniform NC' = Uj-uniform NC! = ALOGTIME C L-uniform NC! and

2) Ug-uniform NCi.: Ug-uniform NC' = ATIME-SPACE((log n)l, log n)
= L-uniform NC' for all i > 2.

This means that Uj-uniformity in case of NC! can be seen as another perfect unifor-
mity condition, as its definition is based on the class ALOGTIME, which at the same
time coincides with the resulting class. For this reason, this class is sometimes also
called NC'-uniform NC! [BIS90]. Also, this shows that either Ug- or Uj-uniformity
are suitable for all of these classes. As could be expected due to L € NC?, for the class
NC? and even higher classes, L-uniformity also coincides with the two aforementioned
notions, and is therefore also suitable.

In case of NC!, also uniformity conditions based on formulae instead of circuits
were considered. Here, Buss used a variant where the so-called formula languages
of families of formulae, defined similarly to the direct connection languages of cir-
cuit families, are in ALOGTIME [Bus87|]. The resulting class again coincides with
Uj-uniform NC!. Barrington et al. instead studied the variant, where the formula
language is in DLOGTIME [BIS90].

Regarding the usage of the above two uniformity conditions for AC? circuits and the
usage of Up-uniformity for bounded fan-in classes, it should be noted that for AC?,
Up-uniformity (and hence also FO[BIT]-uniformity) coincides with Ug-uniformity, but
Ug-uniformity is not a reasonable notion in this case, at it would require machines
running in constant time. On the other hand, for NC? and even higher classes in the
NC-hierarchy, Up-uniformity coincides with Ug-uniformity, and by the above Theorem
also with the other mentioned notions.

We now want to shed a bit more light on classes SAC' and AC’ for i > 1. Here, L-
uniformity is often used in the literature, since L C L-uniform SAC!. Actually, as in
the case of classes NC? for i > 2, for these classes L-uniformity coincides with more
restrictive forms of uniformity such as Up-uniformity and FO[BIT]-uniformity. This
can be seen from results by Ruzzo [Ruz81] and Venkateswaran [Ven91l. Venkateswaran
showed LOGCFL = L-uniform SAC!. Tt directly follows that Up-uniform SAC! is a
subset of LOGCFL, but the converse requires additional arguments. In order to show
LOGCFL C L-uniform SAC!, Venkateswaran used the notion of machines and circuits
with the semi-unboundedness property, where intuitively the lengths of paths of succes-
sive universal nodes in computations are bounded, but the time or depth of computations

55

2 Preliminaries

is not limited (see the original paper for details). We briefly argue that his proof can
also be used to obtain LOGCFL C Up-uniform SAC!. First, he showed that LOGCFL-
languages can be decided by alternating Turing machines with the semi-unboundedness
property in space O(logn) and with O(logn) alternations, which does not depend on the
uniformity condition. Then, he used a construction of Ruzzo showing that an alternating
Turing machine using O(s(n)) space and O(t(n)) time can be simulated by a Ug-uniform
circuit family of size 20¢(") and depth t(n) [Ruz81]. This allowed him to show that
languages decidable by alternating Turing machines with the semi-unboundedness
property in space O(logn) and with O(logn) alternations can also be accepted by circuit
families with the semi-unboundedness property of polynomial size and O(logn) alter-
nations. Ruzzo already showed that his construction can be made Ug-uniform, which
implies Up-uniformity. Finally, from the above circuit family he constructs an SAC!
circuit family. His proof can directly be adapted to the Up-uniform setting, as the unifor-
mity of the SAC! circuit family mostly depends on the uniformity of the previous family.
The most complex property to check is determining whether there is a path between
two disjunction-gates in the circuit using only conjunction-gates, which is possible, as
only a constant number of gates have to be considered due to semi-unboundedness.
Hence, it can be seen that for SAC!, the notions of Up-, and L-uniformity coincide. Also,
we now argue that the same holds for all classes €, where either ¢ = AC' withi>1, or
¢ = SAC! with i > 2. First, note that SAC! circuit families are also € circuit families by
definition, and we have L C LOGCFL = Up-uniform SAC!. Now, instead of using an L-
machine to specify edges and types of gates, one can use Up-uniform SAC!-subcircuits.
In detail, a construction similar to our construction for Theorem[7.4] could be used here,
where connections and gate types in circuits are determined by advice bits. In this case,
these advice bits could then be computed by Up-uniform SAC!-subcircuits. Finally, as
DLOGTIME C FO[BIT] C L, these arguments show that for these classes, L-uniformity
also coincides with FO[BIT]-uniformity.

In conclusion, we have seen that for all the classes in the considered hierarchies, if
the class contains L, then Up-, FO[BIT]-, and L-uniformity coincide for that class. Thus,
although L-uniformity is the prevalent choice for these classes in the literature, the
FO[BIT]-uniform versions, which are better suited in the context of descriptive com-
plexity, coincide with the corresponding L-uniform versions. In case of AC?, FO[BIT]-
uniformity can even be considered the optimal choice, as it is based on a complexity class
exactly capturing the resulting uniform class. The only class where FO[BIT]-uniformity
is not optimal is NC!, where Ug- or Up-uniformity seem to be the most natural choices,
and Ug-uniformity is in a sense optimal as it is based on ALOGTIME, which coincides
with Ug-uniform NC!. Still, the Up-uniform version of the class #NC! was studied
in the literature [CMTVO98]], and this version can be expected to be very close to the
FO[BIT]-uniform version. Even more, we will later see that our results clarify the re-
lationship of FO[BIT]- and Up-uniformity for the considered classes, see Sections
and For these reasons, we argue that FO[BIT]-uniformity is a reasonable choice
for all of the considered classes, and we will focus on this uniformity throughout this
thesis. It would nonetheless also be interesting to study the descriptive complexity of
Uj-uniform #NC! in the future.

56

3 Counting Witnesses in First-Order Logic

As advertised in the title, the topic of this thesis is descriptive complexity of counting
classes and more specifically counting classes in circuit complexity. As most counting
classes are defined in terms of a process of witness-counting, a typical approach is
to start with a model-theoretic characterization of the associated decision class and
introduce a process of counting witnesses into the model-theoretic class used in that
characterization. This was already illustrated by the counting version of Fagin’s theorem
in Subsection

We now aim to do the same for the class #AC°. Its associated decision class is AC?
and as mentioned before, it is known that AC? = FO both in the uniform and the non-
uniform case. In consequence, we now want to introduce counting classes based on
counting of witnesses in FO-formulae.

We begin by introducing counting classes based on FO and showing some impor-
tant properties of these classes. We will then compare our choice of model to other
alternatives.

3.1 A Counting Class Based on First-Order Logic

Let o be a vocabulary. For any o-formula ¢, o-structure A and assignment s to the free
variables of ¢, we have A,s = ¢ if and only if player 1 has a winning strategy in the
first-order model-checking game. Therefore, winning strategies of player 1 can be seen
as witnesses for the fact that A, s | ¢.

Following this line of thought we will introduce the new class #Win-FO, the class
of functions counting winning strategies on first-order formulae. Previously we have
already seen other candidates for witnesses of acceptance in first-order logic, namely
winning strategies in Hintikka’s model-checking game and equivalently Skolem func-
tions. We defer the discussion of the choice of model to the next section, beginning with
the definition and some important properties of the resulting classes.

The model-checking game can analogously be defined for formulae with built-in
predicates, more precisely: For any set R of relations over IN and any first-order vocab-
ulary o, the full first-order model-checking game for A,s =; ¢, where A is a o-structure,
@ is an FO[R]-formula over ¢ and s is an assignment to the free variables in ¢, is
defined in the same way as the corresponding game for A,s ¢ with the difference
that for atoms involving built-in predicate symbols, the family I is used to evalu-
ate the atom and determine the winner. Let #Win(A, 7, ¢,s) denote the number of
winning strategies of the verifier in that game for A,s 7 ¢. As in the case of the
modeling relation, we often omit the family 7 if it is clear from the context, writing

57

3 Counting Witnesses in First-Order Logic

#Win(A, @, s) instead of #Win(A, 7, ¢, s), where I interprets the built-in predicate sym-
bols in the intended way. This for example applies for built-in predicates such as
BIT, +, and x that are often used in formulae (instead of built-in predicate symbols)
by abuse of notation. We also write #Win(A, 7, p(ay,...,ax)) (or #Win(A, p(ay,...,ax)))
instead of #Win(A, 7, ¢,s) (or #Win(A, @,s), respectively) when free(p) = {xq,...,xt},
ai,...,a € dom(A), and s: free(¢) — dom(A) is defined as s(x;) := a; for all i. Accord-
ingly, we simply omit the assignment s in the case that ¢ is a sentence. We now define
the desired counting classes as follows.

Definition 3.1. Let R be a set of relations over IN. A function f: {0,1}* — IN is in the
class #Win-FO[fR], if there is a vocabulary o, an FO[fR]-sentence ¢ over ¢, and a non-
uniform family 7 of interpretations of the built-in predicate symbols in ¢ by symbols in
R such that for all A € STRUC[o],

f(enc,(A)) =#Win(A, 7, @),

and f(x) = 0 if x is not the encoding of a o-structure.

We will mainly consider the classes #Win-FO[BIT] and #Win-FO[Arb] in this thesis,
where #Win-FO[BIT] is short for #Win-FO[{BIT}], in analogy to our notation for the
corresponding logics. In Chapter 4, we will see that these classes actually capture the
FO[BIT]-uniform and the non-uniform version of #ACY, respectively.

As a preparation for further results first note that the number of winning strategies of
the verifier in the full first-order model-checking game can be computed inductively
over the compositional structure of formulae as follows.

Proposition 3.2. Let R be a set of relations over N and o a vocabulary. Let A be a o-
structure, @ an FO[R]-formula over o, s an assignment to the free variables in @, and I a
family of interpretations of the built-in predicate symbols in @ by relations in R.

Using #win(y,s’) as a shorthand for #Win(A, I,,s’) for arbitrary formulae 1 and assign-
ments s, the number of winning strategies of the verifier in the game for A,s |y @ arises from
the number of winning strategies on subformulae of ¢ as follows.

o If o = @1 V @y, then #win(p, s) = #win(@y,s) + #win(e,, s).

* If @ = @1 A @y, then #win(@,s) = #win(@q,s) - #win(p,, s).

* If o =Ax @y, then #win(p,s) = L sedom(a) Fwin(py, s[x/al).

* If o =VYx @y, then #win(e,s) = [1oedom(a) #win(py, s[x/a)).

o If ¢ = =¢y, then #win(p,s) = #win(¢@’,s), where @’ is the negation normal form of .

Proof sketch. Exemplary, we cover the cases of existential and universal quantifiers. The
remaining cases can be shown similarly.

@ =3Ax @, (x): The set of all winning strategies of the verifier in the game for A,s 7 ¢
is exactly the set of all strategies that assign a value a to x and then use an arbitrary

58

3 Counting Witnesses in First-Order Logic

winning strategy in the game for A,s[x/a] 7 ¢1(a). Thus, #win(¢,s) is the sum of
#win(gq,s[x/a]) over all elements a € dom(A).

@ = Vx @, (x): Each winning strategy of the verifier in the game for A,s |5 ¢ has to
choose for each assignment a for x a winning strategy in the game for A, s[x/a] E7 @1(a).
Arbitrary combinations of these choices are possible. Hence, #win(¢, s) is the product of
#win(gq,s[x/a]) over all elements a € dom(A). O

Next we show a useful property with regard to the first-order model-checking game:
For any formula we can find an equivalent formula on which the verifier has at most
one winning strategy in the model-checking game.

Lemma 3.3. Let @(zy,...,2¢) be an FO[Arb]-formula over some vocabulary o with free
variables z. Then there is an FO[Arb]-formula ¢’ over o in prenex normal form using the
same built-in predicate symbols that is equivalent to ¢ such that for all A € STRUC[o],
¢ e dom(A)!, and non-uniform families of interpretations I :

AEr ¢'(c) = #Win(A, 7,¢'(c)) = 1.
Proof. Without loss of generality assume that ¢ is in prenex normal form. Let

@ = Qix1... Quxi P(z,%),

where 1 is quantifier-free. We prove by induction that for all 0 <i < k there are formulae
®i(z1,.-,20,%1,..., %) and @/(zy,...,2¢,X1,...,Xk_;) in prenex normal form such that

@i = Qg1 Xkt - - QeXk P(Z,X),
(Pl, =@,

and for all A € STRUC[0], € € dom(A)“**~7 and non-uniform families of interpretations
I we have

A7 ¢i(c) = #Win(A,7,¢p;(c)) =1 and

AEr @l(©) = #Win(A,T,¢/(@) = 1.

For i = 0 we have to show that 1(z,X) and —1(z,x) have the desired property. Since
these formulae are quantifier-free, we can simply construct a DNF for each of them in
which each atom that occurs in the formula occurs in every term in the disjunction. This
ensures that for all structures A € STRUC[c], all ¢ € dom(A)*¥ and all non-uniform
families of interpretations at most one term of the disjunction can be satisfied and hence
the verifier has at most one winning strategy.

For i —1 — i: By induction hypothesis we have formulae ¢; {(z,xy,...,x;_;;1) and
®;_1(Z,x1,...,%k_i41) with the above properties. Without loss of generality we can assume
that these two formulae use disjoint sets of bound variables. Let

Pi-1(z,x) =1 Qg a1...Q, a1, &(2,%,a) and
¢}_1(Z%) = Qp, by ... Qy, by &'(Z,X, D),

59

3 Counting Witnesses in First-Order Logic

where £ and &’ are quantifier-free.

First assume Qy_;;1 = 3. Then we have ¢;(z,x1,...,x¢_;) = Ix;_j11 @i_1(Z, %) and
—@i(Z,%1,...,X—i) = VXk_i+1Q;_1(z%). The formula Vx;_;,; @/ ,(z¥) already has the
desired properties, since for all A € STRUC[c], ¢ € dom(A)?, d € dom(A)¥, and all
non-uniform families of interpretations 7

#Win(A, T,V 9 (©xiien, @) = | | #Win(A, T,], @ diivr,),
dk—i+16d0m(A)

and #Win(A, I, ¢;_, (C,di_i;1,d)) < 1 for all dy_;,; € dom(A).

The formula dx;_;,; @;_1(z,X) does not yet have the desired properties, since the
existential quantifier might have multiple witnesses. Thus, instead of expressing “there
is an xx_;,1” we express “there is a minimal x;_;,1”. This leads to the following formula:

ki1 VPkoie1 Pim1(ZX) A Dkmit = Xeivn V(2 Bhciv 2 Xpcin1)A

Qi1 (E,xl, coos Xg—is Vk—i+1)))

We can replace —¢;_; in this formula by ¢/ ;. The resulting formula is obviously not in
prenex normal form. Therefore, we need to transform it to prenex normal form in a way

that preserves the desired property. By defining £”(z,x1,..., Xk_i, Xk_i+1, Vk—i+1, b) as the
formula

((}’k—iﬂ > X1 A /\ bi =0)V (=(¥k—it1 = Xk—iv1) A 5'(5;961,---;xkfi;})kfmj));
i€{l,...,n},
Qbi:3

we have for all A € STRUC[¢], ¢ € dom(A)**=(i=1+1 'and all non-uniform families of
interpretations J:

AEr Qpby...Qp b,E"(6,b) = #Win(A,7,Qp by...Qp b,E"(¢,h)) = 1.

This is, because in &”, if yy_;j;1 > xx_;,1 is satisfied, the only winning strategy is to
set b; to 0 for all i with Q; =3 independent of the choices by the other player and if
—(Vk—i+1 = Xk_is1) is satisfied, the winning strategies exactly correspond to the winning
strategies for A ;7 @/(z,%). Due to the properties of ¢/, this means that there is at most
one winning strategy in this case.

Now,

3xk7i+1\7’3/k—i+1 (Qa1 a... Qamam E) A (Qb1 bl e anbn 5”) s
is equivalent to ¢;. Since for both subformulae connected by the outermost conjunction

we have the property that the number of winning strategies is < 1, we can now simply
pull out the quantifiers: In the formula

Ax—iv1VVk-iv1Qa, a1 -+ Qa,, @ Qp, b1 ... Qp by (EAET),

60

3 Counting Witnesses in First-Order Logic

which is still equivalent to ¢;, the following holds: If the formula is satisfied, there
is exactly one way to choose values for the existentially quantified variables among
ai,...,a, in a winning strategy in order to satisfy & and exactly one way to choose values
for the existentially quantified variables among by,...,b, in a winning strategy in order
to satisfy £” for any assignment to x;_;,1 and yx_;,1. Also, since the formula

V9k-i1Qa, a1 - Qa, amQp, b1 - Qp, by (E A E)

expresses that x;_;,; is the minimal element satisfying a certain formula, there can be at

most one choice for x;_;,;. This means that the formula has the desired property.
The case Qk_;;1 = Y can be proven analogously with the roles of ¢; and ¢; reversed.
O

Next, we show that using an FO[BIT]-query J: STRUC[o] — STRUC|[7], we can for
any given t-sentence ¢ construct an FO[BIT]-sentence ¢’ over o such that the verifier
has the same number of winning strategies in the model-checking game for A | ¢’ as
he has in the game for J(A) | ¢. The intuitive proof idea is to plug in the formulae
from the query J and use Lemma [3.3|to ensure that this does not increase the number of
winning strategies. This result will be important later on but can also be used to prove
that #Win-FO[BIT] is closed under FO[BIT]-reductions (exact definition follows). From
now on, we will denote by BIT,, the restriction of BIT to numbers from {0,...,n—1}.

Lemma 3.4. Let ¢ be a t-sentence for some vocabulary t, and J: STRUC[o U (BIT)] —
STRUC([t] be an FO-query. Then there is an FO[BIT]-sentence ¢’ over o such that for all
structures A € STRUC[o],

#Win(A, ¢’) = #Win(J(A U (BIT|gom(a))) ¢)-

Proof. Let ¢y be the formula in J defining the universe and let r be the arity of ¢,.
By Lemma [3.3| we can assume without loss of generality that the number of winning
strategies of the verifier in the model-checking game for A, s £ ¢ is at most 1 for any
structure A and assignment s. Moreover, let ¢ be a formula equivalent to —¢, with the
same property.

The idea is to plug in the formulae from J into ¢, replacing all occurrences of symbols
from 7. In order to use formulae from J instead of predicates of 7, we first need to
replace each variable x in ¢ by an r-tuple (x!,...,x") of fresh variables. Furthermore,
quantifiers should be limited to elements of the universe, i.e., tuples satisfying ¢,. For
this, inductively replace dx a by 3% (¢p((X) A @) and Yx a by VE(((pO ANa)V (pé) (starting
from the innermost quantifiers). Note that due to the replacement of variables by tuples,
quantifiers always occur in blocks of r quantifiers, which can be replaced accordingly.
As the number of winning strategies on ¢, and ¢, is at most 1, this modification does
not change the number of winning strategies.

Now, we can replace each occurrence of a predicate Rin 7 in ¢ by the corresponding
formula @g from J. For this, we can again by Lemma assume without loss of
generality that there is at most one winning strategy of the verifier in the model-checking

61

3 Counting Witnesses in First-Order Logic

game for @R in any structure and for any assignment. Let ¢’ be the resulting formula,
which is an FO[BIT]-formula over STRUC[c]. It is now easy to see that for all A €
STRUC[o],

#Win(A, ¢’) = #Win(J(A U (BIT|gem(a)))> ©)- O

As already mentioned, this lemma yields an interesting closure property as a corollary,
that is, closure under FO[BIT]-reductions.

Definition 3.5. Let f,¢: {0,1}" — IN. We say that f is (many-one) FO[BIT]-reducible to g,
in symbols f < g, if there are vocabularies o, 7 and an FO-query J: STRUC[¢ U(BIT)] —
STRUC[t U (BIT)] such that for all A € STRUC[o],

¢ the structure J(A U (BIT|qom(a))) interprets BIT in the intended way and
* f(enc,(A)) =g(enc,(J(A))), and f(x) =0, if x is not the encoding of a o-structure.

Corollary 3.6. The class #Win-FO[BIT] is closed under FO[BIT|-reductions, that is: Let f,g
be functions such that g € #Win-FO[BIT] and f <% g. Then f € #Win-FO[BIT].

Proof. Let f < ¢ via the FO-query J: STRUC[0; U (BIT)] — STRUC[0, U (BIT)]. Fur-
thermore, let ¢ € #Win-FO[BIT] via the sentence ¢ over vocabulary 7, that is, for all
A € STRUC|[t] we have

g(enc,(A)) = #Win(A, @),

and g(x) = 0 if x is not the encoding of a T-structure.

As discussed in Remark there are FO-queries bin, and bin;! for any vocabulary
o, which constitute mappings between the Tgi,q-structure representing the encoding of
a structure and the corresponding structure over vocabulary o, both with built-in BIT.
Note that bin;' can behave arbitrarily for structures A,, where w is not the encoding of
a o-structure. Now, 7’ := bin, ! obin,, oJ: STRUC[o; U (BIT)] — STRUC[7 U (BIT)] is an
FO-query with the following properties: For any A € STRUC[o;] where enc,, (J(A)) is
also the encoding of a T-structure, J’(A) is the T-structure with enc.(J'(A)) = enc,, (J(A)).
Here, by abuse of notation, we identify structures over o U (BIT) with the underlying
o-structure for arbitrary vocabularies o, as long as BIT is interpreted in the intended
way. This is done to simplify the presentation. For example, enc,(J’(A)) is the encoding
of the underlying t-structure of J’(A), although this structure contains an explicit
interpretation of BIT. In the same term, A is implicitly extended by the appropriate
interpretation of BIT in order to obtain a structure over o; U (BIT). We can now apply
Lemma to obtain a sentence ¢’ over o7 such that for all A € STRUC[o;] where
enc,, (J(A)) is also the encoding of a T-structure, we have

#Win(A, ¢') = #Win(J'(A), @)
= g(enc(J'(A)))
= g(enc,, (J(A)))
= f(enc, (A)).

62

3 Counting Witnesses in First-Order Logic

As the length of the encoding of STRUC[o,]- and STRUC]|t]-structures are both given
by some polynomial, the property of the encoding of a STRUC[o,]-structure also being
the encoding of a t-structure is definable in FO[BIT]. Let ¢ be a formula defining for
any A € STRUC[oy] that the length of the encoding of J(A) is also the length of the
encoding of a t-structure. By Lemma 3.3|we can assume that that for all A € STRUC[o1],
#Win(A,) < 1. Now, for ¢” := ¢’ A ip we have for all x € {0,1}"

#Win(enc,! (x), @’ A1) = f(x),

if x is the encoding of a oy -structure and f(x) = 0, otherwise. Hence, f € #Win-FO[BIT].
O

3.2 Counting in First-Order Logic: Choice of Model

Here we discuss the choice of model for the classes #Win-FO and #Win-FO[Arb] and
compare the class defined above to the classes arising with different choices. As men-
tioned in Section there are different kinds of objects that can be seen as witnesses
for acceptance in the setting of first-order definable languages. For our main definition
we use winning strategies in the full first-order model-checking game as witnesses of
acceptance. Instead, one could consider the original model-checking game by Hintikka,
which is played only on formulae in prenex normal form and terminates as soon as the
quantifier-free part of the formula is reached. Further, another candidate for witnesses
are Skolem functions instead of winning strategies. We will now compare all three vari-
ants and highlight subtle differences between the classes arising from them. Moreover,
we will observe the respective properties of the classes we want to characterize, namely
non-uniform #AC° and FO[BIT]-uniform #AC’, and discuss the consequences for this
thesis.

We denote by #WinHintikka(A 7 ¢) the number of winning strategies of the verifier
in the original model-checking game of Hintikka for A,s =y ¢, again omitting 7 if
it is clear from the context, and omitting s in the case that ¢ is a sentence. We de-
note by #Skolem(A, 7, ¢,s) the number of Skolem functions for the formula ¢ in the
structure A under assignment s and using the non-uniform family 7 of interpretations.
Define the classes #Win-FO[BIT]Hintikka “#\in FO[Arb]Hintikka #Skolem-FO[BIT] and
#Skolem-FO[Arb] analogously to the classes #Win-FO[BIT] and #Win-FO[Arb] based
on the corresponding types of witnesses.

We now investigate the relationship between these classes. First note that by the
correspondence between Winning Strategies and Skolem functions [Gral3l], we get the
following identities.

Proposition 3.7.
1. #Win-FO[BIT]Hintikka — #Skolem-FO[BIT] and

2. #Win-FO[Arb]Hintikka — #Skolem-FO[Arb].

63

3 Counting Witnesses in First-Order Logic

Next, we compare the two different definitions based on winning strategies in the
first-order model-checking game. Since it is easy to ensure that the verifier has at most
one winning strategy for the quantifier-free part of a formula in any structure and for any
assignment to the free variables, functions counting the number of winning strategies in
Hintikka’s model-checking game also arise from the full model-checking game.

Lemma 3.8.
1. #Win-FO[BIT|Hintikka ¢ #Win-FO[BIT] and
2. #Win-FO[Arb]Hintikka ¢ #Win-FO[Arb)].

Proof. We prove the result for the uniform classes. The proof for the non-uniform classes
is completely analogous.

Let f € #Win-FO[BIT]Hintikka yja the formula @ = Qx; ... Qrxx p(xy,...,xx) with k € IN.
Since quantifiers are treated the same in both model-checking games and Hintikka’s
game ends when reaching the quantifier-free part we replace the quantifier-free part
by a formula on which the verifier has at most one winning strategy in the full model-
checking game using Lemma Let " be the formula with this property. Then
Qx1... Qrxx P'(x1,...,xx) shows f € #Win-FO[BIT]. O

For the converse direction we begin by showing that in the definition of the classes
#Win-FO[BIT] and #Win-FO[Arb], when ignoring inputs that are encodings of struc-
tures with singleton domains (domains of cardinality 1), we can assume prenex normal
form and we can simultaneously ensure that for fixed assignments to the quantified
variables, the verifier has at most one winning strategy for the quantifier-free part of the
sentence in any structure and for any assignment.

Lemma 3.9. Let ¢ be an FO[Arb]-formula over some vocabulary o. There is an FO[Arb]-
formula ¢’ over o in prenex normal form such that for all A € STRUC[o] with |dom(A)| > 1,
all non-uniform families of interpretations I, and all assignments s: free(p) — dom(A) the
following hold:

* #Win(A,7,¢’,s) = #Win(A, 7, ¢,s) and
* #Win(A,7,¢,s) € {0, 1}, where 1 is the quantifier-free part of ¢’.

Proof. Let o be a vocabulary. We show inductively that the desired normal form exists
for any FO[Arb]-formula ¢ over 0 when we allow constants 0 and 1. It is easy to see
that these constants can be replaced by additional existentially quantified variables.

If ¢ is an atom, ¢’ := @ has the desired properties.

If ¢ = Qx @, for some quantifier Q and a formula ¢; with the desired properties, the
formula ¢’ := Qx @] has the desired properties.

If ¢ = =@, for some formula ¢, with the desired properties, we move the negation
inside the quantifiers in ¢, changing any existential quantifier to a universal one and
vice versa. Finally, the quantifier-free part of the resulting formula is modified to ensure

64

3 Counting Witnesses in First-Order Logic

that the verifier has at most one winning strategy on this part, which yields a formula ¢’
with the desired properties.

If ¢ = 1 A @, for formulae ¢; and ¢, with the desired properties, we proceed as
follows. Without loss of generality, bound(¢;) N Vars(¢,) = bound(¢,) N Vars(¢;) =0,
that is, none of the variables quantified in ¢; occur in ¢, and vice versa. Let ¢; =

Q1x1...Qkxg 1 and @, = Oqyy...Opyr P, where Qy,...,Qx, Oq,...,0p are quantifiers
and 1, and 1, are quantifier-free. Now let

(P// = lel...Qkaolyl...Ogyg (ZZO/\ll)l/\})l :0/\.../\})g:O)V
(z=1APAx; =0A...Ax=0)V
(z>1TAx;=0A...Ax=0A

1=0A...Ap,=0)|,

where z is a fresh variable. Intuitively, z acts as a selector such that no two of the terms
in the disjunction can be satisfied simultaneously. The formula ¢” is in prenex normal
form. Also, as for all A, 7,s it holds that #Win(A, 7, y,s),#Win(A, 7, ,,s) € {0,1}, the
same holds for the quantifier-free part of ¢”.

Let A € STRUC[o] with |dom(A)| > 1, 7 be a non-uniform family of interpretations,
and s: free(p) — dom(A) be an assignment. In the following, we write #Win(¢,t)
instead of #Win(A, 7, &, t) for any formula £ and assignment ¢, as the structure and the
family of interpretations do not change. It holds that #Win(”,s[z/0]) = #Win(¢y, s).
Similarly, #Win(¢”,s[z/1]) = #Win(¢p,,s) and #Win(¢"”,s[z/i]) = 1 for i > 1. Now the
desired formula is (p =Vz¢p”, as

#Win(¢’,s) = #Win(¢p”, s[z/0]) - #Win(¢”, s[z/1]) rl #Win(¢p”, s[z/i])

= #Win(¢p”,s[z/0]) - #Win(¢", s[z/1])
= #Win(¢@; A @3, 9).

If @ = 1V @,, we proceed analogously. Let Qy,...,Qx, Oy,..., Oy, 1, and 1, be defined
as above. We define

(p” =Q1x1 ... QkxO191...Opve | (z=0AP1 Ay =0A...AY, = 0)
V(z=1APyAx; =0A...Ax=0)).

Similar to before ¢’ := 3z¢” has the desired properties. O

65

3 Counting Witnesses in First-Order Logic

This immediately yields the corollary that ignoring inputs of length 1, the definition
based on the full model-checking game and the definition based on Hintikka’s model-
checking game coincide.

Corollary 3.10. Let f: {0,1}* — IN. Define f*: {0,1}* — IN by

)= {1, iflx| =1 and f(x)>0,

f(x), otherwise.

Then the following holds:
1. {f*| f € #Win-FO[BIT]} C #Win-FO[BIT|Hintikka 5,4
2. {f*| f € #Win-FO[Arb]} C #Win-FO[Arb]Hintikka,

Proof. We show statement 1. The non-uniform case can be proven analogously. Let
f € #Win-FO[BIT] via the o-sentence ¢. Without loss of generality we can assume that
0 = Tsyring: If f was defined via some formula & over a vocabulary o # Ting, We can

use the FO-query bin,! (see Remark [2.28) and plug it into a formula defining f over
an arbitrary vocabulary, obtaining a Tying-sentence &’. This is possible by Lemma

As the behavior of bin;1 is not specified for Tyying-structures that do not represent
encodings of o-structures, we further need to modify the behavior of £’ on such inputs.
This is possible as the property that the cardinality of the domain is the length of
encodings of o-structures is definable in FO[BIT].

Let ¢’ be the sentence arising from ¢ by applying Lemma and let ¢ be the
quantifier-free part of ¢’. Now, let A € STRUC|Tyying] with [dom(A)| > 1. It holds that
#Win(A, ¢, s) = #Win'intikka (A ¥, s) for any assignment s, since #Win(A, 0,s”) = 0 if and
only if #WinHintikka(A, 0,s”) = 0 for any structure A, assignment s’ and formula 6, and
#Win(A, 1) € {0,1}. As quantifiers are treated the same in both model-checking games
it follows that #Win(A, 7, ¢,s) = #WinHintikka(A, I,@,s). Strings 0 and 1 are the only
encodings of Ty ing-structures with domains of cardinality 1, so the statement is already
true restricted to inputs of length > 1. The behavior of the formula in structures with
domains of cardinality 1 can be adapted as required, finishing the proof. O

On the other hand it is easy to see that the classes are not the same, as for any formula
@, the verifier has at most one winning strategy in Hintikka’s model checking game in
structures with domains of cardinality 1.

Having identified this difference in models we now observe that the possible outputs
of functions in our different classes as well as classes from circuit complexity differ.

Observation 3.11. Any FO-formula can be modified in such a way that the number of
winning strategies in the full model-checking game in structures with domains of cardinality
1 are any chosen natural numbers without changing the number of winning strategies on
other inputs. In contrast, in Hintikka’s model-checking game only values 0 and 1 can occur in
structures with domains of cardinality 1.

66

3 Counting Witnesses in First-Order Logic

Any non-uniform family of counting arithmetic circuits can be modified in such a way
that on the input strings 0 and 1, any chosen natural numbers are computed within the same
resource bounds. On the other hand, FO[BIT |-uniform families of counting arithmetic circuits
always map the input strings 0 and 1 to either 0 or 1.

For this reason, in order to exactly capture any counting classes from circuit complex-
ity in terms of counting winning strategies for FO-formulae, the full model-checking
game needs to be used for non-uniform circuit classes while Hintikka’s model-checking
game needs to be used for FO[BIT]-uniform circuit classes. In the remainder of this
work we will ignore this subtle difference and say a class is captured when it is captured
in the weaker sense that on inputs of length 1, functions can output 1 instead of an
arbitrary number > 0, but they have to agree on whether the output is 0 or not. We
make this precise in the following definition, also introducing a corresponding kind of
inclusion.

Definition 3.12. Let &, © be classes of counting problems. Then € C ® holds if for every
f €&, either f e®or f* €D, where f* is defined from f as follows:

f(x), otherwise.

) = {1, if x| =1 and f(x)>0

[f¢CDand®C ¢, we say that € captures D, denoted by ¢ = D.

Using the notion of =, we can now state the connections between the different counting
classes based on first-order logic in the following simplified form.

Corollary 3.13.
1. #Win-FO[BIT] £ #Win-FO[BIT]intikka — 45K olem-FO[BIT] and
2. #Win-FO[Arb] £ #Win-FO[Arb]™ntkka — ¢Sk olem-FO[Arb].

3.3 Conclusion

The goal of this chapter was to define a class based on witness counting in first-order
logic without introducing second-order variables. We first presented a suitable definition
based on counting winning strategies of the verifier in the first-order model-checking
game. For this, we used the full model-checking game that ends only after reaching
an atom, resulting in the classes #Win-FO[BIT] and #Win-FO[Arb] in the uniform and
non-uniform setting, respectively.

We then considered other promising candidates for such a counting class. First, apart
from the full model-checking game, there is another game-theoretic characterization
of first-order logic: In the original model-checking game of Hintikka, formulae are
assumed to be in prenex normal form and the game ends once reaching the quantifier-
free part. Secondly, we also considered Skolem functions as witnesses for acceptance in
first-order logic. Both notions lead to the definition of corresponding counting classes.

67

3 Counting Witnesses in First-Order Logic

We showed that the class #Win-FO admits a certain robustness by showing that both
in the non-uniform as well as the uniform setting, all three classes coincide as long as
we disregard inputs of length 1. Note that it is a usual phenomenon in the context of
first-order logic that inputs of small size have to be treated differently. For example,
recall that FO[BIT]-uniform circuit families generally do not contain a circuit for inputs
of length 0. While Up-uniform classes are capable of handling the empty word ¢ as
input, we still consider both notions of uniformity equivalent on many circuit complexity
classes, disregarding the empty word. Hence, it seems natural to also disregard inputs
of length 1 in the case of counting classes, as for technical reasons these classes are not
robust with respect such inputs.

We briefly observed that there are similar effects when using FO[BIT]-uniformity for
counting classes in circuit complexity. Based on these observations and discussions, we
argued that to precisely capture non-uniform circuit complexity classes, the definition
based on the full model-checking game is suitable. On the other hand, for FO[BIT]-
uniform classes the definition based on Hintikka’s model-checking game or, equivalently,
the definition based on Skolem functions, is better suited.

68

4 Characterizing Constant-Depth Classes

In this chapter we show that the class #Win-FO, based on counting witnesses in first-
order logic and introduced in the previous chapter, captures the class #AC both in the
non-uniform and in the FO[BIT]-uniform setting. Furthermore, we will use this result to
establish a new characterization of the decision class TC? by extending FO with bitwise
access to #Win-FO-functions.

4.1 A Model-Theoretic Characterization of #AC°

Before proving the main theorem we need the following normal form for the class #AC°.

Lemma 4.1. Let f € #ACC. Then there is some k € N and polynomial-size circuit family
C =(C,)uen of depth k such that #C(w) = f (w) and for all n € N the following holds:

1. the underlying undirected graph of C,, is a tree,

2. all input nodes have depth exactly k, that is, the length of all paths from an input node
to the output node in C,, is k, and

3. types of gates in C,, are alternating on any path ending on the output gate and the
output gate has type A.

The same normal form applies to FO[BIT]-uniform #AC°.

Proof. Let D = (D,,),en be a circuit family with #D(x) = f(x) for all x € {0,1}*. We
successively construct a circuit family with property 1, a circuit with properties 1 and 2
and a circuit with all three properties. Fix n € IN and let D := D,, and k be the depth of
D.

1.) This can be achieved by constructing a new circuit whose gates are k-tuples
of gates of the D, or a placeholder element. This way, we can connect gates in
such a way that the path from the output gate to any gate is part of the encoding
of gates. More precisely, we construct a new circuit family C” = (C}),en where
the underlying undirected graph of each C; is a tree as follows. Let n € IN. Let
D =: (Vp,Ep,pp,outp). Then we define C;, as (V”,E”,”,out”) with the following
components. V" = {(vy,vy,...,v) | v; € Vp U {$}}, where $ ¢ Vp is a placeholder el-
ement. Ultimately, only gates of the form (vy,...,v},$,...,$) with v; = outp are used
in the construction, but it does not make a difference to keep all tuples in the set of
gates. For a tuple of the above form, v; determines what gate of the original circuit
the tuple corresponds to, while vy,...,v;_; specify the path from that gate to the out-
put gate. Let g,h € V” be two gates in the new circuit. Then (g, /) € E” if and only

69

4 Characterizing Constant-Depth Classes

if there area j €{l,...,k} and g»,..., gj, gj+1 € Vp such that ¢ = (outp, g,...,gj, $,..., %),
~——

k—j many
h = (outp, g2,---,8j+1, $,...,$), and (gj,gj+1) € Ep. The gate types are directly ob-
~——
k-j+1 many

tained from the gate types in D, that is, B”(g1,...,g,$,...,$) = pp(gj) for any gate
(81,--.8»$,...,8) € V”. For gates that are not of this form the type can be chosen
arbitrarily. The output gate of C), is the gate out” := (outp,$,...,$).

2.) We now construct a circuit C’ from C” that has property 2 in addition to property
1. For this, we can simply add a path of appropriate length only consisting of A-gates
immediately after any input gate of C”. We now construct C’ = (C;,) formally. Let d be
the depth of C”, n € IN, and let V;,, be the set of input nodes of C;,. We will create d
copies of each gate of C;,. Similar is in the proof to ensure the first property, this allows
us to include an encoding of the distance to the output gate in the encoding of any gate.
We define C;, = (V’,E’, /,out’) as follows:

V' i={vy,vi,...,v4 v eV},
E' = {(vis1,wi) | (v, w) € E"}U{(vip,v) i <d},
'), ifveV”\V"
B'(vi)={p"(v), ifveV.andi=d
A, else,

out’ := out.

3.) We now construct the circuit family C = (C,,),en with all properties from the
statement of this lemma. Intuitively, this can be done by replacing each layer of C’ by two
layers, an A-layer and an V-layer. This is done for each gate individually: For A-gates the
new V-layer will be a dummy-layer while for V-gates the new A-layer will be a dummy-
layer. Let ne€ N, C;, =: (V',E’, p’,out’) and m := |V’|. We construct C,, = (V, E, ,out) as
follows. Let V :={gx,8v,1,---,&v,m | § € V'}. For any internal gate g € V’, we add to E the
following edges depending on the type p’(g). Let g',..., g be the predecessors of g in C,.
If B'(g) = A, we add to E the edges (gn,gv,1):---»(§n &v,¢) as well as (g, 1,81).+ (§v,er §H)-
If B(g) = v, we add to E the edge (gx,gv,1) as well as the edges (gvll,g/l\),..., (gvll,g/{). The
construction is illustrated in Figure

All of the constructions above are presented in a way that makes it obvious that they
can be made FO[BIT]-uniform, since all conditions are FO[BIT]-definable. O

We now prove the non-uniform version of the main theorem of this chapter, i.e., the
characterization of #AC? in terms of counting winning strategies in FO-formulae.

Theorem 4.2. #AC° = #Win-FO[Arb]

Proof. First note that by Observation we do not need to consider inputs of length
<1

70

4 Characterizing Constant-Depth Classes

Figure 4.1: Construction of an alternating circuit.

#AC® C #Win-FO[Arb]: Let f € #AC via the circuit family C = (C),,n in the normal
form of Lemma [4.1]and let k the depth of all circuits in C. Let w € {0,1}* be an input,
out be the output gate of Cp,|, and E the edge relation of C,|. The value f(w) can be
written as follows:

fw= 11 > -+ A valCumow) (*)

y; with y, with Yk with
(y1,0ut)€E (¥2,91)€E (Vi ¥x-1)EE

where A is a product if k is odd and a sum otherwise.

We will now build an FO-sentence ¢ over Tyying U Teire Such that for any input w €
{0, 1}", #Win(A,,C’,) equals the number of proof trees of the circuit Cp, on input
w. Note that the circuit family C as a family of 7 ;,.-structures can almost directly be
used as the non-uniform family of interpretations for the evaluation of ¢: We can use
the family C” = (C},),,en of interpretations of the symbols from 7., which interprets
the symbols in analogy to C, but using tuples of elements of the universe as gates. Let
¢ € N be the arity of these tuples. Now, the set of gates used in Cl’w| is for example the
set {0,...,|w| - 1}¢ = dom(A,)’. Note that this does not work for inputs of length <1,
but these can be handled separately as mentioned before (cf. Observation [3.11)). To
simplify the presentation, we assume in the following that we do not need tuples—a
single element of the universe corresponds to a gate. The proof can be generalized to
the case where this assumption is dropped.

71

4 Characterizing Constant-Depth Classes

Before giving the desired sentence ¢ over Ty ing U Teire, We define
QtrueLiteral (X) == 31 (Input(x, i) AS(i) V negatedinput(x, i) A —|S(i)),

which in A, and using C’ to interpret symbols from 7., expresses that x is an input
gate with val(Cy,), x,w) = 1. Now ¢ can be given as follows:

@ =3yoVy1 3y, ... Qiyx [out(vp) A [/\ E(yifyi—l)/\(PtrueLiteral(yk))V

1<i<k

\/ [[A E(er}’j—l)]/_‘E(Viiyi—l)/\ A OUt(Vj)] :

1<i<k, \\1<gj<i i<j<k
i odd
where Qy is an existential quantifier if k is odd, and a universal quantifier otherwise.
Notice that for the quantifier-free part of ¢, the verifier has at most one winning strategy
in any structure and for any assignment to the variables y;. For this reason, we do
not need to argue about the number of winning strategies for the quantifier-free part
throughout the proof, but can simply distinguish between this part being satisfied or
not.

We will now analyze the number of winning strategies arising from the quantifier
prefix of @. The big disjunction ensures that the number of winning strategies after
making a wrong choice for one of the quantified variables (choosing an element that
is either not a gate or not a predecessor of the previous gate) is always the neutral
element of the arithmetic operation associated with the corresponding quantifier: For
existential quantifiers, we sum over all possibilities. Thus, a wrong choice should lead
to no winning strategies. For universal quantifiers, we multiply the number of winning
strategies for all choices. In this case, any wrong choice should lead to exactly one
winning strategy.

We now need to show that the number of winning strategies for A, F¢ ¢ is equal to
the number of proof trees of the circuit Cy, on input w. For this, let

(P(n)(ylx---’yn) = Qn+1yn+1 e Qkyk

[/\ E(yi' yi—l) A (ptrueLiteral(yk)] \

n+1<i<k

\/ [[/\ E(yj:}’j—l)]/\—'E(yi;Vi—l)/\ /\ OUt(yj)] ,

n+.1sisk, 1<j<i i<j<k
10

where Q,,1,..., Qk_1 are the quantifiers preceding Q. Note that the lower bound of the
index i on the big disjunction changed compared to ¢. In the following we will use the

72

4 Characterizing Constant-Depth Classes

abbreviation

#w((g)) = #Win(A,, C’, (3))

for tuples g of elements of dom(A,,) of appropriate arity. Let An be a product if n is
odd and a sum otherwise for any 1 < n < k. We now show by induction that for all
nefo,...,k}

[T Y A, #webo/outlg,-...80)

g with g, with g, with
(gr)€E (82,81)€E (8n8n-1)€E

Here, out is used as a constant for the output gate of Cp,,;. While this constant formally
does not exist it behaves exactly the same as the variable y, in our formula and makes
the presentation more succinct and simple in the following.

Induction basis (n = 0): The induction hypothesis here simply states

#w(ep) = #w(pV[yy/out]),

which holds by definition.
Induction step (n — n + 1): We can directly use the induction hypothesis here:

I_[Z "yo/out](g1,- -, gn),

g with g, with 9 w1th
(811)€E (82,81)€E (8w :8u-1)€E

so it remains to show that for all gy,..., g, € dom(A):

#w(@"[yo/out](g1,....g1) = A, #w(@" D [yo/out](g1, ... Gur Gns1))-
gn+1 With
(gn'gnH)EE

We distinguish two cases: Depending on whether n + 1 is even or odd, the (n + 1)-st
quantifier is either an existential or a universal quantifier. Similarly, all gates of that
depth in the circuits from C are either disjunction- or conjunction-gates. As both
existential quantifiers and disjunction-gates lead to a sum in the corresponding counting
function, and both universal quantifiers and conjunction-gates lead to a product, this as
desired.

n +1 is odd: This means, the (n + 1)-st quantifier is a universal quantifier. Thus, from
#w(p"[yy/out](g)) we get a product as the outermost operation. We now need to check
which assignments g,,,; for y,.; are relevant to the product: The big conjunction may
only be true if g,,; is a predecessor of the element g, assigned to y,,.. The big disjunction
may become true for assignments to g,,; which are no predecessors of g, only if all
variables quantified after g,,; are set to out (we could have chosen any fixed element
here that is definable from A, in FO[Arb]). This ensures that after choosing a wrong
element g,,, the verifier always has a unique winning strategy. Also, the term for
i = n in the big disjunction can only be made true if g, is not a predecessor of g, so

73

4 Characterizing Constant-Depth Classes

we can omit it if g, is a predecessor of g,. Since for all elements g,,; that are not
predecessors of g, we fix assignments to all variables quantified afterwards, we get for
all g¢,...,g, € dom(A):

#w(e"yo/outl(gr g = | | #wle" Vlye/outl(gr, . gnir))

gn+1€|Aw|

= |] #we™poui@) || 1
gr1+1€|Aw|l gn+1€|Aw|l
(gn+1'gn)EE (gn+1vgn)EE
=[] #wle" poout]@).
gn+1€|Aw|l

(gn+1'gn)EE

Therefore, we get a product only over the predecessors of g, and the term for i = n in
the big disjunction as well as the clause for i = n in the big conjunction are not needed
in (P(n+1).

n+1 is even: This means, the (n+1)-st quantifier is an existential quantifier. Therefore,
we get a sum as the outermost operation of #w(¢"[yy/out](g)). We now need to check
which assignments g, for y,,; are relevant for the sum: The big conjunction can only
be true if g,,1 is a predecessor of the element g, assigned to v,,. The big disjunction can
also only be true if g,,; is a predecessor of g,,. This means that the verifier does not have
any winning strategies after choosing gates that are not predecessors of the current gate.

Thus, we directly get

#w(e"yo/outl(gr g =) #w(e" [pe/outl(g s guit)

8n+1 elAuJ'!
(gn+1 'gn)EE

Here, all terms of the big disjunction in ¢ are still necessary in ¢("*!). The big
conjunction does neither contain a clause for i = # in ") nor in @"*!), because n is
even. This concludes the induction.

For (P(k)(gl"' 'lgk) = (ptrueLiteral(gk)f we get
#w(@®(gy,..., &) = #Win(A,, €, 0™ (g1, &) = val(Clwl, g, w),

which is 1 if g is associated with a true literal in Cl’w| on input w, and 0 otherwise.
Together with the fact that C and C’ are the same modulo renaming of gates as well as
Equation () on page[71] this shows f(w) = #w(¢).

#Win-FO[Arb] C #AC: We will show this by showing #Win-FO[Arb]Hintikka ¢ #AC0,
By Corollary 3.13|and Observation it then follows that #Win-FO[Arb] C #ACC. Let
fe #Win—FO[Arb‘]Hintikka via the FO[Arb]-sentence ¢ over some vocabulary ¢ and the
non-uniform family of interpretations 7 = (I,,),,en-. Let T be the vocabulary of built-in
predicate symbols in ¢ and let k be the length of the quantifier prefix of ¢. We now
describe how to construct the circuits C,, within a circuit family C = (C,,),,en that shows
f e#ACO.

74

4 Characterizing Constant-Depth Classes

Let n € IN. If n is not the length of the encoding of some o-structure, C, can simply
compute the constant-0 function. Otherwise, let m € IN be such that n = |enc,(A)| for
all A € STRUC[c] with |[dom(A)| = m. The circuit C, consists of two parts. The first
part mimics the quantifiers of the formula, while the second part consists of copies of a
circuit of constant size evaluating the quantifier-free part of the formula.

The first part is built in analogy to the circuit in Immerman’s proof of the inclusion
FO[BIT] C FO[BIT]-uniform AC® [Imm99]. The gates of C, are of the form (ay,...,a;)
with 1 <1i <k and aj € {0,...,m —1} for all j. Each such gate is intended to compute
the number of winning strategies after the elements ay,...,a; are assigned to the first
i quantified variables. Therefore, for any 1 <i <k and ay,...,a;1 €{0,...,m -1}, the
tuple (ay,...,a;_1) is a conjunction-gate if the i-th quantifier in ¢ is universal, and a
disjunction-gate if the i-th quantifier is existential. Also, if i <k, there is an edge from
the gate (ay,...,a;_1,a;) to (ay,...,a;_1) for all a; € {0,...,m—1}. This means that the name
of each gate in depth k contains the elements assigned to all quantified variables.

The second part, which evaluates the quantifier-free part of ¢ based on the elements
assigned to the quantified variables, works as follows: As in the proof of Lemma
we can construct a quantifier-free formula equivalent to the quantifier-free part of ¢ on
which the verifier always has at most one winning strategy in the full model-checking
game. We can now directly build a circuit evaluating this formula. As the verifier
has at most one winning strategy on the quantifier-free part, this circuit is satisfied by
an input if and only if it has exactly one proof tree with that input. This means that
when counting proof trees, this second part will only determine the truth value of the
quantifier-free part and not increase the number of proof trees. The truth value of the
atoms can be determined in the circuit as follows: For predicates of the form R(xX) for
a relation symbol R from o, we use an input gate associated with the corresponding
input bit. What bit has to be accessed is determined by enc,. All other predicates
are numerical predicates and thus only dependent on n. Therefore, their value can be
computed by constants in C,,.

Now, by Lemma [3.2]it is clear that for any n € IN counting proof trees of C, on input
w € {0,1}" leads to the same number as counting winning strategies of the verifier for
enc;!(w) Er ¢, if w is the encoding of a o-structure. If w is not the encoding of a
o-structure, C,, correctly computes the number 0. O]

Next we want to transfer this result to the uniform setting. Here, we only show that
counting the number of winning strategies in the full model-checking game captures
#ACY in the weaker sense of =. Recall that this means that on inputs of length < 1,
functions can output 1 instead of an arbitrary number > 0, but they have to agree on
whether the output is 0, as defined in the explanation preceding Corollary For
the inclusion of the circuit class in the logical class, we will use Lemma [3.4]to replace
queries to Cp,| in the FO-sentence constructed in the proof of the non-uniform version
above by the corresponding formulae from the FO[BIT]-query showing uniformity of C.
For the inclusion of the logical class in the circuit class, we will have to show that the
constructed circuit is uniform, which is straightforward.

75

4 Characterizing Constant-Depth Classes

Theorem 4.3. FO[BIT]-uniform #AC? = #Win-FO[BIT].

Proof. FO[BIT]-uniform #AC® C #Win-FO[BIT]: Let f € FO[BIT]-uniform #AC° via
the circuit family C = (C,),en and the FO[BIT]-query J showing its uniformity. With
the formula ¢ from the proof of #AC® C #Win-FO[Arb] this means we have for all w:

f(w) =#Cy(w)
= #Win(A' U Clup @)

Here, A’U Cy, is the structure Cj,,|—whose gates are tuples over the universe of A,,—
modified with additional access to the structure A, on the adequate subset of the
universe. Formally, A’ is obtained from A,, by changing its universe to dom(A,,)* and
adapting the interpretation of S, that is, the i-th element of dom(A)* is in SA” if and only
if the i-th element of dom(A,,) is in SAv. Let " be an FO-query with J(A,) = A’U C}y,
for all w. This can easily be constructed from J. Furthermore, we can assume that the
formula ¢, in I’ defines a simple upper bound, so it can be extended to a query J” that
also defines BIT. Now, from ¢ and J”, we get by Lemma 3.4/an FO[BIT]-formula ¢’ over
Tstring- As J7(Ay) = A’UCy, U (BITc,), where BITc , denotes the restriction of BIT to
the universe of Cy,|, we have for all A, € STRUC[Tyying|:

#Win(A,, @) = #Win(3”(Ay), @)
= f(w).

#Win-FO|[BIT] é FO[BIT]-uniform #AC% The proof is similar to our proof for
#Win-FO[Arb] C #AC?. Obviously, the fact that gates can only be encoded as tuples on
inputs of length > 1 comes into play here, which is why the two classes only coincide
in the weaker sense of =. For inputs of length > 1, the only difference is that we need
to show FO[BIT]-uniformity of the circuit. Let f € #Win-FO[BIT] via the formula ¢.
We now need formulae g, ¢, , G, P, Pinputr Pregatedinput aNd @ defining a circuit
family showing f € FO[BIT]-uniform #AC°,

The second part of the circuit from the proof of the non-uniform version is fixed
except for the input gates and constants, which depend on the input size. The input
gates are defined by giving the index of the input bit they are associated with. For each
input gate the index is determined by the assignment to the quantified variables in
accordance with the definition of enc,. For this reason, the adequate index is definable
in FO[BIT] from the tuple of variables assigned to the quantified variables. As we will
see in the construction of the first part of the circuit, we will have direct access to this
tuple: Each choice made for a quantified variable on the (reversed) path leading from
the output gate to an input gate is part of the encoding of said input gate. Constants can
be replaced by a gate with x; and —x as its two inputs. Now we just need to uniformly
make this gate an A-gate for the constant 0 and an V-gate for the constant 1. This is
possible as constants arise from either constants or occurrences of BIT in ¢. In both
cases, their truth value is definable in FO[BIT].

Now it remains to show, that the first part of the circuit can be made uniform as
well. For this, start with an FO[BIT]-query mapping any Tig-structure A, to A,

76

4 Characterizing Constant-Depth Classes

(the 0 is appended as the new MSB). Together with the fact that the composition of
FO[BIT]-queries is still an FO-query [Imm99], it now suffices to construct an FO-query

J: STRUC[Tstring] - STRUC[Tcirc]
Agy — C|w|.

Let @ = Q121... Qr zxP(zy,...,2x) with quantifier-free . Then each gate in the circuit
can be represented by a sequence of k values in the range {0,...,n}: The root is the
sequence consisting of n in every component. For other nodes, each position in the
sequence chooses a predecessor in one level of the circuit. For inner nodes we leave a
suffix of a tuple set to n, meaning that no predecessors were chosen on those levels. As
we can see, having the additional element 7 as a padding element is quite convenient.

Following the idea above, the formulae in the FO[BIT]-query have to express:

* Atuple (xq,...,x¢) is a gate, if and only if x; = n implies x;,; =--- = x; = n for all i.

* There is an edge from X to v, if and only if in X exactly one more component is n
than in y and both tuples agree on all components that are < # in both of them.

* A gate is an A-gate (resp. V-gate), if and only if its distance to the output gate
translates to a V-quantifier (resp. 3-quantifier) in ¢.

* The output gate is the tuple (n,...,n).

In detail, the formulae defining J can be given as follows, with X = (xy,...,x;) and
V=1 V)

Po(X) = /\ [xi:”—> A ijn],

1<i<k i<j<k

PP =\ (xizn—>x =) A

1<i<k

[(ylin/\yzzn/\xlzn)v

\/ (yz-:tn/\yiﬂ =nAX;=nANAXxj_q ¢71)],

2<i<k
Pg, (x) = \/ /\xi:tn/\ /\ x;=n|,
0<i<k \1<j<i i+1<j<k
Qi =Y
Pg, (x) = \/ /\xiin/\ /\ x;j =n|, and
o<i<k \1<j<i i+1<j<k
Qi =1

(Pout(x) =X =n

77

4 Characterizing Constant-Depth Classes

By Observation and Corollary we immediately obtain the following Corol-
lary.

Corollary 4.4. FO[BIT]-uniform #AC? = #Skolem-FO[BIT] = #Win-FO[BIT | intikka,

4.2 A Model-Theoretic Characterization of TC®

Next, we will see that the main result of the previous section, #ACY = #Win-FO, can
be used to also obtain a new characterization of the class TC?. While there already are
model-theoretic characterizations of this class, a new characterization can still give new
insights.

Recall that PAC? is the class of languages L for which membership of an input x in L
can be characterized by the condition f(x) > g(x) for functions f,g € #AC°. Also, TC® co-
incides with the class PAC? both in the non-uniform [AADO00] and the uniform [ABL9S]
setting. This leads to the idea to consider Boolean circuits with (bitwise) oracle access
to counting functions. As comparing two numbers using bitwise access can be done in
AC?, we will certainly get that PAC? is contained in the class of languages accepted by
ACP-circuit families with oracle access to #AC°-functions. Conversely, as #AC° C FTC®
and ACY € TCO, one can show that this new class is contained in TCC, showing that
both classes coincide. A model-theoretic characterization of TC? is then obtained by
combining the characterizations of AC? and #AC?, defining a variant of first-order logic
with (bitwise) oracle access to counting functions, namely functions from #Win-FO. We
will see that this idea works in both the non-uniform and the uniform setting.

We start by introducing the required notions of oracle circuits and first-order formulae
with oracle access to counting functions. Our model of oracle circuits adds a new type
of gate for bitwise oracle access to a function oracle, called #-gate. The bits such a gate
receives as input are interpreted as an input string to the oracle function, while the
uniformity specifies which bit of the output the gate computes. This also means that
in general, these gates do not compute commutative functions. Instead of adding the
function «a as defined in the general definition of Boolean circuits (see Definition
and the subsequent definition of the language accepted by such a circuit), we only
add a numbering of the input bits to #-gates by adding a new ternary predicate that
specifies for a given tuple (g,¢’,i) whether g is the i-th predecessor of g’. We give a
formal definition by defining a first-order vocabulary for oracle circuits:

To-cire ‘= (E2, GIA, G%,, Gﬁ, Index>, Input2, negatedlnputz, out!).

The intended meaning of the predicate symbols it shares with 7, stays the same. The
meaning of the new predicates is as follows:

* Gg(x,1): gate x is an oracle gate accessing the i-th bit of the oracle function and
* Index(x,y,i): v is an oracle gate and x is the i-th predecessor of p.

Let C € STRUC|7, ;] be an oracle circuit and let f be a counting function. Further,
let g,i € dom(C) be a gate and an index (given as an element of the universe) such that

78

4 Characterizing Constant-Depth Classes

(g,i) € Gg. Then, in the circuit C with oracle f, the gate g is an oracle gate computing
the function

fi+ {0,1}7 —{0,1}
X — BIT(3, f(x)).

Similar as for usual Boolean circuits without oracle, we denote by C/ the function
computed by C when using the function oracle f. Analogously, in case of a family of
oracle circuits C, we denote by C/ the function computed by C when using function
oracle f. Furthermore, we use the standard notation for oracle classes: Let € be a class
of Boolean circuits, A the class of languages decidable by circuits from € and B a class of
functions {0, 1}* — IN. Then A is the class of languages decidable by circuits from ¢
with oracle gates, using oracles from B.

As in our proofs we will also need TC-circuit families with oracle access to a function
oracle, we want to briefly mention that in this case we extend Tp,j.circ analogously to
how we extended 7. to obtain 7, .. This leads to the vocabulary

To-maj-circ *= (Ez, G}\, G%,, Gll\/[AI’ Gﬁ, Index3, Inputz, negatedlnput2, out!),

where the intended meaning of the predicates is analogous to their meaning in T circ
and 7, ¢, respectively.

Next, we will introduce an extension of first-order logic that allows for bitwise oracle
access to a counting function. We use a two-sorted logic based on the two-sorted logic
FO(Cnt)y, defined by Libkin in Definition 8.1 in [Lib04} p. 142]. In two-sorted first-
order logic, structures have two universes (or sorts) and can contain relations over either
of the universes. One could also allow relations that intertwine both universes, but we
do not allow this for our logic. Variables are then either first-sort or second-sort variables
and can only be used in relations over the correct sort. The reason we use a two-sorted
logic is that we need to specify which bit of the output of the oracle we are interested in,
and to do so without requiring built-in predicates, a second sort of numerical values is
needed. This means that our definition could also be used for other classes with oracle
access to function oracles, in particular independent of built-in predicates.

Access to the oracle function is then given by extending the logic by predicates of the
form #, for an FO-formula ¢. For a two-sorted structure A and an assignment s for
second-sort variables, A, s #(p(f) if and only if the s(j)-th bit of #Win(A, @) is 1 (under a
suitable encoding of numbers as tuples over the second sort). We call the resulting logic
FOCW (for first-order with counting winning strategies) and give a formal definition of
this logic and its semantics next.

Let 0 = (Ry,...,R¢) be a relational FO-vocabulary. Beside the set of first-order variables
Vargg, we also need the countable set Var[2]go = {i, | £ € N}, the set of second-sort
variables. The logic FOCW extends the syntax of FO as follows: A first-sort o-term is a
o-term as defined for first-order logic. A second-sort o-term is a second-sort variable
i € Var[2]go. The grammar for the construction of FOCW over o is the extension of the
grammar for the construction of FO-formulae by the rules

@ u=i=i" |40y, ip i) | (i1, ip,13) | Ji@(x, i) | #,(i),

79

4 Characterizing Constant-Depth Classes

where i,i’,1;,15,13 € Var[2]po, i is a tuple of second-sort variables, and 1 is a first-order
sentence over o.

An FOCW-structure A over o is a tuple (A,{0,...,|A| - 1};R‘1",...,R£;+A, ><A), where
(A; R?,...,RkA) € STRUC[o] and + and x are interpreted as the ternary relations corre-
sponding to addition and multiplication in N restricted to {0,...,|A| - 1}. We define
the encoding of an FOCW-structure A defined as above simply as the encoding of
the underlying first-sort structure A’ := (A; R?,..., R‘,?), i.e., ency(A) :=enc,(A’), as the
second-sort domain and the interpretations of the second-sort relation symbols are
uniquely determined by |dom(A)| (similar to built-in predicates).

The semantics of FOCW is clear except for the semantics of #¢(f). Let A be an

FOCW-structure and i; an assignment to i. Then
A #,(ip), if the val(iy)-th bit of #Win(A, @) is 1.

Here, val(iy) denotes the numeric value of the vector iy under an appropriate encoding
of the natural numbers as tuples of elements from the second sort. To be more precise,
the tuple (by,...,bg) € {0,...,n — 1}k encodes the number Zlg:o n’ - b,. Furthermore, for
an n-bit number the 0-th bit is its LSB while the n — 1-th bit is its MSB, so the bits are
numbered from lowest to highest significance. This is in line with how p-adic numbers
are written in general for any prime number p.

Our logic FOCW thus extends FO with bitwise access to the number of winning
strategies of the verifier in the model-checking game played on arbitrary FO-sentences,
i.e., in FOCW we have bitwise access to counting in an exponential range. Libkin’s logic
FO(Cnt)ay can count in the range of input positions, i.e., in a linear range. Nevertheless
we will show that both logics are equally expressive on finite structures: both correspond
to the circuit class TCP.

Note that we could also define this logic in a way that uses a second-sort universe of
exponential size to give direct access to the result of #Win-FO-functions instead of only
bitwise access. As FTC? can compute (polynomial) sums and products, this class would
potentially still capture TC. Still, it seems more natural to use a domain of cardinality
equal to that of the first-sort domain.

In order to capture TC? both in the non-uniform as well as the FO[BIT]-uniform
setting, we use FOCW with built-in predicates. These are added in the same way as
for FO, giving access to numerical predicates on the first sort both in the formulae
themselves as well as in the subscripts of predicates #. The classes we use will be
FOCWJArb] and FOCW|BIT], which are defined accordingly.

The main result of this section can be stated as follows:

0
Theorem 4.5. TC® = FOCW = AC***" both in the non-uniform and the FO[BIT |-uniform
setting.

For the proof of this characterization, we need a bit of additional preparation. We
0
will show this result by the chain of inclusions TC® € FOCW C ACY"C" c TCO. The
0 0
rough proof idea for ACY™A € TCO is as follows: Let L € ACY*™* via the AC? circuit

80

4 Characterizing Constant-Depth Classes

family C with oracle access to f € #AC. We use the fact that AC%-circuits are also
TCO-circuits and #AC° C FTC?, and then plug in FTC -circuits computing f into C

0
to show that L € ACO#AC . For this, we will now show that our definitions allow that
circuits are plugged in this way in the case of TC® both in the non-uniform as well as
the FO[BIT]-uniform setting, as long as the oracle is sufficiently weak.

Lemma 4.6. For any class € CFTCY, it holds that TC®® € TCO both in the non-uniform and
the FO[BIT -uniform setting.

Proof. We begin by showing the non-uniform version, i.e., TC® C TCO. Let L € TC?® via
the TC? oracle-circuit family C and oracle f € ¢. As € C FTC?, there is an FTC? circuit
family D computing f. We now construct a TCY circuit family deciding L. This can be
done by replacing the oracle gates by subcircuits computing f, which can be taken from
D.

As we can non-uniformly choose the circuit for the correct input length and connect
input and output gates of that circuit to the surrounding circuit from C as required, we
only need to make sure that the size of the circuit that we plug in is only polynomial
in the input length. For this, note that the number of inputs of different oracle gates
within a single circuit from C can differ. Let g be the polynomial bounding the size of
circuits in C depending on the input length. Then the number of inputs to all oracle
gates is also bounded by g. There is also a polynomial p bounding the size of circuits in
D. Thus, when replacing oracle gates by subcircuits from D, the size of each subcircuit
is bounded by p o g and hence still polynomial in the input length. This finishes the
proof of the non-uniform version.

We next adapt the above proof to the uniform setting, that is, we prove

FO[BIT]-uniform TC°® C FO[BIT]-uniform TC®.

First note that the fact that the size of any circuit from 9 that is plugged into C is
bounded by p o g allows us to fix the tuple length for the representation of gates in
the new circuit to be the old tuple length plus deg(p o q), the degree of the polynomial
p o g, plus some constant to deal with small structures (as p o g might not be monomial).
Similarly to what we do in the proof of Theorem [4.3, we add an additional element 7 to
the universe and use it as padding. We think of the tuples encoding gates as having two
parts: For non-oracle gates only the first part of the tuple is used, and connections are
only present between gates where all newly added components are n. For oracle gates,
the second part is used to represent gates within the respective subcircuit from D that
is plugged in to replace that oracle gate.

For the inner connections, the uniformity of D is used and the correct circuit from that
family is chosen with the help of the uniformity of C: Let C =: (C,,),,eny and D =: (D) enN-
Also, let J and I’ be the FO[BIT]-queries showing uniformity of C and D, respectively.
Due to the Index-predicate, the number of inputs of any given oracle gate is FO[BIT]-
definable from Cy, and, using J, also from A,,. Together with the FO[BIT]-query 7', this
shows that for any given oracle gate g, the circuit D,, is FO[BIT]-definable from A,,
where m is the number of inputs of g in C,,.

81

4 Characterizing Constant-Depth Classes

For the connections between the new subcircuits and the surrounding circuit, gates
that were successors of the oracle gate before will be successors of the correct output
gate of the corresponding subcircuit afterwards. Here, the correct output gate can be
chosen uniformly, as the index of the output bit accessed by an oracle gate as well as the
indices of output gates of FTC-circuits are specified in the corresponding FO-structures.
Gates that were predecessors of the oracle gate will be directly connected to the input
gates of the corresponding subcircuit (and these inputs can be made A-gates as they only
have one predecessor). Similar as for the outputs, connecting predecessors to the correct
input gate of the subcircuit can be done uniformly, as both the index of any input gate
as well as the index of predecessors of oracle gates are specified by the corresponding
FO-structures.

This means that the oracle gates can be uniformly replaced by subcircuits. O]

O#ACO . . .
In order to show FOCW C AC for the main result of this section, we need a
certain closure property of #AC. The class FOCW allows access to several #Win-FO-
functions by using occurrences of # indexed with different FO-formulae. In contrast,

n AC°#AC0, we can only use a single oracle function. Therefore, we need to combine
any constant number of oracle functions from #AC? into a single one such that using
oracle access to this one function, we can simulate oracle access to all of the required
functions. For this, we show that #ACC is closed under a weak form of concatenation we
call polynomially padded concatenation.

Definition 4.7. A class € of counting functions is closed under polynomially padded
concatenation if for all f, g € € there is a polynomial p such that the function

h(x) := f(x)o oP(xD=lg()l g(x)
isalsoin €.

Lemma 4.8. #AC° and FO[BIT]-uniform #AC° are closed under polynomially padded con-
catenation.

Proof. Let f,g € #AC via circuit families C;,C, and let p be a polynomial bounding
the length of all outputs of the function g depending on the length of the input. The
following circuit shows h(x) := f(x) o 0P(Ix)-lg(x)l o g(x) € #AC:
Compute f(x) using the circuit family Cy, then shift the result by p(|x|) bits to the left.
Compute separately g(x) using the circuit family C,. Add both results together. Shifting
can be done by multiplication with a subcircuit computing 2P(*). Figure illustrates
a bit more detailed how this is done with our definition of a circuit (edges have no
multiplicities).

Obviously, this circuit has still polynomial size in the input length and computes h(x).
It also can be easily seen that if C; and C, are FO[BIT]-uniform circuit families, then the
constructed circuit family is FO[BIT]-uniform. O

We are now in a position to prove the main theorem of this section. We start by

0
showing the non-uniform version, i.e., TC® = FOCW|[Arb] = ACOAC,

82

4 Characterizing Constant-Depth Classes

p(lx])

Figure 4.2: #ACY is closed under polynomially padded concatenation.

Proof of the non-uniform version of Theorem We prove this result by establishing the
following chain of inclusions:
1) (2) 0 (3)
TC® ¢ PAC® € FOCW][Arb] C AC*™C € (0
Recall that TC? € PAC? was shown by Agrawal et al. [AAD00]. We now prove the

remaining three inclusions.
Proof of (1): Let L € PAC®. Then there are f, g € #AC° such that for all x:

xel = f(x)>g(x).

Since #AC? = #Win-FO[Arb], we have f,g € #Win-FO[Arb]. Therefore, we can get the
bits of f(x) and g(x) using the #-predicate of FOCW. Let ¢, 1, be formulae showing f €
#Win-FO[Arb] and g € #Win-FO[Arb|, respectively. We now need a formula expressing
f(x) > g(x). This can be done in the standard way of expressing the natural order on
binary numbers using a bit predicate, that is, we express that f(x) has at least as many
bits as g(x) (excluding leading zeros) and the first position where the two numbers
differ contains a 1 in f(x) and a 0 in g(x). The following formula illustrates how this is
expressed in FOCW[Arb]:

3o | f5, () = 1 AY(T> Bo) f() = 0 A gyl = 0)
35, <) (B 27> 1) () = g) Ay, () > g5, ()|

Formally, f;(x) and g;(x) are accessed using #, (i) and #, (i), respectively, the input x
being implicitly provided as the encoding of the input structure. This means that f;(x)

83

4 Characterizing Constant-Depth Classes

and g;(x) are obtained as Boolean values and their values are compared using Boolean
connectives in the actual formula. Note that all variables in the formula are second-sort
variables.

Proof of (2): Let L e FOCW/[Arb] via ¢, where ¢ is in prenex normal form. Note that
is is straightforward to show that FOCW has a prenex normal form. When evaluating ¢
using a circuit family, second-sort variables can be treated in the same way as first sort
variables. This means that the only difference to an FO[Arb]-formula are occurrences
of #-predicates. Hence, we can build a circuit family evaluating ¢ analogously to the
one in the proof for FO[Arb] € ACC. The difference is that within the second part of the
circuit, which evaluates the quantifier-free part of ¢, #-predicates have to be evaluated.
If all occurrences of #-predicates in ¢ access bits of the same #AC?-function, this is easy:
In this case, we can use that function as our oracle and use an oracle gate to evaluate
the occurrence of the #-predicate. If there are occurrences of #-predicates with different
formulae in the subscript, i.e., associated with different counting functions, we first
need to combine them into a single counting function that allows to access each of them
as needed. For this, we use polynomially padded concatenation: Since there are only
constantly many different #AC-functions accessed via occurrences of #-predicates in ¢,
a polynomially padded concatenation of all of them is still in #AC°. Now, in each copy
of the subcircuit evaluating the formula, we can use exactly one oracle gate to compute
the value of each of the occurrences—only the index needs to be changed according to
the construction of the polynomially padded concatenation.

Proof of (3): This can be seen with the following chain of inclusions:

o (i))
0#ACY 2 C TC c TCO.

AC TC

(i) follows from the fact that AC? oracle-circuit families are also TC? oracle-circuit
families. (ii) is due to #AC® C FTCP. (iii) is an application of Lemma O

Finally, we show the uniform version of the above theorem, i.e.,

—uni 0
FO[BIT]-uniform TC? = FOCW/[BIT] = FO[BIT]-uniform ACC"O1PITIuniform #ACT,
Proof of the FO[BIT |-uniform version of Theorem[4.5] We prove this analogously to the
non-uniform version. We explain how the constructions can be made uniform where
necessary. Recall the chain of inclusions from before:
(1) (2) 0 (3)
TC? ¢ PAC” € FOCW ¢ ACY*C ¢ Tc?.

Recall that the inclusion TC? € PACY was proven in the FO[BIT]-uniform setting by
Ambainis et al. [ABL98]. We will now show that the rest of the inclusions can be made
uniform as well.

Proof of (1): The identity #AC® = #Win-FO also holds in the uniform case. As
comparing two numbers using bitwise access can obviously also be done in FO[BIT]

(using the same formula as in the proof of the non-uniform version), this means that
PAC? C FOCW also holds in the FO[BIT]-uniform setting.

84

4 Characterizing Constant-Depth Classes

Proof of (2): We use the same idea as in the non-uniform setting. The first issue in

doing so is that we only have #Win-FO[BIT] C #AC instead of an actual inclusion. This
can be resolved by letting the uniformity check for each oracle gate whether it has only
one predecessor and if this is the case, replace it by a constant-size subcircuit computing
the required bit of the function. Furthermore, we need to make the construction using
polynomially padded concatenation uniform. Since Lemma also holds uniformly,
the only problem here is choosing the right indices for the oracle gates. Lets first assume
that the formula only uses (possibly multiple bits of) one oracle. In this case, the index is
given by a tuple of quantified variables. These are part of the representation of any input
gate as a tuple over the universe and can be directly accessed to uniformly describe the
index.

If there are two different oracles used within the formula, we use a polynomially
padded concatenation of them again. Let f,g € #AC® be the oracle functions and
f(x) 0 0PIKD=I18) 6 ¢(x]) their polynomially padded concatenation. All oracle gates that
query g can use the same index as in the original formula. All oracle gates that query
f have to add p(|x|]) to the index. This can be done in FO[BIT], so the index can be
described uniformly. Now, for an arbitrary number of #-predicates, the above can be
applied inductively.

Proof of (3): This can be seen with the same chain of inclusions as in the non-uniform
version:

0 0 0
ACY*ACT c 70 ACT C p0FTC e,

as all of these inclusions also hold in the FO[BIT]-uniform setting with the same argu-
ments as in the proof of the non-uniform version. O]

4.3 Conclusion

In this chapter we have seen that both in the non-uniform as well as the FO[BIT]-
uniform setting, #Win-FO captures #AC". In other words, natural notions of counting
models in first-order logic lead to the same counting class as counting proof trees in
the corresponding class of families of Boolean circuits. This can be considered an
additional argument that counting proof trees is the “right” way of defining counting
classes in circuit complexity, as it further confirms the robustness of the class. Note that
the earlier characterization of #AC in the Up-uniform setting in terms of arithmetic
expressions [FVB94] can be seen as a translation of our result into the QSO-framework
of Arenas et al. [AMR20]. As we will see in the next Chapter, our approach also makes
it possible to view #AC? as a natural subclass of the class #FO, which captures #P as
shown by Saluja et al. [SST95].

Our result also has implications regarding different uniformity conditions for the class
#AC. Looking at the proof of Theorem one can see that evaluating a fixed formula
(here in the sense of computing the number of winning strategies of the verifier in a given
input structure) can be done by a highly uniform circuit family. It is straightforward
to show that this circuit family is not only FO[BIT]-uniform, but also Up-uniform. As

85

4 Characterizing Constant-Depth Classes

DLOGTIME C FO[BIT], the consequence is that both uniformity conditions coincide
(when disregarding inputs of length < 1). Furthermore, from these arguments together
with Observation it follows that #Win-FO exactly captures Up-uniform #AC?,
including inputs of length 1.

We then used our characterization of #AC° and the result that PAC? = TC? both in
the non-uniform [AADOO] as well as the FO[BIT]-uniform setting [ABL98]| to obtain a
new model-theoretic characterization of the class TC?. For this, we introduce adequate
notions of oracle access to counting functions both in circuit complexity as well as
first-order logic. For the latter, we use two-sorted logics to obtain a notion that allows
to define logics with oracle access to function classes even in the absence of built-in
relations on the first sort. This leads to the characterization of TC as first-order logic
with oracle access to #Win-FO both in the non-uniform as well as the FO[BIT]-uniform
setting.

86

5 Putting the Characterization of #AC"°
into Perspective

In this chapter we aim to compare our characterization of FO[BIT]-uniform #AC° to
a model-theoretic characterization of #P similar to that by Saluja et al. [SST95]]. For
this, we use the characterization of #AC? in terms of counting Skolem functions, that is,
FO[BIT]-uniform #AC° = #Skolem-FO[BIT]. The class #Skolem-FO[BIT] can be viewed
as the class of functions counting the satisfying assignments to free function variables
in a I'T{[BIT]-formula restricted to formulae that arise from Skolemization. Recall
that Saluja et al. [SST95] showed that #P is captured by #FO™!, which is the class of
functions counting satisfying assignments to free relational variables and first-order
variables in first-order formulae (see Definition [2.35/and Theorem [2.36)). This gives rise
to the idea to study the class #FO, the variant of #FO"! where free function variables
are used instead of free relational variables. It can be expected that this class still
captures #P as first-order logic can express that a function is a relation and vice versa.
As #Skolem-FO[BIT] C #I1;, where the latter is the subclass of #FO obtained by only
allowing I'l;-formulae, it is a natural next step to study the alternation hierarchy inside
#FO. Within this framework, we will use < as a built-in predicate and min as a built-in
constant in addition to BIT, as we consider < and min important to define meaningful
functions, but for the weaker fragments, < and min are not necessarily definable from
BIT. We will again define our logical classes using arbitrary vocabularies, as these allow
for more direct definitions of many natural problems. Note that the corresponding
classes obtained when only allowing vocabulary 7ing are not necessarily equivalent to
our classes, as we are working with weak fragments of FO. As within the whole chapter
we will only consider FO[BIT]-uniform circuit classes, we will omit the uniformity from
the names of classes for succinctness, implicitly assuming FO[BIT]-uniformity.

In the case of #FO™!, Saluja et al. also studied the corresponding alternation hierarchy
and showed some interesting properties of the classes in this hierarchy. For a class € of
first-order formulae with free relational variables they denote by #¢ the class of func-
tions definable in the sense of #FO™! using only ¢-formulae. Hence, the classes of the
alternation hierarchy are #Zirel and #l_Iire1 for i € N. As mentioned, Saluja et al. [SST95]]
considered classes of counting functions taking structures over fixed vocabularies as
inputs. For this reason, it is not possible that a function is definable over an unintended
vocabulary. They showed the following inclusion structure in their framework.

Theorem 5.1. #E{fl = #ngl - #)Zﬁel c #1“[5el - #ZrzEI c #l_[rz'31 = #FO™! = #P as classes of
counting functions taking structures over fixed vocabularies as inputs.

Furthermore, they showed that #X! C FP. Using our definition in terms of functions

87

5 Putting the Characterization of #ACY into Perspective

taking strings as inputs, the strictness of the above inclusions does not immediately
follow from their results, as it could be possible to define the function used for a
separation over some different vocabulary. Still, it seems likely that the results can be
transferred, as we will see that in many cases we at least can enforce the vocabulary
Tstring, S€€ for example the proof of Theorem where we do this for the class #Erfl.

To illustrate the power of the above classes, as well as how to define natural counting
problems in them, we repeat an example from Saluja et al. that will also be important
for us later.

Example 5.2. Consider #3DNF, the problem of counting the number of satisfying
assignments of a propositional formula in disjunctive normal form with at most 3 literals
per term. We will show that this problem is in the class #2.. To do so, we use the
vocabulary o3pnE := (Dg, D1, D,,D3) with ar(D;) = 3 for 0 <i < 3. Given a 3DNF-formula ¢
over variables from a set V, we construct a corresponding o-structure A,, with universe

A, . .
V such that for any xy,x,,x3 € V, (x1,%2,x3) € D, ” if and only if /\1§jsi =X A /\i<js3 X;
appears as a term in ¢. Now consider the following o-formula with free relational
variable T:

Dy3pnE(T) _3x3y3z((D0 %,9,2) AT(x) AT(») AT(2))V
(D1(x,9,2) A=T(x) AT(3) AT(2))V
(D2(x,9,2) A=T(x) A=T(R) AT(2))V

(D3(x,9,2) A ~T(x) A =T(y) A ﬁT(z))).

Observe that ®y3pnr is a £i-formula. Evaluated on an input structure A, it expresses
that an assignment to T encodes a satisfying assignment of ¢. For this, a propositional
assignment is encoded by the set of variables mapped to 1. Hence, the number of assign-
ments T such that A, F ®y43pnr(T) is equal to the number of satisfying assignments of

Q.

In this chapter we will show that in contrast to the case of #FO"!, where the alternation
hierarchy collapses to the class #IT5,, the alternation hierarchy for #FO collapses to the
class #I1;, but #FO still captures #P, albeit only in the sense of <. Furthermore, we show
that #Skolem-FO[BIT] coincides with the class of functions definable in the syntactical
fragment 1_[11) refix of IT;. We obtain the following inclusion structure between the classes

of the hierarchy, #Hfreﬁx, and #P:

#ACO = #TTPTe
& Lo
#Y, LSRN #I1, = #FO = #P
o &
b #3, ”

This structure is also illustrated in Figure[5.1Jon page

88

5 Putting the Characterization of #ACY into Perspective

Saluja et al. further showed that their class #):rlel admits fully polynomial-time ap-
proximation schemes (FPRAS), showing that all functions in this class are efficiently
approximable in this sense. We show that even though the alternation hierarchy in #FO
has less levels, which could have hinted at #¥; being closer to #P than #Zrlel, the class
#X, still shares this property.

As the alternation hierarchy in #FO is very shallow, collapsing to the class #I1;,
another interesting approach is to study further hierarchies inside the class #I1;. As a
first step in this direction, we study the hierarchy arising by restricting the number of
universal quantifiers. We show that this hierarchy is strict by using known connections
to nondeterministic random access machines [GO04] as well as the corresponding time
hierarchy theorem [[Coo73].

Finally, we compare the class #AC to the classes introduced by Saluja et al., showing
that their hierarchy does not seem to help in better understanding the relation of #AC°
and #P, as all but the classes #Ef)el and #FO'! are incomparable to #ACP.

5.1 Relationship Between the Characterizations of #AC? and
#P

In this section, we will introduce our new framework based on counting satisfying
assignments to free function variables in FO-formulae. This idea stems from the intuition
that the full class #FO captures #P, just as #FO™!, while the class #Skolem-FO[BIT] =
#ACO better fits in this framework as it is based on counting satisfying assignments to
free function variables in Il;-formulae of a certain form, namely formulae that arise
from Skolemization. We now begin by formally defining our framework.

Definition 5.3. A function f: {0,1}* — IN is in #FO, if there is a vocabulary ¢ and
an FO[<,BIT, min]-formula ¢(Fy,...,Fg, x1,...,x,) over o with free function variables
Fi,...,Fr and free individual variables xy,..., x, such that for all A € STRUC[o],

flency (A)) = 1[(Fy,e o Fiyiyevr) | A @(Fyyeos Fipyenns o))l
and f(x) = 0 if x is not the encoding of a o-structure.

In the same fashion we define counting classes using fragments of FO. For a class € of
FO-formulae, we denote by #C the class of functions definable in the sense of #FO using
only formulae from €. In this vein we will mainly consider the classes #¥; and #I1; for

arbitrary i as well as the class #1_[15)rele based on a syntactical fragment of #I1;. Note,
that the free individual variables could also be seen as free function variables of arity 0.

We stress that we use the built-in relations < and BIT and the built-in constant min
in the above definition. The predicate BIT is used to ensure that the class #AC? =
#Skolem-FO[BIT] naturally fits in this framework. The addition of < and min is some-
what arbitrary, as the results of this paper could be transferred to the case of BIT as the
only built-in predicate. Still, it seems reasonable and natural to add them, as it allows
for more interesting definitions in the weaker classes of the hierarchy.

Next, we show that the full class #FO in our framework captures #P.

89

5 Putting the Characterization of #ACY into Perspective

Theorem 5.4. #FO = #P.

Proof. We show this by the inclusions
#PO™! C #FO C #P C #FO™.

Recall that C denotes that a class is contained in another class only in the weaker sense
of =. As C implies C, this inclusion chain shows #FO = #P.

For the inclusion #FOrel é #FO, note that in #FO the behavior on inputs of length <1
can be chosen independently of the the behavior on other inputs. Hence, we prove the
inclusion ignoring inputs of length < 1. Let f € #FO"! via the formula ¢ containing free
relational variables Ry,...,R;. We can replace R; by a function variable F; of the same
arity for all i. We then additionally express that for these functions only 0 and 1, which
are first-order definable using the built-in order, are allowed as function values. Note
that for this, input length > 2 is required. Then each occurrence R;(z) can be replaced by
F;(z) = min.

The inclusion #FO C #P is straightforward, as we can simply nondeterministically
guess the assignment to the free variables and verify whether it satisfies the formula in
polynomial time. The inclusion #P C #FO"¢! was shown in [SST95]. O

The class #Skolem-FO[BIT] = #AC" is a subclass of #I1; where the occurrence of free
function variables in the formula is restricted in a certain way. To show that this class

naturally fits in our framework we will now identify a syntactical fragment Hll)reﬁx of
I1; that allows us to capture #AC° = #Skolem-FO[BIT].

Definition 5.5. A Il;-formulae ¢, possibly with free function variables, is in the class
Hfreﬁx, if it is of the form (p(a,i) =Vy;... Yy l,b(a,f,yl,...,yk) for some k € IN, where ¢
is quantifier-free and for any function symbol G, all occurrences of G in 1 are of the

form G(y1,...,%ar(q))-
The term “prefix” in the name of the class refers to the fact that the sequence of

arguments of a function symbol in any atom is a prefix of the sequence of bound
variables in the order of their occurrence in the quantifier prefix of the formula. The

class #Hli)reﬁx is then defined in analogy to #FO as the class of functions definable in the

sense of #FO by a Hlfmfix[g, BIT, min]-formula. We now show that this class coincides
with #Skolem-FO[BIT] = #AC°.

Lemma 5.6. #Skolem-FO[BIT] = #I10""™,

Proof. #Skolem-FO[BIT] = #Hll)reﬁxz Let ¢ be a function in #Skolem-FO[BIT] via the
FO[BIT]-formula ¢ over some vocabulary ¢. Furthermore, let ¢(F) with free function
variables F be the formula obtained by Skolemization from ¢. Now, ¢ is an IT; [BIT]-

formula over ¢ and for all A € STRUC[c], we have

#Win(A,) = [(F| Ak p(B))].

90

5 Putting the Characterization of #ACY into Perspective

Binary strings that are not encodings of o-structures are also mapped to 0 by both the
function defined by ¢ and the function defined by 1. As ¢ is prefix-restricted, this

prefix
shows g € #I17 ™.

#waﬁx C #Skolem-FO[BIT]: Let g € #Hlfreﬁx via the Hll)reﬁx[s, BIT, min]-formula ¢
over some vocabulary ¢. Since all function symbols occurring in ¢ are only applied
to a unique prefix of the universally quantified variables, they can be seen as Skolem
functions corresponding to suitable existentially quantified variables. Thus, we can
replace all occurrences of function symbols by new variables that are existentially
quantified at adequate positions between the universally quantified variables. If for
example, the input for a function was x1,...,x,, then the new variable is quantified after
the part Vx;...Vx, of the quantifier prefix. Furthermore, we replace occurrences of the
built-in predicate < by the FO[BIT]-formula defining this predicate. In order to handle
the built-in constant min we replace it by the new existentially quantified variable min
and force it to be equal to 0, which is again FO[BIT]-definable. Using Lemma3.3|we can
ensure that these last steps do not change the number of Skolem functions. This yields a
formula ¢’ that shows g € #Skolem-FO[BIT]. O

5.2 An Alternation Hierarchy in #FO

As #ACY = #I—Ill)reﬁx is a syntactical fragment of #I1;, a natural next step is to study
the alternation hierarchy inside #FO. We show that the hierarchy collapses to a quite
low level, namely to the class #I1;. Further, we get a clearer picture of how #AC’ =
#Skolem-FO([BIT] fits in the hierarchy by studying its relations to the other classes of the
hierarchy besides #I1;. In doing so, we determine the complete inclusion structure of
the classes in the alternation hierarchy. We begin by showing that the hierarchy collapses
to #Hl .

Theorem 5.7. #FO = #I1;.

viewing ¢ as a formula over the vocabulary o U (F) and noticing that Lemma|3.3|also
holds for vocabularies with function symbols, we obtain an FO[<, BIT, min]-formula ¢’
over ¢ in prenex normal form with the following properties: For all A € STRUC|¢], all
assignments F for F and all assignments for ¥,

Proof. Let f € #FO via the FO[<, BIT, min]-formula ¢(F,X) over some vocabularﬁf. By

AE ¢(F,c) = #Win(A, ¢’(F,¢)) =1 and

A}t ¢(F,c) = #Win(A, ¢'(F,c)) = 0.

Let (p”(l?, G, %, y) be the formula obtained from ¢’ by Skolemization, where G are the
Skolem function symbols of arity > 1 and y are the Skolem function symbols of arity 0,
that is, first-order variables.

The application of Lemma (3.3|above ensures that for any input structure and assign-
ment to the variables F and ¥, there is at most a unique assignment to the function

91

5 Putting the Characterization of #ACY into Perspective

symbols G and first-order variables 7 obtained from Skolemization. In consequence, for
all A € STRUC[o],

H(ElAEeFON=IFGtd| AR (FGed)l,

and binary strings that are not encodings of o-structures are mapped to 0 by both the
function defined by ¢ and the function defined by ¢”. This shows f € #I1;. O

From the results that #l‘[ll)reﬁx = #AC? C FTCY and #I1; = #P and using that FTCY C #P,

we now immediately obtain that #l_[ll)reflx is strictly contained in the class #I1; of our
hierarchy.

Corollary 5.8. aﬂaﬂ“[fre{iX C #I1;.

prefix prefix
1

Proof. The inclusion #I1 C #I1; holds by definition and we have #I1} =#AC’ C
FTCC. Recall that the operator C on complexity classes was introduced before Propo-
sition The identity PP = C- #I1; directly follows from PP = C-#P and #IT; = #P.
The separation then can be shown analogously to FTC? = #P, using C-FTC? = TC? and
TCO = PP. O

We now want to determine more precisely how the class fits in the alternation hi-

erarchy. As a first step, we compare #1_[11)rele to the lowest class #X of our hierarchy,
showing that it strictly contains this class.

Theorem 5.9. #X, C #AC.

Proof. We start by showing the inclusion. Certain observations in that proof will then
almost directly yield the strictness. Let f € #X(via the quantifier-free FO-formula
@(Fy,...,Fr,x1,...,x7) over some vocabulary o, where Fy,...,F are free function variables
and x1,...,x, are free individual variables, that is, for all A € STRUC|0o],

f(ency(A))=[{(Fy,...,Fr,c1,..c0) | AE @(Fy,..., Fi,c1,...5¢0) },

and f(x) = 0, if x is not the encoding of a o-structure. Without loss of generality we
can assume that in ¢ no nesting of function symbols occurs. The reason is that for any
function symbol H and terms t4,...,t,, we can replace all occurrences of H(t,..,t,) by
H(v1,..,v,), for fresh variables vy, .., v, and express that these variables are equal to the
corresponding terms. The latter is expressed by the formula (A<, v; = t;). As this
formula ensures that in any satisfying assignment, the values assigned to the variables
y; are uniquely determined by the values of the terms t;, the total number of satisfying
assignment of the resulting formula is equal to that of ¢.

Let A := dom(A). For all i, let a; be the arity of F; and let m; be the number of different
tuples of variables that occur as inputs to F; within ¢. Let ¢;y,...,¢;,, be those tuples of
variables in the order of their occurrence within ¢. Now, define ¢’(7,4,.. .,?kmk,xl, e Xp)
as the formula ¢ after replacing for all 7, all occurrences of F;(¢;;) by the new free
variable y;;. Let m =} ;m;.

92

5 Putting the Characterization of #ACY into Perspective

The value of any tuple ¢;; is uniquely determined by an assignment to the variables
X1,...,%¢. Thus, we can use the free individual variables vij to count the number of
assignments to all terms F;(e;;) for all (i, j). After that, all assignments to the function
symbols F; have to be chosen in accordance with those choices to get the correct number
of functions that satisfy the formula. Formally, this can be proven as follows:

flencgA)=)) [AE@Fi....Fercr)]

=) Z Z [[A|=<p’<ﬁ,z>]],

ceAl deAm

where G, 7 = {(Fy,..., Fy) € AN X x AN V(L)) A, sz7 F vij = Fi(ejj)} and 5.7 is the
assignment mapping the tuples X and y to ¢ and d, respectively.

Since [[A E ¢’(d,¢c)]] does not depend on (Fy,..., Fi), we can multiply by the cardinality
of G, instead of summing:

flency(A)=) [Ak@'(@d0)] G4l
ceA’,
deA™
Now we are in a position to show f € #ACC.

The sum only has polynomially many summands and thus can obviously be computed
in #AC°,

For [[A E ¢’(d,?)], the circuit only has to evaluate a quantifier-free formula using the
assignment s; 7. We can ensure that this assignment is part of the representation of the
gate computlng the corresponding summand. Then, this is similar to the corresponding
part of the proof of FO = AC? and thus can be done in FAC? C #AC.

For |GE’3| we first note that the total number of possible assignments for F is

|14Ag1 X oo xAAakl = |A|Zi|A|ai'

The definition of G fixes for the interpretation of each function symbol F; the function
value on at most m; inputs to be equal to some d;;. This means, that the function value
on at least |A|% —m; inputs is not determined by the definition of Geg and can thus be
chosen arbitrarily.

If for some (i, j), ¢;; is semantically equal to ¢;; for some j’ < j, it has to hold that
dij = d;p. Additionally, if such a j exists this reduces the number of function values that
are fixed by the d;; by 1. To make this formal we define for any (c, 1,)

Seij=1{j'1j'<jand A,sz [&;; =¢€;j},

where we use the extension of = to tuples for simplicity and s; is the assignment mapping
X to ¢. From the above considerations we get

Gzl = [€ Sij implies dij = dyj. for all i, j, j'] - AP A" 7 A= 155700,

93

5 Putting the Characterization of #ACY into Perspective

Since the a; and m; are constants and §;; is FO-definable, |GE,3| can be computed in
#ACY. This concludes the proof for #X, C #ACC.

Note that for any #¥y-function f defined using a ¥j-formula without free second-
order variables, f(w) is polynomially bounded in |w| for all inputs w. On the other hand,
the above proof shows that for any #X,-function f defined using a X,-formula over
some vocabulary o with at least one free second-order variable, there are constants ¢; > 0
such that f(enc,(A)) is divisible by |dom(A)|xildom(A)li=const f5r a]] A € STRUC[]. It
follows that the function f defined by

f(w) = wlMV

is not in #X, while it is easy to see that f € #AC?, cf. Figure on page where
a family of counting arithmetic circuits computing this function was sketched as an
example. For the sake of contradiction, assume f € #¥ via a formula ¢ € ¥, over
some vocabulary 0. As f(w) > 0 if [w| € {1,2}, we have 0 = Tgin, by Observation
For any A € STRUC(Tying], the length of the encoding of A is |encrsmng(A)| =|dom(A)|.

Hence, we have f(enc, (A)) = |dom(A)[[1dom(AN/21 for all A € STRUC|Tstying]- This is a
string & .

contradiction to the fact that f(encTsmng(A)) is divisible by |dom (A)|Zi|dom(A)[F—const oy

constants c;. Consequently, f & #3, finishing the proof that #¥, = #AC°. O]

So far we have identified the following inclusion structure:
#20 C#ITP™M = #ACO ¢ #1T, = #P. (5.1)

Next, we want to see the relation between #AC? = #H?reﬁx and the remaining class of
the hierarchy, i.e., #%,. We will see that the two classes are incomparable, which at the
same time will complete the picture with regard to the relations between the classes of
prefix
1

our hierarchy. We begin by showing that #I1 contains a function that is not in #X;.

Theorem 5.10. #AC° Z #Y,.

Proof. Let f: {0,1}" — N be the function defined by
f(w) = 2Mh,

Obviously, f € #ACY as the circuit family simply has to compute the product]_[?:_& 2w,
interpreting the symbols 0 and 1 as numbers.

Now, for the sake of contradiction assume that f € #¥;. By definition, there is a
formula @(F,7) € £,[<, BIT, min] over some vocabulary o such that for all A € STRUC|0c],

flenc, (M) =1{(F,a) | A ¢(F,a)}l,

and f(x) = 0 if x is not the encoding of a o-structure. As f maps both a string of length
1 and a string of length 2 to a number > 0, we have 0 = Tyyjn, by Observation m
Fix a word w € {0,1}* and the corresponding Tstring-Structure A,,. Now consider the

94

5 Putting the Characterization of #ACY into Perspective

structure A’ obtained from A, by extending the domain dom(A) = {0,...,|w|-1} by one
additional element, that is, dom(A’) := {0,...,|w|} without modifying the interpretation
of S, that is, SA" := SAv, This obviously means that |w|; = |encTSmng(A’)|1 and hence
f(w) = flency,, ().

To make the presentation simpler, suppose F = F and that the arity of F is one. Any
given interpretation F: dom(A,) — dom(A,) of the symbol F can be extended in several
ways on the domain dom(A’), in particular as the following functions F; and F,:

* Fi(x) = F(x) for all x e dom(A,) and F;(n) :=0.
* Fy(x) = F(x) for all x e dom(A,) and F,(n) :=1.

Moreover, the interpretations of the built-in predicate symbols for A’ are supersets of
those for A,,. As formulae in ¥; are preserved under extension of models, if 2 and F
are assignments for F and v, respectively, such that A, E @(F,a), then A’ E ¢(F;,4) and
A’ ¢(F,,a). Therefore,

((F.a) | A" @(F,a)}| > [{(F,a) | Ay F @(F,a)}.

As f(encTstrmg(A’)) = f(encTstﬂng(Aw)), this means that the assumption f € #3; has led to
a contradiction. O

In order to show that #¥; is not contained in #AC? = #Hlfreﬁx, we will show that a
function that is complete for #P under AC’-Turing reductions is contained in #X;. For
two counting functions f and g, f is reducible to ¢ by AC®-Turing reductions if and only
if there is an AC? oracle circuit that computes f with oracle gates for g, see Section
for details on oracle circuits in the FO[BIT]-uniform setting. As this function being in
#ACY would lead to a contradiction to #AC° # #P, this will show the desired separation.
The function we will use is a modified version of the problem #3DNF, so we begin by
showing that the original problem is #P-complete under AC°-Turing reductions. Note
that the related problem #DNF, where any number of literals may occur in each term,
was shown to be #P-complete under subtractive reductions by Durand et al. [DHKO05].

Lemma 5.11. The function #3DNF is complete for #P under AC*-Turing reductions.

Proof. Valiant showed that #Sar as well as #3CNF are #P-complete under polynomial-
time Turing reductions [Val79c]. Here, #3CNF is defined analogously to #3DNF using
conjunctive normal form instead of disjunctive normal form. The completeness of #Sat
directly follows from Cook’s original proof for NP-completeness of Sat [Coo71], and
can be modified to show completeness under AC®-Turing reductions. The completeness
of #3CNF is based on a transformation that transforms each clause to a set of clauses
defined by simple conditions. Using an adequate encoding of formulae, it is easy to see
that this reduction can also be done in AC’.

Now, #3CNF can be reduced to #3DNF in analogy to the proof of #P-completeness of
#DNF under subtractive reductions [DHKO5]. Given a 3CNF-formula ¢ over n variables,
we first construct the disjunctive normal form ¢’ of —¢, which is a 3DNF-formula.

95

5 Putting the Characterization of #ACY into Perspective

Obviously, the number of satisfying assignments of ¢ is equal to 2" minus the number
of satisfying assignments of ¢’. Since this reduction can be computed in AC?, #3DNF is
complete for #P under AC°-Turing reductions. O]

We will now show that #X, is not contained in #1_111)reﬁX by showing that a modified
version of #3DNF, which is #P-complete under TCO—Turing reductions, is contained in
#Y,. TC?-Turing reductions can be defined analogously to AC®-Turing reductions, again
using oracle circuits.

Theorem 5.12. #X, ¢ #ACY.

Proof. We prove this statement by modifying the counting problem #3DNF to get a
function in #X; that is #P-complete under TC-Turing reductions. As FTC is closed
under TC®-Turing reductions (cf. Lemma , this function cannot be in #l_Ilfreflx =
#ACY C FTCY, because this would contradict FTC? = #P.

Consider the vocabulary o3png and the formula @u3pnp(T) from Example To get
a function in #X;, we need to use a free function variable instead of the free relation
variable T. Since we cannot use universal quantifiers, relations cannot be represented
uniquely as functions of the same arity. In order to still get a #P-complete problem, we
want to make sure that compared to #3DNF, the function value of our new counting
function only differs by a factor depending on the input length, not on the number of
satisfying assignments. To achieve this, we encode any relation T interpreting T as a
function F as follows: Interpret for all x an even function value F(x) as x ¢ T and an
odd function value F(x) as x € T. If the cardinality of the universe is even, this ensures
that the numbers of 1’s and 0’s in a satisfying assignment do not influence the factor by
which the new counting function differs from #3DNF.

Following this idea we define for all o-structures A

#3DNFM(enc, (A)) := |[{ F | A | @yypnpronc (F)),

where @, prunc (F) is obtained from ®y3pNp(T) by replacing for all variables x subfor-
mulae of the form T(x) by BIT(min, F(x)). By definition, #3DNFUC ¢ #3,.

We now show that #3DNF is reducible to #3DNF "¢ by TC-Turing reductions. Since
the idea above only works if the universe has even cardinality, the first step of the
reduction is doubling the cardinality of the universe. Let A be a structure and A’
the structure that arises from A by doubling the cardinality of the universe. Let A :=
{0,...,n—1}and A’ :={0,...,2n — 1} with n := dom(A) be their respective universes. Each
satisfying assignment T of ®u3pNE, i.e., each T with A | Qu3pNE(T), gives rise to the
following set of satisfying assignments F for @, \pfunc, i.e., set of assignments F with

A’ IZ c13#3131\1P~fu11c (P)'
Sr:={F: A’ > A’|forallx€e A: F(x)=1 mod 2 iff T(x)}.

These sets are disjoint and by definition of @, \pfunc(F) their union is equal to {F | A’ |
CD#3DNFfunC(F) }.

96

5 Putting the Characterization of #ACY into Perspective

#T1, = #FO = #P

Figure 5.1: Alternation hierarchy in #FO and relationship to #AC°. Dashed lines indicate
that separations are not known.

For each satisfying assignment T, the set St contains all functions F mapping each
element x € A to an arbitrary odd element if x € T and to an arbitrary even element
if x ¢ T, and any element x € A to an arbitrary element. This means that there are n
possible values for any x € A and 2n possible values for any x ¢ A. Consequently, we
have |S7| = |A]4l- (2-]A])4! for all T, meaning that #3DNF and #3DNFU"C are related as
follows:

#3DNFU""(enc, (A"))
#3DNF(enc,, (A)) = AP/ 2|filDNF

Doubling the cardinality of the universe can be done in FTC® by adding the adequate
number of 0-entries in the encodings of all relations. The term |A|2141. 214l can be
computed in #AC? C FTC® and division can be done in FTC?.

Since #3DNF is #P-complete under AC®-Turing reductions by Lemma this means
that #3DNFU"¢ is #P-complete under TC?-Turing reductions. O

Combining Lemmas and we get that #%; and #AC? = #l_IlfreﬁX are incom-
parable. In combination with Equation this also separates #X; from both #X; and
#11;. We summarize our results so far in the following Corollary, and illustrate them in
the inclusion diagram in Figure

Corollary 5.13.

#ACO = #ITPTe
G LS
#Y, N #I1, = #FO = #P.
QO &

43,

Proof. The equality #I1; = #FO = #P is from Theorems

and Lemma we get #ACO = #H}freﬁx. In Corollary (5.8 -
#I1,. Theorem shows that #%(€ #AC°. In Lemmas and it was shown that
#AC? and #Y, are incomparable. The inclusions #¥, C #3; C #FO hold by definition.

and From Corollaryﬁ
prefix

we have seen that #IT} -

97

5 Putting the Characterization of #ACY into Perspective

Finally, #%, C #AC? together with #3; ¢ #AC" shows #¥, = #X and #I—I?reﬁx C #I14
together with #AC? ¢ #3; shows #X; = #I1,. O

Note that it is easy to see that all of our separations also separate the respective classes
in terms of =, as both the classes in our hierarchy as well as the class #AC° only contain
functions mapping inputs of length 1 to either 0 or 1.

5.3 Feasibility of #X;

An interesting research direction is identifying feasible subclasses of #P that contain
important counting problems, potentially even problems that are complete for #P
under some type of reduction. In this vein, one of the main goals of Saluja et al. in
their paper [SST95] was to identify such classes in their hierarchy. They showed that
functions from #X!, a class containing #P-complete problems, and also functions from
some syntactic fragment #RErZel of their class #Erzel, are subclasses of FPRAS [JVV86].
This class contains all functions that have a so-called fully polynomial-time randomized
approximation scheme and will be formally defined in Definition [5.14}

With regard to our hierarchy, we have already seen that #X is a very weak class, as
it is strictly contained in the circuit class #AC. At the other end of the spectrum, the
class #I1, is already as powerful as the whole class #FO. In between we have the class
#X1. The complexity of this class is not clear yet: On one hand we know that it does
not contain the whole class #AC?, on the other hand we have seen that it contains a
#P-complete problem.

In this section we show that functions in #X; are tractable in the same sense of
approximability as those in #Z{el, that is, #¥; C FPRAS. As an intermediate step
we consider the satisfiability problem for a restricted form of quantifier-free DNF-
sentences over functional vocabularies restricted to structures whose domain have a
given cardinality. It turns out that functions in #¥; are reducible under an adequate
type of reduction to counting satisfying assignments of formulae in this setting, more
precisely to a problem we call #k-PDNF(m). Finally, we will see that this problem is
in FPRAS, showing that #X; C FPRAS. This approach is to a degree in analogy to the
approach by Saluja et al. showing that every problem in #Erlel has an FPRAS. As a new
tool we introduce the problem #k-PDNF(m).

We now start by formally defining the class FPRAS, which was introduced in 1986 by
Jerrum et al. [JVV86]. For this, probabilistic Turing machines are used.

Definition 5.14. A function f: {0,1}* — IN is in FPRAS, if it has a fully polynomial-time
randomized approximation scheme (or FPRAS), that is, if there is a probabilistic Turing
machine M working on inputs (x,¢) with x € {0,1}* and € € Q, with 0 < e <1 such that
for all such inputs:

. 73(|M(x, e)—f(x)|>e- |f(x)|) < Al}, where M(x, €) is the random variable describing
the output of M on input (x, €),

* the running time of M on input (x, ¢) is bounded by a polynomial in |x|, %

98

5 Putting the Characterization of #ACY into Perspective

Algorithm 1: Algorithm showing that FPRAS is closed under <g.p;-

Input:(w,¢), where w € {0,1}" and e e Q, with0<e <1
1 Compute in polynomial time r(w)
2 t « e-approximation of g(r(w)) using the FPRAS for g
3 return h(w)-t

Here, P(A) is the probability of event A and Q, denotes the set of positive real
numbers. A suitable reducibility in this context is <g.,, as FPRAS can be shown to be
closed under this reducibility.

Definition 5.15. Let f, g be counting problems. We say f is polynomial-time rational-
product reducible to g, denoted by f <g.p g, if there are polynomial-time computable
functions r: {0,1}* — {0,1}* and h: {0,1}* — Q. such that for all w € {0, 1}*:

While an obvious observation, we include the proof that FPRAS is closed under the
above reducibility for the sake of completeness.

Lemma 5.16. The class FPRAS is closed under <Q-prs that is, if f and g are counting
problems, f <qpr § and g € FPRAS, then f € FPRAS.

Proof. Let r and h be as in Definition[5.15|and f(w) = h(w)- g(r(w)). Then Algorithm [1]is
an FPRAS for f.

The running-time of the FPRAS for g used in this algorithm is polynomial in |r(w)|,
1/¢ and hence also in |w|, 1/e. We now have

§(r(w)) —t| < e g(r(w)) & h(w)-[g(r(€
© |h(w)-g(r(w)) - h(w)-
e|f(w)-hw)-tl<e- f(w).

r(w)) -t <

This means the error of the new FPRAS for f on input w is bounded by ¢ if and only if
the error of the FPRAS for g on input r(w) is bounded by e. As Algorithm [1does not
use any additional randomness outside the FPRAS for g, the error probability is still
bounded by {, finishing the proof. O

In order to show that #X; C FPRAS, it is helpful to reduce any given #X;-problem to a
suitable satisfiability problem. Let f € #¥; via some formula ¢. As the reduction gets a
structure as input, we can already evaluate all parts of ¢ that only depend on the input
in the reduction and replace the existential quantifiers in ¢ by a large disjunction. What
remains is a Boolean combination of atoms involving free function variables. It can be
shown that in this way we can arrive at a quantifier-free formula in DNF where atoms are
of a very restricted form. This idea is similar to a reduction to restricted DNF-formulae
used by Saluja et al. [SST95] to show #X¢! C FPRAS. We now introduce a suitable

99

5 Putting the Characterization of #ACY into Perspective

satisfiability problem (and related counting problem), which is based on satisfiability
for a restricted form of quantifier-free DNF-sentences over functional vocabularies.

As the vocabulary will not be fixed, but be implicitly given by the formula, we need to
fix a countable set of possible function symbols in advance. Let § := {F; | i € N} be that
countable set of function symbols. The arity of these function symbols is not fixed in
advance, but is given implicitly by the formula. In the context of a given formula we use
ar(F;) to denote the arity of symbol F; in that formula. Let pseudo-DNF (or PDNF) be the
class of quantifier-free FO-sentences in DNF over any functional vocabulary consisting
only of function symbols from §, using arbitrary constants, and in which all atoms are
of the form F(a) = b for some F € §, a tuple of constants g, and a constant b. As we always
assume the universe to be of the form {0,...,n — 1} for some n € IN, the constants are
natural numbers. Formally, pseudo-DNF sentences are of the form

my 1y

v =\ N\t

i=1j=1

where for all 7, j, the literal £; ; is either of the form F; ;(a; ;) = b; ; or of the form F; ;(a; ;) =
bi,j for some Fi,j €s, ai’]' € Nar(Fl‘) and bi,j € IN.

We now define the satisfiability problem for pseudo-DNF sentences where the car-
dinality of the universe is given as part of the input in unary, as well as its counting
version. As in the rest of this thesis, we assume that the universe of any structure A with
|dom(A)|=nis {0,...,n—1} for any n € IN.

Problem: PDNF-Sar
Input: (1", @), where n € IN, ¢ is a pseudo-DNF sentence and
all constants occurring in ¢ are bounded by n—1
Question: Is there a model A of ¢ with dom(A) ={0,...,n—1}?

Problem: #PDNF
Input: (17, ¢), where n € IN, ¢ is a pseudo-DNF sentence and
all numbers occurring in ¢ are bounded by n—1
Output: Number of models A of ¢ with dom(A)={0,...,n—1}

For any fixed #¥-problem, the arity of functions in a formula showing its membership
in the class as well as the number of literals in each term if transformed to a DNF are
constant. Thus, we will consider PDNFs with a bounded number of literals in each term
and bounded arity of function symbols. Let k-PDNF(m) be the class of PDNFs where
each term consists of at most k literals and the arity of function symbols is bounded by
m. Furthermore, let k-PDNF(m)-SaT and #k-PDNF(m) be the above problems restricted
to the corresponding inputs.

To get some idea of the complexity of the problem #k-PDNF(m), we briefly argue that
for k > 2, #k-PDNF(m) is #P-complete under subtractive reductions (see [DHKO05] for a
definition of this reducibility): Membership is immediate. For hardness one can intro-
duce the analogous class of Pseudo-CNFs and the related problems. Encoding a Boolean

100

5 Putting the Characterization of #ACY into Perspective

assignment as a function of arity 1 and ensuring that this function only maps to 0 or 1
in any satisfying assignment, it is straightforward to show that #k-CNF < #k-PCNF(1)
under parsimonious reductions. By using the same idea as for the reduction from
#k-CNF to #k-DNF one can then show that #k-PDNF(1) is #P-hard under subtractive
reductions.

We will now show that our new problem #k-PDNF(m) has the desired property, that
is, any #X;-problem can be reduced to #k-PDNF(m) for some k,m € IN.

Lemma 5.17. For all f € #X; there are k,m € N such that f <q p, #k-PDNF(m).

Proof. Let f € #X1 via 39 ¢(y,z, G) over vocabulary o, where 1 is quantifier-free, that is,
for all A € STRUC[o]

flenc,(A) =1{(G,a) |AEIYy(3,3,G)}l,

and f(x) = 0 if x is not the encoding of a o-structure. Inputs that are not encodings of
o-structures can handled by mapping them to a fixed instance without any satisfying
assignments. In the following, we cover the case where the input is (the encoding of)
a o-structure. By the introduction of fresh, existentially quantified variables we may,
without loss of generality, assume that ¢ is in DNF and all occurrences of function
symbols in 1 are of the form F(x;) = x; or F(x1) # x,, where F is a function symbol, x;
a tuple of first-order variables of appropriate arity, and x, a first-order variable. Let
t be a bound on the number of literals per term in the DNF 1. Let m be the highest
arity among function symbols in G. Furthermore, let p be the arity of ¥ and q be the
arity of z. Now let A € STRUCJ[co] and n := |dom(A)|, i.e., dom(A) = {0,...,n—1}. Also, let
dom(A)? =:{yy,...,y,»} and dom(A)7 =: {zy,..., Z4_1}.

Now, for each z;, write the meaning of the block of existential quantifiers 3y out as a
disjunction of polynomial size:

nP

(32,6~ \/ 9,2, 0).
j=1

Define i, (G) to be this formula after evaluating according to A and the assignment s
mapping z to z;. That means, only a Boolean combination of atomic formulae of the
form G,(b) = ¢ and G, (D) # ¢ remains. Here, b is a tuple of constants and c is a constant,
as variables have been replaced by constants according to s. All atoms not involving free
function variables have been evaluated according to A and s and the Boolean parts have
also been simplified if possible.

We now use a tuple of new function symbols H to sum over the different values for z
using the following disjoint disjunction:

04 = [(C)AH(0)=0] V... V[, (C)AH(0)=z41].

Let 0, be the formula obtained by transforming 6, into a PDNF in the obvious way.
For example, the subformula [¢; (G) AH(0) = 2] is replaced by the DNF vz, (G) with

101

5 Putting the Characterization of #ACY into Perspective

H(0) = zy added to each term and function symbols are renamed adequately to ensure
that all function symbols are from §. As we are interested in the number of satisfying
assignments in A, the desired cardinality of domains given to #k-PDNF(m) should be
n =|dom(A)|.

In the formula 6}, the assignment to H determines the assignment to the tuple z,
which allows us to sum the number of satisfying assignments to G over all assignments
to z. More precisely, for an assignment mapping H to H with H(0) = z;, the number of
assignments to G that in combination with H form a model of 6 is exactly the number
of assignments to G satisfying 3y (7,2, G), as the atoms H(0) = z; act as selectors.
This means that the number of models with domains of cardinality n for 8, is exactly
f(ency(A)) times the number of tuples H of functions on {0,...,n— 1} with a fixed output
on input 0. From these considerations we get

#PDNEF(0),1") = (n""111). f(enc, (A)).

Note that the number of different function symbols, the arity of function symbols and
the number of literals in each term are bounded as follows: The tuple H is of size g and
each function symbol in this tuple has arity 1. The arity of function symbols in G is
bounded by m. Furthermore, the number of literals in each term in), is bounded by t+4
and hence 0} is a (t + q)-PDNF(m)-formula. Since (6},1") and the function n"=14 (for
constant g) are computable in polynomial time, this proves f <q.p #(t+¢q)-PDNF(m). [

Lemma|5.17]and its proof are inspired by a lemma of Saluja et al. [SST95] reducing
functions in #Zﬁel to a restricted variant of #DNF. However, since they use satisfiability
of propositional formulae and a Boolean encoding of the different values of z, they need
logarithmic clause width (#k - log DNF).

In order to show #k-PDNF(m) € FPRAS for all k,m € IN, we first need the following
Chernoff bound by Mitzenmacher and Upfal [MU17].

Lemma 5.18. Let X,..., X, be independent Poisson trials such that P(X; = 1) = p;. Let
X:=Y",X;and p:=E[X]. For0<6<1,

P(X -l > o) < 267173,

Here, E[X] is the expected value of the random variable X.
Finally, we will prove that the number of models of a k-PDNF(m) whose domain has
the given cardinality can be approximated by an FPRAS for any k,m € IN.

Lemma 5.19. #k-PDNF(m) € FPRAS for all k,m € IN.

Proof. Let k,m € IN and let (¢, 1") over vocabulary o be an input for #k-PDNF(m). This
means that all numbers occurring in ¢ are bounded by n—1. Let ¢ be the number of
function symbols occurring in ¢. Without loss of generality, let the function symbols
occurring in ¢ be the symbols F; with arities a; := ar(F;), where 1 <i < {. The total
number of o-structures with domains of cardinality # is

4

| |n”ai = i,

i=1

102

5 Putting the Characterization of #ACY into Perspective

Now, if @ is satisfiable, then there is a satisfiable term 6 in ¢. The term 6 is a conjunction
of at most k atoms or negated atoms and each of them fixes at most the output of one
function on one input. This means that at least nXi"" - g-structures with domains of
cardinality n satisfy 6, which is at least a # fraction.

Let X be the {0,1}-valued random variable obtained by picking a o-structure with
domain of cardinality n uniformly at random and returning 1 if and only if that structure
satisfies ¢. Let p be the probability of X being 1. Then E[X] = p. We now apply
Lemma Let t € N and Xj,..., X; be independent instances of X. By Lemma|[5.18]
for every 1 > ¢ > 0 it holds that

> € IE[iXZ]

i=1

t t

) Xi—E[) X

i=1 i=1

P < 26*}:[25‘:1 Xi]52/3'

Dividing the inequality inside #(-) by t and using w = [E[X] = p, we obtain

t
1 X
P(qu_tl 1 _p

2
> s-p) <2e7PIES3,

i X
t

choosing t such that the right-hand side is bounded by %1. This yields t > 3188 Since for
pe

This means that we can approximate p by with the desired error probability by

p>0wehave p > #, we choose

k
ELOEN

£2

For p = 0 there will never be an error with any number of trials.

Now ¢ is polynomially bounded in % and n and computable in polynomial time. We
can now approximate the number of models by the total number of o-structures with
domain of cardinality n times the above approximation of p. By these considerations,
Algorithm [2]is an FPRAS for #k-PDNF(m).

O

Combining the previous results we immediately get that each function in #X; can be
approximated by an FPRAS.

Corollary 5.20. #Y; C FPRAS.

5.4 Hierarchy Based on the Number of Universal Quantifiers

We have seen in the previous section that the strict subclass #3; of #FO is feasible in
the sense of FPRAS. In order to potentially identify more interesting subclasses of #FO
one can investigate hierarchies in #FO based on different syntactic restrictions besides
limiting the number of alternations. In Section we have seen that the alternation

103

5 Putting the Characterization of #ACY into Perspective

Algorithm 2: FPRAS for #k-PDNF(m).

Input:(p,1”,¢), where ¢ is a k-PDNF(m) and e e Q, with0<e <1
1 sat«— 0

2 [

3 fori<—1totdo

4 Pick a o-structure A with dom(A) ={0,...,n — 1} uniformly at random
5 if A ¢ then
6 L sat «—sat+1

7 Let {Fy,...,F¢} be the function symbols occurring in ¢
Fi) | sat

¢ ar(
8 return nki-1" :

hierarchy in #FO = #P collapses to the class #IT,. For this reason, we focus our attention
on a hierarchy inside #I1; in this section: We study the hierarchy obtained by restricting
the number of universal variables.

Let IT; (kV) denote the class of I'1; formulae of the form

Vx1 "'VXk lp,

where 1 is a quantifier-free formula. In line with our notation, the function class
corresponding to Il (kV) is denoted by #I1;(kV). It is clear from the definition that
IT;(kV) C IT;((k + 1)¥), and consequently also #I1(kV) C #I1;((k + 1)V), for all k € IN.
We will initiate the study of the hierarchy of classes #I1;(kV) by showing that these
inclusions are actually strict, i.e.,

#T1, (k) C #I1, ((k + 1)) for all k € N. (5.2)

Grandjean and Olive considered a hierarchy of decision classes closely related to the
hierarchy above [[GOO04]. They studied classes ESO? (kV) for k € IN and vocabulary o.
Their classes are similar to the decision version of our classes #I1;(kY), but allow to
quantify both functions and relations and are restricted to a single vocabulary.

Definition 5.21. We denote by ESO’ (kV) the class of ESO-sentences over vocabulary o
of the form

dRy...AR, VX .. VX 1,

where n € IN, R; is a relation or function variable for all i, x; is a first-order variable for
all i, and 1 is a quantifier-free formula over ¢ using the additional relation and function
symbols Ry,...,R,. Here, function variables can also be 0-ary.

Note that no built-in predicates are used in this definition. As usual, we use ESO?(kV)
to also denote the class of languages definable by ESO? (kV)-sentences. Grandjean and
Olive showed that for every vocabulary ¢ and all k > 1,

ESOC (kY) = NTIMES (1),

104

5 Putting the Characterization of #ACY into Perspective

where NTIMEI‘{AM(nk) is the class of o-structures that can be recognized by a nondeter-
ministic RAM in time O(n*) [GO04]. The hierarchy theorem for nondeterministic time
complexity by Cook [Coo73] applies to these classes, yielding

NTIMEg sp(1%) € NTIMEg ang (151 for all k.

We will now use these results to show that the hierarchy based on the number of
universal variables is also strict in our setting (see Equation (5.2)). For all k € N, we
denote by ESO{ (kV) the class of ESO?(kV)-formulae where all second-order variables
are function variables, as well as the class of languages definable by such formulae. We
use our usual notation for built-in predicates. Note that the class ESO{ (kV)[<, BIT, min]
is exactly the decision version of #I1;(kV) limited to vocabulary o. Next, we show that
this class coincides with ESO? (kV) = NTIMEg (1), if k > 1.

Lemma 5.22. BESOY (kV)[<, BIT, min] = ESO? (kV) for all vocabularies o and k > 1.

Proof. Let k € N and k > 1. The inclusion ESO{ (kV) € ESO? (kV) holds by definition. As
ESOY(kV) = NTIMEI‘{AM(nk), it is clear that the built-in constant min can be handled.
Furthermore, the class NTIMEy AM(nk) is robust in the sense that additional commands
computable in linear time on multitape Turing machines can be added without chang-
ing the class (when a bound for the values the machine works with is used), cf. the
discussion of robustness of their classes by Grandjean and Olive [GO04]. Hence, the
built-in predicates < and BIT can be handled by adding corresponding commands to
the computational model, showing ESO{ (kV)[<, BIT, min] C ESO? (kV).

For ESO? (kV) € ESOY (kV)[<, BIT, min], let L € ESO°(kV) via the ESO? (kV¥)-formula ¢.
Without loss of generality, we can assume that ¢ is of the form

(p:EIRl...EIRnEIFl...EIFmVxl...nggb

for some k,m,¢ € N, where the R; are relation variables, the F; are function variables
and 1 is a quantifier-free formula over 0. We can also assume that in 1, arguments of
relations and functions are only variables by replacing any argument of a function by a
new existentially quantified 0-ary function that is forced to be equal to the respective
term (cf. proof of Lemma|5.17).

Now, for input structures with domains of cardinality > 1, we can simulate relations by
functions by replacing occurrences of atoms R(X) for some relation variable R and tuple
of variables X in the formula by an atom Fr(X) > min for a new existentially quantified
function symbol Fg of the same arity as R.

There remains the case of input structures with domains of cardinality 1. For this
we show that for any formula in ¢ € ESO{ (kV)[<,BIT, min], there is a formula ¢’ €
ESO¢{ (kV¥)[<, BIT, min] that is equivalent to ¢ on inputs with domains of cardinality > 1
but has any desired behavior on inputs with domains of cardinality 1. We show this for
0 = Tsiring, but the proof easily generalizes to arbitrary vocabularies.

Letp e ESOfTStrmg(kV)[s,BIT, min], that is, ¢ is of the form

¢ =AFVxoVx 1,

105

5 Putting the Characterization of #ACY into Perspective

where F is a tuple of function variables, x is a first-order variable, ¥ is a (potentially
empty) tuple of first-order variables, and 1 is a quantifier-free formula. In order to
determine whether the domain of the current structure is of cardinality 1, we introduce
a new existentially quantified 0-ary function variable that will be forced to be assigned
to the maximal element of the domain. We can then compare min and max to determine
whether the domain is of cardinality 1. Now, the desired formula is

¢’ =3F3 max\v’xo\/i(xo < max A (min = max — 0) A (-min = max — l/))),

where 0 is a quantifier-free formula expressing that the input structure has the desired
properties if its domain has cardinality 1. For example, if we want the formula to be
satisfied by the 7yying-structure Ay, but not Ag, we define 0 := S(min). O

We are now in a position to prove the strictness of our hierarchy.
Theorem 5.23. #I1(kV) C #I1,((k + 1)V) for all k € IN.

Proof. The case where k = 0 can be handled using properties of #¥ observed in the proof
of Theorem [5.9} For any f € #I1;(0V) = #X,, we know that f(w) is either polynomially
bounded in |w| for all w, or f can be defined using a ¥-formula over some vocabulary
o and f(enc,(A)) is divisible by |dom(A)|Zildom(A)fi-const for a1] STRUC[0]. Using this
property, we can show that g(w) := 2%l ¢ #¥, with similar arguments to those used for
f(w) = |w|™V21 ¢ 3 in the proof of Theorem The same can be shown for g* defined
by ¢*(w) := 1, if |w| = 1, and g*(x) := g(x) otherwise. On the other hand, ¢g* € #I1;(1V) via
the Tyying-formula ¢(F, max) := Vy (y <maxA (F(y) =minVF(y) = max)).

Now, letk>1. Let L e ESOfTS"i"g((k +1)V)[<, BIT, min] \ESOfTS”i"g(kV)[S, BIT, min]. Such
a language exists by Lemma and ESO%ting(kY) ¢ ESO%ting((k + 1)V). Without loss
of generality we can assume that at least one input of length 1 and at least one input
of length 2 are contained in L, as the behavior of both ESO%trins((k + 1)V)- as well as
ESO%tring (kV)-formulae on a bounded number of inputs can be adjusted without changing
the behavior on other inputs. This can, e.g., be seen from the fact that ESOfTS"i“g(ZV) =
NTIMES (1) for all £. Let ¢ be a formula showing L € ESOfTStﬂ"g((k +1)¥). Now let f
be the function defined by ¢ in the sense of #I1;((k + 1)V).

For the sake of contradiction, assume f € #II;(kY). As f maps at least one in-
put of length 1 and one input of length 2 to an output > 0, any formula defining
f in the sense of #II;(kV) has to be a formula over vocabulary Ty ing by Observa-
tion Let ¢'(F,xy,...,x,) € I1;(kY)[<, BIT, min] be such a formula. Then the formula
3F3 Fy - AF, @'[x1/Fy]...[x,/Fy,] with O-ary function symbols Fy, for 1 <i <n shows
Le ESOfTS“i"g(k\/)[s,BIT, min]| leading to a contradiction. O

5.5 #AC° Compared to the Classes of Saluja et al.

In Sections and we have seen that #AC" naturally fits in our hierarchy by
showing that #¥, ¢ #AC? = #1'[113reflx C #I1; for the syntactical subclass #l_IIfreflx of #I1;.

106

5 Putting the Characterization of #ACY into Perspective

It is apparent that definitions in this context are very sensitive to changes of built-in
predicates. For example, already in the setting of decision classes, #AC° = FO is only
known with built-in predicate BIT. For weaker fragments there is also a difference
between using free relation variables or free function variables, as is evidenced by
the different inclusion structures obtained in our alternation hierarchy compared to
that obtained by Saluja et al. for the alternation hierarchy in #FO"™! at least for fixed
vocabularies. For structures of cardinality 1, this difference is even present for stronger
classes as we have for example seen that #FO = #FO"! = #P, but #FO = #FO™.

For this reason we next investigate the relationship of #AC? to classes from the
alternation hierarchy in #FO™! to see what implications the difference in the definitions
have. Tt turns out that while #AC? strictly contains #X, it does not seem to naturally fit

in this hierarchy as it is incomparable to the classes #Zﬁel, #Hﬁel, and #del.

Theorem 5.24.
1) #X% C #ACO.
2) Let € e {(#X5e, #115L #35°1). Then the following holds: #AC° € € and € g #AC.

Proof. The proof of the inclusion #Ef)el ¢ #ACY is analogous to the proof of Theorem
and is thus omitted.

For the second statement recall from Theorem that #Zﬁel - #l—Iﬁe1 - #Zrzel. The
claim ¢ ¢ #ACP for ¢ € {#2561,#1_[561,#2561} can be proven as follows: From Example
we know that #3DNF € € and from Lemma [5.1T]we know that #3DNF is #P-complete
under AC-Turing reductions. In analogy to the argument for #3DNF{U"¢ ¢ #ACO in the
proof of Lemma one can show that #3DNF ¢ #AC". In consequence, ¢ Z #AC.

It remains to show #AC? ¢ €. Define the counting function f as follows: f(w) := 1, if
lw| = 1 or |w| is even, and f(w) := 0 otherwise. Obviously f € #AC". We will now see that
f & #35.. We show this by an argument similar to the proof that #HAMILTONIAN is
not in #Erzel, used by Saluja et al. to separate #erl from #FO [SST95].

For the sake of contradiction, assume that f € #Zrzel via a formula (R, %) €):rzel over
some vocabulary o, where

¢(RX) =AYz (R %,7,2),

for a quantifier-free formula . By Observation we have 0 = Tyyring, as f maps
inputs of length 1 and 2 to the output 1. Let s and ¢ be the lengths of the tuples x and v,
respectively. Let n > s+t be an even number and w = wy...w,_1 € {0, 1}" with w; € {0, 1}.
By assumption, there exist R, @, and b such that

A, EVZO(RG,b,%).

Let A be the structure over vocabulary g ing U (<?) obtained by explicitly adding the
built-in relation < restricted to {0,...,n — 1} to the structure A,,. By the choice of n, there
is an i € {0,..,,n — 1} such that i does not appear in the tuples @ and b. Let A’ be the
induced substructure of A obtained by removing the element i. Let R be the tuple of

107

5 Putting the Characterization of #ACY into Perspective

relations obtained by removing tuples involving the element i from R. As IT;-formulae
are preserved under taking substructures, it follows that

A’ EVZO(R,3,b,2).

Moreover, the structure A’ is isomorphic to the Tstring U (<?)-structure A, with w’ =
wQ...W;_1Wjyq ... w,_1 and the intended interpretation of < by the mapping

i Js if j<i
i-1, ifj>i.

This means that

Ay EVZY®R, 7,V ,2),

where R”, @ and b’ are obtained by modifying R,%,and b, respectively, according to the
above mapping. This implies f(A,/) > 1, which is a contradiction to the definition of f,
as |w’| is odd. O

5.6 Conclusion and Outlook

In this chapter, we put the model-theoretic characterization of #AC° obtained in Chap-
ter [4/in perspective to the characterization of #P by Saluja et al. [SST95]], using that
both can be seen as classes of functions counting assignments to free function variables
in first-order formulae. This led to a slightly modified definition of the class #FO. By

showing that #Skolem-FO can be seen as a syntactical fragment #l_[}freﬁX of #FO, we
established that #AC? fits into our framework. This motivated further study of the struc-
ture of the class #FO in our setting. Studying the alternation hierarchy inside of #FO, we
have seen that in our setting the hierarchy collapses to the IT;-level and generally has a
different structure, different properties and contains different problems compared to the
hierarchy studied by Saluja et al. [SST95]. We then further studied the structure of the
classes of our hierarchy beyond the relationship to #ACC. Here, we first proved that all
problems in the ¥ -level of our hierarchy can be efficiently approximated in the sense
of FPRAS. In the process, we introduced the problem #k-PDNF(m), a restricted form
of first-order satisfiability based on DNF-formulae with a limited number of literals
per term, that is complete for the X;-level of our hierarchy and is contained in FPRAS.
Next, we further studied the fine structure of the class #FO by considering the hierarchy
based on the number of universal quantifiers inside the I1;-level of our hierarchy. Using
results by Grandjean and Olive for related classes in the decision setting [GO04], we
were able to show that this hierarchy is strict. Finally, we have seen that the class #AC°
does not seem to naturally fit in the hierarchy by Saluja et al. [SST95]], as the class is
incomparable to all but the lowest and the highest level of their hierarchy.

We have only started the investigation of our framework and will now discuss several
directions for future research, offering many open problems. It would be interesting

108

5 Putting the Characterization of #ACY into Perspective

to further study the connection between the classes #AC? and #I—I?reﬁx by investigating
connections between natural hierarchies inside both classes. In 1983, Sipser proved a
depth hierarchy within the Boolean class AC® [Sip83]). This hierarchy can be transferred
to the setting of arithmetic circuits: There is an infinite depth hierarchy within #AC°.
We expect that this depth hierarchy is connected to the hierarchy obtained by restricting

the number of different arities of Skolem functions in #H?reﬁx. Similarly, Rossman
proved a size hierarchy within AC? over ordered graphs [Ros10]. Again, this hierarchy
can be transferred to the setting of arithmetic circuits. It would be interesting to

identify a related hierarchy inside #Hlfreﬁx. A starting point could be to restrict #Win-FO
to formulae in prenex normal form with quantifiers for tuples, but enforcing strict
alternations. The hierarchy in the resulting class obtained by restricting the arity of
tuples that can be quantified seem to be connected to the size hierarchy in #AC?, but
the details are not clear. It would be interesting to further study these hierarchies inside
#1_111)reflx and make the connections to known hierarchies precise.

With regard to the alternation hierarchy inside #FO, we have seen that considerable
differences arise from the different definitions used in our framework and the one of
Saluja et al. [SST95], that is, the difference between using free relation or free function
variables as well as different sets of built-in predicates and constants. In Section
we have established the connections between #ACY and the hierarchy of Saluja et al.
Here, it could be interesting to study connections between our classes and the classes
in the hierarchy of Saluja et al. further. For example, it can be shown that the ¥;-level
of their hierarchy is not contained in the X;-level of our hierarchy by showing that the
latter does not contain the function counting the number of satisfying assignments of a
propositional formula in 3DNE. Moreover, we know very little about how differences
between the two hierarchies are influenced by subtle modifications. As an example, one
can show that using two built-in constants as well as built-in BIT, the hierarchy studied
by Saluja et al. changes considerably, collapsing to the IT;-level. It could be interesting
to systematically study the differences arising in the alternation hierarchy inside #FO
based on different sets of built-in predicates, built-in constants and potentially built-in
functions in combination with allowing free function variables, free relation variables
or possibly both.

While outside the scope of this thesis, it could also be interesting to further investigate
the problem #k-PDNF(m) and related problems. In the setting of propositional formulae,
the problem of counting satisfying assignments of formulae in DNF, namely #DNF, is
known to be in FPRAS even with an unbounded number of literals in each term [KLM89].
Is this also true in the setting of pseudo-DNF sentences with bounded arity of function
symbols?

With regard to the hierarchy based on the number of universal quantifiers within
the IT;-level of our hierarchy, studied in Section a lot more is known about this
hierarchy in the decision setting. For example, Grandjean and Olive have shown that the
same classes as those obtained by restricting the number of universal quantifiers also
arise by either restricting the arity of free relation symbols and the number of universal
quantifiers, or the number of variables (without requiring the formula to be in prenex

109

5 Putting the Characterization of #ACY into Perspective

normal form) [GOO04]. It would be interesting to find out whether similar connections
exist between the corresponding hierarchies in the counting setting. Additionally, it
could be interesting to study the relation of #AC" to these classes and attempt show hat
#ACY is not contained in any finite level of the hierarchy.

On a broader scope, one could also study classes arising by counting satisfying
assignments to free relation or function variables for classes of formulae beyond first-
order logic, in particular fragments of second-order logic. Here, the hope is to obtain
characterizations of complexity classes beyond #P. As mentioned before, one step in this
direction was recently made by Haak et al. [HKM™19]] from the perspective of counting
complexity of team logics.

110

6 Descriptive Complexity of
Logarithmic-Depth Circuit Complexity
Classes

In Chapterwe have seen that #Win-FO captures #AC° both in the non-uniform and
in the FO[BIT]-uniform setting. Still, the characterization of other counting classes in
circuit complexity remained open. In this chapter we turn our attention to the most
prominent classes remaining, i.e., #NC!, #SAC!, and #AC!. Our goal is to obtain char-
acterizations for these classes using an approach similar to that used to characterize
#ACY in Chapter |4 Study logical characterizations of the corresponding classical com-
plexity classes NC!, SAC!, and AC!, and attempt to characterize the counting classes by
counting winning strategies in the respective logics.

We will now briefly recall the different known characterizations of the corresponding
classical classes, which were already stated in Section and discuss their value in
obtaining characterizations for the counting classes #NC!, #SAC!, and #AC!. Both the
result that first-order logic with monoidal quantifiers captures NC! [BIS90] as well as
the result that first-order logic with groupoid quantifiers captures SAC! [LMSV01] do
not seem to directly provide ideas for a logical characterization of the corresponding
counting classes, as it is unclear how to introduce the concept of winning strategies for
the additional types of quantifiers. Also, this approach would have the downside that it
would not help in characterizing #AC!.

The characterization of Ug-uniform NC! as first-order logic with relational primitive
recursion [[CL90] does not seem to be helpful, as proof trees of the circuit evaluating a
given formula do not correspond to winning strategies of that formula. Furthermore,
this would not help in obtaining characterizations of #SAC! and #AC!.

Finally, we know that AC! is captured by FO[log 7] [ITmm99]. Here, the very restrictive
structure of the quantifier-block, which consists of individual quantifiers each with
a quantifier-free relativization (a formula restricting the elements considered for the
quantifier), prevents a transfer of this result to the counting setting. While it might
be possible to remedy this issue, we would first need a modified version of the class
FO[log n] characterizing AC'. Also, this would not help in characterizing the classes
NC! and SAC'.

Since by the above considerations, directly transferring the known characterizations
to the counting setting does not seem possible, we instead use a combination of the
idea of the classes FO[logn] and FO + RPR characterizing AC! and NC!, respectively. In
order to capture #AC! we use a kind of recursive definition of predicates similar to RPR
that more directly replicates the structure of circuits, which we will call GPR. An issue

111

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

in coming up with a recursive definition replicating the behavior of logarithmic depth
circuits is that the condition that a circuit has logarithmic depth is in a sense a global
condition of the circuit family and in the uniform setting can be seen as a semantic
condition of the formulae showing uniformity. To overcome this, we show that this
condition can be made syntactical when assuming built-in order on the gates of the
circuits: We will present a normal form of circuit families where for any two gates g; and
», if gy is a predecessor of g;, then g, < 5 - ;. This leads to the definition of GPR, where
we use a syntactic restriction to ensure that the depth of the recursion is logarithmically
bounded. More precisely, we will introduce a certain form of relativized quantifiers that
make use of built-in predicates in order to ensure that the numerical value reduces to
less than half of the previous numerical value in each step of the recursion. We will
see that variants of this idea allow us to also capture the classes NC! and SAC!, and
these characterizations work both in the non-uniform and the FO[BIT]-uniform setting.
Furthermore, our model-theoretic classes are in a sense “close enough” to the respective
circuit classes to allow us to transfer the characterizations to the counting setting (both
non-uniformly and uniformly). For this, we generalize the first-order model-checking
game to first-order logic with occurrences of GPR and consider classes of functions
counting winning strategies in this game.

We will start by giving the definition of the class FO + RPR in more detail. Then,
we will introduce the new operators GPR, GPRyun4, and GPRg.; and the resulting
definitions of first-order logic extended by the different operators. To illustrate our new
definitions, we will define the AC!-complete problem SHorTCAKE (see Section
in FO + GPR. We will then go on to prove that FO + GPR captures AC' and that the
variants FO+GPRygung and FO+GPRgep; capture the classes NC! and SAC!, respectively
(both in the non-uniform and the FO[BIT]-uniform setting). Finally, we will transfer
these results to the counting setting, obtaining model-theoretic characterizations of
#AC!, #NC!, and #SAC! by counting winning strategies in the model-checking game
for FO + GPR-formulae.

6.1 Guarded Predicative Recursion

We will now present in more detail the logic FO + RPR, which was shown to capture Ug-
uniform NC! by Compton and Laflamme [CL90], as we take inspiration from the notion
of relational primitive recursion used in this logic. As the name suggests, relational
primitive recursion (RPR) is a recursive definition of a relation in the vein of primitive
recursion. Since this recursion is to be used inside first-order logic, the recursive
definition is given by a first-order formula. Primitive recursion necessitates an order of
elements. For this reason, RPR-operators can only be defined if the universe is assumed
to be {0,...,n— 1}, which is mostly reasonable in the presence of built-in predicates such
as < or BIT. Following the definitions of Compton and Laflamme, we only define this
operator and the resulting logic with built-in BIT, using the notation FO[BIT] + RPR in
the following in line with our usual notation.

112

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

Syntactically, an RPR-operator is a formula of the following form:

[P(x,9)=0(x,y,P(x,y - 1)),

where y — 1 is a shorthand for a term that is uniquely determined to be equal to s(y) — 1
under any assignment s with y € dom(s). Note that y — 1 is (uniquely) definable from y
in FO[BIT]. Having P(X,y — 1) as an argument of 6 has the meaning that the predicate
symbol P may occur in 6, but only in the form of occurrences of the atom P(x,y —1).
Semantically, the meaning of this operator is that the interpretation of P is defined
recursively such that for any @, b with b > 0, P(a, b) is equivalent to 6(a,b,P(a,b— 1)), and
P(a,0) is equivalent to 6(a, 0, 1).

Now, FO[BIT] + RPR is the class of first-order formulae with built-in BIT and arbi-
trary occurrences of RPR-operators, even allowing simultaneous definitions of multiple
predicates using RPR. As usual, we also denote by FO[BIT] + RPR the class of languages
definable by FO[BIT] + RPR-formulae.

We will now introduce a new type of recursive definition of relations that more
closely resembles the structure of Boolean circuits. We call this new kind of recursive
definition guarded predicative recursion, abbreviated as GPR. First, we need a bit of
additional notation, starting with relativized quantifiers. A relativization of a quantifier
is a formula restricting the domain of elements considered for that quantifier. We also
use relativizations for the quantification of tuples. More precisely, we write

(El(xl,...,xk).(p) P

as a shorthand for dx;...3x; (¢ A) and, similarly,

(V(Xl,.-.,Xk)-(P) l/)

as a shorthand for Vx;...Vxi (—@ V) = Vxq...Vxi (@ —). For better readability and
simplicity, we will use the extensions of = and < to tuples in the following definition.
Note that these extensions are easily definable from = and < with quantifier-free for-
mulae. We also generally use extensions of numerical predicates to tuples throughout
this chapter, as long as they are definable. Furthermore, for an FO-formula ¢ and a
relation variable P, we write @(P*) if P does not occur inside any negation in ¢, i.e.,
for all ¢ € SF(¢) starting with a negation, P does not occur in 1. We now define the
GPR-operator as well as the logic FO + GPR.

Definition 6.1. Let R be a set of relations over IN such that the predicates x and < are
definable in FO[fR].

Then the set of FO[R] + GPR-formulae over ¢ is the set of formulae generated by the
grammar for FO[R]-formulae over o extended by the rule

¢ == [P(x,9) = 0(x,7,P")] ¢(P7),

where 6 is an FO[R]-formula over o, X and ¥ are tuples of variables, P is a relation
variable and each atomic sub-formula involving P in 6

113

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

1. is of the form P(x,z), where Z is in the scope of a guarded quantification Qz.(z <
/2 A &(,z)) with Q € {V,3}, £ e FO[R] and

2. never occurs in the scope of any quantification not guarded in this way, that is:
For all ¢ € SF(0) starting with a quantifier not guarded in the above way, P does
not occur in .

Here, z <y/2 is a shorthand for a formula equivalent to Ju(z+z=u Au <7p). We call
the part in [-] a GPR-operator. The relation variable P is considered a bound variable in
formula [P(x,7) = 6(x,y,P*)] ¢(P"), as its interpretation is given by the GPR-operator.
The class FO[2R] + GPR is the class of all FO[?R] + GPR-formulae over any vocabulary o.

Semantics are defined as follows: Let ¢ = [P(x,7) = 0(X,y,P")] ¢(z,P*) be an FO[R] +
GPR-formula with a single GPR-operator over o for some set R of relations over IN and
vocabulary 0. Let A € STRUC[o] and 7 be a non-uniform family of interpretations of
built-in predicate symbols in i by relations in 9i. Then in A and using the family 7
of interpretations, the operator [P(X,7) = (X, y,P*)] defines the interpretation P of the
relation variable P with the following properties: For all tuples @ and b of elements of
dom(A) with the same arity as X and y, respectively,

(a,b) € P if and onlyif Ay 0(a,b,P).

Accordingly A 7 [P(x,y) = 0(x,9,P")] ¢(c,P") holds for a tuple ¢ of elements of dom(A)
with the same arity as z, if and only if A =7 ¢(c, P), where P is the interpretation of P as
defined by the GPR-operator. As usual, if the family I is clear from the context, e.g.,
in case of the built-in relation BIT, we will omit 7 and write A [¢ instead of A =7 ¢.
Semantics for formulae with multiple GPR-operators is defined analogously.

We will also refer to the class of languages definable by FO[9R]+GPR formulae over any
vocabulary o by FO[?R] + GPR. In the following, we will only make use of FO[?R] + GPR
where R is either the set Arb of all relations over IN or R only contains BIT. Note that in
both cases, < and x are definable in FO[$R].

We next illustrate this new definition and show its flexibility for defining natural
problems by expressing the #AC!-complete problem SHorTCaKE, defined on page (26 in
FO[BIT] + GPR.

Example 6.2. We will now define the problem SHorTCaKE in FO[BIT] + GPR. For this,
we will use the vocabulary ¢ := (M?) that contains one binary predicate, representing the
Boolean input matrix: An n x n-matrix is represented by the structure A with domain
{0,...,n—1} and MA is exactly the input matrix, using numbers 0 to n—1 to index both
rows and columns. We will use two formulae 6y and 6y expressing valid moves of
players H and V, respectively, as well as a formula 6, expressing that the current
configuration is winning for player H. Then, a GPR-operator is used to recursively define
a predicate on configurations of the game given by the indices iy, i1, jo, j; specifying the
current submatrix and a variable p specifying the current player (we use 0 for player H
and 1 for player V).

114

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

In a single step of the game, we only reduce either the number of rows or the number
of columns, but not both. Furthermore, the size, i.e., the number of entries, of the
current submatrix might only reduce to half of the previous size rounded up. Both
of these properties lead to issues when simply encoding configurations by the indices
ig,11, o, j1, as the tuple of indices would not decrease to less than half in each step. In
order to remedy this, we introduce auxiliary variables to the encoding of configurations
that allow us to enforce a decrease to less than half in each step.

This leads to the formula

Pshe = P(?) = ewin(?)v
p=0A0(F PV

p=1A0y(y, P+)] P(maxsteps, 0,n—1,0,n— 1,0),

where 7 := (5,19, 11, jo, j1,P), S is a tuple of auxiliary variables and maxsteps is the starting
value of 5. We will define it later and ensure that it is FO[BIT]-definable. Similarly, 0
and n — 1 are FO[BIT]-definable.

To simplify the presentation in the following, we both identify natural numbers with
the binary strings encoding them, as well as tuples of natural numbers that are < n
with natural numbers. For the latter, tuples of numbers < n encode natural numbers in
accordance with the lexicographic order on those tuples, i.e., the leftmost component
has the highest significance. We encode in the tuple s the current step of the game using
a special unary encoding. Fix some n € IN. Let s € N be a bound for the number of steps
in the Shortcake game on 7 x n input matrices and let m := 2s. We will later determine a
sufficient bound for s. A number ¢ € N is encoded in the step counter by the tuple 5 that
represents the number with binary encoding 0%1"~%. As mentioned before, we also
write 5 = 02/172¢ in this case. We will now argue that this ensures that the step counter
decreases to less than half in each step of the game. Let £ € IN and 5 be the encoding of ¢
in the step counter, i.e., s := 02¢1m-2¢ Then the next step, { + 1, is encoded in the step
counter by 5" := 02+21"-2(=2_ First note that we have 5’ = § by construction. We now

show that for any two assignments config, conﬁg/ for the tuple (ig, i1, jo, j1,p), we have

(5', conﬁg’) < % . (E,config).

The arity of config and conﬁg/ is 5, as these tuples are of the form (iy, 71, jo, j1, p). Hence,

115

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

if 5 > 2 (which is true in all relevant cases by construction) we have

(E', conﬁg’) <7 -n’+n’-1
5 5,5
=—-n"+n’ -1
g

g
<(=-1)-n’+n’-1
i)

5-n°
<

2

_- 5 .
SS n> + config

2

(E,conﬁg)
—

It is pretty obvious that we can find a bound s and define m, the tuple length of 5,
and maxsteps such that this construction allows for at least s steps in the recursion. For
completeness, we explain how to choose these numbers. We do this for the case that the
input structure has a domain of cardinality at least 2. The case of domains of cardinality
1 can be handled separately.

First, determine a bound s for the number of steps. We know that if the current
submatrix has size ¢, its size will decrease to at most [%-I in the next step. Hence, for

an n x n input matrix the number of steps is bounded by |'log2(n2)'|. This means we
can set s := [log,(n?)], resulting in m = 2[log,(n?)]. We can now define maxsteps :=
22Mlog;("*)1 _ 1, which is FO[BIT]-definable. Consequently, an arity of 6 for the tuple 5 is
sufficient, as 2271082("")1_1 < (2n2)2— 1 = 4n* — 1 by construction and the highest number
that can be encoded in a tuple of length 6 is n° -1 > 4.n* -1 (recall that we assumed
n>?2).

Finally, we define the formula 6 expressing valid moves of the player H:

O0u(y) = (32 = (5" ig i, o, j1, P12 < 7/2))

s'=—Ap =1Aiy=igAij =i1A

| wl

((]6 #jo Aj1=j1 A +7o)/2 < jo < i A M(i('),jé))\/

(fé =Jo Aji #jo Ao <1 <(j1+]o)/2 A M(ié,j{)))/\

P19, i1 jor ji:P')-
Here, we use shortcuts for several FO[BIT]-definable properties such as's = % for read-
ability.

The formula 8y (y,P") is defined analogously with universal guarded quantification
for z and the definition of O, (v) is straightforward.

116

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

We next want to define variants of GPR replicating the properties of families of NC!-
and SAC!-circuits, respectively. For this, the guarded quantifiers have to be restricted
such that they do not quantify over a polynomial domain. We do this by introducing
bounded quantifiers, which are relativized quantifiers where we only consider the max-
imal two elements meeting the condition expressed by the relativization. Bounded
existential and bounded universal quantifiers are denoted by 3}, and V4, respectively.
Formally, the semantics of 3, can be given by an equivalent FO-formula as follows:

(30(710() 913 = (35l ¥V (7 2207 <F AT <2) = (7)Y (20) | 910,

Semantics of V}, is defined analogously.

We extend the first-order model-checking game to formulae with occurrences of
bounded quantifiers 3, and V;, by treating them analogously to 3 and V, respectively,
restricting the possible choices of the choosing player to the maximal two elements
satisfying the relativization. This is in accordance with the semantics of the quantifiers.

We define the bounded variant of GPR, denoted by GPRy4,nq, analogously to GPR
by allowing only bounded guarded quantifications Q,z.(z <9/2 A £(¥,2)), and the semi-
bounded variant GPRg,,;, where bounded universal guarded quantifications V;z.(z <
/2 A £(9,2z)) and existential guarded quantifications 3z.(z < /2 A £(9,Z)) are allowed.
This leads to the definition of the logics FO[?R] + GPRyoung and FO[R] + GPRyep,; in
analogy to FO[R] + GPR.

6.2 Model-theoretic Characterizations of Small Depth Decision
Classes

We now want to prove that our new logics FO[BIT] + GPR and the variants using
GPRpound and GPRgem; capture AC?, NC!, and SAC!, respectively. As a first step, we
need a normal form for the circuit complexity classes that translates the condition of
having logarithmic depth to a local, syntactic condition. Assuming an order on the set
of gates (and arithmetic operations defined accordingly), this condition will be that for
any two gates g1, ¢, in a circuit, if g, is a predecessor of g, then g, < % -g1. In order
to replicate the operations computed by the gates by the correct quantifiers inside a
GPR-operator, we also make the condition for a gate having type A or V a local condition.

In the FO[BIT]-uniform case, there is an inherent interpretation of gates as natural
numbers due to the built-in relation BIT in the logical language of the uniformity and
its extension to tuples. In order to be able to define the extension of BIT to tuples in
FO[BIT], we further need that the formula ¢, of the FO[BIT]-query showing uniformity
is somewhat simple.

This leads to the following normal form in the FO[BIT]-uniform setting: All tuples of
the appropriate arity are gates (so ¢ from the FO-query showing uniformity is always
true). The A-gates are exactly the gates that are odd and neither input nor negated input
gates. The V-gates are exactly the gates that are even and neither input nor negated
input gates. For any gate, all predecessors of the gate is smaller than half of that gate.

117

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

In the non-uniform setting, we have to additionally state that we can assign each gate
a natural number such that the above condition holds. This way, we can use the same
normal form both in the uniform- and the non-uniform setting.

Lemma 6.3. Let € € {NC!,SAC!,AC!} and C = (C,),en be a € circuit family in input
normal form. Then there is some k € IN and a € circuit family C" = (C;,),eN it input normal
form with #C’ = #C, where the C,, are given as T j,.-structures, and for all n € IN, C;, has the
following properties:

1. dom(C}) ={0,...,n -1}k,

2. for all E € dom(C)),
ge G " ifand only if g & Input®, g & negatedinput® and g is odd, and
ge G " ifand only if g & Input®s, g ¢ negatedinput® and g is even, and

3. forall g,h € dom(C}),
if (3,h) € ECn, then g is less than half of h numerically.

If C is FO[BIT]-uniform, then there is such a C’ that is FO[BIT]-uniform.
In the above, statements about numerical values of tuples are made with respect to the
lexicographic order of tuples based on the natural order on IN.

Proof. We prove the FO[BIT]-uniform version of the statement. The non-uniform
version can be shown with the same construction without using uniformity. Let
J: STRUC|Tyiring] — STRUC] i, | be an FO[BIT]-query showing the uniformity of C.
Let k be the number of free variables of ¢ in J, i.e., the arity of tuples encoding gates in
this circuit family. We now construct an FO[BIT]-query J””” describing a circuit family
C’ with the desired properties, including the fact that #C = #C’.

For the details of this proof, it is relevant in what way we represent numbers as tuples.
As mentioned before we use a lexicographic order based on the natural order on IN. Just
as we did in Example we will assume that the leftmost component has the highest
significance in this encoding.

1.) We first construct an FO[BIT]-query J” such that the circuit family described by J’
has property 1. This is done by allowing all tuples as gates, but allowing connections
between gates only if both gates were already gates in the original circuit. Analogously,
we also have to change the formula determining the output gate—otherwise, multiple
tuples could become output gates. The only formulae we have to change for this are
those for the universe and the predicates E and out. Let g, @, po be the respective
formulae from J. For J’ we instead use

Po(3) =1,
Pe(81,82) = Pe(81,82) A o(81) A po(g,), and
(Pé)ut(g) = (Pout(g) A (Po@)

The gate type of the new dummy gates does not matter, so we do not need to change
the formulae for gate types. As this step only potentially adds new dummy gates from

118

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

which the output gate is not reachable, it does not change the number of proof trees on
any inputs.

Now, in order to additionally achieve properties 2 and 3 from the statement of the
lemma, we proceed as follows: For property 2, we add an additional component to the
encoding of gates and only define edges to and from those versions of A-gates where this
component is 1, and those versions of V-gates where this component is 0. Also, input
gates are only connected to the rest of the circuit if this additional component is 0. The
interpretation of out is changed accordingly, depending on the type of that gate. This
allows us to make all odd non-input gates A-gates and all even non-input gates V-gates.

For property 3, we add to the encoding of gates a unary encoding of the depth—in the
sense of “distance to the output gate”—of the same form as the unary encoding used in
Example We then only connect two gates g; and g, by an edge (g1, g2), if there was
an edge between the corresponding gates in the original circuit and the depth encoded
in g, is 1 less than the depth encoded in g;. This ensures that the numerical value of
gates reduces to less than half in each step from a gate to one of its predecessors. Notice
that by this construction, our circuits contain many dummy gates, i.e., gates from which
the output gate is not reachable or which are not even connected to any other gates. We
now formalize the above ideas.

2.) We now define the formulae for the FO[BIT]-query J”, which ensures property
2 in addition to the previous properties. For this, we increase the arity of tuples by 1,
adding a new component to the right of the encoding of gates. Note that, as we add a
new component to the right, encodings of indices of input gates implicitly change, so
we need to modify the formulae accordingly. The query J” is defined by the following
formulae:

Py (8x
(Plnput(gx .. Zky
(Pnegatedlnput(gx' .. lk}}

):
):
):
¥g, (8x) :
x):
) =
) =

<P|nput(gﬂz kY,

(pnegatedlnput(g' ip...1kY),

Vi (_'(plnput(gx’) A ~Pregatedinput (8% ;)) A BIT(0, x),
Vi (_'(Plnput(gx’) A _'(Pr’:egatedlnput(gx’;))/_'BIT(O'X)!

(Pé gl’gz) A labreal(glxl) A Il)real(gzxZ) and
(Pc,)ut() A lzbreal(gx);

G (&

(P (81951;82 2
(Pout(X

where g is a tuple of arity k and i, expresses that a gate is not a dummy gate as
follows:

Preal (8%) = (¢g, (§) Ax=1) V (gg (8) Ax = 0)V
(((Plnput(g’) v (Pnegatedlnput(g')) AX = 0)'

3.) We construct an FO[BIT]-query J”” that additionally ensures property 3. We add a
unary encoding of the depth to the encoding of all gates, analogously to the construction
used in Example As in that example, inputs of length 1 are handled separately. Also,

119

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

we again sometimes identify natural numbers with binary strings in the following. Let
c-|log, n] with c € IN be a bound for the depth of the circuit family described by J”. The
idea is to create for each gate of the old circuit a duplicate for each possible depth within
the circuit. In analogy to the construction in Example the depth is encoded in the
following way: Let m := c-|log, n]. Depth i is then encoded by the number with binary
encoding 0212”2/ for all i < m. This means that it is sufficient to increase the arity of
tuples by ¢ := 2c, as the largest number we need to encode is the number with binary
encoding 12clogyn] e 22¢llognl _ 1 and we have

22~o|_10g2 n| _ 1< n€ -1

for all n € IN. For the output gate we need to express that the encoding of its depth is
12m,

In the final circuit, gates are only connected if their versions in the old circuit were
connected and the predecessor’s depth is 1 higher than the successor’s (both encoded
as described above). The fact that this construction ensures property 3 can be proven
analogously to the corresponding proof in Example This leads to the following
formulae for J”:

¥o (hgx) =1,
¢, (hgx) = ¢ (8x),

P (hgx,jiy) = = 0 A @0 (8%, 1),
(P;m’e,gatedlnput(hgx’jiy =j=0A (P;],egatedlnput(gx’ Zy)' and
=V} ((j < 2¢- log, n]) — BIT(j, i)A

(=j < 2+ [log, n] — —BIT(j, b)),
where and j are tuples of length ¢, g and i are tuples of length k, and x and y are
individual variables. Notice that the condition j < 2c-|log, n| is FO[BIT]-definable.
Moreover,

of(h 3, %1, 128,%2) = @f (3, X1,8,%2) A

3?((V(7 <) BIT(j,hy)) A (¥(j > 1) ~BIT(f, 11z))A

(417 =20 BITG) A (¥ > - 2) 81707)),

where I, h,, i and j are tuples of length ¢, g, and g, are tuples of length k, and x; and
x, are individual variables. Here, j < i — 2 is FO[BIT]-definable and we use quantifiers
of the form V(j < i) ¢ as a shorthand for V;j (j <i A @) for readability.

The circuit family described by I has properties 1, 2 and 3. Furthermore, the
modifications made in steps 2 and 3, just as those made in step 1, do not change the

120

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

structure of the component of gates from which the output gate is reachable. Therefore,
the number of proof trees of circuits in the family described by J”” is the same as the
number of proof trees of the corresponding circuits in the family described by J. O]

We are now in a position to show the decision version of the main theorem of this
chapter: The newly defined logical classes FO + GPR, FO + GPRyoyng, and FO + GPRgepm;
capture the classes NC!, SAC!, and AC!, respectively, both in the non-uniform and the
FO[BIT]-uniform setting.

Theorem 6.4.
1) FO[Arb] + GPR = AC! and FO[BIT] + GPR = FO[BIT]-uniform AC!.
2) FO[Arb] + GPRpoung = NC! and FO[BIT] + GPRyoung = FO[BIT]-uniform NC'.
3) FO[Arb]+ GPRypni = SAC! and FO[BIT] + GPRyepi = FO[BIT]-uniform SAC!.

Proof. We begin by proving the non-uniform version of FO + GPR = AC!. We will then
argue that the constructions can be made uniform. Afterwards, we explain what needs
to be changed for the bounded and semi-bounded variants.

AC! CFO[Arb] + GPR: Let L € AC! via the non-uniform circuit family C = (C,,),en
in the normal form of Lemma Without loss of generality we can assume that C,
has depth at least 1 for all n € IN, as we can simply add a new A-gate that has the old
output gate as its only predecessor and make it the new output gate. Let k € IN be such
that dom(C,,) = {0,...,n— 1}¥ for all n € N and let 7 = (I,,),,cn be a non-uniform family
of interpretations such that I, interprets the symbols of 7., according to C,,.

We will define L in FO[Arb] + GPR over vocabulary Ty With 7 as the vocabulary
for build-in predicate symbols, and use the family 7 to get for all n € IN access to the
relations of C,, from any input structure A, with |w| = n. For the construction of the
desired FO[Arb] + GPR formula we need the following auxiliary formulae:

PLiteral (%) == Ji (Input(X, i) V negatedinput(x, i),
QtrueLiteral (X) := i = (iy,..., i) (Input(X, i) A S(ix) V negatedinput(x, i) A =S(ix)),
P(z,P(2)) = (P(2) A ~@PLiteral(2)) V PrruelLiteral (2)-

Then the following sentence @ defines L:
D :=[P(y) = 6(y,P")] Ix (out(x) A P(x)),
where
0(7,P) = (ﬁ BIT(0,7) AJZ.(Z<7/2 AE(Z,7)) ¥(3, P(E)))V
(BIT(O,?) AYZ(Z<T/2 NE(ZT)) P(Z, P(z))).

Here, BIT(0,) is used to determine whether ¥ is even or odd and hence the type of gate
v.

121

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

Now in any structure A, and under any assignment s for the free variables y and P,
the formula 6 is equivalent to

(QZ.(E < 3_)/2 A E(Z ?))) (P(E) A _‘(PLiteral(E)) N (ptrueLiteral(E)l

where Q is either 3 or V depending on the parity of s(v).

We now prove the correctness of our construction, that is, we prove that ® defines L.
Let neIN, w € {0,1}" and let P be the interpretation of P defined by the GPR-operator
in the above formula when using 7 to interpret symbols from 7., that is, interpreting
those symbols according to C,,. We will prove that P is the valuation of the gates in the
circuit C,,. More precisely, we prove inductively that for any d € IN, P(g) gives the value
of gate g in C,, on input w if all predecessors of g have depth < d. In the following, we
will not talk about general equivalence of formulae, but instead about equivalence and
truth of formulae with respect to the input structure A, and the interpretation I,, of
symbols in T .

d = 0: Note that (PtrueLiteral(E) gives the value of hin C, on input w if I is an input
gate. Then for gates g all predecessors of which are input gates we have:

P() = (Qz(2<g/2AEEZ3))) (P(R) A ~PLiteral(B)) VPrrueLiterar(Z)- ()
il

false

false

Since C is in the normal form of Lemma if E(h,g) is true for some gate &, then h < g/2,
and thus

Z<g/2NEZ3) =E@E3).

This yields

p(?) = (QE-E(Z §)) (ptrueLiteral(E)f

which means that P(g) is true if and only if val(C,, g, w) = 1.
d — d +1: Again, as C is in the normal form of Lemma 6.3}

Z<3/2AE(EZ D) =E(Z3).

We also know that for all predecessors 1 of g only two cases can occur: If / is an input
gate, then —mpLiteral(ﬁ) is false, and (ptrueLiteral(ﬁ) is true if and only if val(C,, hw)=1.If
I is not an input gate, then qotmeuteral(z) is false, ﬁ(pLiteral(E) is true, and P(h) is true if
and only if val(C,, h,w) = 1 by induction hypothesis. By Equation @ above, this means
that in fact P(g) is true if and only if val(C,, g, w) = 1.

We showed that the truth value of P on arbitrary non-input gates in C,, corresponds to
their value in the circuit when it takes input w. Also, we assumed that the output gate

of C,, is not an input gate. As these properties hold for all n € N and all w € {0, 1}", this

122

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

means that the above formula defines L: The formula behind the recursive definition of
P simply states that the output gate of the circuit evaluates to 1.

FO[Arb] + GPR C AC!: We assume that only one occurrence of a GPR-operator is
allowed. The proof easily extends to the general case. Let L € FO[Arb] + GPR via some
formula ¢ over some vocabulary ¢ and additional vocabulary 7 for built-in predicates,
where

¢ = [P(x,7) = 0(x,7,P")] (P").

Without loss of generality, we can assume that 6 is in negation normal form. By
definition of GPR, P occurs in 6 only in the form of atoms P(x,z), where Z is in the scope
of a guarded quantification Qz.(z < y/2) with Q € {4,V} and not in the scope of any
quantification not guarded in this way.

Now, build an AC? circuit family evaluating 1 except for the occurrences of P. For
this, notice that ¥ is an FO[Arb]-formula over o U (P). Next, we explain how to construct
an AC! circuit which contains for any tuples of elements @,b of appropriate arity a
gate computing whether (@,b) € P, where P is the interpretation of P as defined by the
GPR-operator.

The formula 0 is, similar to ¢, an FO[Arb]-formula over vocabulary o U (P), so we
can build an AC? circuit family that computes for all tuples of elements of adequate
arity @b the value of 8(X,7,P) with certain input gates marked with P(a,¢) for some
tuple of elements c. We cannot assume that 0 is in prenex normal form, though. Hence,
we need to evaluate an FO[Arb]-formula in negation normal form, but not necessarily
prenex normal form, using an ACY circuit family. This can be done similarly to the
proofs of FO[Arb] € AC? by Immerman [Imm99] or our proof of #Win-FO[Arb] C #AC°
in the proof of Theorem The main difference is that we do not have two separate
parts, one for the quantifier-prefix, which branches for all possible values that can
be assigned to the quantified variables, and one for the quantifier-free part, where the
circuit replicates the structure of the formula. Instead, the circuit replicates the structure
of the formula in general, each gate evaluating a node of the syntax tree representation
of the formula. For this, we can simply have the corresponding node in the syntax tree
as part of the encoding of gates in the circuit. Despite the difference, we still ensure that
the assignment to the quantified variables is part of the encoding of gates by using the
tuple of assigned elements as part of the encoding. This way, we can directly evaluate a
formula that is not in prenex normal form.

We then simply connect each gate that was marked with P(a,c) to the output gate
of the subcircuit computing 6(a,c, P). Since occurrences of P(X,z) only occur within
guarded quantifications Qz.(z < 9/2), there can be at most logarithmically many steps
from any P(q, b) before reaching P(g,0), terminating the recursion. By the above, each
such step—computing P(a, b), when given values of P(a,c) for certain c—is done by an
AC? circuit family and hence in constant depth. Consequently, the construction leads to
logarithmic depth in total.

The gates computing values of P can now be connected to the ACY circuit family
evaluating 1 adequately. This leads to an AC! circuit family evaluating the whole
formula.

123

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

For the case of multiple GPR-operators, we build a circuit for each of them in the
above way and connect them to the AC? circuit family evaluating the FO[Arb]-formula
following those operators as needed.

Next, we will argue that the above constructions can be made uniform.

FO[BIT]-uniform AC' C FO[BIT] + GPR: The main difference to the proof of the
non-uniform version is that we get access to the circuit family C not by using built-in
predicates for the symbols from 7., but instead use the formulae from the FO[BIT]-
query J showing uniformity of C. The remaining built-in predicates in the constructed
formula, that is, predicates other than the relations of circuits in C and the BIT-predicate,
such as the order <, are FO[BIT]-definable. Thus, they can be replaced by adequate
subformulae and the resulting formula shows L € FO[BIT] + GPR.

FO[BIT] + GPR C FO[BIT]-uniform AC': For inputs w of length > 1, we can encode
the current node in the syntax tree representation of an FO[BIT]-formula as a tuple of
elements of the universe of A,,. Hence, the direct evaluation of an FO[BIT]-formula that
is not in prenex normal form can be done in FO[BIT]-uniform AC°. Further, we can
construct the circuit family in such a way that the tuple representing a gate contains a
and b, if the gate is supposed to evaluate an atom P(a, b) for tuples of elements @, b of
adequate arity.

Furthermore, we can construct the subcircuits computing the value of P(q, E), where
P is the interpretation of P defined by the GPR-operator, in such a way that the tuple
representing the output gate of such a subcircuit contains the tuples @ and b. By
constructing the subcircuits in this way, it is easy to define the required connections
between subcircuits in FO[BIT].

The case of inputs of length 1 has to be handled separately. For this, simply modify
the behavior of the resulting circuit family on the inputs 0 and 1.

Finally, we turn to the bounded and semi-bounded cases. We will see that these follow
almost immediately from the proofs of the unbounded versions. Both in the non-uniform
and the FO[BIT]-uniform setting, NC! C FO + GPRpyynq and SAC! C FO + GPRgep; can
be shown with the same formula and the same proof as AC! C FO(GPR), replacing GPR
by GPRpound 0r GPRgepmi, respectively. The reason is that in this case, the circuit family
showing membership of L already has the property that all gates have bounded fan-in
in the case of NC! and all A-gates have bounded fan-in in the case of SAC!. Therefore,
the bounded and semi-bounded quantifiers quantify over all predecessors of gates.

FO+GPRyqung € NC!: This can be proven completely analogously to FO+GPR € AC!
both in the non-uniform and in the FO[BIT]-uniform setting. Instead of AC? circuit
families evaluating ¢ and 6, we now use NC! circuit families. This leads to logarithmic
depth for evaluation of 6. In general, repeating this for logarithmically many steps
would be a problem. By definition there are no occurrences of P inside any unbounded
quantifier, though. For the bounded quantifiers, we still create subcircuits for all possible
values for the quantified variable, but we only connect the maximal two satisfying the
relativization to the successor. This ensures that gates marked with P(a,¢) for some ¢ still
only occur in constant depth in the circuit evaluating 6(a, b, P) for any @, b, this time with
only bounded fan-in gates. For this, notice that generally an FO[BIT]-formula without
unbounded quantifiers can be evaluated in NC°. Consequently, the construction still

124

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

only leads to logarithmic depth in total.

FO + GPRp; € SAC!: Here, we can proceed similarly as for the bounded case. The
formula 6 can be evaluated using an NC! circuit family except for unbounded guarded
quantifiers 3z.(z < 9/2 A £). For these guarded quantifiers we use unbounded fan-in
v-gates. This results in an SAC! circuit family. Note that the semi-unbounded case is
the reason we need the condition that P only occurs positively anywhere. If we dropped
this condition, we would possibly need to evaluate negations of unbounded existential
quantifiers, which would lead to unbounded fan-in A-gates.]

The proofs that the circuit complexity classes are contained in the corresponding
model-theoretic classes also immediately gives us the following normal form for our
model-theoretic classes.

Corollary 6.5. Let G € {GPR, GPRpound, GPRgemi}. Then
FO[Arb]+ G = G-FO[Arb] and FO[BIT]+ G = G-FO[BIT),

where G-FO denotes the class of formulae in FO+ G with a single G-operator in the beginning.

6.3 Model-theoretic Characterizations of Small Depth
Counting Classes

Next, we want to define the game semantics for our new logics. Let 2} be a set of relations
over IN. We will adapt the full model-checking game for first-order logic to FO[93]+GPR-
formulae. The full model-checking game is chosen as the game is basically played on
the formula obtained after unrolling recursive definitions given by GPR-operators. The
resulting formula is not in prenex forms, so alternative types of witnesses considered in
Chapter [3|are not suitable. Let ¢ be an FO[R] + GPR-formula over some vocabulary o,
A a o-structure, s: free(¢) — dom(A), and 7 a non-uniform family of interpretations
of the built-in predicate symbols in ¢ by relations in R. In the definition, we mainly
want to ensure that strategies for the game can vary for different subformulae and
even different copies of the same subformula that arise when evaluating the recursive
definition described by a GPR-operator. There are different ways to achieve this. One
could for example unroll the GPR-operator based on the current input structure to
obtain a formula of polynomial size and play the model-checking game on this formula.
Instead, we choose to simply add the history of all previous formulae and decisions
to any configuration. Strategies can then naturally differ for different copies of the
same subformula, as they can differ for different histories. This means we also do not
need to use a syntax tree representation of the formula and that we can simply add the
GPR-operators occurring in ¢ as global information to the game for A,s =7 ¢. Notice
that in order to be able to distinguish two occurrences of the same subformula that have
the same history leading to them except for the last decision, e.g., in case of a formula
Y A1, decisions for Boolean connectives have to be specified by encoding whether the
first or second subformula was chosen, not by stating the chosen subformula.

125

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

This results in the following definition of the model-checking game for A,s 7 ¢.
Configurations of the game are of the form

(¢,s’,swap, H),

where ¢ is the current formula, s’ is an assignment to the free variables in ¢, swap is
a bit specifying whether the players currently swapped roles and H is the complete
history of formulae and corresponding choices up to this point. The game starts in
configuration

(¥,5,0, Ho),

where 1 is the subformula of ¢ to the right of the GPR-operators (so ¢ € FO[fR]) and
Hj is the empty history. Just as the first-order model-checking game, the new game is
played by the verifier (or player 1) and the falsifier (player 2). The verifier starts and wants
to show that the formula evaluates to true in A with the family 7 of interpretations and
under assignment s. The game then proceeds in the same way as the model-checking
game for FO[R], but the history is kept in H and occurrences of predicates defined by
GPR have to be handled: Whenever a predicate symbol P defined by GPR is reached, the
game continues on the recursive definition given by the corresponding GPR-operator
(without changing the assignment, the swap-bit or the history).

A strategy of the verifier is again a function mapping configurations to specific choices
in such a way that a choice is specified for all configurations that give the verifier a choice
and are reachable from the starting configuration if they act according to this strategy
and the falsifier makes arbitrary choices. Since configurations contain a full history,
choices may differ for copies of the same occurrence of a subformula that arise when
evaluating the recursive definition described by a GPR-operator. Winning strategies of
the verifier are strategies of the verifier that allow them to win independent of the choices
made by the falsifier.

Similar to the definition of #Win-FO in Definition we can define counting classes
in terms of counting winning strategies in the model-checking game for FO + GPR-
formulae.

Definition 6.6. Let R be a set of relations over IN such that the predicates x and < are
definable in FO[fR].

Then a function f: {0,1}" — IN is in the class #Win-FO[?R]+GPR, if there is an FO[2R]+
GPR-sentence ¢ over some vocabulary o and a non-uniform family of interpretations 7
of the built-in predicate symbols in ¢ by relations from R such that for all A € STRUC[c]:

f(enc,(A)) =#Win(A, 7, @),

and f(x) = 0 if x is not the encoding of a o-structure. Here, #Win(A, 7, ¢) is the number
of winning strategies of the verifier in the model checking game for A £ ¢, omitting the
assignment as ¢ is a sentence. If the family 7 of interpretations is clear from the context,
for example in case of built-in BIT, we also write #Win(A, ¢) instead of #Win(A, 7, ¢).

126

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

The complexity classes #Win-FO[R] + GPRpoung and #Win-FO[R] + GPRgepy; are de-
fined analogously, restricting the moves on quantifiers 3, and v}, to only allow the two
choices that are potential witnesses for the quantifier.

We will now show that the newly defined counting classes capture the classes #AC°,
#SAC!, and #NC!, respectively, both in the non-uniform and the FO[BIT]-uniform
setting.

Theorem 6.7.

1) #Win-FO[Arb]+ GPR = #AC! and
#Win-FO[BIT] + GPR = FO[BIT]-uniform #AC!.

2) #Win-FO[Arb] + GPRyounq = #NC! and
#Win-FO[BIT] + GPRygunq = FO[BIT]-uniform #NC!.

3) #Win-FO[Arb] + GPRy.pi = #SAC! and
#Win-FO[BIT] + GPRyep; = FO[BIT]-uniform #SAC!.

Proof. Similar to the structure of the proof of Theorem we prove the non-uniform
version of #Win-FO + GPR = #AC! first. We will then argue how the construction can
be made uniform and finally turn to the bounded and the semi-bounded variant. The
proof idea is very similar to the one used for the decision version.

#AC! C #Win-FO[Arb] + GPR: Let f € #AC! via the AC! circuit family C = (C,),en
in the normal form of Lemma Without loss of generality we can again assume
that C,, has depth at least 1 for all n € IN by the same argument as for the decision
version. Let k € N be such that dom(C,,) = {0,...,n— 1} for all n € N and let 7 = (1,,) ,eN
be a non-uniform family of interpretations such that I,, interprets the symbols of 7.
according to C,,.

In analogy to the proof for the decision version, we will construct a #Win-FO[Arb] +
GPR-sentence @ over vocabulary Ty ing such that the number of winning strategies of
the verifier in the model-checking game for A, |Fy @ is equal to f(w) for all w € {0, 1}".
For the construction, we again need the auxiliary formulae @y ;ieral, @irueLiteral, and ¢
defined as in the proof of Theorem [6.4] We can now define the desired sentence ® as
follows:

D :=[P([©) = 6(y,P")] Ix (out(x) A P(x))
with
O0(y,P) = (—| BIT(0,7) A (HE. (Z<9/2A E(E,g_/))) Y(z, P(E))V
(BIT(O,?) A YZ.EZ<9/2NEEZD)) ($(ZPE) AZ<T/2A E(z,y))).
Note that 0 is defined similarly to the definition in the proof of the decision version,

with the difference that now the subformula (z < y/2 A E(z,7)) not only occurs in the
relativizations, but is added again to the formula following the guarded quantifier in the

127

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

universal case. The reason is that relativized quantifications are defined as shorthands for
usual quantifications. In the case of universal quantifications, the resulting disjunction
possibly adds additional winning strategies. To prevent this, the guard is added after i
again.

We will now show that @ together with 7 defines the function f, i.e., that the number
of winning strategies of the verifier in the game for A, |y @ is equal to f(w), and
hence to the number of proof trees of C},; on input w, for all w € {0,1}*. Let n € N and
w €{0,1}". In the following, we use #Win(s,), ¢ being an FO[Arb] + GPR-formula, as
notation for the number of winning strategies of verifier in the game for A,s 7 ¢.
The same number arises when adding an arbitrary history, as the number of winning
strategies is independent of the history. Now under any assignment s for the free
variables y and P, we have

#Win(s,0) = #Win(s, Qz.(Z <3/2 AE(Z,9)) (((PZ) A ~PLiteral(2) V PrrucLiteral (2))A
Z<T/2A E(E,?))),

where Q is either 3 or V depending on the parity of s(y). Notice that in the case of
existential quantifiers, the number of winning strategies does not change by adding the
guard again in the end.

We now prove that for any non-input gate g, the number of winning strategies
#Win(P(g)) for atoms P(g) in the formula following the GPR-operator is exactly the
number of proof trees of the subcircuit of C, rooted in §. Here, the assignment is
omitted from #Win(P(g)), as it is given by g. More precisely, we inductively prove that
for any d € N, #Win(P(g)) is the number of proof trees of the subcircuit of C, rooted in
g on input w if all predecessors of g have depth < d.

d = 0: We immediately get that #Win(@yyeLiteral()) is the value of & in C,, on input w
if 1 is an input gate. As for any input gate, the value of the gate is equal to the number
of proof trees of the subcircuit rooted in it, we have for gates g all predecessors of which
are input gates:

#Win(P(g)) = #Win((Qz. (Z<3/2AE(Z3))

((P(Z) A 7 PLiteral (E)) M (PtrueLiteral(z)) ANz < §/2 A E(Z, §)))
= A #Win(P(E) A 7 QLiteral (E) N thrueLiteral(E))t (***)

hedom(A,),
h<g/2 and (h,g)eE'vl

where A is either summation or multiplication depending on the parity of g. Recall that

universal relativized quantifiers are defined such that (Vx.@) ip = Vx(—¢ V 1). Hence,
for a relativized quantifier of the form (Vx.¢@) (i A @) =Vx(=¢ V (¢ A ¢)), the number

128

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

of winning strategies is exactly the product of the number of winning strategies of {(a)
over all assignments a for x that satisfy the relativization ¢. For this reason, it could be
beneficial in the counting setting to modify the definition of (Vx.¢) ¢ for any formulae
@ and 1 such that this formula translates to Vx (=9 V (¢ A @)).

Note that the number of winning strategies of the verifier on both @jiera and
@trueLiteral 18 < 1. Since d = 0, we know that for all assignments for z satisfying the
relativization, @y jieral(2) is true, yielding

#Wln(A #Wln qotruetheral(h))

hedom(25
h<g/2 and (h,g)eE"vl

By assumption, (,g) € E'l implies & < g/2. Therefore, #Win(P(g)) is exactly the number
of proof trees of the subcircuit of C, rooted in g.

d — d +1: Again by assumption, #Win(s,z < g/2 AE(z,g)) = #Win(s, E(z, §)) under any
assignment s for z. We also know that for all predecessors h of g only two cases can
occur: If h is an input gate, then we have #Win(—@jterai(h)) = 0 and #Wln((PtrueLneral(h))
is exactly the number of proof trees of the subcircuit of C, rooted in h. If & is not an
input gate, then by assumption we have #Win(@trueLiteral(ﬁ)) =0, #Win(—=@yiteral (h) =1
and by induction hypothesis #Win(P(h)) is exactly the number of proof trees of the
subcircuit of C, rooted in h. By Equation above, this means that #Win(P(g)) is
equal to the number of proof trees of the subcircuit of C, rooted in g.

As we have assumed that all circuits C,, in the family C have depth at least 1, it is
easy to see that the above formula defines f: It can be seen almost immediately that the
number of winning strategies of the verifier on the formula following the GPR-operator
is the number of winning strategies on P(output), where output is the unique output
gate of C,. By the induction above this is equal to the number of proof trees of circuit
Cjy| On input w.

#Win-FO[Arb] + GPR C #AC!: This can be proven completely analogously to the
decision version. For this, note that 0 can also be assumed to be in negation normal
form in the counting setting. Counting proof trees of the constructed circuit family
leads exactly to the desired function.

Next, we will argue that the above constructions can be made uniform.

FO[BIT]-uniform #AC' C #Win-FO[BIT] + GPR: As in the decision version, we
access the circuit family C not by using built-in predicates for the symbols in 7., but
instead use the formulae from the FO[BIT]-query J showing uniformity of C. In order to
keep the number of winning strategies the same despite replacing atoms by formulae in
this way, we need to make sure that on all formulae from J, the verifier has at most one
winning strategy. This can be assumed by Lemma[3.3] The remaining built-in predicates
used in the formula, that is, predicates other than the relations of circuits in C and the
BIT-predicate, such as the order <, are again FO[BIT]-definable. We can again apply
Lemma [3.3|to ensure that replacing occurrences of these predicates by formulae does
not change the number of winning strategies. By these considerations, we can obtain an
FO[BIT] + GPR-formula defining the desired function.

129

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

#Win-FO[BIT] + GPR é FO[BIT]-uniform #AC': As in the proof of the decision
version, this can be proven analogously to the non-uniform version. Let f be a function
in #Win-FO[BIT] + GPR via the formula ¢. For inputs w of length > 1, the current
position in the formula ¢ and the current assignment to the variables can again be
encoded in a tuple of elements of dom(A,).

As inputs of length 1 can only be mapped to 0 or 1 by FO[BIT]-uniform #AC! circuit
families (cf. Observation[3.11)), we can only modify the behavior of the resulting circuit
family on inputs 0 and 1 to ensure that the circuit computes the function

) = {1, if x| =1 and f(x) >0

f(x), otherwise.

Both in the non-uniform and in the FO[BIT]-uniform setting, the inclusions #NC! C
#Win-FO + GPRyung and #SAC! C #Win-FO + GPRyep,; can—as in the proof of the
decision version—be shown with the same formula as the unbounded case by changing
the GPR-operator to a GPRygynq- or GPRgemi-operator, respectively.

The converse directions, that is, #Win-FO[Arb] + GPRpyung € #NC!, #Win-FO[BIT] +

GPRpound C #NC!, #Win- FO[Arb] + GPRyer; € #SAC!, and #Win-FO[BIT] + GPRyer; C
#SAC! can also be proven with the same arguments as the decision versions, using again
the restriction that P occurs only within bounded quantifiers within 0 and, in the case
of #SAC!, also the fact that it does not occur inside of negations. O

Analogously to the decision version, the proof again allows us to establish a normal
form for our new logical classes.

Corollary 6.8. Let G € {GPR, GPRpound, GPRgemi}. Then
#Win-FO[Arb]+ G = G-WinFO[Arb] and #Win-FO[BIT]+ G = G-WinFO[BIT],

where G-WinFO[R] denotes the class of functions arising as the number of winning strategies
of the verifier in the model-checking game for G-FO-formulae with built-in predicates from fR.

Remark 6.9. To further show the robustness of our classes, we want to mention certain
variations of our logics that do not change the resulting complexity classes. For all
decision classes, we can drop condition [2|from Definition [6.1|without changing the class.
For #Win-FO[Arb] + GPR and #Win-FO[BIT] + GPR the same holds.

For #Win-FO(GPRpoung) and #Win-FO(GPRgen;), condition 2 cannot be dropped
but can be replaced by the following weaker version: “never occur in the scope of
any universal quantification not guarded in this way”. In the case of GPRyoung, this
requires showing that the occurrences of P can be moved out of unbounded existential
quantifiers. For universal quantifiers this cannot be possible, as they can result in
counting functions that grow faster than any function in #SAC! by the same argument
that shows #AC! ¢ #SAC!.

130

6 Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes

6.4 Conclusion and Outlook

In this chapter, we have combined ideas from known characterizations of the circuit
complexity classes NC! and AC! to obtain unified characterizations of the classes NC!,
SAC! and AC'. In contrast to previous classes characterizing the above circuit complex-
ity classes, our new model-theoretic classes are in a sense close enough to the circuit
classes to allow us to transfer our results to the counting setting. For this, we generalized
the full first-order model-checking game to the underlying logics of our new classes,
defining the corresponding counting classes in terms of counting of winning strategies
analogously to #Win-FO. We show that all of these characterizations hold both in the
non-uniform as well as the FO[BIT]-uniform setting.

Similar to our characterization of #AC? by #Win-FO in Theorem our new char-
acterizations also have implications regarding the choice of uniformity. As the circuit
families in our proofs are highly uniform, it is straightforward to show that they are
actually Up-uniform. It follows that Up- and FO[BIT]-uniformity coincide for NC! as
well as the counting versions of NC!, SAC! and AC!, when disregarding inputs of length
1. Even more, our logics capture the Up-uniform counting classes precisely, while they
only capture their FO[BIT]-uniform counterparts in the sense of =.

We hope that our characterizations lead to new insights into structural properties of
and connections between the studied classes, hopefully resulting in new upper or lower
bounds related to separations such as #NC! = ENC!, #NC! = #P, or NC! = PP. In this
direction, it could be interesting to put the characterizations of the logarithmic-depth
classes into perspective in a similar manner as we did for #Win-FO in Chapter[5] A step
towards this goal would be to characterize #P in terms of a logic with a recursion operator
similar to the operators GPR and RPR, possibly building on the known characterization
of the class in terms of circuit complexity.

As discussed in Section FO[BIT]-uniform NC! might not be the “right” defini-
tion of uniform NC!, the more natural one being Uj-uniform NC!. Still, obtaining
new upper or lower bounds for this class would be interesting. In particular, lower
bounds regarding this class would of course be even stronger than for Ug-uniform
NC!. Nonetheless, a model-theoretic characterization of Ug-uniform #NC! would be
desirable. Here, a possible approach for future research could be to take a deeper look
at the characterization of Uj-uniform NC! by Compton and Laflamme [CL90]. While
this characterization does not seem to easily transfer to the counting setting, it would
be interesting to better understand where it fails and whether this can be remedied,
keeping intact the simpler structure of their recursion scheme to hopefully allow for an
Uj-uniform NC! circuit family to evaluate the recursive definitions.

131

Page left intentionally blank to have matching page numbers with the printed version.

7/ Transferring Characterizations from the
Uniform to the Non-uniform Setting

Consider a complexity class € defined in terms of circuit families with certain resource
bounds, e.g., one of the levels of the AC-hierarchy. Assume there is a superlogic L of
FO capturing € in the FO[BIT]-uniform setting, that is, FO[BIT]-uniform ¢ = L[BIT].
Intuitively, it seems pretty obvious that this result for uniform classes should transfer to
the corresponding non-uniform classes. The reason is that in both cases, non-uniformity
means that some additional information, an advice, is given to the respective model of
computation (circuits and formula) and this information only depends on the length
of the input and is bounded by a polynomial in the length of the input. This intuition
is further evidenced by the fact that usually it is easier to prove characterizations of
non-uniform classes than proving their uniform counterparts. Proving the uniform
version then requires additional work and the proof needs to be refined. This can for
example seen for our characterizations in Chapters [4and [6]

The goal of this chapter is to formalize this intuition and obtain a reasonably general
result stating that uniform characterizations can be transferred to the non-uniform
setting. The generalizations made are motivated and potential ways to further generalize
the result are discussed.

Note that the converse, that is, directly being able to obtain uniform characterizations
from non-uniform characterizations, cannot hold in a general form. The reason is that
non-uniformity hides differences between classes with respect to properties that only
depend on input lengths. This is also reflected in the fact that usually the non-uniform
version of a characterization is proven first and then the uniform version utilizes a
similar construction, but requires additional work to show that it can be made uniform.

When attempting to show for € and L as above that ¢ = L[Arb] using the assumption
that FO[BIT]-uniform € = L[BIT], for both inclusions one starts with a non-uniform
description of a language. In order to facilitate the uniform characterization result
in a black-box manner, one obviously needs a uniform description instead. Here,
non-uniformity by an additional advice function comes into play. This concept adds
non-uniformity externally to an otherwise uniform computation model. Hence, our
goal becomes to show that € = (FO[BIT]-uniform €)/poly, that is, non-uniformity of
circuit families can be replaced by adding a polynomially length-bounded advice to
a uniform circuit family, and similarly that L[Arb] = L[BIT]/poly. From the uniform
characterization result we immediately get (FO[BIT]-uniform €)/poly = £L[BIT]/poly,
which then yields the desired result.

In this chapter, we show that both for a wide range of classes in circuit complexity as
well as in logics over first-order structures, the usual kind of non-uniformity used in the

133

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

respective setting coincides with non-uniformity given by a separate advice function. In
case of circuit complexity, this requires a bit of additional work, as we need to construct
a general, uniform circuit family taking additional advice bits as input such that by
setting the advice bits adequately, the family computes any desired function computable
by a non-uniform circuit family with the same resource bounds. In first-order logic, non-
uniformity is given by built-in numerical predicates, which are much more similar to
an additional advice function. Here, whether the two types of non-uniformity coincide
comes down to whether the logic is powerful enough to decode and encode non-uniform
information given either by a non-uniform family of interpretations or in the form of an
advice concatenated to the encoding of the input structure.

In Section[7.1|we show that under reasonable assumptions for €, even for classes using
non-standard bases, it holds that € = (FO[BIT]-uniform €)/poly. This actually means
that for any class © coinciding with FO[BIT]-uniform €, we immediately get € = ©/poly.
We then go on to generalize this result to the counting setting. In Section[7.2] we show
that in a very general setting, it holds that L[Arb] = (L[BIT])/ poly for logics L. Again,
we generalize the result to the counting setting. Here, we do so by considering a general
form of quantitative logics. As our framework is somewhat unusual, we also briefly go
over several examples of logics and quantitative logics to which our results apply, in
particular the model-theoretic classes introduced in this thesis. Finally, we will give
some concluding remarks regarding the utility of our results and potential further
generalizations in Section

7.1 Non-uniformity Via Advice Functions in Circuit Complexity

In this section, we will show that non-uniformity of circuit families can equivalently be
replaced by non-uniformity given by an advice function under reasonable assumptions.
We will first show this for decision classes and then argue that the results transfer
to the counting setting. As we will consider more general bases beyond 8B, 8;, and
B,, we need to say a few words on how to describe circuit families over such bases
FO[BIT]-uniformly. Different gate types can simply be allowed by using one predicate
symbol Gy for each function f in the basis in analogy to the symbols G, and G, from
Teire- IN case of non-commutative functions we also need to encode the order of edges.
This can be done in the same way as for oracle gates in the definition of the vocabulary
To-circ ON page where a predicate for the index of inputs is used.

7.1.1 Decision Classes

Let € be a class of Boolean circuits. The fact that € 2 (FO[BIT]-uniform €)/poly can
intuitively be shown by non-uniformly plugging in the correct advice bits into the
circuit family with advice. The only issue here is that for the latter class, the advice is
considered part of the input, leading to increased resource requirements with respect to
the actual input. Using this idea we obtain the following lemma.

134

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

8i &i,

Figure 7.1: Using advice bits to determine the inputs to a disjunction gate.

Lemma 7.1. Let B be a Boolean basis, and S and D be sets of functions on IN such that for
any s € O(S), d € O(D), and for any polynomial p, we have sop € O(S) and dop € O(D). Let
¢ := CIRCUIT(8, S, D). Then (FO[BIT]-uniform €)/poly C €.

Proof. Let L € (FO[BIT]-uniform €)/poly via the FO[BIT]-uniform circuit family C =
(Cy)uen and the polynomially length-bounded advice function A: IN — {0, 1}, that is,
for any x € {0,1}* we have

xel & C(xoA(lx]))=1.

Let C’ = (C},),en be the circuit family where Cj, is defined as C,,,j4(s) after replacing
each gate accessing a bit of the advice by the corresponding constant. Obviously, C’ is a
(non-uniform) circuit family accepting L. Let s € S and d € D be the size and depth of
C, respectively, and let p be a polynomial such that 7 +|A(n)| < p(n). Then the size and
depth of C” are bounded by s o p and d o p, respectively. By assumption, this means that
C’is a € circuit family. O

For the converse, from a non-uniform circuit family we need to construct an FO[BIT]-
uniform circuit family that takes additional advice. A first idea is to simply connect any
pair of gates by an edge and use the advice bits to, in a sense, activate and deactivate
these edges. As a simple example, consider a disjunction-gate g with aset Vy, = {gy,..., g}
of potential inputs of g, later this will be the set of gates in the subsequent layer. Let r
be the fan-in of ¢ and let iy,..., 7, be indices such that g; ,...,g; are the actual inputs of
g. By introducing new conjunction gates cy,...,c,, where c; takes as inputs the gate g;
and a fresh advice bit a;, and using the new gates c; as inputs to g instead of the gates
8i;» the advice bits a; now act in the desired way, activating or deactivating the edges
(gi»g)- Now, when setting a; = 1 if and only if i € {iy,..., i,}, the gate computes the same
function as in the original circuit. In Figure this construction is illustrated.

There are two issues with this idea: First, connecting every pair of gates by an
edge would lead to an (undirected) clique, so the graph would not be a dag. Second,
this construction only works in a very specific setting: It uses an unbounded fan-
in gate independent of the fan-in of the original gate, and it uses bounded fan-in

135

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

conjunction. Furthermore, the construction makes use of both the fact that disjunction
is a commutative function and the fact that there is a neutral element for disjunction.

The first issue can be handled by a weaker notion of layered circuits, which ensures
that edges are only present between subsequent layers. This allows us to add all possible
edges, with the goal of later activating and deactivating them using advice bits, and still
preserve the property that the graph is a dag.

Regarding the second issue, note that some important functions such as conjunction
and exclusive disjunction share the first two properties. Therefore, we could use the
proof idea illustrated in Figure[7.I]for many interesting classes of circuit families. To
get a more general result, we will instead use additional gates and advice bits to also
determine the order of inputs as well as, in case of unbounded fan-in gates, the actual
fan-in by advice bits. While this leads to slightly bigger circuits, it works in much
greater generality. Namely, we show this for all classes of circuit families that have
access to unbounded fan-in disjunction and bounded fan-in conjunction and a certain
robustness with respect to resource bounds. Depending on applications, the more direct
idea applicable to functions such as disjunction could be advantageous. We will also
adapt the proof idea to classes NC' to make our results applicable to all classes from the
AC-, NC-, SAC-, and TC-hierarchies except for the very restrictive class NC°.

We now begin by defining a notion of weakly layered circuits, as mentioned above,
and showing that for all classes of circuit families with a certain robustness with respect
to resource bounds, weakly layered circuits are a normal form. Note that, in contrast to
usual notions of layered circuits, we do not require that gates on the same layer have the
same type for weakly layered circuits.

Definition 7.2. Let C = (V,E, a, ,out) be a Boolean circuit and let d be the depth of C.
We call C weakly layered if V is the disjoint union of sets Ly,..., L, such that out € L; and
forall0<i<d,vel;and (v,w) € E, we have w € L;,. A circuit family is called weakly
layered if all circuits in the family are weakly layered.

Lemma 7.3. Let C = (C,),en be a Boolean circuit family of size s and depth d over some
Boolean basis B. Then there is a weakly layered circuit family C’ = (C},)en 0f size s-(d + 1)
and depth d over B that accepts the same language as C.

Proof. This can easily be achieved by adding a depth-counter to the encoding of gates.
Edges then only are present if they were present in the original circuit and the depth-
counter is respected. More precisely, for any n € IN define C;, from C,, as follows: Let
C,=(V,E,a,p,out) and d be the depth of C,,.

Define C;, := (V’,E’,a’,ﬁ’, out’), where the components are defined as follows:
={(gi)|geV,0<i<d},
{((81,71):(82,12)) | (81,82) € E,ip =iy + 1},
a’((g1,11), (82, 12)) a(81,8) - (d+1)7 +iy-(d+1)+ 1,

p'(,1) = p(g), and

out” := (out, d).

(
(

The family C” := (C},),ev obviously has the desired properties. O

136

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

We are now in a position to prove that for any class € of circuit families with access to
unbounded fan-in disjunction and bounded fan-in conjunction and a certain robustness
with respect to resource bounds, it holds that € C (FO[BIT]-uniform €)/poly.

Theorem 7.4. Let B be a Boolean basis, D a set of functions on the natural numbers and
¢ := CIRCUIT(8, M), D) such that

.« O(1)CcO(D),

* for any function d € O(D) there is a d’ € O(D) with d < d’ such that d’(|w|) is definable
in FO[BIT] from A, € STRUC|Ting],

o unbounded fan-in disjunction is in FO[BIT]-uniform CIRCUIT(8,1n°1),0(1)), and
* bounded fan-in conjunction can be computed by a circuit over B.
Then € C (FO[BIT]-uniform €)/poly.

Proof. We can assume without loss of generality that O(D) € n°1), as depth is generally
bounded by size. Let L € € via the circuit family C = (C,,),,en of size s and depth d. Also,
we can assume that s and d are FO[BIT]-definable, as we can increase both size and depth
to an FO[BIT]-definable upper bound by adding dummy-gates. We proceed as explained
earlier by first transforming C to a weakly layered circuit family and then constructing
a family with all possible edges present, using advice bits to activate or deactivate edges.
Let C’ = (C;,),en be a weakly layered circuit family accepting L obtained from C by
applying Lemma(7.3] Note that C’ has size O(s- (d + 1)) and depth O(d), and each layer
contains exactly s(n) nodes.

Let n € IN and g be a gate in Cj,. Furthermore, let Ly,..., L4, be the layers of C},
and let 0 < k < d(n) be such that g € L;. Assume that k > 1 for now. Consider the
induced subcircuit of C;, rooted in g restricted to gates from layers L, and L;_;. Let
C’ be this subcircuit. We now construct from C’ the new circuit C with output gate g
that takes as inputs all input gates of the circuit C;,, all gates in L;_;, and an advice
a € {0,1}", with the following properties: For any f € 8 and for any combination of
gates g1,..., 8, € Ly_1, where r is the arity of f if f has bounded fan-in, and 1 <r <s(n)
if f has unbounded fan-in, there is an advice a € {0,1}* such that val(C,g,x oy oa) =
f(val(C,g,x0po0a),...,val(C, g, xoyoa)) for all x € {0,1}" and p € {0, 1)1l Also, for any
input position 0 <i <n—1 there is an advice a € {0, 1}* such that val(C,g,x oy oa) = x;
for all x =xj...x,_; €{0,1}" and y € {0, 1)Lkl Finally, for any constant b € {0, 1}, there is
an advice a € {0, 1}* such that val(C,g,xoyoa)=b for all x € {0,1}" and y € {0, 1)Ll We
want to again stress that in C, the gates from L;_; are additional input gates, which is
also why the strings y above have length |L;_;| = s(n). Intuitively, the above means that
the advice can be used to determine

* the type of gate g and
* the associated input bit, if it is an input gate,

* the required constant, if it is a constant gate, and otherwise

137

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Figure 7.2: Construction to replace non-uniformity by advice bits. Subcircuit Dy, for
a gate g in the original circuit, where f € 8, 1 <r <s(n), and gy,..., g(n) are
the gates on the previous layer in the original circuit.

* the function from 8 the gate ¢ computes,
* the arity r of the gate in case of unbounded fan-in functions, and
* its inputs, chosen among input gates of C;, and gates on the previous layer.

For simplicity, we use unbounded fan-in disjunction and bounded fan-in conjunction in
the construction. These ultimately have to replaced by subcircuits over 8, which exist
by assumption.

First, for any function f € 8 and any possible fan-in 1 <r <s(n) of f we construct a
subcircuit Dy, that computes the value of gate g, if ¢ has type f and fan-in r, provided
the correct advice bits are chosen. For this, Dy, takes as inputs all gates from L;_; as
well as advice bits ap fol e 3D, rs(n)) where ap i determines whether the i-th input
of g is the j-th gate from L;_;, if g computes the function f and has fan-in exactly r.
This can be done with a gate of type f getting r inputs gy 1,..., g - that are disjunction
gates. The gate gy ; determines the i-th input to g by getting as inputs one gate for any
gate of the previous layer. Each of these gates is the conjunction of a gate from L;_
and the corresponding advice bit. More precisely, the j-th conjunction gate takes as
inputs the j-th gate from L;_; and the advice bit ap it We illustrate this construction
in Figure Note that we omit indices of advice bits in our illustrations and simply
label all advice bits by a. All these advice bits are distinct and as they are provided
non-uniformly we can fix any ordering of them to complete the construction.

Next, we will construct for any function f € 8 a subcircuit Dy, which computes the
output of g, if g computes the function f and provided the correct advice bits are chosen.
For any bounded fan-in function f € 8, we can simply choose D := Dy ,, where r is
the arity of f. For unbounded fan-in functions we use a disjunction over all possible
fan-ins 1 < r < s(n) and additional advice bits ap,,r for f € B,1 <r <s(n) to choose the
correct circuit D .. This construction is illustrated in Figure again omitting indices
of advice bits.

138

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Figure 7.3: Construction to replace non-uniformity by advice bits. Subcircuit Dy for a
gate g in the original circuit, where f € B,

Figure 7.4: Construction to replace non-uniformity by advice bits. Subcircuit C for a
gate g in the the original circuit.

Similarly, we can construct a circuit D;,, which computes a disjunction over n con-
junction gates, one for each input position. The i-th of these conjunction gates takes as
inputs an input gate for the i-th input bit and an input gate for the additional advice bit
ap,,,i-

Finally, the circuit C can be constructed using the same idea as for Dy for unbounded
fan-in gates (and hence also for Dj,), using a disjunction over the subcircuits D for all
f € B8, Dy, and a gate for the case that g computes a constant, and again using additional
advice bits, namely ac ¢ for f € B, ac,; for 1 <i <n, as well as ac,pg, selecting the correct
subcircuit and in case of a constant gate also providing the value for that gate. The
construction, using 8 =: {fl,...,f|3|}, can be seen in Figure indices of advice bits
again being omitted.

It is obvious from the construction that, when choosing adequate assignments to the
advice bits and using the actual gates from L;_; in C;, instead of the input bits in C, the
circuit C computes the value of gate g in the original circuit. Hence, the in-going edges
of g can be replaced by the circuit C in C),. This construction has to be repeated for all
gates in C,.

139

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

The size of the circuit C and thereby also the number of advice bits in this circuit,
including the required circuits D¢, Dy ,, and Dy, is in

O|1B1+) _(@r(f)-s(m) +|Bumpl - s(n)* + 1],

f eBbound

where ar(f) is the arity of f, if f is a Boolean function with bounded fan-in, and Byyung
and B,,;, are the sets of bounded and unbounded fan-in functions in 8, respectively.
As |8B| and ar(f) for all f € Byoung are constant, this means that both size and number
of advice bits are in O(s(n)? + n). Furthermore, the depth of C, again including the
subcircuits D¢, D¢, and Dy, is 7 and hence constant.

The case that k = 0, that is, g € L, can be handled analogously. Here, the subcircuits
D and the corresponding advice bits are not required, as we know that such gates can
only be input gates or constant gates.

In total, this construction yields a circuit family C” with the required properties of
size O(s®-d +s?-d - n) and depth O(d). Finally, we need to argue that the constructed
circuit family is FO[BIT]-uniform. This is easy to see, as the constructed circuits have
a really simple structure: Simply construct a circuit with d(n) + 1 layers each of which
have s(n) gates and are connected by copies of the subcircuit C as defined above. Here,
it is important that s and d are FO[BIT]-definable, and that the unbounded fan-in
disjunction can be computed by a FO[BIT]-uniform circuit family. It follows that
L € (FO[BIT]-uniform CIRCUIT(8, n°1), D))/ poly, finishing the proof. O

The above theorem applies to many natural classes with access to unbounded fan-in
disjunction and bounded fan-in conjunction, in particular it is immediately applicable
to all classes from the AC-, SAC-, and TC-hierarchies. Among classes we consider in
this thesis, the only remaining case are classes from the NC-hierarchy. For this reason,
we focus on these classes next, more precisely on classes NC' with i > 1.

The issue with using the proof idea of Theorem [7.4|for classes from the NC-hierarchy
is that in order to compute unbounded disjunctions over B, we need circuits of loga-
rithmic depth. Applying this construction to each gate hence would increase the depth
by a logarithmic factor. To handle this, we group operations in NC' circuit families into
batches of logarithmic depth. By using a certain normal form, we can ensure that in all
of the batches only copies of the same subcircuit with different inputs occur. Then, all
outputs computed by a batch can instead be computed by an unbounded fan-in gate for
a fixed unbounded fan-in Boolean function that is not necessarily commutative, more
precisely the function computed by the aforementioned subcircuit. This allows us to
apply Theorem [7.4]in order to obtain an FO[BIT]-uniform circuit family with advice.
Finally, by replacing unbounded fan-in gates by circuits of logarithmic depth, we then
obtain the desired circuit family.

As a first step, we need a more restrictive normal form for NC circuits than the
weakly layered circuits used earlier, which will allow us to group operations into batches
as planned. In the following, to simplify the presentation, we do not consider negation
gates to be separate gates for non-uniform circuit families in input normal form. Instead,

140

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

we consider negated input gates to be input gates that gives access to a negated input bit
the same way as we already did in the FO[BIT]-uniform setting.

Lemma 7.5. Leti €N, i > 1 and let C = (C,,) e be an NC' circuit family. Then there is an
NC' circuit family C" = (C},),.en of some depth d accepting the same language as C with the
following properties:

1. C’is in input normal form,
2. C'is weakly layered and alternating with the output gates being conjunction gates,
3. for all n, d(n) is divisible by the smallest even number that is at least log, n, and

4. for all n and all input gates g in C,,, either there is no path from g to the output gate of
C,,, or the length of any such path is exactly d(n).

Proof. By Lemma(7.3|we can assume without loss of generality that C is weakly layered.
We can also assume it to be in input normal form. In order to make C alternating and
have the required properties with respect to its depth we can use similar ideas to those
used in the proof of Lemma

First, we replace each layer by two layers, a A-layer followed by a V-layer, using
the corresponding construction from the proof of Lemma More precisely, if g
is a disjunction gate with predecessors g; and g,, we change its type to A and add
an additional gate g, of type V. We then replace the edges from g; and g, to g by
the edges {(g1,2v) (82, 8v),(gv, &)} Similarly, for a conjunction gate g, we add two
new gates g, and g, of type V and replace the edges from g; and g, to g by the
edges {(g1,8v.1),(82,8v.2),(8v,1,8),(8v.2,&)}. Recall that this construction was illustrated
in Figure As in the bounded fan-in case all A- and V-gates need to have fan-in 2,
we can then add additional constants as predecessors if needed, in a way that does not
change the outputs of the respective gates. Let C’ be the resulting circuit family.

We then need to ensure that there is a function d: IN — IN such that for all n € N, all
paths from an input gate to the output gate in C;, have length exactly d(n) and that d(n)
is divisible by the smallest even number that is at least log, n. First note that due to
the circuit being layered, all paths from a fixed gate to the output gate have the same
length. Now, let d’(n) be the depth of C” and d(n) > d’(n) be the next multiple of the
smallest even number that is at least log, n. For any input gate g, if the distance from g
to the output gate is < d(n), simply replace g by an alternating path of A- and Vv-gates of
adequate length followed by an input gate accessing the same input bit that g originally
accessed. To ensure a fan-in of two for gates on these new paths, add constants again as
necessary. Ul

Theorem 7.6. NC' C (FO[BIT]-uniform NC)/poly for all i > 1.

Proof. Let L € ¢ = NC' via the circuit family C = (C,,),en of depth d. By Lemmawe
can assume that C has properties (1)-(4) from the statement of that lemma. Fix some
n € IN and the corresponding circuit C, from C. Our goal now is to group the operations
in C,, into subcircuits of depth dp,p, (1) for all n € IN, where dp,in (1) is defined as the

141

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

dbatch(n)
7”®7”7®7”7® 7777777777777777777777777777777777 ®,ﬂ—®ﬂ La(m)-dymencn
zdba;ch(m dpatch (1)
i BNy W oy WSy O S (A== (W) =+ Litr-2duman
777@7”,®,,,,® 7777777777777777777777777777777777 @77”@,, Layeni
dbatch(n)

[R —_— Xy —---- 6 Xp-1 ---- Xp --- Ly

Figure 7.5: Batching construction for classes NC'. Circuit from an NC circuit family in
the normal form of Lemma Layers marked by dashed lines, layers inside
batches of depth dy,ch (1) mostly omitted. For simplicity, no constant gates
are shown.

smallest even number > log, n. To make this more precise, let Ly, ..., Ly, be the layers
of C,,. Then for 0 < j < d(n)/dyacn(n), the j-th batch is the substructure of C,, induced
by the gatesin L4, (n) Y- UL(js1).d,,.(n) 1-€., the substructure obtained by restricting
the set of gates to the specified set and restricting the relations and function defining
the circuit accordingly. This is possible as by assumption, d(#n) is divisible by dy,ich (7).
In the following we will call these subcircuits batches. We will call gates in the last layer
of a batch, i.e., the layer closest to the output gate of C,,, output gates of that batch.
Note that the batches are not necessarily circuits, as there may be non-input gates with
fan-in 0. Also, the batches overlap: Batch j and batch j + 1 both contain all gates from
L(j41)dyyen(n)- This is intended, as we will for each j replace all paths from the first to the
last layer in batch j + 1 by direct edges, and change the gate type of the output gates
of the batch accordingly. Here, it can be necessary to add additional gates copying the
value of output gates of batch j, as the new output gates of batch j + 1 might require
several connections to the same output gate of batch j. As C, is alternating, all paths
in each of the batches are alternating between A- and V-gates. Since the output gate is
an A-gate and dyp,c(n) is even, the output gates of each batch are A-gates as well. The
structure of C,, including grouping of layers into batches is illustrated in Figure
Now consider some 0 < j < d(n)/dpaicn (1) and a non-constant gate g € Lj11).dy, (1), 1-€-
g is a non-constant output gate of batch j. Let C, be the subcircuit of C, rooted in g

142

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

and let C be the substructure of C, induced by Lj.g,. ()Y " UL(j11)dyyen(n)- 1f] >0, the
structure C is not a circuit, as the gates in its lowest layer are not input gates but still
have no predecessors We can remedy this by simply treating the gates on the lowest
layer as input gates, associating the {-th gatein L;. 4, . (») with the {-th input bit. Now by
assumption, Cé is a weakly layered, alternating circuit w1th exactly dyaicn(n) layers. Let
C{ be the circuit C; unfolded into tree-shape and extended to a full binary tree of depth
Apatcn(n). For the latter, constant gates are replaced by full binary trees of adequate
depth. This transformation does not increase the depth of the circuit, so the size of Cy is

2%aen(M) which is still polynomial in # when applying the transformations to all c1rcu1ts
in C. Thls structure is partially illustrated for the output gate of C,, in Figure[7.5] As the
underlying graph of C; now is a full binary tree, the output gate is an A-gate, and C7
is still alternating, Cy now actually is a fixed circuit apart from the input gates. This
means that the function computed by g is the fixed function h, computed by such a
circuit, with inputs that are either constants or chosen from L; 4, . (-

This means that we can replace for all 1 <j <d(n)/dpacn(n) all gatesin L4 () by
gates of type h,, with inputs chosen among new constant gates or gates in L(j-1)-dyen(n)
and remove all layers Lj» with (j — 1) dpatch (1) < j’ <] - dpatch- The only issue is that this
construction may introduce multiple edges for the same pair of gates. To prevent this, we
create a number of copies of each of those gates. As the total number of inputs for each
of the gates of type h,, is polynomial, this requires only a polynomial number of copies.
This yields a circuit C;, of depth d(n)/dy.ich(n) using gates computing the function h,,.
By applying this construction for each 1, we obtain a circuit family C” of polynomial
size and depth O(d(n)/logn) over basis {(h,),ens fo, fi} S{V, Az, (hy)nens for f1} such that
for all x € {0,1}*:

xel & C'(x)=1.

Let ¢ := CIRCUIT({V, Ay, (h,))nenNs for f1} 1 O((logn)'~')). Obviously, C’ € ¢’. As ¢’
has the required propertles, Theorem [7.4] H now yields an FO[BIT]-uniform ¢’ circuit
family C” and a polynomially length-bounded advice function A: N — {0, 1}* such that
for all x € {0,1}*:

xeL < C”(x0A(x]).

Finally, we replace any gate g in C” computing one of the unbounded fan-in functions
v and (h,,),en by a subcircuit of logarithmic depth, obtaining the circuit family C””. This
is possible as both V and (h,,),cn can be computed in FO[BIT]-uniform NC'. Now, C””
is a circuit family over By. As C” has polynomial size and depth O((logn)™!), C”” has
polynomial size and depth O((logn)?), which means that C”” is an FO[BIT]-uniform NC!
circuit family. As this last step does not change the advice bits, we immediately have for
all x € {0,1}*,

xeL < C”(x0A(lx])) =1,

finishing the proof.]

143

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Summarizing, we have obtained the following result for the relationship of non-
uniform classes based on different forms of non-uniformity.

Corollary 7.7. Let B be a Boolean basis, D be a non-empty set of functions on IN. Let € be
either NC' for some i > 1, or CIRCUIT(8, n%1), D) with the following properties:

* O(1) €O(D), and for any d € O(D) and polynomial p, we have d o p € O(D),

* forany d € O(D) thereisa d’ € D with d < d’ such that d’(|w|) is definable in FO[BIT]
from Ay, € STRUC[T4y,

o unbounded fan-in disjunction is in FO[BIT]-uniform CIRCUIT(8,n°1),0(1)), and
* bounded fan-in conjunction can be computed by a circuit over B.
Then € = (FO[BIT]-uniform €)/poly.

We formulated the above results in terms of FO[BIT]-uniformity, as this is the type
of uniformity used throughout this thesis. An immediately arising question is whether
the results also apply to other forms of uniformity. We will briefly discuss this next.
Lemma directly transfers to any reasonable uniformity, as the uniformity con-
dition is not relevant for the proof (we could even use the class ¢/poly instead of
(FO[BIT]-uniform €)/poly). For Theorems and it is obvious that the result
transfers to less restrictive types of uniformity. Regarding more restrictive forms of
uniformity, there are not many options commonly used. For most classes, Up-uniformity
coincides with FO[BIT]-uniformity. Regarding NC!, and possibly all classes using at
least logarithmic depth, we expect that the proofs transfer to the Ug-uniform setting,
but we will not proof this here. As other very weak forms of uniformity such as FO[<]-
uniformity are not the focus of this thesis, we do not attempt to generalize the results to
this setting. It could be interesting to do this in the future.

7.1.2 Counting Classes

We will now show that the results of the previous section also apply to counting classes
from circuit complexity, i.e., that #& = (FO[BIT]-uniform #&)/poly for a wide variety of
classes €. For the most part, the proofs of the previous section directly transfer to the
counting setting. We will argue why they also apply to counting and how to handle the
few points where the constructions have to be modified.

First, note that it would be natural to only cover classes of circuit families over bases
B AV, Ak, Vi, fo, f1 | k € N} in this section, since we defined counting classes only
over such bases. The proof of Theorem[7.6|used Theorem [7.4with a basis containing
a different family of Boolean functions, though. Hence, if we only prove the counting
version of Theorem [7.4]for bases B C {A,V, Ar, Vi, = fo, fi | k € N}, we will not be able
to use it for the counting version of Theorem For this reason, we show a more
general version of the former, i.e., we show it for a general form of counting arithmetic
circuits. For completeness, we will also state the counting version of Lemma|7.1]in this
general setting. We begin by defining the required generalization of counting arithmetic

144

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

circuits, allowing arbitrary functions and families of functions over N, but still only
using (possibly negated) bits as inputs.

Definition 7.8. Let B be a finite set of functions f: IN¥ — IN for some k € N and families
(fi)iew of functions f;: N’ — N, and n € N. We call B a generalized counting arithmetic
basis. A generalized counting arithmetic circuit over B on n inputs is a tuple (V,E, a, p,out)
with the following properties:

* (V,E)is adag,
* «ais an injective function E — N,

* Bisafunction V —{0,...,n-1,-0,...,-n-1}UB,

if p(g) €1{0,...,n—1,-0,...,—n—1, fy, f1} for some g € V, then g has in-degree 0 in
the graph (V,E), and

if f(g) € B for some g € V and m is the in-degree of g in (V,E), then B(g) is a
function of arity m or a family of functions.

Families of generalized counting arithmetic circuits, size and depth of such families, as well
as the function C or C computed by a circuit C or circuit family C, respectively, are
defined in analogy to the respective notions for Boolean circuit families.

As usual, we say that f labels the gates in the circuit (by the function or input bit
they compute). We use CIRCUIT(8,s,d) to refer to the class of families of generalized
counting arithmetic circuits of size s and depth d over 8B as well as the class of functions
computed by such circuits. This generalizes to the case where, instead of s and d, sets of
functions S and D are given. Note that the above is a very general notion of counting
arithmetic circuits as we do not even require that there are Boolean functions that result
in the counting functions used in the basis of a generalized counting arithmetic circuit.

In order to show (FO[BIT]-uniform #¢&)/poly C #¢, the proof idea of simply plugging
in the advice bits directly works in the counting setting.

Lemma 7.9. Let B be a generalized counting arithmetic basis, and S and D be sets of functions
on N such that for any s € O(S), d € O(D), and for any polynomial p, we have sop € O(S)
and d op € O(D). Let € := CIRCUIT(8, S, D). Then (FO[BIT]-uniform #&)/ poly C #¢.

Proof. This can be proven completely analogously to Lemma Input gates that access
parts of the advice can again be replaced by the corresponding constant gates, and the
arguments concerning size and depth of the circuit family also apply in the counting
setting. Ul

We will now prove the counting version of Theorem for classes of functions
defined in terms of the above notion of generalized counting arithmetic circuits. The
construction in the proof of the decision version ultimately only uses arbitrary gates
from the basis with inputs that compute exactly the values of their original inputs, and
the remainder of the construction is based on A- and V-gates that have exactly one

145

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

witness if they evaluate to 1. Hence, the proof can directly be transferred to this setting,
using gates for x and + instead of A and V, respectively. Regarding the required normal
form, note that the notion of weakly layered circuits directly transfers to generalized
counting arithmetic circuits, as it is based on a property of the underlying graphs of the
circuits in a family. As a first step, we now show that weakly layered circuit families are
a normal form in this setting, too.

Lemma 7.10. Let C = (C,)) e be a family of generalized counting arithmetic circuits over
some basis B of size s and depth d. Then there is a weakly layered family C’ = (C;,),eN
of generalized counting arithmetic circuits of size s-(d + 1) and depth d over basis B that
computes the same function as C.

Proof. The construction from the proof of Lemma [7.3]is applicable for arbitrary gate
types, as only the underlying graph is modified. For all circuits in the family, the
subcircuit induced by the set of gates for which there is a path to the output gate is
isomorphic to the the respective subcircuit of the original circuit from C. Hence, the
construction directly works in the counting setting. O]

We are now in a position to prove the counting version of Theorem

Theorem 7.11. Let B be a generalized counting arithmetic basis, D be a set of functions on
N, and ¢ := CIRCUIT(8,n°W"), D) such that

* O(1)cO(D),

* forany d € D there is a d’ € D with d < d’ such that d’(|w|) is definable in FO[BIT]
from Ay, € STRUC[T4y],

o unbounded fan-in summation is in FO[BIT]-uniform CIRCUIT(8,n%1),0(1)), and
* bounded fan-in multiplication can be computed by a circuit over B.
Then € C (FO[BIT]-uniform €)/poly.

Proof. This can be proven analogously to Theorem Similar to the decision version,
we describe the construction using unbounded fan-in addition and bounded fan-in
multiplication for simplicity. These gates ultimately have to be replaced by the corre-
sponding subcircuits. Let F € € via the circuit family C = (C,,),,en of size s and depth
d. Without loss of generality assume that d <s and both s and d are FO[BIT]-definable.
Let C' =(C),).en be a weakly layered circuit family computing F. Note that C” has size
s-(d+1) and depth d, and each layer contains exactly s(1) nodes.

Let n € IN and g be a gate in C;,. Let Ly, ..., Lj(,) be the layers of C} and let 0 < k < d(n)
be such that g € Ly. Assume that k > 1 for now. As in the proof of the decision version,
a circuit C with output gate g is constructed that takes as inputs all input gates of the
circuit C;,, all gates in L;_; and an advice a € {0, 1}*, and has the following properties:
For any f € 8B and for any combination of gates g,...,¢, € Ly_;, where r is the arity
of f if f has bounded fan-in, and 1 < r < s(n) if f has unbounded fan-in, there is an

146

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

advice a € {0, 1}* such that val(C,g,x oy oa) = f(val(C,g;,xoyoa),...,val(C, g, x 0oy oa))
for all x € {0,1}" and p € {0, 1}/1l. Also, for any input position 0 <i < n—1 there is
an advice a € {0,1}* such that val(C,g,x oy oa) = x; for all x = xq...x,_7 € {0,1}" and
v € {0, 1}/1l. Finally, for any constant b € {0,1}, there is again an advice a € {0,1}*
such that val(C,g,xoyoa) =b for all x€{0,1}" and y € {0, 1}lLe-1l. Here, val is defined
analogously to how it is defined for Boolean circuits, i.e., val(C, g, x) is the value of gate
g in circuit C, when x is given to C as input. Note that in the proof of the decision
version, C is constructed in such a way that for any newly added conjunction gate,
one of its two inputs is an advice bit, and for an adequate choice of the advice bits,
at most one predecessor of any newly added disjunction gate is non-zero. Hence, we
can simply use summation-gates instead of disjunction-gates and multiplication-gates
instead of conjunction-gates to obtain generalized counting arithmetic circuits with the
same functionality. The case that k = 0, i.e., g € L, can be handled analogously again.
The desired circuit family can than be constructed by repeating the construction for
all gates. The arguments concerning size, depth, and uniformity of the resulting circuit
family are identical to the corresponding arguments for the decision version, finishing
the proof. O

Next, we cover the case of classes from the #NC-hierarchy. We begin by transferring
the normal form from Lemma|7.5|to the counting setting. This normal form together
with the previous theorem will then allow us to prove the counting version of Theo-
rem

Lemma 7.12. Let i € N withi > 1 and let C = (C,),en be a #NC' circuit family. Then there
is an #NC' circuit family C" = (C;,),enN of some depth d accepting the same language with the
following properties:

1. C’is weakly layered and alternating with the output gates being addition gates,
2. forall n, d(n) is divisible by the smallest even number that is at least log, n, and

3. for all n and all input gates g in C,, either there is no path from g to the output gate of
C,,, or the length of any such path is exactly d(n).

Proof. By Lemma(7.10|we can assume without loss of generality that C is weakly layered.
As C is a counting arithmetic circuit, it is in input normal form. Now, the same construc-
tion as in the proof of Lemma can be used. Here, conjunction and disjunction are
replaced by multiplication and addition, respectively. The construction is based on the
idea of adding new dummy-gates between gates, which only have one input in order
to not change the output. To ensure that A- and V-gates have fan-in two, additional
constant gates were added as predecessors to gates that would otherwise only have
one predecessor. This construction obviously still works in the counting setting, as 0
and 1 are the neutral elements not only for V and A, respectively, but also for + and X,
respectively. O]

Finally, we are in a position to show the counting version of Theorem ie.,
#NC' C (FO[BIT]-uniform #NC')/poly. As mentioned earlier, we proved Theorem m

147

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

for generalized counting arithmetic circuits as this will allow us to apply it in the fol-
lowing proof. The reason is that similar to the proof of Theorem|7.6} parts of circuits are
grouped into batches and can then be computed by individual gates, which compute the
function computed by an alternating, tree-shape circuit of the respective depth. By ap-
plying this transformation to the whole circuit family, we obtain a family of generalized
counting arithmetic circuits, for which we can apply Theorem [7.11}

Theorem 7.13. #NC' C (FO[BIT]-uniform #NC')/poly for all i > 1.

Proof. We proceed analogously to the proof of Theorem Let L € ¢ = #NC' via the cir-
cuit family C = (C,,),en of depth d. By Lemma[7.12|we can assume that C has properties
(1)-(3) from the statement of that lemma. Fix some n € IN and the corresponding circuit
C,, from C. Define dy,ich(n), Lo, .- ., La(n) and batches 0 to d(n)/dpacn(n) in the same way
as in the proof of Theorem[7.6]

Now consider some 0 < j < d(n)/dpatch (1) and a non-constant gate § € L 1).4,,,.(n)- BY
the assumptions, g is an x-gate. Let C; be the subcircuit of C,, rooted in g and let C,
be the substructure of C; induced by Lj.g,. . (n) Y " UL(j11)dy,e(n)- As in the proof of
the decision version, the gates on the lowest layer of C; can be treated as input gates,
basically associating the {-th gate in L 4 () with the {-th input gate. Let C{ be the
circuit Cé unfolded into tree-shape and extended to a full binary tree of depth dpcp (7).
For the latter, constant gates are again replaced by full binary trees of adequate depth.
The size of Cy is 2%aen(") which is polynomial in 11 (when considering the whole family
C). Now, the subcircuit Cy is a fixed circuit apart from the input gates. This means that
the function computed by g is the fixed function h, computed by such a circuit with
inputs being gates from L;.4 ;) or constant gates.

This allows us to construct a circuit C;, of depth d(n)/dpacn (1) using gates computing
the function h, or constants. Due to possible multiplicities of edges, we again have
to introduce a polynomial number of copies of gates. Ultimately, this results in a
circuit family C’ of polynomial size and depth d(n)/dpaicn (1) over basis {(h,,),en fo, f1} €
{+,%2, (hy)uens for f1} such that for all x € {0, 1}

By applying Theorem we obtain an FO[BIT]-uniform circuit family C” over basis
{+,%2, (hy)nens for fi) of polynomial size and depth O((logn)'~!') and a polynomially
length-bounded advice function A: IN — {0, 1}* such that for all x € {0,1}",

f(x)=C"(x 0 A(lx]))-

Finally, gates computing either an unbounded fan-in sum or a function from (h,,),en
can be FO[BIT]-uniformly replaced by subcircuits of depth O(logn) over basis {+;, x,},
yielding a FO[BIT]-uniform #NC’ circuit family C"”. O

In the following corollary, we summarize the results on the relationship of non-
uniform classes based on different forms of non-uniformity in the counting setting.

148

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Corollary 7.14. Let B be a generalized counting arithmetic basis, and D be a set of functions
on IN. Let € be either #NC' for some i > 1, or CIRCUIT(8,n°1), D) with the following
properties:

* O(1) CO(D), and for any d € O(D) and polynomial p, we have d o p € O(D),

* for any d € O(D) there is a d’ € O(D) with d < d’ such that d’(|w|) is definable in
FO[BIT] from A, € STRUC| i),

o unbounded fan-in summation is in FO[BIT]-uniform CIRCUIT(8,n°1),0(1)), and
* bounded fan-in multiplication can be computed by a circuit over B.

Then € = (FO[BIT]-uniform €)/poly.

7.2 Non-uniformity Via Advice Functions in Logics

We will now turn our attention to complexity classes based on logics for which valuations
are first-order structures. It turns out that due to the closer similarity of built-in
predicates in first-order logic and a polynomially length-bounded advice function, the
two notions coincide for a wide variety of classes. While we do require that the logic
defines properties of first-order structures and will also need a certain closure property,
we will not make any assumptions about what kind of objects formulae of the logic are.

We will first cover the case of decision classes and will then argue that the proofs
directly transfer to the counting setting.

7.2.1 Decision Classes

Here, we will show that for a wide variety of model-theoretic decision classes, the
different types of non-uniformity coincide. For this, we use a very general notion of
logic, which was used by Liick [Liic20], identifying sufficient assumptions that allow us
to prove that the different kinds of uniformity coincide.

We start by introducing the general notion of logic.

Definition 7.15. A logic L is a triple £ = (D, s,), where @, and 2(, are classes
and | ,C 2, x D is a relation, called the modeling relation of L. We call elements of ®,
formulae of L and elements of A , valuations of L.

To illustrate the definition, we describe how first-order logic FO over finite, relational
structures and restricted to sentences, as usually used in the context of descriptive
complexity, fits into this framework.

Example 7.16. First-order logic over finite, relational structures and restricted to sen-
tences can be defined in the above framework by setting FO := (®rg, 2o, Fro), where
Dpp is the class of all first-order sentences over arbitrary vocabularies, g is the class
of all finite first-order structures over arbitrary vocabularies with domains of the form
{0,...,n—1} for some n € N, and |Fgp is the usual modeling relation of first-order logic.

149

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

For simplicity, we assume that first-order vocabularies are described by the number of
their relation symbols and a tuple of the arities of these symbols. We can then refer to
the symbols using indices. Further, every formula ¢ € ®py contains information about
the associated vocabulary, and for a formula ¢ with associated vocabulary o, we only
allow structures from STRUC[co] to be models of ¢.

For any vocabulary o we denote by ®g, the class of o-sentences and by 2, :=
STRUC]|o] the class of o-structures. Accordingly, P and g are the disjoint unions of
all classes ®f, and A7, respectively. It then holds that for any vocabulary o, ¢ € Of,,
and A € o, we have

AEFEp=>AcA,.

Note that this framework is very general, allowing many objects that would usually
not be considered logics. As we are only interested in a framework to transfer given
results from the FO[BIT]-uniform setting to the non-uniform setting, this is not an issue
here. It is not the goal of this chapter to contribute to the discussion on what objects
should be considered logics.

In the following, we are interested in logics where valuations are first-order structures.
The reason is that by associating first-order structures with their binary encodings, such
logics define classes of languages in the usual sense of descriptive complexity, and thus
give rise to model-theoretic characterizations of complexity classes. Furthermore, in
order to define built-in predicates, we need to be able to distinguish between formulae
(and structures) over different first-order vocabularies. For this reason, we introduce the
following notion of logics over FO-structures.

Definition 7.17. A logic L = (D,) is called a logic over FO-structures, if

Ap=Uo and Dp=| |BF
FO-voc-
abulary o
for subclasses @7 of @ such that for any FO-vocabulary o, ¢ € @7, and A € g, we
have

AE; ¢ = A e, =STRUC[o].

Now, for any logic £ over FO-structures and any set of numerical predicates R, we
can define the complexity class L[] of languages that are exactly sets of encodings
of the models of £-formulae with built-in predicate symbols that are interpreted by
predicates from 9.

Definition 7.18. Let £ = (®,,2,,) be a logic over FO-structures and R be a set
of relations over IN. Then L[] is the class of languages L C {0,1}* for which there
are vocabularies 0 and 7 = (Ny,...,N¢), a formula ¢ € CDZUT, and a non-uniform family
I = (I,),en of interpretations of symbols in T by relations from R such that for all
A € STRUC|[o], we have

enc,(A) € L & AULgoma)(7) E @,

150

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

and x ¢ L if x is not the encoding of a o-structure. Here, I|gom(a)/(7) is a shorthand for
(Ldom(a)(N1),- -, Ljdom(a) (Nk))-

As desired, when using the definition of first-order logic in this framework given in
Example the corresponding complexity class FO[R] arising from Definition
coincides with our earlier definition of this class for any set of built-in relations fR. Simi-
lar as for FO[R], we will also by abuse of notation identify numerical predicate symbols
with numerical predicates, as the definition asks for the existence of a corresponding
interpretation of the symbols and hence we can always assume that specific symbols are
interpreted as intended.

Recall that the goal of this section is to show L[Arb] = L[BIT]/poly for a wide variety
of logics L. Hence, we will exclusively be interested in classes L[9R] where R is either
{BIT} or Arb. In order to show that the two classes coincide, the logic has to be powerful
enough to encode and decode non-uniform information in the different forms, i.e., either
given as part of the input structure as in the definition of L[Arb], or as part of the
encoding of the input structure as in the definition of L[BIT]/poly. As FO-queries are
powerful enough for this, we can formalize this by requiring that the logic is closed under
application of FO-queries. This property corresponds to the property of #Win-FO[BIT]
described in Lemma generalized to arbitrary sets of built-in predicates. For technical
reasons, we will need a slightly more general notion of this closure property. In order to
simplify the statement of our main theorem, we first precisely define this notion.

Definition 7.19. Let £ = (D, %o, 1) be a logic over FO-structures and R be a set of
relations over IN. We say that L[R] is closed under applying partial FO[R]-queries, if for
any

* vocabularies o,0’, 7" with v/ = (Ny,...,N),

* formula ¢ € DY,

* FO-query J: STRUC[¢’ U t’] —» STRUC|[0], and
* FO-formula ¢ over ¢’ U T/,

there is a formula ¢’ € CDZ,UT, such that for all A € STRUC[0’] and non-uniform families
of interpretations 7 = (I,)),,en of the symbols in 7’ by relations from R, we have

A UTjdom(a)(T) Fz ¢" &= HA UL goma)(T) Fz ¢
if AU I|dom(A)|(T,) Fro ¢, and AU I|d0m(A)|(T,) ¥r (p’ otherwise.

We are now in a position to prove the main theorem of this section, i.e., the fact
that L[Arb] coincides with L[BIT]/poly for a wide range of logics £. The premise
will be that L[Arb] is closed under applying partial FO[Arb]-queries. The proof for
L[BIT]/poly C L[Arb] will be similar to the proof of Corollary as we apply the
composition of several FO-queries to a formula, using the closure property to argue that
a given language from L[BIT]/poly is also in L[Arb].

151

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Theorem 7.20. Let L = (D, ,[y) be a logic over FO-structures such that L[Arb] is
closed under applying partial FO[Arb]-queries.
Then L[Arb] = L[BIT]/poly.

Proof. L[Arb] C L[BIT]/poly: Let L € L[Arb], i.e., there are vocabularies ¢ and t,
a formula ¢ € @EUT, and a non-uniform family 7 = (I,)),cn of interpretations of the
symbols in 7 such that for all A € STRUC|[o] we have

enc,(A) € L & AUILgoma)(7) Fz @,

and x ¢ L if x is not the encoding of a o-structure. The formula ¢ also defines a language
L’ as follows: For all x € {0,1}7,

xel e enc, . (x)kEr @,

if x is the encoding of a 0 U T-structure and x ¢ L’ otherwise. By definition, L’ € L[BIT]
via ¢, using the empty vocabulary for numerical predicate symbols.

Now by definition of the encoding function enc,,, for any cardinality n of domains
and any interpretation B of the symbols in 7 as relations over {0,...,n— 1}, there is a
suffix enc’(B) € {0, 1}* such that for any A € STRUC[¢] with |[dom(A)| = n we have

enc;bT(encU (A)o enc’(B)) =AUB.

Furthermore, there is a polynomial p such that enc’(B) is bounded by a polynomial
in the cardinality n of the domain. This means that we can define a polynomially
length-bounded advice function A: N — {0, 1}* by

A(n) == enc’(I,(7)),

if 1 is the length of encodings of o-structures and A(n) := 17" otherwise, where
error(n) simply is a number such that #n + error(n) is not the length of any encoding of a
o U t-structure. By definition of A, for all x € {0, 1}* that are encodings of o-structures
we have

encylye (x 0 A(lx])) = ency! () UT gomiencs (1 (7)-

It now holds that for all x € {0,1}",

xelL & enc;l (X) U I|dom(encgl(x))|(T) lZ_E ()
= encyl(xo A(lx]) @
< xoA(lx|)eL’,

if x is the encoding of a o-structure. On the other hand, if x is not the encoding of a
o-structure, then x ¢ L and x o A(|x|) ¢ L’ by definition of A. Hence, L € L[BIT]/poly.

L[BIT]/poly C L[Arb]: Let L € L[BIT]/poly, i.e., there is a language L’ € L[BIT]
and a polynomially length-bounded advice function A: N — {0,1}* such that for all
x€1{0,1}7,

xelL < xoA(x|)eL".

152

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

By definition of L[BIT], there is a vocabulary ¢ and a formula ¢ € CDZU(BIT

all A € STRUC[o] we have

) such that for

enc,(A) €L’ & AU (BIT|gom(a)-1) E£ @,

and w ¢ L’ if w is not the encoding of a o-structure. Here, by BIT, we denote the
restriction of the BIT-predicate to numbers < n. To be precise, the vocabulary of built-in
predicate symbols could also contain several symbols that are all interpreted as BIT,,.
The proof easily generalizes to this case.

As mentioned in Remark there is an FO[BIT]-query bin;': STRUC| Tstring U
(BIT)] - STRUC[o U(BIT)] such that for all w € {0, 1}* that are encodings of o-structures
we have

bin,' (A, U (BIT}y)) = enc,' (w) U (BIT| gom

enc;' (w)])-

Let p be a polynomial such that |[A(n)| < p(n) for all # € N. From this we can define a
vocabulary o4 = (Ay,...,Ax, Alen,1,---»Alen,k) such that for all cardinalities of domains n €
N, p(n) < Zle n?(Ai) This means that there is a non-uniform family of interpretations
I = (I,,),en such that I, interprets the symbols Ay,...,A; such that their encoding in
binary is A(n) and the symbols Ay, 1,...,Alen x such that their encoding in binary is
1|A(”)|OZ$=1”ar(A’)’|A(”)|, i.e., a unary encoding of |A(n)|. For this, assume the encoding
function enc’ used in the proof of L[Arb] C L[BIT]/poly above, defined in accordance
with the usual encoding function for first-order structures. Now it is easy to see that
there is an FO-query J: STRUC| Tgring U 04 U (BIT)] — STRUC[Tgring U (BIT)] such that
for all x € {0,1}%,

I(Ax UILy(04) UBIT) = Ason(xl) Y (BIT|xoa(x))-1)-

Now consider the composition J” := bin;! oJ, which is again an FO-query. We have for
all x e {0,1}*:

j’(Ax U I|x|(UA) U BIT|X|) = enC;l (x o A(|x|)) U (BIT|dom(encgl(on(|x|)))|—1),

if x o A(|x|) is the encoding of a o-structure.

The formula ¢ shows that L’ € £L[BIT] and since {BIT} C Arb it also shows L’ € L[Arb].
Also, the property that x o A(|x|) is the encoding of a o-structure is definable from the
Tstring-Structure A, by an FO[Arb]-formula. Therefore, we can now use the closure of
L[Arb] under partial FO[Arb]-queries to obtain a formula ¢’ such that for all x € {0, 1}*:

A UT(0a) UBIT) Fr @' &= T(AcUT(0a) U BIT)) Fr @
= xoA(lx|)eL’
— x€l,

if x o A(|x|) is the encoding of a o-structure, and x € L and A, Ul (04) U (BIT|y) £ @’
otherwise. O

153

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

The closure property required by the above result is obviously somewhat strong, as it
requires that the logic can express arbitrary FO-definable properties—more precisely,
its non-uniform version can express arbitrary FO[Arb]-definable properties. The reason
we chose this closure property is that we are mainly interested in transferring character-
izations of classes from circuit complexity. In this setting, weaker classes than AC? = FO
are rarely considered. Furthermore, most known logics used in model-theoretic char-
acterizations of complexity classes have this closure property, see Subsection[7.2.3|for
some examples. One could attempt to generalize the result by requiring a weaker closure
property. For this it might be necessary to use a different pairing function to define
classes of the form €/ poly similar as in the case of weaker uniformities, discussed below
Theorem [Z.6]

7.2.2 Counting Classes

Next, we will transfer the results above from the decision setting to the counting setting.
For this, we first introduce a general framework for logic-based counting functions
similar to the framework for logics and logic-based decision classes used above. We will
then see that by adequately transferring the required closure property to the counting
setting, we obtain a wide range of counting classes for which the different kinds of
non-uniformity coincide.

In the spirit of the logic QSO, introduced by Arenas et al. [AMR20]], we call logics in
our framework for logic-based counting functions quantitative logics.

Definition 7.21. A quantitative logic L is a triple L = (D, A, #M), where @, and 2,
are classes and # M : A, x D, — IN is a function, called the counting function of L. We
call elements of @, formulae of L and elements of A valuations of L.

To illustrate this definition, we go over how #Win-FO fits into this framework next.
As this is very similar to how FO fits into the corresponding framework for (non-
quantitative) logics, we will do this very briefly.

Example 7.22. The quantitative version of first-order logic can be defined in the above
framework by setting #Win-FO := (Qywin ro, Aswin-ro, #Mawin ro), where Quwin ro =
DPro, Aewinro = Apo and #Muwinro is the generalization of #Win used earlier to
arbitrary vocabularies (but without built-in numerical predicates), i.e., for any formula
@ € Ppo and structure A € Apo, we define

#Mywin-ro(A, @) == #Win(A, @),

if there is a vocabulary o such that ¢ € @, and A € 2A7,, and #Mywinro(A, @) =0
otherwise. The subclasses Ay, ro and O, ro for vocabularies o are defined in the
same way as for FO as well, i.e., A5y, ro = Ao and Py ro = Pro-

We will now transfer the notions defined for (non-quantitative) logics in the previous
section to the setting of quantitative logics. As the new definitions are completely
analogous to their counterparts in the decision setting, see the previous section for
explanations and motivation.

154

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

Definition 7.23. A quantitative logic L = (P, 2, #M) is called a quantitative logic
over FO-structures, if

2[_5 :Q[FO and (D.E = UCDZ
FO-voc-
abulary o

for subclasses @7 of @, such that for any FO-vocabulary o, ¢ € 7, and A € App, we
have

#M (A, @) > 0= A € A%, = STRUC[o].

Definition 7.24. Let £ = (D, ;,#M) be a quantitative logic over FO-structures and
R be a set of relations over IN. Then L[] is the class of counting functions f for which
there are vocabularies o and © = (Ny,...,Ng), a formula ¢ € @EUT, and a non-uniform
family 7 = (I,)),,en of interpretations of symbols in 7 by relations from R such that for
all A € STRUC[o], we have

flencg(A)) = #M (A U T jgom(a)(7), @),
and f(x) = 0 if x is not the encoding of a o-structure.

Definition 7.25. Let £ = (D, 2, #M) be a quantitative logic over FO-structures
and R be a set of relations over IN. We say that L[R] is closed under applying partial
FO[fR]-queries, if for any

* vocabularies o,0’, v with T/ = (N¢,...,N),

» formula ¢ € Y,

* FO-query J: STRUC[¢’ U t’] —» STRUCJ[0], and
* FO-formula ¢ over 0’ U T/,

there is a formula ¢’ € (D‘ZUT, such that for all A € STRUC[¢’] and non-uniform families
of interpretations 7 = (I,)),cn of the symbols in 7’ by relations from R, we have

#M (A UTjdom(a)(T), @) &= #M (A UL gom(a) (7)), @),
if AU gom(a)(T)) Fro ¥, and #M (A U |gom(a)(T'), ¢’) = 0 otherwise.

We can now state the counting version of the main theorem of this section, i.e., also
for a wide range of quantitative logics, the different kinds of non-uniformity coincide.

Theorem 7.26. Let L = (D, p,#M) be a quantitative logic over FO-structures such that
L[Arb] is closed under applying partial FO[Arb]-queries.
Then L[Arb] = L[BIT]/poly.

Proof. 1t is easy to see that the assumed closure property allows us to make the same ar-
guments with regard to #M, that were made with regard to |- for the (non-quantitative)
logic L in the proof of the decision version. Hence, the proof is completely analogous to
the proof of Theorem 7.20] O

155

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

7.2.3 Examples

The results with regard to circuit complexity classes in Section[7.1]are directly applicable
to many important classes in this setting, and in particular to all classes in the NC-, AC-,
SAC-, and TC-hierarchies apart from the obvious exception NC’. In contrast, due to
the unusual framework we use in this section, it is not as obvious that our results with
regard to model-theoretic complexity classes are widely applicable. Hence, we will use
this Subsection to argue that for many important model-theoretic classes that are used in
descriptive complexity, our results are directly applicable. As this is not the focus of our
research and the proofs are relatively straightforward, we will focus on briefly stating
how the different classes fit into the framework we use and only present proof sketches
for the required closure property. We will cover the class FO, the classes #Win-FO and
FOCW from Chapters|3|and |4} the classes ESO and #FO, as well as extensions of FO
and #Win-FO obtained by adding the different types of GPR-operators introduced in
Chapter|f

FO, #Win-FO and FOCW

In Examples[7.16/and [7.22] we have already seen how the classes FO and #Win-FO can
be defined in our framework for logics and quantitative logics, respectively. We will
now see that both classes have the required closure property. Subsequently, we will
briefly cover the class FOCW introduced in Section

The fact that #Win-FO[Arb] is closed under applying partial FO[Arb]-queries is a
generalization of the non-uniform version of Lemma [3.4with a similar proof. We briefly
sketch the proof next.

Lemma 7.27. #Win-FO[Arb] is closed under applying partial FO[Arb]-queries.

Proof sketch. Let ¢ be a o-formula for some vocabulary o. Let J: STRUC[c’ U '] —
STRUC][o] be an FO-query and ¢ an FO-sentence over ¢’ U1’ for additional vocabularies
o’ and 7’

By Lemma we can assume without loss of generality that the number of winning
strategies of the verifier on formulae from J and on the formula @ in arbitrary structures
and for arbitrary non-uniform families of interpretations of the symbols in 7’ by relations
from 2R (as well as for arbitrary assignments to the free variables in case of formulae
from J) is at most 1. Now, we plug the formulae from J into ¢, replacing variables
by tuples of adequate arity and relativizing quantifiers according to the formula ¢
in J, yielding an FO[Arb]-formula ¢’ over ¢’ with built-in predicate symbols from 7’.
Finally, the formula ¢’ A i has the desired properties, i.e., for all A € STRUC[o’] and
all non-uniform families of interpretations 7 = (I,)),cn of the symbols in 7’ by relations
from R, we have

#WiIn(A UL dom(a)(7), " A 9) = #Win(J(A, L dom(a) (7)), @),

if AUTgom(a)(T)) F ¥, and #Win(A U gom(a)(T'), ¢” A) = 0 otherwise. O

156

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

The fact that the decision class FO[Arb] is closed under applying partial FO[Arb]-
queries now follows immediately from the previous lemma together with the fact that
FO and #Win-FO are defined with the same class of formulae and for all ¢ € @5 and
A € pg it holds that

A Fro ¢ &= #Mywinro(A, @) > 1.

We will now cover the case of FOCW. First, we need to describe how FOCW fits
into our framework. For this, define FOCW := (®Ppocw, Aro, Frocw), where @pocw is
the set of FOCW-formulae and rocw is defined as follows. For any A € 2o and any
@ € Ppocw, we have

AErocw ¢ = A'E o,

where A’ is the two-sorted structure obtained from A by adding a second sort of cardi-
nality |dom(A)| as well as the numerical predicates + and x on the second sort. The class
®pocw can naturally be split into subclasses ®gy -y for vocabularies 0. We now show
that using this definition, FOCW/[Arb] is closed under applying partial FO[Arb]-queries.

Lemma 7.28. FOCW/Arb] is closed under applying partial FO[Arb]-queries.

Proof sketch. Let o be a vocabularies and ¢ € ®gyyy- In the non-uniform setting, we
have access to the numerical predicates + and x on the first sort. This allows us to define
the m-th element in the first sort from the m-th element in the second sort and vice
versa for all m € IN. Hence, we can replace all occurrences of second-sort variables i by
first-sort variables x; and occurrences of relations on the second sort by adequate built-in
predicates symbols apart from predicates #¢(i). Each such occurrence can be replaced
by a subformula Py (i) = Pr=i #(i), where (Px-_j expresses that X; and i represent the
same natural number over the different sorts.

We can now use the closure of FO[Arb] under application of partial FO[Arb]-queries
to modify the formula according to any FO[Arb]-query J: STRUC[o’ U t'] - STRUC]|0]
except for subformulae Pe=i NPy, (i S these are the only subformulae containing second-
sort variables. For each such formula, do the following: First, modify the subformula
¢5_; according to J. Also extend the tuple size of i accordingly without otherwise
Chénging occurrences of second-sort relation symbols. Possibly, numerical predicates for
tuples of higher arity over the second sort have to be expressed in terms of predicates on
individual elements for this. This way, the formula expresses for any ¢’-structure A and
any non-uniform family of interpretations 7 = (I,,),cN the required property of ¥; and
i with respect to J(A Ul gom(a))- Second, modify the formula & according to J as well,
which is possible as #Win-FO is closed under partial FO[Arb]-queries.

Let ¢’ be the formula obtained in the previous step, which is a formula over ¢’ U 7’.
Now, for any FO-formula i over 6’ U 7/, the formula ¢’ A ¢ is still a formula in (DI‘;’(/)UCT\;V
and it has the desired properties, finishing the proof. O]

157

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

ESO and #FO

We will next cover the case of the logics ESO and #FO. Again, we will begin with the
counting version as this allows us to obtain the corresponding result for the decision
version as a direct corollary.

We begin by defining #FO in the sense of quantitative logics introduced above. For this,
let #FO = (DPupo, Apo, #Mupo), where Durg is the class of FO-formulae over arbitrary
vocabularies with additional relation variables that are marked as being free variables.
The free relation variables can, similar to the underlying vocabulary, be described by the
tuple of arities of the relations. Then for any vocabulary o, @, contains FO-formulae
over vocabulary o with additional free relation variables and #Mygq is defined as follows:
For any A € 24po and any ¢ € Oy containing free relation variables {Ry,..., Ry}, define

#Myro(A, @) = [{(Ry,..., Re) |AE @(Ry,..., Ry) }l.

For simplicity, we do not allow free first-order variables here. The definition can be
modified to allow such variables and the proof below can be generalized accordingly.
We now show that #FO[Arb] has the required closure property.

Lemma 7.29. #FO[Arb] is closed under applying partial FO[Arb]-queries.

Proof sketch. Let @(Ry,...,R) be an FO-formula over some vocabulary o with free rela-
tion symbols Ry, ...,R;. Without loss of generality, we can assume that for any occurrence
Ri(t1,. s tarR)), the terms ty,...,t,x(r,) are actually variables. Let J: STRUC[o’ U T'] —
STRUC[o] be an FO-query and @o(x1,...,x¢) the formula defining the new universe in J.

We can first proceed in the same way as for showing that FO[Arb] is closed under
applying FO[Arb]-queries. More precisely, we can replace occurrences of symbols
from o by the corresponding formulae from J, replace individual variables by tuples,
and relativize quantifiers according to ¢g. Let ¢’ be the formula obtained after this
step. What remains is to handle occurrences of the free relation symbols Ry, ...,Rx. We
replace each R; by a new symbol R} and define ar(R}) := - ar(R;). Now, we can replace
any occurrence R;(zy,...,Zy(r,)) in @’ by R (zl, . zg ...,z;r(Ri),...,zfr(
variables by tuples of adequate arities in these atoms. Let ¢” be the formula obtained
after this modification. Next, we need to ensure that by any satisfying assignment to
the free relation variables, each free relation variable R’ is actually mapped to a relation
over tuples satisfying ¢,. For this, let

k R
77 7 — C-ar(Ry) [arR
" =9 /\/\Vy:yl Y (k R; (/\ ((1))‘
=1

i=1

), that is, replace

We now have for all A € STRUC[o’] and all non-uniform families 7 = (I,)),en of inter-
pretations of symbols in 7’ that |[{(R],...,R;) | AUT|4om(a)(T") E @””(R},...,R})}| equals
H(Ry,-., Re) [I(AU I|d0m(A)|(T,)) F (P(Rl’ oo R M-

Finally, partial FO[Arb]-queries can be handled by simply using the conjunction of
¢”” with any additionally given FO-formula i over ¢’ U t": The formula ¢”’ A ¢ yields

158

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

the same number of satisfying assignments of the free relation variables for structures
satisfying 1, but yields no satisfying assignments for structures that do not satisfy ¢p. O

The case of ESO can be handled completely analogously. First, ESO can be defined
in the framework as ESO := (Pggo, Aro, Frso), where @ggp = Dypo and for any A € Ago
and ¢ € ®ggp, we define

AFgso ¢ &= #Myro(A, @) > 1.

The fact that ESO[Arb] is closed under applying partial FO[Arb]-queries then directly
follows from the fact that #FO has this closure property.

FO + GPR

Here, we want to show that the logics introduced in Chapter [6] have the required
closure property as well, so the different kinds of non-uniformity also coincide for
these logics. We show this for the logic #Win-FO + GPR and argue that it imme-
diately transfers to FO + GPR, but the result can be transferred to the other logics,
i.e., the versions based on bounded and semi-unbounded GPR. The definition of
#Win-FO + GPR in our framework for quantitative logics is straightforward: Define
#Win-FO+GPR := (®gwin ro+GPR- Ar0, #Miwin-Fo+GPR), Where Pywin ro+GPR i the class
of #Win-FO + GPR formulae over arbitrary vocabularies as introduced in Chapter[6|and
#Mawin-ro+GPR(A, @) is the number of winning strategies of the verifier in the model-
checking game for A [¢, again as introduced in Chapter [6] Note that strictly following
the notation of this chapter, the class #Win-FO[Arb] + GPR in the following lemma is
called (#Win-FO + GPR)[Arb].

Lemma 7.30. #Win-FO[Arb]+ GPR is closed under applying partial FO[Arb]-queries.

Proof sketch. This can be proven similarly to proving that #Win-FO[Arb] has the desired
closure property. Let

[P) = 0(v,P")] ¢(P") € Dywin-ro+GPR

be a formula over some vocabulary o. For this proof sketch we restrict ourselves to
FO[Arb] + GPR-sentences of the above form, i.e., sentences containing only a single
GPR-operator in the front and using a predicate symbol P without additional arguments
beside the recursion variables. It is straightforward to generalize the proof to arbitrary
#Win-FO[Arb]+ GPR-formulae. Let J: STRUC[o" U 1t’] = STRUC[c | be an FO-query for
vocabularies ¢/, 7". Without loss of generality we can assume that on all formulae in J
the verifier has at most one winning strategy in the model-checking game for any input
structure and any assignment to the free variables.

As @ is an #Win-FO-formula except for occurrences of the free relation variable P,
we can apply J to this formula as usual by replacing variables by adequate tuples, rela-
tivizing quantifiers and replacing occurrences of symbols from o by the corresponding
formulae from J. This is possible due to #Win-FO[Arb] being closed under partial

159

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

FO[Arb]-queries. Let ¢’ be the resulting formula after also replacing P by a new symbol
P’ of adequate arity. Note that P’ only occurs positively in ¢’ as no additional negations
are introduced around occurrences of P’. Now what remains is to modify the GPR-
operator defining P in such a way that for atoms involving P in ¢’ we obtain the same
number of winning strategies as for the corresponding atom in ¢.

First, replace P by P” in the GPR-operator. Now, note that the formula 6 that describes
the recursive definition of the interpretation of P is an #Win-FO-formula as well, apart
from guarded quantifiers Qz.(z < 9/2 A £(,Z)). We can therefore apply J to 6 in the
same way as to ¢ apart from these quantifiers. Now for any such quantifier, we can
replace z by a tuple of adequate arity and apply J to the FO-formula £(¥,z). Regarding
z < 7y/2, recall that this is a shorthand for the formula Ju(z+zZ=uAu <7Y). Asu is
bounded by z, we do not need to further restrict # to be contained in the universe of
the structure J maps to. Hence, we only need to adapt the arities of the tuples in this
formula, still obtaining a formula of the form z <y/2. This means that the guards still
have the required properties. Let 8’ be the formula obtained after these modifications. It
is easy to see that P’ only occurs positively in 6” as no new negations around occurrences
of P’ were introduced. Furthermore, none of the added quantifiers have an occurrence
of P’ in their scope. As we only applied J to FO- and #Win-FO-formulae above, these
modifications preserve the number of winning strategies of the verifier in arbitrary
structures and for arbitrary non-uniform families of interpretations.

In order to argue that the FO[Arb]-query may also be partial, simply use the fact
that for any ¢’ U 7’-formula ¢, the formula [P’(y) = 6’(y,P™*)]@(P*) A ¢ has the desired
properties. For this, assume without loss of generality that the number of winning
strategies of the verifier in the model-checking game on ¢ for arbitrary input structures
is at most 1. O

The (non-quantitative) logic FO + GPR can be handled analogously to the logics FO
and ESO. Define FO + GPR := (Pro.cpr, Ar0, Fro+GPR), Where Pro,Gpr = Piwin FO+GPR
and for all A € Ay and ¢ € o, gpr, define

A FroiGrrR ¢ <= #Mywin-ro+GPr(A, @) > 1.

Closure under partial FO[Arb]-queries immediately follows from the corresponding
closure property of #Win-FO[Arb] + GPR.

7.3 Conclusion and Outlook

In this chapter we explored the direct transfer of model-theoretic characterizations from
the uniform to the non-uniform setting, only using the uniform characterization in a
black-box manner. As we focus on FO[BIT]-uniform classes in this thesis, we restricted
ourselves to this type of uniformity. We identified an approach to make this possible: If
one can show that for both the circuit complexity class and the model-theoretic class,
the non-uniform version coincides with the uniform version with a polynomial advice
function, the characterization can directly be transferred. From this starting point we

160

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

then went on to identify a wide range of classes with this property, separately treating
circuit complexity classes and logical classes. In both cases, we also covered the case of
counting classes.

Regarding circuit complexity classes, we used a layered normal form, which ensures
that even when adding all possible edges, i.e., all edges between subsequent layers, the
underlying graph does not contain cycles. This made it possible to use advice bits to
determine which of the edges are actually present. We showed that this approach works
in a very general setting, our results being applicable, in particular, to all classes from
the NC-, SAC-, AC-, and TC-hierarchies except for the very restrictive class NC°. By
transferring our proofs to the counting setting, we have also seen that our approach is
applicable to the counting versions of all of the above classes.

Regarding classes of languages defined in terms of logics, we obtained a result that
could be considered even more general. The only restriction is that the logic should
be closed under the application of (partial) FO-queries, which is a natural property for
logics based on first-order logic. In a sense, this is not surprising, as non-uniformity
given by built-in predicates is very similar to non-uniformity given by an advice function
in the first place. In a sense, the advice is simply encoded in different ways, meaning
that our logic just needs to be powerful enough to encode and decode the different ways
of pairing the input with the advice. We then considered a general form of quantitative
logics, allowing us to transfer the above result to the counting setting.

There are several interesting open questions and directions for future research opened
by our results, which we will discuss next. It could be interesting to further generalize
our results or identify limits to our approach. One caveat of our results in circuit
complexity is that they do not immediately apply to Uj-uniform NC! and #NC!. This
also means that they are not applicable to the characterization of this class by Compton
and Laflamme [[CL90]. It would be interesting to generalize our results to this setting. It
could also be interesting to look at even more restrictive forms of uniformity such as
FO[<]-uniformity [BLO6].

Furthermore, we only used circuit complexity classes defined by restricting size
and depth of circuits. While these are the most common resource bounds in circuit
complexity, sometimes other resource bounds are used. As an example, recall that
the characterization of #P in terms of circuit complexity uses circuits with polynomial
degree. It could be interesting to generalize our results in this direction.

Finally, beyond purely theoretical interest, it would be interesting to see applica-
tions of our results. Most directly, it would be interesting to use them to transfer
model-theoretic characterizations, or possibly other kinds of characterizations, from
the uniform to the non-uniform setting. Additionally, our results for circuit complexity
classes could potentially be used to transfer structural properties from the uniform to
the non-uniform setting. A simple example would be a property such as monotonicity.
When proving such characterizations or structural properties of circuit complexity
classes directly, one often starts by showing the non-uniform version and then refines
the proof to obtain the uniform version. Thus, applying our results could be especially
useful in case of circuit complexity classes that already have characterizations in terms
of some other model, e.g. machine-based. In that case, a model-theoretic character-

161

7 Transferring Characterizations from the Uniform to the Non-uniform Setting

ization of the corresponding machine-based class could be directly transferred to a
characterization of the non-uniform version of the circuit complexity class.

162

Bibliography

[AAB*99] Eric Allender, Andris Ambainis, David A. Mix Barrington, Samir Datta, and

[AADOO]

[ABO9]

[ABL98]

[AJ93]
[Ajt83]
[A1199]

[AMR17]

[AMR20]

Huong LeThanh. Bounded depth arithmetic circuits: Counting and closure.
In Automata, Languages and Programming, 26th International Colloquium,
ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume
1644 of Lecture Notes in Computer Science, pages 149-158. Springer, 1999.

(cited on page[31])

Manindra Agrawal, Eric Allender, and Samir Datta. On TC?, AC°, and
arithmetic circuits. J. Comput. Syst. Sci., 60(2):395-421, 2000. (cited on

pages[T0} 29 50} 53, 78 B3 and)

Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009. (cited on page[17])

Andris Ambainis, David A. Mix Barrington, and Huong LeThanh. On
counting AC? circuits with negative constants. In Mathematical Foundations
of Computer Science 1998, 23rd International Symposium, MFCS’98, Brno,
Czech Republic, August 24-28, 1998, Proceedings, volume 1450 of Lecture
Notes in Computer Science, pages 409-417. Springer, 1998. (cited on pages[10}

505378 4 and F)

Carme Alvarez and Birgit Jenner. A very hard log-space counting class.
Theor. Comput. Sci., 107(1):3-30, 1993. (cited on pages[5|and [20])

Miklés Ajtai.] -formulae on finite structures. Ann. Pure Appl. Log., 24(1):1-
48, 1983. (cited on page[11])

Eric Allender. The permanent requires large uniform threshold circuits.
Chic. J. Theor. Comput. Sci., article 7, 1999. (cited on page[24})

Marcelo Arenas, Martin Munoz, and Cristian Riveros. Descriptive complex-
ity for counting complexity classes. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
pages 1-12. IEEE Computer Society, 2017. (cited on page[13])

Marcelo Arenas, Martin Munoz, and Cristian Riveros. Descriptive complex-
ity for counting complexity classes. Log. Methods Comput. Sci., 16(1), article

9, 2020. (cited on pages[13}[85] and)

163

[Bar89]

[BCGR92]

[BI94]

[BIS90]

[BJ87]

[BLO6]

[Bor77]

[Bus87]

[CG96]

[CL90]

[Cla]

[CMTV98]

[Coo71]

Bibliography

David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC!. J. Comput. Syst. Sci.,
38(1):150-164, 1989. (cited on pages[9)and [51])

Samuel R. Buss, Stephen A. Cook, A. Gupta, and V. Ramachandran. An opti-
mal parallel algorithm for formula evaluation. SIAM J. Comput., 21(4):755-

780, 1992. (cited on pages[10]and [31])

David A. Mix Barrington and Neil Immerman. Time, hardware, and uni-
formity. In Proceedings of the Ninth Annual Structure in Complexity Theory
Conference, Amsterdam, The Netherlands, June 28 - July 1, 1994, pages 176—
185. IEEE Computer Society, 1994. (cited on pages and[54])

David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
uniformity within NC!. J. Comput. Syst. Sci., 41(3):274-306, 1990. (cited on

pages[§}[12) 5152 54 53 and [I11))

George Boolos and Richard C. Jeffrey. Computability and Logic (2. ed.). Cam-
bridge University Press, 1987. (cited on page[4])

Christoph Behle and Klaus-Jorn Lange. FO[<]-uniformity. In 21st Annual
IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006,
Prague, Czech Republic, pages 183-189. IEEE Computer Society, 2006. (cited

on pages|51{and)

Allan Borodin. On relating time and space to size and depth. SIAM J.
Comput., 6(4):733-744, 1977. (cited on pages[7}[8} and [24])

Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pages 123-131. ACM, 1987. (cited on page[55])

Kevin J. Compton and Erich Gradel. Logical definability of counting func-
tions. J. Comput. Syst. Sci., 53(2):283-297, 1996. (cited on page[13])

Kevin J. Compton and Claude Laflamme. An algebra and a logic for NC!.

Inf. Comput., 87(1/2):240-262, 1990. (cited on pages[12}[14}[52}
and[161})

Clay Mathematics Institute. Millenium problems. http://www.claymath.
org/millennium-problems. last checked: 08.05.2021. (cited on page[2})

Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer.
Nondeterministic NC! computation. J. Comput. Syst. Sci., 57(2):200-212,

1998. (cited on pages and[56])

Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May

164

http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems

[Co073]

[CT90]

[Daw15]

[DHKO5]

[DHKV16]

[DHKV21]

[DHV18]

[EFT94]

[Fag74]

[FSS84]

[FVB94]

Bibliography

3-5, 1971, Shaker Heights, Ohio, USA, pages 151-158. ACM, 1971. (cited on
pages[2and [95])

Stephen A. Cook. A hierarchy for nondeterministic time complexity. J.
Comput. Syst. Sci., 7(4):343-353, 1973. (cited on pages[89and [105])

Ashok K. Chandra and Martin Tompa. The complexity of short two-person
games. Discret. Appl. Math., 29(1):21-33, 1990. (cited on page [25])

Anuj Dawar. The nature and power of fixed-point logic with counting. ACM
SIGLOG News, 2(1):8-21, 2015. (cited on page[42])

Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive
reductions and complete problems for counting complexity classes. Theor.
Comput. Sci., 340(3):496-513, 2005. (cited on pages[4}[95] and)

Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. De-
scriptive complexity of #AC° functions. In 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Mar-
seille, France, volume 62 of LIPIcs, pages 20:1-20:16. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2016. (cited on page[15])

Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. De-
scriptive complexity of #P functions: A new perspective. J. Comput. Syst.
Sci., 116:40-54, 2021. (cited on page[15])

Arnaud Durand, Anselm Haak, and Heribert Vollmer. Model-theoretic
characterization of Boolean and arithmetic circuit classes of small depth. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 354-363. ACM, 2018.

(cited on page[15])

Heinz-Dieter Ebbinghaus, Jorg Flum, and Wolfgang Thomas. Mathematical
Logic (2. ed.). Undergraduate texts in mathematics. Springer, 1994. (cited on

page[35})

Ronald Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In Complexity of computation, SIAM-AMS Proceedings, volume 7,

pages 43-73, 1974. (cited on pages[I1]and [49])

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Math. Syst. Theory, 17(1):13-27, 1984. (cited on

pages[7]and[11})

Gudmund Skovbjerg Frandsen, Mark Valence, and David A. Mix Barrington.
Some results on uniform arithmetic circuit complexity. Math. Syst. Theory,
27(2):105-124, 1994. (cited on pages[12]and[85])

165

[Gil77]

[GLSO01]

[GO04]

[Grd92]

[Grdl3]

[Gro08]

[Grol7]

[HesO01]

[Hin82]

[HKM*19]

[HMUO07]

[HV16]

Bibliography

John Gill. Computational complexity of probabilistic turing machines. SIAM
J. Comput., 6(4):675-695, 1977. (cited on page[19})

Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431-498, 2001. (cited on pages[7]

and[25])

Etienne Grandjean and Frédéric Olive. Graph properties checkable in linear
time in the number of vertices. J. Comput. Syst. Sci., 68(3):546-597, 2004.

(cited on pages (104} /105,108 and [110})

Erich Gradel. Capturing complexity classes by fragments of second-order
logic. Theor. Comput. Sci., 101(1):35-57, 1992. (cited on page[12})

Erich Gradel. Model-checking games for logics of imperfect information.
Theor. Comput. Sci., 493:2-14, 2013. (cited on pages[48|and [63])

Martin Grohe. The quest for a logic capturing PTIME. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS
2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 267-271. IEEE Computer
Society, 2008. (cited on page[11])

Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph
Structure Theory, volume 47 of Lecture Notes in Logic. Cambridge University
Press, 2017. (cited on page[42])

William Hesse. Division is in uniform TC°. In Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July
8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science,
pages 104-114. Springer, 2001. (cited on pages[7]and [25])

Jaakko Hintikka. Game-theoretical semantics: insights and prospects. Notre
Dame J. Formal Log., 23(2):219-241, 1982. (cited on pages[13]and [45])

Anselm Haak, Juha Kontinen, Fabian Muller, Heribert Vollmer, and Fan
Yang. Counting of teams in first-order team logics. In 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 19:1-
19:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. (cited on

pages[13|and[110])

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation, 3rd Edition. Pearson interna-
tional edition. Addison-Wesley, 2007. (cited on pages[17]and 24})

Anselm Haak and Heribert Vollmer. A model-theoretic characterization
of constant-depth arithmetic circuits. In Logic, Language, Information, and
Computation - 23rd International Workshop, WoLLIC 2016, Puebla, Mexico,

166

[HV19]

[Imm82]

[Imm86]

[Imm87]

[Imm89]

[Imm99]

[JLL76]

[JVV86]

[Kar72]

[KLM89]

[KLM12]

[Kon09]

Bibliography

August 16-19th, 2016. Proceedings, volume 9803 of Lecture Notes in Computer
Science, pages 234-248. Springer, 2016. (cited on pages[13Jand[15])

Anselm Haak and Heribert Vollmer. A model-theoretic characterization of
constant-depth arithmetic circuits. Ann. Pure Appl. Log., 170(9):1008-1029,

2019. (cited on page[15])

Neil Immerman. Relational queries computable in polynomial time (ex-
tended abstract). In Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages
147-152. ACM, 1982. (cited on page[11})

Neil Immerman. Relational queries computable in polynomial time. Inf.
Control., 68(1-3):86-104, 1986. (cited on page[11})

Neil Immerman. Languages that capture complexity classes. SIAM J. Com-
put., 16(4):760-778, 1987. (cited on page[12])

Neil Immerman. Expressibility and parallel complexity. SIAM J. Comput.,

18(3):625-638, 1989. (cited on pages[12}[13][51} and [54])

Neil Immerman. Descriptive Complexity. Graduate texts in computer science.

Springer, 1999. (cited on pages and[123])

Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems
complete for nondeterministic log space. Math. Syst. Theory, 10:1-17, 1976.

(cited on page[12])

Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theor. Comput. Sci.,
43:169-188, 1986. (cited on page[98])

Richard M. Karp. Reducibility among combinatorial problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas]. Watson Research Center, Yorktown Heights,
New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum
Press, New York, 1972. (cited on page[2])

Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo approxi-
mation algorithms for enumeration problems. J. Algorithms, 10(3):429-448,

1989. (cited on page)

Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting paths in VPA
is complete for #NC!. Algorithmica, 64(2):279-294, 2012. (cited on page)

Juha Kontinen. A logical characterization of the counting hierarchy. ACM
Trans. Comput. Log., 10(1):7:1-7:21, 2009. (cited on page[12])

167

[KS14]

[Lad75]

[Lev73]

[Lib04]

[LL78]

[LMSV01]

[LS92]

[Lic20]

[Lup58]

[Lyn82]

[Mah14]

[MP08]

[MU17]

[MV97]

Bibliography

Neeraj Kayal and Ramprasad Saptharishi. A selection of lower bounds
for arithmetic circuits. In Perspectives in Computational Complexity: The
Somenath Biswas Anniversary Volume, pages 77-116. Birkhduser, 2014. (cited

on page[10})

Richard E. Ladner. The circuit value problem is log space complete for P.
SIGACT News, 7(1):18-20, 1975. (cited on page[9])

Leonid Anatolievich Levin. Universal sequential search problems. Problems
Inform. Transmission, 9(3):265-266, 1973. (cited on page)

Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2004. (cited on pages[49and[79])

Paul Lorenzen and Kuno Lorenz. Dialogische Logik. Darmstadt: Wis-
senschaftliche Buchgesellschaft, 1978. (cited on page[45])

Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert
Vollmer. The descriptive complexity approach to LOGCFL. J. Comput. Syst.

Sci., 62(4):629-652, 2001. (cited on pages[12}[52} and)

Thomas W. Lynch and Earl E. Swartzlander, Jr. A spanning tree carry
lookahead adder. IEEE Trans. Computers, 41(8):931-939, 1992. (cited on

page[7})

Martin Luck. Team Logic: Axioms, Expressiveness, Complexity. PhD thesis,
University of Hanover, Hannover, Germany, 2020. (cited on page)

Oleg B. Lupanov. A method of circuit synthesis. Izvestia VUZ Radiofizika,
1:120-140, 1958. (cited on page[5])

James E. Lynch. Complexity classes and theories of finite models. Math. Syst.
Theory, 15(2):127-144, 1982. (cited on page[11})

Meena Mahajan. Algebraic complexity classes. In Perspectives in Computa-
tional Complexity: The Somenath Biswas Anniversary Volume, pages 51-75.
Birkhduser, 2014. (cited on page[10})

Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic
complexity classes. J. Complex., 24(1):16-38, 2008. (cited on page[29})

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge
University Press, 2nd edition, 2017. (cited on page)

Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms,
and complexity. Chic. J. Theor. Comput. Sci., 1997, 1997. (cited on pages 5]

and[20])

168

[MW14]

[PF79]

[Pip79]

[Ros10]

[RS42]

[Ruz81]

[Sap15]

[Sav76]

[Sha38]

[Sha49]

[Sip83]

[Sip97]

[Soa87]

Bibliography

Martin Mundhenk and Felix Weiss. An AC!'-complete model checking
problem for intuitionistic logic. Comput. Complex., 23(4):637-669, 2014.

(cited on pages|7]and [25])

Nicholas Pippenger and Michael J. Fischer. Relations among complexity
measures. J. ACM, 26(2):361-381, 1979. (cited on page[9})

Nicholas Pippenger. On simultaneous resource bounds (preliminary version).
In 20th Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, 29-31 October 1979, pages 307-311. IEEE Computer Society,
1979. (cited on page[7})

Benjamin Rossman. Average-Case Complexity of Detecting Cliques. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. (cited

on page[109})

John Riordan and Claude E. Shannon. The number of two-terminal series-
parallel networks. Journal of Mathematics and Physics, 21(1-4):83-93, 1942.

(cited on page[5])

Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci.,

22(3):365-383, 1981. (cited on pages[8}[9] [24] 54} [55| and [56])

Ramprasad Saptharishi. A survey of known lower bounds in arithmetic cir-
cuits. lhttps://github.com/dasarpmar/lowerbounds-survey, 2015. last
checked: 05.05.2021. (cited on page[10})

John E. Savage. The Complexity of Computing. John Wiley & Sons, New York,
1976. (cited on pagel6])

Claude E. Shannon. A symbolic analysis of relay and switching circuits.
Transactions of the American Institute of Electrical Engineers, 57(12):713-723,
December 1938. (cited on page[5])

Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell
Syst. Tech.]., 28(1):59-98, 1949. (cited on page)

Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 61-69. ACM, 1983. (cited on page)

Michael Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997. (cited on page([17])

Robert I. Soare. Recursively Enumerable Sets and Degrees - a Study of Com-
putable Functions and Computability Generated Sets. Perspectives in mathe-
matical logic. Springer, 1987. (cited on page[12])

169

https://github.com/dasarpmar/lowerbounds-survey

[SST95]

[Sto76]

[SV84]

[Tod91a]

[Tod91b]

[Tod92]

[Val79a]

[Val79b]

[Val79c¢]

[Val92]

[Var82]

[Ven91]

[Ven92]

Bibliography

Sanjeev Saluja, K. Venkata Subrahmanyam, and Madhukar N. Thakur. De-
scriptive complexity of #P functions. J. Comput. Syst. Sci., 50(3):493-505,

1995. (cited on pages|[12}[14}[52} [85} [87}[90} [98] [99][102} [107] [108} and [109})

Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci.,
3(1):1-22, 1976. (cited on page[11})

Larry J. Stockmeyer and Uzi Vishkin. Simulation of parallel random access
machines by circuits. SIAM J. Comput., 13(2):409-422, 1984. (cited on

pages[9)and [24])

Seinosuke Toda. Counting problems computationally equivalent to comput-
ing the determinant. 1991. (cited on pages[5|and [20])

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20(5):865-877, 1991. (cited on page[5])

Seinosuke Toda. Classes of arithmetic circuits capturing the complexity of
computing the determinant. IEICE Transactions on Information and Systems,
75:116-124, 1992. (cited on page[10])

Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979,
Atlanta, Georgia, USA, pages 249-261. ACM, 1979. (cited on page[10])

Leslie G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189-201, 1979. (cited on pages [5|and [20])

Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):410-421, 1979. (cited on page[95])

Leslie G. Valiant. Why is Boolean complexity theory difficult? In Proceedings
of the London Mathematical Society Symposium on Boolean Function Complexity,
pages 84-94, 1992. (cited on pages[5|and [20])

Moshe Y. Vardi. The complexity of relational query languages (extended
abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, May 5-7, 1982, San Francisco, California, USA, pages 137-146.
ACM, 1982. (cited on page[11])

H. Venkateswaran. Properties that characterize LOGCFL. J. Comput. Syst.
Sci., 43(2):380-404, 1991. (cited on pages[9}[24} and [55])

H. Venkateswaran. Circuit definitions of nondeterministic complexity
classes. SIAM J. Comput., 21(4):655-670, 1992. (cited on pages[9}

and[32])

170

[Vin91]

[Vol99]

[Woel6]

Bibliography

V. Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proceedings of the Sixth Annual Structure in Complexity
Theory Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pages 270-
284. IEEE Computer Society, 1991. (cited on pages[5,[9)
and[53)

Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.

(cited on pages[20]and [24})

Gerhard J. Woeginger. The P-versus-NP page. https://www.win.tue.nl/
~gwoegi/P-versus-NP.htm, 2016. last checked: 08.05.2021. (cited on

page[2})

171

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Page left intentionally blank to have matching page numbers with the printed version.

Curriculum Vitae

Name Anselm Haak

Geburtsdatum 16.04.1990

Ausbildung

1996-2000 Astrid-Lindgren Grundschule Burgdorf.

2000-2002 Orientierungsstufe I Burgdorf.

2002-2006 Gymnasium Burgdorf.

2006-2009 BBS Burgdorf Lehrte, Fachgymnasium Technik.

2009 Allgemeine Hochschulreife, Note: 1.5. Erhohtes Anforderungsni-
veau: Technik-Informationstechnik, Mathematik, Englisch.

2010-2013 Studium Bachelor Informatik, Nebenfach Mathematik, Leibniz Uni-
versitat Hannover, Note: 1.1, Abschlussthema: Komplexitat der Ma-
trizenmultiplikation.

2013-2015 Studium Master Informatik, Nebenfach Mathematik, Leibniz Uni-

versitdt Hannover, Note: 1.0, Abschlussthema: Complexity of Para-
meterized Counting.

Bisherige Tatigkeiten

2009-2010 Zivildienst, Werkstatt fur behinderte Menschen Burgdorf.

2011-2015 Studentische Hilfskraft, Leibniz Universitat Hannover, an den In-
stituten fur Praktische Informatik, Mikroelektronische Systeme,
Mensch-Computer-Interaktion, Systems Engineering und Theoreti-
sche Informatik.

10/2015-11/2015 Wissenschaftliche Hilfskraft am Institut fur Theoretische Informa-
tik, Leibniz Universitat Hannover.

seit 11/2015 Wissenschaftlicher Mitarbeiter am Institut fiir Theoretische Infor-
matik, Leibniz Universitat Hannover.

173

Page left intentionally blank to have matching page numbers with the printed version.

List of Publications

(1]

(2]

3]

[4]

Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. Descriptive
complexity of #P functions: A new perspective. J. Comput. Syst. Sci., 116:40-54,
2021. (not cited.)

Anselm Haak, Arne Meier, Om Prakash, and B. V. Raghavendra Rao. Parameterised
counting in logspace. In STACS, volume 187 of LIPIcs, pages 40:1-40:17. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021. (not cited.)

Anselm Haak and Heribert Vollmer. A model-theoretic characterization of constant-
depth arithmetic circuits. Ann. Pure Appl. Log., 170(9):1008-1029, 2019. (not
cited.)

Anselm Haak, Juha Kontinen, Fabian Miiller, Heribert Vollmer, and Fan Yang. Count-
ing of teams in first-order team logics. In MFCS, volume 138 of LIPIcs, pages
19:1-19:15. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2019. (not cited.)

Arnaud Durand, Anselm Haak, and Heribert Vollmer. Model-theoretic characteriza-
tion of boolean and arithmetic circuit classes of small depth. In LICS, pages 354-363.
ACM, 2018. (not cited.)

Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. Descriptive

complexity of #ACO functions. In CSL, volume 62 of LIPIcs, pages 20:1-20:16.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016. (not cited.)

Anselm Haak and Heribert Vollmer. A model-theoretic characterization of constant-
depth arithmetic circuits. In WoLLIC, volume 9803 of Lecture Notes in Computer
Science, pages 234-248. Springer, 2016. (not cited.)

175

	Titlepage
	Abstract
	Contents
	Introduction
	First-Order Logic
	Counting Complexity
	Circuit Complexity
	Descriptive Complexity
	Contributions
	Publications

	Preliminaries
	Complexity Theory
	First-Order Logic and Extensions
	Descriptive Complexity
	Choice of Uniformity

	Counting Witnesses in First-Order Logic
	A Counting Class Based on First-Order Logic
	Counting in First-Order Logic: Choice of Model
	Conclusion

	Characterizing Constant-Depth Classes
	A Model-Theoretic Characterization of #AC0
	A Model-Theoretic Characterization of TC0
	Conclusion

	Putting the Characterization of #AC0 into Perspective
	Relationship Between the Characterizations of #AC0 and #P
	An Alternation Hierarchy in #FO
	Feasibility of #1
	Hierarchy Based on the Number of Universal Quantifiers
	#AC0 Compared to the Classes of Saluja et al.
	Conclusion and Outlook

	Descriptive Complexity of Logarithmic-Depth Circuit Complexity Classes
	Guarded Predicative Recursion
	Model-theoretic Characterizations of Small Depth Decision Classes
	Model-theoretic Characterizations of Small Depth Counting Classes
	Conclusion and Outlook

	Transferring Characterizations from the Uniform to the Non-uniform Setting
	Non-uniformity Via Advice Functions in Circuit Complexity
	Non-uniformity Via Advice Functions in Logics
	Conclusion and Outlook

	Bibliography
	Curriculum Vitae
	List of Publications

