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So muß man leben! 
Die kleinen Freuden aufpicken, 

bis das große Glück kommt. 
Und wenn es nicht kommt, 
dann hat man wenigstens 

die "kleinen Glücke" gehabt. 

Theodor Fontane  
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Kurzzusammenfassung 
Terrestrische Ökosysteme und Böden sind wichtige Akteure im globalen Kohlenstoffkreislauf der 

Erde und eng mit der Entwicklung der atmosphärischen CO2-Konzentration und dem Klimawandel 
verbunden. Allein der Boden speichert ein Vielfaches des Kohlenstoffs in der Atmosphäre, und 
Bodenkohlenstoff-Prozesse könnten daher erhebliche Auswirkungen auf die atmosphärischen CO2-
Konzentrationen haben. Um die Zeitskalen des Kohlenstoffkreislaufs in terrestrischen Ökosystemen zu 
verstehen, sind Radiokohlenstoffmessungen ein wichtiges Werkzeug. Dennoch stehen die Ergebnisse 
von Radiokohlenstoffmessungen oft im Widerspruch zu den Ergebnissen anderer Messtechniken: Für 
die Untersuchung des Wurzelumsatzes hat Radiokohlenstoff im Vergleich zu anderen Methoden, wie 
z.B. dem sequenziellen Entkernen oder Wurzelkameras, wesentlich längere Umsatzzeiten ergeben. Für 
die Untersuchung der organischen Bodensubstanz hat Radiokohlenstoff auf Pools verwiesen, die sich 
auf einer hundert- bis tausendjährigen Zeitskala befinden. Empirische Erkenntnisse deuten jedoch 
darauf hin, dass einzelne Verbindungen der organischen Bodensubstanz wesentlich schneller 
umgesetzt werden. Das übergeordnete Ziel dieser Dissertation ist es, Umsatzmodelle von Wurzeln und 
organischem Kohlenstoff im Boden mit Radiokohlenstoffdaten in Einklang zu bringen, indem neues 
Prozessverständnis in diese Modelle integriert wird.  

Der erste Teil der Dissertation befasst sich mit der Vereinbarkeit von Radiokohlenstoffgehalten 
von Feinwurzeln und Minirhizotron-Beobachtungen von Feinwurzellebensspannen. Zur Simulation des 
Wurzelumsatzes wurde bisher hauptsächlich ein Ein-Pool-Modell verwendet. Dieses Modell geht von 
einer konstanten Wahrscheinlichkeit für das Absterben einer Wurzel über ihre gesamte Lebensdauer 
aus. Minirhizotron-Beobachtungen haben jedoch auf eine höhere Wahrscheinlichkeit für das 
Absterben einer Wurzel zu Beginn ihrer Lebensdauer hingewiesen. In dieser Arbeit wurde eine 
Methode entwickelt, die es ermöglicht, Minirhizotron- und Radiokohlenstoffdaten zur gemeinsamen 
Schätzung der Wurzelumsatzzeiten zu verwenden. Zu diesem Zweck wurden Überlebensfunktionen 
aus dem Feld der Ereigniszeitanalyse verwendet, um die Lebensspanne einzelner Wurzeln zur 
Bestimmung der mittleren Verweilzeit von Feinwurzeln zu nutzen. Radiokohlenstoff in Feinwurzeln 
wurde über eine Faltung der Überlebensfunktionen mit der atmosphärischen Radiokohlenstoff-Kurve 
modelliert. Dieser Ansatz ermöglicht es, eine Kalibrierung von mittleren Verweilzeiten an 
Radiokohlenstoff- und Minirhizotron-Daten durchzuführen. 

Der zweite Teil der Dissertation befasst sich mit der Vereinbarkeit von Tiefengradienten des 
organischen Kohlenstoffs und Radiokohlenstoffs im Boden mit einem neuen Modell zum Umsatz 
organischer Bodensubstanz. Das neue Modell berücksichtigt mechanistische Beschreibungen 
mikrobieller und organo-mineralischer Wechselwirkungen. Ziel war es, den Beitrag der mikrobiellen 
Limitierung und der organo-mineralischen Wechselwirkungen zu scheinbar tausendjährigen 
Radiokohlenstoffaltern des organischen Kohlenstoffs im Unterboden zu bestimmen. Hier wird einem 
Modell, das mit standortspezifischen Sorptionskapazitäten parametrisiert ist, eine allgemeingültigere 
Parametrisierung der Sorptionskapazität gegenübergestellt. Mit dieser allgemeingültigen 
Formulierung der Sorptionskapazität, die auf dem Ton- und Schluffgehalt basiert, können Unterschiede 
der Tiefengradienten von Radiokohlenstoff zwischen Standorten dargestellt werden. Nach der 
Kalibrierung an Profile von bodenorganischem Kohlenstoff und Radiokohlenstoff wurde mit Hilfe von 
Modellexperimenten die Bedeutung einzelner Prozesse und deren Zusammenspiel zur Erklärung 
von Radiokohlenstoff-Tiefengradienten untersucht. Ein besonderer Schwerpunkt wurde darauf gelegt, 
wie verschiedene Sorptionskapazitäten mit mikrobieller Limitierung zusammenwirken. Dieser Ansatz 
erlaubte es uns, scheinbar jahrtausendealte Radiokohlenstoffalter mit Mechanismen des mikrobiellen 
Abbaus und der Sorptionskapazität anstelle von chemischer Rekalzitranz zu erklären.  

Der mechanistische Rahmen, der in dieser Arbeit entwickelt wurde, hilft den Umsatz 
organischer Substanz im Boden, die unterirdischen Teile des globalen Kohlenstoffkreislaufs und 
schließlich seine Reaktion auf die globale Erwärmung besser zu verstehen. 
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Abstract 
Terrestrial ecosystems and soils are major actors in the Earth’s carbon cycle, and tightly linked 

to the evolution of atmospheric CO2 concentrations and climate change. Soils alone store several times 
more carbon than the atmosphere, and carbon cycling in soils could hence have substantial impact on 
atmospheric CO2 concentrations. To understand the timescales of carbon cycling in terrestrial 
ecosystems, radiocarbon measurements are an important tool. Yet, results from radiocarbon 
measurements have often conflicted with results other measurement techniques: In the study of root 
turnover, radiocarbon has yielded turnover times that are much longer compared to those attained by 
other methods, such as sequential coring or minirhizotrons. In the study of soil organic carbon 
turnover, radiocarbon has pointed to pools that cycle on centennial to millennial timescales. Empirical 
evidence, however, has suggested that individual compounds turn over more rapidly. This 
dissertation's overarching goal is to reconcile turnover models of roots and soil organic carbon with 
radiocarbon data by incorporating new process understanding into these models.  

The first part of the dissertation reconciles radiocarbon contents of fine roots with observations 
of root lifetimes from minirhizotrons. Previously root turnover had mainly been estimated by a one-
pool model. This kind of model assumes an equal likelihood for root death throughout the lifetime of 
a root. Minirhizotron observations, however, have pointed to higher likelihoods of root turnover at the 
beginning of a root’s lifetime. In this thesis, a framework was developed that allows using 
minirhizotron and radiocarbon data in conjunction to estimate mean fine-root residence times. 
Survival functions from the field of survival analysis were used to estimate mean fine-root residence 
times from lifetime data of individual roots. Convoluting fine-root survival functions with the 
atmospheric radiocarbon bomb curve allowed performing a joint estimation of mean fine-root 
residence times from radiocarbon and minirhizotron data. 

The second part of the dissertation develops a new soil organic carbon profile model that 
incorporates mechanistic descriptions of microbial and organo-mineral interactions. The aim is 
to reconcile apparent millennial radiocarbon ages of soil organic carbon in the subsoil with other 
observations by considering the contribution of microbial decomposition limitation and organo-
mineral interactions. A version of the model parametrized with site-specific sorption capacities was 
contrasted with a more generic parametrization of sorption capacity. With this generic formulation of 
sorption capacity based on clay and silt content, between-site differences of radiocarbon depth 
gradients could be represented. After calibration to profiles of soil organic carbon and radiocarbon, 
model experiments were used to study the importance of individual processes and their interaction 
for explaining radiocarbon depth gradients. A special focus was put on how different levels of sorption 
capacity interact with microbial substrate limitation. This approach allowed us to reconcile apparent 
millennial radiocarbon ages with mechanisms of microbial decomposition and sorption capacity 
instead of chemical recalcitrance.  

The mechanistic framework developed in this thesis can be used to better understand soil 
organic matter turnover, the belowground parts of the global carbon cycle, and eventually its response 
to global warming. 
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1 General Introduction 

1.1 Importance of belowground processes for the terrestrial carbon cycle 

In 2018, fossil CO2 emissions passed the mark of 10 Pg C yr-1 for the first time in history (1 Pg C = 1 

Gigaton carbon = 1015 g carbon; Friedlingstein et al., 2019). These emissions have contributed to an 

increase of carbon in the atmosphere in the form of CO2 from 589 Pg C in the preindustrial era to 860 

Pg C (Ciais et al., 2014; Friedlingstein et al., 2019) and a warming effect of around 1.68 W m-2 (Myhre 

et al., 2014).  

Soil organic carbon could have a considerable feedback to climate warming. Soils contain 1500 to 

2400 Pg C in the first meter and between 1500 Pg and 2600 Pg C below (Fan et al., 2020). Thus, soils 

store more than three times the carbon of the atmosphere and more carbon than the Earth’s fossil 

fuel reserves of 1005 to 1940 Pg C (Ciais et al., 2014). The global flux out of the soil as heterotrophic 

respiration is estimated to be around 51 Pg C yr-1 (Hashimoto et al., 2015) and is thereby around five 

times greater than anthropogenic fossil fuel emissions.  

Compared to fossil fuel reserves, which receive basically no contemporaneous inputs, the global soil 

organic carbon pool receives inputs via dead leaves, roots, and wood that roughly equal its effluxes 

via heterotrophic respiration. Just a 2% imbalance of global heterotrophic respiration over global 

litter inputs would equal to about 10% of annual global fossil fuel emissions (Davidson, 2020). Due to 

the considerable size of the global soil organic carbon pool, an accelerated heterotrophic 

decomposition due to climate warming has the potential to result in a substantial positive feedback 

loop and to further exacerbate climate warming (Bradford et al., 2016; Koven et al., 2017). 

To better understand the potential of soil organic carbon turnover to accelerate climate warming, it 

is paramount to improve our mechanistic understanding of inputs to, transformations within, and 

losses from the soil organic carbon pool. 
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1.2 Uncertainties of belowground processes in the terrestrial carbon cycle 

Processes that affect the largest carbon store in the terrestrial biosphere occur mostly belowground. 

Belowground processes are ‘hidden’ from direct observation, such as root production and turnover, 

and soil organic matter (SOM) formation and turnover. These hidden belowground ecosystem 

processes are inherently more challenging to study than aboveground ecosystem processes. 

Methods of observation for belowground processes are generally less direct than for aboveground 

processes. Yet, given their importance for the terrestrial carbon cycle, it is crucial to better 

understand belowground processes despite their hidden nature. 

The most obvious symptom of the inherent difficulty in studying belowground processes is the high 

uncertainty in estimates of the global soil organic carbon stocks. Estimates in the first meter of soil 

alone differ by 900 Pg C (Fan et al., 2020), which is more than the carbon content of the atmosphere 

(Friedlingstein et al., 2019). Similarly, the amount of carbon stored globally belowground in root 

biomass is not very well constrained. According to recent estimates, the global vegetation stores 

around 410 Pg C (Fan et al., 2020). These estimates include both aboveground and belowground 

biomass. Earlier estimates of biome-level stocks root-biomass amounted to 292 Pg C globally 

(Jackson et al., 1997). Using shoot-to-root ratios, Robinson (2007) estimated that belowground 

biomass could amount to 268 Pg C, while Saugier et al. (2001) estimate that  belowground biomass 

stores 160 Pg C. More recent biomass stocks are based on the combined estimation from various 

satellite remote sensing retrievals (Fan et al., 2020). By the nature of satellite remote sensing, these 

yield aboveground biomass estimates. Belowground biomass is then derived from allometric 

relationships with aboveground biomass (Saatchi et al., 2011; Thurner et al., 2014; Fan et al., 2020) 

and thereby inherently uncertain. 

Uncertainties remain not only in the size of belowground carbon stocks, but also in corresponding 

input and output fluxes of carbon to and from the soil. Inputs to the soil organic carbon pool via plant 

litter can be as aboveground and belowground litter. In different biome types, between 23% 

(croplands) and 70% (Mediterranean/montane shrublands) of net primary productivity (NPP) is 

allocated belowground and eventually enters the soil organic matter pool (Supplementary Table 1 in 

Luo et al., 2019). Globally, it is estimated that plants allocate around 40% of NPP belowground (Del 

Grosso et al., 2008; Luo et al., 2019). The quantification of aboveground litter inputs with litter traps 

is relatively straightforward (Vitousek, 1984). Conversely, belowground inputs are quantified with a 
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multitude of techniques (Lukac, 2012) that can lead to seemingly contradictory results calling into 

question how much root litter supplies to the soil organic carbon pool (Trumbore and Gaudinski, 

2003). Additionally, the point-of-entry for inputs to the soil organic pool is crucial since vertically 

distributed belowground litter inputs provide a different sequestration potential depending on 

where litter inputs occur in relation to their position in the soil micro-environment, e.g., in contact 

with the mineral matrix or not (Sokol and Bradford, 2019). The development of 13C- and 14C-based 

measurement techniques to estimate root turnover times have led to speculations that belowground 

litter inputs to the soil organic pool have been overestimated (Matamala et al., 2003; Trumbore and 

Gaudinski, 2003).  

Similar to root turnover times, 14C measurements of soil organic carbon have presented a puzzle to 

researchers for a long time in their attempt to understand soil organic matter formation and 

turnover. 14C has provided evidence on the formation and turnover of soil organic carbon on 

centennial to millennial time-scales (Trumbore, 2009). While 14C has provided researchers with 

insights on the time horizon of SOM formation and decomposition, mathematical models were not 

equipped with enough mechanistic understanding to integrate the 14C data into the model-

knowledge integration loop (Bradford et al., 2016). Under the paradigm of chemical recalcitrance as 

the dominant mechanism for SOC formation and turnover, mathematical models of soil organic 

carbon turnover could explain apparent millennial 14C ages.  However, recent experimental advances 

have questioned the chemical recalcitrance paradigm (Schmidt et al., 2011).  

14C measurements have added new pieces to the puzzle of root turnover, and soil organic matter 

formation and turnover. In both cases, new findings were irreconcilable under the prevailing 

paradigms of root turnover and soil organic matter turnover. After a short overview on 14C 

measurements and the use of 14C in closed and open system (chapter 1.3), chapter 1.4 outlines how 
14C has contributed to a paradigm shift in both fields. 

1.3 Radiocarbon as a tracer for time scales of carbon turnover   

Radiocarbon has been used as a proxy to measure time in various fields. Most commonly known is 

the use in archeology and related fields where scientists use the radioactive decay of radiocarbon to 

determine the age of an artifact (Geyh, 2005). In archeology, one generally assumes a closed system 

– this means that one assumes that after deposition of a sample in an archeological setting, the 
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sample receives no further external input of carbon, which would change the artifact's apparent age. 

Archeological dating seems straightforward at first glance. If the studied system is closed, so called 

conventional radiocarbon ages can be calculated using the approach first introduced by Willard Libby 

and James Richard Arnold in 1949 (Arnold and Libby, 1949): 

conventional Cଵସ age = −8033 ⋅ log ൬Aୗ୒A୓୒൰ (1-1) 

where 8033 years is the mean lifetime of 14C based on the Libby half-life of 14C of 5568 years, and Aୗ୒ 

describes the activity of the sample normalized for 13C fractionation relative to the activity of the 

standard, A୓୒. Depending on the activity of the sample, the 14C activity can be measured with decay 

counting or, most commonly for samples with natural abundances with accelerator mass 

spectrometry.  

In addition to the necessary condition of a closed system, calculating conventional 14C ages relies on 

the precondition that over the last 100000 years, the atmospheric 14C production rate, the 

atmosphere’s, biosphere’s, and hydrosphere’s carbon contents, and the exchange rate between 

these spheres were constant. 
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Figure 1-1: Δ14C of atmospheric CO2 for the Northern Hemisphere (30-90° N) as compiled by Graven et al. 
(2017). 

Since these preconditions generally do not hold and the Libby half-life of 5568 years is used for 

honorary purposes, conventional 14C ages do not represent the ages of samples even in closed 

systems. The main cause for deviations from the conventional 14C age are fluctuations in the 

atmospheric 14C content. These have been acting on various time-scales such as the de Vries effect, 

which describes changes in the atmospheric 14C content due to changes in the dipole moment of the 

earth, the sun’s activity and magnetism, as well as climate (Trumbore et al., 2016). Fossil fuel 

emissions have started to influence the Earth’s atmospheric 14C content since the 1850s and have 

diluted the Earth’s 14C content. Aboveground nuclear weapons testing in the 1950s has led to a peak 

in atmospheric 14C due to the creation of large quantities of 14C (Figure 1-1).  

As ecosystems are generally open systems, two quantities that describe the absolute amount of 14C 

in a sample are generally reported (Stuiver and Polach, 1977; Trumbore et al., 2016): 

percent Modern = % Modern = pM = Aୗ୒A୅୆ୗ ⋅ 100 % (1-2)
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ΔଵସC = ൬ Aୗ୒A୅୆ୗ − 1൰ ⋅ 1000 ‰ (1-3)

Where percent Modern describes the amount of carbon relative to 100% in the year 1950 (time 

point for modern), while ΔଵସC describes the permille deviation from a sample activity that is equal to 

the standard in the year 1950. The activity of the standard is absolute (A୅୆ୗ), i.e., the activity of the 

standard is decay-corrected to the activity of the standard in 1950. Both quantities, percent Modern 

and ΔଵସC are not influenced by the year of measurement of the sample. 

All these changes in the atmospheric 14C content show the importance of using calibrated 14C ages 

over conventional 14C ages for closed systems. Calibrated 14C ages generally refer to sample ages 

estimated with the so-called wiggle-matching approach which uses the wiggles of the atmospheric 
14C curve to determine 14C ages (Pearson, 1986; Reimer et al., 2013). Wiggle-matching can be 

performed on samples from before 1950, which were mainly influenced by the de Vries effect 

(Reimer et al., 2004a), and samples from the bomb-radiocarbon period (Reimer et al., 2004b; Hua et 

al., 2013).  

Conventional and calibrated 14C ages rely on strictly closed systems for dating. For the use in soil 

organic matter research, open systems are the typical situation. Therefore, conventional and 

calibrated 14C ages can only be used for illustrative purposes (as when reported in this thesis) or to 

date individual compounds for which a closed system can be assumed. Instead, using 14C as a ‘clock’ 

in open systems such as soils generally relies on process-based modeling of the carbon and 

radiocarbon dynamics. The radiocarbon dynamics generally are submitted to the same processes as 

carbon with the addition of radioactive decay and input of 14C from the source reservoir (e.g., plant 

litter). Thereby, radiocarbon provides a tool to understand processes and time-scales of carbon 

cycling provided by the radioactive decay of 14C and the ‘wiggles’ of the atmospheric curve from the 

de Vries, Suess, and bomb effect. 
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1.4 Paradigm shifts in root and SOC turnover 

The fields of studying root turnover and SOC formation and turnover have witnessed paradigm shifts 

in the last 20 years that have been driven, in part, by the irreconcilability of 14C measurements with 

the prevailing paradigm in the field. A paradigm shift is generally characterized by an accumulation of 

observations that cannot be reconciled with the current paradigm, which leads to a period of 

revolutionary science and finally to the formulation of a new paradigm. In the study of root turnover 

and SOC turnover, the field is generally split into rather disparate communities of modelers and 

experimentalists. Therefore, the transfer of knowledge to modelers from experimentalists is 

relatively small. The symptoms for irreconcilable differences to the current paradigm may 

accumulate both in the modelling and the experimental realm. The following two subchapters 

outline how 14C measurements were one of the symptoms for irreconcilable observations in root and 

SOC turnover that led to the formulation of new paradigms in both fields. 

1.4.1 Irreconcilable differences in root turnover? 

Fine-root turnover times were generally studied with production-based techniques in the 1990s. Fine 

root production can be measured directly with ingrowth cores or by sequential coring of root 

biomass throughout seasons (Brunner et al., 2013). Using the common definition of turnover time as 

stock divided by production led to the derivation of root turnover times of 1 to 3 years. The disparity 

of the experimental and modeling realm in the study of root turnover is characterized by the absence 

of a notable use of root turnover models before new measurement techniques such as 13C labeling, 

minirhizotrons (Strand et al., 2008), and using the 14C bomb curve (Riley et al., 2009) appeared on the 

scene. Only the experimentalists' prevailing sentiment that the different measurement techniques 

yielded irreconcilable differences due to the techniques' biases led to the development of a 

dedicated root turnover modeling field. The qualifier dedicated is used here to clarify that root 

turnover was considered in ecosystem models before. However, turnover times therein were solely 

reliant on production-based estimates or on back-of-the-envelope calculations. The diagnosis of 

seemingly irreconcilable differences between different measurement techniques led to considerable 

modeling efforts for fine-root dynamics (Riley et al., 2009). Formalizing experimentalists' insights into 

equations was a prerequisite for testing their assertion that the new isotope-based techniques (13C 

labeling and 14C) generally lead to longer turnover time estimates than the conventional production-

based estimates and the minirhizotron technique.  



General Introduction 

 

23 

 

Thereby, two directions emerged: one making a case for longer than previously thought turnover 

times (13C labeling and 14C) and one making a case for shorter turnover times in the range of the 

established production-based estimates (minirhizotrons). Biases of production-based and 

minirhizotron-based turnover times and biases of the isotope-based techniques were commonly 

highlighted to emphasize the correctness of one approach over the other or to make a case for the 

irreconcilability of all techniques. One-pool models with first-order turnover rates were used to 

translate 14C or 13C contents in roots into turnover times. For minirhizotrons, statistical models were 

used to derive mean turnover times (Pritchard and Strand, 2008). These turnover times were then 

compared, but no attempt was made to integrate different measurements into one framework.  

After initial statements about the irreconcilability of different measurement types, mathematical 

models were developed to check if the different kinds of observations could be reconciled (Guo et 

al., 2008; Riley et al., 2009). In the early stages of root turnover modeling, the irreconcilability of the 

observations had been emphasized, leading to statements like “long turnover times suggest that root 

production and turnover in forests have been overestimated and that sequestration of 

anthropogenic atmospheric carbon in forest soils may be lower than currently estimated” (Matamala 

et al., 2003). Riley et al. (2009) were the first to attempt to reconcile minirhizotron and 14C data. 

However, their efforts fell short since they simply used the root turnover time of minirhizotrons as 

determined with statistical methods to parametrize a fast pool's turnover time in a two-pool 

turnover model. Riley et al. (2009) did not attempt to reconcile both types of observations available 

to them. Nevertheless, Riley et al. (2009) started to formulate ideas towards a reconciliation of the 

various techniques by considering that different measurement techniques might reflect different 

parts of the root lifetime continuum. This idea has been voiced early in the debate on the 

irreconcilability of different datastreams (Trumbore and Gaudinski, 2003) and helped formulate the 

new paradigm of root turnover: the probability for a root to die changes through its lifetime. In other 

words, a one-pool exponential decay model is not able to capture the changing probability for a root 

to die. The apparent irreconcilability of root turnover observations has sparked a debate whether the 

probability for a root to die stays the same over its lifetime. The evidence has led to abandoning the 

previous paradigm of equal survival probability throughout its lifetime, an assumption initially made 

as a consequence of the previous methods of determining root turnover based on root biomass and 

root production. The wealth of apparently irreconcilable approaches to root turnover has led to the 

new paradigm of changing survival probabilities of roots over their lifetime and acceptance of 

inherent biases of the different techniques. Overall, the new consensus highlights that various 
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techniques offer constraints for different parts of the survival probability of a root during its lifespan. 

The acknowledgement of their inherent biases is at the same time crucial for the ability to reconcile 

data from various techniques. The apparent irreconcilability of the various root turnover time 

observations is a testament to the changing survival probability of fine-roots as they enter different 

stages of their life cycle. The consideration of the inherent biases of the various techniques was the 

prerequisite for being able to reconcile different measurements and to develop the new paradigm of 

changing survival probabilities of roots throughout their lifetime. 

1.4.2 Irreconcilable differences in SOC turnover? 

The prevailing paradigm for the long-term persistence of soil organic carbon has been chemical 

recalcitrance (Schmidt et al., 2011). The chemical recalcitrance paradigm states that the chemical 

structure of plant inputs and soil organic carbon is the dominant explanatory factor for forming 

persistent organic carbon pools in soils.  

Two schools of thought fall under the umbrella of the chemical recalcitrance paradigm: The chemical 

recalcitrance via humification school, the chemical recalcitrance via selective preservation school, 

and a combination of the two. The humification theory assumes that chemically recalcitrant 

compounds are formed through de novo synthesis in the soil. Followers of this school regarded 

chemical recalcitrance through humification as the main reason why organic compounds persist in 

soils. Millennial 14C ages in the subsoil have been cited as the principal witness that these 

hypothesized humic substances must be so chemically recalcitrant that they persist in soils. The 

selective preservation school assumed that individual compounds in plant litter such as lignin or 

lipids are so chemically recalcitrant that they persist in soil: The selectively preserved compounds are 

left behind in the decomposition process and form the bulk of persistent soil organic carbon. As for 

fine-root turnover times and humic substances, 14C ages were taken as a principal witness to 

substantiate this theory. Compound specific 14C ages that indicated up to millennial ages of these 

individual compounds seemed to corroborate this theory. In the modeling realm, the chemical 

recalcitrance paradigm crystallized by the invention of stable, passive, or even inert pools that 

decomposed according to a slow first-order decomposition rate (i.e., a turnover time of several 

centuries) without or with minimal influence of the biotic and abiotic environment. 14C observations 

were used to determine the size of these inherently slow pools, but 14C observations were not used 

as a tool to gain process knowledge or elucidate stabilization pathways in the models (Coleman et al., 

1997; Jenkinson and Coleman, 2008). This simplistic de facto reconciliation of millennial 14C 
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observations and SOC stocks to determine the slow pools' size was one of the symptoms of the crisis 

of the chemical recalcitrance paradigm: the slow pools were ‘fudge pools’ (Goldsmith, 1997) 

invented to represent unresolved processes. Due to their role as ‘fudge pools’, the slow pools' 

response to environmental changes was at best a transfer of empirical knowledge to these ‘fudge 

pools’ but always poorly backed by process knowledge. However, the gravest symptoms that the 

chemical recalcitrance paradigm is not justifiable came from the experimental realm: The 

humification theory could not be held up after the hypothesized de novo synthesized 

macromolecules described with the umbrella term humic substances could not be observed with 

modern analytical techniques (Kelleher and Simpson, 2006; Lehmann et al., 2008). Similarly, a review 

by Amelung et al. (2008) showed that in 13C labeling experiments, seemingly chemical recalcitrant 

compounds such as lignin and lipids have apparent turnover times faster than the bulk of soil organic 

carbon. Therefore, selective preservation could not be the main reason for long-term persistence of 

organic matter in soils. 

Instead of the humification theory and the selective preservation theory, a concerted effort of 

scientists acknowledged and possibly announced the paradigm shift in the landmark review and 

opinion paper of Schmidt et al. (2011). This paper formulated the idea that SOC persistence is an 

ecosystem property. The chemical recalcitrance paradigm stated that the long-term persistence of 

SOC is primarily a molecular property but does depend less on the interaction of organic matter with 

its biotic and abiotic environment. The formulation of the new paradigm as an ‘ecosystem property’ 

paradigm is a misnomer since this rather excludes chemical structure as the main factor to SOC 

persistence than stating which factors are crucial to SOC persistence. Lehmann and Kleber (2015) 

instead highlighted that microbial and mineral interactions are among the most important 

interactions with the biotic and abiotic environment that have to be addressed to understand SOC 

persistence. 

Along with these two factors comes the treatment of soil as a three-dimensional medium. The 

vertical position of where SOC is formed and decomposed is vital in the new paradigm since 

microbial and mineral interactions change as a function of soil depth. Soil depth is here a proxy for 

various processes that change as a function of depth such as weathering, which influence soil texture 

and in turn rooting patterns (Schenk and Jackson, 2002). Rooting patterns influence microbes via the 

amount of substrate that is supplied to them (Iversen, 2010). The amount of microbial biomass in a 

certain depth in turn influences SOC formation and decomposition in that depth. Microbes are now 
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regarded as the primary actors for SOC formation and decomposition (Bradford et al., 2016). The 

interaction of microbes with their microenvironment, i.e., the position of a microbe with regard to 

mineral surfaces, their substrate, and the moisture and temperature conditions they experience, 

primarily controls the decomposition rate of SOC instead of a primary control by the molecular 

structure of the substrate (Schmidt et al., 2011). In a similar vein, the acquisition of chemical 

recalcitrance throughout the decomposition process through humification has been abandoned in 

favor of putting microbes point and center for understanding the long-term persistence of SOC 

(Schmidt et al., 2011).  

14C measurements have always played a major role in justifying both mathematical and conceptual 

models of SOC formation and decomposition based on the humification and selective preservation 

theories. 14C measurements have not been fully incorporated into efforts of understanding the long-

term persistence of SOC but were rather treated as an afterthought or as direct evidence for either 

schools of the chemical recalcitrance paradigm. Thereby the scientific community only had limited 

possibilities to learn from radiocarbon observations. The difficulty in reconciling radiocarbon 

observations with models led to a standstill in model development and a disconnect between the 

progress the scientific community made experimentally and how this progress could be translated 

into models. The paper by Schmidt et al. (2011) constituted an important step to incorporate 

processes such as association with mineral surfaces and microbial decomposition limitation into 

models. These processes could potentially explain 14C age-depth gradients in soils. 

1.5 The need for modeling in reconciling radiocarbon with other observations 

In the study of carbon turnover in ecosystems, 14C has the role of a complementary measurement. 
14C measurements are commonly made in addition to other measurements such as inventories of 

roots or SOC. Compared to its use in archeology where the direct interest lies in dating an object but 

not understanding which processes lead to persistence of that object in its environment, the use of 
14C in the study of carbon turnover in ecosystems always has to be combined with modelling. In the 

infant stages of 14C as a tracer for turnover in ecosystems, simple pool models were fitted to 14C 

observations. These fitting exercises often were restricted to 14C without taking into consideration 

the carbon counterpart or estimates on the inputs to the system or outputs from the system. Hence 

these were then often not in agreement with the 14C-based turnover time estimate (Gaudinski et al., 

2000). Only the integration of 14C with other measurements into process-based models can constrain 
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the overall turnover of carbon in ecosystems. One-pool models fitted to 14C measurements generally 

disagree with stock-based turnover time estimates, such as in the study of root turnover, if there is 

additional information content in these measurements. Both in studies on root turnover and SOC 

turnover, 14C generally tends to provide information on the long-tail of the residence time 

distribution (Sierra et al., 2017; Metzler et al., 2018).  

Radiocarbon is a unique tracer as, except for its radioactive decay, models do not need to 

incorporate additional processes. Isotopic discrimination is already accounted for during the 

reporting of 14C values by additionally also measuring 13C and by employing double the discrimination 

of 13C. Radiocarbon and carbon in soil organic matter are the results of the same processes. Thereby, 

we have two constraints that must be reconciled under the umbrella of the same processes. In 

previous state-of-the-art models, targeted pools were introduced to reproduce 14C depth gradients.  

1.6 Motivation and objectives 

The overall aim of this dissertation is to reconcile radiocarbon observations of fine-roots and soil 

organic carbon with the emerging understanding of fine-root and soil organic carbon turnover. As 

outlined before, the apparent irreconcilability of radiocarbon with the previous understanding of 

fine-root and soil organic carbon turnover has sparked a shift in conceptual models and the 

understanding of fine-root and soil organic carbon turnover. In both fields, this shift in conceptual 

understanding had not been formalized in mathematical models and had not been tested against 

observations. This thesis therefore aims at using radiocarbon observations for constraining and 

testing models of fine-root and soil organic carbon turnover that reflect the emerging process 

understanding.  

The attempt to reconcile radiocarbon data from fine-roots with minirhizotron data was motivated by 

the following main objectives (Obj-Root1 to Obj-Root4): 

(Obj-Root1) Unify various root turnover models to a convolution of the atmospheric radiocarbon 

curve with root survival functions. 

(Obj-Root2) Clarify the concepts of turnover time, mean residence time and mean age for the 

estimation of fine-root turnover with radiocarbon. 
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(Obj-Root3) Quantify root turnover with radiocarbon and minirhizotron data as joint constraints 

using different survival functions. 

(Obj-Root4) Address systematic biases of radiocarbon and minirhizotron data. 

 

The attempt to reconcile radiocarbon data of SOC profiles with the emerging understanding of SOC 

turnover was motivated by the following main objectives (Obj-SOC1 to Obj-SOC4): 

(Obj-SOC1) Develop a SOC model that simulates the SOC and 14C profile while incorporating new 

process understanding such as microbial and organo-mineral interactions. 

(Obj-SOC2) Explore different concepts to represent a maximum sorption capacity for mineral-

associated organic matter. 

(Obj-SOC3) Elucidate the importance of microbial and organo-mineral interactions for the formation 

of the SOC and radiocarbon profile. 

(Obj-SOC4) Compare how a generic way to represent sorptive stabilization of OC interacts with other 

processes such as microbial energy limitation, the point-of-entry of litter inputs, and temperature 

across various sites.  



General Introduction 

 

29 

 

To address these objectives, the following studies were conducted: 

(Study I) Reconciling 14C and minirhizotron-based estimates of fine-root turnover with survival 

functions. This study aimed at introducing a general framework for analyzing 14C fine-root data that 

allows to use survival functions that are commonly used for analyzing minirhizotron data. 

(Study II) Reconcilable Differences: A Joint Calibration of Fine-Root Turnover Times with 

Radiocarbon and Minirhizotrons. This study shows that minirhizotron data and 14C fine-root data can 

be reconciled when the biases of the two techniques are addressed. 

(Study III) Contribution of Sorption, DOC Transport and Microbial Interactions to the 14C Age of a 

Soil Organic Carbon Profile: Insights from a Calibrated Process Model. This study introduces the 

COMISSION model and uses data from batch sorption experiments to model soil organic carbon and 

mineral-associated organic carbon profiles and their 14C contents in a Podzol.  

(Study IV) Combination of energy limitation and sorption capacity explains 14C depth gradients. 

This study extends the concept of the COMISSION model to a cross-site setup with a scalable 

definition of sorption capacity based on the clay and silt (< 20 µm) content. Compared to the 

previous version of the COMISSION model in study III, the mineral-associated organic carbon is 

formed also directly from microbial residues and not only dissolved organic carbon. The importance 

of different factors for explaining between site-differences in 14C is explored. 
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2.1 Abstract 

The turnover of fine-roots is a crucial component for the input of carbon to the soil. The amount of 

root litter input is depending on estimates of turnover times from different techniques. Turnover 

times from fine-root cameras (minirhizotrons) often yield 75% higher root litter input estimates than 

turnover times estimated with the bomb-radiocarbon signature of fine-roots. We introduce a generic 

framework for the analysis of fine-root 14C with different survival functions. So far, mostly an 

exponential function has been used to estimate the turnover time and mean age of fine-roots. In the 

context of the introduced survival function framework we clarify the terms turnover time, mean 

residence time, mean longevity and mean age commonly used in studies of root turnover. Using a 

unique time series of fine-root 14C (Fröberg, 2012), we test if survival functions other than the 

exponential function are better in accordance with turnover time estimates commonly found with 

other methods. A survival function that corresponds to a two-pool model was best in agreement with 

minirhizotron-based estimates (mean residence time of 1.9 years). We argue that using fine-root 14C 

and minirhizotron time-to-death data together would give the best constraints on fine-root turnover. 

At the same time this could allow quantifying systematic biases inherent two both techniques. 

2.2 Introduction 

Fine-root turnover constitutes a substantial component of the global terrestrial carbon cycle (Jackson 

et al., 1996; Gill and Jackson, 2000). It is, however, challenging to constrain the magnitude of 

belowground carbon transfer because root turnover is very difficult to quantify in situ compared to 

aboveground litterfall (Trumbore and Gaudinski, 2003).  

Turnover time, mean residence time, mean longevity, mean lifespan, and mean lifetime are 

often used interchangeably to describe root turnover. Often these notions are used as synonyms, 

although turnover time is only equal to the other notions if the root system is in steady state (Bolin 

and Rodhe, 1973; Strand et al., 2008; Gaudinski et al., 2010). In this case root production or root 

mortality can be calculated as the root biomass divided by one of these notions. Further, studies 

often report the mean age of roots which is equal to the aforementioned notions if the probability 

that a root dies follows an exponential function (Rodhe, 1992). 
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Different experimental methods exist to quantify fine-root turnover. However, the turnover 

times estimated by different methods largely differ: turnover times from inventory based approaches 

are commonly between < 1 and 3 years (Trumbore and Gaudinski, 2003), minirhizotrons yield 

turnover times of e.g. ~ 1.8 years when the roots around the tube have reached steady state (Strand 

et al., 2008). Turnover times estimated using the measurements of 14C in fine-roots are, however, 

much longer, e.g. Gaudinski (2001) 3-18 years, Gaul et al. (2008) 7.6 years and Fröberg (2012) ~ 8 

years. 

The implications of such differences in fine-root turnover times would be of great 

significance for the global estimation of the belowground carbon budget (Lukac, 2012). Assuming 

steady state of the root population, root production (allocation of net primary productivity to the 

root system) and root mortality (root litter input to the soil organic matter pool) would be reduced 

by 75% for a root turnover time of 8 years compared to a root turnover time of 2 years. Hence, it is 

necessary to try to reconcile the data gathered with the different methods by using a common model 

which would allow addressing the possible drawbacks of the different methods. 

Fröberg (2012) presented a unique time series of fine-root 14C measured from archived 

samples of O horizons of Norway spruce (Picea abies (L.) H.Karst.) dominated forests in Southern 

Sweden and used two simple root-turnover models presented in Gaudinski et al. (2001) to estimate a 

turnover time of 8 years. This time series is unique because it covers the complete length of the 

“bomb radiocarbon” curve, which describes the prominent peak of the 14C content in the 

troposphere due to aboveground thermonuclear weapons testing during the late 1950s and early 

1960s, and the subsequent quasi-exponential decline of the atmospheric 14C content due to dilution 

into biosphere and oceans (Hua and Barbetti, 2004; Levin and Kromer, 2004). 

There has been some debate if the turnover time estimated with the 14C of fine-roots 

actually represents the root turnover time (Gaudinski, 2001; Guo et al., 2008; Sah et al., 2011): If also 

stored carbon and not only recent photosynthate is used to grow new roots (Gaudinski et al., 2001), 

the fine-root 14C mean residence time would overestimate the fine-root mean residence time by the 

time the carbon atoms have already spent as stored carbon. Gaudinski et al. (2009), for example, 

estimated that the carbon used to grow roots in a temperate deciduous oak forest is already 0.4 

years old, while Tierney and Fahey (2002) and Gaul et al. (2009) found that newly grown roots in a 

northern hardwood forest and a Norway spruce stand have the 14C signature of freshly assimilated 

photosynthate. Sah et al. (2011) found that for very fine roots (with a diameter < 0.5 mm as in 
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Fröberg (2012)) the age estimated with fine-root 14C is in accordance with the known age of roots, 

while for roots with a diameter of 1.5-2 mm storage carbon might play a substantial role. 

 Using the fine-root 14C time series from Fröberg (2012) as a test case, our objectives for this 

paper are: (i) To present a unifying framework that allows to break down all root turnover models to 

a convolution of the atmospheric radiocarbon curve with a root survival function 

(ii) To clarify the concepts of turnover time, mean residence time and mean age, and the relations 

between these notions for a root system under steady state with the help of this framework. 

 (iii) To analyze the performance and characteristics of different root survival functions, and to 

compare the fitted mean residence times with mean residence times commonly found with 

inventory based approaches (<1-3 years Trumbore and Gaudinski (2003)) and especially 

minirhizotron studies (~ 1.8 years, Strand et al. (2008)). 

2.3 Material and methods 

2.3.1 Atmospheric 14C record 

We constructed a time series of tropospheric Δ14C measurements from Vermunt (1959-1976) and 

Schauinsland (1976-2011) (personal communication by Ingeborg Levin 2011), which are 

representative for sites influenced by fossil fuel emissions (Levin and Kromer, 2004). From the 

individual atmospheric flask samples we calculated time-weighted averages for the summer months 

from May to August which are commonly used for a good representation of the 14C values in the 

vegetation (Levin and Kromer, 2004). For the years 1955-1958 these time-weighted averages were 

appended with data from the Northern Hemisphere Zone 1 compilation by Hua and Barbetti (2004). 

This compilation is representative for the Northern Hemisphere north of 40°N and consists of tree 

ring data from Kiel (Germany), Hungary and Bear Mountain (New York, USA). Prior to 1955 the UW 

14C atmospheric single year data set from 1510 to 1954 was used (Stuiver and Braziunas, 1993; 

Stuiver et al., 1998). 
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2.3.2 Survival function framework for root turnover 

Fröberg (2012) used his unique fine-root 14C time series to test two simple root-turnover 

models presented in Gaudinski et al. (2001):  

(1) A time-shift model (model 1 in Fröberg (2012)) was not able to give consistent estimates 

of fine-root 14C for samples before 1985. This model assumes that all fine-roots are grown in the 

same year and that the root age can be calculated as the necessary time shift τ  for the atmospheric 
14C time series to match the fine-root 14C value of a certain year t : 

( )τ )( 1414 −= tCAtmtCRoot  (2-1) 

where )(14 tCRoot  and ( )tCAtm 14  is the 14C content in roots and in the atmosphere in year t  (in pM, 

percent Modern as defined in Stuiver and Polach (1977)). 

(2) Model 2 in Fröberg (2012) is a 1-pool model, which assumes that root 14C follows first-

order kinetics with turnover rate k and that root biomass is in steady-state: 

( ) )()()( 1414
14

tCRootktCAtmk
dt

tCdRoot ⋅+−⋅= λ
 

(2-2) 

where λ accounts for radioactive decay of 14C and the term ( )tCAtmk 14⋅  describes the production of 

new fine-root 14C under steady state. Fröberg (2012) uses forward differencing or Euler integration 

with yearly time-steps to solve Equation (2-2): 

( ) )1()1()( 141414 λ−−⋅−+⋅= ktCRoottCAtmktCRoot  (2-3) 

This first-order kinetics model was able to reproduce the measurements presented in Fröberg (2012) 

with a mean residence time of 8 years. 

Mean residence time, rτ , can generally be defined as the mean time that a carbon atom 

spends in the root system. Table 2-1 gives an overview of commonly used synonyms for mean 

residence time: the term mean longevity is frequently used when analyzing time-to-death curves of 
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roots from minirhizotron studies; mean lifespan or mean lifetime are often used as equivalent terms 

(Strand et al., 2008; Gaul et al., 2009; Riley et al., 2009; Kikuzawa and Lechowicz, 2011). 

 

Table 2-1: Overview of time measures commonly used to describe survival functions and age functions. Some 
of these measures are common in all ecological fields, while some are used as synonyms when studying root 
turnover. Most of the distinctions are taken from Bolin and Rodhe (1973) and Rodhe (1992), and refined with 
notions used in Majdi (2001) and Strand et al. (2008). 

Measure Description 

τr mean residence time, mean transit time, mean longevity, mean lifespan, mean lifetime 

τa mean age 

τo turnover time 

Root turnover time, oτ , is equal to mean residence time, rτ , if the root system is in steady 

state. Following the definitions by Rodhe (1992) the root turnover time can generally be defined as 

mortalityroot 
biomassroot =oτ , and under steady state of the root system as 

productionroot 
biomassroot 

mortalityroot 
biomassroot ==oτ . 

Fine-root 14C studies often use the notion mean root carbon residence time instead of mean 

root residence time (e.g. Gaudinski et al. (2001) and Fröberg (2012)) to highlight that they cannot rule 

out the use of storage carbon for growth of new fine-roots. If, however, this is the case, the notion 

mean root carbon residence time is not a very meaningful quantity because it comprises the 

residence time of carbon in two different reservoirs: storage pools and roots. Instead we follow the 

strategy proposed by Riley et al. (2009) in the Radix model to account for the age of carbon that is 

used to build new fine-roots. Instead of assuming that )(14 tCAtm  constitutes the 14C content of new 

roots, )(14 tCAtm  is modified so that it also reflects the time the carbon has already spent in a 

storage pool. 

For the fine-root 14C values presented by Fröberg (2012) we follow the findings by Sah et al. 

(2011) that the 14C content of very fine roots (0-0.5 mm diameter) reflects their known age. Further, 

we compared the 14C content of root screens of a Norway spruce dominated forest in central Sweden 



Study I 

 

41 

 

(Knottåsen, Table S11 in Gaudinski et al. (2009)) with the individual atmospheric 14C flask samples at 

Schauinsland (Levin and Kromer, 2004), and could not find evidence for the use of stored carbon for 

fine-root growth (cf. Gaudinski et al. (2009)). Hence, we assumed a storage residence time of 0 years 

for this study. Nevertheless, one could use minirhizotron time-to-death data together with the fine-

root 14C to estimate the storage residence time. These time-to-death data, however, might also be 

biased towards longer lifespans because roots are still classified as alive when they are dead, but 

have not disappeared yet. One could try to account for this bias by introducing a parameter that cuts 

off time-to-death data earlier. 

Based on the framework by Manzoni and Porporato (2009) we can formulate a generic time-

shift model for the pM value of roots, )(14 tCRoot , if we define survival functions for roots and 

assume steady state of root dynamics: 

( ) ,)( )(
0

14114 ττττ τλ deStCAtmtCRoot o
⋅−

∞
− ⋅⋅−⋅=   

(2-4) 

where oτ  is the turnover time, )(14 tCAtm  the atmospheric pM value in year t , )(τS  describes the 

fraction of roots surviving at least to age τ  (cf. Niinemets and Lukjanova (2003), Manzoni et al. 

(2009), and Manzoni et al. (2012)), and τλ⋅−e accounts for the radioactive decay of 14C. When the root 

population is in steady state, the turnover time oτ  is equal to the mean residence time rτ (Table 2-1). 

The mean residence time can be calculated as 
∞

=
0

)( τττ dSr  (Manzoni et al., 2012). Equation (2-4) 

essentially describes CRoot14  in a certain year t  as the sum of 14C inputs via root production from 

previous years τ  weighted by the fraction of fine-roots )(τS  that live at least for τ  years. The 

atmospheric pM values CAtm14  are used as a proxy for the 14C content of new roots. Consequently, 

the term ( )ττ  141 −⋅− tCAtmo  describes the 14C input via root production under the assumption that 

root biomass is in steady state (equivalent to the term ( )tCAtmk 14⋅  in Equations (2-2) and 3. 

Mean age of roots, aτ , is often reported apart from rτ  and/or oτ  in studies on root dynamics. 

aτ  can be derived from the age distribution of roots. The age density distribution can be calculated as 

the amount of roots with age τ  over the total root biomass (Manzoni et al., 2009). When root 
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biomass is in steady state, the age density distribution )(τa  is directly related to the survival 

function via 
r

Sa
τ
ττ )()( =  (Manzoni et al., 2009). In order to make the age density distribution 

comparable to the survival function, we calculate the age function as ( ) ( ) τττ
τ

daA 
∞

= . Hence, ( )τA  

describes the fraction of roots that are at least τ  years old. The mean age 
∞

=
0

)( τττ dAa . Please 

note that the commonly used exponential distribution is the only survival function for which 

ora τττ ==  (Rodhe (1992); Gaudinski et al. (2010), Table 3). 

2.3.3 Calibration of different survival functions 

If we translate the description of the first method in Fröberg (2012) and Gaudinski et al. 

(2001), which was designed to estimate root age and turnover of single roots, to a root population, 

the survival function has to follow a unit step function (Table 2-2 and Table 3, “UnitStep”). When we 

use the “UnitStep” survival curve for a root population in steady state ra ττ ⋅= 5.0 , and )(τA  

decreases linearly with increasing τ  (Table 3). 

If we want to force Equation 1 into the generic survival function framework (Equation 4), we 

have to employ a root survivorship function )(τS  that has a single spike where τ is equal to the root 

age (survival curve “Dirac” in Table 2-2 and Table 2-3). This kind of function is commonly referred to 

as a Dirac delta function (Weisstein, 2013). However, this survival function is actually already 

mathematically impossible because survival functions )(τS  are only allowed to be monotonically 

decreasing (cf. section 2.2). Gaudinski et al. (2001) and Fröberg (2012) also emphasized that the 

time-shift model only makes sense for single roots, but not for root populations. Hence, the survival 

curve “UnitStep” represents a translation of how model 1 in Fröberg (2012) is described, while 

“Dirac” directly employs a shifted )(14 tCAtm  to estimate CRoot14 . 

Nevertheless, Equation 1 (and thus the survival function “Dirac”) is sometimes used in soil 

organic matter (SOM) models (Michalzik et al., 2003; Tipping et al., 2005; Schulze et al., 2009) to 

quantify the 14C input to the SOM pool because it gives similar fine-root 14C contents as a 1-pool 

model in the time after 1990 when rτ < 10 years (Fröberg, 2012). “Dirac” was fitted to all four data 



Study I 

 

43 

 

points simultaneously to highlight how wrong the model is when used for root populations and 

several data points in time. 

Model 2 from Fröberg (2012) corresponds to an exponential relationship between root 

survivorship S  and root age τ  (“Exponential”, Table 2-3): 

where k  is equivalent to the first-order decomposition rate from Equations (2-2) and (2-3) and to 
1−

oτ  in Equation (2-4). As another one-parameter survival function we tried a linearly decreasing 

function (“Linear”, Table 2-2 and Table 2-3). 

 Other survival functions )(τS  that were tested either stem from simple pool models (here a 

serial 2-pool model) or are derived from cumulative distributions functions )(τF  commonly used for 

modeling lifetime data, so that )(1)( ττ FS −=  with τ  from [ )∞,0  (Table 2-2, Table 2-3). 

  

( ) ( ),exp ττ ⋅−= kS  (2-5) 
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Table 2-2: Overview of used survival functions.  

What   

 

S(τ) i 

Equation of survival function Number of 
parameters 

UnitStep ( )




≤≤
<<

=
ατ

τα
τ

0for 1
0for 0

S  1 

Dirac ≙ model 1 in 
Fröberg (2012)  ( )





=
≠

=
ατ
ατ

τ
for 1
for 0

S  1 

Exponential ≙ 
model 2 in Fröberg 
(2012) 

( ) ( )ττ ⋅−= kS exp  1 

Linear ( ) ( )0;1max τθτ ⋅−=S  1 

Weibull ( ) 















−=

k

S
λ
ττ exp  2 

Series2Poolsa ( ) ( )( ) ( ) ( ) ( ) ( )( )
21

1121221 exp1expexp 
kk

krkkrkτkτkkS
−

⋅⋅−⋅−−⋅⋅⋅⋅⋅+−= ττ  3 

GenEx ( ) ( )( )ατβ τS ⋅−−−= exp11  2 

LogNormb ( ) ( )


























⋅

−+−=
2

lnerf1
2
11

σ
μτ τS  2 

a The “Series2Pool“ survival function is based on the derivation by Manzoni et al. (2009). 

b erf(x) denotes the Gaussian error function. 



Study I 

 

45 

 

The 2-pool model in serial setting (“Series2Pools”), for example, is mathematically equivalent 

to the Introductory Carbon Balance Model (ICBM) used for soil organic carbon modeling (Andrén and 

Kätterer, 1997). The “Series2Pools” survival function is based on the assumption that all roots belong 

at first to a fast-cycling root population while a part of this population can undergo a “work 

hardening” (Tahmasbi and Rezaei, 2008) to a slowly-cycling root population. This “work-hardening” 

could for example be interpreted mechanistically as progressive suberization of roots. Please note 

that the Radix model as presented in Riley et al. (2009) and Gaudinski et al. (2010) is in essence also a 

2-pool model, but in contrast uses a parallel setting. 

Weibull and log-normal distributions (2 parameters, Table 2-2) are frequently used to analyze 

root survival times from minirhizotrons (Strand et al., 2008; Gaul et al., 2009). Apart from the well-

known Weibull- and log-normal distribution, we also introduced the generalized exponential 

distribution (“GenEx” in Table 2-2 and Table 2-3, Gupta and Kundu (1999), Mahmoudi and Jafari 

(2012)) with its two parameters α and β (Table 2-2). 

Table 2-2 gives an overview of the different survival functions used in this study. The second-

last column in Table 2-3 should be used to get an idea what these functions look like. The parameters 

of these functions were fitted to the root 14C values reported in Fröberg (2012) with the differential 

evolution adaptive metropolis algorithm (Vrugt et al., 2009a; Vrugt et al., 2009b; Guillaume and 

Andrews, 2012). Here, we only used this algorithm to get the best parameter set, but did not use all 

accepted parameter sets after convergence of the algorithm to quantify parameter uncertainty. 

2.3.4 Performance measures 

 The performance of the different survival functions in Table 2-2 was compared using the sum 

of squared weighted residuals (SSWR) between the measured live fine-root 14C and the modeled 

)(14 tCRoot , where the analytical uncertainties reported in Fröberg (2012) are used as weight. 

Further, we used the Akaike information criterion corrected for small sample sizes (AICc, Burnham 

and Anderson (2004)) and the Bayesian information criterion (BIC, Kass and Raftery (1995)) to 

evaluate the performance of the different survival functions relative to their number of parameters. 

We report AICci and BICi values of the individual survival curves i rescaled to the minimum AICc or BIC 

value observed across all survival functions i used in Table 2-3: ΔAICci = AICci – AICmin and ΔBICi = BICi 

– BICmin (Burnham and Anderson, 2004; Manzoni et al., 2012). This allows for a quick strength-of-

evidence comparison (Burnham and Anderson, 2004) across the different survival functions i. 
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Survival functions with a ΔAICci or ΔBICi < 2 show no evidence for a difference in model performance 

(Kass and Raftery, 1995; Burnham and Anderson, 2004). 

 Most importantly, we checked if the mean residence time of the fitted survival curve is in 

accordance with inventory based approaches (<1-3 years Trumbore and Gaudinski (2003)) and 

especially minirhizotron studies (e.g. ~ 1.8 years estimated from fine-root survival times in the Duke 

FACE minirhizotron study, cf. Figure 2 in Strand et al. (2008)). 

2.4 Results and discussion 

2.4.1 Performance and characteristics of different survival curves 

The “Series2Pools” survival function shows the best fit to the fine-root 14C data (SSWR, Table 

2-3). The survival functions “GenEx”, “Weibull”, “LogNorm” and “Exponential” still have a reasonably 

low SSWR (in ascending order), while the survival function “UnitStep”, “Dirac” and “Linear” show a 

considerable worse fit (Table 2-3). The ΔBIC values – also taking the goodness-of-fit relative to the 

number of parameters into account (Table 2-2) – show the same pattern as the SSWR (Table 2-3): 

ΔBIC values > 10 for “UnitStep”, “Dirac” and “Linear” are a strong evidence against these models, 

while the evidence against survival functions “GenEx”, “Weibull”, “LogNorm” and “Exponential” is 

less strong, but still substantial. The “Series2Pools” survival function has the best BIC value. 

The results for the ΔAICc deviate from the findings for the two aforementioned performance 

measures: The “Exponential” survival function with the lowest SSWR of all one-parameter-models 

has the by far best AICc value (Table 2-3). The second best AICc value is achieved by the “Linear” 

survival function, which has a rather poor SSWR, but also only one parameter to fit. All other survival 

functions show a rather poor AICc value; the AICc is even always infinity for the “Series2Pools” model 

due to the relation of the number of data points to the number of parameters. 

Using the data from Fröberg (2012) as a test case, these statistical performance measures do 

not give a conclusive picture in terms of model selection, except that “UnitStep”, “Dirac” and maybe 

also “Linear” may be discarded. Hence, we take a look at further characteristics of the different 

survival curves such as mean residence time and mean age. 
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The mean residence time of the “Dirac” model is theoretically always 1 (!) year, because the 

integral 
∞

=
0

)( τττ dSr  is not different from 0 over the whole interval of integration [0;∞) except for 

ατ =  where 1)( =τS  (Table 2-3). The fitted parameter α (for this dataset ca. 2 years) is always 

equal to the mean age aτ  because )(τA  is 1 in the interval from 0 to α, and 0 for τ  > 0. Hence, 

( )01)(
0

−⋅== 
∞

ατττ dAa . This highlights again that the “Dirac” model or time-shift model is 

physically impossible. The fitted mean residence time ( rτ  = 7 years) of the “UnitStep” survival 

function is also considerably longer than what we would expect from minirhizotron studies (Strand et 

al., 2008). 

 

 

 

 

 

 

 

 

Table 2-3: Characteristics and performance of different survival functions i. rτ  gives the mean residence time in 
years based on the fitted parameters of the respective survival function S(τ); aτ  is the corresponding mean 
age. SSWR is the best sum of squared weighted residuals of fitted against observed 14C in roots, where the 
analytical errors are used as weight. ΔAICci and ΔBICi show the performance of the survival function i in 
relation to the number of parameters. A value of 0.0 indicates the best performing model with regard to ΔAICci 
and ΔBICi. The second-last column shows the fitted survival (black solid line) and age functions (gray dashed 
line) with rτ  visualized as a black square and the mean age aτ  as a gray circle. Please note that the Dirac delta 
function is denoted as a black arrow. The last column shows the 14C content of roots in pM (modeled and 
observed) and the atmospheric curve as a comparison. 
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What 

 

S(τ) i 

τr 

[yr] 

τa 

[yr]
SSWR ΔAICci ΔBICi 

A(τ) fraction of roots being at least τ years 
old, mean age τa  14C (pM) in the atmosphere (gray lines) 

and in roots (black line modeled, open 
circles observed) S(τ) fraction of roots surviving at least to 

age τ, mean residence time τr 

UnitStep 7.0 3.5 1147 11.0 19.9 

irac ≙ model 1 
in Fröberg 
(2012)  

1.0 2.0 893 10.0 18.9 

Exponential ≙ 
model 2 in 
Fröberg (2012) 

7.1 7.1 73 0.0 8.9 

Linear 10.1 6.7 378 6.6 15.5 

Weibull 5.0 8.0 19 10.7 4.9 

Series2Pools 1.9 7.7 4 ∞ 0.0 

GenEx 2.5 7.8 10 8.0 2.3 

LogNorm 6.7 8.7 44 14.0 8.2 
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If we take a look at the currently most used survival function for root populations, “Exponential”, we 

see that this is the only survival function for root populations for which )(τA  follows )(τS , and rτ  

and aτ  are equal. This also means that the risk for a newly grown root to die remains constant 

throughout the course of its life. The fitted mean residence time rτ  of 7.1 years does not at all agree 

with mean residence times estimates from minirhizotrons. 

The difference in the rτ  fitted in the study by Fröberg (2012) of 8 years and 7.1 years in this 

study stem from the forward differencing used by Fröberg (2012) (Equation 3) to solve Equation (2-2) 

and the numerical integration procedure used to solve Equation 4. This procedure gives the same 

results as a solver for ordinary differential equations (here Equation 2) with extra function 

evaluations at flexible time steps. 

 The linearly decreasing survival function )(τS , “Linear”, yields a best rτ  of 10.1 years and is 

thus also in disagreement with mean residence time estimates from inventory and minirhizotron 

approaches. “UnitStep” and “Linear” are the only survival functions where the mean residence time 

rτ  (or mean longevity, Table 2-1) of roots is higher than the mean age aτ  of the root population 

(Table 2-3). This means that for this kind of survival functions the risk for a root to die a young age is 

low, but increases with age (Bolin and Rodhe, 1973). 

 The mean residence time rτ  of “Weibull” is 5 years, and thus 2.1 years lower than the rτ  of 

the “Exponential” survival curve. Therefore, the Weibull distribution is slightly better in accordance 

with the expectations from minirhizotron studies. 

 The fitted rτ  of 1.9 years of “Series2Pools” is very well within the range of what we expect 

from minirhizotron and inventory based approaches (Trumbore and Gaudinski, 2003; Strand et al., 

2008). If we employed a 2-pool model in parallel setting (not shown), the best fit survival function is 

essentially the same as the best fit survival function for “Series2Pools”. Also the mean residence time 

of both 2-pool models would be the same, while the parameters are obviously different and the 

mechanistic interpretation would be slightly different: Already at root growth it would be 

predetermined that a part of roots are short lived, while the rest is long lived. Nevertheless, both 2-

pool models essentially show the same behavior of the survival curve. 
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 The mean residence time rτ  of “GenEx” (2.5 years) is very similar to the one of the 2-pool 

serial model. Finally, a log-normal survival function (“LogNorm”) gave a best rτ  of 6.7 years, which is 

very close to that of the “Exponential” survival function. For the survival functions “Weibull”, 

“Series2Pools”, “GenEx” and “LogNorm” the mean age aτ  is always higher than the mean residence 

time rτ  (Table 2-3) which means that the risk for a newly grown root to die within a short period 

after establishment is high, but decreases subsequently. 

2.4.2 Differences between fine-root mean residence times and mean ages 

 While the best estimates of mean residence times rτ  are quite different between the 

different survival functions (Table 2-3), the best estimates of aτ  are quite similar (6.7 years to 8.7 

years) for survival functions )(τS  that are positively skewed or not skewed (the last 6 survival 

functions in Table 2-3). Apart from using the relation of aτ  to rτ  to characterize the behavior of the 

survival function at hand, the benefit of reporting mean age estimates is limited because we cannot 

use aτ  to constrain any flux in belowground carbon cycling. It has to be noted that studies using the 

“Exponential” survival curve and only reporting the mean age of roots, aτ , avoid to state the fact that 

for this survival function ora τττ == . Hence, by reporting the mean age of roots they implicitly also 

report the turnover time of roots. 

2.4.3 Minirhizotrons versus bomb-14C estimates of mean root residence time 

Overall, from our findings the “Series2Pools” and “GenEx” survival functions are best in 

accordance with estimates of rτ  from minirhizotrons (Trumbore et al., 2006; Strand et al., 2008). The 

mean residence times of these survival functions are considerably shorter than rτ  estimates from the 

commonly used “Exponential” survival function. These two functions have in common that the 

probability that a roots dies is high at a young age, but decreases with age. For the “Exponential” 

survival function the probability that a root dies stays the same regardless of the root’s age. 

One has to acknowledge, however, that even with the use of archived roots samples a 

multitude of models (“Exponential”, ”Weibull”, “Series2Pools”, ”GenEx”, “LogNorm”) are able to fit 

the observations that were used here as a test case sufficiently well (Table 2-3). The fact that the 

curvature of these models can be quite different, especially during the first few years, highlights the 
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opportunity that a joint calibration to minirhizotron and fine-root 14C data offers. The two extremes 

are the “GenEx” model (also the “Series2Pools” model) with very fast turnover in the first year and 

the “Exponential” model with very slow turnover in the first year. 

The fact that the mean ages of the abovementioned survival functions are relatively similar 

(Table 2-3) shows that the fine-root 14C rather provides a good constraint for that part of roots that is 

turning over on longer time scales, while it provides a poor constraint for what happens in the first 

year after root growth. Hence, comparing bomb-14C derived rτ  with minirhizotron-based rτ  

estimates gives an indication which models are able to reconcile both types of measurements in 

general, but might very well give an incomplete picture because fine-root 14C data alone are unable 

to unequivocally constrain root turnover during the first growth year. Here, one has to mention that 

reported minirhizotron-based rτ estimates often are median and not mean residence times which 

may lead to an underestimation of turnover for positively skewed distributions (Strand et al., 2008). 

The depiction of root turnover models with differential equations in a pool setting (e.g. 

Equation 2 or the “Series2Pools” model in Andrén and Kätterer (1997)) facilitates a mechanistic 

interpretation. However, it hinders a comparison with time-to-death data from minirhizotrons which 

are commonly analyzed with survival functions such as the Weibull or log-normal distribution. Up to 

now the joint evaluation of fine-root 14C and minirhizotron data has been difficult because of 

different evaluation frameworks. 

Survival functions that are derived from cumulative distribution functions seem to be a step 

away from a mechanistic interpretation, but the curvature of the survival function gives a good 

impression what the differences between survival curves are (Table 2-3). Furthermore, the position 

of the age function relative to the survival function gives an indication of root turnover dynamics: 

If )()( ττ AS > , roots live for a considerable time before a considerable part of them dies (most 

extreme example “UnitStep”). If )()( ττ AS < , most of the roots will die relatively soon, while a 

minority of roots will live relatively long (e.g. “Series2Pool” or “GenEx”). The distance between )(τS  

and )(τA  allows assessing which of the both cases is prevailing. The “LogNormal” survival curve 

constitutes an exception because it is changing from )()( ττ AS >  to )()( ττ AS <  with age (Table 

2-3). 
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2.4.4 Strategy to reconcile 14C mean residence times with data from other methods 

Generally, we have to take into account that a time series of 14C in fine-roots that covers 

more than three decades and the most prominent part of the “bomb peak”, as the one presented by 

Fröberg (2012) is definitely quite unique. Moreover, most of the studies will probably have not more 

than 2 data points of fine-root 14C within a period of 3 years (duration of dissertations!) if archived 

soil samples are not available. 

In this case it might be even harder to justify fitting a 2-parameter survival curve (e.g. 

“GenEx”) or even a 3-paramater survival curve (e.g. “Series2Pools”). Still, one should at least be 

aware that survival curves other than “Exponential” can give much shorter mean residence times. 

Better, however, we should try to use the proposed framework in a multiple constraints 

approach (Reichstein and Beer, 2008) to estimate rτ  from different methods quantifying root 

turnover. We should not only use the 1-2 data points from fine-root 14C as observational constraints, 

but also direct estimates of oτ  from inventory based approaches (e.g. sequential coring, ingrowth 

cores and ingrowth nets; for a comprehensive overview cf. Lukac (2012) and especially time-to-death 

data from minirhizotrons as joint observational constraints. 

For fine-root 14C Gaudinski et al. (2001), for example, state that, due to a bias for larger roots 

when hand-picking roots, the contribution of fast cycling roots is underestimated, while 

minirhizotrons would be biased towards fast cycling roots. Furthermore, it is well established that 

mean longevity estimates from minirhizotrons have not reached equilibrium in the first 3 years after 

installation of the tube and are, in this case, biased towards shorter mean longevity estimates 

(Strand et al., 2008). Still, the strategy to use minirhizotron data solely to parameterize a fast root 

pool, and fine-root 14C solely to parameterize a slow pool as in the Radix model (Riley et al., 2009; 

Gaudinski et al., 2010), introduces a non-existing relation between what we model and what we 

measure. This problem has already been recognized in soil organic matter (SOM) modeling where an 

attribution of measured SOM fractions to conceptual SOM model pools requires that the measured 

fraction is unique and non-composite (Smith et al., 2002). In the case of roots this would mean that 

roots observed in minirhizotrons would be missed when sampling roots for the analysis of 14C, and 

vice versa. Instead the survival functions “Series2Pools” and “GenEx” show, for example, that also 

fine-root 14C data are consistent with fast cycling pools (Table 2-3). 
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Fitting a survival function to data from methods other than fine-root 14C, also gives the 

possibility to sort out reported or alleged problems of the different methods in a unifying framework. 

Hence, we suggest to try to account for possible drawbacks of the different methods (cf. Lukac 

(2012)) within the proposed unified framework, so that we possibly can quantify trade-offs between 

methods. This could be done by introducing bias parameters that account for systematic biases 

inherent to the specific method. 

2.5 Conclusion 

The apparent contradiction between mean residence times inferred from bomb 14C and mean 

residence times from direct observation hinges on the assumption of a simple exponential root 

survival function. For an exponential survival function the probability that a root dies is independent 

of root age. As soon as the root survival function has a stronger curvature, i.e. a higher death rate at 

a young age compared to the exponential model, mean residence times are much lower than the 

mean age, and closer to mean residence times commonly observed in minirhizotron studies. The 

two-pool “suberization” model is best in accordance with minirhizotron-based estimates of mean 

residence times and gives at the same time a sound interpretation, however at the expense of being 

overparameterized, when only compared to bomb-14C data. Hence, we suggest exploring to constrain 

this model with both fine-root 14C and minirhizotron observations. This would also allow tackling 

systematic biases of the bomb-14C and the minirhizotron method. 

2.6 Supporting Material 

R scripts for all analyses performed in this paper are available upon request by email to Bernhard 

Ahrens (bahrens@bgc-jena.mpg.de). 
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2.8 Symbols and Abbreviations 

Symbol Description Units 

t  time yr 

CRoot14
 

14C content in roots pM 

CAtm14
 

14C content in the atmosphere pM 

k  turnover rate yr-1 

λ  radioactive decay rate of 14C yr-1 

τ  generic age of roots in the system yr 

rτ  mean residence time yr 

oτ  turnover time yr 

)(τS  survival function, fraction of roots surviving at least to age τ - 

aτ  mean age yr 

)(τa  age density distribution  - 

( )τA  age function, fraction of roots that are at least τ years old - 

SSWR sum of squared weighted residuals - 

AICc Akaike information criterion corrected for small sample sizes - 

BIC Bayesian information criterion - 

ΔAICc AICc rescaled to the minimum AICc of all tested survival functions - 

ΔBIC BIC rescaled to the minimum BIC of all tested survival functions - 
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3.1 Summary 

• We used bomb-radiocarbon and raw minirhizotron lifetimes of fine-roots (<0.5 mm in 

diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to 

test if different models are able to reconcile the apparently contradicting turnover time 

estimates from both techniques. 

• We present a framework based on survival functions that is able to jointly model bomb-

radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about 

biases of both techniques – the classification of dead roots in minirhizotrons and the use of 

carbon reserves to grow new roots. 

• Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-

radiocarbon and minirhizotron data. These models yielded a mean residence time of 3.80 ± 

0.16 years (mean ± SD). On average 60 ± 2 % of fine-roots turned over within 

0.75 ± 0.10 years, while the rest was turning over within 8.4 ± 0.2 years. Bomb-radiocarbon 

and minirhizotron data alone give a biased estimate of fine-root turnover. 

• The two-pool models allow a mechanistic interpretation for the coexistence of fast- and 

slow-cycling roots – suberization and branching for the serial-two-pool model and branching 

due to ectomycorrhizal fungi-root interactions for the parallel-two-pool model. 

Key words: root turnover, radiocarbon, minirhizotron, survival function, two-pool model, root age, 

bomb-radiocarbon, root longevity  
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3.2 Introduction 

The turnover of fine-roots is a crucial part of the terrestrial carbon cycle. In addition to litterfall from 

leaves, needles, twigs and fruits, root litter constitutes a major addition of carbon and nutrients to 

the soil organic matter pool. Contrary to aboveground litterfall, the flux of root litter has eluded 

quantification, partly because roots, the “hidden half” of the terrestrial biosphere, are more difficult 

to observe and study. In addition, different techniques used to quantify fine-root turnover – ranging 

from 13C labeling, tracing the 14C bomb peak, sequential soil coring, and ingrowth cores to root 

cameras (minirhizotrons) – yielded widely contradictory estimates of root turnover (Trumbore and 

Gaudinski, 2003; Pritchard and Strand, 2008; Strand et al., 2008; Lukac, 2012).  

The largest differences in inferred root turnover times are between isotopic techniques (here 

we use bomb-radiocarbon) and direct observations of root growth and persistence (minirhizotron 

methods) (Trumbore and Gaudinski, 2003; Guo et al., 2008).  For a given standing stock of fine-roots 

in a forest stand, the root litter input estimated from common minirhizotron turnover times (~ 2 yr, 

Strand et al. (2008); Hansson et al. (2013)) is a priori 75% higher than the root litter input based on 

bomb-radiocarbon derived turnover times (~ 8 yr, Gaudinski et al. (2001); Gaul et al. (2009); Fröberg 

(2012)). 

The Radix model (Gaudinski et al., 2009; Riley et al., 2009; Gaudinski et al., 2010) has been a 

recent attempt to model complete fine-root dynamics with five different pools – a storage pool with 

carbon reserves that can be used to grow new roots, two live-root pools and two dead-root pools. 

Gaudinski et al. (2010) made use of both bomb-radiocarbon and minirhizotron data to parameterize 

the turnover times of the two parallel, independent live-root pools. In their parameterization, 

however, Gaudinski et al. (2010) solely used the median longevity from minirhizotrons for the 

turnover time of the short-lived root pool. They then estimated the turnover time of the long-lived 

root pool using the 14C content of fine-roots given the turnover time of the short-lived root pool. 

However, the separate parameterization of the short-lived and the long-lived root pool does not fully 

reconcile minirhizotron observations with the 14C in fine-roots because this would relate the 

minirhizotron observations only to the short-lived pool. Modelled fine-root dynamics, though, should 

represent the whole spectrum of fine-root dynamics observed with both techniques. Further, the use 

of a single metric (median longevity) to represent minirhizotron observations throws away the 

majority of the information content of minirhizotron data. Finally, Strand et al. (2008) noted that 
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median longevities yields turnover time estimates that are systematically too fast. This, in turn, 

possibly yields too slow turnover times of the long-lived root pool for the parameterization of the 

Radix model in Gaudinski et al. (2010). 

We therefore want to make full use of the information content of minirhizotron data, and aim 

to quantify root turnover with minirhizotron and bomb-radiocarbon data as true joint constraints. To 

this end we developed a unified evaluation framework (Ahrens and Reichstein, 2014) that makes it 

possible to compare survival functions against both bomb-radiocarbon and minirhizotron data. We 

assess the  performance of several survival functions that are commonly used to evaluate data from 

either technique: the exponential, Weibull and log-normal model (Gaudinski et al., 2001; Pritchard 

and Strand, 2008; Strand et al., 2008; Gaul et al., 2009; Fröberg, 2012). Furthermore we test two-pool 

models, coupled either in parallel (equivalent to the live root-pool structure of Radix) or in series (as 

in Ahrens and Reichstein (2014)). 

In Ahrens and Reichstein (2014) we already pointed to the possibility of accounting for biases 

of the minirhizotron and the bomb-radiocarbon technique. In this paper, we refine the unified 

evaluation framework by including prior knowledge on possible biases. Firstly, one cannot rule out 

that carbon reserves are used for the growth of fine-roots. This constitutes a bias for the bomb-

radiocarbon technique because we cannot use the atmospheric 14C record as a direct proxy for the 
14C content of newly grown roots, but must employ an (unknown) storage residence time. Thus, 14C 

fine-root turnover times that do not include storage residence times yield estimates of root turnover 

that are too slow. 

Second, it is hard to identify roots as dead or still alive in minirhizotron studies. Hence, the 

time-to-disappearance of a root segment is sometimes used instead of the time-to-death as a 

measure of fine-root longevity (e.g. Withington et al. (2006), Gaul et al. (2009)). This overestimates 

root longevity by the time it takes for a root to be decomposed.  

Our objectives in this study are: (1) to quantify root turnover with radiocarbon and minirhizotron 

data as joint constraints using different survival functions; (2) to assess the performance of these 

survival functions; (3) to address systematic biases of radiocarbon and minirhizotron data in the joint 

calibration framework.  
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Using Bayesian parameter estimation we calibrate the survival functions from our joint 

calibration framework with published 14C contents in fine-roots (Fröberg, 2012) and minirhizotron 

data (Hansson et al., 2013) from the organic layer of Norway spruce forests in southern Sweden.
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3.3 Materials and Methods 

3.3.1 Fine-root 14C data 

Fröberg (2012) measured the radiocarbon content of fine-roots from archived O-horizons of middle 

aged to mature stands dominated by Norway spruce (Picea abies (L.) Karst.) in southern Sweden. 

Well preserved roots (diameter 0-0.5 mm) were selected to represent predominately live fine-roots 

(Fröberg, 2012). We used the 14C (% Modern) contents reported by Fröberg (2012) of fine-roots from 

1964, 1972, 1985 and 1998 and their analytical uncertainties as observational constraints for a 

comparison against the tested survival functions (Table 3-1). 

3.3.2 Minirhizotron data 

Hansson et al. (2013) studied fine-root turnover with minirhizotrons in eight different forest stands in 

southern Sweden. Here, we use fine-root minirhizotron data with the same diameter as for the 14C 

data (0-0.5 mm) of the three mature Norway spruce stands in the Tönnersjöheden Experimental 

Forest. We use data from 14 tubes, five of which are solely located in the O-horizons, while nine 

other also include the upper 10 cm of the mineral soil. One of these nine tubes was from understory 

spruce in a pine stand. Starting 1 year after tube installation, roots were monitored throughout four 

growing seasons (2007-2010) and 14 photo sessions. Roots were monitored from growth to 

disappearance, so that root longevity is possibly overestimated by the timespan a dead root needs to 

be decomposed. Hansson et al. (2013) assume that this systematic bias is in the range of 1-4 months.  

3.3.3 Analysis of minirhizotron data with survival functions 

Ideally, minirhizotron tubes allow monitoring of fine-root segments from their formation to death. 

Unfortunately, it is difficult to actually classify fine-roots as dead or alive, so fine-root segments are 

monitored from their first appearance until their disappearance (Table 3-1, Case C0). Four different 

cases are distinguishable (Table 3-1):  

In the most common case C1, the lifetime data is interval-censored, where both the 

appearance and the disappearance of a root segment occur in the time between two photo sessions. 

Consequently, we can define a minimum (𝜏௠௜௡) and maximum lifetime (𝜏௠௔௫) for these root 

segments (Table 3-1, C1).  
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All other cases can be classified as right-censored because we know that the true lifetime, 𝜏௅, 

of a root segment is longer than a certain minimum lifetime, 𝜏௠௜௡. If a root segment did not 

disappear until the last photo session, we can define two possible minimum lifetimes, 𝜏௠௜௡,ଵ and 𝜏௠௜௡,ଶ (schematic drawing in Table 3-1, C2). Similarly, if a root-segment has already been present 

before the first photo session, but died before the last photo session, we also can define two possible 

minimum lifetimes, 𝜏௠௜௡,ଵ and 𝜏௠௜௡,ଶ (schematic drawing in Table 3-1, C3). Finally, if a root segment 

has been present throughout the study period (from first to last photo session), we get an absolute 

minimum lifetime, 𝜏௠௜௡ (right-censoring, sensu strictu Kleinbaum and Klein (2005)). 

Approaches to derive fine-root turnover estimates include non-parametric and parametric 

approaches. Common to both approaches is the definition of so-called survival functions which – in 

the case of roots – describe the fraction of roots that are surviving until age 𝜏. The non-parametric 

Kaplan-Meier survival function is basically a cumulative frequency function of the observed fine-root 

lifetimes. The Kaplan-Meier approach has been used in numerous studies to estimate median 

longevities of fine-root segments although Pritchard and Strand (2008) rightly argue that median 

longevity is underestimating mean longevity and thereby the fine-root turnover time.  

Parametric survival functions should be preferred over non-parametric ones, because the 

mean longevity and thereby the fine-root turnover time is here well defined. Parametric survival 

functions, 𝑆(𝜏), are commonly derived from cumulative distribution functions 𝐹(𝜏): 

𝑆(𝜏) = 1 − 𝐹(𝜏) 

Throughout the study we used five different survival functions (Table 3-2). Exponential 

survival functions have been commonly used to determine fine-root turnover from the 14C in fine-

roots (Gaudinski et al., 2001; Gaul et al., 2009; Fröberg, 2012), while Weibull and log-normal survival 

functions have been used to determine mean longevity from minirhizotron data (Strand et al., 2008; 

Gaul et al., 2009; Hansson et al., 2013). Additionally, we tested two two-pool models – one in serial 

setting as in Ahrens and Reichstein (2014), and one in parallel setting which is equivalent to the pool 

structure of live fine-roots of the Radix model (Riley et al., 2009). The survival functions 

corresponding to the serial-two-pool and parallel-two-pool model are also given in Table 3-2.  

The formulation of the likelihood for cases C1 and C4 (Table 3-1) can be directly taken from 

textbooks on survival analysis (Kleinbaum and Klein, 2005). For cases C2 and C3 we also applied the 
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likelihood function for the right-censored case C4, but assumed that the overall likelihood is the 

mean of the individual likelihoods of both possible minimum lifetimes, 𝜏௠௜௡,ଵ and 𝜏௠௜௡,ଶ (Table 3-1). 

This definition accounts for the probability of a shorter minimum lifetime 𝜏௠௜௡,ଵ in comparison to the 

probability of longer minimum lifetime 𝜏௠௜௡,ଶ. This formal definition of likelihood functions is able to 

deal with apparently shortened root lifetimes due to transparent root material (Tierney and Fahey, 

2001) or due to the disappearance of root segments because of causes other than death (Hansson et 

al., 2013). The likelihood functions only rely on the minimum observed time that root segments are 

actually present (Table 3-1). Table 3-1 also gives an overview about the frequency of cases C1 to C4 

at the Tönnersjöheden Experimental Forest. 

The parameters of the different survival functions can be summarized with metrics like mean 

residence time, 𝜏௥, or mean age, 𝜏௔ (Ahrens and Reichstein, 2014). For the quantification of root 

turnover, mean residence time is the most important metric and is used interchangeably with 

notions like mean longevity, mean lifespan or mean lifetime (Strand et al., 2008; Gaul et al., 2009; 

Riley et al., 2009; Kikuzawa and Lechowicz, 2011). In steady state, the mean residence time can be 

calculated as 

𝜏௥ = න 𝑆(𝜏)𝑑𝜏ஶ
଴  Eqn 3-1 

(Manzoni et al., 2012). 

Throughout this study we assume that the root system is in steady state; therefore the root 

turnover time, 𝜏଴, is equal to the mean residence time, 𝜏௥ (Rodhe, 1992). The root turnover time, 𝜏଴, 

is defined as the ratio of the root biomass over the root litter input. Consequently, one can calculate 

the root litter input to the soil organic carbon pool from root biomass measurements and estimates 

of 𝜏௥. 

Although the mean age of roots, 𝜏௔, cannot be used to constrain any component of the 

belowground carbon cycle, we also report the mean age of the root population. Mean ages were 

calculated as described in Ahrens and Reichstein (2014). 
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3.3.4 Convolution of the atmospheric bomb-radiocarbon curve with survival functions 

Due to aboveground testing of thermonuclear weapons during the 1950s and 1960s the 

tropospheric 14C content nearly doubled. After the Partial Test Ban Treaty in 1963, the atmospheric 
14C content declined quasi-exponentially due to the uptake of 14C in the vegetation and oceans, but 

also due to fossil fuel emissions which practically contain no 14C. The atmospheric bomb-radiocarbon 

record has proven to be a powerful tracer to shed light on carbon dynamics on annual to decadal 

timescales (Trumbore and Gaudinski, 2003; Trumbore, 2009). In ecological studies where bomb-

radiocarbon is used as a tracer, 14C contents are commonly reported in percent Modern, pM, or 14C 

(% Modern). A 14C (% Modern) value over 100 is typically indicative for the presence of bomb-

radiocarbon and processes on yearly to decadal time-scales, while a 14C (% Modern) value below 100 

may indicate carbon cycling on centennial or millennial time-scales. 

We showed that the same survival functions (Table 3-2) can be used, to analyze both, fine-

root 14C using the atmospheric radiocarbon curve as a tracer, and minirhizotron lifetime data (Ahrens 

and Reichstein, 2014). We formulated a generic time-shift model for the 14C (% Modern) content of 

fine-roots, 𝑅𝑜𝑜𝑡ଵସ𝐶(𝑡), based on a framework proposed by Manzoni et al. (2009): 

𝑅𝑜𝑜𝑡ଵସ𝐶(𝑡) = න 1𝜏଴ ⋅ 𝐴𝑡𝑚ଵସ𝐶(𝑡 − 𝜏) ⋅ 𝑆(𝜏) ⋅ 𝑒ିఒ⋅ఛ𝑑𝜏ஶ
଴ , Eqn 3-2

where 𝜏଴ is the turnover time, 𝐴𝑡𝑚ଵସ𝐶(𝑡) the atmospheric 14C (% Modern) value in year 𝑡, 𝑆(𝜏) is 

the survival function describing the fraction of roots surviving at least to age 𝜏 (cf. Niinemets and 

Lukjanova (2003), Manzoni et al. (2009), and Manzoni et al. (2012)), and 𝑒ିఒ⋅ఛ accounts for the 

radioactive decay of 14C. When the root population is in steady state, the turnover time 𝜏଴ is equal to 

the mean residence time 𝜏௥. 

Eqn 3-2 essentially describes 𝑅𝑜𝑜𝑡ଵସ𝐶(𝑡) in a certain year 𝑡 as the sum of 14C inputs via root 

production from previous years 𝜏 weighted by the fraction of fine-roots 𝑆(𝜏) that live at least for 𝜏 

years. The atmospheric 14C (% Modern) values, 𝐴𝑡𝑚ଵସ𝐶, can be used as a proxy for the 14C content of 

new roots. Consequently, the term ଵఛబ ⋅ 𝐴𝑡𝑚ଵସ𝐶(𝑡 − 𝜏) describes the 14C input via root production 

under the assumption that root biomass is in steady state. 
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3.3.5 Accounting for methodological biases  

If neither of the methods had a systematic bias, we could directly compare 𝑅𝑜𝑜𝑡ଵସ𝐶(𝑡) and the 

corresponding 𝑆(𝜏) with the measured fine-root 14C and time-to-disappearance data, respectively. If, 

however, we cannot rule out that the above mentioned systematic biases of the two methods are 

relevant, we need to modify the described framework.  

In Eqn 3-2 we have to replace the atmospheric 𝐴𝑡𝑚ଵସ𝐶(𝑡 − 𝜏) curve with a curve that 

actually represents the 14C input to the root system and accounts for the possibility that stored 

carbon has been used to build new roots. This could be achieved by calculating a 14C curve under the 

assumption that carbon to grow new roots (𝑁𝑒𝑤𝐺𝑟𝑜𝑤𝑡ℎଵସ𝐶(𝑡)) is on average x years old. This can, 

for example, be modelled by a survival function that follows an exponential function with a storage 

turnover time, 𝑇ௌ: 

𝑁𝑒𝑤𝐺𝑟𝑜𝑤𝑡ℎଵସ𝐶(𝑡) = න 1𝑇ௌ ⋅ 𝐴𝑡𝑚ଵସ𝐶(𝑡 − 𝜏) ⋅ 𝑒ି ఛ்ೄ ⋅ 𝑒ିఒ⋅ఛ𝑑𝜏ஶ
଴  Eqn 3-3

The 14C in fine-roots is then calculated as (compare to Eqn 3-2): 

𝑅𝑜𝑜𝑡ଵସ𝐶(𝑡) = න 1𝜏଴ ⋅ 𝑁𝑒𝑤𝐺𝑟𝑜𝑤𝑡ℎଵସ𝐶(𝑡 − 𝜏) ⋅ 𝑆(𝜏) ⋅ 𝑒ିఒ⋅ఛ𝑑𝜏ஶ
଴  Eqn 3-4

Minirhizotron data are biased because they often represent time-to-disappearance instead of time-

to-death. This means that one should additionally account for the time-to-decomposition: 

time-to-disappearance = time-to-death + time-to-decomposition 

𝜏ௗ௜௦ = 𝜏 + 𝜏ௗ௘௖  

Eqn 3-5 

This corresponds to a transfer from a live-root pool to a dead-root pool. In the survival function 

framework we have to convolute the survival function 𝑆(𝜏) that accounts for the death of roots with 

an exponential function with a dead root turnover time, 𝑇஽: 
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𝑆time-to-disappearance(𝜏ௗ௜௦) = න 𝑆(𝜏ௗ௜௦ − 𝜏ௗ௘௖) ⋅ 1𝑇஽ ⋅ 𝑒ିఛ೏೐೎்ವ 𝑑𝜏ௗ௘௖ஶ
଴  Eqn 3-6

This gives a survival curve 𝑆time-to-disappearance(𝜏ௗ௜௦) which describes the fraction of roots that are 

present (live or dead) at least for a time 𝜏ௗ௜௦. The term ଵ்ವ ⋅ 𝑒ିഓ೏೐೎೅ವ  in Eqn 3-6 is the decomposition 

function for dead roots which weights the relative contribution of fine-roots 𝑆(𝜏) that have lived for 

a time 𝜏 = 𝜏ௗ௜௦ − 𝜏ௗ௘௖  to fine-roots that have not disappeared until time 𝜏ௗ௜௦. This curve should be 

directly compared with the minirhizotron data. In the calibration we use prior knowledge for the two 

parameters, 𝑇ௌ and 𝑇஽, describing the systematic biases of both techniques (see next section). 

3.3.6 Parameter estimation with minirhizotron and bomb-radiocarbon data 

We optimized the parameters 𝜽 of the different survival functions, 𝑆(𝜏), (Table 3-2) and the two 

additional bias parameters, 𝑇ௌ and 𝑇஽, by maximizing the logarithm of the posterior of the joint 

evaluation framework with the DiffeRential Evolution Adaptive Metropolis algorithm (Guillaume and 

Andrews, 2012). The posterior distribution of parameters expresses the uncertainty of the 

parameters after accounting for the prior knowledge we have about the parameters, and the 

likelihood to reproduce the minirhizotron and fine-root 14C data with the model using these 

parameters. Because we aim to reconcile minirhizotron fine-root lifetimes and the 14C content of 

fine-roots, we define a joint likelihood function for both techniques. For mathematical convenience 

we use the logarithm of the joint likelihood, which is the sum of the log-likelihood of the 

minirhizotron data, ℓெ௜௡௜(𝜽), and the log-likelihood of the fine-root 14C data, ℓଵସ஼(𝜽). 

The log-likelihood for the minirhizotron data can be formulated as: 

ℓெ௜௡௜(𝜽) = ෍ 𝒏௜ ⋅ log ቀ𝐿௜൫𝜽ห𝑫ெ௜௡௜,௜൯ቁ ,ୡୟୱୣ
௜ୀଵ  Eqn 3-7

where 𝐿௜ is the likelihood function for one of the cases 𝑖 (cases C1-C4, Table 3-1), with 𝒏 the 

respective number of roots with the same time-to-disappearance 𝑫ெ௜௡௜,௜. 
The log-likelihood for the fine-root 14C data can be formulated as: 
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ℓଵସ஼(𝜽) = −0.5 ⋅ ൬∑ ቀ𝑫భర಴(௧)ିெ(௧,𝜽)ఙ(௧) ቁmeas. yrs.௧ୀଵଽ଺ସ ଶ + ∑ log(2 ⋅ 𝜋 ⋅ 𝜎(𝑡)ଶ)meas. yrs.௧ୀଵଽ଺ସ ൰,  Eqn 3-8

where 𝑫ଵସ஼(𝑡) is the fine-root 14C data, 𝑀(𝑡, 𝜽) are the model results of a certain survival function 

for the proposed set of parameters. 𝑡 denotes here the points in time when fine-root 14C 

measurements are available, and 𝜎(𝑡) the respective measurement uncertainty.   

We only defined priors for the two bias parameters, 𝑇஽ and 𝑇ௌ. Based on considerations by 

Hansson et al. (2013), we chose a log-normal prior for 𝑇஽ with its mode at 2 months and its 90th 

percentile at 7 months (Figure 3-1 (a)). We chose the 0.4 years of mean storage time found by 

Gaudinski et al. (2009) as the mode for a log-normal prior for 𝑇ௌ. The 90th percentile for this log-

normal prior was set to 2 years (Figure 3-1 (b)). Both log-normal priors were truncated – at 1 year for 𝑇஽ and at 5 years for 𝑇ௌ – to avoid the possibility that the observations would solely be explained by 

the two bias parameters.  
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3.4 Results 

3.4.1 Performance of different survival functions in explaining bomb-radiocarbon and 

minirhizotron observations of fine-roots 

The two two-pool models (Table 3-2) were best able to capture both, the minirhizotron time-

to-disappearance data, and the bomb-radiocarbon in fine-roots (Table 3-3). Although the two-pool 

models have the largest number of parameters (three + two bias parameters), they have by far the 

best likelihoods of all survival functions relative to the number of parameters as indicated by the 

Bayesian information criterion (BIC, Kass and Raftery (1995), Table 3-3). The BIC would favor survival 

functions with a lower complexity (fewer parameters) if they achieve a similar maximum likelihood. 

The serial-two-pool survival function and the parallel-two-pool survival function perform equally well 

in terms of the BIC (Table 3-3). 

The differences in BIC (∆BIC in Table 3-3) are considerable between the two-pool survival 

functions and the log-normal, Weibull and exponential survival function. The exponential (one-pool) 

survival function performs particularly poorly and is neither able to capture the dynamics of long-

lived roots in minirhizotrons (Table 3-3, blue dashed line vs orange step function) nor the time-series 

of fine-root 14C (Table 3-3). Both the Weibull and log-normal survival functions perform much better 

than the exponential survival function. The Weibull survival function is better able to capture fine-

root 14C compared to the log-normal survival function, while the log-normal survival function is 

better at capturing the minirhizotron time-to-disappearance data (Table 3-3, blue dashed line vs 

orange step function). However, the serial-two-pool and the parallel-two-pool survival function 

outperform the Weibull and log-normal survival function both in explaining the minirhizotron data 

and the 14C of fine-roots. 

3.4.2 Minirhizotron bias – TD  

The bad performance of the exponential survival function is also reflected in the posterior 

distribution of the bias parameter for minirhizotron observations, the dead root turnover time, 𝑇஽. 

The posterior distribution is the combination of the prior knowledge we had about this parameter 

and the information contained in the data to further constrain this parameter. The posterior 

distribution of 𝑇஽ (Figure 3-2, blue line) for the exponential survival function is hitting the edge of the 

truncated log-normal distribution that describes our prior knowledge about 𝑇஽ (Figure 3-2, gray 
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area). This indicates that our optimization algorithm strives for longer dead root turnover times in 

order to be able to explain the quite long-lived roots observed with the minirhizotrons (Table 3-3, 

orange step function). 

For the other survival functions we do not see any edge hitting for 𝑇஽, although the posterior 

mean of 𝑇஽ is located in the 90th percentile of the prior distribution for the two-pool and Weibull 

survival functions (Figure 3-2). The posterior uncertainty of 𝑇஽ is best constrained compared to our 

prior knowledge for the log-normal survival function with a dead root turnover time of 0.23 ± 0.04 

years (posterior mean ± SD). For the two-pool survival functions we obtain the same posterior 𝑇஽ of 

0.60 ± 0.08 years (mean ± SD). 

3.4.3 Bomb-radiocarbon bias – TS  

Similar to the findings for the minirhizotron bias parameter, 𝑇஽, we also observe edge-hitting 

of the storage turnover time, 𝑇ௌ, for the exponential survival function. For the exponential model the 

posterior distribution of 𝑇ௌ (Figure 3-2, blue line), which accounts for the use of stored carbon to 

grow new roots, is concentrated at the upper edge of the truncated log-normal prior knowledge 

(Figure 3-2, gray area). This again indicates that the exponential model is not remotely able to fit the 

minirhizotron and bomb-radiocarbon data jointly without attributing too much of the observed 

variation to the bias parameters. 

The posterior distribution of the log-normal model follows again most closely our prior 

knowledge, while the posterior means of 𝑇ௌ of the two-pool models and the Weibull survival 

functions are located in the 10th percentile of the prior distribution (Figure 3-2). The uncertainty of 𝑇ௌ is best constrained compared to our prior knowledge (Figure 3-2) for the two-pool survival 

functions with a storage turnover time of 0.08 ± 0.04 years (posterior mean ± SD). 

3.4.4 Mean residence times and mean ages 

The mean residence time estimate, 𝜏௥, for the exponential survival function is seriously 

biased because the model error is considerable. The model error of the exponential model can be 

illustrated by its inability to reproduce short and long lifetimes observed in the minirhizotrons (Table 

3-3, column 1) and by its inability to fit all 14C measurements of fine-roots reasonably well (Table 3-3, 

column 2). The 𝜏௥ estimates for the other survival functions can be reliably interpreted because the 
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model error is not dominating in these cases. 𝜏௥ ranges from 3.53 ± 0.16 years for the Weibull 

survival function to 3.80 ± 0.16 years for the two two-pool survival functions (Table 3-3). 

Apart from the mean residence times, the individual parameters that describe the shape of 

the survival curves can give interesting insights on the timescales that fine-roots are turning over. For 

the one-parameter exponential survival function the inverse of the decomposition rate 𝑘 constitutes 

already the mean residence time – ଵ௞ = 𝜏௥ = 𝑇 (Figure 3-2).  

Also the parameters of the two-pool survival functions can be readily interpreted. In the 

parallel-two-pool model 60 ± 2 % of fine-roots belong to a fast-cycling pool with a turnover time 𝑇ଵ of 

0.75 ± 0.10 years (mean ± SD), while the remainder belongs to a slow-cycling pool with a turnover 

time 𝑇ଶ of 8.4 ± 0.2 years (mean ± SD) (Figure 3-2). The parameters of the log-normal and Weibull 

model elude such a straightforward interpretation because the shape and scale parameters cannot 

directly be translated into how many roots are turning over on a certain timescale. 

The turnover times of the serial-two-pool survival function are in accord with the turnover 

times of the parallel-two-pool model – the turnover time of the fast-cycling root pool, 𝑇௒, is also 0.75 

± 0.10 years (mean ± SD), and the turnover time of the slow-cycling pool is also 8.4 ± 0.2 years (mean 

± SD). 36 ± 2 % (mean ± SD) of the roots that turn over in the fast-cycling pool, 𝑅௒, (Table 3-2) are 

entering the slow-cycling pool, 𝑅ை, via the transfer coefficient ℎ (Table 3-2, Figure 3-2). 

This shows that the serial-two-pool model and the parallel-two-model are generally able to 

reproduce the same shape of the survival curve with same turnover times of the respective fast- and 

slow-cycling pools (𝑇ி௔௦௧, 𝑇ௌ௟௢௪). The relation between the parameters ℎ and 𝛼 is given by ℎ = (1 − 𝛼) ்ಷೌೞ೟ି்ೄ೗೚ೢ்ೄ೗೚ೢ  (derived from equations for 𝑆(𝜏) in Table 3-2). 

Although the mean age, 𝜏௔, of a root population is not a really useful quantity for 

constraining belowground carbon cycling, the distance of 𝜏௔ to the mean residence time, 𝜏௥, at least 

gives a quick indication how the survival probability of a root changes with increasing age 𝜏 (Table 

3-3). For the exponential survival function the mean age is equal to the mean residence time (Table 

3-3). This means that the probability for a root to die does not change with increasing root age 𝜏. For 

all the other survival functions the mean age 𝜏௔ is longer than the mean residence time 𝜏௥ (Table 

3-3). This indicates that most fine-roots will die relatively soon after they grew, while a minority of 
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roots survives for a relatively long time. The log-normal survival function shows the longest mean age 

of 9.3 ± 0.4 years of fine-roots (mean ± SD), while the mean age for the two-pool models is shortest 

with 7.5 ± 0.2 years (mean ± SD). The Weibull model has a mean age of 7.9 ± 0.3 years (mean ± SD). 

Apart from the exponential model, the distance between 𝜏௔ and 𝜏௥ is shortest for the two-pool 

survival functions, indicating that the probability for a root to die is not decreasing as strongly with 

increasing age as for the Weibull and log-normal survival function.  
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3.5 Discussion 

3.5.1 Mechanistic interpretation of the two-pool models 

We showed that we are able to obtain the same shape of the survival curve for the serial-

two-pool model and the parallel-two-pool model using the same turnover times of the respective 

fast- and slow-cycling pools. Although the two-pool survival functions are obviously equivalent, these 

two models are open to different potential mechanistic interpretations.  

Serial-two-pool model: After growth all roots at first belong to a relatively fast-cycling pool 

where the majority of roots die after a relatively short period, while the remainder of fine-roots are 

getting suberized and are thereby able to increase their survival probability. Evidence from Pregitzer 

et al. (2002) for Picea glauca (we studied  Picea abies) also suggests that in the <0.5 mm size class at 

least the first three orders of roots are present. Branching of roots can generally be associated with 

enhanced transport, but also with the development of protective features such as suberin deposits 

or lignified cells (Eissenstat and Yanai, 1997; Hishi, 2007). Hence, branching is a process that should 

be taken into consideration when interpreting the transfer from the fast-cycling pool 𝑅௒  to the slow-

cycling pool 𝑅ை.  

Parallel-two-pool model: In this survival function structural differences between fine-roots 

existing already at their establishment would predetermine their longevity. Similar to the serial-two-

pool model, branching could play a major role in explaining the coexistence of a fast- and slow-

cycling pool. However, the interpretation for the parallel-two-pool model has to be different because 

the two pools would describe roots whose function and structure would be predetermined at root 

establishment. The structural differences could stem from the interaction between root growth and 

ectomycorrhizal fungi which leads to a typical lateral root branching pattern with short lateral 

ectomycorrhizal roots and long supportive roots. This type of branching is commonly called 

heterorhizy (Brundrett et al., 1996).  Taylor et al. (2000) found that in a SW Sweden spruce forest 

more than 99% of root tips are colonized by ectomycorrhiza. While the ectomycorrhizal infection of 

the slow-growing short lateral roots may prevent the deposition of suberin in cortical cells (Hishi, 

2007), the longer roots may undergo more rapid secondary growth (Brundrett et al., 1996), which is 

accompanied by suberization. Hence, the interactions of ectomycorrhizal fungi and plants could be 

interpreted as a predetermination of new roots to develop into short ectomycorrhizal roots (short-

lived, 𝑇ଵ) or long suberized roots (long-lived, 𝑇ଶ). 
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Overall, the attribution of processes to either the serial-two-pool or the parallel-two-pool 

model is a rather philosophical exercise, which essentially reduces to a dichotomous decision 

between root development that could also depend on changing conditions in the micro-environment 

of the root (serial-two-pool), and the predetermination of root function at establishment regardless 

of changing micro-environmental conditions (parallel-two-pool). Nevertheless, given that both two-

pool models are able to produce the same shape of the survival curve, our results do not allow for 

favoring one of the two possible approaches. 

3.5.2 Constraints on systematic biases 

Overall, the estimates of the bias parameters for the bomb-radiocarbon and the 

minirhizotron technique did not converge across the different survival functions. As already 

mentioned, the exponential survival function could not reconcile both techniques, but both bias 

parameters, the dead root turnover time 𝑇஽ and the storage turnover time 𝑇ௌ, were hitting the edge 

of the truncated log-normal prior distributions. Hence, the bias parameters would explain the major 

part of the apparent irreconcilability of both datasets for the exponential model.  

The posterior distribution of the bias parameters, 𝑇஽ and 𝑇ௌ, (Figure 3-2, blue line) closely 

follows the prior knowledge (Figure 3-2, gray area) for the log-normal survival function, which may 

indicate that its particular shape is actually helpful for explaining fine-root dynamics. For the log-

normal survival function the risk for a root to die increases at first for rather short root ages 𝜏, but 

declines after a certain age 𝜏. For the other survival functions the risk for a root to die is either 

independent of its age (exponential model) or is monotonically decreasing with longer ages 𝜏. The 

bias parameters, 𝑇஽ and 𝑇ௌ, only influence the model output of the corresponding datastreams, as 

indicated by the weak correlations (r2 between 0.008 and 0.09) between the posteriors of 𝑇஽ and 𝑇ௌ 

(see Fig S1 for correlation matrices of the parameters). 

Although we have identified the storage turnover time and the dead root turnover time as 

the most important biases of the 14C and the minirhizotron technique, one cannot rule out that 

additional biases also influence the posterior estimates of our parameters. Adams and Eissenstat 

(2014) found evidence that not only stored carbon might be used for the growth of new roots, but 

also recent photosynthate is incorporated into structural root tissue after root formation. This 

process would lead to a shorter storage turnover time 𝑇ௌ in our modelling framework. For the 

Weibull and both two-pool models, the fact that the posterior estimate of 𝑇ௌ is located in the 10th 
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percentile of the prior knowledge (Figure 3-2), could also be explained by a tradeoff between the use 

of stored carbon to grow new roots and the continuous incorporation of recent photosynthate into 

roots (Adams and Eissenstat, 2014). 

Similarly, Fröberg (2012) selected the archived roots to represent predominately live roots, 

but he could not rule out the possibility that recently dead roots might have been included. This 

possible bias would lead to a longer estimate of 𝑇ௌ; this however does not seem to be relevant here, 

given that the posterior estimate of 𝑇ௌ is not located at the upper end of the prior knowledge (Figure 

3-2). This possible bias is also different from the dead root turnover time that we proposed to 

account for the time-to-decomposition in minirhizotrons because we would still sample a mixture of 

live and dead roots for the 14C analysis, while in minirhizotrons root segments are most likely dead 

when they disappear. 

3.5.3 Trade-off to single calibrations with minirhizotron or bomb-radiocarbon data 

Trumbore and Gaudinski (2003) stated that both techniques – minirhizotrons and bomb-radiocarbon 

– would “gather information about different ends of the root lifetime continuum”. The validity of this 

statement relies on sampling and evaluation details of the two different techniques. The statement 

that minirhizotrons sample only at the younger end of the lifetime continuum is largely dependent 

on the length of the study period. Obviously, one strives to capture also the tails of the fine-root 

lifetimes monitored with minirhizotrons (Table 3-3), which is decisive for the extrapolation of root 

lifetimes outside of the observed (also censored) lifetimes. The commonly reported median longevity 

estimates from Kaplan-Meier point estimates from minirhizotrons depend even stronger on the 

length of the study period than parametric estimates of mean longevity. Nevertheless, also in 

parametric approaches, which are used to determine mean longevities/mean residence times (Table 

3-1), the length of the study period determines how much information is contained in the 

minirhizotron data not only for the fast-cycling pool, but also for the slow-cycling pool.   

Up to now, the evaluation of minirhizotron data has been inadequate for the nature of the 

data: parametric survival functions have commonly been fit to Kaplan-Meier point estimates (Strand 

et al., 2008; Gaul et al., 2009; Hansson et al., 2013). First, the fit to Kaplan-Meier point estimates 

throws away a lot of information – in a least-square fitting approach longer survival times receive 

less weight because of the smaller numbers (fraction of roots surviving). Second, the information 

about censoring in the Kaplan-Meier survival curve is lost to a large part when a parametric survival 
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curve is fit to the point estimates. The Kaplan-Meier approach is especially not able to account for 

the complex cases of censoring occurring in minirhizotron studies (Table 3-1, cases C2 and C3). In this 

study we employed a formal likelihood approach also for the minirhizotron data, which ensures a 

proper accounting for the different cases of censoring and a proper weighting also of long-living 

roots. 

The information content of fine-root 14C alone does not constrain the total fine-root turnover 

(fast- and slow-cycling roots) because survival functions with more than one parameter generally 

have enough flexibility to fit the same 14C content in fine-roots almost equally well with quite 

different mean residence times 𝜏௥. However, the 14C content of fine-roots determines the mean age 

of fine-roots 𝜏௔ to a large extent (Table 3-3, Ahrens and Reichstein (2014)), which is dominated by 

the slow-cycling pool. Overall, we conclude that minirhizotron data are the ideal complement to the 
14C measurements in fine-roots, especially for studies without archived fine-root 14C samples or a 

shorter minirhizotron sampling period: With minirhizotron data we are able to constrain the survival 

curve for short longevities 𝜏, while the 14C of fine-roots alone would allow too much flexibility for 

short 𝜏. Survival functions just fit to fine-root 14C data had quite different mean residence times 𝜏௥ 

(1.9-7.1 years, Ahrens and Reichstein (2014)), while the mean ages 𝜏௔ were already quite similar (7.1-

8.7 years, Ahrens and Reichstein (2014)).  

The mean residence times found in this study with the joint calibration to 14C in fine-roots 

and minirhizotron data (Table 3-3) showed that the joint calibration not only leads to a convergence 

of mean ages, but also to a convergence of mean residence times estimates (3.53-3.81 years) 

between the different survival functions. Here, the exception is the exponential survival function 

which is generally unable to explain both datasets with its constant survival probability. 

3.5.4 Implications, future research directions 

Generally, one should probably take a step back and ask oneself “Why are we interested in 

estimating fine-root turnover times?” – the most general answer being “We want to quantify the 

input of root litter to the soil organic carbon pool”. 

This also means that the mean residence time 𝜏௥ per se is not of primary interest, but the root litter 

input which is defined as root biomassఛೝ  under the assumption that root biomass is in equilibrium. We 

argue for an overall more integrative approach for determining the root litter input to soils. 
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Richardson et al. (2010) showed in a model-data fusion exercise with joint constraints (NEE, soil 

respiration, aboveground litterfall) that they were not able to constrain the turnover rate of fine-

roots. This indicates that the integration of minirhizotron data or fine-root 14C into calibration 

exercises with whole ecosystem models might be beneficial to constrain the central parameter that 

determines the carbon input levels to the soil organic carbon pool. 

Contrary to statistical survival functions (e.g. log-normal and Weibull), modelling the root 

turnover with two-pool models has the advantage of fitting seamlessly into ecosystem models. The 

survival functions for two-pool models essentially correspond to a system of ordinary differential 

equations. One would model the decrease of the fraction of roots still being alive without further 

new root growth. This curve can be used for comparison with the raw minirhizotron time-to-

disappearance data. This would make it possible to use minirhizotron data along with the 14C content 

of fine-roots for calibrating parameters of ecosystem models in multiple constraints approaches. In 

addition, accounting for systematic biases of the minirhizotron and the bomb-radiocarbon technique, 

is easier achieved in a traditional pool setting, while the convolution of two functions is quite 

uncommon for ecosystem models. 

Overall, our results show that fine-roots of trees are indeed cycling on quite different time-

scales. A one-pool, exponential model assumes a constant mortality risk of fine-roots regardless of 

their age – it is impossible to reconcile minirhizotron data and bomb-radiocarbon data using this 

assumption. Other survival functions, however, that exhibit a decreasing mortality risk with 

increasing age are able to reconcile the apparently contradictory datastreams. Two-pool survival 

functions, nonetheless, perform better than survival functions derived from statistical cumulative 

distribution functions, such as the Weibull and log-normal survival function. Moreover, the two-pool 

models can be better integrated into ecosystem models and are more open to a mechanistic 

interpretation. Therefore, the two-pool survival functions are best suited to represent fine-root 

turnover in models and to reconcile bomb-radiocarbon and minirhizotron data. The combination of 

both datasets is essential to reasonably constrain the proportion of short- to long-lived fine-roots. 

Our and other studies (Tierney and Fahey, 2002; Matamala et al., 2003; Trumbore et al., 

2006; Gaudinski et al., 2010) showed that fine-roots in rather well-drained forest ecosystems do not 

belong to just one homogenous pool. If also fine-roots in non-forested ecosystems show this 

decreasing mortality risk with increasing age is questionable. Solly et al. (2013) found that fine-root 
14C  in grasslands was generally much closer to the atmospheric 14C curve than fine-root 14C in forests, 
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so the issue of reconciling minirhizotron observations with 14C observations is probably less pressing 

for fine-roots in grasslands. Nevertheless, Solly et al. (2013) found that the presence of perennial 

species in grasslands, yields longer apparent 14C fine-root turnover times. Also fine-roots of 

grasslands could be modelled with our proposed framework, although the storage turnover time bias 

will be of minor importance in grasslands. The use of the radiocarbon technique could be useful to 

study fine-roots in grasslands with considerable amounts of perennial species, although using the 

minirhizotron technique might suffice. In poorly-drained or even wetland soils the decomposition of 

dead roots might be impeded considerably (Iversen et al., 2012). Therefore, it would be important to 

account for this substantial bias that would affect observations of fine-root turnover with 

minirhizotrons and bomb-radiocarbon. 
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3.7 Tables 
Table 3-1: Likelihood functions (𝐿) for minirhizotron observations are depending on the timing of image 
collection. The schematics show how well the fine-root lifetime (𝜏௅) can be constrained for typical cases. 𝑛 is 
the number of respective cases for the Norway spruce minirhizotron data (0-0.5 mm) in Hansson et al. (2013). 

Schematics of hypothetical lifetimes of 
root segments in minirhizotrons 

 

Lifetime (𝜏௅) Likelihood (𝐿) case 𝑛 

𝜏௅ 
𝑓(𝜏௅) 

 
C0 0 

𝜏௠௜௡ < 𝜏௅ < 𝜏௠௔௫ 𝑆(𝜏௠௜௡) − 𝑆(𝜏௠௔௫) C1 1435 

𝜏௅ > 𝜏௠௜௡,ଵ 

or 

𝜏௅ > 𝜏௠௜௡,ଶ 

 𝑆൫𝜏௠௜௡,ଵ൯ + 𝑆൫𝜏௠௜௡,ଶ൯2  

 

C2 1088 

𝜏௅ > 𝜏௠௜௡,ଵ 

or 

𝜏௅ > 𝜏௠௜௡,ଶ 

𝑆൫𝜏௠௜௡,ଵ൯ + 𝑆൫𝜏௠௜௡,ଶ൯2  C3 54 
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Table 3-2: Overview of tested survival functions; 𝜏 denotes the age of a root, #𝜃 is the number of parameters 
of a survival function. 

Survival function Equation Model structure #𝜃
Exponentiala 𝑆(𝜏) = eି௞ఛ  1 

Weibullb 𝑆(𝜏) = eିቀఛఊቁഁ
 2 

Log-normalc 𝑆(𝜏) = 0.5 ቈerf ቆln(𝜏) − 𝜇𝜎√2 ቇ቉  2 

Serial-two-poold 
𝑆(𝜏)= eି(௞ೊା௞ೀ)ఛ[(𝑘௒(1 − ℎ) − 𝑘ை)e௞ೀ⋅ఛ + ℎ ⋅ 𝑘௒e௞ೊ⋅ఛ] 𝑘௒ − 𝑘ை  

 

3 

Parallel-two-poole 𝑆(𝜏) = 𝛼eି௞భఛ + (1 − 𝛼)eି௞మఛ 

 

3 

a The only parameter for the exponential survival function is the turnover rate 𝑘. 

b The Weibull survival function can be described by the scale parameter 𝛾 and the shape parameter 𝛽. 

c The log-normal model can be described by the location parameter 𝜇 and the shape parameter 𝜎. erf(x) denotes the 
Gaussian error function 

d In the serial-two-pool model new roots belong at first to a fast-cycling root pool, 𝑅௒. These roots are turning over with 
rate 𝑘௒. A fraction ℎ of the turnover from the fast-cycling pool 𝑅௒ is transferred to the slow-cycling pool 𝑅ை which is turning 
over with rate 𝑘ை. This survival function is based on the derivation by Manzoni et al. (2009). 

e In the parallel-two-pool model roots either belong to the fast-cycling pool 𝑅ଵ or the slow-cycling pool 𝑅ଶ. The pools are 
turning over with the respective rates 𝑘ଵ and 𝑘ଶ. 𝛼 describes the fraction of roots belonging to pool 𝑅ଵ. This survival 
function is based on the derivation by Manzoni et al. (2009).  
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Table 3-3: Modelled and observed time-to-disappearance of Norway spruce fine-roots in minirhizotrons; 
modelled and observed 14C in Norway spruce fine-roots; performance of different survival functions as 
indicated by the difference of Bayesian information criterions (∆BIC) between the respective survival function 
and the survival functions with the best performance (serial-two-pool and parallel-two-pool). 𝜏௥ is the mean 
residence time (mean ± SD), 𝜏௔ is the mean age of the root population. Minirhizotron data from Hansson et al. 
(2013) and radiocarbon data from Fröberg (2012). 

Minirhizotrons Radiocarbon ∆BIC 𝜏௥ (yr);
mean (SD) 

 

 
 
 

0 3.80 
(0.16) 

0 
 

3.81 
(0.16) 
 

75 
 

3.65 
(0.12) 
 

103 
 

3.53 
(0.16) 
 

615 1.12 
(0.04) 

A The observed time-to-disappearance data (orange step function) provides just an approximate visual depiction of the 
frequency of different times-to-disappearance, but does not account for the different cases of censoring (C2-C4 in Table 
3-1). Here, we assumed that the time-to-disappearance is ଵଶ (𝜏௠௔௫ + 𝜏௠௜௡) for case C1, ଵଶ ൫𝜏௠௜௡,ଵ + 𝜏௠௜௡,ଶ൯ for cases C2 and 
C3, and 𝜏௠௜௡ for case C4 in Table 3-1.  
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3.8 Figures 

 

 

Figure 3-1: Priors for the bias parameters 𝑇஽ (a) and 𝑇ௌ (b). 𝑇஽ describes the time it takes for a fine-root 
segment to disappear from a minirhizotron photo after its death. 𝑇ௌ accounts for the time carbon has 
potentially spent in storage pools after its photosynthetic fixation before it it used to grow new roots.
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Figure 3-2: Comparison of parameter probability distributions for different survival functions. The maximum 
density of the marginal posterior distribution (blue line) is an indicator for how well a parameter is constrained 
by the data. For the storage turnover time, 𝑇ௌ, and the dead root turnover time, 𝑇஽, the marginal posterior 
distribution (blue line) shows how much information is contained in the data compared to prior knowledge 
about these two parameters (gray area). Serial-two-pool: 𝑇௒, turnover time of the young root pool 𝑅௒; ℎ, 
transfer coefficient from young to old root pool; 𝑇ை, turnover time of the old root pool 𝑅ை. Parallel-two-pool: 𝑇ଵ, turnover time of root pool 𝑅ଵ; 𝑇ଶ, turnover time of root pool 𝑅ଶ; 𝛼, fraction roots belonging to 𝑅ଵ. 𝜇, 
location parameter and 𝜎, shape parameter of the log-normal survival function. 𝛾, scale parameter and 𝛽, 
shape parameter of the Weibull survival function. 𝑇, turnover time of the exponential model. 
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3.9 Supporting Information 
(a) Serial-two-pool (b) Log-normal

(c) Parallel-two-pool (d) Weibull

Fig S1. Correlations between the posterior parameters of (a) the serial-two-pool, (b) the log-normal, (c) the 
parallel-two-pool, and (d) the Weibull survival function. , 𝑇ௌ, storage turnover time, and 𝑇஽, dead root turnover 
time. Serial-two-pool: 𝑇௒, turnover time of the young root pool 𝑅௒; ℎ, transfer coefficient from young to old 
root pool; 𝑇ை, turnover time of the old root pool 𝑅ை. Parallel-two-pool: 𝑇ଵ, turnover time of root pool 𝑅ଵ; 𝑇ଶ 
turnover time of root pool 𝑅ଶ; 𝛼, fraction roots belonging to 𝑅ଵ. 𝜇, location parameter and 𝜎, shape parameter 
of the log-normal survival function. 𝛾, scale parameter and 𝛽, shape parameter of the Weibull survival function. 𝑇, turnover time of the exponential model. 
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4 Study III 

“Contribution of Sorption, DOC Transport and Microbial Interactions to the 14C Age of a Soil Organic 

Carbon Profile: Insights from a Calibrated Process Model” 

Contribution: I conceived the main ideas for the COMISSION model with inputs from Markus 

Reichstein and Marion Schrumpf. Maarten Braakhekke and I developed the ideas for continuous 

profile representation collaboratively. I conducted the analysis, created all visualisations, and wrote 

the manuscript with inputs from all co-authors. 

Published in Soil Biology and Biochemistry, 88, 390-402. 
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4.1 Key words  

stabilization mechanisms, sorptive stabilization, microbial interaction, transport model, radiocarbon 

profile, soil organic carbon 

 

4.2 Highlights 

• A SOC profile model was developed and calibrated to explain 14C ages > 1000 years of subsoil 

OC 

• Factorial model-experiments revealed processes explaining the persistence of SOC:  

• 14C ages could be explained without introducing a SOC pool with a millennial turnover time 

• Sorptive stabilization is the dominant process for modeled topsoil 14C ages 

• Energy limitation, microbial recycling and sorption govern modeled subsoil 14C ages 
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4.3 Graphical abstract 

 

 

Corresponding author:  

Bernhard Ahrens 

Max Planck Institute for Biogeochemistry 

Hans-Knöll-Str. 10 

07745 Jena 

Germany 

bahrens@bgc-jena.mpg.de  
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4.4 Abstract 

Profiles of soil organic carbon (SOC) are often characterized by a steep increase of 14C age with depth, 

often leading to subsoil 14C ages of more than 1000 years. These observations have generally been 

reproduced in SOC models by introducing a SOC pool that decomposes on the time-scale of 

millennia. The overemphasis of chemical recalcitrance as the major factor for the persistence of SOC 

was able to provide a mechanistic justification for these very low decomposition rates. The emerging 

view on SOC persistence, however, stresses that apart from molecular structure a multitude of 

mechanisms can lead to the long-term persistence of organic carbon in soils. These mechanisms, 

however, have not been incorporated into most models. Consequently, we developed the SOC 

profile model COMISSION which simulates vertically resolved SOC concentrations based on 

representations of microbial interactions, sorption to minerals, and vertical transport. We calibrated 

COMISSION using published concentrations of SOC, microbial biomass and mineral-associated OC 

(MOC), and in addition, 14C contents of SOC and MOC of a Haplic Podzol profile in North-Eastern 

Bavaria, Germany. In order to elucidate the contribution of the implemented processes to the 14C age 

in different parts of the profile, we performed model-experiments in which we switched off the 

limitation of SOC decomposition by microbes, sorptive stabilization on soil minerals, and dissolved 

OC (DOC) transport. By splitting all model pools into directly litter-derived carbon and microbe-

derived organic carbon, we investigated the contribution of repeated microbial recycling to 14C ages 

throughout the profile. The model-experiments for this site lead to the following implications: 

Without rejuvenation by DOC transport, SOC in the subsoil would be on average 1700 14C years older. 

Across the profile, SOC from microbial recycling is on average 1400 14C years older than litter-derived 

SOC. Without microbial limitation of depolymerization, SOC in the subsoil would be on average 610 
14C years younger. Sorptive stabilization is responsible for relatively high 14C ages in the topsoil. The 

model-experiments further indicate that the high SOC concentrations in the Bh horizon are caused by 

the interplay between sorptive stabilization and microbial dynamics. Overall, the model-experiments 

demonstrate that the high 14C ages are not solely caused by slow turnover of a single pool, but that 

the increase of 14C ages along a soil profile up to ages > 1000 years is the result of different 

mechanisms contributing to the overall persistence of SOC. The dominant reasons for the persistence 

of SOC are stabilization processes, followed by repeated microbial processing of SOC.  
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4.5 Introduction 

Investigating soil profiles, i.e. studying the sequence of horizons, and the change of biological, 

chemical and physical properties with soil depth, is one of the cornerstones of soil science 

(Hartemink, 2009). The vertical distribution of soil organic carbon (SOC) has long been an interest of 

soil scientists from plot to global scale (Jobbágy and Jackson, 2000). The size of global SOC stocks as 

the largest active terrestrial pool in the global carbon cycle is considered increasingly important due 

concerns about the potential feedback of SOC to climate change. Global SOC stocks are usually 

estimated down to 1 m depth (around 1500 Pg C) although there is 1.5-2 times more SOC if one 

considers a soil depth down to 3 m (Scharlemann et al., 2014). 

Most SOC models, especially in Earth system models, are modeling SOC stocks without 

considering their vertical distribution. For most Earth system models it is unclear if they simulate SOC 

stocks throughout the full soil depth, the top 100 cm or top 30 cm (Todd-Brown et al., 2013; 

Carvalhais et al., 2014). This complicates the comparison of the modeled SOC stock with 

observations.  

Models describing the complete SOC profile have been published since the late 1970s 

(Kaneyuki and Kichiro, 1978; Dörr and Münnich, 1989; Elzein and Balesdent, 1995), and recent years 

have witnessed a renewed interest (Baisden et al., 2002; Freier et al., 2010; Braakhekke et al., 2011; 

Guenet et al., 2013; Koven et al., 2013; Riley et al., 2014). These models are generally very well able 

to reproduce the SOC profile using representations of DOC transport, bioturbation, vertically 

distributed root litter input and microbial decomposition. In addition to the vertical distribution of 

SOC, its 14C profile provides important information about the time-scale at which soil organic carbon 

is turning over.  

The 14C age of SOC generally increases strongly with soil depth up to ages of 1000 – 10000 

years (Rumpel et al., 2012). Vertical SOC profile models were generally successful at reproducing 

these millennial 14C ages by introducing a SOC pool that decomposes according to first-order kinetics 

at the time-scale of millennia (e.g. Elzein and Balesdent, 1995; Baisden et al., 2002; Braakhekke et al., 

2014) or by assuming a substantial slow-down of first-order decomposition rates with depth (e.g. 

Jenkinson and Coleman, 2008; Koven et al., 2013). This might have been well justified within what 

Schmidt et al. (2011) call the historical view on SOC cycling, namely that the molecular structure 

(chemical recalcitrance) was mainly responsible for the long-term persistence of organic carbon in 
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soils. Schmidt et al. (2011), however, posed that, in addition to molecular structure, multiple 

processes are responsible for the long-term persistence of SOC. These can be distinguished between 

stabilization processes such as sorption of organic matter to mineral surfaces, energy limitation of 

the microbial decomposition, and mere persistence processes such as the repeated recycling of SOC 

through the microbial biomass (Gleixner, 2013) and the slow downward transport of soil organic 

matter, where sorption is a retardation factor (Braakhekke et al., 2011). For modeling the SOC 

profile, this implies that these different processes contribute to varying degrees to the apparent 

stability of soil organic carbon within the profile. In vertical profile models, however, these processes 

have rarely been explicitly incorporated. The models developed by Guenet et al. (2013) and Riley et 

al. (2014) are a recent effort to represent these mechanisms more explicitly. 

Our objective for this study was to quantify the contribution of these different stabilization 

and persistence processes to the distribution of 14C ages across an exemplary Haplic Podzol profile 

under a Norway spruce forest, using a mechanistic model. To this end we applied several well-

established approaches such as the representation of transport from traditional SOC profile models, 

namely the SOMPROF model and its bioturbation and advection formulation (Braakhekke et al., 

2011), the Schimel and Weintraub (2003) link between microbial dynamics and SOC decomposition, 

and a Langmuir representation of sorptive SOC stabilization (Kaiser and Guggenberger, 2003; Mayes 

et al., 2012). We combined these different approaches to the COMISSION model. The acronym 

COMISSION highlights that this SOC model includes a COntinuous representation of SOC in the 

organic layer and the mineral soil, Microbial Interactions and Sorptive StabilizatION. By performing 

model-experiments with the calibrated COMISSION model we want to answer the following 

questions:  

(1) What is the relative importance of DOC advection for the formation of the SOC and radiocarbon 

profile? 

(2) How much can microbes limit the depolymerization of SOC and what is their effect on the 

formation of the SOC and radiocarbon profile? 

(3) How important is sorptive stabilization of DOC on soil minerals for the formation of the SOC and 

radiocarbon profile? 

(4) How important are microbial products for the formation of the SOC and radiocarbon profile 

compared to plant-derived SOC?  
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4.6 Material and methods 

4.6.1 The COMISSION model 

The COMISSION model has all the typical elements of SOC profile models. The profile is discretized in 

several layers, in the current implementation 100, and the different layers receive organic carbon 

either as aboveground litter input on top, vertically distributed root litter input, or transport from 

other layers via advection with the water flux or bioturbation (Figure 4-1). In order to represent the 

SOC profile continuously in the organic layer and the mineral soil, an additional advective term 

accounts for the upward shift of the soil surface during the buildup of an organic layer. Figure 4-1 

shows a conceptual overview of the COMISSION model, while all constitutive equations of the 

COMISSION model are listed with annotated terms in Table 4-1. 

Two different model pools receive aboveground litter input and the vertically distributed 

root litter input. The readily leachable and soluble fraction of litter input enters a dissolved OC (DOC) 

pool (𝐶஽ை஼), while the rest enters a residue pool (𝐶ோ) which represents polymeric, non-soluble SOC 

(Figure 4-1, Table 4-1 – Eqs. (4-4), (4-5)). The residue pool is depolymerized by extracellular enzymes 

produced by a microbial pool (𝐶஻) to enter the 𝐶஽ை஼  pool which represents SOC potentially available 

for assimilation by microbes. We assume that levels of extracellular enzymes scale with microbial 

biomass 𝐶஻, so that we do not model enzymes explicitly (Figure 4-1, Table 4-1). Interactions of 

microbes with the 𝐶ோ  and 𝐶஽ை஼  pool are modeled with traditional and reverse Michaelis-Menten 

kinetics (Eqs. (5-3) and (4-2)). This makes it possible to represent the priming effect, i.e. that SOC 

decomposition is accelerated by the amendment of substrate (Schmidt et al., 2011; Wutzler and 

Reichstein, 2013). In the COMISSION model an additional input to the 𝐶஽ை஼  pool can increase the 

microbial biomass (Eqn (4-7)) and thereby enhance the depolymerization of the 𝐶ோ  pool (Eqn (4-4)). 

By analogy, this approach is also able to represent the retardation of decomposition via energy 

limitation of microbes in the deep soil where substrate might be scarce. Here, the growth of 

microbial biomass can be limited due to lower inputs to the 𝐶஽ை஼  pool (Eqn (4-7)) or a higher 

sorption of 𝐶஽ை஼  on soil minerals. In turn, this slows down the depolymerization of the 𝐶ோ  pool (Eqn 

(4-4)).Overall, the representation of microbial decomposition is similar to the approaches of Schimel 

and Weintraub (2003) and Allison et al. (2010). 

The adsorption and desorption of DOC to and from mineral surfaces controls the availability 

of carbon in the 𝐶஽ை஼  pool for assimilatory uptake by microbes. The adsorption and desorption of 
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DOC is modeled dynamically using Langmuir equations (Figure 4-1, Eqn (4-3)). The 𝐶஽ை஼  pool not only 

constitutes the substrate for the microbial pool, but is also transported via advection (Eqn (4-5)), and, 

after sorption, DOC forms the mineral-associated, stabilized 𝐶௤ pool (Eqn (4-6)).  

Soil organic carbon in COMISSION is recycled within the soil profile through microbial 

processing – dead microbes (Figure 4-1, Eqn (4-7)) either enter the 𝐶஽ை஼  pool (e.g. the cytosol, Eqn 

(4-5)) or the 𝐶ோ  pool (e.g. cell envelopes, Eqn (4-4)), and might thereby also contribute to longer 

residence times with soil depth. 

In the following three subsections we cover in-depth the three processes that form the 

acronym of the COMISSION model – a COntinuous SOC profile model with Microbial Interactions and 

Sorptive StabilizatION. 

 

 
Figure 4-1: Schematic representation of the COMISSION model. Left: The soil profile is split in different soil 
layers (n = 100), aboveground litterfall is added on top of the profile; root litter input enters the different soil 
layers according to the root biomass profile. Bioturbation and DOC transport translocate carbon between the 
soil layers. Right: In each layer the non-leachable part of the litter input enters the 𝐶ோ pool (polymeric non-
soluble SOC, residue pool), while the leachable part of litter input directly enters the 𝐶஽ை஼ pool (OC assimilable 
by microbes, DOC). The 𝐶ோ pool is decomposed (depolymerization) with extracellular enzymes produced by the 𝐶஻ pool (microbial biomass). Extracellular enzymes levels are assumed to be directly related to microbial 
biomass levels. Due to the depolymerization the carbon is now potentially available for assimilation as 𝐶஽ை஼. 𝐶஽ை஼ can be either taken up microbes, transported with the water flux through the profile, or sorbed to soil 
minerals until the sorption capacity 𝑞௠௔௫ filled. The sorbed OC in the 𝐶௤ pool can also be desorbed again. All 
respiratory losses of the system are represented with a lumped parameter 1 − 𝐶𝑈𝐸, where 𝐶𝑈𝐸 describes the 
carbon use efficiency of microbes. Microbes die with the first-order rate π. A part 𝑝 of the dying microbes 
enters the 𝐶஽ை஼ pool. The insoluble part of dying microbes 1 − 𝑝 (e.g. cell walls) enters the residue pool 𝐶ோ. All 
pools except the 𝐶஽ை஼ pool are transported via bioturbation and particle advection. Please note that this model 
structure resembles the models presented by Schimel and Weintraub (2003), Allison et al. (2010) and Todd-
Brown et al. (2012) in terms of pool arrangement. 
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4.6.2 Microbial Interactions 

The spatial separation between microbes and SOC can potentially limit the decomposition of SOC 

(Schmidt et al., 2011). In the COMISSION model we assume that this spatial separation limits two 

processes mediated by microbes. First, to overcome the spatial separation from the 𝐶ோ  pool 

microbes produce extracellular enzymes that diffuse through the soil matrix and depolymerize the 𝐶ோ  

pool upon contact. Second, the produced substrate, 𝐶஽ை஼ , has to diffuse back to the microbes. 

Similar to other studies (Vetter et al., 1998; Schimel and Weintraub, 2003; Rothman and Forney, 

2007) we propose that the diffusing substance that overcomes the spatial separation limits the rate 

of the respective process.  

Maximum depolymerization rates of 𝐶ோ  are attained at high microbial biomass levels, while 

low microbial biomass levels limit the depolymerization, assuming that extracellular enzyme levels 

scale with the microbial biomass 𝐶஻ (Todd-Brown et al., 2012): 

 
𝐷𝑒𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑉௠௔௫,஽ ⋅ 𝐶ோᇣᇧᇧᇤᇧᇧᇥmaximum depolymerization

⋅ 𝐶஻𝐾௠,஻ + 𝐶஻ ,ᇣᇧᇧᇤᇧᇧᇥrate limitationby microbes
 

(4-1) 

where 𝑉௠௔௫,஽ is the maximum specific depolymerization rate for 𝐶ோ  by extracellular enzymes 

excreted by 𝐶஻, and 𝐾௠,஻ is the half-saturation constant for the depolymerization of 𝐶ோ. This type of 

microbial interactions is commonly called “reverse Michaelis-Menten” kinetics (Schimel and 

Weintraub, 2003) or biomass-saturated approach (Moorhead and Sinsabaugh, 2006). 

Microbial uptake and growth is limited by the availability of the substrate (DOC), while at 

high DOC concentrations the ability of microbes to assimilate 𝐶஽ை஼  is limiting microbial uptake of 

DOC: 

 
𝑈𝑝𝑡𝑎𝑘𝑒 = 𝑉௠௔௫,௎ ⋅ 𝐶஻ᇣᇧᇧᇤᇧᇧᇥmaximumDOC uptake

⋅ 𝐶஽ை஼𝐾௠,௎ + 𝐶஽ை஼ᇣᇧᇧᇧᇤᇧᇧᇧᇥrate limitationby DOC 
, 

(4-2) 
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where 𝑉௠௔௫,௎ is the maximum specific assimilation rate of 𝐶஻ by uptake of 𝐶஽ை஼ , and 𝐾௠,௎ is the 

half-saturation constant for the assimilation of 𝐶஽ை஼  by 𝐶஻. We refer to this type of microbial 

interactions as “traditional Michaelis-Menten” kinetics or substrate-saturated approach (Moorhead 

and Sinsabaugh, 2006).  

While both the traditional and reverse Michaelis-Menten kinetics have been used separately 

to represent microbial dynamics in different SOC decomposition models (Wutzler and Reichstein, 

2008), we argue for a combination of both approaches in the COMISSION model because the spatial 

separation of microbes and the 𝐶ோ  pool controls on the one hand the depolymerization of 𝐶ோ  by the 

availability of extracellular enzymes and on the other hand the microbial assimilation by the 

availability of DOC. 

4.6.3 Sorptive stabilization 

Using a dynamic Langmuir approach for representing mineral stabilization of SOC has the advantage 

that sorptive strength is dependent on the availability of sorption sites. Thereby more SOC is getting 

sorbed in horizons where most sorption sites are unoccupied compared to horizons where sorption 

sites are almost saturated: 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑘௔ௗ௦ ⋅ 𝐶஽ை஼ᇣᇧᇧᇤᇧᇧᇥ୫ୟ୶୧୫୳୫ ୟୢୱ୭୰୮୲୧୭୬ ⋅ ൫𝑞௠௔௫ − 𝐶௤൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥrate limitation by  availability ofsorption sites
 

𝐷𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑘ௗ௘௦ ⋅ 𝐶௤, 
(4-3) 

where 𝐶௤ is the mineral-associated OC pool, 𝑘௔ௗ௦ is the maximum adsorption rate, when the surface 

is not occupied at all, 𝑞௠௔௫ is the maximum sorption capacity, and 𝑘ௗ௘௦ is the desorption rate. 

The Langmuir sorption approach also has the advantage that we can relate the total sorption 

capacity 𝑞௠௔௫ to soil properties, such as clay and silt content, or iron and aluminum oxides 

(Kothawala et al., 2009; Mayes et al., 2012) across different soils, but also within a soil profile. 

Most SOC profile models have adopted a linear, equilibrium isotherm sorption approach. 

This simplification is likely unjustified under field conditions because the assumption of an 
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instantaneous local equilibrium between adsorption and desorption is only reasonable if all the other 

processes (e.g. microbial uptake, depolymerization, microbial death, advective transport, diffusion) 

are several orders of magnitude slower. In batch sorption experiments, however, this is a valid 

assumption if microbial growth is suppressed through the addition of low quantities of HgCl2 

(Mikutta et al., 2007). 

4.6.4 Continuous profile 

Most SOC profile models do not account for the additional downward advective flux that stems from 

the accumulation of an organic layer on the soil surface due to litterfall and the counteracting 

upward advective flux that stems from the loss of organic matter due to decomposition. One might 

regard this phenomenon as only relevant for modeling forest soils which are generally characterized 

by the presence of an organic layer. However, the absence or presence of an organic layer could be 

treated as an integral part of modeling when we explicitly account for this additional advective flow 

(Braakhekke and Ahrens, in prep.)  

In marine ecology the problem of an additional advective flow due to sedimentation, when 

modeling reactive transport in sediments, has been extensively studied (Boudreau and Imboden, 

1987; Mulsow et al., 1998; Meysman et al., 2005). In soils a similar approach has been adopted for 

modeling the effect of soil erosion on the soil carbon balance (Van Oost et al., 2005; Yoo et al., 2005). 

In both settings the deposition of sediments on top of the surface is accounted for with an additional 

advective term which moves soil or sediment layers downwards according to the sedimentation 

velocity. 

In the COMISSION model we are able to simulate the SOC profile as a continuum by 

introducing the particle velocity 𝜔 that is driving an additional advective flux for all model pools 

(particle fluxes in Table 4-1). The particle velocity 𝜔 comprises two terms: an additional downward 

velocity due to aboveground and belowground litter inputs, and a counteracting upward advection 

velocity due to the loss of soil volume during litter decomposition, which effectively moves the 

reference frame for the soil profile upwards. More details on the continuous representation of the 

organic layer and the mineral soil can be found in the Supplementary Information. 

The continuous profile approach also makes it possible to consistently model the advective 

transport of the DOC pool with an average pore water velocity, 𝑣, (Table 4-1, Eqn (4-5)) and 
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bioturbation as a diffusive flux (Table 4-1, Eqn (4-4) - (4-7)) throughout the soil profile. Compared to 

the SOMPROF approach towards bioturbation (Braakhekke et al., 2011), we do not have to resort to 

an extra parameter that translates the bioturbation rate in the organic layer into a diffusion 

coefficient in the mineral soil.  
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Table 4-1: Governing equations of the COMISSION model. All state variables are expressed in mass of C per 
volume bulk soil (kg C m-3). 

Description Differential equation  
   
 𝑪𝑹, 
polymeric  
non-soluble OC, 
residue pool 

𝜕𝜕𝑡 𝐶ோ =  (1 − 𝐿) ⋅ 𝑖ᇣᇧᇧᇤᇧᇧᇥnon-leachablelitter input
+ (1 − 𝑝) ⋅ 𝜋 ⋅ 𝐶஻ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥnon-solublemicrobial remains

− 𝑉௠௔௫,஽ ⋅ 𝐶ோ ⋅ 𝐶஻𝐾௠,஻ + 𝐶஻ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥDepolymerization
+ 𝜕𝜕𝑧 ൬𝐷௕ 𝜕𝐶ோ𝜕𝑧 ൰ᇣᇧᇧᇧᇤᇧᇧᇧᇥDiffusion viaBioturbation− 𝜕(𝜔 ⋅ 𝐶ோ)𝜕𝑧ᇣᇧᇧᇤᇧᇧᇥparticleflux

 

 
(4-4) 

   
 𝑪𝑫𝑶𝑪, 
assimilable OC, 
DOC pool 

𝜕𝜕𝑡 𝐶஽ை஼ =  𝐿 ⋅ 𝑖ถDOC inputfrom litter
+ 𝑝 ⋅ 𝜋 ⋅ 𝐶஻ᇣᇧᇧᇤᇧᇧᇥsolublemicrobial remains

+ 𝑉௠௔௫,஽ ⋅ 𝐶ோ ⋅ 𝐶஻𝐾௠,஻ + 𝐶஻ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥDepolymerization
−  𝑉௠௔௫,௎ ⋅ 𝐶஻ ⋅ 𝐶஽ை஼𝐾௠,௎ + 𝐶஽ை஼ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥuptake of DOC by microbes

−  𝑘௔ௗ௦ ⋅ 𝐶஽ை஼ ⋅ ൫𝑞௠௔௫ − 𝐶௤൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥadsorption
+  𝑘ௗ௘௦ ⋅ 𝐶௤ᇣᇧᇧᇤᇧᇧᇥdesorption

− 𝜕(𝑣 ⋅ 𝐶஽ை஼)𝜕𝑧ᇣᇧᇧᇤᇧᇧᇥDOC transportwith water flux
− 𝜕(𝜔 ⋅ 𝐶஽ை஼)𝜕𝑧ᇣᇧᇧᇧᇤᇧᇧᇧᇥparticleflux

 

 
(4-5) 

   
 𝑪𝒒, 
mineral-
associated OC 
pool 

𝜕𝜕𝑡 𝐶௤ =  𝑘௔ௗ௦ ⋅ 𝐶஽ை஼ ⋅ ൫𝑞௠௔௫ − 𝐶௤൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥadsorption
− 𝑘ௗ௘௦ ⋅ 𝐶௤ᇣᇧᇧᇤᇧᇧᇥdesorption

+ 𝜕𝜕𝑧 ቆ𝐷௕ 𝜕𝐶௤𝜕𝑧 ቇᇣᇧᇧᇧᇤᇧᇧᇧᇥDiffusion viaBioturbation
− 𝜕൫𝜔 ⋅ 𝐶௤൯𝜕𝑧ᇣᇧᇧᇤᇧᇧᇥparticleflux

 
 

(4-6) 

   
 𝑪𝑩, 
microbial 
biomass pool 

𝜕𝜕𝑡 𝐶஻ =  𝐶𝑈𝐸 ⋅ 𝑉௠௔௫,௎ ⋅ 𝐶஻ ⋅ 𝐶஽ை஼𝐾௠,௎ + 𝐶஽ை஼ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥuptake of DOC by microbes used for growth
− 𝜋 ⋅ 𝐶஻ᇣᇤᇥmicrobialdeath

+ 𝜕𝜕𝑧 ൬𝐷௕ 𝜕𝐶஻𝜕𝑧 ൰ᇣᇧᇧᇧᇤᇧᇧᇧᇥDiffusion viaBioturbation
− 𝜕(𝜔 ⋅ 𝐶஻)𝜕𝑧ᇣᇧᇧᇤᇧᇧᇥparticleflux

 
 

(4-7) 

   
 

where:  𝑡 time (yr) 𝑧 depth (m) 𝐿 leachable fraction of litter input (-) 𝑖 change in concentration due to litter input from roots or aboveground in depth 𝑧 (kg C m-3 yr-1) 𝑝 soluble fraction of dead microbes (-) 𝜋 mortality rate of 𝐶஻, first-order kinetics (yr-1) 𝑉௠௔௫,஽ maximum specific depolymerization rate for 𝐶ோ by extracellular enzymes excreted by 𝐶஻ (yr-1) 𝐾௠,஻ half-saturation constant for the depolymerization of 𝐶ோ (kg C m-3) 𝐷௕ bioturbation/biodiffusion coefficient (m2 yr-1) 𝜔 particle advection velocity due to particle displacement from litter input and SOM decomposition 
(m3 m-2 yr-1) 𝑉௠௔௫,௎ maximum specific assimilation rate of 𝐶஻ by uptake of 𝐶஽ை஼ (yr-1) 



Study III 

 

105 

 

𝐾௠,௎ half-saturation constant for the assimilation of 𝐶஽ை஼ by 𝐶஻ (kg C m-3) 𝑘௔ௗ௦ adsorption rate (m3 (kg C)-1 yr-1) 𝑞௠௔௫ maximum sorption capacity (kg C m-3) 𝑘ௗ௘௦ desorption rate (yr-1) 𝑣 average pore water velocity (m3 m-2 yr-1) 𝐶𝑈𝐸 carbon use efficiency of microbes 𝐶஻ (-) 
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4.6.5 Site description 

The Coulissenhieb I site is a Norway spruce forest located in the Waldstein hillsides in the 

Fichtelgebirge Mountains in NE Bavaria (Germany). The site has been intensively studied and is 

referred to as Waldstein or Coulissenhieb (I) in the literature. The Waldstein hillsides have a 

continental temperate climate (Köppen classification), with high annual precipitation of 1163 mm 

and a mean annual temperature of 5.3°C (Foken, 2003). 

 The soil was classified as a Haplic Podzol (FAO, 1998) with a sandy loam to loam texture and 

is overlain by a mor-like organic layer of 8.5 cm approximate thickness (Gerstberger et al., 2004). The 

soil developed on granitic bedrock and is characterized by low pH values throughout the soil profile.  

The C/N ratio of the organic layer is rather low for a mor type (21-25) due to high levels of 

atmospheric nitrogen deposition. The soil receives a mean annual aboveground litterfall of 0.103 kg C 

m-2 yr-1 (Berg and Gerstberger, 2004). Belowground litter input from dead fine roots was estimated to 

be 0.21 kg C m-2 yr-1 using an estimate of fine-root turnover in the organic layer from sequential 

coring (Gaul et al., 2008a; Gaul et al., 2008b) which was extrapolated down to 80 cm of the mineral 

soil using fine-root biomass stocks. The B horizons of the Haplic Podzol of the Coulissenhieb I site are 

characterized by high amounts of pedogenic oxides (Gerstberger et al., 2004). 

4.6.6 Data and calibration 

For the calibration of COMISSION we selected data from different studies conducted at the 

Coulissenhieb I site. The COMISSION model was driven by the aforementioned above- and 

belowground litter inputs. Belowground litter input was distributed in the different layers according 

to the observed cumulative root biomass distribution using an exponential cumulative distribution 

function (Persson, 2000, e-folding depth 7.5 cm). Vertical profiles of five different variables were 

used together as constraints to estimate the parameters of COMISSION: 

(1) Volumetric SOC concentrations (kg m-3) of the three organic layer horizons and six mineral 

soil horizons, calculated from measurements reported by Rumpel et al. (2002), were 

compared to the sum of the 4 different model pools (𝐶ோ + 𝐶஽ை஼ + 𝐶௤ + 𝐶஻). 

(2) The 14C content of SOC (in percent Modern, pM, according to Stuiver and Polach (1977)) in 5 

mineral soil horizons (Rumpel et al., 2002) was compared with the combined 14C content of 

the 4 different model pools. The 14C module of COMISSION was driven by atmospheric 14C 
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contents as described in Ahrens et al. (2014). Radioactive decay of 14C was accounted for by 

an additional first-order decomposition rate 𝜆 = ଵ଼ଶ଺଻ yr-1 that affects all pools of the 14C 

module of COMISSION. 

(3) The 𝐶௤ pool, representing mineral-associated organic carbon, was compared to the organic 

carbon content of the >1.6 g cm-3 density fraction as reported by Kaiser et al. (2002) for 6 

mineral soil horizons. The >1.6 g cm-3 density fraction is thought to represent mineral-

associated carbon, and is commonly referred to as the heavy fraction (HF) (Kögel-Knabner et 

al., 2008) or mineral-associated organic carbon (MOC) (Trumbore and Zheng, 1996). 

Throughout this study we will use the acronym MOC to refer to the >1.6 g cm-3 density 

fraction. The maximum sorption capacity 𝑞௠௔௫ was prescribed based on findings by 

Guggenberger and Kaiser (2003). They performed DOC sorption experiments to estimate the 

available sorption capacity for 6 mineral horizons of the Haplic Podzol profile at 

Coulissenhieb. The available sorption capacity signifies organic carbon that can be sorbed in 

addition to what is already stabilized on minerals. Thus, following the considerations by 

Guggenberger and Kaiser (2003), we prescribe 𝑞௠௔௫ (Fig. S2) as the sum of the available 

sorption capacity from the sorption experiments and the mineral-associated organic carbon 

fraction.  

(4) The 14C content of MOC (in percent Modern) of 6 mineral horizons as reported by Kögel-

Knabner et al. (2008) was compared against the 14C content of the 𝐶௤ pool of the COMISSION 

model. 

(5) Hamer and Marschner (2005) estimated microbial biomass C contents for the Oa, EA and Bs 

horizon of the Coulissenhieb I profile with a fumigation-extraction method. We compared 

the measurements against the 𝐶஻ pool of the COMISSION model. 

In total eleven model parameters (Table S1) were calibrated with the Differential Evolution algorithm 

for global optimization (Price et al., 2006; Ardia et al., 2013) by minimizing the total sum of squared 

residuals of all five observed variables (see Eqn S5 for the definition of the multi-constraint cost 

function). The COMISSION model was started from close to zero SOC and microbial biomass 

concentrations and run from 13500 years BCE until present day, assuming a constant average pore 

water velocity, 𝑣, and constant litter inputs. As water flux we used the mean of modeled yearly water 

fluxes at Coulissenhieb I reported in Matzner et al. (2004a) and Matzner et al. (2004b). We further 

assumed that water fluxes decreased linearly with soil depth from throughfall at the soil surface to 

the modeled seepage flux in 90 cm soil depth. 
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4.6.7 Contribution of processes to SOC concentration and 14C age 

To study how much the different processes in the COMISSION model contribute to observed organic 

carbon and 14C profiles, we ran COMISSION forward using the parameter set retrieved by the 

calibration and the same settings as in the calibration, while switching off processes that we want to 

study. This approach gives an indication of the relevance of a certain process in COMISSION given the 

parameterization for the Haplic Podzol profile at Coulissenhieb I. Table 4-2 gives an overview on the 

different model-experiments. 

Furthermore, to quantify the importance of microbial recycling along the soil profile, we split 

the different carbon pools in directly litter-derived and microbe-derived carbon. For this purpose we 

set up a second set of the differential equations in Table 4-1. Contrary to the previous model-

experiments we did not have to switch off any process to quantify the contribution of litter-derived 

against microbe-derived organic carbon along the SOC profile. Instead, the second set of pools just 

receives input in the form of microbial remains. The first set of pools on the other hand only receives 

litter input, but no organic carbon from microbial recycling. To assure that overall the same dynamics 

are achieved, the different rate-limiting terms (Eqn (4-1), (4-2), (4-3)) are based on the sum of the 

respective litter- and microbe-derived carbon pools 𝐶஻, 𝐶஽ை஼  and 𝐶௤. 

In order to summarize and discuss the results of COMISSION in different parts of the soil profile, 

we adopt the notation of topsoil and subsoil as used in the Harmonized World Soil Database 

(Nachtergaele et al., 2008). We refer to the top 30 cm of the mineral soil as topsoil. For the mineral 

soil below the top 30 cm we use the notation subsoil.  
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Table 4-2: Model-experiments to elucidate the effect of different mechanisms on 14C age profiles 

Model-experiment Description 

No Advection 𝑣 ≝ 0 in Eq. (4-5) 

No depolymerization 

limitation by 

microbes 

𝐷𝑒𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑉௠௔௫,஽ ⋅ 𝐶ோᇣᇧᇧᇤᇧᇧᇥ
maximum 

depolymerization

⋅ ஼ಳ௄೘,ಳା஼ಳᇣᇧᇤᇧᇥ
rate limitation
by microbes

≝  𝑉௠௔௫,஽ ⋅ 𝐶ோᇣᇧᇧᇤᇧᇧᇥ
maximum 

depolymerization

  

in Eqs. (4-4) and (4-5) 

No sorptive 

stabilization 

𝑘௔ௗ௦ ≝ 0 and 𝑘ௗ௘௦ ≝ 0 in Eqs. (4-5) and (4-6) 

Litter- vs microbe-

derived OC 

Recycling of microbial remains in separate pools 
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4.7 Results 

4.7.1 Full COMISSION model for a Haplic Podzol, COMISSIONFull  
After calibration the COMISSION model is well able to represent the observations of the Haplic 

Podzol profile at the Coulissenhieb I site (Figure 4-2A and C). The thickness of the organic layer is 

correctly represented, and it consists mainly of the 𝐶ோ  pool. The secondary maximum of OC 

concentrations in the Bh horizon is captured with the maximum of the 𝐶௤ pool and a secondary peak 

of the 𝐶ோ  pool (Figure 4-2A).  

Also the modeled 14C profiles represent the observed profiles well (Figure 4-2C). From the 

organic layer down to the Bh horizon the 14C profiles of the 𝐶ோ, 𝐶஽ை஼, and 𝐶஻ pool are characterized 

by the presence of modern “bomb-radiocarbon”, i.e. a 14C value (% Modern) >100. From the Bw 

horizon downward the 14C signatures of the 𝐶஽ை஼  and the 𝐶஻ pool approach the 14C signature of the 𝐶௤ pool more and more. Of all model pools the 𝐶ோ  pool shows the steepest increase in apparent 14C 

age with soil depth. 

This calibration of the COMISSION model with all processes included (𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟) serves 

as the reference point for the following model-experiments targeted at elucidating the importance of 

different processes for the formation of the SOC, MOC and microbial biomass profiles, and the 14C 

age profiles of SOC and MOC. The parameters retrieved in the calibration can be found in the 

Supplementary Information in Table S1. 
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Figure 4-2: Fit of the full COMISSION model pools to different organic carbon fractions (A) and their respective 
14C profiles (C). Panel (B) shows the vertical distribution of the 𝐶஻ pool in more detail. Lines show the model 
results, while circles, crosses and x’s denote the measurements. 

4.7.2 Interaction between DOC transport, sorptive stabilization and microbes 

Advection 

Switching off DOC transport (Table 4-2, “No Advection”) influences the formation of the secondary 

OC maximum in the Bh horizon twofold: First, the Bh horizon receives less DOC input from upper soil 

layers and thereby is not able to fill the available sorption capacity (Figure 4-3A). Second, the 

microbial pool 𝐶஻ and the free sorption sites compete for DOC, and the overall lower DOC levels also 

lead to a smaller microbe density in the Bh horizon due to substrate scarcity (Figure 4-3B). This slows 

down the depolymerization of the 𝐶ோ  pool in the Bh horizon, which is mediated by the microbial 

biomass 𝐶஻. Consequently, the secondary peak of the 𝐶ோ  pool is more pronounced compared to the 𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟  setup. Concurrently, the overall apparent 14C ages in the Bh horizon would be 

slightly older with DOC transport switched off (Figure 4-3D). Without DOC transport the apparent 14C 

ages of SOC in the subsoil would be up to 4240 14C years higher (Figure 4-3D). For the deep subsoil 

horizons, C1 and C2, DOC transport is also important for SOC stocks. Without the input of OC via 

advection into the subsoil horizons the overall SOC stocks would be up to 20% lower in these 

horizons (Figure 4-3B). 
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Figure 4-3: Results of a COMISSION simulation in which DOC advection is switched off – panel (A) shows organic 
carbon pools/fractions and panel (C) the respective 14C signatures. Panel (B) shows the difference of 
COMISSION without DOC advection to the full COMISSION model in percent. Panel (D) compares the 
conventional 14C ages of COMISSION without advection to the full model. 

 

Microbial depolymerization limitation 

The most obvious change when switching off the rate limiting term for the depolymerization of the 𝐶ோ  pool (Table 4-2, “No depolymerization limitation by microbes”) is the disappearance of the 

secondary peak of the 𝐶ோ  pool in the Bh horizon (Figure 4-4A). While the overall OC levels would still 

be well captured along the profile, the mismatch in the Bh horizon would be considerable (Figure 

4-4B). Nevertheless, switching off the rate limiting term for the depolymerization flux considerably 

affects OC dynamics throughout the soil profile (Figure 4-4B). Especially, in the subsoil horizons the 𝐶ோ  pool would be so rapidly depolymerized that it is virtually absent (Figure 4-4B). In the Bh horizon 

the lift of the depolymerization limitation leads to ample available DOC, alleviating the competition 

between microbes and soil minerals for DOC, and thereby to a disproportionate growth of the 

microbial biomass (Figure 4-4B). In 𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟  the microbial biomass levels were very low 

because the competition for DOC with soil minerals via 𝑞௠௔௫ was important. 

 Lifting the depolymerization limitation also has pronounced consequences for the apparent 
14C age profiles (Figure 4-4C and D). Without depolymerization limitation the apparent 14C age of SOC 

would be on average 610 years younger in subsoil horizons (Figure 4-4D). The 14C signature of the 𝐶ோ  
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pool would even reach modern levels down to the Bw horizon because the turnover of 𝐶ோ  would be 

so rapid that the root litter input essentially determines the 14C signature (Figure 4-4C). 

Depolymerization limitation is especially relevant in the C2 horizon where the 𝐶ோ  turnover is so fast – 

compared to the input to the layer – that 𝐶ோ  is almost absent (Figure 4-4B). Overall, the 

depolymerization limitation contributes considerably to the apparent 14C ages especially in subsoil 

horizons (Figure 4-4D). 

 
Figure 4-4: Results of a COMISSION simulation in which the limitation of depolymerization by microbial biomass 
is switched off – panel (A) shows organic carbon pools/fractions and panel (C) the respective 14C signatures. 
Panel (B) shows the difference of COMISSION without depolymerization limitation to the full COMISSION model 
in percent. Panel (D) compares the conventional 14C ages of COMISSION without depolymerization limitation to 
the full model. The shading in panel (B) is intended to highlight the change to log-scale. 

 

Sorptive stabilization 

Switching off the sorptive stabilization of DOC on soil minerals (Table 4-2, “No sorptive stabilization”) 

obviously leads to the disappearance of the 𝐶௤ pool (Figure 4-5A). While the organic layer is not 

affected by the omission of sorption, the topsoil and subsoil mineral horizons show considerable 

differences to 𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟. First, the secondary peak of the 𝐶ோ  pool disappears due to the 

missing interactions between 𝑞௠௔௫ and microbes. Apparently, the overall high sorption capacity of 

the Bh horizon was responsible for the development of a secondary peak of the 𝐶ோ  pool (together 

with the depolymerization limitation). Apart from the decrease of the 𝐶ோ  pool in the Bh horizon, 

�������������

�	

�
��
�

�
�

��

��

��

��

�

���

� �� �� ��

�

�����
��
����
��
��

��#3 ���3

���	
��

 !
��

�#

�"

��

��

�����#����	�$�

�� �� �� ���

���� ���� ��

�$%3�������	��&	��#��'�

��((	�	$
	���
���)��)�*+,::��#�

���� � ;�

��:���#
�:	����3�#
�:	�
�

������	���
��&�#����
���)��)�*+,::

� ;�� �;��

�



Study III 

 

114 

 

without sorption the 𝐶ோ  pool becomes more prominent in deeper parts of the soil profile compared 

to 𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟  (Figure 4-5B). This is because without sorption more DOC is translocated or 

leaving the soil in the subsoil horizons; thereby less substrate is available for microbial growth and 

ultimately depolymerization of the 𝐶ோ  pool (Figure 4-5B). This means that sorption has a dual role: It 

can suppress microbes by removing substrate, but also may stimulate them by retaining substrates 

(preventing loss by advection) and gradually releasing them.  

 In the 𝐶𝑂𝑀𝐼𝑆𝑆𝐼𝑂𝑁ி௨௟௟  model run sorptive stabilization is responsible for 14C ages of around 

600 years in the topsoil horizons (Figure 4-2C). Without sorption the apparent 14C ages would be 

much younger in the topsoil (Figure 4-5C and D). In the subsoil horizons the 14C signature of the 𝐶ோ  

pool diverges from that of the 𝐶஽ை஼  and 𝐶஻ pools. Without adsorption and desorption DOC is 

transported without retardation to deeper soil layers and is dominated by the 14C signature of litter 

inputs (Figure 4-5C). Due to the strong coupling of microbes and DOC, microbes follow the 14C 

signature of DOC throughout the soil profile (Figure 4-5C). With faster decomposition and lower SOC 

stocks in the absence of sorptive stabilization, the 𝐶ோ  pool and the overall SOC stocks show modern 
14C signatures down to the Bw horizon (Figure 4-5C). Below the Bw horizon the 𝐶ோ  pool consists 

mainly of microbial remains (cf. Figure 4-7B), which is reflected in the high apparent 14C ages in 

deeper subsoil horizons for the COMISSION model without sorption.  
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Figure 4-5: Results of a COMISSION simulation in which sorption is switched off – panel (A) shows organic 
carbon pools/fractions and panel (C) the respective 14C signatures. Panel (B) shows the difference of 
COMISSION without sorption to the full COMISSION model in percent. Panel (D) compares the conventional 14C 
ages of COMISSION without sorption to the full model. The shading in panel (B) is intended to highlight the 
change to log-scale. 
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4.7.3 Contribution of litter-derived vs microbe-derived organic carbon 

 In order to quantify the contribution of litter and microbe-derived organic carbon we split the model 

pools into a set that only receives input in form of microbial remains and a set that only receives 

input from litter (cf. section 2.3, Table 4-2, “Litter- vs microbe-derived OC”). In the Oi horizon litter-

derived OC makes up more than 70% of the total SOC stocks (Figure 4-6B). In the organic layer the 

contribution of litter-derived carbon is, however, already decreasing to about 50% at the boundary 

between the organic layer and the mineral soil. This is in line with the concept that the Oa horizon of 

the organic layer represents more “humified” material (i.e. processed by the soil food web) (Figure 

4-7A,B). With the transition to the mineral soil sorptive stabilization comes into play and the 

depolymerization of root litter input is impeded because of lower microbial growth due to the 

competition of sorption capacity and microbes for DOC. Overall, this leads to a higher 

depolymerization limitation in the topsoil horizons than in the organic layer. This is reflected in a 

higher contribution of litter-derived carbon in the first mineral horizon (EA horizon) compared to the 

last organic horizon (Oa horizon) (Figure 4-6B). The split in litter-derived and microbe-derived organic 

carbon also reveals that the secondary peak of the 𝐶ோ  pool in the Bh horizon is derived from root 

litter input and not microbial recycling (Figure 4-6A,B and Figure 4-7A,B). 

 Starting from the Bw horizon the importance of microbe-derived OC is increasing up to 

contributions of around 60% in the C1 and C2 horizons (Figure 4-7B). This is partially explained by the 

fact that root litter is not the dominant form of carbon input there (Figure 4-6B), but also because 

continued microbial recycling is getting more important with soil depth. 

 The importance of continued microbial recycling is even more evident from the 14C age 

difference between litter-derived carbon and microbe-derived carbon along the soil profile (Figure 

4-6D, Figure 4-7D). The apparent 14C age of the litter-derived SOC is on average more than 1400 

years younger than the 14C age of microbe-derived SOC. More importantly, the 14C age gap between 

litter-derived and microbe-derived carbon is increasing with depth due to the continued recycling of 

SOC through microbes (Figure 4-6D, Figure 4-7D). The 14C age difference of the litter-derived 𝐶ோ  pool 

to the microbe-derived 𝐶ோ  pool is even more positive (Figure 4-6D) because, “modern” root litter 

input is dominating the litter-derived 𝐶ோ  and because microbe-derived 𝐶ோ  is getting older while being 

processed again and again. The 14C signature of the litter-derived 𝐶ோ, however, would not be 

“modern” throughout the soil profile (Figure 4-6D). Due to the small amount of root litter input in 

the subsoil and the interaction of stabilization mechanisms (depolymerization limitation and 
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sorption), the 14C signature of litter-derived 𝐶ோ  would still show apparent 14C ages of more than 2000 

years in the deep subsoil. 

 
Figure 4-6: Contribution of plant litter along the SOC profile. COMISSION model forward run showing only 
litter-derived organic carbon – panel (A) shows organic carbon pools/fractions and panel (C) the respective 14C 
signatures. Panel (B) shows the contribution of plant-litter-derived OC to overall OC of COMISSION in percent. 
Panel (D) compares the conventional 14C ages of litter-derived carbon to microbially recycled OC. 
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Figure 4-7: Contribution of microbial recycling along the SOC profile. COMISSION model forward run showing 
only microbially recycled organic carbon – panel (A) shows organic carbon pools/fractions and panel (C) the 
respective 14C signatures. Panel (B) shows the contribution of microbially recycled OC to overall OC of 
COMISSION in percent. Panel (D) compares the conventional 14C ages of microbially recycled carbon to litter-
derived OC. 

 

4.8 Discussion 

4.8.1 Contribution of different model processes to the observed SOC and 14C profiles 

The goal of our study is to explain observed 14C ages of more than 1000 years using a more 

mechanistic representation of soil carbon cycling than the models typically applied. Riley et al. (2014) 

showed recently that the formerly used decomposition rates on millennial time scales for “stable” 

pools are not necessary to explain observed 14C age trends with depth. The insights gained with the 

calibration of the COMISSION model and the model-experiments support and extend these findings. 

 In particular with the factorial model-experiment in which processes were switched off, we 

were able to shed light on the relative importance of the different processes implemented in 

COMISSION. Based on their conceptual model of dissolved organic matter cycling along the soil 

profile, Kaiser and Kalbitz (2012) suggested that the transport of microbially recycled DOC is 

responsible for millennial 14C ages in the subsoil. Due to an increasing energy limitation of microbes, 

especially in the C1 and C2 horizons, which are dependent on DOC transport for SOC input, our 
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model-experiment suggests that without DOC transport 14C ages in the subsoil would be much older 

(Figure 4-3D). Nevertheless, as microbe-derived DOC makes up around 50-60% of DOC in the subsoil 

(Figure 4-7B), microbially recycled DOC contributes considerably to 14C ages in the subsoil.  

 Switching off depolymerization limitation and sorption showed how different stabilization 

mechanisms act in different parts of the soil profile. In the topsoil the 14C age is quite high, mainly 

due to stabilization on mineral surfaces. In the subsoil both the depolymerization limitation of 

microbes (Figure 4-4D) and sorptive stabilization explain (Figure 4-5D) a large portion of the observed 
14C ages (1280 and 610 14C years on average in subsoil SOC) according to our model-experiments. 

Depolymerization limitation can be regarded as one of the processes that were “unresolved” in other 

modeling studies (Jenkinson and Coleman, 2008; Koven et al., 2013) and inspired the use of an 

“arbitrary” depth-dependence of decomposition rates (Riley et al., 2014). Although other first-order 

SOC profile models did not use this depth-dependence of decomposition (Elzein and Balesdent, 1995; 

Baisden et al., 2002; Braakhekke et al., 2014), in these models a pool with a millennial turnover time 

was needed to explain observed 14C profiles. In these studies this “stable” or “slow” pool is present 

throughout the soil profile, but it is unclear if this pool is meant to represent SOC that is chemically 

recalcitrant or stabilized on minerals. 

 Overall, this means that the value of the information contained in 14C data has been 

overestimated with SOC profile models that lacked a mechanistic description of processes that could 

lead to the long-term persistence of SOC. By attempting to explain the 14C profile with these models, 

one had to either introduce a depth-dependence of decomposition rates (Jenkinson and Coleman, 

2008) or include a pool with  a millennial turnover time (Braakhekke et al., 2014). At the same time 

these models underutilized the 14C data because the steep increase of 14C ages with depth has in 

essence not been used to constrain any of the mechanisms that could lead to a long-term 

persistence of SOC.  

 Riley et al. (2014) showed with their BAMS1 model that relatively fast decomposition rates 

can be reconciled with the observed 14C age profile if stabilization mechanisms, similar to those 

implemented in COMISSION, are explicitly considered. In addition, we highlight the importance of 

continued microbial recycling (Gleixner, 2013) for the 14C age profile (Figure 4-7D). It is noteworthy 

that this process cannot be necessarily subsumed under the term “stabilization process”, but is 

merely a process that leads to long-term persistence of plant litter inputs in the soil profile. This 

persistence is so pronounced that radioactive decay is relevant for the radiocarbon signal of this part 
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of SOC. Especially the increasing contribution of microbe-derived OC along soil profiles (Figure 4-7B) 

contributes substantially to the observed apparent 14C age trends (Figure 4-7C). Therefore, it is 

crucial that SOC profile models not only consider explicit stabilization processes such as 

depolymerization limitation or sorptive stabilization, but also processes such as continued microbial 

recycling that just lead to a long-term persistence of SOC in the soil. 

4.8.2 Key features of COMISSION 

DOC links microbial interactions and sorptive stabilization 

From our model-experiments it is evident that the 𝐶஽ை஼  pool is a crucial component for models that 

include both microbial interactions and sorptive stabilization. In the COMISSION model soil minerals 

and the microbial biomass essentially compete for DOC throughout the profile in the mineral soil. 

The representation of sorption using the Langmuir equations made it possible to fit the secondary 

peak of the 𝐶ோ  pool in the Bh horizon which is mainly made up of root litter-derived OC (Figure 4-6B). 

In the Bh horizon, where the sorption capacity, 𝑞௠௔௫, is at its maximum, the adsorption strength is 

strongest and reduces the microbial uptake of DOC in the Bh horizon. As we assumed traditional 

Michaelis-Menten kinetics for the microbial uptake of DOC (Eq (4-2)), DOC concentrations limit the 

rate of microbial uptake and growth (Figure 4-4B). 

Although the COMISSION model is not designed to represent the process of podsolization, our 

link between microbial interactions and sorption in COMISSION is able to amend theories of 

podzolization. Buurman and Jongmans (2005) noted that traditional theories of podzolization cannot 

explain the dominance of silt- and sand-sized pellets of particulate organic matter in Podzol-B 

horizons. Although our Bh horizon is not dominated by this material, we still observe a secondary 

peak of the light fraction/𝐶ோ  pool in the Bh horizon. The competition between soil minerals and 

microbial biomass offers a mechanistic explanation as to why root residues might be more abundant 

in Podzol-B horizons.  

SOC decomposition models with explicit microbial interactions and explicit DOC pools often 

overlook the effect of “competition” for DOC by processes other than microbial uptake (e.g. Schimel 

and Weintraub, 2003; Allison et al., 2010; Moorhead et al., 2012) because these models are neither 

accounting for the sorptive stabilization of DOC, nor for DOC leaching into deeper soil layers. If this 

seeming competition for DOC is not taken explicitly taken into account, soil mineralogy would have 
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no direct influence on the ability of soil microbes to take up substrate and thereby to decompose 

SOM. Other SOC models with explicit representations of microbial biomass and DOC have started to 

take sinks for DOC other than microbial uptake into account (Wang et al., 2013; Riley et al., 2014), 

while Sulman et al. (2014) have already addressed possible effects of interactions between microbial 

decomposition and protection on soil minerals with the CORPSE model. This model, however, does 

not have an explicit DOC pool. 

In order to be able to model the response of SOC to increased ecosystem productivity under 

elevated CO2, it is essential to consider interactions between microbial decomposition and protection 

on soil minerals (Sulman et al., 2014). Plants could allocate more carbon to root exudates to enhance 

nutrient uptake or the mineralization of SOM in order to meet their increased nutrient demands 

under CO2 fertilization (Norby et al., 2010). The input of root exudates may lift a potential 

depolymerization limitation of microbes and hence prime the decomposition of SOM or the elevated 

litter inputs.  The modeling results of Sulman et al. (2014) with the CORPSE model at two FACE sites 

indicated that stabilization on soil minerals can attenuate the priming effect induced by increased 

root exudates. In the COMISSION model the carbon loss via priming may also be reduced if the 

available sorption sites are competing with microbes for the root exudates. With the COMISSION 

model we are able to address the question of whether increased carbon allocation to the subsoil is 

leading to an increase or decrease of subsoil SOC stocks due to sorptive stabilization and increased 

litter inputs or exudate priming. Compared to the model of Sulman et al. (2014), in which sorptive 

stabilization is represented with linear sorption kinetics, the response to increased root exudates 

may vary depending on soil depth if an upper limit of SOC storage on soil minerals is defined via the 𝑞௠௔௫ parameter. 𝑞௠௔௫ might be saturated in the topsoil and would thereby not be able to alleviate 

the priming effect induced by root exudates, while in the subsoil root exudates can still be stabilized 

on minerals, depriving the microbial pool of a potential energy source. 

Combination of traditional and reverse Michaelis-Menten kinetics 

A novel feature in the structure of the decomposition equations of COMISSION is the combination of 

traditional and reverse Michaelis-Menten kinetics. Wutzler and Reichstein (2008) and later Wang et 

al. (2014) showed that the traditional Michaelis-Menten kinetics have the undesired effect that the 

steady-state of the main SOC pools is completely independent of litter inputs. For reverse Michaelis-

Menten kinetics on the other hand the main SOC pools scale with litter inputs (Wutzler and 

Reichstein, 2008). For COMISSION we mechanistically argued that the decomposition of litter inputs 
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and microbial remains in the 𝐶ோ  pool would be limited by the diffusion of extracellular enzymes and 

thereby by the amount of microbes 𝐶஻, while the microbial uptake of DOC would be limited by the 

diffusion of the substrate (DOC) to the microbes and thereby by the amount of DOC available. This 

combination of reverse (for 𝐶ோ) and traditional Michaelis-Menten kinetics (for 𝐶஽ை஼) leads to the 

desired feature that the steady state of the main carbon pool (𝐶ோ) scales with litter inputs (Eq. S6). 

However, without sorption the steady state of the 𝐶஽ை஼  pool would be independent of litter inputs 

(Eq. S7). We believe that this more mechanistically justified use of either the reverse or traditional 

Michaelis-Menten equation warrants further investigation, especially whether the Michaelis-Menten 

uptake of DOC has desired properties for a DOC pool. 

Langmuir sorption – making the heavy fraction modelable 

Representing mineral stabilization with Langmuir sorption has been of interest in several modeling 

studies. Riley et al. (2014) noted that they aim to represent sorption as Langmuir sorption in future 

versions of their model. Wang et al. (2013) included Langmuir sorption in their MEND model. Overall, 

these and our approaches can be seen as a scheme to represent mineral stabilization more 

mechanistically in models. Representing mineral sorption as Langmuir adsorption has the advantage 

of being able to represent an upper limit of mineral-associated OC storage in soils (𝑞௠௔௫) which is 

widely assumed to exist (Wiesmeier et al., 2014). Hassink (1997) and Hassink and Whitmore (1997) 

were the first to define such a maximum mineral sorption capacity both for field studies and model 

applications. While the empirical approach of Hassink (1997) has found widespread use in 

experimental studies (Feng et al., 2013; Beare et al., 2014; Wiesmeier et al., 2014), the use of the 

empirical 𝑞௠௔௫ in its modeling counterpart – the Langmuir equation – is limited. 

Our approach with the COMISSION model showed that Langmuir sorptive stabilization is very 

helpful to be able to model what is perceived as the “mineral-associated fraction” obtained from 

various physical SOM fractionation methods (von Lützow et al., 2007). The concept of mineral-

associated SOC implies that the size of this pool is limited by the amount of mineral surfaces 

available (Hassink et al., 1997). Also if one adopts the view of a zonal model of organo-mineral 

interactions as by Kleber et al. (2007) with intermediate and outer zones based on organo-organo 

interactions, the amount of OC in these zones would still depend on the amount of mineral surfaces 

being in immediate contact with the first layer of organic molecules. There is ample evidence from 

different studies that organo-mineral associations do not form monolayer equivalents that cover the 

complete mineral surface area (e.g. Ransom et al., 1997; Mayer, 1999; Kaiser and Guggenberger, 
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2003), but that OC attaches preferentially on the rough surfaces of minerals (Vogel et al., 2014). 

Nevertheless the amount of these rough surfaces should also scale with the amount of total mineral 

surfaces available, regardless whether they are suited for organo-mineral interactions or not. 

4.8.3 Model limitations and future directions 

Stabilization by aggregation 

The stabilization of SOM by occlusion within aggregates (Six et al., 2004; Conant et al., 2011) is not 

explicitly modeled in COMISSION. In principle one could model the effect of aggregation similar to 

the 𝑞௠௔௫ approach with dynamic Langmuir equations, where 𝑞௠௔௫ would here be the capacity of a 

soil horizon to occlude SOM within aggregates. To a certain extent this capacity would also be 

dependent on the clay and oxide content of a soil horizon (Six et al., 2004). Compared to the 𝑞௠௔௫ 

for sorptive stabilization, however, the capacity to occlude SOM within aggregates would be much 

more dynamic as the formation and turnover of aggregates also depend on soil physical conditions 

such as freezing and thawing, and drying and rewetting (Six et al., 2004). Furthermore, the capacity 

to occlude SOM within aggregates would depend on the size and turnover time of the microbial pool 

as aggregate formation is enhanced by microbial extracellular polysaccharides (Wagai et al., 2009). 

Multi-profile calibration and application to global scale models 

In order to apply and calibrate COMISSION within an ecosystem model it is necessary to represent 

the temperature and moisture sensitivity of the different processes. In this study we purposefully did 

not do this as within COMISSION soil temperature and moisture are not modeled. This is especially 

important for disentangling the contributions of the root biomass profile, soil texture changes, and 

soil temperature and moisture profiles to between-site differences in depth trends of 14C ages.  

The depolymerization of the 𝐶ோ  pool and the microbial uptake of 𝐶஽ை஼  are assumed to be 

limited by diffusion of enzymes and DOC. Based on the considerations of Davidson et al. (2012) for 

their DAMM model, the concentrations of enzymes and DOC at the respective reaction sites (𝐶ோ  and 𝐶஻) could constitute the respective rate-limiting resource in Eqs. (5-3) and (4-2). These 

concentrations at the reaction site are dependent on how well enzymes and DOC can diffuse through 

the soil water film. Davidson et al. (2012) argue that diffusion is higher in thick soil water films. 

Geometrical considerations imply that the thickness of the soil water film is related to the cube of 

the volumetric soil water content. Similarly, to account for oxygen limitation in wet soils one can 
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introduce another Michaelis-Menten term where oxygen constitutes the rate-limiting resource 

(Davidson et al., 2012). The oxygen concentration can then be calculated as a function of volumetric 

soil moisture and porosity (Davidson et al., 2012; Sulman et al., 2014). Here, one could include a 

dependence on soil aggregation as also aggregates limit oxygen diffusion (Six et al., 2004). 

Little is known about the temperature sensitivities of the half-saturation constants and 

adsorption and desorption rates. However, several authors have already provided useful descriptions 

and parameterizations for the temperature sensitivity of the maximum depolymerization and uptake 

rate, 𝑉௠௔௫,஽ and 𝑉௠௔௫,௎ (Allison et al., 2010; Todd-Brown et al., 2012; Wang et al., 2012). Regarding 

the sensitivity of 𝐶𝑈𝐸 to temperature several scenarios and strategies have been proposed (Allison 

et al., 2010; Manzoni et al., 2012; Todd-Brown et al., 2012), but the uncertainty is high (Wieder et al., 

2013).  

The application of COMISSION in an Earth system model requires a global map of 𝑞௠௔௫. 

Using the Harmonized World Soil Database, 𝑞௠௔௫ could be derived globally from quantile regressions 

of MOC data against the clay + silt content (Feng et al., 2013; Beare et al., 2014), or hydrological 

properties that can be related to the surface area of soil minerals. This would lead to quite similar 𝑞௠௔௫ estimates in the top- and subsoil, while based on our current definition of 𝑞௠௔௫, the MOC 

profile closely follows the prescribed 𝑞௠௔௫ because the available sorption capacity from the batch 

sorption experiments is relatively low in subsoil horizons. In future work we aim to study the effect of 

different 𝑞௠௔௫ definitions, especially if other stabilization mechanisms apart from DOC sorption 

might be relevant for these alternative definitions.  

4.9 Conclusions 

We showed with the COMISSION model that an explicit consideration of stabilization and persistence 

processes renders millennial turnover times unnecessary. Our model results suggest that in the 

topsoil sorptive stabilization is responsible for relatively high apparent 14C ages, while in the subsoil 

the combination of depolymerization limitation and sorption is responsible for a large part of the 

observed 14C ages. However, apart from processes that can be clearly characterized as stabilization 

processes, observed 14C age trends along a soil profile could be traced back with the COMISSION 

model to the continued microbial recycling of SOM. Together with microbial interactions the 
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transport of DOC along the profile leads to lower 14C ages in the subsoil compared to a hypothetical 

situation without advection. 

 Overall, our results lead us to conclude that a more detailed description of stabilization and 

persistence processes give a more realistic explanation of apparent 14C ages in soil profiles of more 

than 1000 years. Apart from explaining 14C age trends, the explicit representation of SOC profiles in 

Earth system models is essential to assess the feedbacks between climate change, changing 

atmospheric deposition and SOC, and to make the SOC module of Earth system models comparable 

with observations. The interaction of microbial processes and sorptive stabilization is especially 

relevant for studying the response of SOC to potentially higher belowground C allocation under 

elevated CO2 concentrations. Sorption may reduce potential SOC losses due to priming by root 

exudates, especially in the subsoil where the sorption capacity may be far from saturation. This once 

again highlights the importance of a vertically explicit representation of different stabilization 

processes in SOC models. 
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4.12 Appendix A. Supplementary information 

4.12.1 The continuous profile approach 
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Fig. S1 Schematic for a theoretical situation of no SOM decomposition, no DOC transport, and no bioturbation. 
Upon burial by aboveground litterfall, the SOM content changes (green line) for a fixed depth, z1 (dashed line; 
or equivalently z=0), but does not change for a given layer A (gray box). Figure and caption only slightly adapted 
from Berner (1980). 

 

In the COMISSION model we introduce an additional advection velocity (Braakhekke and 

Ahrens, in prep.) that is moving all layers downwards due to litterfall (Fig. S1, Berner (1980)). The 

commonly measured litterfall flux (kg/m2/yr) can be converted to an advection velocity (m/yr) if we 

view this advection velocity as the volume of litter (m3) added to each unit of soil surface area (m2) 

per unit time (yr). 
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Thus the burial velocity 𝜔஺஻ீ(𝑧) due to aboveground litterfall can be calculated from the 

aboveground litter input 𝑖஺஻ீ  (kg mିଶ yrିଵ) and the bulk density of soil organic matter sensu 

Federer et al. (1993), 𝜌௕ை (145 kg mିଷ at Coulissenhieb I): 

𝜔஺஻ீ(𝑧) = 𝑖஺஻ீ𝜌௕ை  (S1) 

For SOC profiles (compared to marine organic matter) one also has to consider lateral input 

of carbon from roots. This constitutes an additional advection velocity due to belowground litter 

input, 𝜔஻௅ீ: 

𝜔஻௅ீ(𝑧) = 1𝜌௕ை න 𝛥𝑖஻௅ீ(𝑧)𝑑𝑧,௭
଴  (S2) 

where Δ𝑖஻௅ீ(𝑧) is the change in concentration with depth 𝑧 due to root litter input; the integral 

calculates the cumulative change of carbon concentrations due to root litter input up to depth 𝑧. 

Further, one has to consider the loss of soil volume due to decomposition. This additional 

advection velocity reduces the burial velocity from above- and belowground litterfall 𝜔஺஻ீ + 𝜔஻௅ீ  

by 𝜔஽ா஼  

𝜔஽ா஼(𝑧) = 1𝜌௕ை න −𝑘 ⋅ 𝐶௏(𝑧)𝑑𝑧௭
଴ , (S3) 

where 𝑘 is a generic decomposition rate and 𝐶௏ is the volumetric carbon concentration; the integral 

calculates the cumulative loss of SOC over the soil profile due to decomposition. 
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The total burial velocity in soils is then: 

𝜔(𝑧) = 𝜔஺஻ீ(𝑧) + 𝜔஻௅ீ(𝑧) + 𝜔஽ா஼(𝑧) (S4) 

The traditionally used reference frame in soil science is the top of the mineral soil, while here 

the soil surface is used as the reference frame in order to be able to model the SOC profile as a 

continuum. 
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4.12.2 Fixed parameters 

Parameter Symbol Value 

e-folding depth for root litter input 𝐿 7.5 cm 

bulk density of soil organic matter sensu Federer et al. (1993) 𝜌௕ை 145 kg m-3 

bulk density of the mineral matrix sensu Federer et al. (1993) 𝜌௕ெ 1713 kg m-3 

 

𝒒𝒎𝒂𝒙 

 

Fig. S2 Profile of prescribed maximum sorption capacity 𝑞௠௔௫. We define 𝑞௠௔௫ as the sum of the available 
sorption capacity from sorption experiments and the mineral-associated organic carbon fraction based on the 
data reported in Guggenberger and Kaiser (2003) 
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4.12.3 Multi-constraint cost function 

In the following equation COMISSION௒(𝜃, 𝑧௜) signifies the model output of the COMISSION model 

given the parameter set 𝜃 in depth 𝑧௜ where the respective measurements 𝑂𝑏𝑠௒ were taken. 𝑌 

signifies the different observed variables and their model counterpart: 

Observed variable Model counterpart Units 

SOC 𝐶ோ + 𝐶஽ை஼ + 𝐶௤ + 𝐶஻  kg C mିଷ 

pM(SOC) pM(𝐶ோ + 𝐶஽ை஼ + 𝐶௤ + 𝐶஻) pM, percent Modern 

MOC 𝐶௤ kg C mିଷ 

pM(MOC) pM൫𝐶௤൯ pM, percent Modern 

microbial biomass 𝐶஻ kg C mିଷ 

𝑆𝑆(𝜃) = ෍ ෍ COMISSION௒௜ (𝜃, 𝑧௜) − 𝑂𝑏𝑠௒(𝑧௜)௒  (S5) 
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4.12.4 Steady states of the CR and CDOC pools 

Eq S6, Steady state for the 𝐶ோ  pool without transport and sorption 

𝐶ோ,Steady State,w/o Transport and Sorption 

= −(1 + (𝐶𝑈𝐸 − 1) ⋅ 𝐿 − 𝐶𝑈𝐸 ⋅ 𝑝) ⋅ (𝐶𝑈𝐸 ⋅ 𝑖 − (𝐶𝑈𝐸 − 1) ⋅ 𝐾௠,஻ ⋅ 𝜋)(𝐶𝑈𝐸 − 1) ⋅ 𝐶𝑈𝐸 ⋅ 𝑉௠௔௫,஽  

 

 

 

Eq S7, Steady state for the 𝐶஽ை஼  pool without transport and sorption 

𝐶஽ை஼,Steady State,w/o Transport and Sorption = 𝐾௠,௎ ⋅ 𝜋−𝜋 + 𝐶𝑈𝐸 ⋅ 𝑉௠௔௫,௎ 

 

 

Please note that when also considering sorption also the steady state of 𝐶஽ை஼  becomes dependent 

on litter input 𝑖.  
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4.12.5 Fitted parameter values 

Table S1 Fitted parameter values used for the model-experiments 

Parameter Value Units 

𝐿 0.645 - 

𝑝 0.172 - 

𝜋 7.48 × 10-8 sିଵ 

𝑉௠௔௫,஽ 1.33 × 10-9 sିଵ 

𝐾௠,஻ 0.0101 kg C mିଷ 

𝐷௕ 3.24 × 10-10 mଶ sିଵ 

𝑉௠௔௫,௎ 1.01 × 10-2 sିଵ 

𝐾௠,௎ 3.181 kg C mିଷ 

𝑘௔ௗ௦ 1.08 × 10-3 mଷ (kg C)ିଵ sିଵ 

𝑘ௗ௘௦ 1.19 × 10-10 sିଵ 

𝐶𝑈𝐸 0.392 - 
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5 Study IV 

“Combination of energy limitation and sorption capacity explains 14C depth gradients” 

Contribution: The idea for the study was the outcome of discussions within the SUBSOM consortium. 

Data from the 5 sites stems from various PhD projects within the SUBSOM project. Data from the 

CarboEurope sites stem from work supervised by Marion Schrumpf. I further developed the 

COMISSION model with inputs from Markus Reichstein, Marion Schrumpf and Georg Guggenberger. I 

conducted the study, created all visualisations, and wrote the manuscript with inputs from the co-

authors. 

Published in Soil Biology and Biochemistry, 148, 107912   
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5.1 Abstract 

During the last decade, a paradigmatic shift regarding which processes determine the persistence of 

soil organic matter (SOM) took place. The interaction between microbial decomposition and 

association of organic matter with the soil mineral matrix has been identified as a focal point for 

understanding the formation of stable SOM. Using an improved version of the vertically resolved 

SOM model COMISSION (Ahrens et al., 2015), this paper investigates the effect of a maximum 

sorption capacity (Qmax) for mineral-associated organic matter (MAOM) formation and its interaction 

with microbial processes, such as microbial decomposition and microbial necromass production. 

We define and estimate the maximum sorption capacity Qmax with quantile regressions between 

mineral-associated organic carbon (MAOC) and the clay plus silt (< 20 µm) content. In the 

COMISSION v2.0 model, plant- and microbial-derived dissolved organic matter (DOM) and dead 

microbial cell walls can sorb to mineral surfaces up to Qmax. MAOC can only be decomposed by 

microorganisms after desorption.  

We calibrated the COMISSION v2.0 model with data from ten different sites with widely varying 

textures and Qmax values. COMISSION v2.0 was able to fit the MAOC and SOC depth profiles, as well 

as the respective 14C gradients with soil depth across these sites. Using the generic set of parameters 

retrieved in the multi-site calibration, we conducted model experiments to isolate the effects of 

varying Qmax, point-of-entry of litter inputs, and soil temperature. Across the ten sites, the 

combination of depolymerization limitation of microorganisms due to substrate scarcity in the 

subsoil and the size of Qmax explain 14C depth gradients in OC.  
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5.2 Keywords 

Vertical SOC model;  

14C;  

Mineral-associated organic carbon;  
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Organo-mineral interactions 
  



Study IV 

 

146 

 

5.3 Introduction 

Soil organic carbon (SOC) models have undergone major changes in recent years. Modelers are 

attempting to represent the experimental evidence that the persistence of soil organic matter (SOM) 

is not primarily a function of its molecular structure but an ecosystem property (Schmidt et al., 2011). 

The stability of SOC depends on physicochemical and biological interactions with the soil 

environment rather than on the organic compound itself.  

Classical first-order decomposition models explain the long-term persistence of organic matter by so-

called slow, passive, or inert pools (Davidson and Janssens, 2006). With these models, intrinsic first-

order decomposition rates represent the stability of SOC, while interactions with the biotic and 

abiotic environment are of no or minor importance. 

First-order kinetic models do not represent the observation that most organic compounds can turn 

over on short time-scales that are sometimes magnitudes faster than intrinsic decomposition rates 

used in models (Parton et al., 1987; Coleman and Jenkinson, 1999; Amelung et al., 2008). The 

decomposition rates in first-order kinetic models are generally not explicitly mediated by microbial 

activity. Likewise, organo-mineral interactions are generally not explicitly simulated in these models, 

but rather clay content or soil texture is used to modify the transfer of SOC to slower pools (RothC 

and CENTURY) or the decomposition rate of faster pools (CENTURY). 

Microorganisms have long been identified as the principal actors in litter and SOM decomposition, 

e.g., Waksman and Skinner (1926); Waksman and Iyer (1933). However, only starting with the model 

of Schimel and Weintraub (2003), microorganisms and their function have been more and more 

incorporated into modeling efforts. The role of microorganisms in stabilizing SOM has been 

neglected in early microbial models. Bradford et al. (2016) have stated that microorganisms are “now 

also recognized, somewhat paradoxically, as dominant agents of soil C formation”. Microorganisms 

and mineral surfaces compete for substrate in the form of dissolved organic carbon (DOC;  Tang and 

Riley, 2013; Ahrens et al., 2015), and decomposition can thereby be slowed down. Microbial 

necromass, however, also contributes to the formation of mineral-associated organic carbon  

(MAOC, Miltner et al., 2012; Liang et al., 2017; Kopittke et al., 2018; Sokol et al., 2019; Kopittke et al., 

2020). Whether microbe-derived MAOC if formed through direct sorption of microbial necromass or 

the adhesion and turnover of microbial biomass on mineral surfaces (in vivo microbial turnover 

pathway; Liang et al., 2017; Sokol et al., 2019), is the subject of current studies (Creamer et al., 2019; 



Study IV 

 

147 

 

Sokol and Bradford, 2019). So far, only the BAMS model (Riley et al., 2014; Dwivedi et al., 2017) has 

incorporated direct sorption of microbial necromass into a mineral-microbial model.  

In the new class of microbial-mineral models (Riley et al., 2014; Ahrens et al., 2015; Dwivedi et al., 

2017; Woolf and Lehmann, 2019), substrate limitation of microorganisms and sorption of organic 

matter on mineral surfaces control soil organic matter stability. Both mechanisms have been invoked 

to explain high apparent radiocarbon ages of soil organic matter that generally increase with soil 

depth (Davidson and Janssens, 2006; Conant et al., 2011; Bradford et al., 2016; Gentsch et al., 2018). 

The relative importance of these two mechanisms to explain 14C age gradients across sites has, 

however, not been fully elucidated yet. 

In this paper, we show how organo-mineral interactions can be implemented in vertically resolved 

models, such as the COMISSION model (Continuous Soil Organic Carbon Profile Model with Microbial 

Interactions and Sorptive Stabilization, Ahrens et al., 2015). We introduce a maximum sorption 

capacity for mineral-associated organic matter, Qmax, that can be easily parameterized with soil 

texture. In a multi-site calibration across ten sites of contrasting soil texture and mineralogy with 

consequently widely varying Qmax, we test if the COMISSION v2.0 model can reproduce depth profiles 

of MAOC and SOC and their 14C signature. With model experiments, we investigate the importance of 

Qmax for 14C and soil organic carbon (SOC) profiles and how Qmax interacts with microbial energy 

limitation, the point-of-entry of litter inputs, and temperature. 

5.4 Material and Methods 

We extended the COMISSION v1.0 model (Ahrens et al., 2015) to make it scalable across sites by 

introducing a texture-based definition of the organic matter sorption capacity on soil minerals. We 

calibrated the COMISSION v2.0 model across ten European sites, where detailed measurements of 

SOC, 14C, and their association with mineral surfaces were available (Schrumpf et al., 2013; Angst et 

al., 2016a; Angst et al., 2018; Heinze et al., 2018; Kirfel et al., 2019). Seven sites are European beech 

forests, two sites are coniferous forests, and one site is a grassland soil on volcanic parent material. 

We conducted model experiments to investigate the effect of a limited organic matter sorption 

capacity on the persistence of leaf and root litter inputs. The following paragraphs provide a more 

detailed description of the model, the calibration procedure, and model experiments. 
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5.4.1 Model description 

Previously, we introduced the COMISSION model to investigate stabilization processes in a Haplic 

Podzol profile (Ahrens et al., 2015). In this earlier work, we used measured maximum sorption 

capacities from batch sorption experiments (qmax, batch) along the soil profile to model the sorption of 

dissolved organic matter (DOM) on mineral surfaces. We now acknowledge, however, that also 

microbial residues can form associations with mineral surfaces (Miltner et al., 2012; Dwivedi et al., 

2017; Kopittke et al., 2018). Measurements of qmax, batch are rarely available and are mainly targeted 

at determining the maximum sorption capacity for DOM but not for microbial residues. Therefore, 

we now introduced a new approach for parameterizing the maximum sorption capacity based on the 

clay and silt (< 20 µm) content. Throughout the paper, we refer to the maximum sorption capacity 

from batch sorption experiments as qmax, batch, while the texture-based maximum sorption capacity for 

DOM and microbial residues is termed Qmax, facilitating comparisons of SOC storage and turnover 

across sites and with soil depth. Figure 5-1 gives a conceptual overview of the enhanced model 

structure, while a full description of the model can be found in the supplementary material.  

In COMISSION v2.0, microorganisms depolymerize lignified litter and the microbial residue pool 

according to reverse Michaelis-Menten kinetics as a function of their biomass. Compared to Ahrens 

et al. (2015), a soluble litter pool was introduced in addition to the lignified litter pool to improve the 

representation of DOM generation by leaching from litter on decomposition (Campbell et al., 2016). 

The soluble litter pool ensures that upon litterfall, the soluble fraction of litter is only gradually 

released to the DOM pool and thereby made available as substrate to microorganisms. The uptake of 

DOM by microorganisms is limited by DOC concentrations and simulated with forward Michaelis-

Menten kinetics. In both Michaelis-Menten terms, reaction rates are limited by the compound that 

must diffuse to the respective reaction sites. Tang and Riley (2019) recently found that the 

extracellular enzymatic depolymerization of larger substrate particles can be approximated by 

reverse Michaelis-Menten kinetics, and microbial uptake by forward Michaelis-Menten kinetics. 

Extracellular enzymes diffuse to lignified litter and the microbial residue pool to cleave the polymeric 

substances into DOM. For model parsimoniousness, we assume that extracellular enzyme 

concentrations scale with microbial biomass. In the second Michaelis-Menten term, DOM diffuses to 

microorganisms to be transported into the cell envelope via transporter enzymes. Instead of 

modelling the diffusion of enzymes and DOM to the respective reaction sites explicitly, we use a 

macroscopic formulation of these processes with the use of forward and reverse Michaelis-Menten 
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terms. Advective DOM transport to other soil layers with the water flux between layers is, however, 

explicitly represented. Both microbial residues and DOM can bind to mineral surfaces to form 

mineral-associated organic matter according to Langmuir kinetics and saturate Qmax. Of the microbial 

uptake of DOM, microorganisms use a fraction for biomass production (carbon use efficiency, CUE), 

while the fraction that is not used for biomass production (1 – CUE) is lost from the system as CO2. 

For now, we simulate the decomposition of coarse woody debris (CWD, stems, branches, twigs, 

coarse roots) using a first-order decomposition rate since the decomposition of deadwood is 

mediated by other agents than the decomposition of litter (Cornwell et al., 2009). Further 

developments of COMISSION might focus on modeling deadwood decomposition more 

mechanistically, but this is beyond the scope of the current study. The complete set of equations that 

make up the COMISSION v2.0 model can be found in section 5.10.1 of the supplementary material.  

 
Figure 5-1: Schematic overview of COMISSION v2.0. Microbial biomass depolymerizes lignified litter and 
microbial residues to DOM. The coarse woody debris (CWD) pool receives input via dead woody litter input and 
is decomposed according to first-order kinetics. A fraction of the decomposition flux from the CWD pool enters 
the DOM pool. DOM can be transported to other soil layers with the water flux, taken up by microbial biomass 
for growth and maintenance, and sorbed to mineral surfaces up to the maximum sorption capacity Qmax either 
directly or after katabolic processing as microbial residues. 
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5.4.2 Temperature and moisture sensitivity of microbial processes and mineral stabilization 

We used Arrhenius kinetics to describe the temperature sensitivity of microbial depolymerization, 

microbial uptake, microbial biomass death, adsorption, and desorption in COMISSION v2.0:  

𝑓(𝑇) = exp ቌ− 𝐸௔𝑅 ⋅ ቆ1𝑇 − 1𝑇௥௘௙ቇቍ (5-1) 

where 𝑇 is the soil temperature (K), 𝐸௔  the activation energy specific to a certain process (kJ molିଵ), 𝑅 the universal gas constant (kJ Kିଵ molିଵ), and 𝑇௥௘௙ the reference temperature of 283.15 K at 

which 𝑓(𝑇) = 1. 

Following three literature reviews (Conant et al., 2011; Wang et al., 2013; Bradford et al., 2016), we 

use activation energies, 𝐸௔, for microbial processes (equivalent to Q10 values between 1.98 and 2.16) 

that are substantially higher than the activation energies for adsorption and desorption (equivalent 

to Q10 values between 1.08 and 1.34, Table 5-1). 

 

Table 5-1: Activation energies and Q10 values for temperature-sensitive processes in the COMISSION v2.0 
model. 

Process 𝐸௔, activation 
energy (kJ mol-1) 

Equivalent Q10 at 20°C Reference 

Depolymerization 53 2.16 Wang et al. (2012) 

Microbial uptake 47 1.98 Allison et al. (2010) 

Microbial biomass death 47 1.98 Allison et al. (2010), Hagerty 
et al. (2014) 

Adsorption 5 1.08 Wang et al. (2013) 

Desorption 20 1.34  Wang et al. (2013) 
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For microbial assimilation, we implemented a flexible soil moisture rate-modifier. The functional 

form is similar to the one presented in Yan et al. (2018) with an optimum moisture content at which 

microorganisms operate at their physiological maximum: 

𝑓(𝜃) = ⎩⎪⎨
⎪⎧ ቆ 𝜃𝜃௢௣௧ቇ௔ , 𝜃 < 𝜃௢௣௧

ቆ 𝜙 − 𝜃𝜙 − 𝜃௢௣௧ቇ௕ , 𝜃 ≥ 𝜃௢௣௧  (5-2) 

where 𝜃 is the volumetric water content (m3 m-3), 𝜙 is the soil porosity (m3 m-3), 𝜃௢௣௧ is the optimum 

moisture content (m3 m-3, parameterized as 0.65 ⋅ 𝜙 as in Yan et al. (2018)), and 𝑎 and 𝑏 are two 

parameters (-) that were fitted during the multi-site calibration (see section 5.4.5). The function is 

intended to represent the limitation of microbial activity through diffusion of DOM at soil moistures 

smaller than 𝜃௢௣௧ and oxygen limitation at soil moistures larger than 𝜃௢௣௧.  

5.4.3 Definition of Qmax 

Compared to our approach in Ahrens et al. (2015), we are using a definition of the maximum sorption 

capacity, Qmax, which is scalable across sites. Thereby, it can also be used in global terrestrial 

biosphere models. The maximum sorption capacity, qmax, batch, in Ahrens et al. (2015) was based on 

batch sorption experiments (Guggenberger and Kaiser, 2003), which relate to the direct sorption of 

DOM on mineral surfaces but does not cover the 𝑖𝑛 𝑣𝑖𝑣𝑜 turnover of microorganisms attached to 

mineral surfaces (sensu Sokol et al. (2019)). Here, we use empirical estimates of a maximum sorption 

capacity as derived by Feng et al. (2013) and Beare et al. (2014). This maximum sorption capacity of 

organic matter on mineral surfaces is based on quantile regressions of the mineral-associated 

fraction with the clay plus < 20 µm silt content. The findings of Six et al. (2002), Feng et al. (2013), 

and Beare et al. (2014) indicate that the concept of a maximum sorption capacity is adequate. 

 We reanalyzed the data presented in Feng et al. (2013) using the 90th percentile regression 

approach as used by Beare et al. (2014). This analysis yields the following relationship between the 

fine mineral fraction (clay + < 20 µm silt fraction) and mineral-associated organic matter: 
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𝑄௠௔௫௠ = 𝑚 ⋅ 𝑓ୡ୪ୟ୷ ା ழ ଶ଴ µ୫ ୱ୧୪୲ ୤୰ୟୡ୲୧୭୬ (5-3) 

where 𝑄௠௔௫௠  is the maximum sorption capacity (g OC (g mineral soil)-1), 𝑚 is the slope retrieved from 

the 90th percentile regression (g OC (g fine particles)-1), and 𝑓ୡ୪ୟ୷ ା ழ ଶ଴ µ୫ ୱ୧୪୲ ୤୰ୟୡ୲୧୭୬ (g fine particles 

(g mineral soil)-1) is the clay and silt (< 20 µm) fraction. 𝑚 is 0.153 for allophanic soils (Beare et al., 

2014), 0.079 for soils dominated by 2:1 minerals, and 0.044 for soils dominated by 1:1 minerals. For 

this study, we used nine sites dominated by 2:1 minerals and one site with allophanic properties. The 

mean 𝑄௠௔௫௠  values over the complete profiles are given in Table 5-2. For the sites TSA_A, LOE_A, 

BUN_A, and BAS_A (Table 5-2), only measurements according to the German definition of silt (2 - 63 

µm, Blume et al. (2015)) were available. We used a log-linear transformation of soil texture data as 

implemented by Moeys (2018) to approximate the 2 – 20 µm size class, which is required by the 

empirical definition of maximum sorption capacity by Feng et al. (2013) and Beare et al. (2014). 

5.4.4 Development of the organic layer, Qmax, and bulk density  

To account for changes in bulk density due to the accumulation of SOM, we used the semi-

mechanistic description of bulk density by Adams (1973) and its refinement by Federer et al. (1993). 

They proposed that organic matter (OM) and mineral soil occupy additive soil volumes 𝑉ை and 𝑉ெ, 

which both make up the total soil volume 𝑉 . Masses of OM and mineral soil are also additive, so 

that OM and mineral soil both have theoretical bulk densities of 𝜌௕ை and 𝜌௕ெ. Hence, we start the 

simulation with a soil bulk density that is equal to 𝜌௕ெ. For 𝜌௕ை we used a universal value of 150 kg 

m-3 for all sites, while we calculated the theoretical 𝜌௕ெ as a function of sand content per site and 

midpoint depth (Tranter et al., 2007): 

𝜌𝑏𝑀(𝑧) = 1.35 + 0.0045 ⋅ 𝑝𝑠𝑎𝑛𝑑(𝑧) + 6 ⋅ 10−5 ⋅ ൫44.7 − 𝑝𝑆𝑎𝑛𝑑(𝑧)൯2 + 0.06 ⋅ log (𝑧) 

 
(5-4) 

where 𝑝ௌ௔௡ௗ  is the sand content (%) at the midpoint depth of the layer (𝑧 in cm). 
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The volumetric maximum sorption capacity, 𝑄௠௔௫௏ , in each layer at the beginning of the simulations is 

the product of 𝜌௕ெ and the mass- and texture-based maximum sorption capacity 𝑄௠௔௫௠  in depth 𝑧.  

We model the accumulation of SOM in the organic layer localized on top of the mineral soil and 

within the profile through root litter input via an advective transport term. The build-up of an organic 

layer leads to a bulk density equal to 𝜌௕ை. This advective transport term is built on the concept of 

Adams (1973) and Federer et al. (1993), i.e., changes in SOC concentrations induce a change in 

volume 𝑉ை. This change in SOM volume, 𝑉ை, can be translated into an advection velocity 𝜔(𝑧) that 

varies with depth 𝑧. 𝜔(𝑧) is defined as the change of 𝑉ை in depth 𝑧 due to the accumulation of OM 

from aboveground and belowground litter inputs 𝑖஺஻ீ  and 𝑖஻௅ீ  minus losses from SOM 

decomposition. The losses from decomposition are displayed here with a generic decomposition rate 𝑘 and volumetric SOM concentrations 𝑆𝑂𝑀௏. 

𝜔(𝑧) = 𝑖஺஻ீ + ׬ Δ𝑖஻௅ீ(𝑧) 𝑑𝑧௭଴ + ׬ −𝑘 ⋅ 𝑆𝑂𝑀௏ 𝑑𝑧௭଴𝜌௕ை  (5-5) 

All model pools are transported by 𝜔(𝑧). Likewise, the initial 𝑄௠௔௫௏  is transported with the advection 

velocity 𝜔(𝑧) to represent the buildup of an organic layer in which mineral surfaces are absent. 𝑄௠௔௫௏  

is introduced as a state variable to represent the available sorption sites throughout the time course 

of the simulation and is shifted downwards or upwards depending on changes in SOM (see 

supplementary material 5.10.1). 

5.4.5 Multi-site calibration 

In a multi-site calibration, we calibrated the parameters of the COMISSION v2.0 model against ten 

intensively measured SOC profiles from the SUBSOM project (Angst et al., 2016b; Angst et al., 2018; 

Heinze et al., 2018; Kirfel et al., 2019) and the CarboEurope project (Schrumpf et al. (2013), Table 

5-2). We started all simulations from pure mineral soil at 12 000 years BP without considering soil 

weathering processes, i.e. constant soil texture and fixed physico-chemical soil parameters 

throughout the simulation. 
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Table 5-2: Overview of the sites used in the multi-site calibration. 𝑄௠௔௫௠  is a function of the clay plus silt (< 20 
µm) content (see equation 3). Soil types are given according to the World Reference Base for Soil Resources 
WRB (IUSS Working Group WRB, 2015). 
Site ID Site name Location Land use Soil type Mean 𝑸𝒎𝒂𝒙𝒎 Parent material MAT MAP 
     (% OC)  (°C) (mm) 
DE-Gri Grinderwald, 

Germany 
52° 34′ 
22.115″N 

9° 18′ 
49.762″E 

Deciduous 
forest 

Dystric 
Cambisol 

1.2 Pleistocene sand 8.7 718 

BUN_A Ebergötzen, 
Germany 

51° 34′ 
45.89″N 

10° 03′ 
59.52″E 

Deciduous 
forest 

Dystric 
Cambisol 

3.5 Triassic sandstone 7.7 772 

LOE_A Rüdershausen, 
Germany 

51° 34′ 
51.52″ N  

10° 14′ 
43.03″ E 

Deciduous 
forest 

Semi-eutric 
Cambisol 

5.4 Quaternary loess 8.1 709 

BAS_A Dransfeld, 
Germany 

51° 28′ 
35.60″ N  

09° 45′ 
32.46″ E 

Deciduous 
forest 

Eutric 
Cambisol 

5.3 Tertiary basalt 7.1 902 

TSA_A Hannoversch-
Münden, 
Germany 

51° 26′ 
25.64″ N  

09° 41′ 
24.25″ E 

Deciduous 
forest 

Dystric 
Cambisol 

2.2 Tertiary sand 8.1 761 

DE-Hai Hainich, 
Germany 

 51°04' N  10°27' E Deciduous 
forest 

Eutric 
Cambisol 

6.6 Pleistocene loess layer over 
triassic limestone  

8.3  800 

DK-Sor Soroe, 
Denmark 

 55°29' N  11°38' E Deciduous 
forest 

Gleyic 
Cambisol 

3.5 Calcareous lodgement till 8.2  660 

SE-Nor Norunda, 
Sweden 

 60°5' N  17°29' E Coniferous 
forest 

Haplic 
Podzol 

3.1 Glacial till 5.45  527 

DE-Wet Wetzstein, 
Germany 

 50°27' N  11°27' E Coniferous 
forest 

Cambic 
Podzol 

5.1 Quartzite 5.74  840 

FR-Lq2 Laqueuille, 
France 

 45°38' N  02°44' E Grassland Umbric 
Andosol 

10.0 Basaltic bedrock 8  1313 

 

In total, we used profiles of volumetric SOC concentrations, volumetric MAOC concentrations, and 

the respective 14C contents in these fractions. The first five sites in Table 5-2 are part of the DFG 

funded SUBSOM Research Unit (http://www.subsom.de), which is dedicated to the investigation of 

the role of subsoils in SOM decomposition and formation. All the SUBSOM sites are mature European 

beech forests (Fagus sylvatica L.). Of the five CarboEurope sites (last five sites in Table 5-2), two are 

deciduous forests, two are coniferous forests, and one is a grassland site on an Andosol. Of the 

coniferous sites, SE-Nor is dominated by Scots pine (65%, Pinus sylvestris L.) and Norway spruce 

(33%, Picea abies L.), while DE-Wet is a Norway spruce (Picea abies L.) plantation (Feigenwinter et al., 

2008). Forcing data for each site, such as vertically resolved soil temperature and water fluxes, and 

leaf and root litter inputs were generated with site-level runs of the JSBACH model (Knauer et al., 

2015). For the 5 CarboEurope sites, we evaluated the JSBACH model simulations against eddy 

covariance measurements of evapotranspiration, gross primary productivity, and sensible heat flux 

(Table Supp 1-3). At all sites measurements of aboveground litter inputs were available. Modelled 

aboveground litter inputs were scaled to match observed aboveground litter inputs. The same factor 
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was applied for scaling belowground litter inputs. We fitted the logistic-dose response function that 

was proposed by Schenk and Jackson (2002) to the observed root biomass profiles at the ten sites to 

represent the vertical distribution of root litter (Supplementary figure 1). The 14C contents of litter 

inputs were generated by convoluting the simulated litter inputs with the Northern Hemisphere 

atmospheric 14C data reported in Reimer et al. (2013) appended with the RCP8.5 simulation for after 

2013 of Graven (2015). 

To calibrate the parameters of the model (see supplementary section 0), we minimized the 

normalized sum of squares  (𝑛𝑆𝑆, Hengenius et al. (2014)) between modeled and observed variables 

using the genoud algorithm (Mebane Jr and Sekhon, 2011): 

𝑛𝑆𝑆 = ෍ ෍ ෍ ቆ𝑀𝑜𝑑௜,௝,௞ − 𝑂𝑏𝑠௜,௝,௞𝑤𝑒𝑖𝑔ℎ𝑡௜ ቇଶ௡ை௕௦೔,ೕ
௞ୀଵ௝ ∈ ௌ௜௧௘௦௜ ∈ ௏௔௥ , 

where 𝑉𝑎𝑟 are the four ‘data streams’ we used in the optimization, i.e., SOC, SO14C, MAOC, and 

MAO14C, 𝑆𝑖𝑡𝑒𝑠 are the ten sites, and 𝑛𝑂𝑏𝑠௜,௝  are the number of observations for a certain variable 

and site. 𝑤𝑒𝑖𝑔ℎ𝑡௜ is the range of all observations 𝑘 for a variable 𝑖 across all sites 𝑗. We ran the 

genoud algorithm with 35 generations and a population size of 10000 individual parameter sets per 

generation and used the parameter set with the lowest 𝑛𝑆𝑆 (see supplementary section 0). The 

genoud algorithm created an initial population of 10000 parameter sets based on random sampling 

from the prescribed parameter ranges (Supplementary Table 1), the next 34 generations of 10000 

parameter sets were then created by reproducing parameter sets with a low 𝑛𝑆𝑆, randomly changing 

parameters of the best parameter sets, or exchanging parameters between parameter sets. The 

calibrated parameter set has to be regarded as conditional on the forcing datasets created with the 

JSBACH model since a complete evaluation of the boundary conditions was not possible 

(Supplementary Table 1). 

We used a flexible time stepping method as integration routine to ensure that we can combine 

processes such as adsorption and microbial growth that act on the time-scale of hours with processes 

that act on the time-scale of years and decades. More specifically, we used the DLSODES solver for 

ordinary differential equations (Hindmarsh, 1983) together with the Yale sparse matrix solver 

(Eisenstat et al., 1977; Eisenstat et al., 1982) to solve the partial differential equations that constitute 

the COMISSION v2.0 model (see supplementary material 5.10.1). We employed the finite-difference 
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method to solve the spatial dimension of the partial differential equations of COMISSION v2.0. We 

used 15 grid cells per site while adapting the grid cell thickness to account for the varying soil depths 

between the sites. We used thinner grid cells in the topsoil compared to the subsoil. To ensure 

efficient parameter estimation, however, we did not run COMISSION with daily forcing data from the 

JSBACH model for the whole simulation period from 12 000 years BP but employed a spin-up with 

yearly aggregated forcing data. The spin-up is vital for modeling 14C contents throughout the soil 

profile. As the model run approached present day, we changed the resolution of the forcing data to 

monthly using an averaged year of simulations. To account for non-linearities in the temperature and 

moisture rate modifiers (equations 1 and 2), we supplied the daily forcing data to the respective 

function and then aggregated the function value to the required resolution. 

5.4.6 Model experiments 

To evaluate the overall importance of 𝑄௠௔௫௠  to explain differences between sites in the multi-site 

calibration, we ran two simulations at all sites, where we replaced the site-specific 𝑄௠௔௫௠  with the 

minimum and maximum 𝑄௠௔௫௠  observed across all sites and horizons: 5 g (kg mineral soil)-1 at DE-Gri 

and 108 g (kg mineral soil)-1 at FR-Lq2. 

To elucidate the combined effect of the maximum sorption capacity and microbial energy limitation, 

we conducted model experiments (Table 5-3) using the universal parameter set retrieved in the 

multi-site calibration. We used a sequence of 𝑄௠௔௫௠  that included the minimum and maximum 

observed 𝑄௠௔௫௠ , while using the root litter distributions, and forcing, such as soil temperature and 

litter input from the TSA_A site. To investigate the effect of energy limitation on depth gradients of 

SOC and 14C, we switched off the microbial limitation of depolymerization by setting the respective 

half-saturation constant, 𝐾௠,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ , to 0. This process is of special relevance in the subsoil where 

the substrate for microorganisms is getting scarcer. Hence, the first model experiment combines the 

variation of Qmax with two model-setups: one where microbial limitation of depolymerization is 

switched on and one where it is switched off. 

In a second model experiment, we varied the percentage of overall litter inputs that is allocated 

belowground as root litter between 38% (coniferous forests, Bloom et al. (2016)) and 80% (grassland 

in FR-Lq2), to analyze the effect of Qmax and the point-of-entry of litter inputs (Sokol et al., 2019), 

while using the root litter distributions (but different allocation) and forcing from the TSA_A site. 
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In a third model experiment, we aimed at elucidating the interaction between sorption capacity and 

different point-of-entries of root litter, specifically different root distributions. We tested the effect 

of the root litter distributions from the ten different calibration sites (Supplementary figure 1) in a 

model experiment with a low sorption capacity 𝑄௠௔௫௠  of 5 g (kg mineral soil)-1 and a model 

experiment with a high sorption capacity 𝑄௠௔௫௠  of 108 g (kg mineral soil)-1. This model experiment 

was intended to quantify the input or dilution effect of litter inputs (direct input of modern 14C) 

compared to the matrix protection effect of 𝑄௠௔௫௠ . 

To elucidate the role of energy limitation and root distributions on 14C profiles, in a fourth model 

experiment, we used the root distributions from all sites (Supplementary figure 1) to run the 

simulations at the TSA_A site with and without microbial limitation of depolymerization of lignified 

litter and microbial residues. 

To elucidate the combined effect of 𝑄௠௔௫௠  and temperature, in a last model experiment, we used the 

same variation of 𝑄௠௔௫௠  as before but used the minimum and maximum observed mean annual 

temperature from the ten sites (Table 5-2), 5.45 °C and 8.70 °C, to replace the mean soil 

temperatures in the 15 layers, while using the root litter distributions and forcing (except 

temperature) from the TSA_A site. 
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Table 5-3: Model experiments to elucidate the interactive effect of 𝑄௠௔௫௠  and microbial depolymerization 
limitation, point-of-entry of litter inputs, and temperature. 

Name of the model 
experiment 

Description 

Microbial-Limitation–Qmax 
interaction 

Microbial depolymerization on and off while varying 𝑄௠௔௫௠  from 5 to 108 g 
(kg mineral soil)-1 

Aboveground-V-
Belowground–Qmax 
interaction 

Two litter input experiments. 38% and 80% of litter enters aboveground, the 
rest belowground, while varying 𝑄௠௔௫௠   from 5 to 108 g (kg mineral soil)-1 

Root-Distribution–Qmax 
interaction 

Root distributions from the ten calibration sites with a low 𝑄௠௔௫௠  5 g (kg 
mineral soil)-1 and a high 𝑄௠௔௫௠   108 g (kg mineral soil)-1 simulation 

Root-Distribution–Microbial-
Limitation interaction 

Root distributions from the ten calibration sites with 𝑄௠௔௫௠   from TSA_A, but 
with and without microbial depolymerization limitation 

MAAT–Qmax interaction MAAT at 5.45 and 8.70 °C while varying 𝑄௠௔௫௠   from 5 to 108 g (kg mineral 
soil)-1 

5.5 Results 

5.5.1 Multi-site calibration 

We calibrated the parameters of the COMISSION v2.0 model across ten sites to retrieve a general 

parameter set that is applicable across scales and sites. Both the volumetric SOC and MAOC 

concentrations (Figure 5-2A) and their respective 14C contents (Figure 5-2B) in the ten profiles were 

well captured. By investigating the range of model parameters after optimization compared to the 

initially prescribed range of model parameters (Supplementary Table 1), we could describe how well 

the parameters are constrained by the model-data integration. Following Forkel et al. (2019), we use 

the proposed parameter sets with the top 5% of 𝑛𝑆𝑆 (model cost) to define final ranges of accepted 

parameters. During the calibration, most of the parameter values could be well constrained by the 

data, except for the parameter 𝑎, which describes the functional relationship between water content 

and decomposition below the optimal water content 𝜃௢௣௧ (Equation 3, Figure 5-3). The 𝑎 parameter 

could not be constrained by the available data as indicated by the lack of reduction in the relative 

uncertainty of the parameter compared to the prescribed parameter bounds (Figure 5-3A). All the 

other parameters showed substantial reductions in uncertainty compared to the initial parameter 
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bounds. Apart from the 𝑎 parameter, also 𝑉௠௔௫,஽ைெ and 𝑘ௗ௘௦,஽ைெ were not below the boundary of 

20%, which Forkel et al. (2019) used to qualify parameters as well constrained. These two 

parameters describe the uptake of DOM by microorganisms and the desorption rate of DOM from 

mineral surfaces. Rate coefficients, however, do not represent the timescales the respective 

processes are acting on well. Instead, the inverse of the rate coefficients represents better how well 

the timescale of the process is constrained. This can easily be exemplified by the range of accepted 𝑘ௗ௘௦,஽ைெ rates. The slowest accepted 𝑘ௗ௘௦,஽ைெ corresponds to a desorption time of 9 hours, while 

the fastest accepted 𝑘ௗ௘௦,஽ைெ corresponds to a desorption time of 2.5 hours. We use the term 

desorption time to describe the inverse of the desorption rate (𝑘ௗ௘௦,஽ைெିଵ ). By contrast, the initial 

bounds of 𝑘ௗ௘௦,஽ைெ correspond to desorption times from 52560 hours to 1 hour. Expressed as 

desorption rates, these ranges, however, appear much less constrained. The rate coefficient of 𝑘ௗ௘௦,஽ைெ on its original scale was allowed to vary between 0.167 yr-1 to 8760 yr-1 (lower and upper 

bound), but were only constrained between 965 yr-1 to 3449 yr-1 after the calibration. Expressed as 

desorption times, however, the accepted range is well constrained at 6.5 hours. Expressed as 

characteristic times, the inverse rate coefficients all showed substantial reductions in uncertainty 

compared to the prescribed parameter bounds (Figure 5-3B). The timescales of decomposition, 

sorption, and desorption can, therefore, be considered as well constrained by the model-data 

integration.  
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Figure 5-2: Soil organic carbon (SOC) and mineral-associated organic carbon (MAOC) stocks (kg m-3) (A), along 
with calibrated and observed radiocarbon contents (14C % Modern) (B) in SOC and MAOC at ten calibration 
sites. The light blue line depicts the volumetric maximum sorption capacity, 𝑄௠௔௫௏  (kg m-3). 
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Figure 5-3: Relative uncertainty in parameter values after optimization. Shown is the percentage reduction 
between final ranges of parameters (top 5% of parameter sets from 350000 proposed parameter sets) and the 
prescribed initial parameter range. Panel A shows the relative parameter uncertainty on the original parameter 
scale. Panel B shows the relative parameter uncertainty of characteristic times. Characteristic times are the 
inverse of rate coefficients and are more indicative of the time scales the process acts on. Parameters and their 
initial ranges are described in Supplementary Table 1. 

 

Scatterplots of observed and modeled SOC and MAOC concentrations (Figure 5-4A, r2 of 0.90 and 

0.76) and 14C of SOC and MAOC (Figure 5-4B, r2 of 0.78 and 0.92) confirm that COMISSION v2.0 

captured the variation across the ten sites relatively well. In Supplementary figure 2 we show 

scatterplots of modelled and observed SOC and MOC and their respective 14C values per site. Across 

all sites, slopes of observations vs. predictions reveal that the SOC concentrations had a smaller 

model bias (slope = 1.12) than MAOC concentrations (slope = 1.42, Figure 5-4A). This bias can be 

attributed to the representation of MAOC formation in the topsoil. Since the volumetric maximum 

sorption capacity is dependent on the accumulation of an organic layer and the size of Qmax, 

differences between modeled and observed MAOC also reflect the ability of COMISSION v2.0 and the 

maximum sorption capacity approach to reproduce site conditions. In the allophanic soil FR-Lq2, for 

example, COMISSION v2.0 was not able to match the second data point of MAOC since 𝑄௠௔௫௏  is 

already lower than the observed volumetric MAOC concentrations.  

Given the fact that we use one universal parameter set for all ten sites, some pedogenic 

particularities are not covered by the parametrization and the implemented processes of COMISSION 

v2.0 adequately (Supplementary figure 2). One example is DE-Gri, where the 14C of bulk SOC is more 

depleted than the 14C of MAOC. Angst et al. (2016a) pointed out that this could indicate the presence 
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of geogenic OC at DE-Gri. The COMISSION v2.0 model cannot model this observation without 

introducing an additional pool that is very depleted in 14C and not sorbed to mineral surfaces (not 

shown). 

 
Figure 5-4: Scatterplots of observed vs. modeled volumetric SOC and MAOC concentrations (A) and 14C of SOC 
and MAOC (B). 

 

5.5.2 Model experiments 

The results from the multi-site calibration (Figure 5-4), especially together with tests of replacing the 

site-specific 𝑄௠௔௫௠  with the minimum and maximum observed 𝑄௠௔௫௠  (Supplementary figure 3B, 

Supplementary figure 4B), suggest that 𝑄௠௔௫௠  is very important in explaining the characteristic depth-

declines of 14C contents at the different sites.  

The variation of 𝑄௠௔௫௠  across the observed range at the ten sites corresponds to a shift from a sandy 

soil to an allophanic soil that is dominated by clay and silt. The model experiments described in Table 

5-2 were designed to study the combined effect of sorption capacity and other factors, such as 

microbial energy limitation, point-of-entry of litter, and temperature.  
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Microbial-Limitation–Qmax interaction 

In the Microbial-Limitation–Qmax interaction experiment (Figure 5-5), varying the size of 𝑄௠௔௫௠  alone 

can change the MAOC 14C contents in COMISSION v2.0 from being influenced by “bomb radiocarbon” 

with a 𝑄௠௔௫௠  of 5 g (kg mineral soil)-1 in the topsoil to being dominated by radioactive decay with a 𝑄௠௔௫௠  of 108 g (kg mineral soil)-1 throughout the profile (Figure 5-5A). These radiocarbon contents 

correspond to apparent conventional 14C ages of more than 6000 years. The matrix protection effect 

on 14C contents weakens as 𝑄௠௔௫௠  increases (Figure 5-5A). The same holds true for free OC, although 

the spread in 14C ages is overall much narrower except for very low 𝑄௠௔௫௠  (Figure 5-5A). The effect of 

increasing 𝑄௠௔௫௠  is also reflected in considerably higher SOC stocks (Figure 5-5B, microbial limitation). 

For free OC, the size of 𝑄௠௔௫௠  is generally of less importance, especially for free OC stocks (Figure 

5-5B). Here, microbial limitation is of larger importance.   

In the deeper subsoil (below 0.5 m), both the microbial limitation of depolymerization and high 

sorption capacities 𝑄௠௔௫௠  are needed to produce apparent 14C ages older than 3000 years (Figure 

5-5A, no microbial limitation). 

 
Figure 5-5: Model experiment Microbial-Limitation–Qmax interaction: Combined effect of sorption capacity 
(𝑄௠௔௫௠ ) and microbial activity (energy limitation and substrate scarcity) on apparent 14C ages (A) and cumulative 
stocks (B) of free organic carbon (free OC) and mineral-associated organic carbon (MAOC). Colored lines 
represent simulations with varying 𝑄௠௔௫௠ . Root litter distribution and forcing as for TSA_A. 
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Aboveground-V-Belowground–Qmax interaction 

The strong effect of 𝑄௠௔௫௠  on cumulative OC stocks suggests that it matters whether litter inputs are 

aboveground or belowground, i.e., not in immediate contact with the mineral soil matrix or in direct 

contact with the mineral soil matrix. The Aboveground-V-Belowground–Qmax interaction model 

experiment (Figure 5-6) shows that, integrated over the profile, belowground litter input persists 

longer compared to aboveground litter input. If 80% of litter inputs are below ground, as for the 

grassland site, carbon stocks are up to 2.3 kg C m-2 higher compared to an experiment in which only 

38% of litter inputs are below ground, as for the coniferous sites (Figure 5-6B). Consequently, the 

apparent 14C ages are generally younger (up to 1.2 ka BP) in the mineral soil when more litter input is 

deposited belowground (Figure 5-6A). In the deep subsoil (below 1.25 m) at the two highest 𝑄௠௔௫௠  

values, however, apparent 14C ages can be up to 0.2 ka BP older when more litter is deposited 

belowground. This is dependent on the relative importance of sorption to mineral surfaces compared 

to microbial limitation. At lower 𝑄௠௔௫௠  values the differences in 14C ages between 38% litter 

belowground and 80% litter belowground are generally more pronounced than at higher 𝑄௠௔௫௠  

values (Figure 5-6A). 

 
Figure 5-6: Model experiment Aboveground-V-Belowground–Qmax interaction: Combined effect of sorption 
capacity (𝑄௠௔௫௠ ) and point-of-entry (38% and 80% of all inputs belowground, the remainder aboveground) on 
apparent 14C ages (A) and cumulative stocks (B) of free organic carbon (free OC) and mineral-associated organic 
carbon (MAOC). Colored lines represent simulations with varying 𝑄௠௔௫௠ . Root litter distribution and forcing as 
for TSA_A. 
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Root-Distribution–Qmax interaction 

To further evaluate the importance of the point-of-entry of root litter with regard to available 

sorption sites, we took the most extreme sorption capacities of the ten calibration sites and 

conducted model experiments by forcing the model at the TSA_A site with the different root 

distributions (Supplementary figure 1) from all ten sites. Figure 5-7A shows that with a high sorption 

capacity the effect of different root litter distributions results in a much tighter range of 14C ages in 

the subsoil than for a low sorption capacity. At a low sorption capacity, the root litter distributions 

result in a much larger range of 14C ages in the subsoil. Excluding the LOE_A root distribution, which 

has a rather particular shape (Supplementary figure 1) with a lot of deep roots and a small amount of 

shallow roots, 14C ages have a spread of 1000 years between the different root litter distributions at a 𝑄௠௔௫௠  of 108 g (kg min. soil)-1, while the spread is 3500 years for a 𝑄௠௔௫௠  of 5 g (kg min. soil)-1. For 

MAOC stocks, however, the root litter distribution is more important at high sorption capacities 

(Figure 5-7B). Overall differences in SOC stocks between root litter distributions from the various 

sites are, however, not very pronounced except for the root litter distribution from the LOE_A site 

(Figure 5-7B). 

 
Figure 5-7: Model experiment Root-distribution–Qmax interaction: Combined effect of sorption capacity (𝑄௠௔௫௠ ) 
and root litter distributions on apparent 14C ages (A) and cumulative stocks (B) of free organic carbon (free OC) 
and mineral-associated organic carbon (MAOC). Colored lines represent the root litter distributions at the ten 
different sites. All other site conditions as for TSA_A. 
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Root-Distribution–Microbial-Limitation interaction 

The point-of-entry of root litter is also relevant for the microbial limitation of decomposition as it 

directly affects substrate supply and energy limitation of microorganisms. Similar to the previous 

model experiment, we use the root distributions from the ten different sites (Supplementary figure 

1) at the TSA_A site, here with the 𝑄௠௔௫௠   of the TSA_A site but studying the effect of microbial 

limitation. If there was no microbial limitation of decomposition, the differences in substrate supply 

would barely cause any differentiation in 14C ages in the subsoil (Figure 5-8A). The interaction of 

microbial limitation and the point-of-entry of root litter within a profile causes a differentiation of 14C 

ages of 2000 years both for free OC and MAOC (excluding again the root profile from LOE_A). For 

free OC and MAOC stocks there is little influence on the overall stocks. The deep reaching root 

distribution from LOE_A shows the largest effect on MAOC stocks for COMISSION v2.0 with microbial 

limitation. Without microbial limitation of depolymerization, even the root distribution of LOE_A 

does not result in a substantial difference in MAOC stocks compared to the other root distributions. 

 
Figure 5-8: Model experiment Root-Distribution–Microbial-Limitation interaction: Combined effect of microbial 
limitation and root litter input distributions on apparent 14C ages (A) and cumulative stocks (B) of free organic 
carbon (free OC) and mineral-associated organic carbon (MAOC). Colored lines represent the root litter 
distributions at the ten different sites. All other site conditions as for TSA_A. 

 

MAAT–Qmax interaction 

In the MAAT–Qmax interaction experiment, the effect of changing the mean annual soil temperature 

from 5.45 °C to 8.70 °C is responsible for an up to 15% decrease in the MAOC concentrations (Figure 
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5-9B). The change in temperature makes the largest difference in apparent 14C ages at higher 𝑄௠௔௫௠  values in the deeper subsoil (1 – 1.5 m, Figure 5-9A). Here, apparent 14C ages are up to 300 

years older in the 5.45 °C model experiment than in the 8.70 °C model experiment. For free OC the 

temperature effect on 14C ages can be more variable. In the top meter, apparent 14C ages are 

generally older for the 5.45 °C model experiment compared to the 8.70 °C model experiment for free 

OC. The model experiments with a higher 𝑄௠௔௫௠   generally show higher differences in 14C ages 

between the two temperatures for MAOC. These differences are the result of the interplay of the 

lower temperature sensitivity for adsorption and desorption with the temperature sensitivity of 

microbial biomass death which provides microbial residues for adsorption (Table 5-1).  

 

 
Figure 5-9: Model experiment MAAT–Qmax interaction: Combined effect of sorption capacity (𝑄௠௔௫௠ ) and 
changes in mean annual temperature (5.45 and 8.70 °C) on apparent 14C ages (A) and cumulative stocks (B) of 
free organic carbon (free OC) and mineral-associated organic carbon (MAOC). Colored lines represent 
simulations with varying 𝑄௠௔௫௠ . Except for temperature and 𝑄௠௔௫௠ , simulations were performed using the 
forcing and parameters of TSA_A. 

 

The lower temperature sensitivity of adsorption and desorption also becomes evident when 

calculating apparent Q10 values based on the differences in SOC concentrations between the 8.70 °C 

and 5.45 °C mean annual temperature model experiment (Figure 5-10, Table 5-1). The apparent Q10 

values were calculated as 𝑄ଵ଴ = ቀௌை஼ఱ.రఱ °ిௌை஼ఴ.ళబ °ిቁ భబఴ.ళబషఱ.రఱ (Todd-Brown et al., 2018), where 𝑆𝑂𝐶ହ.ସହ °େ and 𝑆𝑂𝐶଼.଻଴ °େ are the overall SOC concentrations at the respective temperatures. Overall, apparent Q10 

values are lower at higher 𝑄௠௔௫௠  values when integrated over the whole profile up to depth z (Figure 
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5-10B). In the organic layer, apparent Q10 values are generally low but increase to a maximum in the 

topsoil (Figure 5-10A). The maximum of apparent Q10 values (Figure 5-10A) throughout the profile is 

deeper when 𝑄௠௔௫௠  values are higher. In the subsoil, apparent Q10 values decrease again with a 

general tendency for stronger decreases when 𝑄௠௔௫௠  is lower (Figure 5-10A, except for 𝑄௠௔௫௠  of 5 g 

(kg min. soil)-1). 

 
Figure 5-10: Model experiment MAAT–Qmax interaction:  Effect of sorption capacity (𝑄௠௔௫௠ ) on apparent Q10 
values in depth z (A) and cumulatively up to depth z (B). Apparent Q10 values were calculated from SOC 
concentration differences between the 5.45 °C and 8.70 °C model experiment. Except for temperature and 𝑄௠௔௫௠ , simulations were performed using the forcing and parameters of TSA_A. 

 

5.6 Discussion 

5.6.1 Maximum sorption capacity for mineral-associated organic matter 

We tested the concept of a maximum sorption capacity across multiple sites with different parent 

materials and, thus, textures and soil mineral compositions. 𝑄௠௔௫௏  generally increases with soil depth 

since bulk density tends to increase with soil depth (Figure 5-11A, Figure 5-2A). SOM models have 

mainly adopted a mass-based approach for applying 𝑄௠௔௫ as in the papers by Hassink et al. (1997) 

and Hassink and Whitmore (1997). Feng et al. (2013) and Beare et al. (2014) refined the concept of a 

maximum sorption capacity of organic matter on clay and silt particles, but the concept has still not 

been applied to a soil profile or in a volume-based approach. A notable exception is the work of 

Robertson et al. (2018), however without building a vertically explicit model. Arguably, the 
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representation of 𝑄௠௔௫௠  as a function of clay plus < 20 µm silt content is empirical, yet plausible since 

the specific surface area scales with clay content. Changes of 𝑄௠௔௫௠  with depth should generally be 

based on observed changes of variables with depth, such as changes in texture (Feng et al., 2013), 

pH, or pedogenic oxide-hydroxides (Rasmussen et al., 2018). Changes in soil texture directly relate to 

differences in specific surface area of the bulk soil. The amount and composition of pedogenic oxide-

hydroxides directly relates to the density of hydroxyl-groups that are the prerequisite for forming 

mineral associations via ligand exchange, while changes in pH affect the protonation of hydroxyl-

groups and thereby their propensity for ligand exchange (Kleber et al., 2015). Empirical relationships 

to derive a maximum sorption capacity from pH and pedogenic oxide-hydroxide do not exist yet, 

although first strides into that direction have been made (Rasmussen et al., 2018).  

While most models of the new class of mineral-microbial models (also our previous version of 

COMISSION v1.0 in Ahrens et al. (2015)) assume that only DOM is forming mineral-associations, it is 

evident that microbial necromass can form mineral associations as well (Miltner et al., 2012; Cotrufo 

et al., 2015; Bradford et al., 2016; Kopittke et al., 2018). The other SOC profile model that employs a 

Langmuir-like approach of a maximum sorption capacity and sorption of microbial necromass, the 

BAMS1 model by Dwivedi et al. (2017), calibrated site-specific depth-declines of specific surface area.  

Dwivedi et al. (2017) use specific surface area as a proxy for maximum sorption capacity. Maximum 

sorption capacities that are fitted per site as in Dwivedi et al. (2017) could provide an alternative 

strategy for making models scalable. For this purpose, general relationships of fitted specific surface 

areas and depth-declines of sorption capacities with environmental covariates need to be derived.  

For COMISSION v2.0, we tested the effect of the characteristic exponential depth-declines that 

Dwivedi et al. (2017) calibrated (Figure 5-12A). The exponential decrease is described with an 

exponential function of the form exp (−𝛾 ⋅ 𝑧). 𝛾 is the depth-decline rate. Here, we use the texture-

based 𝑄௠௔௫௠  and its changes with depth from the TSA_A site. For the scenario without a depth 

decline, i.e., 𝛾 = 0, the decrease in 𝑄௠௔௫௏  in the subsoil is the result of the texture profile at this site 

(Figure 5-12B). For 𝛾 ∈ ሼ0.5, 0.75, 2.25ሽ the 50% decline depths (the depth at which 𝑄௠௔௫௠  declines 

to 50%) are 1.39 m, 0.92 m, and 0.31 m. Only the most extreme 𝛾 corresponding to a 50% decline 

depth of 0.31 m has a substantial effect on apparent 14C ages (Figure 5-12C). The effect on overall 

MAOC stocks, however, is pronounced for all 𝛾 > 0 as it directly decreases the amount of potential 

MAOC stocks in the respective layers (Figure 5-12D). From this experiment, we conclude that depth-

declines of maximum sorption capacity may be relevant to correct for site-conditions that would lead 
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to lower 𝑄௠௔௫௠  values than predicted by texture changes with depth. At the LOE_A site, this could 

alleviate problems of overestimated MAOC stocks (Figure 5-2A, Supplementary figure 2). 

Nevertheless, we propose to strive for generality and try to avoid site-specific and/or depth-

dependent scaling parameters. 

We have outlined different ideas on how to prescribe sorption capacities throughout soil profiles 

based on soil texture, Qmax (this study), batch sorption experiments, qmax, batch  (Ahrens et al., 2015), 

and site-specific fitting of specific surface area (Dwivedi et al., 2017). The definition of Qmax is 

scalable, i.e., it can be employed in global scale modeling efforts. The depth distribution of Qmax 

(Figure 5-11A), however, contradicts the depth distribution of qmax, batch from batch sorption 

experiments (Figure 5-11B) and the depth declines of sorption capacity calibrated by Dwivedi et al. 

(2017) (Figure 5-12A,B).  

The ability of the COMISSION v2.0 model to reproduce both SOC and 14C profiles reasonably well with 

one universal parameter set shows that the model structure and the representation of a maximum 

sorption capacity is a promising step towards explaining the long-term persistence of SOM as 

demonstrated in Figure 5-5. The benefit of a model that does not resort to parameters that are fitted 

per site lies in the possibility of confronting the model with new datasets and go to larger scales. 
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Figure 5-11: Conceptual differences in representing a maximum sorption capacity in current soil profile models. 
(A) shows the approach used in this study. The maximum sorption capacity is a function of the clay plus silt (< 
20 µm) content. 𝑄௠௔௫௏  thereby increases with soil depth. (B) The maximum sorption capacity decreases with 
soil depth based on measurements from batch sorption, 𝑞௠௔௫,௕௔௧௖௛௏  experiments as in Ahrens et al. (2015). 
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Figure 5-12: Effect of postulated decreases of sorption capacity with depth by Dwivedi et al. (2017) simulated 
for the TSA_A site. For 𝛾 = 0 the depth distribution of 𝑄௠௔௫௠  is purely dependent on the changes in texture with 
depth at the TSA_A site. 𝛾 > 0 describes an additional decrease in sorption capacity with soil depth. 

 

5.6.2 Desorption times in COMISSION v2.0 

In the previous version of COMISSION (v1.0, Ahrens et al., 2015), we used batch sorption 

experiments to parameterize qmax, batch, and only DOC was assumed to form organo-mineral 

associations. In that version, we calibrated desorption rates that equate to desorption times of 265 

years to be able to reproduce the 14C depth-profile of a Haplic Podzol. We define desorption time as 

the inverse of the desorption rate. While this is fast compared to the slow and passive pools in 

conventional SOC decomposition models, for COMISSION v2.0, we chose informative initial bounds 

of maximum desorption times of 6 years. These bounds are based on the maximum desorption times 

of 3 years found in the batch sorption experiments by Van de Weerd et al. (2002). We employed a 

safety/uncertainty factor of 100% to allow an upper bound of 6 years. The multi-site calibration of 

the COMISSION v2.0 model yielded desorption times of 5.4 hours for DOC and 61 days for microbial 

necromass. Here, one must keep in mind that the definition of DOC in COMISSION is not the same as 

in measurements in the field with a filtration through a <0.45 µm filter (Borken et al., 2011). DOC in 

COMISSION rather represents monomers or dimers that are smaller than the 600 Dalton boundary of 

assimilable organic carbon (Lehmann and Kleber, 2015). Smaller molecules have a much higher 

probability of getting desorbed because of the smaller number of binding sites with mineral surfaces 
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(Kaiser et al., 1997). The larger molecular size would also explain the much slower desorption rates 

for microbial residues. These possess a multitude of binding sites that would need to detach 

simultaneously for the molecule to desorb. Van de Weerd et al. (2002) reports desorption times of 3-

4 hours for molecules with molecular weights of 1500 Da, desorption times between 22 and 69 days 

for molecules with a molecular weight of 50 kDa, and desorption times between 703 and 996 days 

for molecules with a molecular weight of 500 kDa. This tendency agrees with the longer calibrated 

desorption times of microbial residues compared to DOC. 

5.6.3 Combined effect of sorption and microbial activity  

The model experiments (Figure 5-5 - Figure 5-9) have shown the importance of Qmax for SOC stocks 

and radiocarbon contents. Varying Qmax from a sandy to a clayey-silty soil increases SOC stocks by 

orders of magnitude and increases 14C ages by more than 4000 years in the subsoil (0.5 m) and more 

than 5000 years in the deep subsoil (1.5 m) when keeping all other site conditions equal 

(Supplementary figure 6). This model experiment demonstrates that changes in Qmax can have large 

impacts on SOC stocks and 14C ages. The model experiments have also demonstrated that the 

combination of sorption on mineral surfaces and microbial depolymerization limitation is responsible 

for the continued increase in 14C ages from 0.2 m to 1.5 m (Supplementary figure 5). Microbial 

depolymerization limitation alone, i.e., at a low availability of sorption sites as with 𝑄௠௔௫௠ =  5 g (kg 

mineral soil)-1, does not explain differences in 14C age gradients between sites in COMISSION v2.0. On 

the other hand, without microbial depolymerization limitation and only considering the sorption 

effect would lead to constant or decreasing 14C age-depth gradients from 0.5 m onwards (Figure 

5-5A, no microbial limitation).  

The changes in Qmax that we used in the model experiments show that local differences in soil 

properties can induce substantial differences in apparent 14C ages. In a mechanistic model, such as 

COMISSION, this model experiment can highlight the importance of pedogenic factors for explaining 
14C age depth-gradients compared to climate (Figure 5-9). This result generally agrees with the 

findings of Mathieu et al. (2015) who analyzed a global database of radiocarbon profiles and found 

that the 14C content in the deep soil has a strong dependence on pedogenic traits, such as clay 

content and mineralogy. Compared to the statistical approach of Mathieu et al. (2015), our approach 

has the advantage that our mechanistic model does not include depth as an explanatory variable, but 

that the 14C age-depth profile emerges from the interacting mechanisms (transport, ad-/desorption, 

microbial turnover) implemented in COMISSION. 
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The depth-integrated apparent Q10 emerges from the interactions of different temperature 

sensitivities prescribed for COMISSION v2.0 (Table 5-1) and the relevant processes throughout the 

profile (Figure 5-10). The apparent Q10 values (Figure 5-10) were calculated from long-term SOC 

differences under different mean annual temperatures and are the result of the interplay of sorptive 

and microbial processes. The procedure of calculating apparent Q10 values from SOC differences is 

different from incubation experiments such as Gentsch et al. (2018) which typically extend from 

weeks to several months and calculate apparent Q10 values based on CO2 respiration. It has to be 

noted that calculating the apparent Q10 based on SOC differences is the result of a model experiment 

and cannot necessarily be compared to Q10 values derived in incubation studies. Only temperature 

and 𝑄௠௔௫௠  are changing in the model experiment but not the litter inputs which would lead to a 

different emergent Q10 value.  In COMISSION v2.0, the long-term apparent Q10 values reflect the 

temperature sensitivities of processes that lead to the formation of MAOC (Q10 of 1.34 for desorption 

and Q10 of 1.08 for adsorption) but not necessarily the Q10 values of more short-term microbial 

processes (Q10 values of 1.98 to 2.16) that dominate in incubation studies (Table 5-1). In the organic 

layer and upper mineral soil, volumetric SOC concentrations are close to their physical maximum, so 

that apparent Q10 values for the temperature difference (3.25 K) of this model experiment are close 

to 1 (Figure 5-10). Apparent Q10 values from incubations of SOC from the organic layer or upper 

topsoil based on CO2 evolution (Gentsch et al., 2018), would rather reflect the temperature 

sensitivity of microbial processes (Table 5-1). The depth of the apparent Q10 maximum (Figure 5-10A) 

is related to when desorption processes dominate over adsorption processes (Supplementary figure 

7), i.e., the Q10 value of 1.34 for desorption (Table 5-1) is responsible for the maximum of the 

apparent Q10 values. Since 𝑄௠௔௫௏  is close to saturation in the upper mineral soil, the temperature 

sensitivity of desorption emerges as the overall long-term Q10 value of SOC formation. In the subsoil, 𝑄௠௔௫௏  is far from saturation, so that the temperature sensitivity of adsorption emerges as the 

dominant factor for the long-term Q10 value of SOC formation (Table 5-1, Q10 value of 1.08, Figure 

5-10A). The interplay of sorptive and microbial processes is evident from the higher apparent depth-

integrated Q10 values when 𝑄௠௔௫௠  is lower (Figure 5-10B), i.e., the contribution of free OC to SOC is 

higher and thereby the overall apparent temperature sensitivity is more influenced by the higher Q10 

values of the microbial processes (Table 5-1, Q10 values of 1.98 to 2.16).  

Sorption on mineral surfaces is responsible for a more effective storage of belowground litter inputs 

compared to aboveground litter inputs in COMISSION v2.0 (Figure 5-6). This model experiment is in 

line with recent experimental findings by Sokol et al. (2019) that belowground carbon inputs are 
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stored 190% more efficiently than aboveground carbon inputs. In our model experiments with 

COMISSION v2.0, however, only between 13.9% (at 𝑄௠௔௫௠ = 31 g/kg) and 8.6% (at 𝑄௠௔௫௠ =108 g/kg) more SOC is stored throughout the profile when 80% litter inputs are belowground 

compared to 38% of litter inputs belowground. In the situation of a low sorption capacity (at 𝑄௠௔௫௠ =5 g/kg), there would still be 8.1% more organic carbon throughout the profile in a model experiment 

with 80% litter inputs belowground compared to a model experiment with only 38% inputs 

belowground. 

The model experiments with root distributions from the ten different sites show that it is less 

important how shallow or deep root distributions are, when the capacity for mineral-associations is 

stronger (Figure 5-7). The matrix protection effect exceeds the direct input or dilution effect of root 

litter with increasing sorption capacity Qmax. This dominance of the matrix protection effect does not 

exclude the possibility that particular root distributions can have an overwhelming effect on 14C ages, 

e.g., the root distribution from the LOE_A site. Similarly, the direct input or dilution effect of root 

distributions is of minor importance compared to the indirect input effect of root distributions which 

results from substrate limitation of microbial decomposition (Figure 5-8A). 

By employing Michaelis-Menten kinetics for describing the dependence of depolymerization on 

microbial dynamics, we inherently prescribe a depth effect in the model due to the change of root 

density with soil depth, which is commonly interpreted as an energy limitation or substrate limitation 

of microbial decomposition. Using Michaelis-Menten kinetics to describe energy limitation, however, 

might already be a lumped description of microbial hotspots and ‘dead’ soil as summarized by 

Kuzyakov and Blagodatskaya (2015). Our finding that energy limitation is responsible for the 

continued increase in apparent 14C ages with soil depth (Figure 5-5A) is in line with results from 

Fontaine et al. (2007) and Wild et al. (2014), which suggest that substrate or energy scarcity limit SOC 

turnover in mineral subsoil horizons, but are of lesser importance in topsoil horizons (Figure 5-5). For 

the DE-Gri site Heitkötter and Marschner (2018) found that outside of microbial hotspots, SOC 

turnover in subsoils is limited by substrate availability, while most SOC turnover in the subsoil is 

concentrated in just <1 to 10% of the soil. Sokol et al. (2019) argued that it matters whether litter 

inputs occur in microbial hotspots with high microbial density or ‘dead’ soil, where DOC sorption will 

prevail over microbial processing and subsequent sorption of microbial necromass. The COMISSION 

model does not explicitly distinguish between microbial hotspots, which receive frequent input by 

root litter or DOC transport, and the bulk soil, in which the activity of microorganisms is limited 
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because of the lack of frequent input of fresh substrate. This distinction, however, may be of 

importance as indicated by modelling and experimental results of Sulman et al. (2014), Heitkötter 

and Marschner (2018), and Sokol and Bradford (2019).  

5.6.4 Caveats and outlook 

In the COMISSION model, we do not distinguish between fungal and bacterial functional groups 

neither regarding their function in SOM decomposition nor regarding their function in SOM 

formation due to the sorption behavior of their residues. This distinction could be especially 

important because of the mycelial nature of resource acquisition of fungi. Their mycelia do not 

require the diffusive passing of space between enzymatic cleavage of litter and SOM into assimilable 

molecular sizes and transport to the bacterial transporter enzymes (Harms et al., 2011). In the 

current version of COMISSION, microorganisms are assumed to be sessile and acquire substrate 

through extra-cellular enzyme diffusion. Especially for modelling the response of decomposition to 

drought, the distinction into fungal and bacterial groups will be highly relevant. However, as shown 

by this model-data integration, the moisture response of decomposition could not be well 

constrained with the data at hand. The modelling of high-resolution heterotrophic respiration 

measurements might be able to constrain these parameters and provide insights whether this level 

of detail is required for COMISSION. Apart from the differences in resource acquisition strategies 

between bacterial and fungal groups, consequences for speed of decomposition (Wieder et al., 2015) 

and pH effects on bacterial and fungal growth (Rousk et al., 2009), carbon use efficiencies and C/N 

ratios of residues of fungal and bacterial groups are different. These differences would result in 

different relative amounts of microbial residues available for sorption to mineral surfaces along the 

soil profile. 

Using the definition of Feng et al. (2013), 𝑄௠௔௫௠  should not be affected much by aggregation and 

mineral surfaces properties. The 20 µm boundary excludes larger microaggregates (defined as 53 – 

250 µm aggregates by Six et al. (2002)). Feng et al. (2013) note that the 20 µm boundary additionally 

alleviates problems with potential large-silt size aggregates (20 – 50 µm). 𝑄௠௔௫௠  could be improved by 

including mineral surface properties, but currently, approaches do not exist that would allow for an 

independent derivation of a 𝑄௠௔௫௠  that would account for that.  

In future versions of COMISSION, we plan to also represent occlusion in microaggregates (< 250 µm). 

We envision an approach similar to the MILLENNIAL model of Abramoff et al. (2018), who devised an 
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‘maximum capacity of C in soil aggregates’, 𝐴௠௔௫. Ideally, general relationships for a ‘maximum 

capacity of C in soil aggregates’ for different soils can be established in a similar fashion as in Feng et 

al. (2013) for 𝑄௠௔௫௠ . Castellano et al. (2015) proposed that both mineral-associated organic matter 

(as done in COMISSION v2.0) and microaggregate-occluded organic matter (not yet considered in 

COMISSION v2.0) could show a saturation behavior. 

5.7 Conclusions 

In this study, we have shown that using the relationship between the clay plus silt (< 20 µm) content 

and the maximum amount of MAOC provides a way forward to implement the effects of sorptive 

stabilization in models that is applicable across sites of contrasting climate, soil texture, and 

mineralogy. It is paramount to translate the mass-based maximum sorption capacity 𝑄௠௔௫௠  into a 

volumetric maximum sorption capacity 𝑄௠௔௫௏  to ensure a mechanistic basis for sorptive processes in 

SOC profile models. 

Model experiments have shown that varying Qmax can induce large changes in apparent 14C ages and 

SOC stocks. It is, however, the combination of energy or substrate limitation of microorganisms in 

the subsoil and Qmax that is responsible for the formation of 14C age-depth gradients from the topsoil 

to the subsoil. Belowground inputs are stored more efficiently than aboveground inputs due to the 

formation of mineral-associations. Higher belowground inputs, on the other hand, lead to a 

rejuvenation of 14C ages. Root distributions lead to differences in 14C ages mainly due to microbial 

substrate limitation rather than through the input or dilution effect with modern 14C. Lower mean 

annual temperatures lead to older 14C ages, but the temperature range across the ten sites of 3.25 K 

could only lead to differences in apparent 14C ages of, at most, 300 years over the whole profile in 

conjunction with a low sorption capacity. The differences in 𝑄௠௔௫௠  across the sites alone would lead 

to differences of up to 2000 years over the whole profile. The differences in 𝑄௠௔௫௠  across sites in 

combination with energy limitation would even lead to differences in apparent 14C ages of 4000 years 

over the whole profile. 

Overall, it must be emphasized that the implementation of sorptive processes in vertical SOC models 

is still in an exploratory phase that represents the large uncertainty in understanding these 

processes. Empiricists and modelers must work hand in hand to refine the representation and 

parameterization of sorptive processes in models. 
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5.10 Supplement 

5.10.1 Model description 

The governing equations of the COMISSION v2.0 model are displayed in the following boxes. The 
terms of the equations are color-coded according to the type of process that is represented. Litter 
inputs are brown, microbial decomposition losses or transformations are green, transport terms are 
blue, and sorption is orange. We explain the essential symbols directly under the equation and in 
section 5.10.3: 𝐶஼ௐ஽, coarse woody debris 

𝜕𝜕𝑡 𝐶஼ௐ஽ = 𝑖஼ௐ஽(𝑧) Litter input  

 −𝑘஼ௐ஽ ⋅ 𝐶஼ௐ஽ Decomposition 
loss 

 

 − 𝜕𝜕𝑧 ൬𝐷௕(𝑧) 𝜕𝐶஼ௐ஽𝜕𝑧 ൰ − 𝜕(𝜔(𝑧) ⋅ 𝐶஼ௐ஽)𝜕𝑧  
Transport  

𝑖஼ௐ஽ is the input of coarse woody debris litter in depth 𝑧 and 𝑘஼ௐ஽ is decomposition rate of coarse 
woody debris (𝐶஼ௐ஽). 𝐷௕(𝑧) is the depth-dependent diffusion coefficient describing bioturbation 
according to Equation (10) in Jarvis et al. (2010) as 𝐷௕(𝑧) = ஻଼⋅ఘಳ. 𝐵 is further defined in section 

5.10.3. 𝜌஻, the bulk density, varies with depth. 𝜔(𝑧) is the advection velocity that accounts for the 
accumulation and decomposition of SOM on top and within the soil profile (see main Material and 
Methods in the main paper). 
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𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥ , soluble litter 

∂∂𝑡 𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥ = 𝑓ௌ௢௟ ⋅ 𝑖௅௜௧௧௘௥(𝑧) Litter input  

 −𝑘௟௘௔௖௛ ⋅ 𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥  Decomposition 
loss 

 

 − ∂∂𝑧 ൭𝐷௕(𝑧) ∂𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥∂𝑧 ൱ − ∂ ൬𝜔(𝑧) ⋅ 𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥ ൰∂𝑧  

Transport  

𝑓ௌ௢௟ is the fraction of soluble litter of the overall root and leaf litter inputs 𝑖௅௜௧௧௘௥(𝑧). 𝑘௟௘௔௖௛ is the 
leaching rate for soluble litter (𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥ ). 

𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ , lignified litter 

∂∂𝑡 𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ = 
(1 − 𝑓ௌ௢௟) ⋅ 𝑖௅௜௧௧௘௥(𝑧) Litter input  

 −𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ⋅ 𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ⋅ 𝐶஻𝐾௠,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ + 𝐶஻ Decomposition 
loss 

 

 − ∂∂𝑧 ቌ𝐷௕(𝑧) ∂𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥∂𝑧 ቍ − ∂ ቆ𝜔(𝑧) ⋅ 𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ቇ∂𝑧  

Transport  

𝑓ௌ௢௟ is the fraction of soluble litter of the overall root and leaf litter inputs 𝑖௅௜௧௧௘௥(𝑧).  𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥  is 

the maximum depolymerization rate of lignified litter 𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥  which is limited by the concentration 

microorganisms 𝐶஻ and their half-saturation constant for the depolymerization of lignified litter 𝐾௠,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ . 
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𝐶஽ைெ, dissolved organic matter 
∂∂𝑡 𝐶஽ைெ = +𝑓஼ௐ஽→஽ைெ ⋅ 𝑘஼ௐ஽ ⋅ 𝐶஼ௐ஽ 

+ 𝑘௟௘௔௖௛ ⋅ 𝐶ௌ௢௟௨௕௟௘௅௜௧௧௘௥  

+ 𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ⋅  𝐶௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ 𝐶஻𝐾௠,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ + 𝐶஻ 

+𝑉௠௔௫,ோ ⋅  𝐶ோ ⋅ 𝐶஻𝐾௠,ோ + 𝐶஻ 

+𝑓஼ಳ→஼ವೀಾ ⋅ 𝑟஻ ⋅ 𝐶஻ 

Microbial 
transformation 

 

 −𝑉௠௔௫,஽ைெ ⋅ 𝐶஻ ⋅ 𝐶஽ைெ𝐾௠,஽ைெ + 𝐶஽ைெ Decomposition loss  

 −𝑘௔ௗ௦,஽ைெ ⋅ 𝐶஽ைெ ⋅ ቀ𝑄௠௔௫௏ − ൫𝐶ொ[஽ைெ] + 𝐶ொ[ோ]൯ቁ Adsorption  

 +𝑘ௗ௘௦,஽ைெ ⋅ 𝐶ொ[஽ைெ] Desorption  

 − ∂(𝑣(𝑧) ⋅ 𝐶஽ைெ)∂𝑧 − ∂∂𝑧 ൬𝐷௕(𝑧) ∂𝐶஽ைெ∂𝑧 ൰ − ∂(𝜔(𝑧) ⋅ 𝐶஽ைெ)∂𝑧  
Transport  

𝑓஼ௐ஽→஽ைெ is the fraction of coarse woody debris decomposition that enters the DOM pool. 𝑓஼ಳ→஼ವೀಾ  is the soluble fraction of dead microorganisms that enter the DOM pool. 𝑟஻ is the mortality 
rate of microorganisms. 𝑉௠௔௫,ோ is maximum depolymerization rate of microbial residues 𝐶ோ  that are 
decomposed according to reverse Michaelis-Menten kinetics with a half-saturation constant 𝐾௠,ோ. 𝑉௠௔௫,஽ைெ is the maximum uptake rate of DOM by microorganisms that is limited by supply of DOM 
through a Michaelis-Menten term with half-saturation constant 𝐾௠,ோ.  𝑘௔ௗ௦,஽ைெ is the adsorption 
rate of DOM on mineral surfaces. The amount of mineral surfaces that are available for sorption are 
described by the difference between the volumetric amount of mineral surfaces in a certain layer, 𝑄௠௔௫௏  and the amount of microbial residues 𝐶ொ[ோ] and DOM (𝐶ொ[஽ைெ]) that is sorbed to mineral 
surfaces already. 𝑘ௗ௘௦,஽ைெ is the desorption rates of DOM. 𝑣(𝑧) is the advection velocity from the 
water flux. 
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𝐶஻, microbial biomass 

∂∂𝑡 𝐶஻ = +𝑉௠௔௫,஽ைெ ⋅ 𝐶𝑈𝐸 ⋅ 𝐶஻ ⋅ 𝐶஽ைெ𝐾௠,஽ைெ + 𝐶஽ைெ Microbial 
transformation 

 

 −𝑟஻ ⋅ 𝐶஻ Decomposition loss  

 − ∂∂𝑧 ൬𝐷௕(𝑧) ∂𝐶஻∂𝑧 ൰ − ∂(𝜔(𝑧) ⋅ 𝐶஻)∂𝑧  
Transport  

𝐶𝑈𝐸 is the carbon use efficiency of microbial uptake of DOC. 

𝐶ோ, microbial residues 

∂∂𝑡 𝐶ோ = +൫1 − 𝑓஼ಳ→஼ವೀಾ൯ ⋅ 𝑟஻ ⋅ 𝐶஻ Microbial 
transformation 

 

 −𝑉௠௔௫,ோ ⋅ 𝐶ோ ⋅ 𝐶஻𝐾௠,ோ + 𝐶஻ Decomposition loss  

 −𝑘௔ௗ௦,ோ ⋅ 𝐶ோ ⋅ ቀ𝑄௠௔௫௏ − ൫𝐶ொ[஽ைெ] + 𝐶ொ[ோ]൯ቁ Adsorption  

 +𝑘ௗ௘௦,ோ ⋅ 𝐶ொ[ோ] Desorption  

 − ∂∂𝑧 ൬𝐷௕(𝑧) ∂𝐶ோ∂𝑧 ൰ − ∂(𝜔(𝑧) ⋅ 𝐶ோ)∂𝑧  
Transport  

𝑘௔ௗ௦,ோ  is the adsorption rates of microbial residues. 𝑘ௗ௘௦,ோ is the desorption rate for sorbed microbial 
residues. 
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𝐶ொ[ோ], microbial residues sorbed to mineral surfaces 𝑄௠௔௫௏  
∂∂𝑡 𝐶ொ[ோ] = +𝑘௔ௗ௦,ோ ⋅ 𝐶ோ ⋅ ቀ𝑄௠௔௫௏ − ൫𝐶ொ[஽ைெ] + 𝐶ொ[ோ]൯ቁ Adsorption  

 −𝑘ௗ௘௦,ோ ⋅ 𝐶ொ[ோ] Desorption  

 − ∂∂𝑧 ቆ𝐷௕(𝑧) ∂𝐶ொ[ோ]∂𝑧 ቇ − ∂൫𝜔(𝑧) ⋅ 𝐶ொ[ோ]൯∂𝑧 Transport  

𝐶ொ[஽ைெ], DOM sorbed to mineral surfaces 𝑄௠௔௫௏  
∂∂𝑡 𝐶ொ[஽ைெ] = +𝑘௔ௗ௦,஽ைெ ⋅ 𝐶஽ைெ ⋅ ቀ𝑄௠௔௫௏ − ൫𝐶ொ[஽ைெ] + 𝐶ொ[ோ]൯ቁ Adsorption  

 −𝑘ௗ௘௦,஽ைெ ⋅ 𝐶ொ[஽ைெ] Desorption  

 − ∂∂𝑧 ቆ𝐷௕(𝑧) ∂𝐶ொ[஽ைெ]∂𝑧 ቇ − ∂൫𝜔(𝑧) ⋅ 𝐶ொ[஽ைெ]൯∂𝑧 Transport  

𝑄௠௔௫௏ , volumetric maximum sorption capacity 
∂∂𝑡 𝑄௠௔௫௏ = − ∂∂𝑧 ቆ𝐷௕(𝑧) ∂𝑄௠௔௫௏∂𝑧 ቇ − ∂(𝜔(𝑧) ⋅ 𝑄௠௔௫௏ )∂𝑧  

Transport  
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5.10.2 Temperature and moisture dependent rates 

𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ = 𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑉௠௔௫,ோ = 𝑉௠௔௫,ோ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑉௠௔௫,஽ைெ = 𝑉௠௔௫,஽ைெ,்ೝ೐೑,ఏ೚೛೟ ⋅ 𝑓(𝑇) ⋅ 𝑓(𝜃) 

𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ = 𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ = 𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥ ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑟஻ = 𝑟஻,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑘௔ௗ௦,ோ = 𝑘௔ௗ௦,ோ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑘௔ௗ௦,஽ைெ =  𝑘௔ௗ௦,஽ைெ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑘ௗ௘௦,஽ைெ = 𝑘ௗ௘௦,஽ைெ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

𝑘ௗ௘௦,஽ைெ = 𝑘ௗ௘௦,஽ைெ,்ೝ೐೑ ⋅ 𝑓(𝑇) 

where 𝑉௠௔௫,௉௢௢௟,்ೝ೐೑  is the maximum depolymerization rate of a pool as modified by soil 

temperature. 𝑓(𝑇) = exp ቆ−  ாோೌ ⋅ ൬ଵ் − ଵ்ೝ೐೑൰ቇ, where 𝑇 is the soil temperature (K), 𝐸௔  the activation 

energy specific to a certain process, 𝑅 the universal gas constant, and 𝑇௥௘௙ the reference 
temperature 283.15 K at which 𝑓(𝑇) = 1. 𝐸௔,௉௢௢௟  and 𝑉௠௔௫,௉௢௢௟,்ೝ೐೑  of the respective pools are given 
in section 5.10.2. 𝑉௠௔௫,஽ைெ is the maximum microbial uptake rate at reference temperature and 

optimal moisture content 𝜃௢௣௧ with 𝑓(𝜃) = ⎩⎨
⎧ ൬ ఏఏ೚೛೟൰௔ , 𝜃 < 𝜃௢௣௧൬ థିఏథିఏ೚೛೟൰௕ , 𝜃 ≥ 𝜃௢௣௧. 𝜙 is the soil porosity, a and b are 

parameters given section 5.10.3. 𝑟஻,்ೝ೐೑  is the reference microbial mortality at 𝑇௥௘௙; its activation 
energy is the same as for microbial uptake. 𝑘௔ௗ௦,ோ,்ೝ೐೑, 𝑘௔ௗ௦,஽ைெ,்ೝ೐೑, 𝑘ௗ௘௦,஽ைெ,்ೝ೐೑  and 𝑘ௗ௘௦,஽ைெ,்ೝ೐೑  
are the adsorption and desorption rates as modified by temperature and availability of Qmax in the 
case of adsorption. The activation energies and adsorption and desorption rates at reference 
temperature are given in section 5.10.3. 
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5.10.3 Parameters 

Supplementary Table 1: In column Parametrization C stands for calibrated, Ref1 for Wang et al. (2012), Ref2 for 
Allison et al. (2010), Ref3 for Hagerty et al. (2014), Ref4 for Parton et al. (1993), Ref5 for Wieder et al. (2015), 
and Ref6 for Wang et al. (2013), Ref7 for Yan et al. (2018). 

Parameter Description Value Lower 
Bound 

Upper 
Bound 

Unit Parameteri
zation 𝑘஼ௐ஽ Decomposition rate of coarse woody debris 1.11e-02   yrିଵ Prescribed 

𝑓஼ௐ஽→஽ை஼ Fraction of coarse woody debris 
decomposition that enters DOC pool 

1.00e-01   - Prescribed 

𝑉௠௔௫,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥   Maximum depolymerization rate of lignified 
litter 

2.37e-01 2.00e-02 1.20e+01 yrିଵ C 

𝐾௠,௅௜௚௡௜௙௜௘ௗ௅௜௧௧௘௥  Half-saturation constant for the 
depolymerization of lignified litter 

5.98e-08 1.00e-20 1.00e+00 kg C mିଷ C 

𝐸௔,௅௜௚௡௜௙௜௘ௗ ௅௜௧௧௘௥ Activation energy for depolymerization of 
lignified litter 

5.30e+04   J molିଵ Ref1 

𝑓ௌ௢௟  Fraction of soluble litter 1.02e-01 5.00e-02 4.00e-01 - C 𝑉௠௔௫,ோ Maximum depolymerization rate of 
microbial residues 

8.49e-02 2.00e-02 1.20e+01 yrିଵ C 

𝑉௠௔௫,஽ைெ Maximum uptake rate of DOM by 
microorganisms 

5.50e+03 3.65e+01 8.76e+03 yrିଵ C 

𝐾௠,஽ைெ Half-saturation constant for uptake of DOM 
by microorganisms 

8.56e-02 1.00e-20 1.00e+00 kg C mିଷ C 

CUE Carbon use efficiency 5.37e-02 1.00e-20 6.00e-01 - C 𝑟஻ Mortality rate of microorganisms 1.04e+01 4.10e+00 1.46e+01 yrିଵ C 𝑓஼ಳ→஼ವೀಾ Soluble fraction of dead microorganisms 3.04e-01 5.00e-02 4.00e-01 - C 𝐸௔,௎௣௧௔௞௘ Activation energy for DOM uptake by 
microorganisms 

4.70e+04   J molିଵ Ref2 

𝐸௔,ெ௜௖௥௢௕௜௔௟ெ௢௥௧௔௟௜௧௬ Activation energy for microbial mortality 4.70e+04   J molିଵ Ref2, Ref3 𝐾௠,ோ Half-saturation constant for 
depolymerization of microbial residues 

1.14e-03 1.00e-20 1.00e+00 kg C mିଷ C 

𝐸௔,ோ Activation energy for depolymerization of 
microbial residues 

5.30e+04   J molିଵ Ref1 

a Parameter for scaling moisture function 3.29e+00 1.00e-20 1.00e+01 - C 
b Parameter for scaling moisture function 3.83e-02 1.00e-20 1.00e+01 - C 𝜃௢௣௧ Optimal water content 0.65 ⋅ 𝜙    Ref7 𝑘௟௘௔௖௛ Leaching rate for soluble litter 3.03e+01   yrିଵ Ref5 𝑘௔ௗ௦,஽ைெ Adsorption rate DOM 7.07e+02 2.86e-04 6.62e+05 mଷ (kg C)ିଵ yrିଵ C 𝑘ௗ௘௦,஽ைெ Desorption rate DOM 1.63e+03 1.67e-01 8.76e+03 yrିଵ C 𝑘௔ௗ௦,ோ Adsorption rate microbial residues 5.62e+00 2.86e-04 6.62e+05 mଷ (kg C)ିଵ yrିଵ C 𝑘ௗ௘௦,ோ Desorption rate microbial residues 5.97e+00 1.67e-01 8.76e+03 yrିଵ C 𝐸௔,௔ௗ௦ Activation energy for DOM and microbial 

residue adsorption  
5.00e+03   J molିଵ Ref6 

𝐸௔,ௗ௘௦ Activation energy for DOM and microbial 
residue desorption  

2.00e+04   J molିଵ Ref6 

𝐵 Ingestion rate (kg mିଷ yrିଵ) ⋅ earthworm 
body length squared (mଶ) 

1.01e-01 1.00e-20 1.00e+00 mଶ (kg mିଷ) yrିଵ C 
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5.10.4 Supplementary figures 

 
Supplementary figure 1: Root distributions at the ten calibration sites and performance of the logistic dose-
response curve of Schenk and Jackson (2002) to represent them. (A) Modelled compared to observed 
cumulative fraction of roots. Lines are the regression lines of modelled vs observed cumulative fraction of roots 
at the respective sites. (B) Depth profiles of modelled and observed cumulative fractions.  

 

 
Supplementary figure 2: Scatterplots of observed vs. modeled volumetric SOC and MAOC concentrations (A) 
and 14C of SOC and MAOC (B). Lines are the regression lines of modelled vs observed volumetric SOC and 
MAOC concentrations and 14C at the respective sites. 
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Supplementary figure 3: Test of COMISSION with a maximum 𝑄௠௔௫௠  of 108 g (kg mineral soil)-1 for all sites: 
Scatterplots of observed vs. modeled volumetric OC concentration (A) and 14C (B). 

 

 
Supplementary figure 4: Test of COMISSION v2.0 with maximum 𝑄௠௔௫௠  of 4.68 g (kg mineral soil)-1 for all sites: 
Scatterplots of observed vs. modeled volumetric OC concentration (A) and 14C (B). 
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Supplementary figure 5: Difference in soil organic carbon (SOC) stocks and 14C ages for the two scenarios with 
microbial depolymerization limitation on (Depoly On) and off (Depoly Off). Colored lines represent simulations 
with varying 𝑄௠௔௫௠ . 
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Supplementary figure 6: Difference in soil organic carbon (SOC) stocks and 14C ages for Qmax = 108 g (kg mineral 
soil)-1 and Qmax = 5 g (kg mineral soil)-1. 

 

 
Supplementary figure 7: Model experiment MAAT–Qmax interaction with all activation energies from Table 5-1 
set 0 kJ/mol except for adsorption and desorption:  Effect of sorption capacity (𝑄௠௔௫௠ ) on apparent Q10 values in 
depth z calculated from SOC concentration differences between the 5.45 °C and 8.70 °C model experiment. 
Except for temperature and 𝑄௠௔௫௠ , simulations were performed using the forcing and parameters of TSA_A. 
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5.10.5 JSBACH simulations at CarboEurope sites and comparison with eddy covariance 

measurements 

Supplementary Table 2: Comparison of JSBACH against eddy covariance measurements of gross primary 
productivity on monthly scale: 

Site Site years used in evaluation (eddy 
covariance) 

NSE Percent model bias 

DE-Hai 2000 – 2006 0.95 -6.22 

DK-Sor 1997 – 2006 0.89 -17.21 

SE-Nor 1996 – 1997 0.65 7.48 

DE-Wet 2002 – 2006 0.92 12.86 

FR-Lq2 2004 – 2006 0.69 13.96 
 
 
Supplementary Table 3: Comparison of JSBACH against eddy covariance measurements of evapotranspiration 
on monthly scale: 

Site Site years used in evaluation (eddy 
covariance) 

NSE Percent model bias 

DE-Hai 2000 - 2006 0.42 -69.02% 

DK-Sor 1997 - 2006 0.58 40.85 

SE-Nor 1996 - 1997 0.85 20.90 

DE-Wet 2002 - 2006 0.69 38.34 

FR-Lq2 2004 - 2006 0.9 -0.52 
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Supplementary Table 4: Comparison of JSBACH against eddy covariance measurements of sensible heat flux on 
monthly scale: 

Site Site years used in evaluation (eddy 
covariance) 

NSE Percent model bias 

DE-Hai 2000 - 2006 0.61 -40.97 

DK-Sor 1997 - 2006 0.53 156.00 

SE-Nor 1996 - 1997 0.82 26.64 

DE-Wet 2002 - 2006 0.82 16.12 

FR-Lq2 2004 - 2006 -0.37 116.45 
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6 Synthesis 

This thesis and the contained studies have shown that (1) different techniques of measuring root 

turnover can be reconciled and that (2) radiocarbon and SOC measurements can be reconciled under 

a modeling framework that includes a mechanistic description of vertical transport, microbial 

interactions, and sorption to minerals.   

In the following chapters, I will revisit the objectives of this thesis (chapter 1.6) and discuss the 

insights of the different studies in the light of newer literature and ideas published in the meanwhile.  

6.1 Reconcilable differences in root turnover 

6.1.1 Generalizing root turnover modeling with survival functions 

Survival functions that describe roots' lifetimes were the key to developing one common framework 

to jointly estimate root turnover with the 14C and minirhizotron technique (Study I and II). This thesis 

could show that various survival functions can be convolved with the atmospheric radiocarbon curve 

to model 14C in fine-roots (Objective Obj-Root1). This makes it possible to use statistical survival 

functions such as the Weibull function or the log-normal function to estimate mean residence times 

of fine-roots from 14C. These statistical survival functions have been commonly used to estimate 

mean residence times from minirhizotron data. In ecological models, however, one commonly deals 

with compartmental models described as a system of interacting pools. In serial or parallel setting, 

two–pool models have been best reconciling minirhizotron and fine-root 14C data (Study II, Objective 

Obj-Root3). Progressive suberization of some roots can explain why the probability for a root to die 

decreases in the serial two-pool model. For the parallel two-pool model, ectomycorrhizal infection of 

some roots would cause two structurally different types of fine-roots - short ectomycorrhizal roots 

and suberized supportive roots. Both explanations are open to further study hypothesis testing.  

The generic derivation of survival functions for compartmental systems by Metzler et al. (2018), 

would now make it possible to convolve the survival functions of any compartmental model with the 

atmospheric 14C curve as described in study I and II. At the same time, the technique of assimilating 
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minirhizotron observations could be used as described in study II for survival functions from any 

compartmental system (extension of Objective Obj-Root3). 

6.1.2 Storage carbon remains a major bias for estimating root turnover from 14C 

Study II was also addressing the biases of the two techniques. For minirhizotrons, apparent lifetimes 

of roots are overestimated because dead and live roots are hard to distinguish. The observed lifetime 

of a root might also include the time-to-decomposition. Storage pools might be used to construct 

new roots, thereby leading to ‘pre-aged’ roots regarding 14C. I addressed both biases by incorporating 

the prior knowledge accumulated in the literature so far and updated this prior knowledge with what 

could be learned from the data (Objective Obj-Root4). 

After the publication of study II, a study by Solly et al. (2018) further highlighted the problems of 

storage pools and introduced a new technique to estimate the age of a root by counting its year 

rings. Solly et al. (2018) confirmed previous findings that stored radiocarbon could contribute 

considerably to calibrated 14C ages of fine roots. Compared to Sah et al. (2011), they found that also 

fine-roots smaller than 0.5 mm can be much older than the actual ages of these roots. Overall, these 

contradicting results call the use of 14C as a constraint into question. Solly et al. (2018) found that 

calibrated 14C ages of 0 – 0.5 mm in one boreal forest are between 2.5 and 10 years older than the 

chronological ages. By contrast, Sah et al. (2011) found that 14C contents of 0 – 0.5 mm roots agree 

with ingrowth core maximum ages in three Scots pine forests. Gaudinski et al. (2009) found that the 

average age of 14C in a newly grown fine-root is 0.4 years old. In study II, storage carbon would only 

pre-age carbon in roots up to an imposed cutoff at five years. The findings of Solly et al. (2018) 

indicate that this can be longer. Although the sample size for small fine roots in the 0 – 0.5 mm range 

of the Solly et al. (2018) study is small (n=4), three out of four roots show a storage turnover time 

longer than five years. With the combined estimation of root turnover with minirhizotrons and 14C 

contents in chapter 3, it can, however, be ruled out that storage turnover times play such a 

substantial role in study II. Except for the exponential model, all models show storage turnover times 

smaller than 0.9 years. This is well constrained due to the combined use of minirhizotron and 14C 

fine-root data. Based on the results of Solly et al. (2018), however, it would be prudent for future 

applications of the survival function framework to not truncate the prior of the storage turnover time 

at five years (Objective Obj-Root4). The findings also indicate that a targeted determination of the 

storage turnover time may be warranted. 
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6.1.3 Using age distributions to constrain mean residence times? 

In study I, I clarified the concepts of mean residence time and mean age to estimate fine-root 

turnover (Objective Obj-Root2). The mean age of a root is not a direct quantity of interest since it 

cannot be directly used to calculate the root litter input which is possible with the mean residence 

time (under the assumption of steady-state). Up to now, reported fine-root ages from ingrowth cores 

could only be regarded as anecdotal evidence for long lifetimes of fine roots or would be used to 

determine the storage turnover time of 14C. The technique of counting year rings (Solly et al., 2018) 

or ages of individual roots from ingrowth cores or nets (Sah et al., 2011; Lukac, 2012) could, however, 

be used in addition to the 14C measurements and minirhizotron data in the survival function 

framework presented in study II. Instead of fitting the survival function to minirhizotron 

observations, the ages of individual roots could be directly used to fit the age distribution function, 𝐴(𝜏). The survival function and the age distribution function share the same parameters and can be 

derived from each other (Manzoni et al., 2009; Metzler et al., 2018). Thereby the ages of individual 

roots would also contribute to constraining the long tail of root turnover. The definition of cost 

functions presented in study II for minirhizotron data can be analogously used for age distribution 

functions and root ring assimilation into ecosystem models (extension of objective Obj-Root3). 

However, using the dendrochronological age of roots can also underestimate roots' actual age since 

dry conditions can also lead to missing rings (Krause and Eckstein, 1993). Coutts and Lewis (1983) 

also reported missing growth rings in small diameter roots. Long-term ingrowth bags could be used 

to ensure that small roots do not regularly have missing year rings. This is another problem that 

would need reconciliation since dry years probably lead to missing year rings, whereas they lead to 

the use of stored carbon to construct new roots. Hence, this would lead to underestimating fine-root 

ages from dendrochronology while it leads to overestimation with the radiocarbon technique 

(extension of objective Obj-Root4). 

6.2 Reconcilable differences in SOC turnover 

6.2.1 Emerging processes in SOC formation and turnover 

Apparent radiocarbon ages of soil organic carbon that range up to millennia have been a puzzle for 

decades in soil organic matter research. A multitude of models have been proposed to accommodate 
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pools that would allow for apparently millennial 14C ages (Jenkinson and Coleman, 2008; Koven et al., 

2013; Braakhekke et al., 2014; Dwivedi et al., 2017; Woolf and Lehmann, 2019). Models need to be 

reconciled with the observation that organic compounds per se have turnover times on relatively 

short timescales while models following the chemical recalcitrance paradigm were employing 

turnover times on up to millennial timescales for individual pools throughout the soil profile 

(Jenkinson and Coleman, 2008; Parton et al., 2010). The COMISSION v2.0 model reproduced 14C 

observations across ten sites by representing mechanisms such as mineral association and microbial 

energy limitation. Study III and IV demonstrated that a model of the new class of soil organic matter 

models that follows the paradigm of microbial and organo-mineral interactions can reconcile organic 

carbon with 14C observations without resorting to passive (Parton et al., 1994; Parton et al., 2010) or 

inert pools (Coleman et al., 1997; Jenkinson and Coleman, 2008) that were motivated by the 

persistence due to chemical recalcitrance paradigm (Objective Obj-SOC1). 

6.2.2 Defining and parameterizing sorption capacity 

I have explored two different ways to represent the limited amount of mineral surfaces available to 

form organo-mineral associations. In study III, I have used the maximum sorption capacity qmax as 

derived from batch sorption experiments together with the already mineral-associated organic 

carbon to parameterize COMISSION v1.0. In this version, only DOC was able to form mineral 

associations. In study IV, I used the clay + silt (< 20 µm) content to parameterize the maximum 

sorption capacity, Qmax, which can be saturated by DOC and microbial residues in COMISSION v2.0 

(Objective Obj-SOC2).  

Abramoff et al. (2021) have compiled a methodologically consistent database of batch sorption 

experiments in forest soils that have been evaluated with Langmuir sorption isotherms. The 

measured 𝑞௠௔௫,௕௔௧௖௛ used in study III are based on measurements presented in Guggenberger and 

Kaiser (2003) and are part of the study of Abramoff et al. (2021). Both study III and Abramoff et al. 

(2021) use the additional sorption potential, i.e., the sorption capacity that can still be saturated in 

addition to what is already sorbed. I moved away from this definition of maximum sorption capacity 

in the development from COMISSION v1.0 (study III) to COMISSION v2.0 (study IV) since one has to 

work with assumptions about the size of the already sorbed organic carbon (Objective Obj-SOC2).  

Although Abramoff et al. (2021) derive scalable relationships of the additional sorption potential, 

these cannot be employed in models since models require the absolute amount of qmax to model 
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adsorption rates. The approach of defining qmax as the sum of mineral-associated carbon and 

additional sorption potential as in study III confounds the sorption of dissolved organic carbon and 

the association of microbial necromass (Miltner et al., 2012) on mineral surfaces into one process. 

This is probably why the calibrated equilibrium constant (𝐾 = 𝑘௔ௗ௦/𝑘ௗ௘௦) in study III is orders of 

magnitude too high (9076 m3/g C) – as Abramoff et al. (2021) correctly noted – compared to what is 

found in batch sorption experiments (10–4 to 10–2 m3/g C). In COMISSION v2.0, the calibrated 

equilibrium constant (5.476 ×10-4 to 3.48 ×10-4 m3/g C for temperatures between 0 °C and 20 °C) is 

within the range of what Abramoff et al. (2021) reported. This shows that the development from 

COMISSION v1.0 to COMISSION v2.0 represents the range of processes that contribute to the 

formation of mineral-associated organic carbon better (Objective Obj-SOC2). Both microbial residues 

and dissolved organic carbon can form organo-mineral associations in COMISSION v2.0, and the 

maximum sorption capacity is defined as a function of clay and silt (< 20 µm) content.  

While Abramoff et al. (2021) provide upscaled estimates of an additional DOC sorption potential of 

107 Pg C globally, it is not possible to use these estimates in modeling efforts since the total DOC 

sorption capacity remains unknown. A possible remedy would be to quantify the initial amount of 

sorbed DOC, for example, by abandoning the equilibrium assumption for batch sorption experiments. 

Instead, one could use dynamic Langmuir equations (Van de Weerd et al., 1999, 2002) in which also 

the initial amount of sorbed DOC is treated as an unknown parameter. Thereby, it can be tested if 

individual maximum sorption capacities for dissolved organic carbon and microbial necromass are 

warranted. In COMISSION v2.0, dissolved organic carbon and microbial necromass ‘compete’ for the 

same sorption sites.  

6.2.3 Influence of mineralogy and soil-forming processes on 14C profiles  

The study of Abramoff et al. (2021) has shown that the additional sorption potential and the 

equilibrium constant vary with soil order. Soil orders encode information such as mineralogy or 

weathering (United States Department of Agriculture, 1999), which are relevant factors to describe 

sorption mechanistically. In study IV, using a maximum sorption capacity based on the clay + silt (< 20 

µm) content (Feng et al., 2013; Beare et al., 2014), information of soil type and soil order was 

incorporated to influence sorption to some extent. From hereon, I refer to the clay + silt (< 20 µm) 

content simply as clay + silt content. For the clay + silt-based definition of sorption capacity, three 

different relationships for soils dominated by 2:1 and 1:1 minerals and andisols (soils on volcanic 

substrate) have been derived (Feng et al., 2013; Beare et al., 2014). In study IV, nine soils were soils 
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dominated by 2:1 mineral soils, and one soil was an andisol. To test the findings of Feng et al. (2013) 

that 1:1 mineral soils have a lower maximum sorption capacity given a certain clay + silt fraction 

compared to 2:1 mineral soils, global runs of COMISSION v2.0 with the parameter set retrieved in 

Study IV were performed with JSBACH forcing (~ 1.9° resolution; Knauer et al. (2015)). On grid-cell 

level, 14C values were compared to the 14C profiles collected in the International Soil Radiocarbon 

Database (ISRaD; Lawrence et al., 2020). Globally, soils were split into high activity clay soils, low 

activity clay soils, and andisols (IPCC, 2003) with different relationships to the clay + silt fraction (Feng 

et al., 2013; Beare et al., 2014). 

Across all US Soil Taxonomy orders, COMISSION v2.0 and the ISRaD database (Lawrence et al., 2020) 

show a similar mean radiocarbon profile (Figure 6-1). The modeled mean 14C age across all soil orders 

in 1 m depth are too old by 89 years (n = 425, 2559ିଶ଴଻ାଶଵହ mean modeled apparent age and 2470ିଷଷ଼ାଷ଼ହ 

observed apparent age). Mean modeled apparent 14C ages for Oxisols, which are dominated by 1:1 

clay minerals, are too young by 134 years in 1 m depth (n = 94, 722ିଵ଻ସାଵ଺ଶ mean modeled apparent age 

and 856ିସଵସାସସଷ observed apparent age). Ultisols, which are also dominated by 1:1 clay minerals, are the 

soil order in which COMISSION v2.0 shows the most considerable discrepancies to ISRaD. In 1 m 

depth, COMISSION v2.0 is 2312 years too young compared to Ultisols in ISRaD (n = 35, 2085ି଺ଶଷା଻ଽ଼ 

mean modeled apparent age and 4396ିଵ଴ଽ଼ାଵହହହ observed apparent age). This might point to a problem 

with the relationship between clay + silt and the maximum sorption capacity derived by Feng et al. 

(2013) for soils dominated by 1:1 minerals. Based on soil order grouping (Figure 6-1), the maximum 

sorption capacity for 1:1 mineral soils seems to work relatively well for Oxisols but not for Ultisols. 

The fact that COMISSION v2.0 is much too old for Ultisols may point to higher sorption capacities 

(study IV) than prescribed by the Feng et al. (2013) study. Abramoff et al. (2021) also found higher 

additional sorption capacities for Ultisols than other soil orders, although they do not have Oxisols in 

their database. This shows that the distinction into 1:1 mineral soils, 2:1 mineral soils, and Andisols 

may not be enough to get a good global estimate of sorption capacity. Andisols in COMISSION v2.0 

on grid-cell level are also much too young (Figure 6-1). Study IV, however, showed that COMISSION 

could model apparent 14C ages in Andisols on site-scale level with the parametrization of the 

maximum sorption capacity according to Beare et al. (2014). Therefore, this mismatch instead points 

out that none of the grid cells are dominated by volcanic soils. For poorly weathered soils, such as 

Inceptisols and Entisols, COMISSION v2.0 is rather too old (Figure 6-1), which may point to an 

overestimation of sorption capacities by the clay + silt relationship (Feng et al., 2013; Beare et al., 

2014) for these soils. Again, the findings by Abramoff et al. (2021) corroborate this since they found 
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the lowest additional DOC sorption capacities for these two soil orders. In histosols, COMISSION v2.0 

does not capture the characteristic shape of the 14C age depth-gradient in ISRaD (Figure 6-1). 

COMISSION possesses the theoretical ability to model the build-up of peat layers due to the 

continuous profile setup outlined in studies III and IV but seems to model the characteristic 14C age-

depth distribution of a mineral soil for these histosols. This points to room for improvement either in 

the forcing from JSBACH or in the process representation of COMISSION regarding the soil moisture 

rate modifier of decomposition. Insufficient inhibition of litter decomposition through the ‘enzymic 

latch’ of phenol-oxidase (Freeman et al., 2001) could be a candidate process that needs to explicitly 

incorporated in COMISSION.  

This thesis has been focused on mineral-associated organic carbon. The dichotomy between mineral-

associated organic carbon on the one hand and ‘unprotected’ organic carbon in peatlands, and 

organic layers on the other hand, should also be able to be addressed with COMISSION. To assess the 

strength of the soil organic carbon – climate warming feedback both mineral-associated organic 

carbon and ‘unprotected’ organic carbon have to be represented adequately.  
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Figure 6-1: Mean 14C contents at ISRaD profiles and at modeled COMISSION grid cells according to US Soil 
Taxonomy orders. Lines represent the bootstrapped mean and shaded areas the bootstrapped 95% confidence 
interval. The first panel comprises all soil orders. The total number of horizons (maximum n = 425) is smaller 
than the number of profiles in ISRaD due to the comparison on grid cell scale. Panels are ordered according to 
the maximum number of horizons of a soil order present in the database. The lower x-axis displays the 14C 
content in percent Modern carbon. For illustration purposes, the upper x-axis shows the apparent conventional 
14C age with an arbitrary reference year of 1950. On the panels' right-hand side, the number of horizons that 
are present for this depth is displayed. 
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6.2.4 Understanding and using global patterns of radiocarbon for model evaluation 

The growth of a global radiocarbon database (Mathieu et al., 2015; He et al., 2016; Lawrence et al., 

2020) raises the question of how this database should be used to evaluate if SOC models can 

reconcile 14C and SOC observations globally. I have showcased how a grid-cell-to-profile comparison 

could provide valuable insights in the previous paragraphs.  Similarly, Chen et al. (2019) evaluated 

how well the ELM1.0 model can reproduce 14C profiles on grid cells in which radiocarbon profiles 

have been measured. Their analysis showed that site-specific adjustments of root biomass profiles 

and depth-dependent decomposition rates are needed to match the observed profiles. The scale 

mismatch between grid-cells and individual measured profiles is an apparent issue. Shi et al. (2020) 

proposed to upscale the 14C measurements in the ISRaD database using an ensemble of decision 

trees (Random forest) that was learned using the covariates depth, mean annual temperature, 

precipitation, land cover, clay content, and soil order according to the USDA classification. Although 

these authors achieve good explanatory power (R2 = 0.69), it is not satisfying that depth is the most 

important variable with a variable importance of 60%. For the chosen method (Random forest) this 

poses the problem of extrapolation and interpolation mainly based on depth with still a rather sparse 

dataset. For radiocarbon, the extrapolation problem extends into two dimensions. Horizontally the 

number of profiles is sparse, but the number of profiles gets even sparser with soil depth. The 

number of horizons or layers decreases from 503 in 20 cm to 293 in 100 cm. The analogous global 

SOC product is based on more than 100,000 profiles. Hengl et al. (2018) noted that Random forests 

could fail in regions that have not been used for training.  

Up to now, the two papers that use statistical learning from the radiocarbon databases had to rely on 

using measurement depth as a variable explicitly (Mathieu et al., 2015; Shi et al., 2020). While 

Mathieu et al. (2015), with a more limited database of 122 profiles, did not attempt to use their 

statistical model to upscale 14C to the global scale, Shi et al. (2020) used the data-learned 

relationships with the aforementioned five explanatory variables and measurement depth to 

produce global maps of 14C in soil organic carbon. They used this global gridded product to evaluate 

the global land models ELM1.0 and CLM5 regarding their ability to represent radiocarbon throughout 

the soil organic carbon profile. These two models could not produce apparent radiocarbon ages that 

were consistent with the upscaled global product. They concluded that soil organic carbon models 

must be depth-resolved as an indispensable and essential condition for explaining apparent 

millennial 14C ages. Yet, the study is missing an analysis of the area of applicability (Meyer and 
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Pebesma, 2020) which should considerably shrink with depth as measurements are getting scarcer. 

Ploton et al. (2020) have further shown that if an inappropriate cross-validation is applied, global 

mapping products can show high apparent predictive capabilities when observations are clustered. 

While the increase in radiocarbon and SOC data holds strong potential for improving SOC process 

representation in Earth system models, upscaling products need to consider uncertainty and area of 

applicability, and model-data comparison needs to be performed with care. 

Both in statistical models (Mathieu et al., 2015; Shi et al., 2020) and process-based models such as 

ELM1.0 and CLM5 (Chen et al., 2019; Shi et al., 2020) the explicit inclusion of a depth-dependence 

contradicts the new paradigm of persistence through multi-process interactions (Schmidt et al., 

2011). The emergence of depth as the most important predictor in statistical models describing the 

global radiocarbon distribution may be a necessary side-effect of the lack of depth-resolved 

predictors. Nevertheless, until the extrapolation issue horizontally and with depth is not addressed, I 

recommend not implementing ad-hoc fixes for process-based models even if they concern only non-

mechanistic aspects such as the imposed depth-dependence of decomposition rates.  

A combination of process-based modeling and machine learning could remedy the issue of 

extrapolation to unseen conditions (Raissi et al., 2019; Reichstein et al., 2019; Rackauckas et al., 

2020). Combining machine learning-based approaches with process-based approaches to universal 

differential equations (Rackauckas et al., 2020) or physics-informed neural networks (Raissi et al., 

2019; Yazdani et al., 2020) could be highly beneficial for learning the drivers of 14C globally. At the 

same time, knowledge can be encoded into the model by prescribing partial differential equations as 

additional constraints. Physics-informed neural networks seem more promising for global-scale 

applications since they are computationally efficient (Raissi et al., 2020) compared to parameter 

calibration of a numerically solved partial differential equation with embedded neural networks 

(Rackauckas et al., 2020). Specifically, one could prescribe the partial differential equations that 

make up the COMISSION model or any other mechanistic SOC profile into a neural network. 

Simultaneously, learning from the ISRaD database how environmental covariates influence the 14C 

depth gradients (Raissi et al., 2020). 
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6.3 Reconciling root turnover observations and SOC turnover observations 

6.3.1 Linking observations of root turnover and SOC turnover 

One limitation of the studies presented in this thesis is the lack of combining root turnover 

measurements, such as time-to-disappearance data from minirhizotrons and 14C content in fine-

roots, with measurements of SOC formation and turnover in an integrated modeling exercise. While 

study I and study II showed the potential for modeling to reconcile minirhizotron data and 14C in fine-

roots to estimate turnover times in root models, I did not translate these turnover times into 

estimates of root litter production that could be the input for the COMISSION model. Instead, I used 

results from the JSBACH model whose fine-root litter inputs are of the same size as its aboveground 

inputs. This modeling scheme has not been informed by any measurement specific to root turnover. 

The Radix model by Riley et al. (2009) has the capability to produce fine-root litter fluxes. However, 

this model had the shortcoming that a possibly biased mean minirhizotron root lifetime was used to 

directly parameterize the fast root pool's turnover time. The finding that two-pool models for root 

turnover can reconcile time-to-disappearance minirhizotron data with 14C data shows how both data 

sources can be combined into an integrated root-SOC turnover model by explicitly modeling root 

pools. These root pools can then be additionally compared with root biomass and necromass 

measurements to get a better constraint on overall root litter production. The direct coupling to a 14C 

enabled SOC turnover model would then make it possible to check the plausibility of the root litter 

inputs given SOC stocks and 14C, or even litter pools such as the lignified litter pool in the COMISSION 

model. 

6.3.2 Constraining root litter inputs with depth 

The main issue for assimilating root and SOC turnover data into vertically explicit models is that 

depth-resolved measurements of fine-root 14C and minirhizotrons are scarce. Especially for 

constraining root litter inputs with depth, 14C measurements are valuable since minirhizotron 

measurements with depth are more challenging from a technical standpoint and because of the 

increasing scarcity of fine roots with depth. Gaul et al. (2009) conducted one of the few studies to 

report 14C contents in fine roots over a depth gradient. These authors found that 14C indicated 

increasing root ages with soil depth pointing to a higher proportion of suberized roots (Study II). 

Given the importance of the root litter input distribution to reproduce apparently millennial 14C ages 
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(Study IV, Objective Obj-SOC4), such depth-resolved fine-root 14C profiles would be valuable 

information sources. This thesis only used observed 14C lags between atmosphere and roots to get 

the 14C signature of the root litter inputs right but did not use 14C measurements to constrain root 

litter inputs with depth. 

The combination of modeling root-turnover and SOC formation, especially in a depth-resolved way, is 

a major research gap for understanding why SOC seems to be particularly persistent in the deep soil. 

Up to now, all modeling approaches either resort to prescribing typical root biomass distributions as 

root litter distributions (Riley et al., 2014; Dwivedi et al., 2017) or using measured root biomass 

distributions to prescribe root litter distributions (this thesis). The results of Gaul et al. (2009) show 

that the 14C of fine roots may indicate increasing fine-root turnover times with depth and thereby 

lower root litter inputs with depth. If root turnover times were not changing with depth, it would be 

reasonable to use observed root biomass distributions to describe the depth distribution of root 

litter inputs. However, if observations and modeling point to a larger proportion of slowly cycling 

roots with depth, root litter input profiles would be shallower than root biomass profiles. Thereby, 

root litter inputs may have been overestimated by using root biomass profiles. An integrated 

modeling of depth-resolved root litter turnover and SOC formation and turnover is therefore 

paramount to advance the understanding of SOC persistence.  

Modeling efforts on dynamically allocating roots with depth according to water and nutrient 

demands (Caldararu et al., 2020) have to be supported by large-scale observations of root biomass 

(Schenk and Jackson, 2002; Iversen et al., 2017; Huang et al., 2021). While the database used in study 

IV already provides a good starting point for further detailed studies on the connection of root 

turnover and SOC turnover, an effort similar to the International Soil Radiocarbon Database (ISRaD; 

Lawrence et al., 2020) would be ideal for supporting larger scale evidence for changes of root 

turnover with soil depth. The measurements of the ISRaD database and the large number of SOC 

profiles from the World Soil Information Service (WoSIS; Batjes et al., 2020), however, can also serve 

as a stand-in. The plausibility of modeled root biomass distributions can be evaluated by checking if 

the resulting root litter inputs would produce realistic 14C and SOC profiles. 
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6.4 Coupling microbial processes with the nitrogen and phosphorus cycle  

Model experiments with COMISSION have highlighted the importance of the continued microbial 

recycling of SOM (study III and IV). However, further developments of the COMISSION model to 

include stoichiometric controls on microbial carbon use efficiency and optimal investment of 

extracellular enzymes are on the way. They are crucial to elucidate the role of plant litter compared 

to microbial necromass. The COMISSION v2.0 model has been taken as the backbone for developing 

the Jena Soil Model (JSM). In a collaboration, the COMISSION model has already been coupled and 

integrated with the nitrogen and phosphorus cycle to form the JSM model (Yu et al., 2020a; Yu et al., 

2020b). JSM will be eventually coupled with the vegetation component of the new terrestrial 

ecosystem model QUINCY (Thum et al., 2019). To elucidate the contribution of microbial necromass 

and as a further constraint for depth-dependent processes that affect soil organic matter formation 

and turnover, the δ13C signature of mineral-associated organic matter, dissolved organic matter, and 

microbial biomass could be used. 13C is fractionated during microbial transformation of soil organic 

matter can thereby be used as an additional carbon isotope affected by all the processes that affect 
12C (Poage and Feng, 2004; Wynn et al., 2005; Wynn, 2007). In conjunction with profiles of C:N and 

C:P ratios (Yu et al., 2020a), 13C offers the potential to learn more about depth-dependent processes. 

6.5 Understanding the stability of mineral associated organic carbon 

The main bracket around this thesis was the quest to better understand apparent stability of mineral 

associated organic carbon. This apparent stability had been derived from apparently millennial 14C 

ages which led amongst other factors to the inclusion of passive or inert pools in models (Jenkinson 

and Coleman, 2008; Parton et al., 2010). Since, however, these pools were difficult to justify 

mechanistically, it was also difficult to assign justifiable temperature sensitivities to these pools. 

Davidson and Janssens (2006) noted that most of these models assigned the same temperature 

sensitivity to these pools, although the so-called carbon-quality temperature theory would have 

dictated the highest temperature sensitivities if these pools were indeed composed of chemically 

recalcitrant compounds (Kleber, 2010; Lehmann and Kleber, 2015). The landmark review of Schmidt 

et al. (2011) highlighted that instead, the persistence of soil organic carbon is an ‘ecosystem 

property’. This means the persistence of soil organic carbon is a function of its abiotic and biotic 

environment (Schmidt et al., 2011). 
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In this thesis, a focus has lain on the interactions of microbial energy limitation and sorption to 

mineral surfaces to produce apparently millennial 14C ages in mineral soils. Several other mechanisms 

leading to long-term persitence of soil organic carbon obviously exist: In some ecosystems, 

permafrost is causing the persistence of soil organic carbon, while in other ecosystems water 

saturation is responsible for the accumulation of peat layers. A combination of the two acts in 

regularly freezing and thawing landscapes. While the persistence of soil organic carbon due to 

freezing, thawing, and anoxia depends on the inhibition of microbial decomposition, Bradford et al. 

(2016) noted that microbes are not only agents of soil organic carbon decomposition but also of its 

formation. This is also one of the main messages from this thesis. Only in combination with sorption 

to mineral surfaces, microbial decomposition can form substantial soil organic carbon stocks with 

apparently millennial 14C ages as a byproduct of microbial death (study IV, objective Obj-SOC3). 

Here, the interaction with roots comes into play – microbial limitation due to a decreasing supply of 

substrate with depth is further responsible for apparently millennial 14C ages, especially in 

conjunction with a high available sorption capacity (study IV, objective Obj-SOC4). The 

aforementioned processes like permafrost or anoxia theoretically do not limit soil organic carbon 

accrual. The formation of mineral-associated organic carbon is limited, however, by the finite amount 

of mineral surfaces available (this thesis) but also by stoichiometric demands for the formation of 

microbial biomass (Yu et al., 2019; Spohn, 2020).  

In study IV, I also tangentially touched upon the temperature sensitivity of the mineral-associated 

organic carbon stocks. In long-term equilibrium, soils with a higher sorption capacity exhibit a lower 

apparent temperature sensitivity (study IV, objective Obj-SOC4). This is due to the overall lower 

temperature sensitivity of mineral association (adsorption, desorption) compared to microbial 

processes (Bradford et al., 2016; Abramoff et al., 2019). Although the temperature sensitivity of 

organo-mineral association is not settled (Conant et al., 2011; Bradford et al., 2016; Abramoff et al., 

2019; Abramoff et al., 2021), there seems to be a consensus that sorption is less temperature 

sensitive than microbial processes. Nevertheless, the vulnerability of mineral-associated organic 

carbon to global change is still under active research. Keiluweit et al. (2015) showed that root 

exudates of oxalic acid can release organic matter from mineral association. Thereby, plants can tap 

into the nutrient store of mineral-associated organic matter. Similarly, it is not clear to which extent 

microbes can attack mineral-associated organic carbon and thereby impose the higher temperature 

sensitivity of microbial processes on mineral-associated organic carbon. Mineral-associated organic 
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carbon is not inherently stable or insensitive to environmental changes. Thus, more insights on 

mechanisms that liberate organic matter from mineral surfaces have to be gathered and eventually 

implemented into models such as COMISSION.  
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7 Conclusion 

The overall objective of this thesis was to make better use of radiocarbon measurements to improve 

our understanding of two important belowground processes – root turnover and SOC formation and 

turnover. In both fields, radiocarbon had contradicted the prevailing paradigm and led, together with 

the accumulation of other contradictory observations, to paradigm shifts. This thesis showed that the 

apparently contradictory insights from radiocarbon measurements can be reconciled with other 

observations and insights under the new paradigms.  

For root turnover, the contradiction between mean residence times of roots estimated with 

radiocarbon and minirhizotrons could be resolved by abandoning the notion that the survival 

probability of a root is constant throughout its lifetime. Survival functions representing two fine-root 

pools in parallel or in series were best at reconciling radiocarbon and minirhizotron measurements. 

Compared to statistical survival functions, these two-pool models could be easily implemented into 

ecosystem models and can also be interpreted mechanistically as effects of suberization or 

ectomycorrhizal infection. 

For the reconciliation of radiocarbon and minirhizotron observations of fine-roots, it was crucial to 

account for the inherent biases of the techniques: Minirhizotrons generally overestimate the 

lifetimes of roots since dead and live roots are hard to distinguish. Radiocarbon that has resided in 

storage pools can be used to grow new roots and thereby make the root ‘look older’ than it is. The 

combined use of minirhizotron and radiocarbon data makes it possible to constrain these biases. For 

future applications of the introduced framework, a larger flexibility for storage residence time biases 

should be allowed. Ideally, an attempt to quantify storage residence times should be made. 

Apparent radiocarbon ages of soil organic carbon up to millennia have been used to justify the 

existence of ‘slow’ pools or humified pools with intrinsic decomposition rates on millennial time 

scales. Analytical evidence, however, accumulated that chemical recalcitrance is not the dominating 

factor that can explain the long-term persistence of soil organic carbon. The work presented shows 

that a new paradigm highlighting microbes and organo-mineral interactions as the drivers for long-

term persistence of soil organic carbon can successfully be translated into a process-based model of 

soil organic carbon formation and turnover, COMISSION. The COMISSION model is vertically explicit, 
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treats microbes as the actors of SOC formation and decomposition, and represents organo-mineral 

associations with a finite sorption capacity.  

Two possibilities to represent a finite sorption capacity were explored. In the first version of 

COMISSION, sorption capacity was defined as the amount of already mineral-associated organic 

carbon plus the extra dissolved organic carbon that could be sorbed in batch sorption experiments. 

The interaction of microbial processes and mineral association was found to be the main factor for 

apparently millennial 14C ages in the subsoil of a Podzol. In the topsoil, organo-mineral associations 

were the dominant driver for high apparent 14C ages. 

In the second version of COMISSION, a scalable definition of a maximum sorption capacity was 

introduced that could be used to study the drivers of radiocarbon age gradients across multiple sites. 

Empirical relationships between clay + silt content and mineral-associated organic carbon were used 

to represent the finite amount of mineral surfaces that can form associations with dissolved organic 

carbon and microbial necromass. Differences in sorption capacity across sites in combination with 

microbial limitation, were responsible for differences in apparent 14C ages of up to 4000 years in the 

subsoil. Root litter distributions were found to be vital in explaining between-site differences in 

radiocarbon ages due to the lift of microbial limitations when the point-of-entry of root litter is 

deeper. This highlights the importance of better understanding fine-root turnover, especially how it 

is changing with depth. In comparison, temperature differences between the sites were only 

responsible for 300 years difference in apparent radiocarbon age when the sorption capacity was 

low, underscoring the importance of the aforementioned processes for understanding apparent 

millennial 14C ages in soils. 

The lower temperature sensitivity of processes related to the mineral association of organic matter 

compared to microbial processes warrants further investigation. Are mineral-associated organic 

carbon stocks indeed less vulnerable to climate warming than organic carbon stocks that are not 

associated with mineral surfaces such as organic layers or peat? Is desorption a prerequisite for 

microbial decomposition, or are microbes able to decompose mineral-associated organic carbon 

while it is sorbed? Answers to these questions are crucial to be able to judge if mineral-associated 

organic carbon has the same likelihood to exacerbate climate warming as ‘unprotected’ soil organic 

carbon. Similarly, it is crucial to account for the nutrient demands of the formation of mineral-

associated organic carbon. Most of the mineral-associated organic carbon is of microbial origin, and 

the sequestration of mineral-associated organic carbon would require meeting the stoichiometric 
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demands of microbes. Although rooting patterns and the amount of carbon might change under 

global change, it remains unclear if the large available sorption capacity in the subsoil can be further 

saturated given the nutrient demand for the formation of mineral-associated organic carbon. 

Enhanced mechanistic understanding of belowground processes has in recent years greatly improved 

our understanding of soil organic matter formation, turnover and persistence. Important open 

questions remain about describing these processes across different soil orders, their temperature 

sensitivities, as well as the interplay of microbially mediated SOC decomposition and formation with 

other processes such as the nitrogen and phosphorus cycle. These are also important steps to be 

made for upscaling SOC and 14C profiles in a mechanistically informed way and integrating the new 

generation of soil organic matter models into Earth system models. Physics-informed machine 

learning and hybrid modeling techniques hold potential for addressing current unknowns in drivers 

of SOC turnover and 14C depth-gradients without getting entrenched on the machine learning or 

mechanistic modeling side. Given the importance of belowground carbon stored and cycled in 

terrestrial ecosystems for the global carbon cycle and atmospheric CO2 concentrations, progress in 

the field matters beyond mere scientific curiosity: It is both timely and necessary to constrain the 

uncertain future of terrestrial carbon cycling under the influence of climate change. 
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