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Abstract 

Acclimation of leaf photosynthetic traits to fluctuating environments is a key mechanism to maximize 

fitness. Constant tracking of light environments is crucial for species with continuously leaf-forming 

nature, such as greenhouse cucumber (Cucumis sativus L.). To capture the acclimation dynamics, we 

propose that light interception and leaf ontogeny shape the acclimation processes through nitrogen 

investment in light capture and utilization functions, which determines the rate-limiting step in the 

photosynthetic machinery. Based on this concept, a dynamic model of protein turnover (synthesis and 

degradation) was implemented to simulate nitrogen investment in three photosynthetically functional 

pools depending on light, nitrogen supply and leaf age, in conjunction with a 1D light model using 

multilayer model (MLM) and a 3D light model using a functional-structural model (FSM). The light 

dependency of protein synthesis was able to explain the photosynthetic acclimatory response to 

fluctuating light, and to predict canopy photosynthesis with comparable accurracy using either the 

MLM or the FSM. Using the MLM, the degree of optimality of photosynthetic nitrogen use for 

maximizing daily canopy photosynthesis was quantified by manipulating the protein synthesis rates. 

Photosynthetic nitrogen distribution between leaves was found optimal in the greenhouse cultivar 

Aramon, except that canopy photosynthesis could be improved by enhanced acropetal reallocation 

under nitrogen-limiting conditions. Photosynthetic nitrogen partitioning within induvidual leaves was 

optimal for the cultivar Aramon but not for the field cultivar SC-50 when grown in a single-stem 

structure, probably due to the coordination of function with structure developed during breeding. In 

contrast to Aramon, SC-50 has less total photosynthetic nitrogen but a partitioning strategy more 

sensitive to light. The proposed modelling framework provides an interpretation for acclimatory 

mechanisms under fluctuating light, and enables in silico manipulations and tests of photosynthetic 

acclimation in heterogeneous canopies. Possible extensions to the framework are also discussed. 

 

Keywords: Canopy light interception, light fluctuation, modelling, nitrogen distribution, nitrogen 

partitioning, photosynthetic acclimation 
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Kurzzusammenfassung 

Die Akklimatisierung der photosynthetischen Eigenschaften der Blätter an schwankende 

Umgebungen ist ein Schlüsselmechanismus zur Maximierung der Fitness der Pflanze. Die 

Wahrnehmung der Lichtumgebung ist entscheidend für Arten mit kontinuierlicher Blattbildung, wie z. 

B. die Gewächshausgurke (Cucumis sativus L.). Um die Akklimatisierungsdynamik zu erfassen, wird 

angenommen, dass die Lichtinterzeption und die Ontogenese des Blattes die 

Akklimatisierungsprozesse prägen. Durch die Stickstoffinvestition in die Lichtaufnahme- und 

Lichtnutzungsfunktionen wird der ratenlimitierende Schritt in der photosynthetischen Maschinerie 

bestimmt. Basierend auf diesem Konzept wurde ein dynamisches Modell des Proteinumsatzes 

(Synthese und Abbau) implementiert. Die Stickstoffinvestition in drei photosynthetisch funktionelle 

Pools wurde in Abhängigkeit von Licht, Stickstoffversorgung und Blattalter simuliert mittels eines 

1D-Lichtmodells (Multilayer-Modell, MLM) und eines 3D-Lichtmodells (funktionell-strukturelles 

Modell, FSM). Mit der Lichtabhängigkeit der Proteinsynthese war die photosynthetische 

Akklimatisationsreaktion auf schwankendes Licht zu erklären und die Bestandesphotosynthese mit 

vergleichbarer Genauigkeit sowohl mit dem MLM als auch dem FSM vorherzusagen. Unter 

Verwendung des MLM wurde die Optimalität der photosynthetischen Stickstoffnutzung zur 

Maximierung der täglichen Bestandesphotosynthese durch Manipulation der Proteinsyntheseraten 

quantifiziert. Die photosynthetische Stickstoffverteilung zwischen den Blättern erwies sich bei der 

Gewächshaussorte „Aramon“ als optimal, mit der Ausnahme, dass die Bestandesphotosynthese durch 

eine verstärkte akropetale Reallokation unter stickstofflimitierenden Bedingungen verbessert werden 

konnte. Die photosynthetische Stickstoffpartitionierung innerhalb des einzelnen Blattes war für die 

Sorte „Aramon“ optimal, aber nicht für die Freilandsorte „SC-50“, wenn sie in einer 

Einzelstammstruktur angebaut wurde, was wahrscheinlich auf die während der Züchtung entwickelte 

Koordination von Funktion und Struktur zurückzuführen ist. Im Gegensatz zu „Aramon“ hat „SC-

50“ weniger photosynthetischen Gesamtstickstoff, doch dafür eine lichtempfindlichere 

Partitionierungsstrategie. Der vorgeschlagene Modellierungsrahmen liefert eine Interpretation für 

Akklimatisierungsmechanismen unter schwankendem Licht und ermöglicht In-silico-Manipulationen 

und -Tests der photosynthetischen Akklimatisierung in heterogenen Pflanzenbeständen. Mögliche 

Erweiterungen des Modellierungsrahmens werden diskutiert. 

 

Schlagwörter: Bestandeslichtaufnahme, Lichtschwankung, Modellierung, Stickstoffverteilung, 

Stickstoffpartitionierung, photosynthetische Akklimatisierung 
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Chapter 1  
Introduction 

Nitrogen is often a limitation to higher plants due to high demand for the construction of the 

photosynthetic machinery in the chloroplasts (Evans and Clarke, 2019). In order to 

coordinate photosynthetic capacity with light availability in the canopy, nitrogen 

concentration on leaf area basis correlates positively with local irradiance (Field, 1983; 

Farquhar, 1989; Hikosaka et al., 1994; Le Roux et al., 2001; Johnson et al., 2010; 

Trouwborst et al., 2010; Wyka et al., 2012; Hikosaka, 2014; Osada et al., 2014). It was 

predicted that whole plant carbon gain could be improved by achieving optimal intra-canopy 

nitrogen distribution, under the assumptions that (1) leaf photosynthetic capacity scaled 

linearly with nitrogen concentration per unit leaf area (Farquhar, 1989) and that (2) the intra-

canopy light distribution follows the Beer-Lambert equation (Hikosaka, 2014). However, the 

facts that photosynthetic capacity is not linearly proportional to local light availability under 

high light (Buckley et al., 2013) and that photosynthetic capacity at the lower canopy is 

predicted higher than optimum (Townsend et al., 2018) imply that higher nitrogen 

reallocation to the top of the canopy is required to overcome sub-optimal coordination. 

Explanation for this sub-optimality has not yet been delivered satisfactorily, even after three 

decades of experimental and theoretical attempts (Hikosaka, 2016). We proposed that this 

discrepancy between observation and prediction should be exampled by modelling approach 

incorporating more realism in three aspects. First, photosynthetic capacity depends directly 

on the partitioning of nitrogen between light capture and utilization functions that determines 

the rate-limiting step in the photosynthetic machinery. Second, due to temporal fluctuation in 

light and alteration in canopy architecture, dynamic light interception at leaf level leaves a 

trace on acclimation history. Third, acclimation is a continuous dynamic process where 

ontogenetic status also plays a role in the capacity of acclimation. 

Nitrogen partitioning and photosynthesis 

The central parameters in the well-established biochemical model for C3 photosynthesis 

(FvCB model, Farquhar et al., 1980), i.e., maximal carboxylation rate (Vcmax, μmol CO2 m
-2

 

s
-1

) and maximal electron transport rate (Jmax, μmol e
-
 m

-2
 s

-1
) as well as absorptance (α), 
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correlate with the investment of nitrogen into Ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) carboxylation, electron transport, and light capture 

functions in the photosynthetic apparatus, respectively (Yamori et al., 2010; Yamori et al., 

2011a). Since photosynthesis rate is limited by the lower of either Rubisco-limited rate 

(under saturating light condition) or RuBP-limited rate (under non-saturating light 

conditions) of photosynthesis (Farquhar et al., 1980), photosynthetic nitrogen investment 

between functions can result in great variation in photosynthesis for a given leaf nitrogen 

concentration. Thus, photosynthetic nitrogen partitioning into fractions of carboxylation (pV), 

electron transport (pJ) and light capture (pC), defined as the proportional nitrogen investment 

between these functions to total photosynthetic nitrogen (e.g., Buckley et al., 2013), is crucial 

in photosynthetic acclimation for coordination between light capture and utilization in 

response to light availability (Terashima and Evans, 1988; Evans, 1989a; Evans and Poorter, 

2001; Hikosaka, 2004; Trouwborst et al., 2011; Yamori et al., 2011a). Experimental 

observation showed increasing nitrogen partitioning to Rubisco (pV) relative to thylakoid 

components (pJ+pC) was induced by either increasing light intensity or nitrogen availability 

(Seemann et al., 1987; Evans, 1989b; Makino and Osmond, 1991; Makino et al., 1992; 

Haldimann and Feller, 2005; Yamori et al., 2010). Theoretically, optimal pV and pJ increase 

with increasing irradiance whereas pC decreases (Buckley et al., 2013), and partitioning to 

the most limiting function regarding light condition is more crucial for whole plant carbon 

gain than nitrogen distribution between leaves (Pons and Anten, 2004).  

Dynamic canopy architecture and light interception 

Acclimation and optimization of intra-canopy photosynthetic nitrogen distribution to light 

has been intensively studied in the past decades (e.g., Werger and Hirose, 1991; Evans, 

1993b; Anten et al., 1995; Anten et al., 1998; Dreccer et al., 2000; Hikosaka, 2003; Wang et 

al., 2012). These studies were based on the assumptions that light intensity decreases with 

canopy depth following Beer´s law (Monsi and Saeki, 2005), and that local light at a given 

canopy depth is homogeneous. Photosynthetically active radiation, as the energy source for 

photosynthetic biochemistry, varies considerably in the vertical profile of a plant canopy (Le 

Roux et al., 2001; Monsi and Saeki, 2005; Trouwborst et al., 2010; Wiechers et al., 2011b; 

Niinemets et al., 2015), especially for continuously leaf-forming and vertically trained 
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species, e.g., cucumber plants in greenhouse cultivation (Wiechers et al., 2011b). In the 

canopy, individual leaves experience fluctuating light environments due to (1) self-shading 

related to spatial variation in plant architecture by successively developing leaves (Kaiser et 

al., 2018a), (2) inter-plant shading related to planting density and orientation and (3) 

temporal variation in radiation and solar angle. Recently, the impact of light fluctuation on 

photosynthetic acclimation has been experimentally demonstrated, showing a significant 

decrease in Jmax and α under fluctuating light in comparison to constant light environment 

(Vialet-Chabrand et al., 2017b). Thus, to study interactions between light environment and 

light-related physiological processes at canopy level, canopy configuration and dynamics of 

plant architecture should be considered. In this regard, functional-structural models (FSM; 

review see Vos et al., 2010) can be a powerful and heuristic tool for examining plant-

environment interaction (Louarn and Song, 2020). 

Dynamics of photosynthetic nitrogen during leaf lifespan 

Steady-state of photosynthetic nitrogen partitioning in the leaf is the result of the complex 

interplay between exogenous signals and endogenous processes. The current physiological 

properties of a leaf in the canopy should be considered as the consequence of the 

environmental history (Anten et al., 1998; Niinemets et al., 2006; Wang et al., 2012; Kaiser 

et al., 2018a) and the evolution of leaf traits with age during development (Irving and 

Robinson, 2006). The acclimation mechanisms are different throughout leaf lifespan with 

respect to structural modification, gene expression and protein metabolism (Murchie et al., 

2005). These age-dependent modifications are often ignored when modelling whole plant 

carbon assimilation by scaling up from leaf to canopy level (Niinemets, 2007), which may 

result in an overestimation of canopy assimilation by assuming all leaves are at mature stage. 

In cereal canopies, the evolution of Rubisco content with leaf age has been empirically 

described by a log-normal function (Irving and Robinson, 2006), which agrees with 

experimental observations of photosynthetic proteins and capacities during ageing (Hidema 

et al., 1991, 1992; Schultz, 2003; Lombardozzi et al., 2012). This empirical model elegantly 

depicts not only the dynamic change of the photosynthetic variables during leaf lifespan but 

also the turnover of nitrogen components. Protein turnover, the outcome of simultaneous 

degradation and synthesis of proteins (Li et al., 2017), is essential during acclimation to 
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adjust protein level according to environmental signals. Based on this concept, Thornley 

(1998) proposed a mechanistic model describing the dynamics of photosynthetic acclimation 

at leaf level. By revising this model, we are able to describe environment-dependent rates of 

protein turnover for different photosynthetic components, i.e., Rubisco, electron transport 

and chlorophyll during leaf lifespan.  

Objectives 

This thesis aims at understanding the partitioning of nitrogen associated with photosynthetic 

processes within individual leaves (referred to as “photosynthetic nitrogen partitioning”) and 

the distribution of photosynthetic nitrogen between leaves in a plant (referred to as 

“photosynthetic nitrogen distribution”) as an outcome of acclimation to environments. 

Cucumber plants were selected as model crop in this work due to their high degree of 

heterogeneity in intra-canopy light distribution. Both multilayer model and FSM of dynamic 

canopy architecture combining a mechanistic model for photosynthetic acclimation were 

developed to achieve the following objectives: 

1) establishing a multilayer modelling approach to upscale from photosynthetic 

acclimation at leaf level to carbon assimilation at canopy level for quantifying degree 

of optimality of photosynthetic nitrogen distribution and partitioning (chapter 2); 

2) parameterizing and evaluating the multilayer model using a greenhouse cucumber 

variety and quantifying the effects of light regime and nitrogen supply on the degree 

of optimality of photosynthetic nitrogen distribution and partitioning (chapter 3); 

3) quantifying the impact of fluctuating light on photosynthetic acclimation 

systematically using the multilayer model parameterized in chapter 2 (chapter 4); 

4) comparing the predictive power in photosynthetic acclimation and productivity of 

applying multilayer model and FSM of canopy architecture (chapter 5). 

5) analyzing the coordination of photosynthetic acclimation strategy with architectures 

by comparing two cucumber varieties exhibiting contrasting architectural 

characteristics following the multilayer model parameterized in chapter 2 (chapter 6); 

Each chapter focuses on a step towards the quantification of the interaction between 

photosynthetic acclimation and intra-canopy light environment. All of them can also be read 

individually.
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Chapter 2  
Modelling approach 

Experiments for in silico evaluation of optimality of photosynthetic nitrogen 

distribution and partitioning in the canopy: an example using greenhouse 

cucumber plants 

 

Abstract 

Acclimation of leaf traits to fluctuating environments is a key mechanism to maximize 

fitness. One of the most important strategies in acclimation to changing light is to maintain 

efficient utilization of nitrogen in the photosynthetic apparatus by continuous modifications 

of between-leaf distribution along the canopy depth and within-leaf partitioning between 

photosynthetic functions according to local light availability. Between-leaf nitrogen 

distribution has been intensively studied over the last three decades, where proportional 

coordination between nitrogen concentration and light gradient was considered optimal in 

terms of maximizing canopy photosynthesis, without taking other canopy structural and 

physiological factors into account. We proposed a mechanistic model of protein turnover 

dynamics in different photosynthetic functions, which can be parameterized using leaves 

grown under different levels of constant light. By integrating this dynamic model into a 

multilayer canopy model, constructed using data collected from a greenhouse experiment, it 

allowed us to test in silico the degree of optimality of photosynthetic nitrogen use for 

maximizing canopy carbon assimilation under given light environments. 

 

  



Chapter 2 Modelling approach 

 

6 
 

Background 

Intra-canopy nitrogen distribution in response to light has been intensively studied (Hirose 

and Werger, 1987; Werger and Hirose, 1991; Anten et al., 1995; Dreccer et al., 2000; 

Moreau et al., 2012; Hikosaka, 2016) and many studies demonstrated that, although the 

actual nitrogen distribution resulted in higher canopy photosynthesis than uniform nitrogen 

distribution, it was still suboptimal (Field, 1983; Evans, 1993b; Hollinger, 1996; Hirose et 

al., 1997; Meir et al., 2002; Wright et al., 2006; Hikosaka, 2016). This discrepancy between 

optimum and reality could, on one hand, be explained by physiological limitations 

(Niinemets, 2012; Hikosaka, 2016). On the other hand, it might result from incorrect 

predictions by over-simplified models, where the effects of variations in the structural 

characteristics on light interception, age-dependent modifications of leaf biochemistry and 

photoacclimation in functional nitrogen partitioning were neglected. To incorporate these 

factors into the acclimation processes, a mechanistic model based on the concept of protein 

turnover (synthesis and degradation) was proposed to simulate the dynamics of 

photosynthetic nitrogen in carboxylation, electron transport and light harvesting functions 

along the development and ageing of the leaf. Leaf elevation angle and leaf area distribution 

in the canopy was measured to construct a multilayer canopy model for simulating more 

realistic intra-canopy light distribution, which is used as input for the protein turnover model. 

By manipulating the parameters controlling nitrogen distribution and partitioning, it is 

possible to quantify the degree of optimality of photosynthetic nitrogen use for maximizing 

canopy carbon assimilation in silico. 

Materials and Reagents 

1. 25-L plastic boxes, as container for hydroponic system 

2. Polystyrene foam boards for fixing plants onto plastic boxes 

3. Rockwool cubes (10 cm × 10 cm × 6.5 cm), as growth medium in the hydroponic system 

(Grodan Delta; Grodan, Roermond, The Netherlands) 

4. Rockwool cubes (3.6 cm × 3.6 cm × 4 cm), as seed sowing medium (Grodan A-OK 

Starter Plugs; Grodan, Roermond, The Netherlands) 

5. Plastic plant support clips 
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6. N-P-K fertilizer (Ferty 2 MEGA; Planta, Regenstauf, Germany) 

7. P-K fertilizer (Ferty Basisdünger 1; Planta, Regenstauf, Germany) 

8. N fertilizer (YaraLiva Calcinit; Yara, Oslo, Norway) 

9. Paper bags (size should be enough to contain a single cucumber lamina, which is about 

15 cm × 20 cm or larger) 

10. Rockwool slabs (100 cm × 20 cm × 7.5 cm), as growth medium in the greenhouse 

(Grodan GT Expert; Grodan, Roermond, The Netherlands) 

11. Seed (Cucumis sativus L. ‘Aramon’, Rijk Zwaan, De Lier, The Netherlands) 

12. 1% H2SO4 (96% H2SO4, Carl Roth, catalog number: 4623; preparation: 6 ml 96% H2SO4 

mix with 1 L H2O) 

Equipment 

1. Walk-in growth chambers with aeration system and controlled air temperature and 

humidity (Vötsch Industrietechnik, Balingen, Germany) and light source using metal 

halide lamps (HQI-BT 400 W/D PRO; Osram, Munich, Germany) 

2. Quantum sensor LI-190R coupled with light meter LI-250A (LI-COR, Lincoln, NE, USA) 

3. Light sensor logger (LI-COR, model: LI-1000, LI-1400 or LI-1500) 

4. Temperature data logger (Tinytag; Gemini Data Loggers, Chichester, UK) 

5. Portable photosynthesis system LI-6400XT (coupled with 6400-40 leaf chamber 

fluorometer) or LI-6800 (LI-COR, Lincoln, NE, USA) 

6. Chlorophyll meter (Konica Minolta Sensing, model: SPAD-502) 

7. Leaf area meter (LI-COR, model: LI-3100C) 

8. Laboratory balance with resolution of 0.01 g (Sartorius, model: ED4202S) or with 

resolution of 0.1 mg for mass below 1 g (Sartorius, model: ED224S) 

9. Vacuum freeze dryer (Alpha 1-4 LSC; Martin Christ Gefriertrocknungsanlagen, Osterode 

am Harz, Germany) 

10. 3D digitizer (Fastrak; Polhemus, Colchester, USA) 
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Software 

1. R (ver. 3.3.0 or later; R Foundation for Statistical Computing, https://www.r-project.org/); 

R scripts and simulated example data sets are provided to facilitate data analysis 

(https://github.com/yichenpao/bio-protocol/) 

a. R script 1 [data processing] (see section Data analysis A, B) 

b. R script 2 [model parameterization] (see section Data analysis C, D); required 

packages are ‘DEoptim’, ‘deSolve’, ‘ggplot2’, ‘reshape2’, ‘xlsx’ 

c. R script 3 [simulation and in silico test] (see section Data analysis E-H); required 

packages are ‘DEoptim’, ‘deSolve’, ‘dplyr’, ‘ggplot2’, ‘magrittr’, ‘xlsx’ 

2. Digitool (customized software for 3D-digitizer, availability upon request) 

Procedure 

A. Raising seedlings for experiments 

1. Sow one cucumber seed (Cucumis sativus L. ‘Aramon’, Rijk Zwaan, De Lier, The 

Netherlands) in each rock-wool cube (3.6 cm × 3.6 cm × 4 cm, Figure 2-1A, B) and 

water sufficiently until the cubes are completely wet. 

2. Sow 20%-40% more seeds (lower the germination rate and quality, more the 

additional amount) than the number of plants required for the experimental design in 

order to select for uniform seedlings in 7-10 days. 

3. Set environmental conditions to 10-15 mol m
-2

 d
-1

 photosynthetically active radiation 

(PAR) at the seedling level with a 12-h light period, 24°C day/ 20°C night air 

temperature and 70% relative humidity. 

4. Eight days after sowing, transfer each rockwool cube into a larger rockwool cube (10 

cm × 10 cm × 6.5 cm, Figure 2-1C) and irrigate with nutrient solution of N-P-K 

fertilizer (0.5 g L
-1

 Ferty 2 MEGA; Planta, Regenstauf, Germany; 5.7 mM N, 2.7 

mM K, 0.35 mM P, 0.45 mM Mg in working solution) once every day. 

B. Growth chamber experiment to parameterize the protein turnover model 

1. Transplanting and starting experiment 

a. Prepare chambers with at least three constant light intensities (one < 5, one 

between 10-15 and one > 25 mol photon m
-2

 d
-1

 PAR for cucumber) at the plant 

level, which should cover most variation found in the light environment during 

crop production. 

https://www.r-project.org/
https://github.com/yichenpao/bio-protocol/
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b. Prepare nutrient solution with at least three levels of nitrogen (one < 2.8, one 

3.5-5 and one > 8.5 mM NO3
-
 for cucumber Aramon) using N fertilizer 

(YaraLiva Calcinit; Yara, Oslo, Norway) and P-K fertilizer (Ferty Basisdünger 1; 

Planta, Regenstauf, Germany; 5.2 mM K, 1.3 mM P, 0.82 mM Mg in working 

solution) if the effect of nitrogen is of interest.  

c. Transplant the seedlings when their second true leaves reach a length of 3 cm (ca. 

eight days grown in the larger rockwool cubes) into hydroponic system (Figure 

2-1D), consisting of a 25-L plastic box and a piece of polystyrene foam board 

that fixes a rockwool cube containing a plant. 

d. Fill 25-L boxes with nutrient solution and supply the solution with air from 

aeration system (Figure 2-1E). 

e. Prepare polystyrene foam boards for supporting the plants in the hydroponic 

system. 

i. Cut polystyrene foam boards to make them fit onto 25-L boxes. 

ii. Cut a squared opening (9.5 cm × 9.5 cm) in the middle of the boards.  

iii. Fix the plants into the openings in polystyrene foam boards and position 

them into the 25-L boxes. 

f. Select the healthy and unshaded leaves within leaf ranks four to eight (counted 

acropetally) as sampled leaves in each plant and record their dates of appearance. 

g. Record light condition at the level of the sampled leaves using quantum sensor 

LI-190R and light meter LI-250A (LI-COR, Lincoln, NE, USA). 

2. Plant care and monitoring environmental conditions 

a. Prepare custom-made leaf holders. 

i. Make leaf holders using plastic coated metal wires to form a loop structure, 

consisting of a circular part which supports the leaf and a stick part which 

can be fixed to the stem and petiole (Figure 2-1F). 

ii. Combine each holder with two plastic plant support clips at the stick part. 

iii. Prepare leaf holders in different sizes and lengths in order to support leaves 

at various developmental stages. 

b. Allow plants to establish vegetative growth by removing flowers below the 

seventh node. 
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c. Keep plants to single stem by cutting all side shoots and train the rest of the 

shoot above the sampled leaves downward to avoid mutual shading (Figure 2-1 

G). 

d. Renew the nutrient solution completely and record the nitrogen level in the 

nutrient solution once a week, fill the solution once between two times of 

solution renewal, and adjust pH value to 6.0-6.5 by 1% H2SO4 twice a week. 

e. Place data loggers Tinytag (Gemini Data Loggers, Chichester, UK) around the 

sampled leaves and record daily mean air temperature (Tmean, °C). 

f. Measure and record the PAR at the center of the sampled leaves (Figure 1a in 

Wiechers et al., 2011) weekly and adjust the angle of the leaves using leaf 

holders (Figure 2-1F) to make sure they are horizontally and fully exposed to the 

light, not shaded by other leaves (Figure 2-1G), in order to achieve target PAR 

level at the leaves. 

 

Figure 2-1. Raising 

seedlings and setup 

of growth chamber 

experiment. D-E. 

Transplanting 

seedlings into 

hydroponic system. 

F. Custom-made 

leaf holders fixed to 

a plant on its stem 

and petiole with 

support clips. G. 

Avoiding shading 

of the sampled leaf 

(marked yellow) by 

training rest of the 

shoot downward. 
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3. Collecting data of the sampled leaves 

a. Gas exchange 

i. Conduct measurements for each environmental condition at an interval of 

three to four days, starting with the youngest leaves (ca. three days after leaf 

appearance) and then the older ones to obtain data from leaves with a wide 

range of ages (ca. 40-550°Cd). 

ii. Estimate age (t, °Cd) of individual leaves days from the day of its 

appearance to the day of measurement using daily mean temperature and a 

base temperature (Tbase, 10°C for cucumber): 

𝑡 = ∑  (𝑇mean − 𝑇base)day of measurement
day of appearance   (Eqn 2-G1) 

iii. Measure net photosynthesis rate (An, μmol CO2 m
-2

 s
-1

, Table 2-1), 

intercellular CO2 concentration (Ci, µmol mol
-1

), photosynthetic photon flux 

density (PPFD, µmol m
-2

 s
-1

) and quantum efficiency of photosystem II 

electron transport (ϕPSII) using a portable photosynthesis system LI-6400XT 

or LI-6800 (Li-Cor Inc., Lincoln, NE, USA) 

iv. Collect data to a .csv file (Figure 2-2 and Table 2-2), which will be used in 

the data analysis sections A and B for data processing (in this example 

‘example_chamber_gas_exchange_data.csv’). 

v. Cut the lamina directly after the measurement for further analyses. 

 

Table 2-1. Labeling of variables in the output file from portable photosynthesis systems LI-6400XT 

and LI-6800 (LI-COR, Lincoln, NE, USA). Necessary variables for data processing are net 

photosynthesis rate (An, μmol CO2 m
-2 

s
-1

), intercellular CO2 concentration (Ci, µmol mol
-1

), 

photosynthetic photon flux density (PPFD, µmol m
-2

 s
-1

) and quantum efficiency of photosystem II 

electron transport (ϕPSII). 

System An Ci PPFD ϕPSII 

LI-

6400XT 
Photo Ci PARi PhiPS2 

LI-6800 Pn Ci Qin PhiPS2 
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Figure 2-2. Format of gas exchange data file. See Table 2-2 for explanation for column name, 

description and unit used. 

 

Table 2-2. Column name, description and unit used in the gas exchange data file. 

Column name Description Unit 

ExpID ID of the experiment unitless 

MeasureDate Date of measurement unitless 

LeafID ID of the measured leaf unitless 

An Net photosynthesis rate µmol CO2 m
-2

 s
-1 

Ci intercellular CO2 concentration µmol CO2 mol
-1 

PPFD photosynthetic photon flux density µmol photon m
-2

 s
-1 

PhiPS2 

quantum efficiency of photosystem II 

electron transport unitless 

 

b. Harvest data 

i. Measure relative chlorophyll content (SPAD value) using chlorophyll meter 

SPAD-502 (Minolta Camera, Japan) and leaf area by area meter LI-3100C 

(LI-COR, Lincoln, NE, USA) of the harvested lamina. 

ii. Keep each lamina in individual paper bag and freeze them under -20°C for 

storage. 

iii. Precool sample shelves in the vacuum freeze dryer (Alpha 1-4 LSC; Martin 

Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) to 

10°C and the ice condenser to -50°C. Freeze dry lamina samples for 48 h 

under pressure of 1.030 mbar and then measure the mass of freeze-dried 
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lamina. Please note that most samples can be dried to 1%-5% residual 

moisture; therefore, the measured dry mass should be corrected to exclude 

the weight of residual moisture. 

iv. Grind the lamina into fine powder and analyze total nitrogen (e.g., Nelson 

and Sommers, 1980) and chlorophyll (e.g., Lichtenthaler, 1987) contents. 

v. Collect data to a .csv file (Figure 2-3 and Table 2-3; in this example 

‘example_chamber_harvest_data.csv’), which will be used in data analysis 

sections A and B for data processing.  

c. Quantify the empirical relationship between SPAD value and leaf chlorophyll 

concentration per area to facilitate non-destructive estimation in the greenhouse 

experiment, using a linear (Chl = a + b × SPAD) or power (Chl = a × SPAD
b
) 

function. 

 

 

Figure 2-3. Format of harvest data file. See Table 2-3 for explanation for column name, description 

and unit used. 

 

Table 2-3. Column name, description and unit used in the harvest data file. 

Column name Description Unit 

ExpID ID of the experiment unitless 

LeafID ID of the harvested leaf unitless 

VarietyID ID of the variety unitless 

LightID ID of the light treatment unitless 

NitrogenID ID of the nitrogen treatment unitless 

AppearanceDate Date of appearance of the harvested leaf unitless 

HarvestDate Date of harvest unitless 

LightLevel_mol_m2_d Level of the light treatment mol photon m
-2

 d
-1 

NitrogenLevel_Mm Level of the nitrogen treatment mM N 
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Column name Description Unit 

MeanTemp_oC 

Mean air temperature during growth of the 

harvested leaf °C 

SPAD Relative chlorophyll content (SPAD value) unitless 

LeafArea_cm2 Leaf area of the harvested leaf cm
2 

DryMass_g Leaf dry mass of the harvested leaf g 

TotalN_mg_g Total nitrogen content of the harvested leaf mg N g
-1

 dry mass 

Chl_a_mg_g Chlorophyll a content of the harvested leaf mg Chl a g
-1

 dry mass 

Chl_b_mg_g Chlorophyll b content of the harvested leaf mg Chl b g
-1

 dry mass 

 

C. Gas exchange measurement using portable photosynthesis system LI-6400XT or LI-6800 

(LI-COR, Lincoln, NE, USA) 

1. Allow leaves to adapt for 10-20 min under measurement conditions of: 

a. Photosynthetic photon flux density (PPFD) 1300 µmol m
-2

 s
-1

, 

b. Sample CO2 400 µmol mol
-1

, 

c. Leaf temperature 25°C, 

d. Relative humidity 55-65%, 

until Rubisco is fully activated and photosynthesis rate, stomatal conductance and 

fluorescence (F’) equilibrate to steady states, then read light-saturated net 

photosynthesis rate (Asat, μmol CO2 m
-2

 s
-1

). 

2. Measure maximum chlorophyll fluorescence (Fm’) using the multiphase flash (MPF) 

approach (Loriaux et al., 2013; Moualeu‐Ngangue et al., 2017): 

a. Phase 1 with constant maximum irradiance for 320 ms, 

b. Phase 2 with irradiance attenuation (30% ramp depth) over 350 ms, 

c. Phase 3 with constant maximum irradiance as in phase 1 for 200 ms. 

3. Measure light response curves of net photosynthesis rate (An, μmol CO2 m
-2 

s
-1

) under 

PPFD 900, 500, 250, 150, 100, 85, 70, 60, 50, 40, 0 µmol m
-2

 s
-1

. 

4. Total duration of this measurement is 30-40 min per leaf; notice that for old leaves or 

leaves grown under low light, the time of adaptation is generally longer than for 

young and high light-grown leaves. 
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5. Quantum efficiency of photosystem II electron transport (ϕPSII) is computed using 

fluorescence data (Murchie and Lawson, 2013):  

𝜙PSII = (𝐹m
′ − 𝐹′) 𝐹m′⁄   (Eqn 2-P1) 

D. Greenhouse experiment to obtain canopy structural information and data to evaluate the 

protein turnover model 

1. Transplanting and starting experiment 

a. Record daily mean air temperature (Tmean, °C) near the seedlings using data 

logger Tinytag and transplant the seedlings when their third true leaves reach a 

length of 3 cm (ca. two weeks grown in the larger rockwool cubes). 

b. Transfer two plants onto one rockwool slab (100 cm × 20 cm × 7.5 cm) with a 

distance of 50 cm between them and 150 cm between rows (density of 1.33 

plants m
-2

 in a greenhouse with 96 m
2
 of cultivation area). 

c. Supply plants with nutrient solution by drip irrigation system with nitrogen levels 

of interest. 

2. Plant care and monitoring environmental conditions 

a. Train the plants vertically onto wires and remove all side shoots as well as 

flowers below the seventh node. 

b. Record daily mean air temperature using data logger Tinytag in the greenhouse 

and daily integral of PAR above the canopies using quantum sensor LI-190R and 

light meter LI-250A. 

c. Analyze nitrate (Navone, 1964) and ammonium (following German standard 

methods for the examination of water, waste water and sludge, DIN 38406-5) in 

the nutrient supply and nitrogen concentration remained in the rockwool slabs 

weekly.  

d. Collect data to a .csv file (Figure 2-4 and Table 2-4; in this example 

‘example_greenhouse_environment_data.csv’), which will be used in data 

analysis sections E-H for simulation and in silico test. 
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Figure 2-4. Format of greenhouse environmental data file. See Table 2-4 for explanation for column 

name, description and unit used. 

 

Table 2-4. Column name, description and unit used in the greenhouse environmental data file. 

Column name Description Unit 

ExpID ID of the experiment unitless 

Date Date unitless 

DPI_L_L Daily photon integral under light teatment ID L* mol photon m
-2

 d
-1 

DPI_L_H Daily photon integral under light teatment ID H* mol photon m
-2

 d
-1 

Supply_N_L 

Nitrogen level in the nutrient supply under nitrogen 

treatment ID L* mM N 

Substrate_N_L 

Nitrogen level in the substrate under nitrogen treatment ID 

L* mM N 

Supply_N_H 

Nitrogen level in the nutrient supply under nitrogen 

treatment ID H* mM N 

Substrate _N_H 

Nitrogen level in the substrate under nitrogen treatment ID 

H* mM N 

Tmean_L_L Daily mean air temperature under light treatment ID L* °C 

Tmean_L_H Daily mean air temperature under light treatment ID H* °C 

*IDs of light and nitrogen treatments are named by users and should be identical as the treatment IDs in 

greenhouse structural data. 
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3. Collecting plant data 

a. Measure leaf number, leaf elevation angle, leaf area and leaf area index non-

destructively using a 3D digitizer (Chen et al., 2014a) at a weekly interval 

(equates to roughly 100°Cd difference between two measurements under the 

greenhouse condition described above) to obtain static canopy structures at 

various developmental stages. 

b. Estimate age (t, °Cd) of individual leaves in the canopy. 

i. Calculate total growing degree days (GDDcanopy) from the day of 

transplanting into greenhouse (when leaf x appeared; in this example x = 3) 

to the day of measurement using Eqn 2-G1. 

ii. Divide GDDcanopy by the number of leaves appeared after transplanting 

(excluding the first x-1 leaves) to estimate phyllochron (°Cd per leaf, interval 

between appearance of successive leaves), assuming constant phyllochron 

during the experimental period: 

phyllochron = 𝐺𝐷𝐷canopy [total leaf number − (𝑥 − 1)]⁄   (Eqn 2-G2) 

iii. Estimate the age of leaf n using phyllochron in relation to leaf x: 

𝑡leaf 𝑛 = 𝐺𝐷𝐷canopy − (𝑛 − 𝑥) × phyllochron  (Eqn 2-G3) 

c. Measure gas exchange and relative chlorophyll content (SPAD value, used to 

estimate Chl non-destructively) to evaluate the performance of the functional 

model of photosynthetic protein turnover in the leaf. 

d. Conduct digitization and gas exchange measurement for the same plants within 

two to three days. 

Collect data to a .csv file (Figure 2-5 and Table 2-5 

 

e. Table 2-5; in this example ‘example_greenhouse_structure_data.csv’), which 

will be used in data analysis sections E-H for simulation and in silico test.  
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Figure 2-5. Format of greenhouse plant structural data file. See Table 2-5 for explanation for column 

name, description and unit used. 

 

Table 2-5. Column name, description and unit used in the greenhouse plant structural data file. 

Column name Description Unit 

ExpID ID of the experiment unitless 

MeasureDate Date of measurement unitless 

PlantID ID of the plant digitized unitless 

VarietyID ID of the variety digitized unitless 

LightID ID of the light treatment unitless 

NitrogenID ID of the nitrogen treatment unitless 

LeafNo Rank number of the leaf digitized unitless 

EA_degree Elevation angle of the leaf digitized 

 LA_cm2 Area of the leaf digitized cm
2 

 

 

Figure 2-6. Configurations for extracting leaf area and elevation angle from digitized data. A. 

Predefined positions of digitized points on the cucumber stem for a node, leaf axil, lamina and 

structure of triangles defined on the lamina. B. Leaf elevation angle (EA). 
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E. Digitizing plant structure and converting coordinates into structural data 

1. Digitize the structures of at least two representative plants for each treatment using a 

3D digitizer (Fastrak; Polhemus, Colchester, USA). 

2. Obtain the structural information as Cartesian coordinates in a standardized sequence 

of points on the individual plant organs from bottom to top of a plant (modified from 

Kahlen and Stützel, 2007; Wiechers et al., 2011b): 

a. Digitize ‘node 0’ at the base of the stem at its insertion point to the rockwool 

cube. 

b. Digitize ‘node 1’ opposite to the base of petiole of the first true leaf (‘Node’ in 

Figure 2-6A). 

c. Digitize ‘axil 1’ at the insertion point of the first true leaf to the stem (‘Axil’ in 

Figure 2-6A). 

d. Digitize ‘leaf 1’ with a predefined sequence and spatial arrangement of 13 points 

on the lamina surface (Figure 2-6). 

e. Continue digitizing in the sequence of ‘node n - axil n - leaf n’ until all leaves 

are digitized. 

f. Neglect flowers and fruits. 

3. Convert Cartesian coordinates into structural data. 

a. Leaf area: area sum of a predefined structure of triangles (Figure 2-6A). 

b. Leaf elevation angle (EA, °): the angle between the orientation of the leaf tip 

with respect to the base of the leaf (points 1 and 2 in Figure 2-6B) and the 

horizontal plane. 

4. Quantify the empirical relationships between leaf area index (LAI), EA and leaf age 

(t, °Cd) to simulate the dynamics of canopy structure in the in silico experiment, for 

example: 

LAI = 𝑙𝑎𝑖max {1 + exp[(𝑙𝑎𝑖t0 − 𝑡) 𝑙𝑎𝑖scal⁄ ]}⁄   (Eqn 2-G4) 

EA = 90 − 𝑒𝑠min × exp{−0.5 × [ln(𝑡 𝑒𝑠t0⁄ ) 𝑒𝑎scal⁄ ]2}  (Eqn 2-G5) 
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Data analysis 

R script 1 [data processing]  

 

Figure 2-7. Overview of R script 1 for data processing. Input data files for this script are 

‘example_chamber_harvest_data.csv’ and ‘example_chamber_gas_exchange_data.csv’ from growth 

chamber experiment. 

 

A. Estimate photosynthetic parameters using gas exchange data (Figure 2-7, # 1.3.0) 

1. Estimate leaf absorptance (α, unitless) using leaf chlorophyll concentration (Chl, 

mmol m
-2

) given by Evans (1993b): 

𝛼 = 𝐶ℎ𝑙 (𝐶ℎ𝑙 + 0.076)⁄   (Eqn 2-P2) 

2. Estimate electron transport rate (J, μmol e
-
 m

-2
 s

-1
) under various photosynthetic 

photon flux density (PPFD, µmol m
-2

 s
-1

): 

𝐽 = 𝑎𝑏𝑠 × 𝛽 × PPFD × 𝜙PSII  (Eqn 2-P3) 

where β (0.5, unitless) is the partitioning fraction of photons between photosystem II 

and I. 

3. Estimate maximum electron transport (Jmax) by least squares fitting to a 

nonrectangular hyperbola: 

𝐽 = {𝐽max + 𝜙 × PPFD − [(𝐽max + 𝜙 × PPFD)2 − 4𝜃 × 𝐽max × 𝜙 × PPFD]0.5}/(2𝜃)  

                                                                                                 (Eqn 2-P4) 

where ϕ (0.425 µmol e
–
 µmol

-1
 photon; Chen et al., 2014a) is the conversion 

efficiency of photons to J, and θ (0.7, unitless; Chen et al., 2014a) is a constant 

convexity factor describing the response of J to PPFD. 

4. Estimate daytime respiration rate (Rd, μmol CO2 m
-2

 s
-1

) using the linear portion (40 

≤ PPFD ≤ 100 µmol m
-2

 s
-1

) of the light response curve (Kok, 1948) since the light 

compensation point in cucumber leaf is observed at ca. 40 µmol photon m
-2

 s
-1

. 

5. Estimate mesophyll conductance to CO2 (gm, mol m
-2

 s
-1

) using the variable J method 

(Harley et al., 1992a): 
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𝑔𝑚 = 𝐴𝑛 {𝐶𝑖 − [Г∗ × (𝐽 + 8𝐴𝑛 + 8𝑅𝑑) (𝐽 − 4𝐴𝑛 − 4𝑅𝑑)⁄ ]}⁄   (Eqn 2-P5) 

where Г* is CO2 compensation point in the absence of mitochondrial respiration 

(43.02 µmol mol
-1

 for cucumber; Singsaas et al., 2003) and Ci is intercellular CO2 

concentration (µmol mol
-1

).  

6. Estimate chloroplastic CO2 concentration (Cc, μmol mol
-1

): 

𝐶c = 𝐶i − 𝐴n 𝑔m⁄   (Eqn 2-P6) 

7. Estimate maximum carboxylation rate (Vcmax, μmol CO2 m
-2

 s
-1

) using the one-point 

method (De Kauwe et al., 2016): 

𝑉cmax = (𝐴sat + 𝑅d) × (𝐶c + 𝐾m) (𝐶c − Г∗)⁄   (Eqn 2-P7) 

where Km (mmol mol
-1

) is given by Kc (404 μmol mol
-1

) and Ko (278 mmol mol
-1

), 

Michaelis-Menten constants of Rubisco for CO2 and O2, and Oc (210 mmol mol
-1

) is 

the mole fraction of O2 at the site of carboxylation: 

𝐾𝑚 = 𝐾𝑐 × (1 + 𝑂𝑐 𝐾𝑜⁄ )  (Eqn 2-P8) 

8. Parameterize empirical relationships between Rd, gm and leaf age (t, °Cd, estimated 

using Eqn 2-G1), mean daily photon integral over the last four days of leaf growth 

(DPI4d, mol m
-2

 d
-1

) and leaf photosynthetic nitrogen (Nph, mmol m
-2

) using: 

𝑅d = 𝑟max × DPI4d × exp(−𝑟g × DPI4d × 𝑡) + 𝑟m × DPI4d × 𝑡  (Eqn 2-P9) 

𝑔m = (𝑔mm × 𝑁ph + 𝑔mm0) × exp{−0.5 × ln[(𝑡 𝑔mt0⁄ ) 𝑔mscal⁄ ]2}  (Eqn 2-P10) 

B. Estimate photosynthetic nitrogen pools using photosynthetic parameters (Figure 2-7, # 

1.3.1) 

1. Estimate nitrogen involved in carboxylation (NV, mmol N m
-2

), electron transport (NJ, 

mmol N m
-2

) and light harvesting (NC, mmol N m
-2

) following Buckley et al. (2013): 

a. NV includes Rubisco and represents the nitrogen investment in carboxylation 

capacity: 

𝑁V = 𝑉cmax 𝜒𝑉⁄   (Eqn 2-M1a) 

b. NJ includes electron transport chain, photosystem II core and Calvin cycle 

enzymes other than Rubisco: 

𝑁J = 𝐽max 𝜒J⁄   (Eqn 2-M1b) 

c. NC includes photosystem I core and light harvesting complexes I and II: 
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𝑁C = (𝐶ℎ𝑙 − 𝑁J × 𝜒CJ) 𝜒C⁄   (Eqn 2-M1c) 

where χV (μmol CO2 mmol
-1

 N s
-1

) is the carboxylation capacity per unit Rubisco 

nitrogen, and χJ (μmol e
-
 mmol

-1
 N s

-1
) is the electron transport capacity per unit 

electron transport nitrogen. χCJ (mmol Chl mmol
-1

 N) and χC (mmol Chl mmol
-1

 N) 

are the conversion coefficients for chlorophyll per electron transport nitrogen and per 

light harvesting component nitrogen, respectively. 

2. Photosynthetic nitrogen (Nph, mmol N m
-2

) is defined as biologically active nitrogen 

in the proteins involved in photosynthetic functions, including nitrogen involved in 

carboxylation, electron transport and light harvesting: 

𝑁ph = 𝑁V + 𝑁J + 𝑁C  (Eqn 2-M2) 

3. Photosynthetic nitrogen partitioning fraction of a pool X (pX) is determined as the 

ratio of nitrogen in the pool X (NX, mmol N m
-2

) to Nph: 

𝑝𝑋 = 𝑁𝑋 𝑁ph⁄   (Eqn 2-M3) 

4. Output processed data to a .csv file (Figure 2-8; in this example 

‘chamber_processed_data.csv’) (Figure 2-7, # 1.4.0), which will be used in data 

analysis sections C and D for model parameterization. 
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Figure 2-8. Format of processed data file output from R script 1. This file will be used for model 

parameterization. 

 

R script 2 [model parameterization]  

 

Figure 2-9. Overview of R script 2 for model parameterization. Input data file for this script is 

‘chamber_processed_data.csv’ from script 1. 

 

C. Description of protein turnover model (Figure 2-9, # 2.3.0) 

The rate of change of a functional nitrogen pool NX is determined by the instantaneous 

protein synthesis rate (SX(t), mmol N m
-2

 °Cd
-1

) and degradation rate (DX(t), mmol N m
-2

 °Cd
-

1
) of the corresponding enzymes and protein complexes at a given leaf age (t, °Cd): 

d𝑁𝑋 d𝑡⁄ = 𝑆𝑋(𝑡) − 𝐷𝑋(𝑡)  (Eqn 2-M4) 

Protein synthesis as an age-dependent and zero-order process (Li et al., 2017), is described 

by a logistic function and independent of the current NX state: 
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𝑆𝑋(𝑡) = 2 𝑆max,𝑋 [1 + exp(𝑡 × 𝑡d,𝑋)]⁄   (Eqn 2-M5) 

where Smax,X (mmol N m
-2

 °Cd
-1

) is the maximum protein synthesis rate of NX which occurs 

at the early stage of leaf development. The constant td,X (°Cd
-1

) describes the relative 

decreasing rate of the protein synthesis over time. At age of 1/td,X, SX reduces to 53.8% of 

Smax,X.  

The degradation rate Dx is governed by first-order kinetics (Li et al., 2017) with a 

degradation constant Dr,X (°Cd
-1

): 

𝐷𝑋(𝑡) = 𝐷r,𝑋 × 𝑁𝑋(𝑡)  (Eqn 2-M6) 

The variable Smax,X is a function of daily leaf PAR interception (DPIinterceptLeaf, mol photon m
-2

 

d
-1

):  

𝑆max,𝑋 = 𝑆mm,𝑋 × 𝑘I,𝑋 × 𝐷𝑃𝐼interceptLeaf (𝑆mm,𝑋 + 𝑘I,𝑋 × DPIinterceptLeaf)⁄ × 𝑟N,𝑋 (Eqn 2-M7) 

where Smm,X (mmol N m
-2

 °Cd
-1

) is potential maximum protein synthesis rate and kI,X is rate 

constant describing the increase of Smax,X with light. The factor rN,X increases with nitrogen 

level in the nutrient solution (NS, mM) by a Michaelis-Menten constant, kN,X (mM): 

𝑟N,𝑋 = 𝑁S (𝑘N,𝑋 + 𝑁S)⁄   (Eqn 2-M8) 

D. Parameterizing protein turnover model using data from growth chamber experiment 

(Figure 2-9) 

Solve differential Eqn 2-M4- Eqn 2-M6 to obtain Smax,X, td,X and Dr,X in R using an algorithm 

programed with lsoda() function from ‘deSolve’ package and DEoptim() function from 

‘DEoptim’ package, which minimizes the sums of squares of the residuals between 

observations and simulations (Figure 2-9, # 2.4.0). There are three steps to quantify the 

parameters in Eqn 2-M5- Eqn 2-M8:  

1. Quantify td,X (Eqn 2-M5) and Dr,X (Eqn 2-M6) for each photosynthetic nitrogen pool 

using data of all environmental conditions, assuming Dr,X and td,X being species- and 

function-specific and not influenced by the light and nitrogen availabilities (Figure 2-

9, # 2.4.1). 

2. Quantify Smax,X (Eqn 2-M5) with the determined values of td,X, and Dr,X for each 

environmental condition (Figure 2-9, # 2.4.2). 

3. Determine Smm,X, kI,X (Eqn 2-M7) and kN,X (Eqn 2-M8) from Smax,X by nonlinear least 

squares fitting using nls() function from ‘stats’ package, and the standard errors (se) 

and p values (pv) for the estimates are calculated as well (Figure 2-9, # 2.4.3). 



Chapter 2 Modelling approach 

 

25 
 

4. Output results (Figure 2-9, # 2.5.0) to a .csv file (Figure 2-10; in this example 

‘parameterize_result_output.csv’), which will be used in data analysis sections E-H 

for simulation and in silico test. 

 

 

Figure 2-10. Format of parameterization result file output from R script 2. This file will be used for 

simulation and in silico test. 

 

R script 3 [simulation and in silico test] 

E. Simulating leaf photosynthesis (Figure 2-11, # 3.6.0) 

In order to evaluate daily canopy carbon assimilation, net photosynthesis rate (An, μmol CO2 

m
-2 

s
-1

) of individual leaves in the canopy should be simulated. An is defined as the minimum 

of RuBP carboxylation-limited (Ac, mmol CO2 m
-2

 s
-1

) and RuBP regeneration-limited (Aj, 

mmol CO2 m
-2

 s
-1

) net photosynthesis rate (Farquhar et al., 1980). The steady-state Ac can be 

solved analytically with Eqns 3-9b, 3-14 and 3-15, and Aj with Eqns 3-9c, 3-14 and 3-15 in 

chapter 3 with given values of leaf-to-air vapor pressure deficit (D, kPa), atmospheric CO2 

concentration (Ca, μmol mol
-1

), photosynthetic photon flux density (PPFD, µmol m
-2

 s
-1

) at 

leaf level and photosynthetic parameters. 

1. Leaf level PPFD is simulated (Figure 2-11, # 3.4.1) following Beer-Lambert’s law 

(Monsi and Saeki, 2005) with canopy light extinction coefficient (k) and leaf area 

index (LAI) and adjusted by the cosine of leaf elevation angle (EA, °), which are 

estimated with leaf age using Eqn 2-G4 and Eqn 2-G5 (Figure 2-11, # 3.3.0): 

PPFD = PPFDaboveCanopy × exp(−𝑘 × LAI) × cos(EA)  (Eqn 2-P11) 

where diurnal PPFD above the canopy (PPFDaboveCanopy, μmol m
-2

 s
-1

) at a given time 

(thour, h) during the day is calculated by a simple cosine bell function (Kimball and 

Bellamy, 1986) with daily PAR integral above the canopy (DPIaboveCanopy, mol m
-2

 d
-1

) 

and day length (DL, h): 

PPFDaboveCanopy = DPIaboveCanopy ×
𝜋

2𝐷𝐿
×

106

3600
× cos [

𝜋×(𝑡hour−12)

𝐷𝐿
]  (Eqn 2-P12) 

2. Photosynthetic parameters Jmax, Vcmax, α, Rd and gm 
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a. Electron transport rate Jmax under a given PPFD is calculated using 

Eqn 2-P4. 

b. Carboxylation rate (Vc, μmol CO2 m
-2

 s
-1

) is calculated based on the 

amount of activated Rubisco under a given PPFD (Qian et al., 2012): 

𝑉c = 𝑉cmax × {0.31 +
0.69

1+exp[−0.009×(𝑃𝑃𝐹𝐷−500)]
}  (Eqn 2-P13) 

c. abs is calculated using Eqn 2-P2. 

d. Rd and gm are simulated using empirical relationships Eqn 2-P9 and 

Eqn 2-P10 (Figure 2-11, # 3.3.1). 

 

 

Figure 2-11. Overview of R script 3 for simulation and in silico test. Input data files for this script are 

‘example_greenhouse_structure_data.csv’ and ‘example_greenhouse_environment_data.csv’ from 

greenhouse experiment and ‘parameterize_result_output.csv’ from script 2. 
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F. Simulating daily canopy carbon assimilation (Figure 2-11, # 3.6.0) 

Daily canopy carbon assimilation during daytime (DCA, mol d
-1

) on day d is simulated with 

input data of: 

1. environmental information (from the appearance the leaf three until day d): Tmean 

(Eqn 2-G1), DPIaboveCanopy (Eqn 2-P10), and nitrogen concentration in the supply 

solution and rockwool slabs;  

2. greenhouse canopy characteristics (on day d): leaf area (digitized data, Figure 2-6A) 

and leaf age (Eqn 2-G1- 2-G3; Figure 2-11, # 3.5.1). 

Each leaf in a canopy is first simulated for its photosynthetic nitrogen pools until day d using 

Eqn 2-M4- Eqn 2-M8 (Figure 2-11, # 3.7.0 and # 3.8.0) and photosynthetic parameters using 

Eqn 2-M1a- Eqn 2-M1c. DPIinterceptLeaf during the growth is simulated using Eqn 2-P11 

(Figure 2-11, # 3.5.1). The mean value of DPIaboveCanopy during the plant growth (from 

transplanting to measurement day) is used as DPIaboveCanopy on day d to simulate DCA. 

Nitrogen level in the nutrient solution (NS) is assumed to be the mean value of nitrogen 

concentration in the supply solution and rockwool slabs (Figure 2-11, # 3.4.1). In order to 

test the effect of incoming light condition on day d on the optimality of Nph distribution and 

partitioning, DPIaboveCanopy is multiplied by a factor ‘DPI multiplier’ assigned by users (Figure 

2-11, # 3.7.2 and # 3.8.3). 

Leaf net photosynthesis is simulated for a time step of 0.1 h on day d, and summed up for 

every 0.1 h over the daytime to obtain daily leaf carbon assimilation (DLA, mol d
-1

). DCA is 

calculated as the sum of DLA of all leaves in the canopy. 

G. In silico experiment to test the optimality of nitrogen distribution in the canopy (Figure 2-

11) 

To evaluate the effects of between-leaf distribution of Nph on DCA, a distribution factor fd is 

introduced into Eqn 2-M5 to create variations in the rate of protein synthesis (Figure 2-11, # 

3.7.0): 

𝑆𝑋(𝑡) = 2 𝑆max,𝑋 [1 + exp(𝑡 × 𝑡d,𝑋 × 𝑓d)]⁄   (Eqn 2-S1) 

A control condition is defined with fd = 1. Increasing fd accelerates the decrease in the rate of 

protein synthesis and enhances acropetal Nph reallocation, but it also reduces total Nph in a 

canopy (Ncanopy). To obtain the leaf photosynthetic nitrogen content (Nleaf,i, mmol N in leaf i) 

with comparable Ncanopy, simulated Nleaf,i with fd = n (denoted as N’leaf,i) is adjusted 

proportionally to the ratio between Ncanopy obtained with fd = 1 and Ncanopy obtained with fd = 

n: 

𝑁leaf,𝑖(𝑓d = 𝑛) = 𝑁′leaf,𝑖(𝑓d = 𝑛) × [𝑁canopy(𝑓d = 1) 𝑁canopy⁄ (𝑓d = 𝑛)]  (Eqn 2-S2) 
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Photosynthetic nitrogen partitioning fraction of a pool X in leaf i (pX,i) is set equal to the 

control value: 

𝑝𝑋,𝑖 = 𝑁𝑋,𝑖(𝑓d = 1) 𝑁ph,𝑖⁄ (𝑓d = 1)  (Eqn 2-S3) 

These adjustments assure the same amount of Ncanopy while changing the distribution pattern. 

The factor fd is varied from 0.5 to 5.0 (Figure 2-11, # 3.7.1), which gives values of Nph 

comparable to those observed in cucumber leaves (< 150 mmol N m
-2

). Values of DCA 

produced by various fd (Figure 2-11, # 3.7.2) are then compared with the control DCA (fd = 1) 

under a given environmental condition and output (Figure 2-11, # 3.7.3) to a .xlsx file (in this 

example ‘Test_fd_result.xlsx’) and plotted (Figure 2-11, # 3.7.4 and Figure 2-12). Detailed 

results with Nph and pX at leaf level can be output (Figure 2-11, # 3.7.5) to a .xlsx file (in this 

example ‘Test_fd_result_detailed.xlsx’). 

 

 

Figure 2-12. Example results of percentage change in daily canopy carbon assimilation during 

daytime (DCA, mol d
-1

) with various values of photosynthetic nitrogen (Nph) distribution factor fd 

under a given daily photosynthetically active radiation integral above the canopy (DPI, mol m
-2

 d
-1

). 

A. DPI = mean DPI during plant growth multiplied by 0.25. B. DPI = mean DPI during plant growth. 

C. DPI = mean DPI during plant growth multiplied by 2. Positive change in DCA resulted from 

varying fd indicates that the control Nph distribution (fd = 1) is sub-optimal. 

 

H. In silico experiment to test the optimality of nitrogen partitioning in the leaf (Figure 2-11) 

To evaluate the effects of within-leaf partitioning of Nph on DCA, a partitioning factor fp,X is 

introduced into Eqn 2-M7 to modify maximum protein synthesis Smax,X, in order to create 

variations in partitioning pattern between the three photosynthetic nitrogen pools (Figure 2-

11, # 3.8.0): 

𝑆max,𝑋 = [𝑆mm,𝑋 × 𝑓p,𝑋 × 𝑘I,𝑋 × 𝐼Ld (𝑆mm,𝑋 × 𝑓p,X + 𝑘I,𝑋 × 𝐼Ld)⁄ ] × 𝑟N,𝑋  (Eqn 2-S4) 
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A control condition is defined by fp,X = 1. An increase in fp,X results in a higher rate of 

synthesis of NX and increases the partitioning to pool X. The potential maximal protein 

synthesis rate for pool X (Smm,X) is modified by a factor fp,X, ranging from 0.2 to 2.0, to find 

the optimal within-leaf Nph partitioning between functions which maximizes DCA (Figure 2-

11, # 3.8.3). Partitioning pattern which maximizes DCA under a given environmental 

condition is identified as ‘optimal’ and then compared with the control DCA (fp,X = 1), and 

the results are output (Figure 2-11, # 3.8.4) a .xlsx file (in this example ‘Test_fp_result.xlsx’) 

and plotted (Figure 2-11, # 3.8.5 and Figure 2-13). Detailed results with optimal Nph 

partitioning at leaf level can be output (Figure 2-11, # 3.8.6) to a .xlsx file (in this example 

‘Test_fp_result_detailed.xlsx’). 

 

 

Figure 2-13. Example results of percentage change in daily canopy carbon assimilation during 

daytime (DCA, mol d
-1

) with various values of photosynthetic nitrogen (Nph) partitioning factor fp,X 

under mean incoming daily photosynthetically active radiation integral above the canopy (DPI, mol 

m
-2

 d
-1

) during plant growth multiplied by DPI multiplier between 0.25 and 2.0. Positive change in 

DCA resulted from optimal fp,X indicates that the control Nph partitioning (fp,X = 1) is sub-optimal. In 

this example, Nph partitioning of the canopy grown under light treatment H and nitrogen treatment L 

is sub-optimal under its growing light environment, and DCA can be improved almost 15% if Nph 

partitioning is optimized. 
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Chapter 3  
Model parameterization and evaluation 

Environmental triggers for photosynthetic protein turnover determine the 

optimal nitrogen distribution and partitioning in the canopy 

 

Abstract  

Plants acclimatize their photosynthetic functions in leaves constantly to the fluctuating light, 

thereby optimizing the use of photosynthetic nitrogen (Nph) at the canopy level. To 

investigate the complex interplay between external signals during the acclimation processes, 

a mechanistic model based on the concept of protein turnover (synthesis and degradation) 

was proposed and parameterized using cucumber grown under nine combinations of nitrogen 

and light in growth chambers. Integrating this dynamic model into a multilayer canopy model 

provided accurate predictions of photosynthetic acclimation of greenhouse cucumber 

canopies grown under high (HN) and low (LN) nitrogen supply in combination with day-to-

day fluctuations in light at two different levels. This allowed us to quantify the degree of 

optimality of canopy nitrogen use for maximizing canopy carbon assimilation, which was 

influenced by Nph distribution along canopy depth or Nph partitioning between functional 

pools. Our analyses suggest that Nph distribution is close to optimum and Nph reallocation is 

more important under LN. Nph partitioning is only optimal under the light level similar to the 

average light intensity during acclimation, meaning that day-to-day light fluctuations 

inevitably result in sub-optimal Nph partitioning. Our study provides insights into 

photoacclimation and can be applied for crop model improvement. 
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Introduction  

Acclimation of leaf traits to fluctuating environments is a key mechanism to maximize 

fitness (Walters, 2005; Athanasiou et al., 2010). To maximize canopy carbon gain, dynamic 

modifications of photosynthetic traits to track heterogeneous light distribution within the 

canopy are crucial (Retkute et al., 2015), especially for herbaceous species with continuously 

leaf-forming nature (Niinemets et al., 2015). One of the most important strategies in 

photoacclimation is to maintain efficient utilization of limited resources in the photosynthetic 

apparatus, e.g., nitrogen, by continuous modifications of (1) between-leaf distribution along 

the canopy depth and (2) within-leaf partitioning between photosynthetic functions according 

to local light availability (Evans, 1989a).  

Vertical nitrogen distribution in response to light has been intensively studied (Werger and 

Hirose, 1991; Anten et al., 1995; Dreccer et al., 2000; Moreau et al., 2012; Hikosaka, 2016). 

Nitrogen distribution was reported to closely follow the light gradient and thus approach its 

optimum in wheat stands (Dreccer et al., 2000). However, this relationship has not been 

found in other studies (Moreau et al., 2012; Hikosaka et al., 2016). In fact, many studies 

demonstrated that nitrogen distribution failed to track the within-canopy light gradient 

optimally due to a delay in nitrogen reallocation in the lower canopy layer and an 

underinvestment in the upper layer (Field, 1983; Evans, 1993b; Hollinger, 1996; Hirose et 

al., 1997; Meir et al., 2002; Wright et al., 2006; Hikosaka, 2016). This discrepancy between 

optimum and reality could be explained by physiological limitations and the cost of nitrogen 

reallocation (Hikosaka, 2016; Kitao et al., 2018) or might result from incorrect predictions. 

In some cases (e.g., Hikosaka, 2016; Kitao et al., 2018), the optimal nitrogen distribution 

which followed the within-canopy light gradient estimated by Beer-Lambert’s law was 

predicted extremely high in the upper canopy which might not be biologically reachable. 

This could result from the over-simplification of models in three aspects: (1) neglecting the 

effects of variations in the structural characteristics, e.g., leaf elevation angle (Falster and 

Westoby, 2003), on light interception of the leaves; (2) neglecting age-dependent 

modifications and limitations during leaf development and ageing (Niinemets et al., 2015; 

Niinemets, 2016); (3) assuming a linear relationship between photosynthetic capacity and 

photosynthetic nitrogen per unit leaf area instead of considering photoacclimation in 

functional nitrogen partitioning. 
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Optimizing functional partitioning within the leaf is particularly of great importance because 

it improves carbon gain by enhancing photosynthetic nitrogen use efficiency (PNUE, Zhu et 

al., 2010). Photosynthesis rate is determined by the limited rate of RuBP carboxylation and 

RuBP regeneration in the photosynthetic machinery (Farquhar et al., 1980). Besides driving 

photosynthesis, light also triggers fine adjustments in nitrogen investment between the (1) 

RuBP carboxylation (Rubisco), (2) RuBP regeneration (electron transport) and (3) light 

harvesting functions (Yamori et al., 2010; Trouwborst et al., 2011; Vialet-Chabrand et al., 

2017b). The ability and significance of photoacclimation in functional nitrogen partitioning 

were empirically addressed in both light-demanding and shade-tolerant species (Evans, 

1993b; Hikosaka and Terashima, 1996; Pons and Anten, 2004; Hikosaka, 2005; Trouwborst 

et al., 2011). Recently, with a modelling approach, it was predicted that a decreasing 

investment in the light harvesting function can increase canopy PNUE (Song et al., 2017). 

However, genetic and physiological controls of photoacclimatory processes by 

environmental triggers are still not described mechanistically. 

The degree of acclimation under a given environment is limited by the previous 

environmental conditions (Walters, 2005; Niinemets et al., 2006) along with continuous age-

dependent modifications in physiological traits (Niinemets, 2016). This emphasizes that 

static models which do not consider the dynamics of plant growth and environmental 

fluctuations, may not be sufficiently precise in predicting acclimation behavior. Prieto et al. 

(2012) proposed an empirical model describing the combined effects of leaf age and light on 

leaf nitrogen economics for a grapevine canopy and demonstrated that the mean daily light 

integral over the previous ten days explained 73% of the variation in nitrogen per unit leaf 

area. Since environmental acclimation and developmental (genetic control of leaf ageing) 

acclimation are regulated distinctively (Athanasiou et al., 2010), it is possible to integrate 

internal (age) and external (environment) triggers into a mechanistic model for better 

understanding of the developmental and environmental effects on photosynthetic 

acclimation.  

Acclimation processes in leaf functioning are regulated by constant updates of protein 

content as a result of protein turnover, driven by the concurrent actions of degradation and 

synthesis (Li et al., 2017). In growing leaves, photosynthetic proteins account for the highest 

cost in protein turnover (Li et al., 2017). At the expense of energy costs, protein turnover is 
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necessary for adjusting protein levels in line with external triggers. It was experimentally 

shown that leaf Rubisco content increased with light (Yamori et al., 2010) and nitrogen 

supply level (Yamori et al., 2011a) and exhibited an evolution with leaf age which could be 

interpreted by Rubisco turnover (Suzuki et al., 2001; Ishimaru et al., 2001; Irving and 

Robinson, 2006). Based on the concept of protein turnover, Thornley (1998) proposed a 

mechanistic model predicting reasonable dynamics of photosynthetic acclimation at the leaf 

level. We refined this model to describe the dynamics of different photosynthetic nitrogen 

pools and to quantify the developmental and environmental effects of light and nitrogen 

availabilities on leaf acclimation. The optimality of nitrogen distribution and partitioning at 

canopy scale was evaluated by integrating this model into a multilayer model considering the 

structural characteristics of a cucumber canopy. This aims (1) to test whether the protein 

turnover can be a mechanistic explanation of the photosynthetic acclimation under dynamic 

environmental conditions; (2) to understand the regulatory mechanism of environmental 

triggers on the degree of optimality at the canopy level in terms of maximizing PNUE and 

canopy carbon assimilation which can be considered as an indicator of general fitness of the 

plants. 

Materials and methods  

Modelling the dynamics of photosynthetic protein turnover  

Photosynthetic nitrogen (Nph, mmol N m
-2

) is defined as biologically active nitrogen in the 

proteins involved in photosynthetic functions, i.e., carboxylation, electron transport and light 

harvesting. Leaf Nph is calculated as the sum of nitrogen in the carboxylation pool (NV), 

electron transport pool (NJ) and light harvesting pool (NC, Trouwborst et al., 2011): 

𝑁ph = 𝑁V + 𝑁J + 𝑁C  (Eqn 3-1) 

where NV includes only Rubisco and represents the nitrogen investment in carboxylation 

capacity. NJ includes electron transport chain, photosystem II core and Calvin cycle enzymes 

other than Rubisco. NC includes photosystem I core and light harvesting complexes I and II. 

Functional pools NV, NJ and NC are estimated from the maximum carboxylation rate (Vcmax, 

μmol CO2 m
-2

 s
-1

), maximum electron transport (Jmax, μmol e
-
 m

-2
 s

-1
) and leaf chlorophyll 

(Chl, mmol Chl m
-2

), respectively (Buckley et al., 2013): 
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𝑁V = 𝑉cmax 𝜒𝑉⁄   (Eqn 3-2a) 

𝑁J = 𝐽max 𝜒J⁄   (Eqn 3-2b) 

𝑁C = (𝐶ℎ𝑙 − 𝑁J × 𝜒CJ) 𝜒C⁄   (Eqn 3-2c) 

where χV (μmol CO2 mmol
-1

 N s
-1

) is the carboxylation capacity per unit Rubisco nitrogen, 

and χJ (μmol e
-
 mmol

-1
 N s

-1
) is the electron transport capacity per unit electron transport 

nitrogen. χCJ (mmol Chl mmol
-1

 N) and χC (mmol Chl mmol
-1

 N) are the conversion 

coefficients for chlorophyll per electron transport nitrogen and per light harvesting 

component nitrogen, respectively. Photosynthetic nitrogen partitioning fraction of a pool X 

(pX) is determined as the ratio of nitrogen in the pool X (NX, mmol N m
-2

) to Nph: 

𝑝𝑋 = 𝑁𝑋 𝑁ph⁄   (Eqn 3-3) 

The rate of change of NX is determined by the instantaneous protein synthesis rate [SX(t), 

mmol N m
-2

 °Cd
-1

] and degradation rate [DX(t), mmol N m
-2

 °Cd
-1

] of the corresponding 

enzymes and protein complexes at a given leaf age (t, °Cd): 

d𝑁𝑋 d𝑡⁄ = 𝑆𝑋(𝑡) − 𝐷𝑋(𝑡)  (Eqn 3-4) 

Protein synthesis as an age-dependent and zero-order process (Li et al., 2017), is described 

by a logistic function and independent of the current NX state: 

𝑆𝑋(𝑡) = 2 × 𝑆max,𝑋 [1 + exp(𝑡 × 𝑡d,𝑋)]⁄   (Eqn 3-5) 

where Smax,X (mmol N m
-2

 °Cd
-1

) is the maximum protein synthesis rate of NX which occurs at 

the early stage of leaf development (Figure S3-1). The constant td,X (°Cd
-1

) describes the 

relative decreasing rate of the protein synthesis over time (see Table 3-1 for the coefficients 

used in the protein turnover model). At age of 1/td,X, SX reduces to 53.8% of Smax,X.  

The degradation rate DX is governed by first-order kinetics (Verkroost and Wassen, 2005; Li 

et al., 2017) with a degradation constant Dr,X (°Cd
-1

): 

𝐷𝑋(𝑡) = 𝐷r,𝑋 × 𝑁𝑋(𝑡)  (Eqn 3-6) 

The variable Smax,X in Eqn 3-5 is a function of daily light interception (ILd, mol photons m
-2

 d
-

1
):  

𝑆max,𝑋 = [𝑆mm,𝑋 × 𝑘I,𝑋 × 𝐼Ld (𝑆mm,𝑋 + 𝑘I,𝑋 × 𝐼Ld)⁄ ] × 𝑟N,𝑋  (Eqn 3-7) 
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where Smm,X (mmol N m
-2

 °Cd
-1

) is the potential maximum protein synthesis rate and kI,X is 

the rate constant describing the increase of Smax,X with ILd. The factor rN,X increases with 

nitrogen level in the nutrient solution (NS, mM) by a Michaelis-Menten constant, kN,X (mM): 

𝑟N,𝑋 = 𝑁S (𝑘N,𝑋 + 𝑁S)⁄   (Eqn 3-8) 

 

 

Table 3-1. List of coefficients used in the protein turnover model for photosynthetic nitrogen pools, 

carboxylation pool NV, electron transport pool NJ and light harvesting pool NC. These coefficients 

were estimated from the growth chamber experiment. Model variables and other coefficients are 

listed in Table 3-2 and Table 3-3. 

Description Coefficient Unit Pool NV Pool NJ Pool NC 

Degradation constant (Eqn 3-6) Dr °Cd
-1 0.0195 0.0195 0.0091 

Increase rate constant of Smax with 

ILd (Eqn 3-7) 
kI 

mmol N m
2
 

ground d m
-2

 LA 

°Cd
-1

 mol
-1

 photon 
0.173 0.130 0.234 

Michaelis-Menten constant 

relating NS to Smax (Eqn 3-8) 
kN mM 0.536 0.420 0.316 

Potential maximum synthesis rate 

(Eqn 3-7) 
Smm mmol N m

-2
 °Cd

-1 1.122 0.852 0.248 

Decreasing constant of synthesis 

rate (Eqn 3-5) 
td °Cd

-1 0.001 0.002 0.001 

 

 

 

Table 3-2. List of model input and output variables. 

Description Variable Unit Equation Type 

Net photosynthesis rate A μmol CO2 m
-2 

s
-1

 3-9a output 

RuBP carboxylation-limited A Ac μmol CO2 m
-2 

s
-1

 3-9b output 

RuBP regeneration-limited A Aj μmol CO2 m
-2 

s
-1

 3-9c output 

Leaf absorptance α - 3-13 output 

Atmospheric CO2 concentration  Ca μmol CO2 mol
-1

 - input 

Chloroplastic CO2 concentration  Cc μmol CO2 mol
-1

 3-14 output 

Leaf chlorophyll per unit area  Chl mmol m
-2

 3-2c output 

Leaf-to-air vapor pressure deficit D kPa - input 

Protein degradation rate of N pool X DX °Cd
-1

 3-6 output 
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Description Variable Unit Equation Type 

Factor for creating variation in N 

distribution 
fd - 3-18 Input 

Factor for creating variation in N 

partitioning 
fp - 3-19 input 

Mesophyll conductance to CO2 gm mol CO2 m
-2

 s
-1

 3-16 output 

Maximum gm gmmax mol CO2 m
-2

 s
-1

 3-17 output 

Stomatal conductance to CO2 gsc mol CO2 m
-2

 s
-1

 3-15 output 

PPFD at leaf  ILc 
μmol photons m

-2 

s
-1

 
- input 

Daily photosynthetic photon integral at 

leaf 
ILd 

mol photons m
-2 

d
-1

 
- input 

Mean ILd during the last four days ILd4d 
mol photons m

-2 

d
-1

 
- input 

Electron transport rate J μmol e
-
 m

-2 
s

-1
 3-12 output 

Maximum electron transport rate Jmax μmol e
-
 m

-2 
s

-1
 3-2b output 

Leaf area  LA m
2
 - input 

Total leaf photosynthetic N content in 

the canopy 
Ncanopy mmol N  - output 

Leaf photosynthetic N content Nleaf mmol N  - output 

Leaf photosynthetic N per unit area Nph mmol N m
-2 

3-1 output 

N concentration of nutrient solution Ns mM - input 

Concentration of N pool X NX mmol N m
-2

 3-4 output 

Concentration of N pool of light 

harvesting 
NC mmol N m

-2
 3-4 output 

Concentration of N pool of electron 

transport 
NJ mmol N m

-2
 3-4 output 

Concentration of N pool of 

carboxylation 
NV mmol N m

-2
 3-4 output 

Partitioning fraction of N pool X pX - 3-3 output 

Daytime respiration rate in the absence 

of photorespiration 
Rd μmol CO2 m

-2 
s

-1
 3-10 output 

Reduction factor of protein synthesis 

depending on N availability 
rN - 3-8 output 

Maximum protein synthesis rate Smax mmol N m
-2

 °Cd
-1

 3-7 output 

Protein synthesis rate of N pool X SX mmol N m
-2

 °Cd
-1

 3-5 output 

Leaf age  t °Cd - input 

Carboxylation rate  Vc μmol CO2 m
-2 

s
-1

 3-11 output 

Maximum carboxylation rate  Vcmax μmol CO2 m
-2 

s
-1

 3-2a output 
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Table 3-3. List of model coefficients. Standard errors (SE) are indicated in the parentheses. 

Description Coefficient Unit Value (SE) Reference 

Conversion coefficient 

of chlorophyll per light 

harvesting N 

χC mmol Chl mmol
-1

 N 0.03384 
Buckley et 

al., 2013 

Conversion coefficient 

of chlorophyll per 

electron transport N  

χCJ mmol Chl mmol
-1

 N 4.64·10
-4

 
Buckley et 

al., 2013 

Conversion coefficient 

of electron transport 

capacity per electron 

transport N  

χJ μmol e
-
 mmol

-1
 N s

-1
 9.48 

Buckley et 

al., 2013 

Conversion coefficient 

of carboxylation 

capacity per Rubisco N 

χV 
μmol CO2 mmol

-1
 N 

s
-1

 
4.49 

Buckley et 

al., 2013 

Minimum gsc g0 mol CO2 m
-2

 s
-1

 0.009 
Chen et al., 

2014a 

Species-specific 

coefficient of gsc 
g1 - 3.51 

Chen et al., 

2014a 

CO2 compensation point 

in the absence of dark 

respiration  

Γ
*
 μmol CO2 mol

-1
 43.02 

Singsaas et 

al., 2003 

Michaelis–Menten 

constant of Rubisco for 

CO2  

Kc μmol CO2 mol
-1

 404 
Chen et al., 

2014a 

Michaelis–Menten 

constant of Rubisco for 

O2 

Ko mmol O2 mol
-1

 278 
Chen et al., 

2014a 

O2 concentration at the 

site of carboxylation  
O mmol O2 mol

-1
 210 

Chen et al., 

2014a 

Coefficient relating Nph 

to gmmax 
rgm 

mol CO2 mmol
-1

 N s
-

1
 

1.64·10
-3

 

(5.27·10
-4

) 
- 

Minimum gmmax rgm0 mol CO2 m
-2 

s
-1

 
0.140 

(0.0345) 
- 

Coefficient related to 

the decrease in Rd by 

growth respiration 

Rg 
m

2
 d °Cd

-1
 mol

-1
 

photon 

4.16∙10
-4

 

(4.52∙10
-5

) 
- 

Coefficient related to 

the increase in Rd by 

maintenance respiration 

Rm 
μmol CO2 d °Cd

-1
 

mol
-1

 photons s
-1

 

1.88∙10
-4

 

(1.61∙10
-5

) 
- 

Coefficient relating ILd 

to maximum Rd 
Rmax 

μmol CO2 μmol
-1

 

photons s
-1

 

0.308 

(0.028) 
- 
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Description Coefficient Unit Value (SE) Reference 

Conversion efficiency 

of photons to J 
𝜙 

µmol e
–
 µmol

-1
 

photons
 

0.340 

(2.5∙10
-3

) 
- 

Convexity coefficient θ - 0.7 
Chen et al., 

2014a 

Leaf age when gmmax 

occurs 
tgm °Cd

 
121 (8.1) - 

Standard deviation of 

the dependence of gm – t 

curve 

vgm 
- 0.860 

(0.063) 
- 

 

Modelling leaf photosynthesis 

Photosynthetic parameters, Vcmax, Jmax and Chl, were estimated from functional nitrogen 

pools, NV, NJ and NC, using Eqn 3-2a- Eqn 3-2c. The net photosynthesis rate (An, μmol CO2 

m
-2 

s
-1

) is defined as the minimum of RuBP carboxylation-limited (Ac, mmol CO2 m
-2

 s
-1

) and 

RuBP regeneration-limited (Aj, mmol CO2 m
-2

 s
-1

) net photosynthesis rate (Farquhar et al., 

1980): 

𝐴n = min (𝐴c, 𝐴j)  (Eqn 3-9a) 

𝐴c = 𝑉c × (𝐶c − 𝛤∗)/[𝐶c + 𝐾c(1 + 𝑂/𝐾o)] − 𝑅d  (Eqn 3-9b) 

𝐴j = 𝐽 × (𝐶c − 𝛤∗)/(4𝐶c + 8𝛤∗) − 𝑅d  (Eqn 3-9c) 

where Cc (μmol CO2 mol
-1

) is the chloroplastic CO2 concentration and Γ* (μmol CO2 mol
-1

) 

is the CO2 compensation point in the absence of dark respiration. Kc (μmol CO2 mol
-1

) and 

Ko (mmol O2 mol
-1

) are Michaelis-Menten constants of Rubisco for CO2 and O2, 

respectively. O (mmol O2 mol
-1

) is the O2 concentration at the site of carboxylation. The 

variable Vc (μmol CO2 m
-2 

s
-1

) is carboxylation rate and J (μmol e
-
 m

-2 
s

-1
) is electron 

transport rate. Daytime respiration rate Rd (μmol CO2 m
-2 

s
-1

) is assumed to vary with t and 

the mean ILd during the previous four days (ILd4d): 

𝑅d(𝑡) = 𝑅max × 𝐼Ld4d × exp(−𝑅g × 𝐼Ld4d × 𝑡) + 𝑅m × 𝐼Ld4d × 𝑡  (Eqn 3-10) 

where Rmax (μmol CO2 d mol
-1

 photons s
-1

) relates ILd4d to the maximum Rd, Rg (m
2
 d °Cd

-1
 

mol
-1

 photon) influences the decrease in the growth respiration, and Rm (μmol CO2 d °Cd
-1

 

mol
-1

 photon s
-1

) affects the increase in the maintenance respiration with t.  
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Vc and J are calculated from Vcmax and Jmax, respectively, depending on the PPFD incident on 

the leaf (ILc, µmol photons m
-2

 s
-1

) according to Qian et al. (2012) and Ögren and Evans 

(1993), respectively: 

𝑉c = 𝑉cmax × {0.31 +
0.69

1+exp[−0.009×(𝐼Lc−500)]
}  (Eqn 3-11) 

𝐽 = {𝜙 × 𝛼 × 𝐼Lc + 𝐽max − [(𝜙 × 𝛼 × 𝐼Lc + 𝐽max)2 − 4𝜃 × 𝐽max × 𝜙 × 𝛼 × 𝐼Lc]0.5}/(2𝜃)   

(Eqn 3-12) 

where 𝜙  (µmol e
–
 µmol photons

-1
) is the conversion efficiency of photons to J, and θ 

(unitless) is a constant convexity factor describing the response of J to ILc. Leaf absorptance 

(α, unitless) is related to Chl (Evans, 1993b): 

𝛼 = 𝐶ℎ𝑙/(𝐶ℎ𝑙 + 0.076)  (Eqn 3-13) 

Chloroplastic CO2 concentration depends on the steady-state of stomatal conductance (gsc, 

mol CO2 m
-2

 s
-1

) and mesophyll conductance (gm, mol CO2 m
-2

 s
-1

) to CO2: 

𝐶c = 𝐶a − 𝐴n × [(𝑔sc + 𝑔m) (𝑔sc × 𝑔m)⁄ ]  (Eqn 3-14) 

where Ca (μmol CO2 mol
-1

) is atmospheric CO2 concentration, and gsc is calculated with 

species-specific constants of stomatal conductance, g0 and g1 (Chen et al., 2014a), and leaf-

to-air vapor pressure deficit (D, kPa, Medlyn et al., 2011): 

𝑔sc = 𝑔0 + (1 + 𝑔1 √𝐷⁄ ) × 𝐴n 𝐶a⁄   (Eqn 3-15) 

Mesophyll conductance is expressed as a log-normal function of t (Chen et al., 2014a), where 

gm first increases during leaf development and decreases during ageing (Flexas et al., 2008): 

𝑔m = 𝑔mmax × exp {−0.5 × [ln(𝑡/𝑡gm)/𝑣gm]
2

}  (Eqn 3-16) 

where tgm is the t when the maximum gm (gmmax, mol CO2 m
-2

 s
-1

) occurs and vgm is the 

standard deviation of the curve; gmmax is linearly related to Nph, since a similar relationship 

has been reported for C3 plants (e.g., Yamori et al., 2011a): 

𝑔mmax = 𝑟gm × 𝑁ph + 𝑟gm0  (Eqn 3-17) 

where rgm (mol CO2 mmol
-1

 N s
-1

) describes the rate of increase of gmmax in relation to Nph, 

and rgm0 (mol CO2 m
-2

 s
-1

) is the minimum gmmax.  
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The steady-state Ac was solved analytically with Eqn 3-9b, Eqn 3-14 and Eqn 3-15, and Aj 

with Eqn 3-9c, Eqn 3-14 and Eqn 3-15, following Moualeu-Ngangue et al. (2016). Model 

variables and coefficients are listed in Tables 3-1, 3-2 and 3-3. 

Growth chamber experiment to investigate the dynamics of photosynthetic protein turnover 

Cucumber (Cucumis sativus L. ‘Aramon’, Rijk Zwaan, De Lier, The Netherlands) plants 

were grown in two experiments at the Institute of Horticultural Production Systems, Leibniz 

Universität Hannover, Germany (latitude 52.4°N). 

One growth chamber experiment was conducted from 21 October to 9 December 2016 with 

factorial combinations of three light and three nitrogen supply levels to parameterize the 

photosynthetic protein turnover model (see below). Cucumber seeds were sown in rock-wool 

cubes (36 × 36 × 40 mm) on 5 October. Eight days later, seedlings were transplanted to larger 

rock-wool cubes (10 × 10 × 6.2 cm) for another eight days until the second true leaves 

appeared (leaf length ≥ 3 cm). Plants were transferred into 25-L plastic containers (one plant 

per container) on 21 October and cultivated hydroponically with a 12-h light period and 24
°
C 

day/ 20
°
C night air temperature. Three nitrogen levels, 9.6, 4.6 and 2.3 mM, were supplied 

using Ca(NO3)2 and Ferty Basisdünger 1 (Planta GmbH, Regenstauf, Germany, 5.2 mM K, 

1.3 mM P, 0.82 mM Mg in working solution). Nutrient solution was replaced weekly and 

adjusted to pH 6.0-6.5 two times a week. Three constant light conditions with daily 

photosynthetic photon integrals (DPI) of 28.9, 14.2 and 4.4 mol photons m
-2

 d
-1

 were 

provided using metal halide lamps. Four plants were grown under each treatment 

combination. Three leaves per plant (between leaf ranks four to eight, counted acropetally) 

were kept horizontally and well exposed to incoming light using custom-made leaf holders, 

while the rest of the shoot was trained downward to avoid mutual shading. Gas exchange (see 

below) and relative chlorophyll content (SPAD-502; Minolta Camera, Japan) were measured 

at different thermal ages of the leaves, ranging from 45°Cd to 558°Cd, calculated by 

subtracting a base temperature of 10
°
C (Savvides et al., 2016) from mean daily air 

temperature around the leaf. Air temperature was recorded continuously using data loggers 

(Tinytag; Gemini Data Loggers, Chichester, UK). After gas exchange measurements, leaves 

were harvested for leaf area and nitrogen analyses.  



Chapter 3 Model parameterization and evaluation 

 

41 
 

Greenhouse experiment to evaluate optimality of nitrogen distribution and partitioning 

One greenhouse experiment was carried out from 4 April to 12 May 2017 under two light 

regimes and two nitrogen supply levels to evaluate the model performance and to collect 

input data for optimality analyses. Seeds were sown on 14 March and transplanted to larger 

rock-wool cubes on 22 March. After the third true leaves had appeared, plants were 

transferred onto rock-wool slabs on 4 April with plant density of 1.33 plants m
-2

 and supplied 

with two nitrogen concentrations, 10 (HN) and 2.5 (LN) mM, by drip irrigation using the 

same fertilizers as described in the growth chamber experiment. During the experimental 

period, average nitrogen supply was calculated from the nitrogen concentration in the 

nutrient supply and rock-wool slabs, which was 8.2 and 2.0 Mm for HN and LN, 

respectively. Plants were grown under either high (HL) or low light (LL) regimes. The 

southern half of the greenhouse was unshaded as the HL regime. The lower light regime was 

created in the northern half of the greenhouse by shading nets to reduce incoming light from 

top and sides, where PPFD was reduced on average to ca. 40% of that under HL (38 ± 1.3% 

under sunny and 42 ± 0.2% under cloudy condition). Average DPI above the canopy was 

21.4 and 8.5 mol photons m
-2

 d
-1

 for HL and LL, respectively, during the experimental 

period. DPI during the experimental period was recorded by the weather station located 

above the greenhouse. An average light transmittance of 49.8% through the greenhouse 

structure was applied (39.2% on a sunny day and 60.4% on a cloudy day). Air temperature in 

the middle canopy was recorded continuously using data loggers and was significantly higher 

under HL (0.5°Cd per day). Gas exchange measurements and harvests were conducted at 

four time points on 21 April, 28 April, 5 May and 12 May at two different canopy layers with 

two replications. Leaf age at measurement ranged from 77°Cd to 414°Cd. Leaf elevation 

angle was obtained by a 3D digitizer (Fastrak; Polhemus, Colchester, USA) according to 

Chen et al. (2014a). Leaves were harvested after gas exchange measurements to determine 

leaf area index (LAI, m
2
 m

-2
). 

Gas exchange measurements and estimation of photosynthetic parameters 

Light-saturated net photosynthesis rate under PPFD of 1300 µmol photons m
-2

 s
-1

 (A1300, 

μmol CO2 m
-2

 s
-1

) and light response curves were measured using a portable photosynthesis 

system (LI-6400XT; Li-Cor Inc., Lincoln, NE, USA). All measurements were carried out 
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under sample CO2 400 µmol mol
-1

, leaf temperature 25
°
C and relative humidity 55-65%. Rd 

was estimated from the linear portion of the light response curve (Kok, 1948). Vcmax was 

estimated using the one-point method (Wilson et al., 2000; De Kauwe et al., 2016), and Jmax 

and 𝜙  by least squares fitting to a nonrectangular hyperbola (Ögren and Evans, 1993). 

Mesophyll conductance was estimated using the variable J method (Harley et al., 1992a). 

Chlorophyll fluorescence was measured using the multiphase flash approach (Loriaux et al., 

2013) following Moualeu-Ngangue et al. (2017). 

Nitrogen analyses and photosynthetic nitrogen partitioning estimation 

Leaf samples obtained in the growth chamber experiment were freeze-dried and ground into 

fine powder for nitrogen analyses. Total leaf nitrogen was analyzed using Kjeldahl method 

(Nelson and Sommers, 1980). Leaf chlorophyll was extracted with 96% ethanol and analyzed 

colorimetrically (Lichtenthaler, 1987). Relationships between relative chlorophyll content 

(SPAD) and Chl were determined (Figure S3-2) for estimating Chl in the greenhouse 

experiment. 

Model parameterization 

The differential equations Eqn 3-4- Eqn 3-6 were solved and the coefficients were quantified 

using R (version 3.3.0; R Foundation for Statistical Computing, https://www.r-project.org/) 

by using packages ‘deSolve’ and ‘DEoptim’, which minimizes the sums of squares of the 

residuals between observations and simulations. The data obtained in the growth chamber 

experiment were used for the parameterization. Dr,X and td,X were first quantified for each 

pool using data of all treatments. With the determined values of Dr,X and td,X, Smax,X was then 

quantified for each treatment. Smm,X, kI,X, kN,X were determined from Smax,X (Eqn 3-7 and Eqn 

3-8) by least squares fitting in Sigmaplot (version 11.0, Systat software GmbH, Erkrath, 

Germany) as well as the influences of t and ILd on Rd (Eqn 3-10) and gm (Eqn 3-16 and Eqn 

3-17). 

https://www.r-project.org/
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Dynamic leaf photosynthetic nitrogen simulation and model evaluation 

Daily environmental information during the experimental period (Figure S3-3) and the 

canopy information obtained at the four harvests, including age and area of each leaf, were 

used as input to simulate photosynthetic nitrogen per unit leaf area (Nph, mmol N m
-2

), 

photosynthetic nitrogen per leaf (Nleaf, mmol N) and total leaf photosynthetic nitrogen 

content of the canopy (Ncanopy, mmol N). First, leaf elevation angle of each leaf and LAI were 

simulated empirically depending on t (Figure S3-4). Second, for each time step, the daily 

light interception ILd at the leaf was calculated and used in Eqn 3-7 to simulate protein 

turnover. Light interception was calculated by Beer-Lambert’s law (Monsi and Saeki, 1953; 

Monsi and Saeki, 2005) with a light extinction coefficient of 0.695 and adjusted by the 

cosine of leaf elevation angle. For model evaluation, root mean squared deviation (RMSD) 

and accuracy (%) were determined for photosynthetic parameters, Nph and pX predictions 

following Kahlen and Stützel (2011). 

Simulating daily canopy carbon assimilation 

Daily canopy carbon assimilation during daytime (DCA, mol CO2 d
-1

) was simulated using 

greenhouse canopy characteristics obtained at the last harvest as input (Table S3-1; Figure 

S3-5). Leaf-to-air vapor pressure deficit (D) 1.2 kPa and Ca 400 μmol CO2 mol
-1

 were used in 

all simulations, similar to the environmental conditions during the gas exchange 

measurements. Scenarios with different DPI levels were defined for simulating DCA. Up to 

six DPI levels were taken as relative to the average DPI during acclimation (aDPI) to 

simulate the influence of day-to-day DPI fluctuation on DCA. To simulate DCA, diurnal 

PPFD above the canopy was simulated for a given DPI level with a time step of 0.1 h by a 

simple cosine bell function (Kimball and Bellamy, 1986) with a 14.4-h day length.  

Modifying photosynthetic nitrogen distribution and partitioning  

To evaluate the effects of between-leaf distribution and within-leaf partitioning of Nph on 

DCA, a distribution factor fd was introduced into Eqn 3-5 to create variations in the rate of 

protein synthesis, and a partitioning factor fp,X was introduced into Eqn 3-7 to create 

variations in the maximum protein synthesis rate of different functional pools: 
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𝑆𝑋(𝑡) = 2 × 𝑆max,𝑋 [1 + exp(𝑡 × 𝑡d,𝑋 × 𝑓d)]⁄   (Eqn 3-18) 

𝑆max,𝑋 = [𝑆mm,𝑋 × 𝑓p,𝑋 × 𝑘I,𝑋 × 𝐼Ld (𝑆mm,𝑋 × 𝑓p,𝑋 + 𝑘I,𝑋 × 𝐼Ld)⁄ ] × 𝑟N,𝑋  (Eqn 3-19) 

A control condition was defined with fd = 1 and fp,X = 1, when all coefficients in the synthesis 

process (Table 1) remained unmodified. Increasing fd accelerates the decrease in the rate of 

protein synthesis and enhances acropetal Nph reallocation. An increase in fp,X results in a 

higher rate of synthesis of NX and increases the partitioning to pool X. A modified 

partitioning pattern which maximized DCA was identified as optimal for several DPI levels, 

and the optimal values of fp,X were determined using the package ‘DEoptim’ in R. The 

change in DCA caused by modified distribution or optimal partitioning of Nph was compared 

with the control conditions. The ratios between optimal and control partitioning fractions of 

each pool X, as well as the contributions of daily leaf carbon assimilation (DLA) to the DCA 

increase were calculated along the canopy depth. 

 

Results  

Mechanistic model aims to quantify the environmental effects of light and nitrogen 

availabilities and developmental effects on photosynthetic protein turnover 

In the model, we assume that photosynthetic protein turnover is under genetic and 

environmental control. The genetic control is characterized by the potential maximum protein 

synthesis rate Smm, coefficient td, and the protein degradation constant, Dr. The coefficient td 

affects the decrease in the rate of synthesis, and Dr contributes to the degradation rate, which 

together influence the developmental effect on protein turnover dynamics. The low value of 

td (0.001-0.002°Cd
-1

, Table 3-1) suggests that the influence of ageing appears rather late in 

the leaf lifespan under constant light environment. The coefficient Dr was found to be the 

same for the carboxylation pool (NV) and the electron transport pool (NJ), while the light 

harvesting pool (NC) had a lower Dr (Table 3-1). The genotypic sensitivities to light and 

nitrogen availabilities are characterized by kI and kN, respectively. Collectively, Smm, kI and 

kN determine the maximum protein synthesis rate Smax in Eqn 3-7. When light was increased 

2.5-fold (from LL to HL), Smax increased by 50% in NV and NJ, and by 10% in NC, while 

nitrogen level had less influence on Smax (< 10%), which only occurred under low nitrogen 
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concentration (< 3.5 mM) and the higher light intensity (Figure 3-1), showing that light had a 

major control of Smax. NC had the highest kI (Table 3-1); consequently, Smax,C approached 

saturation at lower light intensity than Smax,V and Smax,J (Figure 3-1). Smax,V and Smax,J were 

well coordinated in response to light and nitrogen level (Figure 3-1A, B), but the higher kI 

and kN of NV (Table 3-1) suggested that NV synthesis is more sensitive to the variation in 

light and nitrogen availabilities than NJ.  

 

 

Figure 3-1. Simulated effects of daily light interception (ILd, mol photons m
-2

 d
-1

) and nitrogen supply 

level in the nutrient solution (NS, mM) on maximum protein synthesis rate (Smax,X) in Eqn 3-7 using 

coefficients from Table 3-1, of (A) the carboxylation, (B) the electron transport and (C) the light 

harvesting pools. The colors denote the normalized maximum protein synthesis rate, which is Smax,X 

normalized by the potential maximum protein synthesis rate (Smm,X) in Eqn 3-7. The data obtained in 

the growth chamber experiment were used for the parameterization. The arrows above and beside the 

figures indicate the corresponding average environmental conditions in the greenhouse experiment 

(high light, HL, 21.4 mol photons m
-2

 d
-1

; low light, LL, 8.5 mol photons m
-2

 d
-1

; high nitrogen, HN, 

8.2 mM; low nitrogen, LN, 2.0 mM). 
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Effects of light and nitrogen availabilities on maximal protein synthesis rate explain the 

dynamics of photosynthetic acclimation 

We evaluated the model using a greenhouse experiment, where leaves grown under 

combinations of two light regimes (HL and LL) and two nitrogen levels (HN and LN) were 

measured in two canopy layers weekly for four consecutive weeks. The model predicted leaf 

photosynthetic characteristics with high accuracy (70%-91%, Figure 3-2) and a trend of 

photosynthetic acclimation (Figure S3-6) similar to the experimental observations (Figure 3-

3), except for slight overestimations in photosynthetic nitrogen (Nph, Figure 3-2C), 

carboxylation pool (Figure 3-2D, G) and chlorophyll (Figure 3-2F).  

Photosynthetic acclimation in the greenhouse canopies as influenced by the interplay 

between light, nitrogen level and leaf age was examined (Figure 3-3). Light had positive 

effects on Nph (Figure 3-3A), the partitioning fractions of NV (pV, Figure 3-3C) and NJ (pJ, 

Figure 3-3E) but negative effects on the partitioning fraction of NC (pC, Figure 3-3G). This 

negative effect of light on pC can be explained by the high kI of NC (Table 3-1), which leads 

to an saturation of Smax,C under lower light (Figure 3-1). The changes in Nph, pV, pJ and pC 

with leaf age were similar to those with light (Figure 3-3) due to the association in the 

gradients of age and light.  

In comparison with HN, Nph under LN was significantly lower in the young leaves but 

similar in the old leaves (Figure 3-3A). In the greenhouse, young leaves developed under 

high light intensity, which increased the sensitivity of Smax to nitrogen level (Figure 3-1). 

During the simultaneous increase in leaf age and mutual shading, the effects of nitrogen 

supply on Smax became less prevalent (Figure 3-1). Nitrogen level had less influence on 

functional partitioning (Figure 3-3C, E and G) than light (Figure 3-3D, F and H).  
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Figure 3-2. Comparisons between simulated and observed leaf photosynthetic parameters. (A) Light-

saturated net photosynthesis rate under PPFD 1300 µmol photons m
-2

 s
-1

 (A1300, µmol CO2 m
-2

 s
-1

); 

(B) daytime respiration rate (Rd, µmol CO2 m
-2

 s
-1

); (C) leaf photosynthetic nitrogen (Nph, mmol N m
-

2
); (D) maximum carboxylation rate (Vcmax, µmol CO2 m

-2
 s

-1
); (E) maximum electron transport rate 

(Jmax, µmol e
-
 m

-2
 s

-1
); (F) chlorophyll (Chl, mmol Chl m

-2
); (G) partitioning fraction of the 

carboxylation pool (pV); (H) partitioning fraction of the electron transport pool (pJ); (I) partitioning 

fraction of the light harvesting pool (pC). The observed data were obtained in the greenhouse 

experiment. The dotted grey lines denote one-to-one lines. Root mean squared deviation (RMSD) and 

accuracy of the predictions are shown. 
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Figure 3-3. Comparisons of leaf 

photosynthetic nitrogen (Nph, mmol 

N m
-2

, A and B), partitioning 

fractions of the carboxylation pool 

(pV, C and D), the electron transport 

pool (pJ, E and F) and the light 

harvesting pool (pC, G and H) 

between high and low nitrogen 

supply (HN and LN, respectively, A, 

C, E and G) and between high and 

low light conditions (HL and LL, 

respectively, B, D, F and H). Each 

point represents the measurements in 

the greenhouse experiment obtained 

from a comparable canopy layer. The 

orange open circles indicate leaves 

grown under HL, the black closed 

circles indicate LL, the blue open 

squares indicate HN and the black 

closed squares indicate LN. The size 

of the circles increases with leaf age, 

ranging 77°Cd to 414°Cd. The solid 

lines show the linear regression y = 

ax + b. The P values of the slope a 

are shown. The values of a are 

specified with 95% confidence 

intervals when they are significantly 

different from one. The dotted grey 

lines denote one-to-one lines. 
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Photosynthetic nitrogen distribution is close to optimum and the effect of nitrogen 

reallocation is more prominent under limited nitrogen availability 

The influence of Nph distribution pattern along the canopy depth on daily canopy carbon 

assimilation (DCA, mol CO2 d
-1

) was evaluated by introducing a distribution factor fd to 

create variations in the rate of protein synthesis. In our model, protein synthesis and 

degradation rates determined simultaneously (1) total leaf photosynthetic nitrogen content of 

the canopy (Ncanopy, mmol N), (2) Nph distribution in the canopy and (3) Nph partitioning 

fractions of pools X (pX) in the leaf. Thus, it was impossible to modify single elements while 

maintaining the other two constant. Increasing fd led to a faster reduction of Nph during leaf 

ageing and more acropetal Nph reallocation. However, it also reduced Ncanopy and tended to 

increase pC (data not shown). Therefore, to obtain the leaf photosynthetic nitrogen content 

(Nleaf,i, mmol N in leaf i) with comparable Ncanopy, simulated Nleaf,i with fd = n (denoted as 

N’leaf,i) was adjusted proportionally to the ratio between Ncanopy calculated with fd = 1 and 

with fd = n: 

𝑁leaf,𝑖(𝑓d = 𝑛) = 𝑁′leaf,𝑖(𝑓d = 𝑛) × [𝑁canopy(𝑓d = 1) 𝑁canopy⁄ (𝑓d = 𝑛)]  (Eqn 3-20a) 

pX,i was set equal to the control value: 

𝑝𝑋,𝑖 = 𝑁𝑋,𝑖(𝑓d = 1) 𝑁ph,𝑖⁄ (𝑓d = 1)  (Eqn 3-20b) 

These adjustments assured the same amount of Ncanopy among the distribution patterns. The 

factor fd was varied between 0.5 to 5.0 at intervals of 0.5 in the simulation, which gave values 

of Nph comparable to those measured in cucumber leaves (22-135 mmol N m
-2

, Figure 3-4). 

Canopy Nph distributions with enhanced acropetal reallocation were created by increasing fd 

(Figure 3-4; Figure S3-7). In general, Nph distributed correspondingly to the vertical light 

distribution except in the expanding leaves in the upper canopy, and the Nph distribution with 

light was steeper under LL (Figure S3-7). 

To simulate the natural fluctuations in light between days, three light levels representing 

200% (aDPI200), 100% (aDPI100) and 50% (aDPI50) of average DPI during acclimation 

(aDPI) were used in the DCA simulation. Under aDPI100 and aDPI50, enhancing acropetal Nph 

reallocation did not significantly increase DCA (< 5%), suggesting that Nph distribution was 

optimal under constant and decreasing DPI (Figure 3-5B, C). More acropetal reallocation did 

not improve the optimality of Nph distribution in terms of maximizing DCA since a large 



Chapter 3 Model parameterization and evaluation 

 

50 
 

proportion of leaf area was located in the middle-lower to lower canopy (Figure S3-5). 

However, enhancing Nph reallocation resulted in an increase in DCA by 7% under LN at 

aDPI200 (Figure 3-5A), indicating that acropetal Nph reallocation was more important under 

LN than HN. 

It was observed that Nph was more overestimated in the older leaves than in the younger ones 

(Figure 3-2C), which indicated that our model tended to underestimate the acropetal Nph 

reallocation when scaling up from leaf to canopy level. In order to maintain a constant light 

environment for the measured leaves in the growth chamber experiment, leaves younger than 

the sampled leaves were trained downward and their light interception, together with their 

nitrogen demand, was inevitably reduced; therefore, the model coefficients were obtained 

from the leaves with limited nitrogen reallocation. However, underestimating acropetal Nph 

reallocation would not affect our result that Nph distribution was close to optimum. 

 

Figure 3-4. Leaf photosynthetic 

nitrogen (Nph, mmol N m
-2

) 

distributions along the canopy 

depth, characterized by leaf area 

index (LAI, m
2
 m

-2
). Variations 

in nitrogen distribution were 

created using by a distribution 

factor fd ranging from 0.5 to 5.0 

at intervals of 0.5 in Eqn 3-18 

under different growth 

conditions. (A) High nitrogen 

and high light (HN+HL); (B) 

high nitrogen and low light 

(HN+LL); (C) low nitrogen and 

high light (LN+HL); (D) low 

nitrogen and low light (LN+LL). 

Simulated control Nph 

distributions (fd = 1) are 

indicated by the green lines. 
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Figure 3-5. Effects of photosynthetic nitrogen 

(Nph) distributions with different values of fd 

(Figure 3-4) on daily canopy carbon 

assimilation (DCA) under different daily 

photosynthetic photon integrals (DPI, mol 

photons m
-2

 d
-1

) relative to average DPI during 

acclimation (aDPI). (A) Two-fold of aDPI 

(aDPI200); (B) aDPI (aDPI100); (C) half of aDPI 

(aDPI200). Acropetal Nph reallocation increases 

with fd. Plants grown under high nitrogen and 

high light (HN+HL, orange open circles), 

under high nitrogen and low light (HN+LL, 

black closed circles), under low nitrogen and 

high light (LN+HL, orange open triangles), 

under low nitrogen and low light (LN+LL, 

black closed triangles) are compared under 

given DPI. The relative change in DCA was 

calculated by dividing the DCA obtained with a 

given Nph distribution by the DCA obtained 

with the control Nph distribution (fd = 1) under 

same DPI. A change within ± 5% (grey shade) 

is considered insignificant. 

 

Sub-optimal nitrogen partitioning is due to daily light fluctuation 

To find the optimal within-leaf Nph partitioning between functions, the potential maximal 

protein synthesis rate for pool X was modified by a factor fp,X, ranging from 0.2 to 2.0. 

Increasing fp,X resulted in higher protein synthesis rates, but it also increased Ncanopy and the 

proportion of nitrogen distributed in the upper canopy. After simulating nitrogen partitioning 

with a modified fp,X, Nleaf of each leaf was re-assigned to their control values which were 

obtained with fp,X = 1. Partitioning patterns with maximal DCA at six DPI levels (25%-400% 

aDPI) were identified as optimal and the maximal DCA was compared with control DCA 

(Figure 3-6). The increase in DCA by optimal partitioning was insignificant (< 5%) when 

DPI was close to aDPI (indicated by the arrows in Figure 3-6). This suggested the ability of 

plants to maximize DCA by optimizing Nph partitioning to aDPI. Nph partitioning deviated 

further from optimum when DPI diverged from aDPI (Figure 3-6). Therefore, strong day-to-

day light fluctuation induced sub-optimality of Nph partitioning and led to lower PNUE.  
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By optimizing Nph partitioning, DCA could be increased by nitrogen reinvestment in the 

limited functional pools. Under aDPI200, Nph partitioning was sub-optimal under HL (Figure 

3-6), and this sub-optimality was less under HN than under LN (Table 3-4). By reinvesting 

about half of NC into NV and NJ (Figure 3-7A, C), DCA increased by 6% under HN and by 

13% under LN (Table 3-4), as a result of increased carbon assimilation in the middle-lower 

canopy (Figure 3-7A, C). Under aDPI50, HN did not reduce the sub-optimality of Nph 

partitioning (Table 3-4) due to an underinvestment in the light harvesting function. 

Reinvesting NV into NC in the middle or upper canopy (HL, Figure 3-8A; LL, Figure 3-8B, 

D) increased DCA by 7%-25% (Table 3-4). 

 

 

Figure 3-6. Increase in daily canopy carbon assimilation (DCA) by optimizing photosynthetic 

nitrogen (Nph) partitioning for different growth conditions under various daily photosynthetic photon 

integrals (DPI, mol photons m
-2

 d
-1

). The increase in DCA was the DCA with the optimal partitioning 

under a given DPI in comparison with the control partitioning (fp,x = 1 in Eqn 3-19). An increase less 

than 5% (grey shade) is considered insignificant. The average DPI during acclimation (aDPI) is 

indicated by the orange arrow for HL (21.4 mol photons m
-2

 d
-1

) and by the black arrow for LL (8.5 

mol photons m
-2

 d
-1

). The asterisks indicate the scenarios compared in Figure 3-7, Figure 3-8 and 

Table 3-4 with 50%, 100% and 200% aDPI. The symbols and colors used here are the same as those 

in Figure 3-5. 
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Table 3-4. Increase in the daily canopy carbon assimilation (DCA) by optimized photosynthetic 

nitrogen distribution or partitioning under various daily photosynthetic photon integrals (DPI, mol 

photons m
-2

 d
-1

) for canopies grown under different conditions. Average DPI during acclimation 

(100% aDPI), 200% and 50% aDPI were tested. The increase in DCA for plants grown under the 

combinations of high nitrogen (HN), high light (HL), low nitrogen (LN) and low light (LL) was 

calculated by comparing the DCA between optimal and control distribution or partitioning. 

 

 

Growth 

condition 

Light level Control DCA Increase in DCA (%) by optimized 

aDPI 

Level 
DPI (mol CO2 d

-1
)  distribution partitioning 

HN+HL 

200% 42.7 0.5467 <5% 6.3%  

100% 21.4 0.3217 <5% <5% 

50% 10.7 0.1368 <5% 7.1% 

HN+LL 

200% 17.1 0.2554 <5% <5% 

100% 8.5 0.1195 <5% <5% 

50% 4.3 0.0259 <5% 23.6% 

LN+HL 

200% 42.7 0.4011 7.0% 12.7% 

100% 21.4 0.2653 <5% <5% 

50% 10.7 0.1221 <5% <5% 

LN+LL 

200% 17.1 0.2261 6.9% <5% 

100% 8.5 0.1108 <5% <5% 

50% 4.3 0.0215 <5% 25.0% 
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Figure 3-7. Ratio between optimal and control partitioning fractions (optimal pX / control pX) of the 

carboxylation pool (pV, orange circles), the electron transport pool (pJ, red triangles), the light 

harvesting pool (pC, green squares), and contributions of daily leaf carbon assimilation (DLA) to the 

daily canopy carbon assimilation (DCA) increase by optimal partitioning (grey bars, right y-axis) 

along the canopy depth (x-axis, leaf area index, LAI, m
2
 m

-2
) under 200% average daily photon 

integral during acclimation (aDPI200) for plants grown under (A) high nitrogen and high light 

(HN+HL), (B) high nitrogen and low light (HN+LL), (C) low nitrogen and high light (LN+HL), (D) 

low nitrogen and low light (LN+LL) condition. Photosynthetic nitrogen partitioning is close to 

optimum for HN+LL and LN+LL under aDPI200, which corresponds to a DPI of 42.7 and 17.1 mol 

photons m
-2

 d
-1

 for HL and LL, respectively. See Table 3-4 for the increase in DCA by the optimal 

partitioning. 
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Figure 3-8. Ratio between optimal and control partitioning fractions (optimal pX / control pX), and 

contributions of daily leaf carbon assimilation (DLA) to the daily canopy carbon assimilation (DCA) 

increase by optimal partitioning (grey bars, right y-axis) along the canopy depth (x-axis, leaf area 

index, LAI, m2 m-2) under 50% average daily photon integral during acclimation (aDPI50) for plants 

grown under (A) high nitrogen and high light (HN+HL), (B) high nitrogen and low light (HN+LL), 

(C) low nitrogen and high light (LN+HL), (D) low nitrogen and low light (LN+LL) condition. 

Photosynthetic nitrogen partitioning is close to optimum for LN+HL under aDPI50, which 

corresponds to a DPI of 10.7 and 4.3 mol photons m-2 d-1 for HL and LL, respectively. The symbols 

and colors used here are the same as those in Figure 3-7. See Table 3-4 for the increase in DCA by 

the optimal partitioning. 

 

Discussion 

This model is the first approach applying dynamic protein turnover mechanism at the leaf 

level to assess the optimality and limitation in nitrogen use at the canopy level. Here, 

maximized canopy carbon assimilation is considered as a general indicator of maximizing 

fitness. The adaptation of protein turnover mechanism gives reasonable predictions of 

optimal Nph and accurate predictions of leaf photosynthetic traits. 
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Mechanistic explanation of leaf nitrogen economics under a wide range of light and nitrogen 

availabilities 

It is well documented that light takes the major control of leaf economics. For example, 

specific leaf area, an integrative indicator of leaf structure which co-varies with leaf nitrogen 

content (Anten et al., 1998), shows more plastic responses to light than to nutrient 

availability (Poorter et al., 2009; Poorter et al., 2010). Mechanistic models can be used to 

interpret measured biological data (Chen et al., 2015; Chen et al., 2018), as in our model 

here, providing quantitative explanation of the different plastic responses in leaf nitrogen 

economics (e.g., photosynthetic nitrogen per unit leaf area, Nph, and photosynthetic 

capacities) to light and to nitrogen by their effects on the maximum protein synthesis rate 

(Smax, Figure 3-1). A five-fold increase in light (4-20 mol photons m
-2

 d
-1

) doubled Smax of the 

carboxylation pool (NV) and electron transport pool (NJ, Figure 3-1A, B), which is similar to 

the published values (Niinemets et al., 2015). In contrast, increasing nitrogen supply from 2 

to 10 mM increased Smax of NV and NJ only by 20% and 16%, respectively. The effects of 

light on photosynthetic nitrogen can be quantitative (on Nph) or qualitative (on nitrogen 

partitioning, pX, (Niinemets et al., 2006; Buckley et al., 2013), while nitrogen only affected 

Nph by restricting Smax (Figure 3-1 and Figure 3-3). Similar effects of light and nitrogen 

availabilities on the partitioning between electron transport and light harvesting functions 

were observed in spinach (Terashima and Evans, 1988). Our model of protein turnover 

explains the photosynthetic acclimation to light and nitrogen supply and provides a 

mechanistic insight into leaf nitrogen economics. 

In a growing canopy, leaf age is associated with decreasing light availability (Niinemets et 

al., 2006; Chen et al., 2014a). Therefore, leaf photosynthetic acclimation to light occurs 

together with leaf ageing, which is characterized by the protein degradation constant Dr, and 

the constant td describing the decrease of protein synthesis rate in our model. The Dr values 

of NV and NJ fall within the range of in vivo quantifications reported by Peterson et al. (1973) 

and Li et al. (2017). The low value of td (Table 3-1) explains the modest influence of ageing 

on leaf photosynthetic capacity observed under constant light conditions (Pettersen et al., 

2010b). 
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Besides light and nitrogen availability, temperature has effects on photosynthetic nitrogen 

content and partitioning (Yamori et al., 2005; Kattge and Knorr, 2007; Yamori et al., 2009). 

Temperature dependency of developmental processes and biochemical reactions is often 

described by exponential or Arhenius type of functions (Parent et al., 2010; Parent and 

Tardieu, 2012; Kahlen and Chen, 2015). In our model, temperature effects are considered 

partly by the temperature sum, which assumes a linear relationship between protein synthesis 

and leaf temperature. Since the exact temperature dependency of protein synthesis and 

degradation is unknown and our data is obtained from controlled environments with 

minimized temperature fluctuations, we do apply the linear parsimonious approach to avoid 

speculation and over-parameterization (Parent et al., 2016).  

Above-optimum Rubisco investment can be a mechanism to adapt canopy photosynthesis to 

short-term light fluctuations 

Under sufficient nitrogen availability, Rubisco can function as a storage protein, which 

means that the amount of Rubisco can exceed the requirements to support photosynthesis 

(Carmo-Silva et al., 2015). The Rubisco pool has the highest value of kN (Table 3-1), 

indicating that Rubisco synthesis reacts faster to nitrogen availability than the other two 

pools. This explains the increase in the ratio between Vcmax and Jmax with nitrogen availability 

(Hikosaka, 2004; Yamori et al., 2011a), especially under LL (Figure 3-3C, E). Under HN, 

Rubisco storage is advantageous since light-induced Rubisco activation, having a time 

constant of 3-5 minutes (Portis et al., 1986; Kaiser et al., 2018b), is much faster than Rubisco 

synthesis. Therefore, Rubisco storage can be a mechanism for quick adaptation to sudden 

increase in light. This explains why the plants grown under HN have wider ranges of DPI, at 

which nitrogen partitioning is optimal, than LN (Figure 3-6 and Table 3-4). Furthermore, 

excluding Rubisco activation (Vc = Vcmax in Eqn 3-9b) in the DCA simulation resulted in a 

four-fold above-optimum investment in NV even under aDPI (data not shown). Since Rubisco 

is not an especially inefficient catalyst in comparison to other chemically related enzymes 

(Bathellier et al., 2018), above-optimum Rubisco investment in the canopy can be rather a 

mechanism for adapting to short-term light fluctuation than a mechanism to overcome its 

enzymatic inefficiency. 
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Implications for crop model improvement and greenhouse management 

Using plant models to understand crop performance requires the knowledge of the 

physiological mechanisms (Boote et al., 2013; Poorter et al., 2013). By integrating the 

known biological mechanism of protein turnover at the leaf level into a multilayer model of 

canopy photosynthesis, we demonstrate the explanatory power of a mechanistic model for 

the measured biological data. Our simulations suggest that canopy photosynthesis can be 

increased by manipulating the functional pools related to photosynthesis. For example, 

investment in Rubisco and electron transport (Ishimaru et al., 2001; Yamori et al., 2011b) 

should be increased under increasing light (Figure 3-7), and a larger antenna size for light 

harvesting (Masuda et al., 2003) is required under decreasing light availability (Figure 3-8). 

It is clear that the pattern of optimal nitrogen partitioning depends strongly on light regime, 

and biosynthetic regulation is unlikely to keep up with daily light fluctuation (up to four-fold 

difference, Figure S3-3). 

In greenhouse cultivation, it is possible to achieve a more stable light environment using 

supplemental lighting. This can be a plausible solution to improve the vertical light 

distribution (Lu and Mitchell, 2016) and to minimize the sub-optimality of nitrogen use 

induced by light fluctuation. Since carbon assimilation is the rate-limiting step for yield 

production of cucumber plants due to the indeterminate production of vegetative and 

generative organs (Wiechers et al., 2011a), canopy carbon gain can be considered as an 

approximation for yield. Our simulation suggests that, the sub-optimal nitrogen partitioning 

induced by a 50% decrease in DPI can be compensated by reducing the light limitation of the 

shaded leaves using inter-row lighting during the high-light season (ca. 7% increase in DCA) 

and using top-lighting, possibly in combination with inter-lighting, during the low-light 

season (ca. 25% increase in DCA, Table 3-4 and Figure 3-8), similar to the reported increase 

in cucumber fruit yield (22%-31%) by inter-lighting in the winter season (Kumar et al., 

2016). In the summer season, sub-optimal nitrogen partitioning induced by sudden doubling 

in DPI can be overcome by pre-treatment of increasing nitrogen supply and inter-lighting (ca. 

6% increase in DCA, Table 3-4), which maintains the biochemical capacity and reduces the 

biochemical limitation of the shaded leaves (Pettersen et al., 2010a; Trouwborst et al., 2010; 

Chen et al., 2014a). These results provide a physiological explanation at canopy level for the 

observations of supplemental lighting experiments (Hovi et al., 2004; Hovi-Pekkanen and 



Chapter 3 Model parameterization and evaluation 

 

59 
 

Tahvonen, 2008; Pettersen et al., 2010a; Trouwborst et al., 2010). Furthermore, the 

relationship between protein synthesis rate and intercepted light intensity is non-linear in our 

model (Eqn 3-7), which may offer an explanation why the photoacclimatory responses of a 

leaf grown under natural within-day light fluctuation differ from that under constant light, as 

shown in a recent experimental study (Vialet-Chabrand et al., 2017b).  

Light fluctuations occur particularly in the lower canopy layer, where sunflecks cause strong 

and frequent variations in light, thereby increasing variations of Nph and pX in the older leaves 

(Figure 3-3). Interestingly, leaves under HL seemed to prioritize their nitrogen investment in 

NJ over NC under LN with increasing leaf age (Figure 3-3E), which might be explained by the 

reduced LAI development under LN+HL and, hence, the higher light interception of the 

older leaves (Figure S3-4C and Figure S3-5). Since within-leaf and within-day light 

heterogeneity (e.g., sunflecks) was not described in the model, these variations observed in 

the greenhouse experiment could not be reproduced in the simulations (Figure S3-6). This 

can be improved by coupling the model with a 3D structural plant model and the use of 

shorter time steps in the simulations to capture more realistic response of photoacclimation. 

In summary, we propose a mechanistic model to quantify the effects of leaf age, nitrogen and 

light availabilities on photosynthetic acclimation. The model predicts the observed 

photosynthetic acclimation under different combinations of nitrogen supply and light 

availability in the greenhouse. Model simulation indicates that photosynthetic nitrogen 

distribution is close to optimum and photosynthetic nitrogen partitioning can be optimal 

under constant light conditions. However, large fluctuation in light between days under 

natural condition inevitably leads to sub-optimal nitrogen partitioning. Our study provides 

insights into photosynthetic acclimation and the model can be used for crop model 

improvement and provides guidelines for greenhouse management. 
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Chapter 4  
Impact of fluctuating light on photosynthetic acclimation 

A mechanistic view of the reduction in photosynthetic protein abundance under 

diurnal light fluctuation 

 

Abstract 

Leaves adapted to diurnal light fluctuation (FL) tend to have reduced photosynthetic 

parameters in comparison with those grown under constant light but intercepting the same 

daily photon integral (DPI). This reduction may result from a non-linear relationship between 

photosynthetic protein synthesis rate (PPSR) and incident photosynthetically active radiation 

(PAR). Model incorporated the PPSR-PAR relationship quantitatively predicted the effects 

of FL reported in the literature. Further simulations suggest that the degree of this reduction 

varies with the FL pattern, DPI level and parameters describing the PPSR-PAR relationship. 

  

 

Understanding the physiological responses of the plant to fluctuating light regime (FL) has 

gained increasing interest in the last few years since FL reflects the more realistic situation of 

the plants growing under natural conditions (Kaiser et al., 2018b; Burgess et al., 2018; 

Matsubara, 2018). By hypothesizing that the determination of the photosynthetic capacity 

(Amax) is driven by a mechanism towards maximal carbon assimilation, a higher Amax would 

be expected under FL (Retkute et al., 2015). However, this hypothesis leads to an 

overestimation of Amax by more than 50% under frequent light fluctuation, suggesting a more 

complex mechanism behind. Recently, Vialet-Chabrand et al. (2017b) have experimentally 

demonstrated that the daily carbon assimilation of the plants grown under FL was lower in 

comparison with the plants grown under square wave light regime (SQ) but intercepting the 

same daily photon integral (DPI, mol m
-2

 d
-1

). They highlighted the influence of diurnal light 

fluctuations on photosynthetic acclimation and photosynthetic capacity. One of their findings 

is that plants grown under FL had reduced photosynthetic parameters, particularly the 
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maximal electron transport rate (Jmax) and the leaf absorptance of incident photosynthetically 

active radiation (PAR). Biochemically, this reduction is due to the decrease in the 

photosynthetic protein abundance by 3-15%. However, the physiological mechanisms 

resulting in this difference in the protein abundance between FL and SQ remain unexplained. 

Here, we seek explanations for this reduction in photosynthetic proteins under FL by 

applying an hourly-based dynamic photosynthetic acclimation model for photosynthetic 

acclimation.  

 

Figure 4-1. (A) The response curves of photosynthetic protein synthesis rate (PPSR) to 

photosynthetically active radiation (PAR) are different between Rubisco, electron transport (ET) 

proteins, and light harvesting (LH) proteins, depending on the maximum synthesis rate (Smm) and the 

curvature (kI) of each functional protein group. The effect of fluctuating light (FL) on the 

photosynthetic parameters under different daily PAR integrals (DPI) and a 12-h photoperiod was 

simulated with different diurnal FL patterns. (B) Diagrams showing daily PAR distribution (%) per 

hour for natural diurnal fluctuation (FLN, adapted from Vialet-Chabrand et al., 2017), large 

fluctuation (FLL), small fluctuation (FLS), and square wave (SQ) light regimes. The ratio of (C) 

maximum carboxylation rate (Vcmax), (D) maximum electron transport rate (Jmax) and (E) leaf 

absorptance of PAR between FL and SQ under different DPI levels. The solid and dotted green lines 

with arrows above (A) indicate the ranges of PAR under FLN pattern at DPI level at 5 and 20 mol m
-2

 

d
-1

, respectively. 
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Protein abundance is regulated by the orchestration of multiple mechanisms and is the 

outcome of protein turnover: the continuous dynamics of protein synthesis and degradation 

(Kristensen et al., 2013; Nelson and Millar, 2015). Based on the concept of protein turnover, 

we have recently presented a mechanistic model describing photosynthetic acclimation 

(chapter 3), where the experimental data suggested a non-linear relationship between the 

photosynthetic protein synthesis rate (PPSR) and PAR (Figure S4-1). PPSR increases almost 

linearly with PAR under low light conditions (up to 200 µmol PAR m
-2

 s
-1

 for Rubisco and 

electron transport proteins), and then the slope of the PPSR-PAR curve decreases and the 

protein synthesis rate approaches a saturation level at high PAR (around 900 µmol PAR m
-2

 

s
-1

). This form of a non-linear relationship is not surprising since it has been observed in the 

cause-effect relationships of many other biological phenomena. Noteworthy is its implication 

that protein synthesis rate under FL conditions (ranging between 0-1500 µmol PAR m
-2

 s
-1

 in 

Vialet-Chabrand et al., 2017b) is saturated occasionally during the course of the day and the 

protein synthesis per day per unit DPI is consequently less than that under SQ, the non-

saturating condition (constantly at 460 µmol PAR m
-2

 s
-1

 for 12 h). By applying this PPSR-

PAR relationship (Figure 4-1A), it is possible to assess the differences in photosynthetic 

protein abundance between plants grown under FL and SQ. To simulate the effect of the 

diurnal light fluctuation, we first converted the parameters in the model in chapter 3 to an 

hourly-basis by assuming a 12-h photoperiod and zero protein synthesis in the dark. Then, 

three FL patterns (Figure 4-1B) and SQ with DPI between 1-60 mol m
-2

 d
-1

 were used as 

light input to simulate the abundance of Rubisco, electron transport (ET) and light harvesting 

(LH) proteins, which were then converted to maximal Rubisco carboxylation rate (Vcmax), 

Jmax and leaf PAR absorptance, respectively. Constants converting the amount of nitrogen in 

each functional protein pools into the corresponding capacities are used according to Buckley 

et al. (2013). Under natural diurnal light fluctuation (FLN in Figure 4-1B) and light intensity 

(DPI = 10 and 20 mol PAR m
-2

 d
-1

) similar to the FL-experiment in Vialet-Chabrand et al. 

(2017b), the model predicted the effects of FL on photosynthetic parameters: Vcmax and Jmax 

were reduced by 21-22% (Figure 4-1C, D) and leaf PAR absorptance by 2-4% (Figure 4-1E). 

This prediction is within the range reported for leaf PAR absorptance (3-5%) but is different 

from that for the Vcmax (8-10%) and Jmax (11-15%) found in Arabidopsis thaliana (Vialet-

Chabrand et al., 2017b). These differences could be due to the lack of protein synthesis in the 
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dark assumed in the simulations (see the later section) or due to the fact that the model was 

parameterized using greenhouse cucumber (Cucumis sativus), which might have different 

PPSR-PAR responses than Arabidopsis. However, both experimental and model studies 

suggest that Vcmax and Jmax were more affected by FL than leaf PAR absorptance. This can be 

explained by the fact that the synthesis rate of light harvesting proteins reaches saturation at a 

lower PAR level than Rubisco and electron transport proteins (Figure 4-1A). Therefore, the 

effects of FL on light harvesting proteins under high DPI were almost negligible.  

 

 

Figure 4-2. The effects of natural diurnal fluctuation (FLN, Figure 4-1B) on photosynthetic protein 

abundance depend on the values of maximum synthesis rate (Smm, equal to 0.1, 0.5 or 2.5) and the 

curvature (kI, equal to 0.5 or 5) of the PPSR-PAR response curves. The abbreviations are indicated in 

Figure 4-1. 

 

The different effects of FL on Vcmax, Jmax and leaf absorptance (Figure 4-1C, D, E) imply that 

the characteristics of the PPSR-PAR curve determine the impact of light fluctuation on the 

abundance of photosynthetic proteins. Hence, we further examined to which extend the 

PPSR-PAR curve parameters, the maximum protein synthesis rate (Smm, equal to 0.1, 0.5 or 

2.5) and the curvature (kI, equal to 0.5 or 5), affect the photosynthetic acclimation under 

natural diurnal light fluctuation (FLN in Figure 4-1B) with DPI levels between 1-60 mol m
-2

 

d
-1

 in combinations with nitrogen supply levels (2 < N < 10 mM) and leaf age (5 < age < 45 

d). Age and nitrogen levels had no influence (< 1%) on the impact of FLN (data not shown). 

The reduction of protein abundance due to fluctuating light was up to 22%, depending on the 
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combinations of DPI, Smm and kI (Figure 4-2). Three types of response curves can be 

identified: (1) the combination of high kI and low Smm results in the strongest reduction under 

low light and this reduction decreases with DPI, resembling the light harvesting proteins 

(Figure 4-1A); (2) combining high kI and Smm or low kI and Smm shows the strongest 

reduction under low-intermediate DPI, resembling Rubisco and electron transport proteins 

(Figure 4-1A); (3) combining low kI and high Smm, the reduction in protein abundance 

increases with DPI. The third type of these response curves indicates that the PPSR will not 

be saturated even under high light conditions, probably an unfavourable strategy under 

natural selection. Altogether, these results suggest that variations in the parameters of the 

PPSR-PAR curve can be an explanation for the different acclimatory responses to fluctuating 

light between plant functional types, as reported by Watling et al. (1997).  

Mathematically, the hyperbolic characteristics of the PPSR-PAR response (Figure 4-1A) 

suggest that the strongest impact of light fluctuation can be expected if the incident PAR 

fluctuates largely across the vertex of the PPSR-PAR curve and the impact of fluctuating 

light becomes smaller when it mostly fluctuates within the nearly linear range of the PPSR-

PAR curve. This non-linear characteristic has two biological implications. Firstly, the 

influence of FL can be expected to be small under low or saturating PAR levels. In our 

simulation, the reductions of Vcmax and Jmax increase with DPI under low light level (DPI < 

10 mol m
-2

 d
-1

, Figure 4-1C, D). This result is similar to the observation in Arabidopsis that 

the impact of FL on the electron transport rate is stronger under DPI of 5.1 than 3.6 mol m
-2

 

d
-1

 (Alter et al., 2012). Also, in Alocasia macrorrhiza, no reduction in Amax was observed 

under FL at a very low DPI level (1.4 mol m
-2

 d
-1

; Sims and Pearcy, 1993) while Amax tended 

to be 15% lower than SQ when DPI was 7 mol m
-2

 d
-1

 (Watling et al., 1997). Secondly, 

photosynthetic protein abundance will be more strongly affected by the large fluctuation 

(FLL in Figure 4-1B) than by the small fluctuation (FLS in Figure 4-1B, C, D, E). This agrees 

with the observations in Arabidopsis that, in comparison with SQ (85 µmol PAR m
-2

 s
-1

), 

FLL (ranging between 50-1250 µmol PAR m
-2

 s
-1

) reduces electron transport rate by 28%, 

while FLS (ranging between 50-650 µmol PAR m
-2

 s
-1

) reduces electron transport rate by 

only 8% (Alter et al., 2012). Grown under FLS pattern (ranging between 30-525 µmol PAR 

m
-2

 s
-1

), Amax and nitrogen per unit leaf area (Narea, a proxy of photosynthetic protein 

abundance) of Shorea leprosula leaves were not different from that of leaves grown under 
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SQ (170 µmol PAR m
-2

 s
-1

; Leakey et al., 2002), but in their following study Leakey et al. 

(2003) showed that Amax and Narea of the same species grown under FLL (ranging between 0-

1700 µmol PAR m
-2

 s
-1

) were 20-30% lower than of their counterparts grown under FLS 

(ranging between 0-750 µmol PAR m
-2

 s
-1

).  

As any other model, this model is a simplification of the real system. For example, it assumes 

zero protein synthesis rates under darkness, which is unlikely for Rubisco (Ishihara et al., 

2015). If a low rate of Rubisco synthesis during the dark period under FL and SQ is assumed 

(as suggested by Ishihara et al., 2015), the relative impact of FL will be lower than our 

prediction and thus closer to the reduction measured by Vialet-Chabrand et al. (2017b). The 

current model also assumed the same degradation rate constants for different PAR levels 

although this does not hold true in planta especially under high light (Li et al., 2018). The 

available information is so far restricted for parameterizing this effect (Nelson et al., 2014; Li 

et al., 2017). Theoretically, if the degradation is enhanced under excess light while the 

synthesis rate remains stable, it can be expected that the reduction in protein abundance 

under FL would be even more severe. However, if the synthesis rate is coordinated with the 

degradation rate as reported for photosystem II subunit D1 protein (Aro et al., 1993), similar 

results to our simulation could be expected due to restored balance in the net change rate. In 

addition, there are still unknown mechanisms involved in the acclimation to FL which are not 

considered in the model. The effects of the frequency of light fluctuations and the length of 

individual light events on photo-acclimation, as shown in the previous studies (Yin and 

Johnson, 2000; Alter et al., 2012) implying that protein synthesis does not react to a light 

signal instantaneously (e.g., Retkute et al., 2015), cannot be reproduced by our model (data 

not shown). Besides photosynthetic proteins, many other physiological processes are also 

involved in the acclimation mechanism to FL, especially when tackling excess light energy. 

Photo-oxidative damage caused by the excess light events under FL may increase the need 

for photoprotection, photorespiration, and cyclic electron flow, which altogether alter the 

metabolism and partitioning of nitrogen and carbon (Matsubara, 2018; Annunziata et al., 

2018; Schneider et al., 2019). Also, our model does not account for any photoperiodic 

regulation, which is also known to affect long-term acclimation (Seaton et al., 2018). 

In summary, the hyperbolic PPSR-PAR response provides a mechanistic explanation of the 

reported reduction in photosynthetic protein abundances caused by diurnal light fluctuation. 
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Our results suggest that the differences in protein abundances between FL and SQ conditions 

are determined by three components: the pattern of FL, the DPI level and the species-specific 

PPSR-PAR curve parameters. Although a model cannot account for all details of the 

acclimation response under all environmental scenarios, our model delivers a systematic 

view of this phenomenon and thus can be a useful tool for designing FL scenarios for future 

experiments (see Supplementary Materials S1 for the R script of the model, 

https://doi.org/10.1093/jxb/erz164). Our analyses point out the avenues for further 

investigations in the interspecific and genotypic variations of the PPSR-PAR relationship and 

in the response time to the light signal, as well as photoperiodic regulation and the combined 

effects of different environmental factors on photosynthetic protein turnover. 

https://doi.org/10.1093/jxb/erz164
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Chapter 5  
Comparison between multilayer and functional-structural models 

Does structure matter? Comparison of canopy photosynthesis using one- and 

three-dimensional light models 

 

Abstract 

One-dimensional light models using the Beer-Lambert equation (BL) with the light 

extinction coefficient k are simple and robust tools for estimating light interception of 

homogeneous canopies. Functional-structural models are powerful to capture light-plant 

interactions in heterogeneous canopies, but they are also more complex due to their explicit 

descriptions of three-dimensional plant architecture and light models using ray tracing (RT) 

algorithms. For choosing an appropriate approach, the trade-offs between simplicity and 

accuracy need to be considered when canopies with spatial heterogeneity are concerned. We 

compared the two light modelling approaches using a framework of a dynamic model of 

greenhouse cucumber. Resolutions of hourly-step (HS) and daily-step (DS) were applied to 

simulate light interception, leaf-level photosynthetic acclimation and plant-level dry matter 

production over growth periods of two to five weeks. Results showed that BL-HS was 

comparable to RT-HS in predicting shoot dry matter and photosynthetic parameters, but 

required only ca. 2% of the computational execution time of RT-HS. The k used in the BL 

approach was simulated using an empirical relationship between k and leaf area index 

established with the assistance of RT, which showed variation up to 0.2 in k depending on 

canopy geometry under the same plant density. If a constant k value was used instead, a 

difference of 0.2 in the k value resulted in up to 27% loss in accuracy for shoot dry matter. 

These results suggested that, with the assistance of RT in k estimation, the simple approach 

BL-HS provided efficient estimation for long-term processes.  

 

  



Chapter 5 Comparison between multilayer and functional-structural models 

 

68 
 

Introduction 

Light is often a limiting factor for greenhouse crops due to 20%-70% reduction by the 

greenhouse construction (Warren Wilson et al., 1992; von Elsner et al., 2000; Cabrera‐

Bosquet et al., 2016). As one of the main greenhouse crops, cucumber plants are mostly 

trained in high-wire system in a row arrangement (van Henten et al., 2002). A row crop 

system facilitates operations such as plant care and fruit harvest, but results in heterogeneous 

light distribution in both vertical and horizontal directions (Sarlikioti et al., 2011b). This 

condition of limiting and heterogeneous light environment raised the question of suitable 

methods for modelling light-plant interaction and predicting productivity (Roupsard et al., 

2008; Sarlikioti et al., 2011b). If the canopy is horizontally uniform (e.g., de Pury and 

Farquhar, 1997), the complex processes of light interception at canopy level can be 

approximated by one-dimensional (1D) light models with consideration of limited 

architectural information such as leaf area index (LAI). In this case, vertical light flux I is 

simulated following Beer-Lambert equation (Monsi-Saeki model) with a light extinction 

coefficient k (Monsi and Saeki, 2005) depicting an exponential decay of incoming light flux 

I0 through canopy depth described by LAI: 

𝐼 = 𝐼0 × exp(−𝑘 × LAI)  (Eqn 5-1a) 

Despite the good approximation of light interception of homogeneous canopies by this 1D 

approach, effects of spatial heterogeneity and temporal fluctuation of local light availability 

at leaf level cannot be explicitly captured (Vos et al., 2010). Given that canopy light 

interception depends strongly on characteristics of plant architecture and canopy spacing 

(Maddonni et al., 2001a; Maddonni et al., 2001b; Sarlikioti et al., 2011a; Duursma et al., 

2012), all information describing the specific interaction between light and canopy 

architecture is inherently included in k. Observed values of k were between 0.3 and 2 for 

different plant functional types depending on leaf angle and clumping index (Monsi and 

Saeki, 2005; Zhang et al., 2014) and depending on canopy development (De Costa and 

Dennett, 1992; Chen et al., 2014b) and canopy configuration (Flénet et al., 1996; Drouet and 

Kiniry, 2008; Evers et al., 2009; Sarlikioti et al., 2011b). Allowing k to vary as a function of 

canopy characteristics was reported to result in better estimations of canopy light interception 

(Forrester, 2014), light transmission (Aubin et al., 2000) and transpiration (Tahiri et al., 
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2006). To determine the variation of k experimentally, continuous measurements of canopy 

light transmission and LAI, ideally conducted under an overcast sky to avoid disturbances 

caused by sunflecks under direct sunlight (Monsi and Saeki, 2005), can be rather laborious. 

Therefore, a physically based virtual analysis may help better understanding the systematic 

variation in k. 

Functional-structural plant models (FSPMs) incorporate three-dimensional (3D) information 

of plant structure and light models in addition to plant functionality, making it possible to 

capture feedbacks between canopy architecture and light environment by ray tracing 

algorithms. Such models are especially important for studies considering spatial 

heterogeneity of environmental factors (Louarn and Song, 2020). The heuristic potentials of 

FSPMs to quantify the effects of canopy architecture on light interception and biomass 

production have been demonstrated (Sarlikioti et al., 2011a; Kang et al., 2012; Chen et al., 

2014b) as well as their capacity to extrapolate and apply knowledge to assist decisions on 

crop management and breeding (Vos et al., 2010; Buck-Sorlin et al., 2011; Sarlikioti et al., 

2011a; Perez et al., 2018; Chen et al., 2019; N Zhang et al., 2020). Although the capability of 

handling multiple degrees of complexity is an advantage of FSPMs, it can lead to increased 

computational requirements and analytical intractability that restrict the range of methods 

that can be effectively incorporated for model parameterization and analyses (Louarn and 

Song, 2020; Zhang and DeAngelis, 2020). Yet not a major concern nowadays, the 

complexity of FSPM can still result in various degrees of limitations depending on the hard- 

and software that are available to the model developers and users. Compared to a simpler 

model, a more explicit and complex model may better represent the real system up to the 

point where errors aggravate over the uncertainty of its large amount of parameters (Vos et 

al., 2010).  

Therefore, the selection of the degree of simplicity/complexity of an approach to predict 

spatial heterogeneity and crop productivity should be based on the balance between model 

accuracy and uncertainty (Renton, 2011). In this study, we aimed to examine the trade-offs 

between simplicity and accuracy of methods simulating light-plant interaction and its 

influence on long-term leaf-level photosynthetic acclimation and plant-level dry matter 

accumulation. We compared the two methods, 3D light model using ray tracing (RT) and 1D 

light model using Beer-Lambert equation (BL), in a dynamic plant model of greenhouse 
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cucumber. Model performance was evaluated and compared by the predictive accuracy in 

photosynthetic acclimation and biomass production using both hourly-step (HS) and daily-

step (DS) of time resolutions in order to examine the possible influence of simulation time-

step on the predictions.  

 

Materials and Methods 

Overview of model comparison 

A dynamic plant model of greenhouse cucumber was implemented in GroIMP (Kniemeyer, 

2008) to compare the effect of plant-light interaction methods, recursive ray tracing (RT) 

algorithm and simple Beer-Lambert equation (BL), on predictive efficiency in photosynthetic 

acclimation and biomass production. The dynamic plant model described functions of leaf-

level photosynthetic acclimation, photosynthesis and plant-level dry matter accumulation, 

depending on light intercepted by individual leaves as acclimatory signals and driving force 

(Figures 5-1, S5-1). Leaf light interception was either simulated using BL as 1D light model 

(red box in Figure 5-1), or using RT in a functional-structural plant model (FSPM) with 3D 

descriptions of plant architecture and light model (blue box in Figures 5-1, S5-1). Before 

comparing model predictions of RT and BL, the plant structural traits (lamina area, elevation 

angle, petiole length and internode length) and light interception efficiency (Eqn S5-1), 

predicted using RT, were evaluated. Then, RT was used to simulate artificial scenarios of 

canopy configurations in order to establish a function to estimate light extinction coefficient 

k for use in method BL (Figure 5-2). The computer code for the model is available from the 

corresponding author upon request. 

Model inputs were hourly values of photosynthetically active radiation (PARout, mol m
-2

 h
-1

) 

above the greenhouse, temperature sum (°Cd, using 10°C base temperature for cucumber), 

nitrogen supply (mM) and relative humidity (%) in the greenhouse. Hourly vapor pressure 

deficit (VPD, kPa) was calculated using temperature and relative humidity according to Eqn 

12 in Moualeu-Ngangue et al. (2016). Simulations were carried out for both hourly-step (HS) 

and daily-step (DS) resolutions. When applying daily steps, daytime mean VPD (when 

PARout > 0.1 mol m
-2

 h
-1

) and daily temperature sum were calculated from the hourly values. 
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Daily mean photosynthetic photon flux density outside of the greenhouse (PPFDout, μmol m
-2

 

s
-1

) was calculated from PARout by taking day length (h) into account following a function of 

Julian day and latitude (°) according to Eqns 1-3 in Forsythe et al. (1995). Sunrise and sunset 

was defined as the moment when the top of the sun is apparently even with horizon. 

To evaluate model performance, root-mean-square deviation (RMSD), accuracy (%) and 

relative bias were determined using measured (xi) and simulated (yi) values (modified by 

Kahlen and Stützel, 2011): 

RMSD = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1   

Accuracy (%) = (1 −
RMSD

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1

) × 100   

Relative bias =
1

𝑛
∑ (𝑦𝑖)2𝑛

𝑖=1 −
1

𝑛
∑ (𝑥𝑖)2𝑛

𝑖=1
1

𝑛
∑ (𝑥𝑖)2𝑛

𝑖=1
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Figure 5-1. Diagram of model data flow of the dynamic plant model of greenhouse cucumber using 

light models, the Beer-Lambert equation (BL, red box) or ray tracing (RT, blue box). Environmental 

input data (dashed box) given into the model are outside photosynthetically active radiation (PAR) 

(mol m
-2

 per unit time), temperature sum (°Cd per unit time), nitrogen supply (mM) and vapor 

pressure deficit (kPa). Details of Light model / Plant structure are shown in Figure S5-1. 
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Figure 5-2. Processes of establishing the relationship between light extinction coefficient k and leaf 

area index (LAI) using ray tracing (RT), and evaluating this relationship using the Beer-Lambert 

equation (BL). Inputs are indicated in dashed boxes. The relationship between k and LAI was 

described by Eqn 5-2a with a minimal k (kmin), which was found to be dependent on canopy 

configuration, and distances between plants and between rows (Eqn 5-2b and Figure 5-5). Simulated 

scenarios of canopy configuration are listed in Table S5-2, and the simulated k is shown in Figure 5-4. 

The canopy configuration of the greenhouse experiments 1b, 2a and 2b (Table 5-2) was used in the 

evaluation. 

 

  



Chapter 5 Comparison between multilayer and functional-structural models 

 

74 
 

Greenhouse experiments for model evaluation 

To obtain measured data of intra-canopy light distribution, architectural traits, leaf 

photosynthetic parameters and plant dry matter, five experiments (Table 5-1) were conducted 

in Venlo-type greenhouses at the Institute of Horticultural Production Systems, Leibniz 

Universität Hannover, Germany (latitude 52.4°N). Experiments 1a, 1b and 1c were 

conducted in August 2006, May 2007 and August 2007, respectively. Experiments 2a and 2b 

were conducted in April and July 2017, respectively. In all experiments, cucumber (Cucumis 

sativus L.) ‘Aramon’ (Rijk Zwaan, De Lier, the Netherlands) plants were cultivated under a 

high-wire (up to 4 m) single-stem system in greenhouses oriented from north to south. Three 

weeks after sowing, five-leaf-stage seedlings in rockwool cubes (10 cm × 10 cm × 6.5 cm) 

were transferred onto rockwool slaps in the greenhouses and were drip-irrigated with nutrient 

solution. 

 

Table 5-1. Overview of climate conditions and growth period in the five greenhouse experiments 

Experiment 1a 1b 1c 2a 2b 

Time Aug 2006  May 2007  Aug 2007  Apr 2017  Jul 2017  

Mean Temperature (°C) 24.8 ± 2.9 23.2 ± 1.1 23.7 ± 1.6 23.1 ± 0.9 23.9 ± 1.4 

Daily PAR integral 

(mol m
-2

 d
-1

) 
24.9 ± 6.7 20.9 ± 7.9 20.5 ± 7.6 22.4 ± 9.6 26.8 ± 10.4 

Growth duration in 

greenhouse (d) 
22 30 23 38 38 

Julian days 206-227 127-156 211-233 94-131 192-229 

 

 

The light flux incident on leaves was measured via PAR sensors on 14 leaves per plant (see 

Figure 1a in Wiechers et al. 2011b) at the 3
rd

 week after transplanting in experiments 1a, 1b 

and 1c. In experiments 1b, 2a and 2b, dry matter of leaves, petioles, internodes and fruits per 

plant was determined destructively with three replications between the 2
nd

 and the 5
th

 weeks 

after transplanting. Leaf photosynthetic parameters were measured at two leaves per plant 

with two replications in experiment 2a at the 2
nd

, 3
rd

, 4
th

 and 5
th

 weeks after transplanting 

(described as in chapter 3). Plant architecture was digitized according to Wiechers et al. 
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(2011b) to obtain organ sizes non-destructively in four experiments (1a, 1b, 1c and 2a for 

lamina size and angle, internode length and petiole length).  

In experiments 2a and 2b, plants were grown in rows at a density of 1.33 plants m
-2

 (Table 5-

2). Plants were subjected to treatments of either high light (HL, non-shaded) or low light (LL, 

reduced by shading to 50% of HL condition) in combination with either high nitrogen (HN, 

10 mM) or low nitrogen (LN, 2.5 mM) supply (details see chapter 2). 

In experiments 1a, 1b and 1c, four canopy arrangements (Table 5-2) of either row (R) or 

isometric (I) patterns in combination with a density of either one (R1 and I1) or two (R2 and 

I2) plants m
-2

 were applied (details see Wiechers et al., 2011b), under similar growing 

conditions as HLHN in experiments 2a and 2b. Plants in experiments 1a and 1c were 

decapitated above leaf rank 23. The ground in the greenhouses was covered by a white 

plastic film during experiments 1a-1c.  

 

Table 5-2. Canopy configurations of arrangement, plant density and distances between rows and 

between plants in the five greenhouse experiments 

Experiment 1a / 1b / 1c  2a / 2b 

Canopy arrangement Row (R1) Row (R2) Isometric (I1) Isometric (I2)  Row  

Plant density per m
2
 1 2 1 2  1.33 

Row distance (m) 1.86 1.86 0.93 0.93  1.5 

Plant distance (m) 0.53 0.27 1.08 0.53  0.5 

 

Model description - plant development 

Virtual plants developed with the appearance of new phytomers. When a meristem reached 

the thermal age of a phyllochron (°Cd per leaf), the meristem produced a new phytomer 

consisting of a meristem, an internode, a petiole and a leaf when using RT. When using BL, 

leaf area index increased with newly appearing leaves. Thermal age of an organ was counted 

from 0°Cd starting from the moment of appearance. From phytomer rank seven on, a flower 

was also developed and its ovary reached a length of 5 cm (assumed as starting point of fruit 

growth) at thermal age of 150°Cd (ca. ten days after the appearance of the respective 

phytomer). Phyllochron needed for a phytomer to appear was described by a logistic function 
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of leaf rank (Eqn S5-2) with an initial phyllochron of 125.4°Cd at the beginning of plant 

growth (8-10 days for the first true leaf to appear) and then decreased with increasing rank to 

stable level of phyllmin (Table S5-1). Values of phyllmin were derived for each treatment using 

measured data obtained in experiment 2a, and experiments 1a-1c were assumed to have the 

same constants as under treatment HLHN. 

Model description - plant function 

Photosynthetic acclimation of leaves to light was described by the light response of 

photosynthetic protein turnover (see Eqn 3-4- Eqn 3-7), the outcome of simultaneous 

processes of protein synthesis and degradation. Protein synthesis rate was adjusted to an 

hourly response to photosynthetic photon flux density (PPFD, μmol m
-2

 s
-1

) by assuming that 

daily protein synthesis only occurred during the light period. Nitrogen per m
2
 leaf area 

involved in photosynthetic functions (Np) of carboxylation (NV), electron transport (NJ) and 

light harvesting (NC) was simulated separately, with initial values of 0.33 mmol m
-2

 each. NV 

includes only Rubisco, NJ includes electron transport chain, photosystem II core and Calvin 

cycle enzymes other than Rubisco, and NC includes photosystem I core and light harvesting 

complexes I and II (Buckley et al., 2013).  

Leaf photosynthetic parameters were estimated from NV, NJ and NC, namely maximum 

carboxylation rate (Vcmax, μmol CO2 m
-2

 s
-1

), maximum electron transport (Jmax, μmol e
−
 m

-2
 

s
-1

) and leaf chlorophyll (Chl, mmol m
-2

), respectively (see Appendix ‘Computing 

photosynthetic parameters from N pools’ by Buckley et al., 2013). Electron transport (J, 

μmol e
−
 m

-2
 s

-1
) and carboxylation rate (Vc, μmol CO2 m

-2
 s

-1
) were calculated depending on 

incident light according to Eqn 4 and Eqn 5 in Qian et al. (2012), respectively. Leaf 

absorptance (α, unitless) was calculated in relation to Chl using Eqn 1 in Evans (1993). 

Newly appeared leaves had a minimum values of α = 0.13 due to the initial values of NC and 

NJ. Leaf reflectance and transmittance of photosynthetically active radiation (PAR) and red 

light were calculated as (1−α)/2. Respiration rates Rd (μmol CO2 m
-2 

s
-1

) of leaves were 

simulated depending on leaf age and incident light following Eqn 3-10. Mesophyll 

conductance (gm, mol CO2 m
-2

 s
-1

) was simulated depending on leaf thermal age and Np (Eqn 

S5-3). 
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Leaf net photosynthesis rate An (μmol CO2 m
-2 

s
-1

) was determined as the minimum of RuBP 

carboxylation-limited (Ac, μmol CO2 m
-2

 s
-1

) and RuBP regeneration-limited (Aj, μmol CO2 

m
-2

 s
-1

) net photosynthesis rate following the biochemical photosynthesis model of Farquhar 

et al. (1980). For details and constants used in this study please see Eqns 3-9, 3-14 and 3-15. 

To calculate dry matter production, CO2 uptake was converted to plant dry matter by a factor 

of 0.68 (Warren Wilson et al., 1992).  

Dry matter distribution between organs was implemented according to Wiechers et al. 

(2011a). In brief, a common pool of photoassimilates was assumed, which was augmented 

daily by dry matter production plus excess reserves from the previous day. Dry matter was 

distributed according to a priority scheme for meeting demands of different organs. Meeting 

maintenance costs (2% reduction; Marcelis, 1994) was the first priority, followed by root, 

reproductive growth and then vegetative growth.  

Dry matter distributed to individual fruits followed the proportion of a fruit’s potential 

growth rate to the total demand of fruits, which was the sum of potential growth rate of all 

growing fruits in a plant (Wiechers et al., 2011a). Fruit abortion and dominance might occur, 

if the ratio rAD between total supply and total demand of fruits was lower than certain 

thresholds. When rAD < 0.3, fruits with thermal age between 150°Cd-220°Cd were aborted 

(within 5-6 days after fruit length reached 5 cm). When rAD < 0.8, dry matter partitioning to 

individual fruit exhibited dominance favoring earlier initiated fruits. The potential growth 

rate of a fruit i (RPF,i, g DM d
-1

) was estimated equivalent to its potential dry matter, 

depending on the length of the fruit (LF,i, cm) at the previous day (Eqn S5-4). Actual fruit 

length LF,i was calculated inversely depending on its actual dry matter using Eqn S4. The 

growth duration of a fruit was accumulated from the time when its length had reached 5 cm 

until harvest (fruit length ≥ 30 cm). 

Model description - plant structure 

Lamina expansion and elevation angles were used in both RT and BL methods (Figure S5-1). 

Lamina expansion was described for individual leaves depending on their thermal age (°Cd) 

using a logistic function (see Eqn 5 in Kahlen, 2006) with a minimum of 5 cm
2
 and a specific 

growth rate of 0.0524°Cd
-1

. The maximum area of a leaf depended on its rank following a 
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log-normal curve (see Eqn 1 in Irving and Robinson, 2006) with a maximum leaf area ALmax 

(cm
2
) occurring at rank rALmax and constant kAL determining the shape of the curve (Table S5-

1). Lamina elevation angle (range from −90° to 90°) was defined as the angle between the 

line connecting the base to the tip of the lamina and the horizontal plane. Newly appearing 

leaves oriented vertically upwards and thus had a maximal elevation angle of 90°, which then 

decreased with expansion in its lamina size (cm
2
) followed Eqn S5-5 by a rate constant of 

0.0116 cm
-2

 to an asymptote of −68.4°. The constants used in lamina expansion and elevation 

angle were derived from measured data obtained in experiment 2a for each treatment, and 

experiments 1a-1c were assumed to have the same constants as under treatment HLHN. 

Other plant structural characteristics described below were only implemented when RT was 

used, namely lamina shape, petiole elongation, petiole zenith angle, leaf tropism and fruit 

radius (Figure S5-1). 

Four templates of lamina shape were reconstructed using digitizing data of cucumber leaves 

(Figure 2-6A) of various developmental stages (size ranging 0.01-0.11 m
2
) in experiment 2a 

to capture the change of shape along leaf expansion. A template was chosen for a given leaf 

according to its current size, with arbitrary thresholds set at 0.01 m
2
, 0.05 m

2
 and 0.07 m

2
. 

We chose a shape template depending on lamina size due to the topological dependency of 

growing leaves on their position and size rather than simple isometric scaling (Schmidt and 

Kahlen, 2019). The chosen template was then scaled to the size of the leaf by a factor, 

calculated as square root of the ratio between leaf size and template leaf size, to adjust the 

length of the lines constructing the template.  

Leaf petiole elongation was described similar to leaf expansion, with a minimum of 1 cm and 

a specific growth rate of 0.0312°Cd
-1

. The maximum length depended on its rank following a 

log-normal curve with a maximum length LPmax (cm) occurring at rank rLPmax, and a constant 

kLP determining the shape of the curve (Table S5-1). Petiole zenith angle was only thermal 

age-dependent, starting with 0° (vertically upwards), and then turning downwards at a rate of 

0.3° per °Cd until a maximum of 100° was reached. Leaf petiole radius was set to 0.45 cm. 

Phototropism of leaves was simulated as differential growth of the petiole at its base that 

caused horizontal movement (Kahlen et al., 2008), with initial phyllotaxis set to 137.5°. 

Virtual leaves were constructed with two halves along the midrib, so that PAR absorbed by 
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the left (PARl) and the right (PARr) leaf halves could be simulated separately. A leaf moved 

towards left when PARl/PARr > 1 until PARl/PARr = 1, and vice versa. The maximum tropism 

was assumed to be 30° per day, with a speed of 2° per °Cd, and it stopped when the thermal 

age of the petiole exceeded 153°Cd (Kahlen et al., 2008). 

Internode elongation was influenced by daily mean temperature and light signals, i.e., 

incoming photosynthetic photon flux density (PPFD, µmol m
-2

 s
-1

) above the canopy and 

red/far-red ratio perceived by the internode according to Eqns 1, 3 and 4 in Kahlen and Chen 

(2015). The red/far-red signal was assumed to be sensed at the time of maximum growth rate 

(around internode length of 3 cm). Signals of temperature and incoming PPFD sensed were 

their four-day mean values, calculated from day six to day three before the internode reached 

3 cm. Until reaching 3 cm, internode length was described depending on its thermal age 

(°Cd) using a logistic function (see Eqn 5 in Kahlen, 2006) with a minimum of 1 cm, a 

specific growth rate of 0.104°Cd
-1

 and a maximum of 6 cm. Angles between two adjacent 

internodes were set randomly to 15°-25°. Internode radii were set to 0.48 cm. 

Fruit radius (rF,i, cm) was calculated depending on current fruit length LF,i (Eqn S5-6, Kahlen 

and Stützel, 2007; Kuwar, 2007). Ratio between fruit length and its petiole length was set to 

3 with a minimum petiole length of 2 cm. The radius of the fruit petiole was set to 0.25 cm. 

Simulation of light-plant interaction  

To test the performance of the simplest form of 1D light model following the Beer-Lambert 

equation (BL), the solar angle was not taken into account in simulations in both hourly and 

daily steps, meaning that the incident light was assumed to be cast perpendicularly to the 

ground. To simulate light-plant interaction with the simple BL, perpendicular light 

transmission to a leaf layer i was calculated as light transmitted through all leaf area index 

above leaf i (LAIi+1) by Eqn 1a. However, since not all the leaves are horizontally oriented, 

Eqn 1a had to be adjusted for individual leaves. Three adjustment methods were compared 

for light incident Ii on leaf rank i, either by the cosine of the lamina elevation angle βi (°) for 

each leaf i, by kc (constant within a canopy, Charles-Edwards et al., 1986), or by a rank-

specific ki+1 for each leaf i: 

𝐼𝑖 = 𝐼0 × exp(−𝑘c × LAI𝑖+1) × cos𝛽𝑖  (Eqn 5-1b) 
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𝐼𝑖 = 𝐼0 × exp(−𝑘c × LAI𝑖+1) × 𝑘c  (Eqn 5-1c) 

𝐼𝑖 = 𝐼0 × exp(−𝑘c × LAI𝑖+1) × 𝑘𝑖+1  (Eqn 5-1d) 

The value of kc in both Eqns 5-1b and 5-1c was constant within a given canopy for all ranks 

of leaves, while ki+1 in Eqn 5-1d depended on LAIi+1. The cosine correction in Eqn 5-1b had 

a significant effect on PPFD incident on the leaf and could lead to a reduction to 0% or 

42.6% of the PPFD perpendicularly transmitted to the leaf with an elevation angle of 90° 

(newly appeared leaves) or −64.8° (matured old leaves), respectively. The k correction in 

Eqns 5-1c and 5-1d on the other hand could restrict PPFD incident on the leaf up to 90% 

reduction (if k = 0.1) depending on the value of k. 

 

Figure 5-3. Virtual canopy and light model in the dynamic plant model using ray tracing. (A) 

Appearance of virtual cucumber canopy at a plant density of 1.33 plants m
-2

. (B) Location of 

rockwool cubes (white squares, height 6.5 cm), from which single virtual plants were grown to form a 

virtual canopy. A light sensor (yellow square) covering a ground area of three plants was positioned 

under the canopy 3.5 cm above the rockwool cubes (thus the middle three rockwool cubes are 

covered). (C) Light model consisting of one direct and 72 diffuse light sources. Blue y-axis indicates 

south in the 3D scene. (D) Positions of eight light sensors (each had a size of 1 m
2
, red squares) for 

adjusting incident light, viewed from the top and (E) viewed from a side perspective. These eight 

sensors had 0% reflectance and 99.9% transmittance of light and thus negligible interaction with the 

virtual scene. 
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To simulate light-plant interactions with the more complex method of the 3D light model, ray 

tracing (RT), construction of 3D virtual canopies and light sources were required. Virtual 

canopies were created in the middle on a square ground (60 m × 60 m), which blocked the 

light cast from below the horizontal plane during simulations in hourly steps. With defined 

number of rows, number of plants per row and distances between rows and between plants 

(Table 5-2), virtual canopies were constructed as mock-up of the actual canopies. In this 

study, canopies consisting of 21 plants (Figure 5-3A) arranged in three north-south oriented 

rows and seven plants per row were tested. During each simulation, every plant was rotated 

randomly between −30° to 30° on the horizontal plane to take into account the variation 

resulting from manual transplanting. The three middle plants in the central row of the canopy 

were sampled for leaf and plant parameters. A light sensor (blue square in Figure 5-3B) was 

placed 0.1 m above ground (3.5 cm above the virtual rockwool cubes of the three plants in 

the middle row, white squares in Figure 5-3B), covering area of a width of one row distance 

and length of three plant distances in a row. This sensor sampled light transmission to the 

ground at 1200h to calculate light extinction coefficients k (Eqn 5-1a) with leaf area index 

(LAI) of the canopy. It should be noted that, the definition of LAI used here was not the 

projected leaf area (e.g., Lizaso et al., 2005) but the actual leaf area of a canopy. In the 

scenario simulations of k under various canopy configurations (Figure 5-2), the light sensor 

below the canopy (Figure 5-3B) had light reflectance and transmittance of 0%, so that it 

absorbed 100% of the light incident on it and would not interfere with the 3D scene.  

The 3D incoming light was simulated using a light model (Figure 5-3C) according to Buck-

Sorlin et al. (2011) with 72 diffuse light sources (sky objects) arranged in a hemisphere and 

one directional light source (sun object). The light objects cast rays onto the 3D scene, and a 

ray tracer was integrated to compute light distribution with ten million rays and a recursion 

depth of ten reflections. The virtual rays consisted of three user-defined channels, which 

interacted independently with the virtual objects. Due to the light signals concerned in the 

model, we defined the three channels as PAR, red and far-red light. Optical properties of 

objects were described according to their absorptance, transmittance and reflectance for each 

light channel. Optical properties of leaves for PAR and red light depended on Chl as 

described in the plant function section. For simplicity, leaves were assumed to reflect 38% 

and transmit 45% of far-red light (Kahlen et al., 2008), whereas internodes, petioles and 
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fruits reflect 6% PAR and red light, and 38% far-red light with 0% transmittance of light. 

After a fruit was harvested, its reflectance was set to 0% and transmittance to 100%. The 

ground under the virtual canopy did not reflect nor transmit light, thus no reflected light that 

would affect the light adjustment by the eight light sensors above the ground (Figure 5-3D, 

E). During simulations run for evaluation, the light sensor below the canopy (Figure 5-3B) 

did not transmit any light but reflected PAR and red light similarly to the ground in the 

greenhouse experiments 1 and 2, 80% and 10%, respectively. 

According to the optical properties of the greenhouse construction, photosynthetic photon 

flux density above the canopy (PPFDin, µmol m
-2

 s
-1

) was calculated as 75% of the PPFD 

outside the greenhouse (PPFDout, µmol m
-2

 s
-1

). PPFDin was then separated into light power 

emitted from sky objects (Psky) or from the sun object (Psun) by a proportion of diffuse light 

(pdiff, ranging 0-1): 

𝑃sky = 𝑝diff × PPFDin × 3 × 𝑓P   

𝑃sun = (1 − 𝑝diff) × PPFDin × 3 × 𝑓P   

where the multiplier 3 accounted for the three light channels. The proportion of diffuse light 

pdiff was calculated following Eqn 3 in Reindl et al. (1990), with a clearness index estimated 

using Eqns 1 and2 in Hofmann and Seckmeyer (2017). Global radiation Rg (W m
-2

) was 

estimated by dividing outside PPFDout by 2.07 (PPFD = Rg × 0.45 × 4.6, assuming 45% PAR 

in the global radiation and a conversion factor of 1 W m
-2

 PAR = 4.6 µmol m
-2

 s
-1

; Ludlow, 

1983). Since the actual light rays reaching the ground in the 3D scene varied with many 

factors, such as the angle of the sun object, the proportion of diffuse light and the properties 

of the ground, a scaling factor fP was applied to adjust the incoming total light power 

automatically at every step before simulation according to the amount of light reaching the 

3D scene (PPFDsim). PPFDsim was measured by eight one-m
2
 sensor objects (around the 

canopy, Figure 5-3D) located at 7 m above the ground (Figure 5-3E). These sensor objects 

were set to have 0% reflectance and 99.9% transmittance of light. The maximal value of 

PPFDsim from the eight positions was used to compute fP = PPFDin/max(PPFDsim). After the 

correction using fP, the deviation of actual PPFD in the 3D scene (at heights up to 5 m above 

ground) from PPFDin was within 5%. 



Chapter 5 Comparison between multilayer and functional-structural models 

 

83 
 

Virtual objects absorbed rays that came from all directions into contact according to their 

optical properties. Light power absorbed by objects was multiplied by 0.33 for red light 

(assuming one third of PAR) and by 0.275 for far-red light, shaping a red/far-red ratio of 1.15 

in sunlight. Light flux incident at an object was determined by dividing the absorbed power 

of a given light by its absorptance.  

 

Results 

Evaluation of plant structure and light interception predicted by the dynamic plant model 

using ray tracing 

The plant structural traits simulated by the ray tracing model in hourly steps were first 

compared to digitized data obtained in experiments 1a-1c between ranks 5-20 (total of 191 

measured data points from three experiments, four canopy configurations and ca. 16 leaves 

per plant). The accuracies were 74%, 73%, 87% and 77% for lamina area, elevation angle, 

petiole length and internode length, respectively (data not shown). Simulated canopy light 

interception efficiency (ranging 0-1, Eqn S5-1) showed an accuracy of 73% with a RMSD of 

7.5% (Figure S5-2), which can be considered a reasonable approximation of the 3D plant 

structure and light interception. 

Simulations of light extinction coefficient using ray tracing under artificial scenarios 

In order to compare predictions of photosynthetic acclimation and dry matter production 

between ray tracing (RT) and by the classic Beer-Lambert equation (BL), light extinction 

coefficient k had to be first determined for BL (Eqn 5-1b- Eqn 5-1d). Due to the clear effect 

of canopy configuration on k (Figure S5-3), we first simulated k under scenarios of different 

canopy configurations in row arrangements (Figure 5-2) using RT throughout the canopy 

development (growth period of 35 days) every day at midday (1200h) in daily steps (Figure 

5-4). Canopy configurations with various plant densities (1.0, 1.5, 2.0, 2.5 and 3.0 plants m
-2

) 

were created in combination with three different row distances (1.1, 1.5 and 1.9 m), so that 

plant distance within rows was always smaller than row distance (Table S5-2). These 

artificial scenarios were selected to cover the common range used in production and 
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experiments. Since there was no apparent difference in simulated k between experiments 1a, 

1b and 1c within a given canopy configuration (Figure S5-3), only the conditions of 

experiment 1a were used in this simulation.  

 

 

Figure 5-4. Simulated relationship between light extinction coefficient k and leaf area index of the 

canopies under scenarios of different plant densities (1.0, 1.5, 2.0, 2.5 and 3.0, indicated by colors, 

Table S5-2) and row distances (1.1, 1.5 and 1.9 m, indicated by symbols). Each point represents one 

estimate of k for a canopy on a specific day sampled at 1200h using the functional-structural plant 

model with ray tracing and simulations in hourly steps. Since there was no apparent difference in 

simulated k between experiments 1a, 1b and 1c (Figure S5-3), only the conditions of experiment 1a 

with a growth period of 35 days were used in this simulation. 

 

 

Simulated k was found to decrease with increasing canopy leaf area index (LAI), which 

could also be interpreted as canopy depth (Figure 5-4). This was expectable, since that 

increasing proportion of expanded leaves approaching an elevation angle of −68.4° (Eqn S5-

5) along canopy development allowed higher light penetration through the canopy and also 

less efficient light interception towards the base of the canopy. It was observed that denser 

canopies and wider row distances resulted in lower k (Figure 5-4); row distance could lead to 

a variation in k of up to 0.2 under the same plant density for canopies with LAI ≥ 1.0.  
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Relationship between light extinction coefficient and leaf area index as depending on canopy 

geometry 

From the results of simulated k under various scenarios of canopy configuration (Figure 5-4), 

an empirical relationship between k and LAI was derived following a log-normal function, 

where a maximal k of 1 occurred at LAI equal to lm (0.0479 ± 0.0022), with coefficient vk 

(1.90 ± 0.056) determining the shape of the curve. Along canopy development, k approached 

a stable minimal k (kmin), which was related to plant distance Dplant and row distance Drow of 

the canopy: 

𝑘 = (1 − 𝑘min) × exp {− [ln (
LAI

𝑙m
) 𝑣k⁄ ]

2

} + 𝑘min  (Eqn 5-2a) 

𝑘min = 𝑎1 − 𝑎2 × 𝐷plant − 𝑎3 × 𝐷row + 𝑎4 × 𝐷plant × 𝐷row  (Eqn 5-2b) 

where coefficients were estimated to be a1 = 0.659 (± 0.01338), a2 = 0.348 (± 0.0744), a3 = 

0.302 (± 0.0219) and a4 = 0.502 (± 0.0537). The six parameters in Eqn 5-2 were quantified 

with all simulated data of k in Figure 5-4 using least square fitting.  

Equation 5-2b resulted in kmin between 0.1-0.7 under Dplant ranging 0.1-0.9 m and Drow 

ranging 1.0-2.0 m (Figure 5-5A). An index of canopy geometry, planting rectangularity 

(Maddonni et al., 2001b), was calculated using Drow and Dplant as the ratio between the longer 

and the shorter distances. In addition to plant density, planting rectangularity provided 

information of the geometry of planting patterns. Planting rectangularity equal to one 

indicates a square spatial arrangement, whereas larger values indicate a rectangular 

geometry. Canopies with more even distribution (planting rectangularity < 4) appeared to 

have higher kmin under lower plant density (Figure 5-5B). However, over a certain level of 

planting rectangularity, higher plant density tended to have higher kmin (Figure 5-5B). With 

information of canopy configuration in greenhouse experiments 2a and 2b, kmin was 

determined 0.409 with Dplant = 0.5 m and Drow = 1.5 m. For canopy configurations used in 

experiment 1b, kmin was determined 0.408, 0.255, 0.507 and 0.441 for canopy arrangements 

R1, R2, I1 and I2, respectively. 
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Figure 5-5. Simulated minimal light extinction coefficient kmin using Eqn 5-2b under various canopy 

configurations. Color indicates the value of kmin (A) under given distance between rows (1.0-2.0 m) 

and distance between plants in a row (0.1-1.0 m), (B) under given planting rectangularity (1.0-20.0, 

unitless) and plant density (0.5-10.0 plants m
-2

). Values of kmin ranged from 0.12 to 0.71. Planting 

rectangularity was calculated using row and plant distances as the ratio between the longer and the 

shorter distances. A planting rectangularity equal to one indicates a quadratic canopy geometry, 

whereas larger values indicate rectangular geometry. 

 

Comparison of leaf-level light availability simulated using ray tracing and using the Beer-

Lambert equation 

Equation 5-2 was applied to simulated kc and ki+1 used in the BL Eqn 5-1b- Eqn 5-1d for 

further simulations of light interception, photosynthetic acclimation and dry matter 

production under the conditions of experiment 2a. In Eqns 5-1b, 5-1c and 5-1d, kc was 

determined using Eqn 5-2a with LAI of a canopy at a given time point. In Eqn 5-1d, ki+1 was 

calculated using Eqn 5-2a for each leaf i with LAI above it in the canopy (LAIi+1).  
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Figure 5-6. Comparison of simulated light conditions at leaf level using different light models and 

time resolutions. The models compared were the Beer-Lambert equation (BL) and ray tracing (RT, 

black symbols) in daily steps (DS, circles) or hourly steps (HS, triangles). Different methods of BL 

using Eqns 5-1b, 5-1c and 5-1d were indicated by green, yellow and blue symbols, respectively. (A) 

Snapshot of simulated relative light transmission (Ii/I0) at 1200h on the last day of a five-week of 

growth period, calculated as incident PPFD at each leaf divided by PPFD level above the canopy. (B) 

Total light interception (mol per leaf) summed over the five-week growth period under the conditions 

of experiment 2a and treatment HLHN (for other treatments see Table S5-3).  

 

 

Using the simulation at the end of experiment 2a at 1200h, a snapshot of intra-canopy 

relative light transmission at leaf level (Ii/I0), calculated as incident PPFD at each leaf divided 

by PPFD level above the canopy PPFDin, was in a comparable range for RT and BL (Figure 

5-6A) using both hourly-step (HS) and daily-step (DS) time resolutions. Different BL 

equations resulted in large variation in Ii/I0 at higher ranks (≥ 20, young leaves) without 

systematic deviation from Ii/I0 predicted using RT. At the lower ranks, the variation in Ii/I0 

between BL equations became subtle. The light model BL using Eqns 5-1b and 5-1d seemed 

to better capture the variability of Ii/I0 by RT at the higher ranks, which was not observed 

when applying Eqn 5-1c. However, Eqn 5-1c rather predicted the middle-lower range of Ii/I0 

variability at the higher ranks. 
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Total light interception by individual leaves (mol per leaf, Figure 5-6B) over five weeks of 

growth period was also simulated under the conditions of experiment 2a. Regardless of the 

approach used, the middle-lower layer of the canopy contributed largely to total light 

interception (Figure 5-6B). Total light interception simulated using BL 5-1b was 77%-92% 

of that using RT, whereas it was 88%-102% using BL 5-1c and 116%-134% using Eqn 5-1d 

of that using RT (Table S5-3). Time resolution DS resulted in higher total light interception 

than HS, ca. 14% higher using RT and 4% higher using BL (Table S5-3).  

Since additional information of lamina elevation angle was not required in Eqns 5-1c and 5-

1d, and these two equations captured the middle-lower and the higher ranges, respectively of 

Ii simulated by RT, we combined the two equations to create variability in Ii by a random 

factor ω (between 0 and 1 for individual leaves at a given time): 

𝐼𝑖 = min[𝐼𝑖(1c), 𝐼𝑖(1d)] + 𝜔 × {max[𝐼𝑖(1c), 𝐼𝑖(1d)] − min[𝐼𝑖(1c), 𝐼𝑖(1d)]} − 0.3 ×

(1 − 𝜔) × min[𝐼𝑖(1c), 𝐼𝑖(1d)]  

(Eqn 5-1e) 

where Ii (1c) and Ii (1d) are the Ii simulated using Eqn 5-1c and Eqn 5-1d, respectively. Using 

this equation, a variation of Ii around the minimum of Ii (1c) and Ii (1d) was generated, with a 

maximal value of Ii equal to the maximum of Ii (1c) and Ii (1d), and a minimal value of Ii 

equal to 70% of the minimum of Ii (1c) and Ii (1d). The 30 % of variability for the lower Ii 

range chosen was consistent with the variability simulated by RT (1Q 18%, median 31%, 

mean 35%, 3Q 45%). Equation 5-1e led to comparable estimation in leaf-level Ii/I0 (Figure 5-

7A) and light interception (Figure 5-7B, Table S5-3) to RT, and was used in the further BL 

simulations. 
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Figure 5-7. Comparison of simulated light conditions at leaf level using different light models and 

time resolutions. The models compared were the Beer-Lambert equation 5-1e (BL, yellow symbols) 

and ray tracing (RT, black symbols) in daily steps (DS, circles) or hourly steps (HS, triangles). (A) 

Snapshot of simulated relative light transmission (Ii/I0) at 1200h on the last day of five-week of 

growth period, calculated as incident PPFD at each leaf divided by PPFD level above the canopy. (B) 

Total light interception (mol per leaf) summed over the five-week growth period under the conditions 

of experiment 2a and treatment HLHN (for other treatments see Table S5-3). 

 

Comparison of predictive accuracies of dry matter production and photosynthetic 

acclimation using ray tracing and using the Beer-Lambert equation 

Dry matter production is the outcome of light acclimation and light-driven photosynthesis, 

reflecting integrative light-plant interaction from leaf to plant level. Shoot (total above-

ground) dry matter was simulated under the conditions of experiments 1b, 2a and 2b using 

four combinations of model approaches and time-step resolutions, BL-DS, BL-HS, RT-DS 

and RT-HS, and compared to measured data (Figure 5-8). The lowest accuracy (38.8%, 

Figure 5-8C) was achieved by RT-DS due to large overestimation, and the highest accuracy 

(83.0%, Figure 5-8B) by BL-HS, comparable to that of RT-HS (79.9%, Figure 5-8D). Both 

BL-HS and RT-HS were able to predict shoot dry matter under different treatments during 

different seasons with high accuracy, but the computational duration of RT-HS (64.4 ± 24.0 s 

per simulation day) was by one order of magnitude longer than of BL-HS (1.34 ± 0.16 s per 

simulation day).  
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Figure 5-8. Model evaluation by comparing simulated shoot dry matter (g per plant) to measured data 

obtained in experiments 1b, 2a and 2b. Shoot dry matter including all above-ground dry matter of 

vegetative and reproductive parts was simulated (A) by Beer-Lambert equation 5-1e (BL) in daily 

steps (DS), (B) by BL in hourly steps (HS), (C) by ray tracing (RT) and DS, (D) by RT and HS. 

Measured data were obtained in experiment 1b (yellow symbols), 2a (blue symbols) and 2b (green 

symbols) with three replications harvested between the second and the fifth weeks after transplanting 

into greehouse (total 36 measured data points). Four combinations of light and nitrogen supply 

treatments (high light, HL, low light, LL, high nitrogen, HN, and low nitrogen, LN) applied in the 

experiments are indicated by different symbols. Dotted lines are one-to-one lines. 
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Table 5-3. Predictive quality of light models using simple Beer-Lambert equation 5-1e (BL) and 

using ray tracing (RT) in hourly steps (HS). Plant dry matter variables simulated were vegetative and 

reproductive dry matter per plant and their sum as shoot dry matter. Photosynthetic acclimation 

variables simulated were net photosynthesis rate measured at PPFD 1300 µmol m
-2

 s
-1

 (An1300), 

maximum electron transport rate (Jmax), maximum carboxylation rate (Vcmax), chlorophyll (Chl), 

photosynthetic nitrogen (Np) and respiration rate (Rd). Measured data of plant dry matter were 

obtained in experiments 1b, 2a and 2b during the second and the fifth weeks after planting with three 

replications (total 36 measured data points). Leaf photosynthetic parameters were measured at two 

leaves per plant in experiment 2a for four consecutive weeks with two replications (total 32 measured 

data points). 

Light model 

 

Variable 

Accuracy  

(%) 
Relative bias 

RMSD 

(unit as variable) 

BL-HS RT-HS BL-HS RT-HS BL-HS RT-HS 
Shoot dry matter  

(g per plant) 
83.0 79.9 0.037 0.164 14 16 

Vegetative dry matter  

(g per plant) 
62.8 56.5 0.540 0.742 20 24 

Reproductive dry matter  

(g per plant) 
43.9 46.3 -0.531 -0.474 15 14 

       

An1300 (µmol CO2 m
-2

 s
-1

) 73.3 71.5 -0.342 -0.359 4.1 4.4 

Jmax (µmol e
−
 m

-2
 s

-1
) 81.2 75.7 -0.127 -0.141 22 28 

Vcmax (µmol CO2 m
-2

 s
-1

) 72.2 67.6 0.250 0.227 17 20 

Chl (mmol m
-2

) 80.3 79.7 0.305 0.263 0.085 0.087 

Np (mmol m
-2

) 82.2 78.4 0.151 0.121 6.9 8.3 

Rd (µmol CO2 m
-2

 s
-1

) 68.8 61.5 -0.384 -0.365 0.41 0.51 

 

 

For both BL and RT approaches, time resolution of DS led to ca. 40% (between 20%-55%) 

higher simulated shoot dry matter than HS (Figure S5-4A), although DS only resulted in 14% 

and 4% higher total light interception per plant than HS using RT and BL, respectively 

(Table S5-3). The overestimation by DS did not appear to result from a consistent 

overestimation of photosynthetic parameters, i.e., net photosynthesis rate measured at PPFD 

1300 µmol m
-2

 s
-1

 (An1300, Figure S5-4B), maximum electron transport rate (Jmax, Figure S5-

4C) and maximum carboxylation rate (Vcmax, Figure S5-4D). In the following comparisons of 

model performance, only simulations with HS were further examined. 

Plant dry matter distribution was simulated with time resolution of HS and compared 

between RT and BL equation 5-1e (Table 5-3). Since dry matter distribution only depended 

on dry matter availability in a plant and not on light, it was directly affected by simulated 
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shoot dry matter following a given priority scheme. Positive value of relative bias indicated 

sysmetical overestimation of shoot and vegetative, while negative relative bias indicated 

underestimation of dry matter distribution to reproductive parts (Table 5-3). Following the 

same comparion, simulated leaf photosynthetic parameters were also examined with 

measured data obtained in experiment 2a. For all parameters examined, both BL and RT 

resulted in high accuracies between 71%-82%, except for maximum carboxylation rate 

(Vcmax) and respiration rate (Rd, Table 5-3), which were clearly over- and underestimated, 

respectively. In addition, both models tended to overestimate leaf chlorophyll (Chl) and 

photosynthetic nitrogen (Np), and underestimate net photosynthesis rate measured at PPFD 

1300 µmol m
-2

 s
-1

 (An1300) and maximum electron transport rate (Jmax). In summary, the 

performace of BL 5-1e is comparable to and even slightly better than RT in predicting plant-

level dry matter accumulation and leaf-level photosynthetic acclimation although there is still 

room for improvement in the functional part of the model, particularly dry matter 

distribution, Vcmax and Rd. 

Sensitivity of predictive accuracy of dry matter production and photosynthetic acclimation to 

light extinction coefficient used 

To test the sensitivity of model predictions to the k value used, constant values of kc ranging 

0.3-0.7 (in steps of 0.1) and a variable kc calculated using Eqn 5-2 were input into Eqn 5-1c 

to simulate plant dry matter in experiments 1b, 2a and 2b (Figure 5-9A, C) and 

photosynthetic parameters in experiment 2a (Figure 5-9B, D).  

Among the constant kc used, a kc of 0.5 resulted in the highest accuracy (86.5%) for shoot dry 

matter (Figure 5-9A), and a deviation in kc of 0.2 from kc of 0.5 led to a decrease in accuracy 

by up to 27%. When using kc values estimated by Eqn 5-2 (indicated by the vertical grey line 

in Figure 5-9A), the accuracy for shoot dry matter was 82.5%, which was slightly lower than 

that by BL 5-1e (83.0%, Table 5-3). The higher the kc used, the higher was the simulated 

plant dry matter and thus the higher the overestimation of shoot dry matter (Figure 5-9C). 

The accuracy for vegetative dry matter peaked at a kc of 0.4 (Figure 5-9A), while that for 

reproductive dry matter increased with kc, indicating a bias in distribution scheme towards 

vegetative parts. The accuracies of An1300 and Rd increased with increasing kc, and that of Chl 

and Vcmax increased with decreaing k (Figure 5-9B), but the effects of kc on these parameters 
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were not as strong as on dry matter (Figure 5-9A). Higher kc values also resulted in higher 

simulated photosynthetic parameters (Figure 5-9D), where a kc of 0.5 resulted in the highest 

accuracy (82.9%) for Jmax (Figure 5-9B).  

In summary, BL 5-1c with a constant kc of 0.5 was able to predict plant dry matter production 

and leaf photosynthetic acclimation well (Figure 5-9), justifying the applicability of a 

constant k using BL if an appropriate k could be first determined before conducting model 

simulation. Although in this case the application of variable k values (Eqn 5-2) seemed 

somewhat unnecessary, it provided a proper k proxy without prior knowledge of k. 

 

 

Figure 5-9. Effect of light extinction coefficient kc on accuracy of predicting leaf photosynthetic 

acclimation and plant dry matter by Beer-Lambert equation 5-1c. Accuracies for (A) plant dry matter 

and (B) leaf photosynthetic parameters. Relative bias for (C) plant dry matter and (D) leaf 

photosynthetic parameters. Constant values of kc between 0.3 and 0.7 were tested. Grey vertical 

dashed lines indicate the accuracy using variable kc values estimated depending on canopy 

configuration by Eqn 5-2.  
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Discussion 

In conjunction with a dynamic model of greenhouse cucumber, we compared the 

performance of 1D (Beer-Lambert equation, BL) and 3D (ray tracing, RT) modelling 

approaches in predicting leaf-level photosynthetic acclimation and plant-level dry matter 

accumulation over growth periods of two to five weeks. Prediction accuracy by BL Eqn 5-1c 

(Figure 5-9) or Eqn 5-1e (Table 5-3) in combination with hourly-step (HS) time resolution of 

simulation was found comparable to that by RT with HS (Table 5-3), when using light 

extinction coefficients k estimated following an empirical relationship (Eqn 5-2) established 

with the assistance of RT.  

Applying the 3D light model enabled systematic examination of variation in light extinction 

coefficient k 

The advantage of using the proposed relationship to estimate k as a function of LAI is that it 

provided a k proxy, whereby the effects of canopy geometry on k are taken into account. 

Motivated by similar intention, the effect of row spacing on k was examined experimentally 

in maize, sorghum, soybean and sun flower canopies by Flénet et al. (1996) as well as by a 

modelling approach in virtual graminaceous canopies by Drouet and Kiniry (2008). Both 

found a decrease in k with increasing row spacing under the same plant density, consistent 

with our in silico measurements of k using RT (Figure 5-4). 

With information of canopy configuration, i.e., distance between rows (Drow) and distance 

between plants in a row (Dplant), minimal k (kmin) for a developed cucumber canopy was 

estimated using the empirical relationship Eqn 2b (Figure 5-5A). In the given ranges of Drow 

between 1-2 m and Dplant between 0.1-1.0 m, kmin was found higher in more quadratic 

(planting rectangularity, PR, closer to one) canopies (Figure 5-5B). Under PR < 4, kmin 

tended to be higher under lower plant density, while over PR > 4, kmin tended to be higher 

under higher plant density (Figure 5-5B). This agreed partially with experimental data 

obtained from maize canopies (Maddonni et al., 2001b). At a density of 3 plants m
-2

, a more 

square-distributed maize canopy had higher k with (PR 1.5 versus 2.7, green area index GAI 

of ca. 2.5), whereas the effect of canopy geometry became insignificant and k was found 

higher in canopies with a plant density of 9 plants m
-2

 (PR 1.1 versus 4.4, GAI of ca. 6) and 

12 plants m
-2

 (PR 1.5 versus 5.8, GAI of ca. 7) than canopy with a density of 3 plants m
-2

.  
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Although internode elongation and phototropism reacted to light signals in the current model, 

appearance of new phytomers, leaf expansion and petiole elongation had no feedback 

response to these cues. When responses to light limitation and shading, e.g., reduced leaf 

development and increased petiole elongation (Sessa et al., 2005; He et al., 2020), were 

ignored in simulations with high plant density, it might lead to an underestimation of k due to 

unrealistically higher LAI and light transmission (Ii/I0) using equation k = −ln(Ii/I0)/LAI. This 

increases the uncertainty when applying Eqn 5-2b to canopies of high pant density. 

The values of k reported in literature for greenhouse cucumber vary from 0.42 to 0.87 (Table 

S5-4). In addition to the effect of canopy geometry, seasonal solar position and diffuse light 

used may contribute to this variation. Using a wheat FSPM, a smaller solar zenith angle was 

found to result in lower k, such that in the most extreme case, a difference of 60° solar zenith 

led to a difference in k up to 0.48 (Evers et al., 2009). Diffuse light generally leads to lower 

k, although this effect interacts with solar angle (Li et al., 2014). These effects explain partly 

the lower k found in spring and summer (k between 0.4-0.6, from March to September) 

compared to autumn and winter (k > 0.8, from October to February, Table S5-4). Since in 

Eqn 5-2b these effects of incident light were not explicitly described (but see Eqns 5-8 in 

Lizaso et al., 2005) and it was parameterized using in silico measurements under the 

conditions during experiment 1a (in August), Eqn 5-2 was advisably applicable for predicting 

dry matter production in spring and summer (as evaluated in Figure 5-8B). 

Simulation with different time resolutions revealed the impact of fluctuating light on dry 

matter accumulation 

Higher dry matter accumulation in plants was predicted by simulations in daily steps (DS, 

Figure 5-8A, C) compared to hourly steps (HS, Figure 5-8B, D), leading to an 20%-55% 

overestimation of dry matter with a trend of higher overestimation simulated by RT at week 

five than that at week two (Figure S5-4A). Since DS did not lead to apparent overestimation 

of photosynthetic parameters (Figure S5-4B-D), this overestimation of plant dry matter could 

not be explained by the effect of photosynthetic acclimation. Although input total light 

integral per day was identical in both DS and HS, total plant light interception was ca. 14% 

and 4% higher in DS simulations at the end of a period of five weeks by RT and BL, 

respectively (Table S5-3), which still did not completely explain the extent of overestimation 
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by DS. It can be argued that DS simulations approximate virtual plants photosynthesizing 

under constant light regime with an average daily light level without fluctuation during the 

day, whereas HS simulations approximate a growth light condition with natural fluctuation 

every hour. This phenomenon has been experimentally observed across C3 and C4 species. 

Compared to the plants grown under fluctuating light regimes, 19%-140% higher dry matter 

was accumulated under constant light regimes for the same daily light integral depending on 

plant species and the fluctuating pattern applied (Watling et al., 1997; Leakey et al., 2002; 

Kubásek et al., 2013; Vialet-Chabrand et al., 2017b; Sakoda et al., 2020). However, this 

effect has also been reported insignificant in tomato plants grown for 2-3 weeks (Kaiser et 

al., 2018a; Y Zhang et al., 2020), or reported to be opposite in a understory rain-forest 

species Micromelum minutum (Watling et al., 1997). It is clear that species reacted 

differently to light regimes (Watling et al., 1997; Blom and Zheng, 2009), leading to a large 

variability in the observations. This pinpoints the avenues for further investigations of 

species-specific mechanisms of acclimation to dynamic light environments in both 

morphology and physiology (Vialet-Chabrand et al., 2017a; Pao et al., 2019b; Y Zhang et 

al., 2020; Morales and Kaiser, 2020). 

Application of 1D light model facilitated predictions of average responses at whole-leaf and 

whole-plant levels 

The choice of using a simpler or a more complex light model depends on the scale of traits of 

interest. The general approach for constructing models is starting simple and then extending 

with details necessary for answering the question addressed, ensuring that the model is fit for 

purpose (Renton, 2011; Auzmendi and Hanan, 2020). The capability of FSPM to capture 3D 

distribution of environmental conditions and their interaction with plant architecture is 

necessary for a realistic representation and intuitive comprehension of the real systems (Vos 

et al., 2010). This advantage of FSPM enables mechanistic analyses of individual processes 

involved in architectural acclimation, assisting with identifying leaf and canopy-level traits 

for improving cultural practices (e.g., Buck-Sorlin et al., 2011; N Zhang et al., 2020) and 

selective breeding (e.g., Chen et al., 2014a; Perez et al., 2018). We took advantage of the 3D 

light model for quantifying the effect of canopy geometry on light interception under various 
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stages of canopy development (Figures 5-4, S5-3), thereby establishing an estimation for k 

(Eqn 5-2). 

Since the current dynamic model with ray tracing did not take into account the light gradient 

within a leaf, nor differentiate the spatial distribution of microclimate within a canopy (e.g., 

temperature, relative humidity and CO2, but see Boulard et al., 2017; Ma et al., 2019), it was 

not possible to relevantly adapt responses at a finer scale than whole-leaf level, e.g., the role 

of spatial distribution and patterning of stomata in balancing gas exchange and water loss 

(Harrison et al., 2020). However, we showed that for simulating traits integrating temporally 

over days to weeks and spatially from whole-leaf to whole-plant level, the application of the 

simplest 1D light model following the Beer-Lambert equation (Eqns 5-1c and 5-1e) reduced 

the computational demand by one order of magnitude without compromising the predictive 

accuracy of canopy responses. The simple Beer-Lambert equation can be extended and 

modified to partly include variability in horizontal light distribution between canopies for 

row crops (Thornley and Johnson, 1990), and by considering diffuse/direct light distribution 

in a canopy and shade/sunlit portion within a leaf (de Pury and Farquhar, 1997; Lizaso et al., 

2005; Roupsard et al., 2008; Hikosaka, 2014) depending on modelling aims. In summary, our 

results suggested that, with the assistance of the 3D light model, the 1D light model using the 

Beer-Lambert equation provided efficient and fast estimation for long-term processes 

integrating over weeks. 
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Chapter 6  
Dynamic coordination between function and structure 

Coordination between canopy architectural dynamics and functional 

acclimation strategy improves canopy productivity 

 

Abstract 

To maximize productivity, plants with contrasting architectural characteristics (AC) should 

develop different functional acclimation strategies (FAS) to coordinate photosynthetic 

nitrogen with AC-dependent intra-canopy light distribution. Variety-specific dependency of 

photosynthetic protein synthesis on light represented FAS of two cucumber (Cucumis sativus 

L.) cultivars (Aramon and SC-50), whose differences in leaf angle distribution and light 

extinction coefficient were quantified by 3D canopy architectures coupled with a light model. 

In silico experiments were conducted using a multilayer model under different levels of light 

competition. The FAS of SC-50 (FASSC-50) was found most effective under light competition, 

while that of Aramon (FASAramon) was under ample light conditions. Sub-optimal AC-FAS 

coordination depending on the level of light competition was found within a variety, while a 

dynamic FAS (FASAramon in young leaves and FASSC-50 in mature leaves) increased 

productivity regardless of light regime and canopy configuration by up to 5.6%. Optimized 

FAS suggested light-dependent trade-offs in photosynthetic nitrogen partitioning between 

electron transport and the limiting function and a leaf angle-dependent trade-off between 

electron transport and carboxylation. Our study presents novel aspects of dynamic 

coordination between FAS, AC and light scenarios in canopy productivity. 
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Introduction 

Canopy architecture plays a central role in the spatial arrangement of the photosynthetic 

apparatus and thus in light interception (Duursma et al., 2012). Architectural characteristics 

(AC) such as distribution of leaf area, leaf angle and branch angle determine intra-plant light 

attenuation (Chen et al., 2014b; Zhang et al., 2014; Tang et al., 2019) and self-shading 

(Falster and Westoby, 2003). Also, the AC-determined degree of inter-plant competitiveness 

for light is likely to indirectly drive the selection for yield during the breeding process (Chen 

et al., 2019; Perez et al., 2019). Light attenuation through homogeneous canopies can be 

described by Beer-Lambert law with leaf area index and light extinction coefficient (k, Monsi 

and Saeki, 1953; de Pury and Farquhar, 1997), which is a function of canopy AC (Monsi and 

Saeki, 2005; Zhang et al., 2014). For example, a more vertical leaf angle distribution leads to 

a lower k (Hikosaka and Hirose, 1997; Zhang et al., 2014) and a more homogeneous vertical 

light distribution in canopies by improving light transmission (Truong et al., 2015) and by 

avoiding excessive light interception during midday (Falster and Westoby, 2003). In contrast, 

a canopy with more horizontally oriented leaves intercepts more light per unit leaf area in 

which is described by a higher k (Zhu et al., 2010; Chen et al., 2014b) and a higher degree of 

self-shading. This explains most of the variation in light capture across species (Falster and 

Westoby, 2003; Duursma et al., 2012). Natural variation in AC is tightly subjected to genetic 

control (e.g., Truong et al., 2015; Mantilla-Perez and Salas Fernandez, 2017; Alqudah et al., 

2018) and contributes essentially to fitness under inter- and intra-genotypic light competition 

(Hikosaka and Hirose, 1997; Song et al., 2013). Selection pressure in terms of light 

competition may explain why some AC observed in nature (angle distribution of branch, 

Honda and Fisher, 1978; leaf phyllotaxis, Strauss et al., 2020) as well as in major crops 

(Flood et al., 2011) appear optimal for maximizing light interception. 

Theoretically, a strategy striving for maximal biomass production should combine maximal 

light energy capture for photosynthesis and maximal efficiency of photosynthesis to convert 

energy into photo-assimilates. Thus, architectural ideotype (Song et al., 2013; Chen et al., 

2014b; Chen et al., 2015; Perez et al., 2018; Tang et al., 2019; Chang et al., 2019) and 

cultural practices (planting pattern and density; Maddonni et al., 2001b; Drouet and Kiniry, 

2008) that maximize light interception are of great interest for breeding programs and crop 

management (Perez et al., 2019). However, light transmission within canopies is not only 
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spatially heterogeneous but also temporally dynamic due to continuous alteration of AC and 

thus k with canopy development (Campbell and Norman, 1989), making coordination of 

resource use with local light availability crucial for efficient conversion of photo-assimilates 

(Niinemets et al., 2015; Poorter et al., 2019; Chang et al., 2019). 

As one of the most limiting resources for plant growth, nitrogen is largely invested in 

proteins that contribute to photosynthetic capacity (> 50% leaf nitrogen; Evans, 1989a; 

Hikosaka and Terashima, 1996; Aerts and Chapin, 1999; Hikosaka, 2010; Evans and Clarke, 

2019). Driven by the need to efficiently use nitrogen, mechanisms of light acclimation have 

evolved (Werger and Hirose, 1991; Anten et al., 1995; Trouwborst et al., 2010; Osada et al., 

2014; Hikosaka, 2016). At canopy level, between-leaf distribution of photosynthetic nitrogen 

(Np) was reported to correlate with intra-canopy light distribution across species (Hikosaka et 

al., 2016), implying a generic light-dependent strategy for distributing Np. At leaf level, 

efficient use of Np can be achieved by shifting Np partitioning towards limiting 

photosynthetic functions according to light availability (Terashima and Evans, 1988; Evans, 

1989a; Hikosaka and Terashima, 1996; Evans and Poorter, 2001; Trouwborst et al., 2011; 

Song et al., 2017; Pao et al., 2019a). Photosynthesis is the light driven conversion of CO2 

into biomass through a flow of light harvesting, conversion of light energy into chemical 

energy through an electron transport chain, and energy consuming carboxylation catalyzed 

by the enzyme Rubisco (Farquhar et al., 1980). The capacities of these functions, i.e., light 

absorptance, maximal electron transport rate and maximal carboxylation rate, depend on the 

amount of Np invested (Hikosaka and Terashima, 1996). The balance between light capture 

(light interception by the leaf together with light absorption by light harvesting structures) 

and conversion of photo-assimilates (coordination between electron transport and 

carboxylation) is essential as it regulates Np use efficiency (Evans, 1989a; Ishimaru et al., 

2001; Hikosaka, 2010; Zhu et al., 2010; Song et al., 2017). This was supported by modelling 

studies (Evans, 1993b; Pons and Anten, 2004; Pao et al., 2019a) indicating higher sensitivity 

of plant carbon assimilation to Np partitioning between photosynthetic functions than to 

nitrogen distribution between leaves. Our approach, parameterized and evaluated in chapter 

3, applied the concept of protein turnover and distribution for the three photosynthetic 

functions to explore environmental impacts (see chapter 4) on the dynamics of Np 

partitioning mechanistically (Muller and Martre, 2019). Light acclimation in the use of Np 
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can be interpreted as an outcome of a plant’s functional acclimation strategy (FAS) 

consisting of differential light response of protein synthesis rates for the different functions. 

Using this model, acclimatory flexibility of FAS to adapt to light environment was predicted 

in combination with variety-specific AC for maximizing plant carbon assimilation (chapter 

3). 

Since variation in AC among genotypes results in different light distribution within their 

canopies, we hypothesize that plants develop FAS by coordinating Np use with their intra-

canopy light environment to maximize daily plant photosynthesis. In other words, different 

FAS are expected in genotypes having contrasting AC. To test this hypothesis, two cucumber 

(Cucumis sativus L.) cultivars exhibiting variation in AC were examined. We digitized their 

3D plant architectures to quantify leaf areas and angle distributions, and to simulate light 

attenuation within their canopies. This information was used to construct a multilayer model 

representing canopy architectures. Then, varietal variation in FAS was quantified following 

the mechanistic protein turnover model proposed in chapter 2. By combining the 

architectural and functional features, three in silico experiments were conducted to quantify 

optimality of a variety’s FAS with its AC with respect to light competition level, and to 

determine a generalized pattern of coordination between FAS and AC.  

 

Materials and Methods 

Plant materials and cultivation 

Cucumber (Cucumis sativus L.) cultivars Aramon (Rijk Zwaan, De Lier, the Netherlands) 

and SC-50 (PI 234517, U.S. National Plant Germplasm System; Barnes and Epps, 1956) 

were cultivated under a single-stem system in a series of growth chamber experiments and 

one greenhouse experiment in the Institute of Horticultural Production Systems, Leibniz 

Universität Hannover, Germany (52° 39' N, 9° 70' E). The cultivars exhibited apparent 

variation in plant architecture (Figure 6-1a, Note S6-1).  
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Figure 6-1. Appearance of actual and virtual cucumber plants and reconstructed scene in software 

GroIMP. (a) Plant morphology of two cucumber (Cucumis sativus L.) cultivars, SC-50 (left) and 

Aramon (right). (b) Reconstructed 3D plant architectures of a SC50 (left) and an Aramon (right) 

plant. (c) Light model composed of 72 diffuse sources and one directional light beam that mimic the 

light conditions under the sky hemisphere. (d) Virtual canopy consisting of 75 plants reconstructed 

randomly from two digitized plant architectures of Aramon. The ground area under the five middle 

plants in the central row was sampled for light transmission to the ground. 

 

Modelling photosynthetic protein turnover in leaf 

Photosynthetic nitrogen Np (mmol N m
-2

), defined as nitrogen in the proteins involved in 

photosynthesis (Evans and Clarke, 2019), is the sum of nitrogen invested in different 

photosynthetic functions (Eqn 2-M1), i.e., carboxylation, NV, electron transport, NJ, and light 

harvesting, NC (Buckley et al., 2013). The Np partitioning fraction of a pool X, pX, is the ratio 

of nitrogen in a pool X, NX (mmol N m
-2

) to Np. Following the turnover model proposed in 

chapter 3, the rate of NX change at a given leaf age t (°Cd) is determined by the instantaneous 

protein synthesis SX (mmol N m
-2

 °Cd
-1

) and degradation DX (mmol N m
-2

 °Cd
-1

) rates of the 

corresponding enzymes and protein complexes. 

d𝑁𝑋 d𝑡⁄ = 𝑆𝑋 − 𝐷𝑋  (Eqn 6-1) 
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Protein degradation rate DX is governed by first-order kinetics (Verkroost and Wassen, 2005; 

Li et al., 2017; Eqn 2-M6), while protein synthesis is described by an age-dependent logistic 

function (Eqn 2-M5) with a potential rate of Spot,X (mmol N m
-2

 °Cd
-1

), where light 

acclimation comes into play. 

𝑆pot,𝑋 = 𝑆mm,𝑋 × 𝑘I,𝑋 × 𝐼d (𝑆mm,𝑋 + 𝑘I,𝑋 × 𝐼d)⁄ × 𝑟N,𝑋  (Eqn 6-2) 

For a pool X, Smm,X (mmol N m
-2

 °Cd
-1

) describes its maximal protein synthesis rate, and rate 

constant kI,X controls how Spot,X increases with daily incident photon integral Id (mol photon 

m
-2

 d
-1

). The factor rN,X denotes the normalized effect of nitrogen limitation in protein 

synthesis (Eqn 2-M8). Functional acclimation strategy (FAS) is represented by the function-

specific response of Spot,X to light, which results in the acclimation of Np and its partitioning 

between functions. Preference of Np partitioning to a given function X was described by its 

relative potential synthesis rate (relSpot,X), the ratio between Spot,X and the sum of Spot of all 

three functions. Model variables and coefficients are listed in Table S6-1 and Table S6-2. 

Modelling leaf photosynthesis  

The complete model description can be found in Method S1. In short, net photosynthesis rate 

An (μmol CO2 m
-2 

s
-1

) was defined as the minimum of ribulose‐1, 5‐bisphosphate (RuBP) 

carboxylation-limited and RuBP regeneration-limited photosynthesis rates, Ac and Aj (mmol 

CO2 m
-2

 s
-1

), respectively (Farquhar et al., 1980; Eqn 3-9), minus daytime respiration rate Rd 

(μmol CO2 m
-2 

s
-1

; Eqn 3-10, Figure S6-1). Maximal carboxylation rate Vcmax (μmol CO2 m
-2

 

s
-1

), maximal electron transport rate Jmax (μmol e
-
 m

-2
 s

-1
) and chlorophyll concentration Chl 

(mmol m
-2

) are calculated with NV, NJ and NC (Eqn 2-M1). Depending on the amount of 

incident photosynthetically active photon flux density (PPFD) on the leaf IPPFD (µmol photon 

m
-2

 s
-1

), rates of carboxylation Vc (μmol CO2 m
-2

 s
-1

; Eqn 2-P13) and electron transport J 

(μmol e
-
 m

-2
 s

-1
; Eqn 2-P4) are calculated from Vcmax and Jmax (Qian et al., 2012), 

respectively, while leaf absorptance α (unitless) is calculated with Chl (Eqn 2-P2). 

Chloroplastic CO2 concentration Cc (μmol CO2 mol
-1

; Eqn 2-P6) depends on the steady-state 

of stomatal conductance gsc (mol CO2 m
-2

 s
-1

; Eqn 3-15) and mesophyll conductance gm (mol 

CO2 m
-2

 s
-1

; Eqns S6-1, S6-2, Figure S6-2).  
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Modelling the dynamics of architectural characteristics 

To quantify development of architectural characteristics AC, leaf area index above a given 

leaf (Ll) and its elevation angle β (°) were analyzed against its age t (°Cd). Leaf area index 

above a given leaf increases logistically with its t from zero to an asymptote Lasym (Table 6-

1), with an inflection point occurring at tL (°Cd) and the shape of the curve determined by vL.  

𝐿l = 𝐿asym {1 + exp[(𝑡L − 𝑡) 𝑣L⁄ ]}⁄   (Eqn 6-3) 

The elevation angle β is defined as the angle between the line connecting the base to the tip 

of a lamina and the horizontal plane. Elevation angles of 90° and -90° denote vertically 

upwards and downwards oriented leaves, respectively, while 0° indicates horizontal 

orientation. Newly appearing leaves have a β of maximum 90°, followed by a decrease 

starting at age tβ (°Cd) by a constant dβ (°Cd
-1

) to an asymptote of βasym (°, Table 6-1). 

𝛽 = (90 − 𝛽asym) × exp[−(𝑡 − 𝑡β) × 𝑑β] + 𝛽asym  (Eqn 6-4) 

Mathematically, β is larger than 90° when t is smaller than tβ. In this case, β is set to its 

maximum 90°. The effect of β on light distribution is taken into account by cosine correction 

(Eqn 6-S3).  

Growth chamber experiment to quantify functional acclimation 

The experiment was conducted with factorial combinations of three light and three nitrogen 

supply levels to parameterize the dynamics of photosynthetic protein turnover. Sowing, 

seedling nursery and treatment were described in in chapter 2. In brief, cucumber plants with 

two true leaves were transferred to a hydroponic system with three nitrogen levels, 9.6, 4.6 

and 2.3 mM NO3
-
, in combination with three constant light conditions (average PPFD 

incident on sampled leaves were 669, 329 and 102 µmol photon m
-2

 d
-1

 with a 12-h light 

period). Sampled leaves were kept horizontally for full exposure to incoming light. Air 

temperature around the leaves was recorded continuously using data loggers (Tinytag; 

Gemini Data Loggers, Chichester, UK). Gas exchange was measured every three days at 12 

thermal ages, ranging from 45°Cd to 558°Cd (base temperature 10
°
C; Savvides et al., 2016). 
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Table 6-1. Variety-specific coefficients determining architectural characteristics of cucumber 

(Cucumis sativus L.) cultivars Aramon and SC-50. Standard errors (SE) are indicated in parentheses. 

Significant difference between varieties at 95% confidence interval are indicated by lower case letters 

and ns indicates not significant. 

Description Eqn Symbol Unit 
Value (SE) 

Aramon SC-50 

Leaf area index above a given leaf 6-3 Ll -  

Asymptote  Lasym - 
2.04 

a
 

(0.0845) 

1.23 
b
 

(0.0513) 

Time at inflection point  tL °Cd 
257.6 

ns
 

(7.25) 

272.1 
ns

 

(7.17) 

Curve shape coefficient   vL - 
63.9 

ns
 

(3.69) 

63.6 
ns

 

(3.52) 

      

Leaf elevation angle 6-4 β °   

Asymptote  βasym ° 
-69.2 

ns
 

(3.27) 

-61.1 
ns

 

(3.92) 

Decrease constant  dβ °Cd
-1

 
0.0245 

a
 

(0.00291) 

0.0162 
b
 

(0.00194) 

Time when decrease begins  tβ °Cd 
11.0 

b
 

(2.63) 

23.3 
a
 

(3.67) 

      

Light extinction coefficient 6-5 k -   

Maximum  kmax - 0.616 
b
 

(0.00277 

0.853
 a
 

(0.0128)     

Minimum  kmin - 0.359
 ns

 

(0.00516) 

0.337
 ns

 

(0.0270)     

Leaf area index at maximal k  Lk - 
0.286

 a
 

(0.00734) 

0.0846
 b
 

(0.0143) 

Curve shape coefficient   vk - 1.089
 b
 

(0.0388) 

1.708
 a
 

(0.186)     

 

Gas exchange measurements and estimation of photosynthetic parameters 

Using a portable photosynthesis system (LI-6400XT; LI-COR, Lincoln, NE, USA), light-

saturated net photosynthesis rate under PPFD of 1300 µmol photon m
-2

 s
-1

 (A1300, μmol CO2 

m
-2

 s
-1

) was measured and light response curves were determined. All measurements were 

carried out under sample CO2 concentration of 400 µmol mol
-1

 and leaf temperature 25
°
C. Rd, 

Vcmax, Jmax and gm were estimated according to chapter 2. Immediately after gas exchange 
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measurements, leaves were harvested to determine leaf area, and then freeze-dried and 

ground into fine powder for total nitrogen (Ntotal, mmol m
-2

; Nelson & Sommers, 1980), 

nitrate-nitrogen (Nn, mmol m
-2

; Cataldo et al., 1975) and chlorophyll (Chl, mmol m
-2

; 

Lichtenthaler, 1987) analyses.  

Greenhouse experiment to quantify structural characteristics  

The experiment was carried out from 4 April to 3 May 2017 to assess plant AC. Sowing, 

seedling nursery and plant care were described in chapter 2. In short, plants with three true 

leaves were transferred onto rock-wool slabs in a greenhouse with a plant density of 1.33 

plants m
-2

 (1.5 m row distance and 0.5 m plant distance) and supplied with a nutrient solution 

containing 10 mM NO3
-
 by drip irrigation. Average DPI above the canopy was 21.33 mol 

photon m
-2

 d
-1

 during the experimental period with an average day length of 14.4 h. Air 

temperature (min. 21.5°C, max. 25.5°C, average 23.4°C) was recorded continuously using 

data loggers positioned in the middle canopy. Plant AC were measured using a 3D digitizer 

(Fastrak; Polhemus, Colchester, USA) according to to Chen et al. (2014a) on two 

representative plants of each variety, in four consecutive weeks on the 8
th

, 15
th

, 22
nd

 and 29
th

 

days after transplanting.  

Determining light extinction coefficient using virtual 3D canopies 

Virtual canopies were reconstructed in software GroIMP (Kniemeyer, 2008) using digitized 

data (Chen et al., 2014a; Chen et al., 2018). Reconstructions were coupled with a light model 

to simulate intra-canopy light distribution for determining k (Methods S6-1, Figure S6-3). 

Leaf angle distribution changed with plant development from planophile to erectophile 

(Figure S6-4), leading to temporal variation of k with canopy development (Tahiri et al., 

2006; Chen et al., 2014b). Therefore, we described k by a function of canopy leaf area index 

Lc, such that k increased to a maximum kmax when Lc reaches Lk and then decreased to a 

minimum kmin, where vk determined the curve shape:  

𝑘 = (𝑘max − 𝑘min) × exp {−0.5 × [
ln(

𝐿c
𝐿k

)

𝑣k
]

2

} + 𝑘min  (Eqn 6-5) 
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Model parameterization 

Data obtained in the growth chamber experiment were used to parameterize the dynamics of 

photosynthetic protein turnover, Rd (Figure S6-1) and gm (Figure S6-2). Differential 

equations (Eqns 6-1, 2-M5 and 2-M6) were solved in R (version 3.3.0, R Core Team, 2019; 

details see chapter 2) to obtain Spot,X, td,X and Dr,X. With values of Spot,X (Eqn 2-M5) 

determined for each factorial combination, coefficients Smm,X, kI,X (Eqn 6-2) and kN,X (Eqn 2-

M8) were estimated by nonlinear least squares fitting. Relationships between Rd and light 

(Eqn 3-10), between gm and Np (Eqns S6-1, 6-S2), between k and Lc (Eqn 6-5), between 

phyllochron and leaf rank (Eqn S5-2), between Ll and t (Eqn 6-3), and between β and t (Eqn 

6-4) were also estimated by nonlinear least squares fitting.  

Simulating dynamic photosynthetic nitrogen and daytime carbon assimilation 

Photosynthetic nitrogen per unit leaf area Np (mmol N m
-2

) was simulated for each leaf in a 

plant from the day of transplanting to the four time points of AC measurements, with a time 

step of 0.1°Cd and environmental input of daily incident photosynthetic photon integrals 

DPI, nitrogen supply level and mean air temperature. Leaf photosynthetic nitrogen content 

Nleaf (mmol N per leaf) and total Nleaf per plant, Nplant (mmol N per plant), were calculated for 

the last day of simulation. Leaf photosynthesis was calculated under conditions of leaf-to-air 

vapor pressure deficit (D) 1.2 kPa and ambient CO2 concentration of 400 μmol CO2 mol
-1

. 

Daytime carbon assimilation DCA (mol CO2 d
-1

 per plant) was simulated under average DPI 

during acclimation (21.33 mol m
-2

 d
-1

) and also under scenarios of its 0.25- and 2-fold, with 

diurnal PPFD above the canopy calculated using 0.1-h time step and 14.4-h day length by a 

cosine bell function (Kimball and Bellamy, 1986). Modified simple Beer-Lambert law (Eqns 

S6-3, S6-4; Monsi and Saeki, 1953) was used to simulate light distribution in the canopy. 

In silico experiment 1 - Optimizing photosynthetic nitrogen partitioning  

To evaluate the optimality of acclimation strategies of a variety in coordination with its 

architectural characteristics, FAS was modified by introducing a factor fp,X into Eqn 6-2 to 

manipulate the potential protein synthesis rate Smm,X of the functional nitrogen pool X 

𝑆pot,op,𝑋 = 𝑆mm,𝑋 × 𝑓p,𝑋 × 𝑘I,𝑋 × 𝐼d (𝑆mm,𝑋 × 𝑓p,𝑋 + 𝑘I,𝑋 × 𝐼d)⁄ × 𝑟N,𝑋  (Eqn 6-6) 
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and to identify FAS that maximized daily carbon assimilation DCA through optimal potential 

protein synthesis rate (Spot,op,X), while keeping Nplant and Nleaf unmodified for a given 

architecture (as in chapter 3). High fp,X leads to high synthesis rates and partitioning to pool 

X. Architectures digitized in the fourth week were used in the simulation under a planting 

density of 1.33 plants m
-2

. The optimization process was carried out using package 

‘DEoptim’ in R (R Core Team, 2019). The relative change in DCA resulting from optimal 

FAS was calculated in comparison to the DCA under control condition, where fp,X equals 

one. A tested FAS is identified as optimal if the potential improvement in DCA brought by 

the theoretically optimal FAS is insignificant (< 5%).  

In silico experiment 2 - Exchanging functional acclimation strategy  

According to our hypothesis, changing FAS should lead to decreased DCA for a given 

architecture. To test this, we exchanged FAS between the two varieties while keeping Nplant 

and Nleaf unmodified for a given architecture, and then calculated daily carbon assimilation 

DCA (mol CO2 d
-1

 per plant). The relative change in DCA caused by exchanging FAS was 

calculated in comparison to the DCA under control conditions, where FAS was not 

exchanged.  

In silico experiment 3 - Coordinating functional acclimation strategy with canopy 

architectural characteristics  

To explore the coordination between photosynthesis adaptation strategy and canopy 

architecture, represented by leaf angle, a virtual cucumber variety with all leaves having a 

given angle βabs (°, absolute value of β) in the canopy was used for simplicity. This virtual 

variety was created as the intermediate type between cultivars Aramon and SC-50 in both 

FAS coefficients and leaf area. As βabs varied, k also changed according to Eqn 6-7 (derived 

from Figure 7 in Monsi & Saeki, 2005), where increasing βabs led to decreasing k, ranging 

between 0.4-0.9: 

𝑘 =
0.95−0.32

1+exp(
54.4−𝛽abs

−17.9
)

+ 0.32  (Eqn 6-7) 

For each βabs tested, FAS was optimized using Eqn 6-6 following the same procedure as 

described above. Optimal relative potential synthesis rate (relSpot,op,X) was then calculated as 
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the optimized potential synthesis rate (Spot,op,X) divided by the sum of Spot,op of all three 

functions to indicate the relative preference in Np investment under given βabs and daily 

incident photon integrals (DPI, mol m
-2

 d
-1

). 

 

Results 

Varietal variation in architectural characteristics 

Varietal variation in architectural characteristics (AC) was observed visually in greenhouse 

plants (Figure 6-1a). From digitization data of plants, Aramon showed on average 65% larger 

individual leaves (P < 0.001) and more vertical leaf elevation angle β (17°, P = 0.005) than 

SC-50.  

AC variation within the plant, represented by leaf area index above a given leaf Ll and its 

elevation angle β, can be compared between varieties due to their comparable phyllochron 

(°Cd per leaf, thermal time needed for a leaf to appear; Eqns S6-5, S6-6, Figure S6-5). In 

both varieties, Ll of a leaf followed a logistic function with its age t (Figure 6-2a, Eqn 6-3) 

and approached an asymptote Lasym at the end of the greenhouse experiment. Aramon showed 

66% higher Lasym than SC-50 (Table 6-1), indicating significantly larger leaf area per plant 

(Figure 6-2a). On the other hand, β started decreasing at tβ (°Cd) by a constant dβ (°Cd
-1

) to 

an asymptote of minimum (βasym , °, Figure 6-2b, Eqn 6-4, Table 6-1). SC-50 had 12.3°Cd 

more in tβ (Table 6-1), suggesting that its leaves started turning downwards about one day 

later than in Aramon. Also, 34% lower dβ and a tendency of less negative βasym of SC-50 

(Table 6-1) indicated that its leaves turned downwards at a slower rate, leading to more 

horizontal leaf angle distribution in SC-50 canopies which was also supported by our 

observation (Figure S6-4). 
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Figure 6-2. Leaf area index above a given leaf (Ll) and its elevation angle β as dependent on the age 

(°Cd) of the given leaf of cucumber (Cucumis sativus L.) cultivars Aramon and SC-50. (a) Leaf area 

index is accumulated from top to a given leaf at a plant density of 1.33 plants m
-2

, fitted (lines) to Eqn 

6-3. (b) Leaf elevation angle (°) measured in four consecutive weeks (indicated by different symbols) 

using digitization, fitted (lines) to Eqn 6-4. Elevation angle of 90° and -90° denote vertical leaf 

pointing up- and downwards, respectively, and 0° indicates horizontal plane (dotted line). 

 

Architectural variation leads to different light distribution in the canopy 

To quantify intra-canopy light distribution, digitized data were used to reconstruct virtual 

plants (Figure 6-1b) and canopies (Figure 6-1d). Light transmission through canopies was 

simulated by coupling a light model (Figure 6-1c) to the virtual canopies, allowing the 

determination of light extinction coefficients k at different canopy developmental stages and 

configurations (Methods S6-1).  

Clear variation in light extinction coefficient k with canopy development (Figure 6-3), likely 

due to the change of leaf angle distribution (Figure S6-4), was represented by a log-normal 

function of canopy leaf area index (Lc, Eqn 6-5), where a maximal light extinction coefficient 

kmax corresponding to canopy leaf area index Lk and a minimal light extinction coefficient 

kmin were specified. The higher k of SC-50 (Figure 6-3) is mainly due to its 38.5% higher kmax 

compared to Aramon (Table 6-1). This agrees with the general understanding that, for a 

given leaf area index, canopies with horizontal angle distribution (Figure S6-4) are associated 

with high k.  
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Figure 6-3. Relationship between light extinction coefficient (k) and canopy leaf area index (LAI). k 

is fitted (lines) to a function of canopy LAI (Lc, Eqn 6-5) to include developmental and density 

effects. Cucumber (Cucumis sativus L.) cultivars Aramon and SC-50 are indicated by red and blue 

symbols, respectively. Data with standard error were results of ten independent simulations of light 

transmission to the ground obtained using static 3D virtual canopies in GroIMP, sampled from the 

ground area under the five middle plants in the central row of the canopy (Figure 6-1d). Plant density 

in the simulations was set either to 1.33 plants m
-2

 as in the greenhouse experiment (circles, control) 

or to 0.5-, 2- or 3-fold of that in the greenhouse experiment (squares, adjusted) by proportionally 

adjusting both distances between rows and between plants in a row. 

 

Varietal variation in functional acclimation strategies leads to different light response of 

photosynthetic nitrogen partitioning 

According to our hypothesis, plants should develop functional acclimation strategies (FAS) 

to coordinate Np use with light intensity. Thus, we examined the trends of leaf photosynthetic 

nitrogen (Figure 6-4a) and the three functional nitrogen pools (carboxylation, NV, Figure 6-

4b, electron transport, NJ, Figure 6-4c, and light harvesting, NC, Figure 6-4d) under constant 

light intensities, and thereby quantified variety-specific coefficients determining FAS (Table 

6-2).  
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Table 6-2. Variety-specific coefficients determining functional acclimation of cucumber (Cucumis 

sativus L.) cultivars Aramon and SC-50. These coefficients were parameterized using data obtained in 

the growth chamber experiment and used in the protein turnover model for calculating the nitrogen 

pools involved in carboxylation (NV), electron transport (NJ) and light harvesting (NC). 

Description Eqn Symbol Unit Cultivar NV NJ NC 

Degradation constant 2-M6 Dr °Cd
-1

 
Aramon 0.0195 0.0195 0.0091 

SC-50 0.0195 0.0195 0.0091 

Increase constant of 

synthesis rate with light 
6-2 kI 

mmol N °Cd
-1

 

mol
-1

 photon d 

Aramon 0.173 0.130 0.234 

SC-50 0.117 0.0919 0.175 

Michaelis-Menten constant 

relating nitrogen supply to 

synthesis rate 

2-M8 kN mM 
Aramon 0.536 0.420 0.316 

SC-50 0.376 0.451 0.342 

Maximum synthesis rate 6-2 Smm 
mmol N m

-2
 

°Cd
-1

 

Aramon 1.122 0.852 0.248 

SC-50 1.028 0.789 0.225 

Decrease constant of 

synthesis rate with age 
2-M5 td °Cd

-1
 

Aramon 0.001 0.002 0.001 

SC-50 0.002 0.003 0.002 

 

 

Since Np and its partitioning is likely to be the outcome of the complex interplay between 

availabilities of light, nitrogen and leaf age, multivariate analyses were conducted (Table S6-

3). The analysis showed that Aramon had generally about 15.0 mmol m
-2

 more Np than SC-

50, composed of an increase in NV by 6.67 mmol m
-2

, NJ by 4.06 mmol m
-2

 and NC by 4.28 

mmol m
-2

. A general response to light was also observed with Np and all three pools 

increasing with daily incident light (Figure 6-4a-d), by 1.16 mmol Np, 0.607 mmol NV, 0.456 

mmol NJ and 0.0970 mmol NC per m
2
 leaf area for every mol photon m

-2
 d

-1
 increase (Table 

S6-3). This differential light response in protein synthesis rate between pools, i.e., FAS, led 

to distinct light-dependent pattern of Np partitioning. Fractions of Np partitioned to NV (pV) 

and NJ (pJ) increased with daily incident light (Figure 6-4f, g), while that to NC (pC) 

decreased (Figure 6-4h). In comparison to Aramon, SC-50 showed 2.65% lower pV and 

3.72% higher pC under low light availability (Figure 6-4f, h, Table S6-3), suggesting a 

preference of SC-50 to invest Np in light harvesting at the expense of carboxylation under 

light limiting conditions. Interestingly, SC-50 also showed higher sensitivity to light in pV 

and pC (Figure 6-4f, h, Table S6-3). These together demonstrate variety-specific FAS. 
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Interestingly, only Aramon has developed a light acclimation strategy with respect to the 

partitioning of total leaf nitrogen Ntotal (Figures 6-4e, S6-6), which was not observed in SC-

50 (Note S6-2). 

 

Figure 6-4. Measured photosynthetic nitrogen and its partitioning fractions in leaves at different ages 

under different daily incident light and nitrogen supply. (a) Photosynthetic nitrogen (Np), (b) 

carboxylation (NV), (c) electron transport (NJ), (d) light harvesting (NC) nitrogen pools. Partitioning 

fractions of (e) photosynthetic nitrogen in total leaf nitrogen (pNp), (f) carboxylation (pV), (g) electron 

transport (pJ), (h) light harvesting (pC). Data were obtained in the growth chamber experiment. Linear 

regressions (lines) and their R-squared values were indicated for each variety. Cucumber (Cucumis 

sativus L.) cultivars Aramon and SC-50 are indicated with red and blue, respectively. Leaf age is 

indicated by symbol size and nitrogen supply level by different symbols. 
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Further, genetic and environmental controls of FAS were analyzed by a mechanistic model of 

photosynthetic protein turnover (Eqns 6-1, 6-2). The genetic controls were characterized by 

maximum protein synthesis rate (Smm), decrease constant of synthesis rate with age (td), and 

protein degradation constant (Dr, Table 6-2). Coefficients td and Dr together influence the 

developmental effect on protein turnover dynamics. Coefficient Dr was assumed the same for 

both cultivars Aramon and SC-50, with values estimated in our previous study (Table 3-1 in 

chapter 3). Higher Smm of Aramon (Table 6-2) suggests that its photosynthetic protein 

synthesis can reach a higher rate (maximal differences of 0.1, 0.06 and 0.02 mmol °Cd
-1

 m
-2

 

for NV, NJ and NC, respectively, Table 6-2), while its lower td indicates that the influence of 

ageing appears later in its leaves’ lifespan than in leaves of SC-50. These together led to 

higher amounts of Np observed in the leaves of Aramon (Figure 6-4a-d). Genotypic 

sensitivities to light and nitrogen availabilities are denoted by kI and kN, respectively. These 

coefficients determine the sensitivity of potential maximum protein synthesis rates (Spot, Eqn 

6-2) to increasing light and nitrogen availabilities until reaching their maximum (Smm, Figure 

6-5a). Relative potential synthesis rate (relSpot) was calculated by dividing potential synthesis 

rate of a pool X (Spot,X) by the sum of Spot of all three pools (Figure 6-5b), and it suggested 

that Np partitioning to both carboxylation and electron transport pools increased non-linearly 

with light, while partitioning to light harvesting decreased. The difference in relSpot between 

cucumber varieties was apparent below DPI ≤ 20 mol m
-2

 d
-1

, where Aramon invested higher 

proportion of Np to carboxylation and electron transport pools rather than to the light 

harvesting pool in comparison to SC-50 (Figure 6-5c), in accordance with our observation 

(Figure 6-4f, h). 
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Figure 6-5. Simulated light acclimation of photosynthetic nitrogen in cucumber (Cucumis sativus L.) 

cultivars Aramon (red lines and symbols) and SC-50 (blue lines and symbols). (a) Potential protein 

synthesis rates (Spot, mmol N m
-2

 °Cd
-1

) for carboxylation (solid lines), electron transport (dotted 

lines) and light harvesting (dashed lines) and the resulting (b) relative potential synthesis rates 

(relSpot) in response to daily incident light. The rates under incident light of 1 mol m
-2

 d
-1

 is shown in 

the insertion. These simulations were conducted with a nitrogen supply level of 10 mM NO3
-
. (c) 

Photosynthetic nitrogen partitioning fractions (pX) of carboxylation (squares), electron transport 

(circles) and light harvesting (triangles) for individual leaves of a plant. Leaf age is indicated by 

symbol size. This simulation was conducted with incident light of 21.33 mol m
-2

 d
-1

 and plant 

architecture digitized in the fourth week of the greenhouse experiment. 
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Characteristics in photosynthetic nitrogen partitioning determine optimality and flexibility of 

light acclimation in combination with plant architecture 

Quantification of functional and architectural traits allows evaluating the degree of 

coordination between FAS and AC with a modelling approach. In silico experiment 1 was 

conducted under various daily photosynthetic photon integrals (DPI) levels to identify the 

theoretically optimal FAS that yields the genotypic Np partitioning pattern which maximizes 

daytime carbon assimilation (DCA, mol CO2 d
-1

 per plant). Close-to-optimum FAS was 

found between 8-27 mol m
-2

 d
-1

 for Aramon, and between 6-14 mol m
-2

 d
-1

 for SC-50 (Figure 

6-6). Aramon’s higher flexibility to adapt to high light conditions can be explained by its 

higher amount of Np (Figure 6-4a) and higher partitioning to carboxylation and electron 

transport functions (Figure 6-5b) compared to SC-50. FASAramon was optimal under the 

average DPI level during the greenhouse experiment (21.33 mol m
-2

 d
-1

), indicating its ability 

to maximize DCA by acclimatizing Np partitioning in the canopy to its growing light 

environment (Figure S6-7). However, this was not the case for SC-50, the variety having a 

lower amount of Np (Figure 6-4a), which may result in lower flexibility of SC-50’s FAS 

(FASSC-50) to high light conditions through mechanisms of adjusting Np partitioning.  

 

Figure 6-6. Simulated optimality and flexibility of functional acclimation strategy (FAS) under 

various incident daily photon integrals (DPI, mol photon m
-2

 d
-1

). FAS is represented by function-

specific response of protein synthesis rate to light. Relative change in daytime carbon assimilation 

(DCA, mol d
-1

 per plant) resulting from theoretically optimal FAS was calculated for cucumber 

(Cucumis sativus L.) cultivars Aramon (red circles) and SC-50 (blue triangles), using their own 

specific architectures digitized in the fourth week of the greenhouse experiment, where the average 

DPI during the whole growth period was 21.33 mol m
-2

 d
-1

. Dashed line indicates 5% of DCA change. 

Under a given DPI, a DCA change lower than 5% suggests high optimality of FAS. 
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Dynamic functional acclimation in coordination with canopy development improves whole 

plant carbon assimilation 

According to our hypothesis, if a variety has developed a FAS that ideally coordinates with 

its AC, modifying FAS should lead to reduced DCA for a given architecture. To test this, 

DCA was simulated by combining the FAS of one variety with the AC of the other in in 

silico experiment 2 under various planting densities and light regimes. In contrast to our 

expectation, exchanged FAS did not result in a constant decrease of DCA in a given 

architecture but a rather dynamic effect depending on canopy development. This effect was 

minor (< 2%) under intermediate planting density (1.33 plants m
-2

) and DPI (21.33 mol m
-2

 

d
-1

), where FASSC-50 combined with Aramon architecture led to a slightly increased DCA 

(Figure 6-7b), while FASAramon led to both positive and negative effects on DCA in 

combination with SC-50 architecture (Figure 6-7e). The effect of exchanging FAS on DCA 

clearly depended on DPI level and planting density. High planting density (2.66 plants m
-2

) 

and low DPI (5.33 mol m
-2

 d
-1

) led to strong inter-plant light competition, where the 

advantageous effect of FASSC-50 became more pronounced (up to 5%, Figure 6-7a-c). In 

contrast, the reduction in DCA of SC-50 architecture caused by FASAramon aggravated under 

low DPI (Figure 6-7d) and slightly in dense canopies (Figure 6-7d-f) as well. This suggested 

that FASSC-50 ameliorated the impact of strong light competition, while FASAramon favored 

light utilization under ample light. This result led to a new hypothesis that, instead of having 

a constant FAS, dynamic FAS combining the advantages of both FAS improves DCA. To 

test this hypothesis, FAS was switched from FASAramon to FASSC-50 when leaves reached the 

age of 100°Cd, i.e., shortly before the stage of full expansion with decreasing light 

interception due to increasing shading by younger leaves and increasingly vertical leaf 

elevation (approaching βasym, Figure 6-2b). This hypothesis was confirmed by simulations 

showing an increase in DCA (up to 5.6%) by introducing dynamic FAS (under almost all 

scenarios, Figure 6-7g-l, except for open SC-50 canopies under low DPI, Figure 6-7j). 
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Figure 6-7. Simulated effect of coordination between architecture characteristics (AC) and functional 

acclimation strategy (FAS) on daytime carbon assimilation (DCA, mol d
-1

 per plant) of cucumber 

(Cucumis sativus L.) varieties. (a)-(f) Effects of combining FAS of one variety with AC of the other. 

(g)-(l) Effect of dynamic FAS which was switched from FAS of cultivar Aramon to FAS of cultivar 

SC-50 when leaves reached the age of 100°Cd. FAS is represented by the response of photosynthetic 

nitrogen partitioning to light. Relative change in DCA as compared within a given architecture, either 

Aramon [(a)-(c) and (g)-(i)] or SC-50 [(d)-(f) and (j)-(l)]. Plant densities of 0.665 (red symbols), 1.33 

(green symbols) and 2.66 (blue symbols) plants m
-2

 ground were used in the simulations in 

combination with incident daily photon integral (DPI) levels of 5.33 [(a), (d), (g), (l)], 21.33 [(b), (e), 

(h), (k)] and 42.66 mol m
-2

 d
-1

 [(c), (f), (i), (l)], for architectures digitized in four consecutive weeks 

as indicated by different symbols. 
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Optimal functional acclimation strategy depends on architectural characteristics with trade-

off between photosynthetic functions 

To obtain a generalized coordination between FAS and AC, various values (15°-75° at 

intervals of 5°) of leaf angle βabs were tested in in silico experiment 3. Value of k varied with 

βabs (Eqn 6-7), such that k decreased (less self-shading and light interception) with increasing 

βabs (more vertical leaf angle) and vice versa. After optimizing FAS for a given βabs scenario, 

preference in protein synthesis of a given photosynthetic pool X was indicated by its optimal 

relative potential synthesis rate (relSpot,op,X), calculated as its optimized potential synthesis 

rate (Spot,op,X, Eqn 6-6) divided by the sum of Spot,op of all three pools. As expected, relSpot,op 

of the light harvesting pool increased with decreasing DPI and increasing βabs (Figure 6-8c), 

due to low light availability and low light interception, respectively. However, relSpot,op of 

both carboxylation (relSpot,op,V) and electron transport (relSpot,op,J) increased with DPI but 

showed a trade-off at βabs between 45°-65° (Figure 6-8a, b). This suggested a balance 

between light interception and self-shading was reached at this range of βabs, making the 

partitioning between functions strongly sensitive to DPI, where another trade-off was 

observed between electron transport and carboxylation under higher DPI and between 

electron transport and light capture under lower DPI (Figure 6-8b). 
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Figure 6-8. Simulated coordination of optimal relative photosynthetic nitrogen synthesis rate with leaf 

angle (°, absolute value of elevation angle) and intercepted daily photon integral (DPI, mol m
-2

 d
-1

) in 

cucumber (Cucumis sativus L.). Color indicates relative potential synthesis rate (relSpot,op) of (a) 

carboxylation, (b) electron transport and (c) light harvesting protein pools, resulting from 

theoretically optimal functional acclimation strategy under given leaf angles. The value of k varies 

with leaf angle following Eqn 6-7. Variable relSpot,op,X was calculated as optimized potential synthesis 

rate (Spot,op,X, Eqn 6-6) divided by the sum of Spot,op,X of all three pools to demonstrate the relative 

preference of synthesis between the three pools. This simulation was conducted using a virtual 

cucumber variety with leaf area and functional acclimation coefficients intermediate between Aramon 

and SC-50, and all leaves in this plant were assumed to have the same leaf angle. 
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Discussion 

Plants can be expected to develop functional acclimation strategies (FAS) of photosynthesis 

according to their architectural characteristics (AC), either through natural evolution or 

artificial selection, to coordinate nitrogen use with local light availability. To our knowledge, 

we report here for the first time varietal variations in FAS (Figures 6-4, 6-5) together with 

AC (Figures 6-1, 6-2, 6-3), interpret these variations in the context of coordinating FAS with 

AC to optimize canopy productivity using modelling approach (Figure 6-6), and derived a 

generalized coordination between FAS and AC. 

Co-evolution between functional acclimation and architecture-dependent degree of light 

competition  

Variation in FAS could be a result of its co-evolution with canopy AC during breeding for 

specific cultivation conditions (Note S6-1). Aramon is a gynoecious and parthenocarpic 

cultivar cultivated in the greenhouse under optimized conditions and trained vertically to 

maximize light use. In contrast, SC-50 is an open-pollinated monoecious field cultivar with 

female flowers developing more frequently at the upper nodes and on the side shoots, and is 

normally allowed to develop side shoots in the field to ensure fruit formation and 

consequently high leaf area index and leaf turnover. According to game theory (Schieving 

and Poorter, 1999), AC such as high leaf area index, high leaf turnover (Hikosaka and Anten, 

2012), horizontal leaf orientation and high k (Hikosaka and Hirose, 1997) are advantageous 

under light competition. It can be reasonably assumed that co-evolution of FAS with AC 

ensuring light capture under low light availability (Figures 6-4h, 6-5b) is crucial for SC-50 to 

overcome self-shading and inter-plant light competition, similar to FAS reported for another 

open-field cucumber cultivar ‘Revel’ (Evans, 1989a). Although this ‘specialization’ (DeWitt 

and Langerhans, 2004; Sadras and Richards, 2014) in FAS for light capture may decrease Np 

use efficiency under intermediate light conditions (15 < DPI < 20, Figure 6-6) in comparison 

with Aramon due to trade-off with light utilization efficiency (Figure 6-5c), it strengthens the 

resource capture of the individual plant at the expense of its neighbors.  

Despite of the differences in AC and FAS, the two studied cultivars are comparably vigorous 

in vegetative growth (Figure S6-5) and highly productive in fruit yield under their specific 

cultivation conditions (Papadopoulos and Hao, 2000; Shetty and Wehner, 2002). One would 
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expect that these cultivars optimize FAS according to light availability and to their specific 

AC (Evans, 1993b; Hikosaka and Terashima, 1996). Our simulation suggested that Aramon 

had optimal FAS under the growing light conditions of a vertical greenhouse training system 

(Figure 6-1a). Surprisingly, this was not the case for SC-50 (Figure 6-6), which was not 

selected for cultivation in a single-stem training system. The simulated sub-optimality of 

FAS of SC-50 could also result from the priority in leaf nitrogen use (Figure 6-6). Both 

varieties had comparable amounts of total leaf nitrogen (Figure S6-6a), but SC-50 invested 

less leaf nitrogen in photosynthesis (Figure S6-6b) regardless of light environment (Table S6-

3, Note S6-2). This implies that SC-50 prioritizes nitrogen investment in other chemical 

compounds than those used in photosynthesis (Figure S6-6c), probably in defense against 

biotic and abiotic stresses (Strauss-Debenedetti and Bazzaz, 1991; Onoda et al., 2004; 

Poorter et al., 2009). However, the effect of less Np in SC-50’s leaves might be partly 

compensated by its higher sensitivity of Np partitioning to light condition (Figure 6-4f, h, 

Table S6-3) to improve the use efficiency of limited Np. As long as the costs of defense 

mechanisms do not outweigh the benefits of reduced damage, plants benefit from higher 

chance of survival at the expense of reduced investment in photosynthesis and growth (Tian 

et al., 2003; Dalin et al., 2008; Todesco et al., 2010). In contrast to SC-50, greenhouse 

cultivar Aramon invests its leaf nitrogen according to the concept of a ‘generalization’ 

strategy that provides a generally moderate fitness over a wide range of environments 

(DeWitt and Langerhans, 2004; Sadras and Richards, 2014) since the proportion invested in 

photosynthesis decreases with increasing light availability, and vice versa (Figure 6-4e), 

ensuring stable performance over a wider range of light intensity (Figure 6-6). 

Dynamic coordination of function with structure improves productivity 

When intra-canopy light availability deviates from the variety-specific range of optimal light 

level for FAS (Figure 6-6) due to incoming light condition, planting density and canopy 

development, FAS is subject to sub-optimal coordination with its AC (Figure 6-7a-f). 

Evident sub-optimal coordination in dense, closed canopies and under low irradiance (Figure 

6-7a, d) emphasized the significance of nitrogen use strategy on plant carbon assimilation 

under light competition (Drouet and Bonhomme, 2004; Pons and Anten, 2004). However, by 

assuming a dynamic FAS capitalizing on the advantage of FASAramon (favoring light 
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utilization) in young leaves and of FASSC-50 (favoring light capture) in mature leaves, plant 

productivity was improved up to 5.6% regardless of light condition and canopy configuration 

(Figure 6-7g-l). This highlights the possibility to improve crop productivity through 

mechanisms of FAS modification triggered by endogenous and/or exogenous factors. Such 

phenotypic plasticity in response to environmental stimuli might be achieved by epigenetic 

control, functioning as molecular memory assisting the maintenance of this response (Turck 

and Coupland, 2014; Baulcombe and Dean, 2014; Balao et al., 2018) through modulating 

gene expression by means of chemical modification to genetic material without alteration in 

DNA sequence (Offermann and Peterhansel, 2014; Duarte-Aké et al., 2019).  

Apart from the varietal coordination between FAS and AC, we identified a pattern of 

coordination between FAS and leaf angle that led to maximal plant carbon assimilation. 

Modification in leaf angle either increases or decreases self-shading and light interception 

simultaneously. Therefore, it was not surprising that a higher proportion of Np should be 

invested in Rubisco and electron transport in a canopy with more horizontal leaf angles (high 

light interception), while in a canopy with more vertical leaf angles, investment in light 

harvesting may be more useful for keeping the Np use efficiency constant by allocating 

nitrogen to limiting function (Evans, 1993a; Hikosaka, 2004; Buckley et al., 2013; Pao et al., 

2019a). Due to the central role of electron transport in transferring the captured light energy 

to drive carboxylation, optimal Np partitioning to electron transport (NJ) showed a trade-off 

with the limiting function, either light harvesting (NC) or carboxylation (NV), depending on 

the current light availability (Figure 6-8b, leaf angle between 45°-65°). In order to optimize 

the use of a limited budget of available leaf nitrogen for fitness and survival, the trade-off in 

nitrogen allocation between functions is predictable (Buckley et al., 2013; Pao et al., 2019a) 

and not a rare occasion in plants (Evans, 1988, 1989a; Onoda et al., 2004; Trouwborst et al., 

2011; Evans and Clarke, 2019). Yet the degree of this trade-off varies depending on 

environments and may tilt towards electron transport in the future since rising ambient CO2 

concentration can lead to more frequent limitation of photosynthesis by RuBP regeneration 

under saturating light (Long et al., 2004; Taylor et al., 2020). 
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Model assumptions and limitations 

The model presented here integrates both architectural and functional processes from leaf to 

canopy level and enables in silico experiments and optimizations which could not be realized 

experimentally. Although more complexity might not necessarily lead to improved 

comprehension under the context of our research question, there are at least three aspects 

worth noting. 

First, area-based Np was directly simulated in our model (Eqn 6-1) to facilitate the 

understanding in functional acclimation due to its relation to light interception. It should be 

noted that, the intrinsic relationship between leaf mass per area (LMA) and mass-based Np 

(Wright et al., 2004) is implicitly included. Additionally, LMA shows similar nonlinear 

pattern of light acclimation (Poorter et al., 2009) as that proposed for Np, implying that the 

change in PUNE following light acclimation can be a mixed outcome of modification in 

nitrogen economics and in dry mass investment per area (Hikosaka, 2004). 

Second, protein degradation rate was assumed identical for both varieties since there is little 

evidence of differences between species or genotypes (Li et al., 2017). Also, its high 

variability within a functional category and dependency on leaf development, protein 

abundance (Li et al., 2017) and environmental conditions (Peterson et al., 1973; Makino et 

al., 1984; Ishihara et al., 2015) makes quantification of these effects intricate and implausible 

using limited data. This assumption advantageously avoids over-parameterizing the model 

(Eqns 6-1, 2-M5, 2-M6), and better differentiates varietal response in protein synthesis. For 

example, higher td was found in SC-50 (Table 6-2), suggesting faster Np turnover during 

ageing and probably higher nitrogen resorption and reallocation to support high leaf turnover 

rate (Hikosaka, 2005), which is advantageous under field condition with light competition 

(Hikosaka and Anten, 2012).  

Finally, we simplified AC by using the light extinction coefficient, estimated by 3D canopy 

architecture model with considerations of canopy dynamics (Eqns 6-5, S6-3, S6-4) as a 

proxy. It can be argued that higher realism regarding heterogeneity of light distribution 

should be also considered for better insight into canopy nitrogen use (de Pury and Farquhar, 

1997; Hikosaka, 2014). However, increasing the number of parameters representing AC 

using 3D-model makes it impossible to derive a generalized coordination between FAS and 
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AC (Figure 6-8), hampering the iterative optimization algorithm and reducing the chance to 

obtain global optimum. Although fine adaptations in intra-canopy light distribution through 

leaf light reflectance and absorptance (e.g., Song et al., 2017), tropism and shade avoidance 

behavior (Maddonni et al., 2001a; Kahlen et al., 2008; Kahlen and Stützel, 2011) cannot be 

examined explicitly with the model presented in this paper, the accuracy in predicting 

photosynthetic parameters is reasonable (see chapter 3) and similar to that using a dynamic 

functional-structural plant model (see chapter 5). 
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Chapter 7  
Discussion 

Based on the light response in photosynthetic proteins turnover and steady-state C3 

photosynthesis, our model provides a mechanistic interpretation for photosynthetic 

acclimation to fluctuating light (at an hourly or daily time scale), and is able to predict 

photosynthetic acclimation in the heterogeneous canopies of greenhouse cucumber. Similar 

results can be obtained by implementing this model either in a multilayer model or in a 

functional-structural model for predicting canopy photosynthesis integrating over weeks.  

Using this model framework, photosynthetic nitrogen distribution between leaves was found 

close to optimum for greenhouse cultivar Aramon for maximizing daily plant carbon 

assimilation (DCA) and photosynthetic nitrogen use efficiecy (PNUE, CO2 uptake per unit 

photosynthetic nitrogen) except for under nitrogen-limiting condition, where optimized 

photosynthetic nitrogen distribution can lead to 7.0% of increase in DCA. Photosynthetic 

nitrogen partitioning between functional pools at the leaf level was predicted optimal for 

greenhouse cultivar Aramon but not for field cultivar SC-50 when both cultivars were grown 

in a greenhouse single-stem high-wire system. This difference is probably due to the 

coordination between canopy structure and function developed during a cultivar’s breeding 

history. In contrast to Aramon, SC-50 has lower total photosynthetic nitrogen but an 

acclimation strategy that partitions nitrogen between functions more sensitively according to 

light level. The degree of optimality of photosynthetic nitrogen partitioning depends strongly 

on canopy light environment thus also on incident light level, canopy development and 

configuration. The proposed modelling framework provides an interpretation for acclimatory 

mechanisms under fluctuating light, and enables in silico manipulations and tests of 

photosynthetic acclimation in canopies. 

  



Chapter 7 Discussion 

 

127 
 

Future research needs 

As stated by Herrmann et al. (2019), “models are only as good as the assumptions that 

underlie them,” it is no doubt that there are other mechanisms involved during acclimation 

that impose limitation on photosynthetic balance and thus lead to trade-offs with the 

functional control of photosynthetic nitrogen. It is well known that dynamic light 

environments lead to differences in growth and physiology of plants, yet a clear conclusion 

of the effect of fluctuating light on photosynthetic acclimation still cannot be drawn from the 

available modelling and experimental data (Morales and Kaiser, 2020). Potential players in 

photosynthetic induction dynamics (short-term, at a time scale within an hour), for example, 

Rubisco activase activity and physiological responses of stomatal conductance deserve 

further investigation (Kaiser et al., 2016; Slattery et al., 2018; Matthews et al., 2018; Wang 

et al., 2020; Sakoda et al., 2021) for models aiming at responses at a finer time scale. 

During dark periods, Rubisco can turn into inhibited forms by binding sugar phosphates, 

such as carboxy-D-arabinitol 1-phosphate and ribulose 1,5-bisphosphate (Servaites, 1990; 

Slattery et al., 2018) to prevent proteolysis (Khan et al., 1999). Rubisco activase is essential 

for the activation of Rubisco catalytic activity by releasing inhibitors from the catalytic site 

of Rubisco (Parry et al., 2008; Ng et al., 2020). The phenomenon of Rubisco inhibition 

varies qualitatively and quantitatively depending on species, where cucumber together with 

cowpea, chili pepper, soybean, tobacco and Solanum species showed higher degree of 

predawn inhibition among the 37 species, including C3, C4 and CAM (crassulacean acid 

metabolism) species, examined by Servaites et al. (1986). This is in line with our finding that 

the dependency of activation state of Rubisco on light availability plays an important role in 

the acclimation for cucumber plants since our model predicted an unrealistically substantial 

overinvestment in Rubisco nitrogen if Rubisco inhibition was ignored. Thus, activation of 

Rubisco proportional to light was assumed in our model following a logistic relationship 

(Eqn 3-11) between steady-state activation (%) and incident PAR proposed by Qian et al. 

(2012). However, using this fixed empirical relationship without taking into account the time 

lag for activation (but see Wang et al., 2020) makes it impossible to capture the effect of the 

adaptation of Rubisco activase in its amount and activity. For example, the greater 

investment in Rubisco activase under shading (von Caemmerer and Quick, 2000) can alter 

the equilibrium of nitrogen partitioning and improve the efficiency of utilizing sunflecks. 
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Stomatal conductance governs the gas exchange between leaves and their surrounding 

atmosphere, gatekeeping CO2 uptake in photosynthesis and water loss through transpiration. 

The response rate of stomatal conductance to light has been examined under the context of 

photosynthetic limitation during induction at a time scale within minutes. By examining 

Arabidopsis and tobacco, Sakoda et al. (2021) found that under conditions of RuBP-

carboxylation limitation, stomatal conductance imposed the greatest limitation during the 

initial 15-25 min of light exposure after dark periods (longer than one hour), indicating that 

faster stomatal opening improved light use efficiency (LUE, CO2 uptake per unit intercepted 

light) under fluctauting light. By taking the effect of light energy on water loss into account, 

faster stomatal response led to increase in instantaneous water use efficiency (WUE, CO2 

uptake per unit transpired water) but not daily WUE, as shown by a modelling study 

(Moualeu-Ngangue et al., 2016). It was concluded in the same study that fast stomatal 

opening during periods of increasing light decreased WUE, while fast stomatal closure 

during periods of decreasing light increased WUE. Since stomatal dynamics strongly 

influence on not only CO2 uptake but also water loss, and trade-offs in LUE with WUE 

should be considered especially when water availability is limiting and fluctuating in the crop 

system at interest. 

Our model is so far applicable under non-stressed environments to study the interplay 

between light interception and PNUE (grey-filled parts in Figure 7-1) because it was 

parameterized using plants grown and measured under moderate temperature around 25°C 

and sufficient water supply. In the model, empirical descriptions of leaf area were applied 

and stomatal conductance was derived (as an output) from steady-state photosynthesis rate 

and mesophyll conductance, meaning no explicit environmental responses in the control of 

light intercepting area and stomatal limitation. For further study considering acclimation 

strategies under a background of changing environments, e.g., changing atmospheric 

conditions, some relevant aspects can be incorporated into model (dotted boxes in Figure 7-

1): (1) leaf growth governed by hydraulics and metabolics, (2) stomatal regulation of PNUE 

and WUE and (3) responses of photosynthetic biochemistry to increasing air temperature and 

CO2 concentration. 
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Figure 7-1. Structure of the proposed models and extensions for further study considering impact of 

changing environments. 

 

Leaf growth determines the effective light intercepting area and thus exhibits feedbacks with 

growth processes influenced by the captured energy. The generalized response of area of 

individual leaves to incident daily PAR integral was revealed by a meta-analysis (Poorter et 

al., 2019), such that leaf area approaches a maximum at around 2 mol m
-2

 d
-1

 and decreases 

slightly between 2-15 mol m
-2

 d
-1

 (average of 46-347 µmol m
-2

 s
-1

 under a 12-h day length), 

while further decrease or increase in light from this level results in apparent reduction of leaf 

area. Similar responses were also reported for internode length and plant height. This light 

response may be understood by the driving forces for leaf growth during ontogeny (Pantin et 

al., 2012). During the early stages of leaf development, cell division is limited by 

carbohydrate supply (metabolics), while later on cell expansion by cell turgor (hydraulics), 

with a transition observed on the fourth day after leaf appearance in Arabidopsis (Pantin et 

al., 2011). Low light availability (< 2 mol m
-2

 d
-1

) and low carbon supply during cell division 

phase restrains structural growth due to reduced total cell number. Under high light 

availability (> 15 mol m
-2

 d
-1

) during cell expansion phase, maintaining expansive growth 

becomes challenging due to accelerated water loss, whereas under low light leaves are able to 

maintain expansive growth at the expense of dry matter per unit area (Tardieu et al., 1999). 

Incorporating these processes connects photosynthesis with transpiration and reveals their 
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effects on canopy structure and light interception as a result of balancing plant water and 

carbon budgets. 

Regulation of stomatal conductance ensures sufficient CO2 influx for carbon assimilation and 

water efflux that promotes water uptake, nutrient translocation and evaporative cooling, 

while at the same time prevents excessive water loss. Stomatal conductance responds to both 

internal and external cues (Buckely, 2017; Lawson and Matthews, 2020), such that general 

decrease occurred under low CO2 demand (low light and high intercellular CO2 

concentration), low cooling demand (low temperature) and under conditions aggravating 

imbalanced water relation (low humidity, low water availability and high vapor pressure 

deficit, VPD). The resulting hydrualic relationship may in turn affect stomatal control 

through leaf turgor (Buckely, 2017). Empirical and process-based models proposed for 

stomatal conductance over three decades were listed and reviewed by Damour et al. (2010). 

The balance between PNUE and WUE through stomatal adjustment considering both long-

term and short-term costs (Buckley, 2017) is crucial for increasing crop performance and 

fitness under abiotic stresses (Matthews et al., 2020; Yang et al., 2021). Thus, environmental 

factors limiting stomatal conductance like high VPD can reshape the nitrogen distribution 

within plants to increase PNUE when stomatal limitation exceeds biochemical limitation 

(Bachofen et al., 2020). Stress conditions may lead to a co-regulation between stomatal 

conductance and photosynthesis through abscisic acid (ABA)- and reactive oxygen species 

(ROS)-mediated pathways (Damour et al., 2010). 

Short-term temperature fluctuation outside of the optimal range leads to a reduction in 

activity of Calvin cycle enzymes and therefore reduces photosynthesis rate. Leaf 

temperature-dependency of photosynthetic parameters used in the FvCB model can be 

described by modified Arrhenius functions with activation and deactivation energy of the 

respective processes (Harley et al., 1992b; Hikosaka et al., 2006; Kattge and Knorr, 2007; 

Qian et al., 2012; Yin et al., 2019). Temperature acclimation enables shifting optimal 

operational temperature of photosynthetic biochemistry towards the growth temperature 

(Berry and Bjorkman, 1980; Yamori et al., 2014). Full acclimation requires generally at least 

one week, where wider ranges of the adaptive changes take place in the photosynthetic 

biochemistry than in stomatal conductance (Berry and Bjorkman, 1980). Among the 

processes occurring during acclimation to increasing growth temperature, the increase in the 
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activation energy of Vcmax was reported to be the most crucial at ambient CO2 concentrations 

(Hikosaka et al., 2006). Also, there are interactions between temperature and other factors, 

such that optimal temperature increases with intercellular CO2 concentration and ambient 

light intensity, and declines with increasing leaf nitrogen (Berry and Bjorkman, 1980; 

Hikosaka et al., 2006; Yamori et al., 2010;Yin et al., 2019). 

Elevated ambient CO2 concentration induces stomatal closure, decreases nitrogen 

concentration in the shoots, while increasing net photosynthetic capacity (Medlyn et al., 

1999; Li et al., 2019). Interestingly, the increase in net photosynthetic capacity was not 

observed in plants grown under restricted nitrogen availability, which most likely resulted in 

biochemical limitation (Li et al., 2019). The decrease in shoot nitrogen concentration was 

probably caused by inhibited assimilation of nitrate, by dilution by increased carbon 

assimilation and prsumably by the decrease in transpiration‐driven mass flow for uptake 

(Medlyn et al., 1999; Taub and Wang, 2008; Bloom et al., 2010; Bloom et al., 2014). In 

addition to the decline in shoot nitrogen concentration, a substantial reduction in the ratio 

between Jmax and Vcmax through adjustments in emzyme activity and/or nitrogen partitioning 

has been suggested by both theoretical stuadies (Medlyn, 1996; Yin et al., 2019), but it was 

not always supported by measured data (Medlyn et al., 1999; Akita et al., 2012). This 

discrepancy suggests either that the nitrogen acclimation to elevated CO2 can still be 

improved or that maximizing photosynthesis is not the only criterion for fitness under 

elevated CO2. 

By incorporating the above-mentioned processes, it is possible to extend the proposed model 

(Figure 7-1) to further explore plant acclimation in functional nitrogen control with a more 

complete ecophysiological picture including LUE, PNUE and WUE. 
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Supplementary Materials 

 

Figure S3-1. Schematic diagram of the dynamics of photosynthetic nitrogen with leaf age. The 

carboxylation nitrogen pool (NV, mmol N m
-2

, grey solid line, Eqns 3-4) is shown here as an example, 

which was determined simultaneously by the synthesis rate (mmol N m
-2

 °Cd
-1

, dotted line filled with 

green shade, Eqns 3-5, 3-7 and 3-8) and the degradation rate (mmol N m
-2

 °Cd
-1

, dashed line filled 

with yellow shade, Eqn 3-6). The coefficients were taken from Table 3-1. Constant light level of 21.4 

mol d
-1

 m
-2

 and nitrogen supply level of 10 mM were used in this simulation. Photosynthetic nitrogen 

pools exhibited the similar evolutionary pattern with leaf age under constant light in the growth 

chamber experiment, first increasing to a maximum (at 150-250°Cd) and then decreasing as leaf aged. 
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Figure S3-2. Relationship between relative chlorophyll content (SPAD) and leaf chlorophyll 

concentration (Chl, mmol Chl m
-2

) for non-destructive estimation of Chl in the greenhouse 

experiment. The dashed line indicates the simulated relationship between the relative chlorophyll 

content and Chl with 95% confidence interval (blue solid line). 

 

 

Figure S3-3. Environmental data input for model evaluation and simulation. Daily photon integral 

(DPI, mol photons m
-2

 d
-1

) recorded during the greenhouse experiment by the weather station located 

outside of the greenhouse. Light transmittance through greenhouse of 49.8% was applied to estimate 

the DPI above the canopies in the greenhouse for high growth light (HL, orange solid line). The DPI 

was further reduced to 40% of HL by shading under the low growth light (LL, black solid line). The 

nitrogen supply level in nutrient solution (mM, right y-axis) was analyzed weekly for high nitrogen 

(HN, open circles) and low nitrogen (LN, open triangles). Four measurement dates are indicated by 

the arrows. 
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Figure S3-4. Relationships between leaf age (t, °Cd) and the leaf characteristics applied in the 

dynamic protein turnover model for simulating local light intensity at the leaf. (A) Relationship 

between t and leaf angle β (°); the dashed line indicates the simulated values with 95% confidence 

interval (blue solid line). (B) Leaf angle β was defined as the angle between the line from the base to 

the tip of a leaf and the vertical plane. Leaf elevation angle (ε, Table 3-S1) was converted as ε = (90 - 

β). (C) The logistic relationship between t and leaf area index (LAI, m
2
 m

-2
); the dashed lines indicate 

the simulated values and the coefficients used for each treatment are listed. Measured values of 

different treatments are shown as: high nitrogen and high light (HN+HL, orange open circles), high 

nitrogen and low light (HN+LL, black closed circles), low nitrogen and high light (LN+HL, orange 

open triangles), low nitrogen and low light (LN+LL, black closed triangles).  
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Table S3-1. Canopy characteristics used in the daily canopy carbon assimilation (DCA) simulation 

for the plants grown under combinations of high nitrogen (HN), high light (HL), low nitrogen (LN) 

and low light (LL). Measured leaf area (LA, m
2
), estimated thermal age (t, °Cd) and simulated 

elevation angle (ε, °) are listed for each leaf rank. Cumulative leaf area index of the canopy (cLAI, m
2
 

m
-2

) and total leaf photosynthetic nitrogen content in the canopy (Ncanopy, mmol N) were used as input 

in the DCA simulations. t was estimated using a constant phyllochron (°Cd) under each growth 

condition since significant differences were found between conditions (P < 0.001). ε was simulated 

using the empirical relationship with t (Figure S3-4A and Figure S3-4B). 

Growth condition HN+HL  HN+LL  LN+HL  LN+LL 

Leaf rank 
LA t ε  LA t ε  LA T ε  LA t ε 

m
2
 °Cd °  m

2
 °Cd °  m

2
 °Cd °  m

2
 °Cd ° 

1 0.0298 566 -32  0.0157 548 -35  0.0288 566 -32  0.0176 548 -35 

2 0.0610 540 -36  0.0365 522 -38  0.0482 540 -36  0.0512 522 -38 

3 0.0863 514 -39  0.0525 496 -42  0.0651 514 -39  0.0519 496 -42 

4 0.1046 496 -42  0.0597 480 -44  0.0807 494 -42  0.0634 478 -44 

5 0.1181 479 -44  0.0673 464 -46  0.0914 473 -45  0.0850 460 -46 

6 0.1093 461 -46  0.0752 448 -48  0.0905 453 -47  0.0914 442 -49 

7 0.1278 443 -49  0.0777 432 -50  0.0894 433 -50  0.0935 424 -51 

8 0.1247 425 -51  0.0870 416 -52  0.0878 412 -53  0.0925 406 -54 

9 0.1077 408 -53  0.0983 400 -54  0.0844 392 -55  0.0940 388 -56 

10 0.0998 390 -56  0.0917 384 -56  0.0840 372 -58  0.0986 370 -58 

11 0.0992 372 -58  0.0974 368 -58  0.0840 352 -60  0.1036 352 -60 

12 0.0831 355 -60  0.0935 352 -60  0.0760 331 -62  0.1042 334 -62 

13 0.0858 337 -61  0.0874 335 -62  0.0630 311 -64  0.0996 316 -63 

14 0.0839 319 -63  0.0838 319 -63  0.0645 291 -65  0.0970 298 -64 

15 0.0715 302 -64  0.0766 303 -64  0.0593 270 -66  0.0962 280 -65 

16 0.0672 284 -65  0.0663 287 -65  0.0578 250 -66  0.0896 262 -66 

17 0.0635 266 -66  0.0563 271 -66  0.0524 230 -65  0.0843 244 -66 

18 0.0596 248 -66  0.0571 255 -66  0.0439 209 -64  0.0736 226 -65 

19 0.0520 231 -65  0.0592 239 -66  0.0426 189 -61  0.0690 208 -64 

20 0.0532 213 -64  0.0605 223 -65  0.0401 169 -56  0.0682 190 -61 

21 0.0424 195 -62  0.0639 207 -64  0.0361 149 -50  0.0607 172 -57 

22 0.0407 178 -59  0.0633 191 -61  0.0302 128 -41  0.0616 154 -52 

23 0.0363 160 -54  0.0561 174 -58  0.0235 108 -28  0.0441 136 -45 

24 0.0304 142 -47  0.0504 158 -53  0.0252 88 -12  0.0311 118 -35 

25 0.0281 125 -39  0.0521 142 -47  0.0158 67 10  0.0127 100 -23 

26 0.0131 107 -27  0.0402 126 -40  - - -  0.0073 82 -7 

27 0.0050 89 -13  0.0244 110 -30  - - -  0.0044 64 13 

28 - - -  0.0133 94 -17  - - -  - - - 

29 - - -  0.0089 78 -2  - - -  - - - 

30 - - -  0.0036 62 17  - - -  - - - 

Ncanopy (mmol N) 95.84  68.29  69.24  62.90 

cLAI (m
2
 m

-2
) 2.506  2.362  1.948  2.455 

Phyllochron (°Cd) 17.7  16.1  20.3  18.0 
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Figure S3-5. Leaf area (m
2
) distribution used as input 

in the daily canopy carbon assimilation simulation for 

plants grown under different conditions. The symbols 

and colors used here are the same as those in Figure 

S3-4. 

 

 

 

 

Figure S3-6. Comparisons of simulated 

leaf photosynthetic nitrogen (Nph, mmol 

N m
-2

, A and B), partitioning fractions 

of the carboxylation pool (pV, C and D), 

the electron transport pool (pJ, E and F) 

and the light harvesting pool (pC, G and 

H) between high and low nitrogen 

supply (HN and LN, respectively, A, C, 

E and G) and between high and low 

light conditions (HL and LL, 

respectively, B, D, F and H). Each point 

represents the simulations obtained 

from a comparable canopy layer as 

those in Figure 3-2. The orange open 

circles indicate leaves grown under HL, 

the black closed circles indicate LL, the 

blue open squares indicate HN and the 

black closed squares indicate LN. The 

size of the circles increases with leaf 

age (ranging from 77
°
Cd to 414

°
Cd). 

The solid lines show the linear 

regression y = ax + b. The values of a 

are specified with 95% confidence 

intervals when they are significantly 

different from one. The dotted grey 

lines denote one-to-one lines. 
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Figure S3-7. Leaf photosynthetic 

nitrogen (Nph, mmol N m
-2

) 

distributions with the vertical light 

distribution, characterized by daily 

light interception (mol photons m
-2

 

d
-1

). The variations in nitrogen 

distribution were created using a 

distribution factor fd ranging from 

0.5 to 5.0 at intervals of 0.5 in Eqn 

3-19 under different growth 

conditions. (A) High nitrogen and 

high light (HN+HL); (B) high 

nitrogen and low light (HN+LL); 

(C) low nitrogen and high light 

(LN+HL); (D) low nitrogen and low 

light (LN+LL). Simulated control 

Nph distributions (fd = 1) are 

indicated by the green lines. 
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Figure S4-1. Non-linear relationship between photosynthetic protein synthesis rate and light 

intensity. The data are from the growth chamber experiment described in chapter 3, where cucumber 

plants were grown under three light levels in combination with three nitrogen supply levels (mM), 

and photosynthetically functional pools in the leaves including Rubisco carboxylation, electron 

transport (ET), and light harvesting (LH) pools were examined as described in chapter 3. Light 

intensity of the growth environment is shown as mean photosynthetically active radiation (PAR, μmol 

m
-2

 s
-1

) ± SE. 
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Note S5-1. Supplementary information of model description 

Canopy light interception efficiency (EI,i, ranging 0-1) was calculated as the accumulated proportion 

of light intercepted from the top of the canopy (maximal rank) rank-wise to a leaf rank i, with 

photosynthetic photon flux density above the canopy (PPFDin, µmol m
-2

 s
-1

), incident PPFD on a leaf 

rank i (PPFDi, µmol m
-2

 s
-1

), leaf area (AL,i, m
2
), plant density (PD, plants m

-2
) and assumption of 7% 

light transmission: 

𝐸I,𝑖 = ∑ [PPFD𝑖 × 𝐴L,𝑖 × PD × (1 − 0.07) PPFDin⁄ ]rank=𝑖
rank=max (rank)   (Eqn S5-1) 

The phyllochron needed for a phytomer to appear was observed to decrease with plant development 

and then reached a stable value, similar to the behavior reported for Arabidopsis (Figure S2A in 

Pantin et al., 2011). Phyllochron was described as a logistic function of rank R: 

Phyll = (𝑝ℎ𝑦𝑙𝑙0 − 𝑝ℎ𝑦𝑙𝑙min) [1 + exp(𝑅 − 3)]⁄ + 𝑝ℎ𝑦𝑙𝑙min  (Eqn S5-2) 

where phyll0 was the initial phyllochron (assumed 130°Cd, equivalent to 9-10 days for the first true 

leaf to appear from the time of sowing, according to experimental observation), which then decreased 

with increasing R to phyllmin. The inflection point of the curve was assumed to occur at leaf rank three, 

biologically meaning that phyllochron reduced rapidly above this rank due to the assimilation support 

from the first three leaves. 

Mesophyll conductance (gm, mol CO2 m
-2

 s
-1

) was simulated depending on leaf thermal age and Np 

modified by Eqn 3-16: 

𝑔m = (𝑟gm × 𝑁p) × exp {−0.5 × [ln(𝑡/𝑡gm)/𝑣gm]
2

} + 𝑔mmin  (Eqn S5-3) 

where gmmin (0.0846 mol CO2 m
-2

 s
-1

) was the minimum gm. tgm (100°Cd) was the thermal age when 

the maximum gm occurred and vgm (0.398) was standard deviation of the curve. rgm (0.00431 mol CO2 

mmol
-1

 N s
-1

) described the rate of increase of gm in relation to Np. 

Potential growth rate of a fruit i (RPF,i, g DM d
-1

; Kuwar, 2007; Wiechers et al., 2011a) was derived 

from its length (LF,i, cm) at the previous day: 

𝑅PF,𝑖(𝑑) = 0.0025 × 𝐿F,𝑖(𝑑 − 1)2.4284  (Eqn S5-4) 

For fruit with thermal age ≤ 150°Cd, LF,i was simulated by logistic function (see Eqn 5 in Kahlen, 

2006) with fruit thermal age (°Cd) subtracted by 150°Cd, and a minimum of 5 cm, a specific growth 

rate of 0.0362°Cd
-1

 and a maximum of 35 cm. 

The elevation angle of a lamina β (°) was described depending on its leaf area (AL, cm
2
) by a rate 

constant of 0.0116 cm
-2

 to an asymptote of −68.4° following: 

𝛽 = (90 + 68.4) × exp(−0.0116 × 𝐴L) − 68.4  (Eqn S5-5) 

The fruit radius rF,i (cm) was calculated depending on current fruit length LF,i (modified by Kahlen 

and Stützel, 2007; Kuwar, 2007): 

𝑟F,𝑖 = (
0.09168×𝐿F,𝑖

1.4284

𝜋
)

0.5

  (Eqn S5-6) 
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Table S5-1. Constants used to simulate phyllochron, leaf expansion and petiole elongation, derived 

from data measured in experiment 2a. Plants were subjected to either high light (HL) or low light 

(LL, reduced by shading to 50% of HL condition) in combination with either high nitrogen (HN, 10 

mM) or low nitrogen (LN, 2.5 mM) supply. The conditions in experiments 1a-1b (chapter 5) were 

similar to treatment HLHN. 

Experiment 1a / 1b / 1c  2a / 2b 

Treatment (HLHN)  HLHN HLLN LLHN LLLN 

phyllmin (°C) 16.6 ± 0.69  16.6 ± 0.69 21.9 ± 3.95 15.6 ± 0.37 17.3 ± 0.33 

ALmax (cm
2
) 1121 ± 34  1121 ± 34 964 ± 24 947 ± 22 929 ± 16 

rALmax 6.9 ± 0.27  6.9 ± 0.27 6.2 ± 0.19 7.8 ± 0.21 8.3 ± 0.21 

kAL 0.877 ± 0.041  0.877 ± 0.041 0.871 ± 0.031 0.850 ± 0.036 1.04 ± 0.037 

LPmax (cm) 26.5 ± 0.64  26.5 ± 0.64 25.9 ± 0.70 22.9 ± 0.51 23.5 ± 0.51 

rLPmax 7.8 ± 0.31  7.8 ± 0.31 5.4 ± 0.24 6.3 ± 0.34 6.9 ± 0.34 

kLP 1.09 ± 0.053  1.09 ± 0.053 1.14 ± 0.051 1.57 ± 0.095 1.84 ± 0.15 

 

 

 

 

 

Table S5-2. Scenarios of plant densities and corresponding distances between rows and between 

plants simulated in Figure 5-4. 

 Plant density (plants m
-2

) 

 1.0 1.5 2.0 2.5 3.0 

Row distance (m) Plant distance (m) 

1.1 0.909 0.606 0.455 0.364 0.303 

1.5 0.667 0.444 0.333 0.267 0.222 

1.9 0.526 0.351 0.263 0.211 0.175 
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Table S5-3. Simulated total light interception (mol per plant) accumulated over a five-week growth 

period in experiment 2a (chapter 5) under treatments of either high light (HL) or low light (LL, 

reduced by shading to 50% of HL condition) combining with either high nitrogen (HN, 10 mM) or 

low nitrogen (LN, 2.5 mM) supply. The Beer-Lambert equations 5-1b, 5-1c, 5-1d and 5-1e were 

applied. Simulations in either daily steps (DS) or hourly steps (HS) were shown. 

Light 

model 

Ray tracing 

(RT) 
 

Beer-Lambert equation (BL) 

Eqn 1b  Eqn 1c  Eqn 1d  Eqn 1e 

 DS HS  DS HS  DS HS  DS HS  DS HS 

HLHN 221.0 194.3  185.4 178.4  207.3 198.9  270.3 260.7  207.3 199.8 

HLLN 186.7 164.1  143.8 138.3  166.7 159.8  221.4 213.5  169.1 163.0 

LLHN 106.3 93.2  85.1 81.9  95.0 91.1  124.7 120.2  95.9 92.0 

LLLN 107.6 92.9  83.6 80.3  94.7 90.8  124.3 119.7  95.4 91.7 

 

 

 

 

 

Table S5-4. Reported light extinction coefficient k from literature for greenhouse cucumber crops. 

k 
Plant density 

(m
-2

) 

Time of growth and 

measurement 
Additional information Reference 

0.42 ca. 1.2 May-Aug - Warren Wilson et al., 1992 

0.53 2 Apr-Jun 
diffuse light induced by 

reflective screen Peil et al., 2002 

0.59 2 Aug-Oct - 

0.63 1.33 Mar-Jun - 
Medrano et al., 2005 

0.86 2 Oct-Jan - 

0.87 3.4 Nov-Feb exclusive top-lighting Trouwborst et al., 2010 
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Figure S5-1. Diagram of model data flow of the dynamic plant model of greenhouse cucumber. 

Rounded boxes of Plant structure and Plant function with grey background were shared by both light 

models, the Beer-Lambert equation (BL, red box) and ray tracing (RT, blue box). Solid lines indicate 

data flow and dotted lines indicate feedbacks. Asterisks indicate the processes that were evaluated by 

measured data. Figure numbers in the Plant function box indicate the results of evaluation on the 

given processes. The process of determining variable k used in the BL method is described in Figure 

5-2. Model inputs are shown in dashed boxes. Environmental input data given into the model are 

listed in the dashed box in the left lower corner: outside photosynthetically active radiation (PAR) I 

(mol m
-2

 per unit time), temperature sum T (°Cd per unit time), nitrogen supply N (mM) and vapor 

pressure deficit V (kPa). The time unit in input data I and T was per hour for hourly-step or per day 

for daily-step simulations. 
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Figure S5-2. Comparison of measured and simulated canopy light interception efficiency at different 

leaves using ray tracing in hourly steps. Measured data (chapter 5) were obtained in experiments 1a 

(circles), 1b (triangles) and 1c (squares) under either isometric (I) or row (R) arrangements at a plant 

density of either one (I1 and R1) or two (I2 and R2) plants m
-2

. Light interception efficiency 

(proportion of incident PPFD above the canopy) was accumulated from the top of the canopy leaf-

wise to leaf rank five. The high variability of measured values was due to self-shading of the sampled 

positions since the light incident on a leaf was measured using a single point sensor on this leaf.  

 

 

Figure S5-3. Simulated relationship between light extinction coefficient k and leaf area index of the 

canopy under either isometric (I) or row (R) arrangement at a plant density of either one (I1 and R1) 

or two (I2 and R2) plants m
-2

. Each point represented one estimate of k for a canopy on a specific day 

sampled at 1200h using the functional-structural plant model with ray tracing. The conditions of 

experiments 1a (circles), 1b (triangles) and 1c (squares) were used in this simulation (chapter 5). 
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Figure S5-4. Overestimation by simulations in daily steps compared to in hourly steps of (A) shoot 

dry matter in experiments 1b, 2a and 2b, and in photosynthetic parameters, with a total of 36 

measured data points, (B) net photosynthesis rate measured at PPFD 1300 µmol m
-2

 s
-1

 (An1300), (C) 

maximum electron transport rate (Jmax), (D) maximum carboxylation rate (Vcmax) in experiment 2a 

with total 32 measured data points. Measured time is indicated by color. Different symbols indicate 

experiments in A and indicate treatments in B-D. Light models Beer-Lambert equation 5-1e (BL 1e) 

and ray tracing (RT) are shown in the x-axis. 
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Methods S6-1. Supplementary information of model description 

The applied concept of optimal stomatal behavior (Medlyn et al., 2011) in the model does not 

consider the effects of suboptimal plant water status. Our simulations used greenhouse cucumbers as 

model plants, for which the presence of water stress is minimal while biochemical and light 

limitations play most important roles in both induction (Acevedo-Siaca et al., 2020) and steady state 

of photosynthesis (Chen et al., 2014a; Chen et al., 2018). Nevertheless, stomatal dynamics 

responding to water status is available and embeddable (Tuzet et al., 2003; Moualeu-Ngangue et al., 

2016). 

Mesophyll conductance is expressed as a log-normal function of t modified by Eqn 3-16: 

𝑔m = 𝑔mNp × exp {−0.5 × [ln(𝑡/𝑡gm)/𝑣gm]
2

} + 𝑔mmin  (Eqn S6-1) 

𝑔mNp = 𝑠gmNp × 𝑁p   (Eqn S6-2) 

where gmmin (mol CO2 m
-2

 s
-1

) is minimum gm, gmNp (mol CO2 m
-2

 s
-1

) indicates the contribution in gm 

by Np, and tgm is the t when maximal gm (gmNp + gmmin, mol CO2 m
-2

 s
-1

) occurs, vgm is standard 

deviation of the curve. sgmNp (mol CO2 mmol
-1

 N s
-1

) is the conversion efficiency of Np to gmNp. 

 

Modelling light interception by the canopy  

To take the effect of elevation angle β (°) distribution on light interception into account, β is used for 

cosine correction of incident light intensity at a given horizontal layer, Q, to intercepted light I. 

𝐼 = 𝑄 × cos(𝛽)  (Eqn S6-3) 

Beer-Lambert law is used to simulate Q with light extinction coefficient k at a given L, given Q0 as 

incident light intensity at top of canopy: 

𝑄 = 𝑄0 × exp(−𝑘 × 𝐿)  (Eqn S6-4) 

 

Determining light extinction coefficients using simulated light interception from virtual 3D canopies 

Incident light from the sky was modelled by 72 diffuse light sources arranged in a hemisphere and 

one directional light source implemented above the canopies (Figure 6-1c). A ray tracer was 

integrated to compute light distribution with ten million rays and a recursion depth of ten reflections 

(Buck-Sorlin et al., 2011). Virtual canopies were created for each variety with five rows (1.5 m 

between rows) with 15 plants per row (0.5 m between plants) and were composed of random 

arrangement of the two digitized representative plants (Figure 6-1d). The ground area under the five 

middle plants in the central row of a virtual canopy was sampled for light transmission to the ground 

with ten simulations. During each simulation, every plant was rotated randomly between -30° to 30° 

on the horizontal plane. Adjusted plant density (by modifying both distances between rows and plants 

in a row proportionally) was also applied to obtain wider range of canopy leaf area index. Using 

simulated light transmission data extracted from GroIMP (Figure S6-3), light extinction coefficients k 

were determined by Eqn S6-4. 
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Modelling phyllochron 

Phyllochron (Phyll, °Cd per leaf) was observed to decrease with plant development and then reached 

a stable value, similar to that reported in Arabidopsis (Figure S2A in Pantin et al., 2011). Phyll is 

described in our model as a logistic function of leaf rank number R: 

Phyll = (𝑝ℎ𝑦𝑙𝑙0 − 𝑝ℎ𝑦𝑙𝑙asym) [1 + exp(𝑅 − 𝑅phyll)]⁄ + 𝑝ℎ𝑦𝑙𝑙asym  (Eqn S6-5) 

where phyll0 (°Cd) is the Phyll at the beginning of plant growth and then decreases with increasing R 

to asymptote of phyllasym. Rphyll is the leaf rank number at the inflection point. This empirical 

relationship is found similar between cucumber cultivars Aramon and SC-50 with phyllasym of 

17.0°Cd, and phyll0 of 125.4°Cd (Figure S6-5), similar to the time needed from sowing to appearance 

of the first true leaf (8-9 days, data not shown). For a plant with age of tp (°Cd), the age (t, °Cd) of a 

leaf at rank number R in the canopy was calculated: 

𝑡 = 𝑡p − ∑ Phyll𝑅
𝑅0+1   (Eqn S6-6) 

where R0 is the rank number of the youngest leaf at the beginning of the experiment.  

 

 

Note S6-1. Description of cucumber (Cucumis sativus L.) varieties 

Aramon is an F1 hybrid cultivar especially suitable for greenhouse production due to its stable 

parthenocarpy and gynoecy. SC-50 is a monoecious and open-pollinated cultivar bred by 

backcrossing an Indian landrace (PI 197087, U.S. National Plant Germplasm System) with recurrent 

parent ‘Ashley’ (AMES 4833), an heirloom variety especially adapted to hot and humid condition in 

South Carolina, USA. 

 

 

Note S6-2. Varietal difference in the partitioning of total nitrogen in cucumber (Cucumis sativus L.) 

leaves 

Varietal difference in the partitioning of total leaf nitrogen (Ntotal) was observed (Figure 6-4e, Figure 

S6-7). Compared to SC-50, Aramon invested 20.8% more leaf nitrogen in photosynthesis (pNp, Figure 

6-4e, Table S6-3) but pNp in Aramon decreased with increasing daily light interception by 0.479% per 

mol photon m
-2

 d
-1

 (Table S6-3). Clear interaction between variety and light in pNp (P = 0.002) and 

SC-50’s light response of -0.0710% per mol photon m
-2

 d
-1

 (Table S6-3) indicated insignificant 

response of SC-50’s pNp to light (Figure 6-4e). Thus, increase in Np of SC-50 with light (Figure 6-4a) 

was attributed merely to the increase in Ntotal with light (Figure S6-6a). Also, fractions of Ntotal 

invested in functions other than photosynthesis (pNf, Figure S6-6c) and in nitrate (pNn, Figure S6-6d) 

did not respond to light in SC-50, while pNf increased 0.768% and pNn decreased 0.230% (Table S6-3) 

increased in Aramon with every mol photon m
-2

 d
-1

 (Figure S6-6c, d), indicating that Aramon has 

developed light acclimation strategy not only in Np use but also in Ntotal. 
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Table S6-1. List of model input and output variables.  

Description Symbol Unit Type 

Net photosynthesis rate An μmol CO2 m
-2 

s
-1

 output 

RuBP carboxylation-limited An Ac μmol CO2 m
-2 

s
-1

 output 

RuBP regeneration-limited An Aj μmol CO2 m
-2 

s
-1

 output 

Leaf absorptance α - output 

Atmospheric CO2 concentration  Ca μmol CO2 mol
-1

 input 

Chloroplastic CO2 concentration  Cc μmol CO2 mol
-1

 output 

Leaf chlorophyll per unit area  Chl mmol m
-2

 output 

Leaf-to-air vapor pressure deficit D kPa input 

Protein degradation rate of N pool X DX °Cd
-1

 output 

Leaf elevation angle β ° - 

Leaf angle (absolute value of β) βabs ° - 

Mesophyll conductance to CO2 gm mol CO2 m
-2

 s
-1

 output 

Contribution in gm by Np gmNp mol CO2 m
-2

 s
-1

 - 

Stomatal conductance to CO2 gsc mol CO2 m
-2

 s
-1

 output 

Intercepted photosynthetically active photon I - - 

Intercepted daily photosynthetic photon integral Id mol photon m
-2 

d
-1

 - 

Mean Id during the last four days of growth I4d mol photon m
-2 

d
-1

 - 

Intercepted PPFD IPPFD μmol photon m
-2 

s
-1

 - 

Electron transport rate J μmol e
-
 m

-2 
s

-1
 output 

Maximal electron transport rate Jmax μmol e
-
 m

-2 
s

-1
 output 

Light extinction coefficient k - - 

Leaf area index above a given leaf Ll - - 

Canopy leaf area index Lc - - 

Total leaf photosynthetic N in the canopy Nplant mmol N per plant - 

Leaf photosynthetic N  Nleaf mmol N per leaf - 

Leaf photosynthetic N per unit area Np mmol N m
-2 

output 

N concentration of nutrient solution Ns mM input 

Concentration of N pool X NX mmol N m
-2

 output 

Concentration of N pool of light harvesting NC mmol N m
-2

 output 

Concentration of N pool of electron transport NJ mmol N m
-2

 output 

Concentration of N pool of carboxylation NV mmol N m
-2

 output 

Phyllochron Phyll °Cd per leaf - 

Partitioning fraction of N pool X pX - output 

Incident light at a canopy layer Q - - 

Incident light at the top of canopy Q0 - input 

Rank of a leaf (acropetal) R - input 

Leaf rank number of the youngest leaf (acropetal) at 

the beginning of the experiment  
R0 - input 

Daytime respiration rate in the absence of 

photorespiration 
Rd μmol CO2 m

-2 
s

-1
 output 

Reduction factor of protein synthesis depending on N 

availability 
rN - - 

Potential protein synthesis rate of N pool X Spot,X mmol N m
-2

 °Cd
-1

 output 

Optimized Spot,X Spot,op,X mmol N m
-2

 °Cd
-1

 output 

Protein synthesis rate of N pool X SX mmol N m
-2

 °Cd
-1

 output 
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Description Symbol Unit Type 

Leaf age  t °Cd - 

Plant age tp °Cd input 

Carboxylation rate  Vc μmol CO2 m
-2 

s
-1

 output 

Maximal carboxylation rate  Vcmax μmol CO2 m
-2 

s
-1

 output 

 

Table S6-2. List of model coefficients. Standard errors (SE) are indicated in the parentheses. 

Description Symbol Unit Value (SE) Ref.
*
 

Photosynthetic nitrogen 
   

 

Conversion coefficient of chlorophyll 

per light harvesting N 
χC 

mmol chlorophyll 

mmol
-1

 N 
0.03384 1 

Conversion coefficient of chlorophyll 

per electron transport N  
χCJ 

mmol chlorophyll 

mmol
-1

 N 
4.64·10

-4
 1 

Conversion coefficient of electron 

transport capacity per electron transport 

N  

χJ 
μmol e

-
 mmol

-1
 N s

-

1
 

9.48 1 

Conversion coefficient of carboxylation 

capacity per Rubisco N 
χV 

μmol CO2 mmol
-1

 

N s
-1

 
4.49 1 

     

Photosynthesis     

Minimum gsc g0 mol CO2 m
-2

 s
-1

 0.009 2 

Species-specific coefficient of gsc g1 - 3.51 2 

CO2 compensation point in the absence 

of dark respiration  
Γ

*
 μmol CO2 mol

-1
 43.02 3 

Michaelis–Menten constant of Rubisco 

for CO2  
Kc μmol CO2 mol

-1
 404 2 

Michaelis–Menten constant of Rubisco 

for O2 
Ko mmol O2 mol

-1
 278 2 

O2 concentration at the site of 

carboxylation  
O mmol O2 mol

-1
 210 2 

Conversion efficiency of photons to J 𝜙 
µmol e

–
 µmol

-1
 

photon
 0.425 4 

Convexity coefficient θ - 0.7 2 

     

Respiration     

Coefficient related to the decrease in Rd 

by growth respiration 
rRdg 

m
2
 d °Cd

-1
 mol

-1
 

photon 
5.22∙10

-4
 (4.35∙10

-5
) - 

Coefficient related to the increase in Rd 

by maintenance respiration 
rRdm 

μmol CO2 d °Cd
-1

 

mol
-1

 photon s
-1

 
1.97∙10

-4
 (1.08∙10

-5
) - 

Sensitivity of maximal Rd to I4d sRdI 
μmol CO2 d mol

-1
 

photon s
-1

 
0.328 (0.0256) - 

  
 

  

Mesophyll conductance     

Minimum gm gmmin mol CO2 m
2
 s

-1
 0.0846 (0.00789)  

Sensitivity of gmNp to Np sgmNp 
mol CO2 mmol

-1
 N 

s
-1

 
0.00431 (3.19·10

-4
) - 

Leaf age when gmNp occurs tgm °Cd
 

100 (3.87) - 

Standard deviation of the dependence of vgm 
- 

0.398 (0.0338) - 
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Description Symbol Unit Value (SE) Ref.
*
 

the curve 

  
 

  

Phyllochron  
 

  

Maximum phyll0 °Cd per leaf 125.4
 
(56.4)

 
- 

Asymptote phyllasym °Cd per leaf 17.0 (0.297) - 

Leaf rank number at inflection point Rphyll 
- 

3.32 (0.660) - 
*References: 1, Buckley et al. (2013); 2, Chen et al. (2014a); 3, Singsaas et al. (2003); 4, Wiechers et al. (2011a) 

 

Table S6-3. Multivariate analysis of the effects of cucumber (Cucumis sativus L.) variety (V), daily 

light interception (Id, mol m
-2

 d
-1

), nitrogen supply level (N, mM), leaf age (t, °Cd) and the interaction 

between variety and light (V : Id) on nitrogen variables, total leaf nitrogen (Ntotal), photosynthetic 

nitrogen (Np), nitrogen invested in carboxylation (NV), electron transport (NJ) and light harvesting 

(NC) functions, and fractions of Np in Ntotal (pNp), NV in Np (pV), NJ in Np (pJ) and NC in Np (pC), 

fractions of organic nitrogen in other functioning other than photosynthesis in Ntotal (pNf) and 

inorganic nitrate-nitrogen in Ntotal (pNn). Values ± SE are shown, where significant effects are 

indicated in bold text. Effect of cultivar Aramon (VAramon) is the y-intercept of the model: Variable ~ 

V + Id + V : Id + N + t  

Variable VAramon VSC50 Id VSC50 : Id N t 

Np 39.48603
***

 -15.02009
***

 1.15948
***

 0.02180
ns

 0.77998
**

 -0.00053
ns

 

(mmol m
-2

) ±3.09825 ±3.06528 ±0.11344 ±0.16911 ±0.26745 ±0.00619 

NV 15.23583
***

 -6.67481
***

 0.60666
***

 0.03452
ns

 0.35708
**

 -0.00038
ns

 

(mmol m
-2

) ±1.46565 ±1.45006 ±0.05366 ±0.08000 ±0.12652 ±0.00293 

NJ 12.36761
***

 -4.06080
***

 0.45584
***

 -0.01891
ns

 0.24390
*
 -0.00977

***
 

(mmol m
-2

) ±1.09039 ±1.07878 ±0.03992 ±0.05952 ±0.09412 ±0.00218 

NC 11.88259
***

 -4.28448
***

 0.09698
**

 0.00619
ns

 0.17901
*
 0.00962

***
 

(mmol m
-2

) ±0.84625 ±0.83724 ±0.03099 ±0.04619 ±0.07305 ±0.00169 

pNp 0.59017
***

 -0.20800
***

 -0.00479
***

 0.00408
**

 -0.00483
*
 -0.00018

***
 

 ±0.02416 ±0.02397 ±0.00088 ±0.00132 ±0.00207 ±0.00005 

pV 0.39506
***

 -0.02650
**

 0.00188
**

 0.00141
**

 0.00043
ns

 0.00000
ns

 

 ±0.00821 ±0.00813 ±0.00030 ±0.00045 ±0.00071 ±0.00002 

pJ 0.30760
***

 -0.01072
ns

 0.00173
***

 0.00042
ns

 0.00004
ns

 -0.00017
***

 

 ±0.00661 ±0.00654 ±0.00024 ±0.00036 ±0.00057 ±0.00001 

pC 0.29734
***

 0.03722
***

 -0.00362
***

 -0.00183
**

 -0.00047
ns

 0.00017
***

 

 ±0.01081 ±0.01069 ±0.00040 ±0.00059 ±0.00093 ±0.00002 

Ntotal 17.56139
*
 16.86801

*
 4.84942

***
 -0.15671

ns
 4.45271

***
 0.12570

***
 

(mmol m
-2

) ±8.54426 ±8.47601 ±0.30952 ±0.46503 ±0.73158 ±0.01725 

pNf 0.33500
***

 0.29584
***

 0.00768
***

 -0.00721
***

 -0.00199
ns

 0.00018
***

 

 ±0.02573 ±0.02512 ±0.00090 ±0.00136 ±0.00214 ±0.00005 

pNn 0.04772
***

 -0.06567
***

 -0.00230
***

 0.00231
***

 0.00709
***

 0.00004
*
 

 ±0.00828 ±0.00809 ±0.00029 ±0.00044 ±0.00069 ±0.00002 
*
, P < 0.05; 

**
, P < 0.01; 

***
, P < 0.001; 

ns
, not significant. 
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Figure S6-1. Measured day respiration rate 

(Rd) of cucumber (Cucumis sativus L.) 

cultivars Aramon (red circles) and SC-50 

(blue triangles) at various leaf ages. Symbol 

size indicates the average intercepted daily 

photon integral (DPI_avg, mol photon m
-2

 d
-

1
) of the leaf. Data were obtained in the 

growth chamber experiment. 

 

 

Figure S6-2. Measured mesophyll 

conductance (gm) of cucumber (Cucumis 

sativus L.) cultivars Aramon (red circles) and 

SC-50 (blue triangles) at various leaf ages. 

Symbol size indicates the average intercepted 

daily photon integral (DPI_avg, mol photon 

m
-2

 d
-1

) of the leaf. Data were obtained in the 

growth chamber experiment. 

 

 

 

Figure S6-3. Simulated canopy light 

interception efficiency (LIE) for cucumber 

(Cucumis sativus L.) cultivars Aramon 

(circles) and SC-50 (triangles) related to 

canopy leaf area index and canopy mean leaf 

angle (°). Symbol color indicates canopy 

LIE. 
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Figure S6-4. Leaf angle distribution of cucumber 

(Cucumis sativus L.) cultivars Aramon (red bars 

and lines) and SC-50 (blue bars and lines) 

measured in four consecutive weeks using 

digitization. Measured leaf angle at the (a) First, 

(b) second, (c) third and (d) fourth week. 

Absolute values of leaf elevation angles are 

shown. An angle distribution with high density of 

large leaf angle is characterized as vertical leaf 

angle distribution (erectophile), otherwise 

horizontal leaf angle distribution (planophile). 

 

 

 

 

 

 

Figure S6-5. Observed dynamics of 

phyllochron with plant development indicated 

by leaf rank number in a plant of cucumber 

(Cucumis sativus L.) cultivars Aramon (red 

circles) and SC-50 (blue triangles). This 

observation began with plants with three leaves. 

Dashed line indicates simulation. 
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Figure S6-6. Measured 

total leaf nitrogen and 

its partitioning fractions 

to different pools in the 

leaves of cucumber 

(Cucumis sativus L.) 

cultivars Aramon (red 

line and symbols) and 

SC-50 (blue line and 

symbols) under 

different daily light 

interception (mol m
-2

 d
-

1
) and nitrogen supply 

(mM) for leaves at 

different leaf age (°Cd). 

(a) Total leaf nitrogen 

(Ntotal, mmol m
-2

) and 

fractions of (b) 

photosynthetic nitrogen 

(pNp, same as Figure 6-5a), (c) organic nitrogen in other functioning other than photosynthesis (pNf) 

and (d) inorganic nitrate-nitrogen (pNn) in Ntotal. Data were obtained in the growth chamber 

experiment. Linear regressions (lines) and their R-squared values were indicated for each variety. 

 

Figure S6-7. Simulated photosynthetic nitrogen partitioning at leaf area index above given leaves (Ll) 

in cucumber (Cucumis sativus L.) canopies of cultivar (a) Aramon (b) SC-50. Partitioning fractions of 

carboxylation (squares), electron transport (circles) and light harvesting (triangles) nitrogen pools 

resulting from theoretically optimal functional acclimation strategy (FAS, filled symbols) and variety-

specific FAS (open symbols). This simulation was conducted under the conditions of the greenhouse 

experiment with a daily photon integral of 21.33 mol photon m
-2

 d
-1

 and plant density of 1.33 plants 

m
-2

 using plant architectures digitized at the fourth week in the greenhouse experiment. 

 



 

 

153 
 

References 

Acevedo-Siaca LG, Coe R, Wang Y, Kromdijk J, Quick WP, Long SP. 2020. Variation in photosynthetic 

induction between rice accessions and its potential for improving productivity. New Phytologist 227, 1097–

1108. 

Aerts R, Chapin FSII. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and 

patterns. In: Advances in ecological research: Elsevier, 1–67. 

Akita R, Kamiyama C, Hikosaka K. 2012. Polygonum sachalinense alters the balance between capacities of 

regeneration and carboxylation of ribulose‐1, 5‐bisphosphate in response to growth CO2 increment but not 

the nitrogen allocation within the photosynthetic apparatus. Physiologia Plantarum 146, 404–412. 

Alqudah AM, Youssef HM, Graner A, Schnurbusch T. 2018. Natural variation and genetic make-up of leaf 

blade area in spring barley. Theoretical and Applied Genetics 131, 873–886. 

Alter P, Dreissen A, Luo F-L, Matsubara S. 2012. Acclimatory responses of Arabidopsis to fluctuating light 

environment: comparison of different sunfleck regimes and accessions. Photosynthesis Research 113, 221–

237. 

Annunziata MG, Apelt F, Carillo P et al. 2018. Response of Arabidopsis primary metabolism and circadian 

clock to low night temperature in a natural light environment. Journal of Experimental Botany 69, 4881–

4895. 

Anten NPR, Miyazawa K, Hikosaka K, Nagashima H, Hirose T. 1998. Leaf nitrogen distribution in relation 

to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous 

herb. Oecologia 113, 314–324. 

Anten NPR, Schieving F, Werger MJA. 1995. Patterns of light and nitrogen distribution in relation to whole 

canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia 101, 504–513. 

Aro E-M, McCaffery S, Anderson JM. 1993. Photoinhibition and D1 protein degradation in peas acclimated 

to different growth irradiances. Plant Physiology 103, 835–843. 

Athanasiou K, Dyson BC, Webster RE, Johnson GN. 2010. Dynamic acclimation of photosynthesis 

increases plant fitness in changing environments. Plant Physiology 152, 366–373. 

Aubin I, Beaudet M, Messier C. 2000. Light extinction coefficients specific to the understory vegetation of the 

southern boreal forest, Quebec. Canadian Journal of Forest Research 30, 168–177. 

Auzmendi I, Hanan JS. 2020. Investigating tree and fruit growth through functional–structural modelling: 

implications of carbon autonomy at different scales. Annals of Botany 126, 775–788. 

Bachofen C, D’Odorico P, Buchmann N. 2020. Light and VPD gradients drive foliar nitrogen partitioning and 

photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339. 

Balao F, Paun O, Alonso C. 2018. Uncovering the contribution of epigenetics to plant phenotypic variation in 

Mediterranean ecosystems. Plant Biology 20, 38–49. 

Barnes WC, Epps WM. 1956. Powdery mildew resistance in South Carolina cucumbers. Plant Disease 

Reporter 40, 1093. 

Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD. 2018. Rubisco is not really so bad. Plant, Cell & 

Environment 41, 705 –716. 

Baulcombe DC, Dean C. 2014. Epigenetic regulation in plant responses to the environment. Cold Spring 

Harbor Perspectives in Biology 6, a019471. 

Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual 

Review of Plant Physiology 31, 491–543. 

Blom TJ, Zheng Y. 2009. The response of plant growth and leaf gas exchange to the speed of lamp movement 

in a greenhouse. Scientia Horticulturae 119, 188–192. 

Bloom AJ, Burger M, Asensio JSR, Cousins AB. 2010. Carbon dioxide enrichment inhibits nitrate 

assimilation in wheat and Arabidopsis. Science 328, 899–903. 

Bloom AJ, Burger M, Kimball BA, Pinter Jr PJ. 2014. Nitrate assimilation is inhibited by elevated CO 2 in 

field-grown wheat. Nature Climate Change 4, 477–480. 



 

 

154 
 

Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI. 2013. Putting mechanisms into crop production models. 

Plant, Cell & Environment 36, 1658–1672. 

Boulard T, Roy J-C, Pouillard J-B, Fatnassi H, Grisey A. 2017. Modelling of micrometeorology, canopy 

transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems 

Engineering 158, 110–133. 

Buckley TN. 2017. Modeling stomatal conductance. Plant Physiology 174, 572–582. 

Buckley TN, Cescatti A, Farquhar GD. 2013. What does optimization theory actually predict about crown 

profiles of photosynthetic capacity when models incorporate greater realism? Plant, Cell & Environment 36, 

1547–1563. 

Buck-Sorlin G, de Visser PHB, Henke M et al. 2011. Towards a functional-structural plant model of cut-rose: 

simulation of light environment, light absorption, photosynthesis and interference with the plant structure. 

Annals of Botany 108, 1121–1134. 

Burgess AJ, Gibbs JA, Murchie EH. 2018. A canopy conundrum: can wind-induced movement help to 

increase crop productivity by relieving photosynthetic limitations? Journal of Experimental Botany 70, 

2371–2380. 

Cabrera‐Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. 2016. High‐throughput 

estimation of incident light, light interception and radiation‐use efficiency of thousands of plants in a 

phenotyping platform. New Phytologist 212, 269–281. 

Campbell GS, Norman JM. 1989. The description and measurement of plant canopy structure. In: Russell G, 

Marshall B, Jarvis PG, eds. Plant canopies: their growth, form and function: Cambridge University Press 

Cambridge, 1–19. 

Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ. 2015. Optimizing Rubisco and its regulation for 

greater resource use efficiency. Plant, Cell & Environment 38, 1817–1832. 

Cataldo DA, Maroon M, Le Schrader, Youngs VL. 1975. Rapid colorimetric determination of nitrate in plant 

tissue by nitration of salicylic acid. Communications in soil science and plant analysis 6, 71–80. 

Chang T-G, Zhao H, Wang N et al. 2019. A three-dimensional canopy photosynthesis model in rice with a 

complete description of the canopy architecture, leaf physiology, and mechanical properties. Journal of 

Experimental Botany 70, 2479–2490. 

Charles-Edwards DA, Doley D, Rimmington GM. 1986. Modelling plant growth and development. Sydney: 

Academic Press. 

Chen T-W, Cabrera-Bosquet L, Alvarez Prado S et al. 2019. Genetic and environmental dissection of 

biomass accumulation in multi-genotype maize canopies. Journal of Experimental Botany 70, 2523–2534. 

Chen T-W, Henke M, de Visser PHB et al. 2014a. What is the most prominent factor limiting photosynthesis 

in different layers of a greenhouse cucumber canopy? Annals of Botany 114, 677–688. 

Chen T-W, Nguyen T, Kahlen K, Stützel H. 2015. High temperature and vapor pressure deficit aggravate 

architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato. 

Frontiers in Plant Science 6, 887. 

Chen T-W, Nguyen TMN, Kahlen K, Stützel H. 2014b. Quantification of the effects of architectural traits on 

dry mass production and light interception of tomato canopy under different temperature regimes using a 

dynamic functional–structural plant model. Journal of Experimental Botany 65, 6399–6410. 

Chen T-W, Stützel H, Kahlen K. 2018. High light aggravates functional limitations of cucumber canopy 

photosynthesis under salinity. Annals of Botany 121, 797–807. 

Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K. 2008. Leaf trichome formation and plant 

resistance to herbivory. In: Schaller A, ed. Induced plant resistance to herbivory: Springer, 89–105. 

Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at 

the leaf level. Plant, Cell & Environment 33, 1419–1438. 

De Costa WAJM, Dennett MD. 1992. Is canopy light extinction coefficient a species - specific constant? 

Tropical Agricultural Research 4, 123–137. 

De Kauwe MG, Lin Y‐S, Wright IJ et al. 2016. A test of the ‘one‐point method’ for estimating maximum 

carboxylation capacity from field‐measured, light‐saturated photosynthesis. New Phytologist 210, 1130–

1144. 



 

 

155 
 

de Pury DGG, Farquhar GD. 1997. Simple scaling of photosynthesis from leaves to canopies without the 

errors of big‐leaf models. Plant, Cell & Environment 20, 537–557. 

DeWitt TJ, Langerhans RB. 2004. Integrated solutions to environmental heterogeneity: theory of 

multimoment reaction norms. In: DeWitt TJ, Scheiner SM, eds. Phenotypic plasticity: functional and 

conceptual approaches. New York: Oxford University Press, 98–111. 

Dreccer MF, van Oijen M, Schapendonk A, Pot CS, Rabbinge R. 2000. Dynamics of vertical leaf nitrogen 

distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany 86, 821–831. 

Drouet J-L, Bonhomme R. 2004. Effect of 3D nitrogen, dry mass per area and local irradiance on canopy 

photosynthesis within leaves of contrasted heterogeneous maize crops. Annals of Botany 93, 699–710. 

Drouet J-L, Kiniry JR. 2008. Does spatial arrangement of 3D plants affect light transmission and extinction 

coefficient within maize crops? Field Crops Research 107, 62–69. 

Duarte-Aké F, Us-Camas R, Cancino-García VJ, De-la-Peña C. 2019. Epigenetic changes and 

photosynthetic plasticity in response to environment. Environmental and Experimental Botany 159, 108–

120. 

Duursma RA, Falster DS, Valladares F et al. 2012. Light interception efficiency explained by two simple 

variables: a test using a diversity of small‐to medium‐sized woody plants. New Phytologist 193, 397–408. 

Evans JR. 1988. Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen 

between soluble and thylakoid proteins. Australian Journal of Plant Physiology 15, 93–106. 

Evans JR. 1989a. Partitioning of nitrogen between and within leaves grown under different irradiances. 

Functional Plant Biology 16, 533–548. 

Evans JR. 1989b. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19. 

Evans JR. 1993a. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy 

characteristics. Functional Plant Biology 20, 55–67. 

Evans JR. 1993b. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. II. Stability 

through time and comparison with a theoretical optimum. Functional Plant Biology 20, 69–82. 

Evans JR, Clarke VC. 2019. The nitrogen cost of photosynthesis. Journal of Experimental Botany 70, 7–15. 

Evans JR, Poorter H. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance 

of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment 24, 

755–767. 

Evers JB, Huth NI, Renton M. 2009. Light extinction in spring wheat canopies in relation to crop 

configuration and solar angle. In: 2009 Third International Symposium on Plant Growth Modeling, 

Simulation, Visualization and Applications (PMA). Beijing: IEEE, 107–110. 

Falster DS, Westoby M. 2003. Leaf size and angle vary widely across species: what consequences for light 

interception? New Phytologist 158, 509–525. 

Farquhar GD. 1989. Models of integrated photosynthesis of cells and leaves. Philosophical Transactions of 

the Royal Society B 323, 357–367. 

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation 

in leaves of C3 species. Planta 149, 78–90. 

Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the 

allocation program. Oecologia 56, 341–347. 

Flénet F, Kiniry JR, Board JE, Westgate ME, Reicosky DC. 1996. Row spacing effects on light extinction 

coefficients of corn, sorghum, soybean, and sunflower. Agronomy Journal 88, 185–190. 

Flexas J, Ribas‐Carbo M, DIAZ‐ESPEJO A, GalmES J, Medrano H. 2008. Mesophyll conductance to CO2: 

current knowledge and future prospects. Plant, Cell & Environment 31, 602–621. 

Flood PJ, Harbinson J, Aarts MGM. 2011. Natural genetic variation in plant photosynthesis. Trends in Plant 

Science 16, 327–335. 

Forrester DI. 2014. A stand-level light interception model for horizontally and vertically heterogeneous 

canopies. Ecological Modelling 276, 14–22. 

Forsythe WC, Rykiel Jr EJ, Stahl RS, Wu H-i, Schoolfield RM. 1995. A model comparison for daylength as 

a function of latitude and day of year. Ecological Modelling 80, 87–95. 



 

 

156 
 

Haldimann P, Feller U. 2005. Growth at moderately elevated temperature alters the physiological response of 

the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant, Cell & Environment 28, 

302–317. 

Harley PC, Loreto F, Di Marco G, Sharkey TD. 1992a. Theoretical considerations when estimating the 

mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology 

98, 1429–1436. 

Harley PC, Thomas RB, Reynolds JF, Strain BR. 1992b. Modelling photosynthesis of cotton grown in 

elevated CO2. Plant, Cell & Environment 15, 271–282. 

Harrison EL, Cubas LA, Gray JE, Hepworth C. 2020. The influence of stomatal morphology and 

distribution on photosynthetic gas exchange. The Plant Journal 101, 768–779. 

He L, Sun W, Chen X et al. 2020. Modelling maize canopy morphology in response to increased plant density. 

Frontiers in Plant Science 11, 2050. 

Herrmann HA, Schwartz J-M, Johnson GN. 2019. Metabolic acclimation—a key to enhancing 

photosynthesis in changing environments? Journal of Experimental Botany 70, 3043–3056. 

Hidema J, Makino A, Mae T, Ojima K. 1991. Photosynthetic characteristics of rice leaves aged under 

different irradiances from full expansion through senescence. Plant Physiology 97, 1287–1293. 

Hidema J, Makino A, Kurita Y, Mae T, Ojima K. 1992. Changes in the levels of chlorophyll and light-

harvesting chlorophyll a/b protein of PS II in rice leaves aged under different irradiances from full 

expansion through senescence. Plant & Cell Physiology 33, 1209–1214. 

Hikosaka K. 2004. Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological 

causes, and ecological importance. Journal of Plant Research 117, 481–494. 

Hikosaka K. 2005. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of 

Botany 95, 521–533. 

Hikosaka K. 2010. Mechanisms underlying interspecific variation in photosynthetic capacity across wild plant 

species. Plant Biotechnology 27, 223–229. 

Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell 

& Environment 37, 2077–2085. 

Hikosaka K. 2016. Optimality of nitrogen distribution among leaves in plant canopies. Journal of Plant 

Research 129, 299–311. 

Hikosaka K, Anten NPR. 2012. An evolutionary game of leaf dynamics and its consequences for canopy 

structure. Functional Ecology 26, 1024–1032. 

Hikosaka K, Anten NPR, Borjigidai A et al. 2016. A meta-analysis of leaf nitrogen distribution within plant 

canopies. Annals of Botany 118, 239–247. 

Hikosaka K, Hirose T. 1997. Leaf angle as a strategy for light competition: optimal and evolutionarily stable 

light-extinction coefficient within a leaf canopy. Ecoscience 4, 501–507. 

Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y. 2006. Temperature acclimation of 

photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. 

Journal of Experimental Botany 57, 291–302. 

Hikosaka K, Terashima I. 1996. Nitrogen partitioning among photosynthetic components and its consequence 

in sun and shade plants. Functional Ecology 10, 335–343. 

Hikosaka K, Terashima I, Katoh S. 1994. Effects of leaf age, nitrogen nutrition and photon flux density on 

the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid 

mutual shading of leaves. Oecologia 97, 451–457. 

Hirose T, Ackerly DD, Traw MB, Ramseier D, Bazzaz FA. 1997. CO2 elevation, canopy photosynthesis, 

andoptimal leaf area index. Ecology 78, 2339–2350. 

Hirose T, Werger MJA. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen 

allocation pattern in the canopy. Oecologia 72, 520–526. 

Hofmann M, Seckmeyer G. 2017. A new model for estimating the diffuse fraction of solar irradiance for 

photovoltaic system simulations. Energies 10, 248. 

Hollinger DY. 1996. Optimality and nitrogen allocation in a tree canopy. Tree Physiology 16, 627–634. 



 

 

157 
 

Honda H, Fisher JB. 1978. Tree branch angle: maximizing effective leaf area. Science 199, 888–890. 

Hovi T, Näkkilä J, Tahvonen R. 2004. Interlighting improves production of year-round cucumber. Scientia 

Horticulturae 102, 283–294. 

Hovi-Pekkanen T, Tahvonen R. 2008. Effects of interlighting on yield and external fruit quality in year-round 

cultivated cucumber. Scientia Horticulturae 116, 152–161. 

Irving LJ, Robinson D. 2006. A dynamic model of Rubisco turnover in cereal leaves. New Phytologist 169, 

493–504. 

Ishihara H, Obata T, Sulpice R, Fernie AR, Stitt M. 2015. Quantifying protein synthesis and degradation in 

Arabidopsis by dynamic 
13

CO2 labeling and analysis of enrichment in individual amino acids in their free 

pools and in protein. Plant Physiology 168, 74–93. 

Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. 2001. Are contents of Rubisco, soluble protein and 

nitrogen in flag leaves of rice controlled by the same genetics? Journal of Experimental Botany 52, 1827–

1833. 

Johnson IR, Thornley JHM, Frantz JM, Bugbee B. 2010. A model of canopy photosynthesis incorporating 

protein distribution through the canopy and its acclimation to light, temperature and CO2. Annals of Botany 

106, 735–749. 

Kahlen K. 2006. 3D architectural modelling of greenhouse cucumber (Cucumis sativus L.) using L-systems. 

Acta Horticulturae 718, 51–58. 

Kahlen K, Chen T-W. 2015. Predicting plant performance under simultaneously changing environmental 

conditions—The interplay between temperature, light, and internode growth. Frontiers in Plant Science 6, 

1130. 

Kahlen K, Stützel H. 2007. Estimation of geometric attributes and masses of individual cucumber organs using 

three-dimensional digitizing and allometric relationships. Journal of the American Society for Horticultural 

Science 132, 439–446. 

Kahlen K, Stützel H. 2011. Modelling photo‐modulated internode elongation in growing glasshouse cucumber 

canopies. New Phytologist 190, 697–708. 

Kahlen K, Wiechers D, Stützel H. 2008. Modelling leaf phototropism in a cucumber canopy. Functional Plant 

Biology 35, 876–884. 

Kaiser E, Matsubara S, Harbinson J, Heuvelink E, Marcelis LFM. 2018a. Acclimation of photosynthesis to 

lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia 

Plantarum 162, 506–517. 

Kaiser E, Morales A, Harbinson J. 2018b. Fluctuating light takes crop photosynthesis on a rollercoaster ride. 

Plant Physiology 176, 977–989. 

Kaiser E, Morales A, Harbinson J, Heuvelink E, Prinzenberg AE, Marcelis LFM. 2016. Metabolic and 

diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Scientific Reports 

6, 1–13. 

Kang MZ, Heuvelink E, Carvalho SMP, de Reffye P. 2012. A virtual plant that responds to the environment 

like a real one: the case for chrysanthemum. New Phytologist 195, 384–395. 

Kattge J, Knorr W. 2007. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of 

data from 36 species. Plant, Cell & Environment 30, 1176–1190. 

Khan S, Andralojc PJ, Lea PJ, Parry MAJ. 1999. 2’‐Carboxy‐D‐arabitinol 1‐phosphate protects ribulose 1, 

5‐bisphosphate carboxylase/oxygenase against proteolytic breakdown. European Journal of Biochemistry 

266, 840–847. 

Kimball BA, Bellamy LA. 1986. Generation of diurnal solar radiation, temperature, and humidity patterns. 

Energy in Agriculture 5, 185–197. 

Kitao M, Kitaoka S, Harayama H, Tobita H, Agathokleous E, Utsugi H. 2018. Canopy nitrogen distribution 

is optimized to prevent photoinhibition throughout the canopy during sun flecks. Scientific Reports 8, 503. 

Kniemeyer O. 2008. Design and implementation of a graph grammar based language for functional-structural 

plant modelling. Doctoral dissertation, Brandenburg University of Technology, Cottbus-Senftenberg, 

Germany. 



 

 

158 
 

Kok B. 1948. A Critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymologia 13, 1–56. 

Kristensen AR, Gsponer J, Foster LJ. 2013. Protein synthesis rate is the predominant regulator of protein 

expression during differentiation. Molecular Systems Biology 9, 689. 

Kubásek J, Urban O, Šantrůček J. 2013. C4 plants use fluctuating light less efficiently than do C3 plants: a 

study of growth, photosynthesis and carbon isotope discrimination. Physiologia Plantarum 149, 528–539. 

Kumar KGS, Hao X, Khosla S, Guo X, Bennett N. 2016. Comparison of HPS lighting and hybrid lighting 

with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Horticulturae 

1134, 111–117. 

Kuwar G. 2007. Modelling dry matter partitioning in greenhouse cucumber: modelling dry matter partitioning 

in greenhouse. MSc, Leibniz Universität Hannover, Germany. 

Lawson T, Matthews J. 2020. Guard Cell Metabolism and Stomatal Function. Annual Review of Plant Biology 

71, 273–302. 

Le Roux X, Walcroft AS, Daudet FA et al. 2001. Photosynthetic light acclimation in peach leaves: importance 

of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiology 21, 

377–386. 

Leakey ADB, Press MC, Scholes JD. 2003. Patterns of dynamic irradiance affect the photosynthetic capacity 

and growth of dipterocarp tree seedlings. Oecologia 135, 184–193. 

Leakey ADB, Press MC, Scholes JD, Watling JR. 2002. Relative enhancement of photosynthesis and growth 

at elevated CO2 is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. 

Plant, Cell & Environment 25, 1701–1714. 

Li L, Aro E-M, Millar AH. 2018. Mechanisms of photodamage and protein turnover in photoinhibition. 

Trends in Plant Science 23, 667-676. 

Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. 2017. Protein degradation rate in Arabidopsis 

thaliana leaf growth and development. The Plant Cell 29, 207-228. 

Li P, Hao X, Aryal M, Thompson M, Seneweera S. 2019. Elevated carbon dioxide and nitrogen supply affect 

photosynthesis and nitrogen partitioning of two wheat varieties. Journal of Plant Nutrition 42, 1290–1300. 

Li T, Heuvelink E, Dueck TA, Janse J, Gort G, Marcelis LFM. 2014. Enhancement of crop photosynthesis 

by diffuse light: quantifying the contributing factors. Annals of Botany 114, 145–156. 

Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in 

Enzymology 148, 350–382. 

Lizaso JI, Batchelor WD, Boote KJ, Westgate ME. 2005. Development of a leaf‐level canopy assimilation 

model for CERES‐Maize. Agronomy Journal 97, 722–733. 

Lombardozzi D, Sparks JP, Bonan G, Levis S. 2012. Ozone exposure causes a decoupling of conductance 

and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169, 651–659. 

Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE the 

future. Annual Review of Plant Biology 55, 591–628. 

Loriaux SD, Avenson TJ, Welles JM et al. 2013. Closing in on maximum yield of chlorophyll fluorescence 

using a single multiphase flash of sub‐saturating intensity. Plant, Cell & Environment 36, 1755–1770. 

Louarn G, Song Y. 2020. Two decades of functional–structural plant modelling: now addressing fundamental 

questions in systems biology and predictive ecology. Annals of Botany 126, 501–509. 

Lu N, Mitchell CA. 2016. Supplemental Lighting for Greenhouse-Grown Fruiting Vegetables. In: Kozai T, 

Fujiwara K, Runkle ES, eds. LED Lighting for Urban Agriculture: Springer, 219–232. 

Ludlow MM. 1983. External factors influencing photosynthesis and respiration. In: Dale JE, Milthorpe FL, eds. 

The growth and functioning of leaves. Cambridge: Cambridge University Press, 347–380. 

Ma D, Carpenter N, Maki H, Rehman TU, Tuinstra MR, Jin J. 2019. Greenhouse environment modeling 

and simulation for microclimate control. Computers and Electronics in Agriculture 162, 134–142. 

Maddonni GA, Chelle M, Drouet J-L, Andrieu B. 2001a. Light interception of contrasting azimuth canopies 

under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops 

Research 70, 1–13. 



 

 

159 
 

Maddonni GA, Otegui ME, Cirilo AG. 2001b. Plant population density, row spacing and hybrid effects on 

maize canopy architecture and light attenuation. Field Crops Research 71, 183–193. 

Makino A, Mae T, Ohira K. 1984. Relation between Nitrogen and Ribulose-1,5-bisphosphate Carboxylase in 

Rice Leaves from Emergence through Senescence. Plant and Cell Physiology 25, 429–437. 

Makino A, Osmond B. 1991. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and 

mitochondria in pea and wheat. Plant Physiology 96, 355–362. 

Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B. 1992. Distinctive responses of ribulose-1, 

5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible 

relationships to CO2-transfer resistance. Plant Physiology 100, 1737–1743. 

Mantilla-Perez MB, Salas Fernandez MG. 2017. Differential manipulation of leaf angle throughout the 

canopy: current status and prospects. Journal of Experimental Botany 68, 5699–5717. 

Marcelis LF. 1994. A simulation model for dry matter partitioning in cucumber. Annals of Botany 74, 43–52. 

Masuda T, Tanaka A, Melis A. 2003. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina 

involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant 

Molecular Biology 51, 757–771. 

Matsubara S. 2018. Growing plants in fluctuating environments: why bother? Journal of Experimental Botany 

69, 4651–4654. 

Matthews JSA, Vialet-Chabrand S, Lawson T. 2018. Acclimation to fluctuating light impacts the rapidity of 

response and diurnal rhythm of stomatal conductance. Plant Physiology 176, 1939–1951. 

Matthews JSA, Vialet-Chabrand S, Lawson T. 2020. Role of blue and red light in stomatal dynamic 

behaviour. Journal of Experimental Botany 71, 2253–2269. 

Medlyn BE. 1996. The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2. 

Functional Plant Biology 23, 593–603. 

Medlyn BE, Badeck FW, De Pury DGG et al. 1999. Effects of elevated [CO2] on photosynthesis in European 

forest species: a meta‐analysis of model parameters. Plant, Cell & Environment 22, 1475–1495. 

Medlyn BE, Duursma RA, Eamus D et al. 2011. Reconciling the optimal and empirical approaches to 

modelling stomatal conductance. Global Change Biology 17, 2134–2144. 

Medrano E, Lorenzo P, Sánchez-Guerrero MC, Montero JI. 2005. Evaluation and modelling of greenhouse 

cucumber-crop transpiration under high and low radiation conditions. Scientia Horticulturae 105, 163–175. 

Meir P, Kruijt B, Broadmeadow M et al. 2002. Acclimation of photosynthetic capacity to irradiance in tree 

canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell & Environment 

25, 343–357. 

Monsi M, Saeki T. 1953. The light factor in plant communities and its significance for dry matter production. 

Japanese Journal of Botany 14, 22–52. 

Monsi M, Saeki T. 2005. On the factor light in plant communities and its importance for matter production. 

Annals of Botany 95, 549–567. 

Morales A, Kaiser E. 2020. Photosynthetic acclimation to fluctuating irradiance in plants. Frontiers in Plant 

Science 11, 268. 

Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes MJ, Martre P. 2012. Acclimation of leaf nitrogen to 

vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. 

Plant Physiology 160, 1479–1490. 

Moualeu-Ngangue DP, Chen T-W, Stützel H. 2016. A modeling approach to quantify the effects of stomatal 

behavior and mesophyll conductance on leaf water use efficiency. Frontiers in Plant Science 7, 875. 

Moualeu‐Ngangue DP, Chen T‐W, Stützel H. 2017. A new method to estimate photosynthetic parameters 

through net assimilation rate–intercellular space CO2 concentration (A–Ci) curve and chlorophyll 

fluorescence measurements. New Phytologist 213, 1543–1554. 

Muller B, Martre P. 2019. Plant and crop simulation models: powerful tools to link physiology, genetics, and 

phenomics. Journal of Experimental Botany 70, 2339–2344. 

Murchie EH, Hubbart S, Peng S, Horton P. 2005. Acclimation of photosynthesis to high irradiance in rice: 

gene expression and interactions with leaf development. Journal of Experimental Botany 56, 449–460. 



 

 

160 
 

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding 

some new applications. Journal of Experimental Botany 64, 3983–3998. 

Navone R. 1964. Proposed method for nitrate in potable waters. Journal‐American Water Works Association 56, 

781–783. 

Nelson CJ, Alexova R, Jacoby RP, Millar AH. 2014. Proteins with high turnover rate in barley leaves 

estimated by proteome analysis combined with in planta isotope labeling. Plant Physiology 166, 91–108. 

Nelson CJ, Millar AH. 2015. Protein turnover in plant biology. Nature Plants 1, 15017. 

Nelson DW, Sommers LE. 1980. Total nitrogen analysis of soil and plant tissues. Journal of Association of 

Official Analytical Chemists 63, 770–778. 

Ng J, Guo Z, Mueller-Cajar O. 2020. Rubisco activase requires residues in the large subunit N terminus to 

remodel inhibited plant Rubisco. Journal of Biological Chemistry 295, 16427–16435. 

Niinemets Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell & 

Environment 30, 1052–1071. 

Niinemets Ü. 2012. Optimization of foliage photosynthetic capacity in tree canopies: towards identifying 

missing constraints. Tree Physiology 32, 505–509. 

Niinemets Ü. 2016. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-

analysis. Journal of Plant Research 129, 313–338. 

Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T. 2006. Complex adjustments of photosynthetic potentials 

and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean 

evergreen species Quercus ilex. Plant, Cell & Environment 29, 1159–1178. 

Niinemets Ü, Keenan TF, Hallik L. 2015. A worldwide analysis of within‐canopy variations in leaf structural, 

chemical and physiological traits across plant functional types. New Phytologist 205, 973–993. 

Offermann S, Peterhansel C. 2014. Can we learn from heterosis and epigenetics to improve photosynthesis? 

Current Opinion in Plant Biology 19, 105–110. 

Ögren E, Evans JR. 1993. Photosynthetic light-response curves. Planta 189, 182–190. 

Onoda Y, Hikosaka K, Hirose T. 2004. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-

use efficiency. Functional Ecology 18, 419–425. 

Osada N, Yasumura Y, Ishida A. 2014. Leaf nitrogen distribution in relation to crown architecture in the tall 

canopy species, Fagus crenata. Oecologia 175, 1093–1106. 

Pantin F, Simonneau T, Muller B. 2012. Coming of leaf age: control of growth by hydraulics and metabolics 

during leaf ontogeny. New Phytologist 196, 349–366. 

Pantin F, Simonneau T, Rolland G, Dauzat M, Muller B. 2011. Control of leaf expansion: a developmental 

switch from metabolics to hydraulics. Plant Physiology 156, 803–815. 

Pao Y-C, Chen T-W, Moualeu-Ngangue DP, Stützel H. 2019a. Environmental triggers for photosynthetic 

protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. Journal of 

Experimental Botany 70, 2419–2434. 

Pao Y-C, Stützel H, Chen T-W. 2019b. A mechanistic view of the reduction in photosynthetic protein 

abundance under diurnal light fluctuation. Journal of Experimental Botany 70, 3705–3708. 

Papadopoulos AP, Hao X. 2000. Effects of day and night air temperature on growth, productivity and energy 

use of long English cucumber. Canadian Journal of Plant Science 80, 143–150. 

Parent B, Tardieu F. 2012. Temperature responses of developmental processes have not been affected by 

breeding in different ecological areas for 17 crop species. New Phytologist 194, 760–774. 

Parent B, Turc O, Gibon Y, Stitt M, Tardieu F. 2010. Modelling temperature-compensated physiological 

rates, based on the co-ordination of responses to temperature of developmental processes. Journal of 

Experimental Botany 61, 2057–2069. 

Parent B, Vile D, Violle C, Tardieu F. 2016. Towards parsimonious ecophysiological models that bridge 

ecology and agronomy. New Phytologist 210, 380–382. 

Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ. 2008. Rubisco regulation: a role for 

inhibitors. Journal of Experimental Botany 59, 1569–1580. 



 

 

161 
 

Peil RM, González-Real MM, López-Gálvez J. 2002. Light interception of a greenhouse cucumber crop: 

measurements and modelling results. Acta Horticulturae 588, 81–87. 

Perez RPA, Dauzat J, Pallas B et al. 2018. Designing oil palm architectural ideotypes for optimal light 

interception and carbon assimilation through a sensitivity analysis of leaf traits. Annals of Botany 121, 909–

926. 

Perez RPA, Fournier C, Cabrera‐Bosquet L et al. 2019. Changes in the vertical distribution of leaf area 

enhanced light interception efficiency in maize over generations of selection. Plant, Cell & Environment 42, 

2105–2119. 

Peterson LW, Kleinkopf GE, Huffaker RC. 1973. Evidence for lack of turnover of ribulose 1, 5-diphosphate 

carboxylase in barley leaves. Plant Physiology 51, 1042–1045. 

Pettersen RI, Torre S, Gislerød HR. 2010a. Effects of intracanopy lighting on photosynthetic characteristics 

in cucumber. Scientia Horticulturae 125, 77–81. 

Pettersen RI, Torre S, Gislerød HR. 2010b. Effects of leaf aging and light duration on photosynthetic 

characteristics in a cucumber canopy. Scientia Horticulturae 125, 82–87. 

Pons TL, Anten NPR. 2004. Is plasticity in partitioning of photosynthetic resources between and within leaves 

important for whole‐plant carbon gain in canopies? Functional Ecology 18, 802–811. 

Poorter H, Anten NPR, Marcelis LFM. 2013. Physiological mechanisms in plant growth models: do we need 

a supra‐cellular systems biology approach? Plant, Cell & Environment 36, 1673–1690. 

Poorter H, Niinemets Ü, Ntagkas N et al. 2019. A meta‐analysis of plant responses to light intensity for 70 

traits ranging from molecules to whole plant performance. New Phytologist 223, 1073–1105. 

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf 

mass per area (LMA): a meta‐analysis. New Phytologist 182, 565–588. 

Poorter H, Niinemets Ü, Walter A, Fiorani F, Schurr U. 2010. A method to construct dose–response curves 

for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. 

Journal of Experimental Botany 61, 2043–2055. 

Portis AR, Salvucci ME, Ogren WL. 1986. Activation of ribulosebisphosphate carboxylase/oxygenase at 

physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiology 82, 967–

971. 

Prieto JA, Louarn G, Perez Pena J, Ojeda H, Simonneau T, Lebon E. 2012. A leaf gas exchange model that 

accounts for intra‐canopy variability by considering leaf nitrogen content and local acclimation to radiation 

in grapevine (Vitis vinifera L.). Plant, Cell & Environment 35, 1313–1328. 

Qian T, Elings A, Dieleman JA, Gort G, Marcelis LFM. 2012. Estimation of photosynthesis parameters for a 

modified Farquhar–von Caemmerer–Berry model using simultaneous estimation method and nonlinear 

mixed effects model. Environmental and Experimental Botany 82, 66–73. 

R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria. 

Reindl DT, Beckman WA, Duffie JA. 1990. Diffuse fraction correlations. Solar Energy 45, 1–7. 

Renton M. 2011. How much detail and accuracy is required in plant growth sub-models to address questions 

about optimal management strategies in agricultural systems? AoB Plants 2011, plr006. 

Retkute R, Smith-Unna SE, Smith RW et al. 2015. Exploiting heterogeneous environments: does 

photosynthetic acclimation optimize carbon gain in fluctuating light? Journal of Experimental Botany 66, 

2437–2447. 

Roupsard O, Dauzat J, Nouvellon Y et al. 2008. Cross-validating sun-shade and 3D models of light 

absorption by a tree-crop canopy. Agricultural and Forest Meteorology 148, 549–564. 

Sadras VO, Richards RA. 2014. Improvement of crop yield in dry environments: benchmarks, levels of 

organisation and the role of nitrogen. Journal of Experimental Botany 65, 1981–1995. 

Sakoda K, Yamori W, Groszmann M, Evans JR. 2021. Stomatal, mesophyll conductance, and biochemical 

limitations to photosynthesis during induction. Plant Physiology 185, 146–160. 

Sakoda K, Yamori W, Shimada T, Sugano SS, Hara-Nishimura I, Tanaka Y. 2020. Higher stomatal 

density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. 

Frontiers in Plant Science 11, 1609. 



 

 

162 
 

Sarlikioti V, de Visser PHB, Buck-Sorlin GH, Marcelis LFM. 2011a. How plant architecture affects light 

absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-

structural plant model. Annals of Botany 108, 1065–1073. 

Sarlikioti V, de Visser PHB, Marcelis LFM. 2011b. Exploring the spatial distribution of light interception and 

photosynthesis of canopies by means of a functional–structural plant model. Annals of Botany 107, 875–

883. 

Savvides A, Dieleman JA, van Ieperen W, Marcelis LFM. 2016. A unique approach to demonstrating that 

apical bud temperature specifically determines leaf initiation rate in the dicot Cucumis sativus. Planta 243, 

1071–1079. 

Schapendonk AH, van Oijen M, Dijkstra P, Pot CS, Jordi WJ, Stoopen GM. 2000. Effects of elevated CO2 

concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top 

chambers. Functional Plant Biology 27, 1119–1130. 

Schieving F, Poorter H. 1999. Carbon gain in a multispecies canopy: the role of specific leaf area and 

photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist 143, 201–211. 

Schmidt D, Kahlen K. 2019. Positional variation rather than salt stress dominates changes in three-dimensional 

leaf shape patterns in cucumber canopies. in silico Plants 1, diz011. 

Schneider T, Bolger A, Zeier J et al. 2019. Fluctuating light interacts with time of day and leaf development 

stage to reprogram gene expression. Plant Physiology 179, 1632–1657. 

Schultz HR. 2003. Extension of a Farquhar model for limitations of leaf photosynthesis induced by light 

environment, phenology and leaf age in grapevines (Vitis vinifera L. cvv. White Riesling and Zinfandel). 

Functional Plant Biology 30, 673–687. 

Seaton DD, Graf A, Baerenfaller K, Stitt M, Millar AJ, Gruissem W. 2018. Photoperiodic control of the 

Arabidopsis proteome reveals a translational coincidence mechanism. Molecular Systems Biology 14, e7962. 

Seemann JR, Sharkey TD, Wang J, Osmond CB. 1987. Environmental effects on photosynthesis, nitrogen-

use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology 84, 796–802. 

Servaites JC. 1990. Inhibition of ribulose 1, 5-bisphosphate carboxylase/oxygenase by 2-carboxyarabinitol-1-

phosphate. Plant Physiology 92, 867–870. 

Servaites JC, Parry MAJ, Gutteridge S, Keys AJ. 1986. Species variation in the predawn inhibition of 

ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiology 82, 1161–1163. 

Sessa G, Carabelli M, Sassi M et al. 2005. A dynamic balance between gene activation and repression 

regulates the shade avoidance response in Arabidopsis. Genes & Development 19, 2811–2815. 

Shetty NV, Wehner TC. 2002. Screening the cucumber germplasm collection for fruit yield and quality. Crop 

Science 42, 2174–2183. 

Sims DA, Pearcy RW. 1993. Sunfleck frequency and duration affects growth rate of the understorey plant, 

Alocasia macrorrhiza. Functional Ecology 7, 683–689. 

Singsaas EL, Ort, Delucia EH. 2003. Elevated CO2 effects on mesophyll conductance and its consequences 

for interpreting photosynthetic physiology. Plant, Cell & Environment 27, 41–50. 

Slattery RA, Walker BJ, Weber APM, Ort DR. 2018. The impacts of fluctuating light on crop performance. 

Plant Physiology 176, 990–1003. 

Song Q, Wang Y, Qu M, Ort DR, Zhu X-G. 2017. The impact of modifying photosystem antenna size on 

canopy photosynthetic efficiency. Plant, Cell & Environment 40, 2946–2957. 

Song Q, Zhang G, Zhu X-G. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 

uptake under elevated CO2–a theoretical study using a mechanistic model of canopy photosynthesis. 

Functional Plant Biology 40, 108–124. 

Strauss S, Lempe J, Prusinkiewicz P, Tsiantis M, Smith RS. 2020. Phyllotaxis: is the golden angle optimal 

for light capture? New Phytologist 225, 499–510. 

Strauss-Debenedetti S, Bazzaz FA. 1991. Plasticity and acclimation to light in tropical Moraceae of different 

sucessional positions. Oecologia 87, 377–387. 

Suzuki Y, Makino A, Mae T. 2001. Changes in the turnover of Rubisco and levels of mRNAs of rbcL and 

rbcS in rice leaves from emergence to senescence. Plant, Cell & Environment 24, 1353–1360. 



 

 

163 
 

Tahiri AZ, Anyoji H, Yasuda H. 2006. Fixed and variable light extinction coefficients for estimating plant 

transpiration and soil evaporation under irrigated maize. Agricultural Water Management 84, 186–192. 

Tang L, Yin D, Chen C. 2019. Optimal design of plant canopy based on light interception: a case study with 

loquat. Frontiers in Plant Science 10, 364. 

Tardieu F, Granier C, Muller B. 1999. Modelling leaf expansion in a fluctuating environment: are changes in 

specific leaf area a consequence of changes in expansion rate? New Phytologist 143, 33–43. 

Taub DR, Wang X. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A 

critical examination of the hypotheses. Journal of Integrative Plant Biology 50, 1365–1374. 

Taylor SH, Orr DJ, Carmo-Silva E, Long SP. 2020. During photosynthetic induction, biochemical and 

stomatal limitations differ between Brassica crops. Plant, Cell & Environment 43, 2623–2636. 

Terashima I, Evans JR. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic 

apparatus in spinach. Plant and Cell Physiology 29, 143–155. 

Thornley JHM. 1998. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annals of 

Botany 81, 421–430. 

Thornley JHM, Johnson IR. 1990. Plant and crop modelling. Oxford: Clarendon Press. 

Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in 

Arabidopsis thaliana. Nature 423, 74–77. 

Todesco M, Balasubramanian S, Hu TT et al. 2010. Natural allelic variation underlying a major fitness trade-

off in Arabidopsis thaliana. Nature 465, 632–636. 

Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Carmo-Silva E, Murchie EH. 2018. 

Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiology 176, 1233-1246. 

Trouwborst G, Hogewoning SW, Harbinson J, van Ieperen W. 2011. Photosynthetic acclimation in relation 

to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiologia Plantarum 142, 

157–169. 

Trouwborst G, Oosterkamp J, Hogewoning SW, Harbinson J, van Ieperen W. 2010. The responses of light 

interception, photosynthesis and fruit yield of cucumber to LED‐lighting within the canopy. Physiologia 

Plantarum 138, 289–300. 

Truong SK, McCormick RF, Rooney WL, Mullet JE. 2015. Harnessing genetic variation in leaf angle to 

increase productivity of Sorghum bicolor. Genetics 201, 1229–1238. 

Turck F, Coupland G. 2014. Natural variation in epigenetic gene regulation and its effects on plant 

developmental traits. Evolution 68, 620–631. 

Tuzet A, Perrier A, Leuning R. 2003. A coupled model of stomatal conductance, photosynthesis and 

transpiration. Plant, Cell & Environment 26, 1097–1116. 

van Henten EJ, Hemming J, van Tuijl BAJ et al. 2002. An autonomous robot for harvesting cucumbers in 

greenhouses. Autonomous Robots 13, 241–258. 

Verkroost AWM, Wassen MJ. 2005. A simple model for nitrogen-limited plant growth and nitrogen 

allocation. Annals of Botany 96, 871–876. 

Vialet-Chabrand SRM, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T. 2017a. Temporal 

dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant 

Physiology 174, 603–613. 

Vialet-Chabrand SRM, Matthews JSA, Simkin A, Raines CA, Lawson T. 2017b. Importance of fluctuations 

in light on pant photosynthetic acclimation. Plant Physiology 173, 2163–2179. 

von Caemmerer S, Quick WP. 2000. Rubisco: physiology in vivo. In: Leegood RC, Sharkey TD, von 

Caemmerer S, eds. Photosynthesis: physiology and metabolism: Springer, 85–113. 

von Elsner B, Briassoulis D, Waaijenberg D et al. 2000. Review of structural and functional characteristics of 

greenhouses in European Union countries: Part I, Design requirements. Journal of Agricultural Engineering 

Research 75, 1–16. 

Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB. 2010. Functional-structural plant 

modelling: a new versatile tool in crop science. Journal of Experimental Botany 61, 2101–2115. 



 

 

164 
 

Walters RG. 2005. Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany 

56, 435–447. 

Wang D, Maughan MW, Sun J et al. 2012. Impact of nitrogen allocation on growth and photosynthesis of 

Miscanthus (Miscanthus × giganteus). Global Change Biology Bioenergy 4, 688–697. 

Wang Y, Burgess SJ, de Becker EM, Long SP. 2020. Photosynthesis in the fleeting shadows: an overlooked 

opportunity for increasing crop productivity? The Plant Journal 101, 874–884. 

Warren Wilson J, Hand DW, Hannah MA. 1992. Light interception and photosynthetic efficiency in some 

glasshouse crops. Journal of Experimental Botany 43, 363–373. 

Watling JR, Ball MC, Woodrow IE. 1997. The utilization of lightflecks for growth in four Australian rain‐

forest species. Functional Ecology 11, 231–239. 

Werger MJA, Hirose T. 1991. Leaf nitrogen distribution and whole canopy photosynthetic carbon gain in 

herbaceous stands. Vegetatio 97, 11–20. 

Wiechers D, Kahlen K, Stützel H. 2011a. Dry matter partitioning models for the simulation of individual fruit 

growth in greenhouse cucumber canopies. Annals of Botany 108, 1075–1084. 

Wiechers D, Kahlen K, Stützel H. 2011b. Evaluation of a radiosity based light model for greenhouse 

cucumber canopies. Agricultural and Forest Meteorology 151, 906–915. 

Wilson KB, Baldocchi DD, Hanson PJ. 2000. Spatial and seasonal variability of photosynthetic parameters 

and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565–578. 

Wright IJ, Leishman MR, Read C, Westoby M. 2006. Gradients of light availability and leaf traits with leaf 

age and canopy position in 28 Australian shrubs and trees. Functional Plant Biology 33, 407–419. 

Wright IJ, Reich PB, Westoby M et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. 

Wyka TP, Oleksyn J, Żytkowiak R, Karolewski P, Am Jagodziński, Reich PB. 2012. Responses of leaf 

structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four 

broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia 170, 11–24. 

Yamori W, Evans JR, von Caemmerer S. 2010. Effects of growth and measurement light intensities on 

temperature dependence of CO2 assimilation rate in tobacco leaves. Plant, Cell & Environment 33, 332–343. 

Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: 

temperature acclimation and temperature adaptation. Photosynthesis Research 119, 101–117. 

Yamori W, Nagai T, Makino A. 2011a. The rate‐limiting step for CO2 assimilation at different temperatures is 

influenced by the leaf nitrogen content in several C3 crop species. Plant, Cell & Environment 34, 764–777. 

Yamori W, Noguchi K, Hikosaka K, Terashima I. 2009. Cold-tolerant crop species have greater temperature 

homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant and Cell Physiology 

50, 203–215. 

Yamori W, Noguchi KO, Terashima I. 2005. Temperature acclimation of photosynthesis in spinach leaves: 

analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. 

Plant, Cell & Environment 28, 536–547. 

Yamori W, Takahashi S, Makino A, Price GD, Badger MR, von Caemmerer S. 2011b. The roles of ATP 

synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining 

photosynthetic capacity. Plant Physiology 155, 956–962. 

Yang Y‐J, Bi M‐H, Nie Z‐F et al. 2021. Evolution of stomatal closure to optimize water‐use efficiency in 

response to dehydration in ferns and seed plants. New Phytologist. 

Yin X, Schapendonk AHCM, Struik PC. 2019. Exploring the optimum nitrogen partitioning to predict the 

acclimation of C3 leaf photosynthesis to varying growth conditions. Journal of Experimental Botany 70, 

2435–2447. 

Yin Z-H, Johnson GN. 2000. Photosynthetic acclimation of higher plants to growth in fluctuating light 

environments. Photosynthesis Research 63, 97–107. 

Zhang B, DeAngelis DL. 2020. An overview of agent-based models in plant biology and ecology. Annals of 

Botany 126, 539–557. 

Zhang L, Hu Z, Fan J, Zhou D, Tang F. 2014. A meta-analysis of the canopy light extinction coefficient in 

terrestrial ecosystems. Frontiers of Earth Science 8, 599–609. 



 

 

165 
 

Zhang N, van Westreenen A, Evers JB, Anten NPR, Marcelis LFM. 2020. Quantifying the contribution of 

bent shoots to plant photosynthesis and biomass production of flower shoots in rose (Rosa hybrida) using a 

functional–structural plant model. Annals of Botany 126, 587–599. 

Zhang Y, Kaiser E, Marcelis LFM, Yang Q, Li T. 2020. Salt stress and fluctuating light have separate effects 

on photosynthetic acclimation, but interactively affect biomass. Plant, Cell & Environment 43, 2192–2206. 

Zhu X-G, Long SP, Ort DR. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of 

Plant Biology 61, 235–261. 

  



 

 

166 
 

Acknowledgement 

I am grateful for the financial support from Taiwan Ministry of Education in 2016-2018 

(Study Abroad Scholarship No. 1051012008) and Deutsche Forschungsgemeinschaft in 

2018-2021 (Project No. 403510751).  

I have received a great deal of support from developing research ideas to writing of this 

dissertation. I would like to thank Prof. Dr. Hartmut Stützel and Prof. Dr. Tsu-Wei Chen for 

giving me the opportunity to initiate my research project. From Prof. Stützel I learned the art 

of thinking critically from different perspectives and the importance of stepping out of my 

comfort zone, a very precious lesson. Prof. Chen guided me to confront my own doubts with 

honest optimism, which helps me a lot in both scientific work and daily life. 

I would also like to acknowledge some colleagues in plant science, without whose carrying 

support I would not have achieved so much today. A huge thanks to PD Dr. Katrin Kahlen 

for her encouragement, inspiration, and collaboration in chapter 5. Special thanks to Prof. Dr. 

Ching-Lung Lee and Prof. Dr. Wendy Wen-Ju Yang, who encouraged me to pursue my PhD 

in Germany, for sharing with me their visions and for guiding me towards achieving them. 

Heartily thanks to my colleagues in Hannover: to Ilona Napp for her irreplaceable support as 

a gardener and a good friend, to Dr. Dany Pascal Moualeu-Ngangue for consolidating my 

will and skill in performing scientific work, and his collaboration in chapters 2 and 3, to 

Marie-Luise Lehmann for her professionality in chemical analyses. Many thanks to Heike 

Bank for administrative work, to Magnus Adler, Ulrich Hering and Anni Romey for 

technical assistance, and to Dr. Andreas Fricke, Dr. Dagmar Kunze, Elke Neitzel-Rode, Uwe 

Spillebeen, Benjamin Vahrmeyer and Rüdiger Wagner for bringing together a pleasant and 

supportive working environment.  

I am thankful for Yun-Hao Chen, Dimitri Kukuschkin, Chieh-Ming Liao, Emmanuel Otunga 

Omondi and Chia-Ying Wu for their support and friendship. This work is only possible with 

the encouragement from my dearest family, Fabian Ernst, Ruu-Ling Liou and Chao-An Pao, 

for they always respect and support my decisions.  



 

 

167 
 

Curriculum vitae 

 

Personal information  

Name: Yi-Chen Pao 

Date of birth: 13.12.1988 

Place of birth: Taichung 

Nationality: Taiwan (Republic of China) 

  

Education  

Sep. 2004 - Jun. 2007 National Experimental High School At Science Based 

Industrial Park (Hsinchu, Taiwan) 

Sep. 2007 - Jun. 2011 National Taiwan University (Taipei, Taiwan) 

 Bachelor of Science in Agriculture 

Sep. 2011 - Jan. 2014 National Taiwan University (Taipei, Taiwan) 

 Master of Science 

 Topic of master thesis: The effect of eggplant rootstock and 

drought treatment on the growth of grafted cherry tomato 

(Solanum lycopersicum L.) 

Since Apr. 2015 PhD candidate at the Institute of Horticultural Production 

Systems, Leibniz Universität Hannover 

  

Awards  

2015 Best Poster Award at the 58
th

 conference of Gesellschaft für 

Pflanzenbauwissenschaften 

2016-2018 Government Scholarship to Study Abroad from Taiwan 

Ministry of Education 

 

  



 

 

168 
 

Publications 

 

Reviewed articles 

Desouky A, Ahmed AHH, Stützel H, Jacobsen HJ, Pao Y-C, Hanafy MS. 2021. Enhanced 

abiotic stress tolerance of Vicia faba L. plants heterologously expressing the PR10a gene 

from potato. Plants 10, 173. 

Pao Y-C, Chen T-W, Moualeu-Ngangue DP, Stützel H. 2020. Experiments for in silico 

evaluation of optimality of photosynthetic nitrogen distribution and partitioning in the 

canopy: an example using greenhouse cucumber plants. Bio-Protocol 10, e3556. 

Pao Y-C, Chen T-W, Moualeu-Ngangue DP, Stützel H. 2019. Environmental triggers for 

photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning 

in the canopy. Journal of Experimental Botany 70, 2419–2434. 

Pao Y-C, Stützel H, Chen T-W. 2019. A mechanistic view of the reduction in photosynthetic 

protein abundance under diurnal light fluctuation. Journal of Experimental Botany 70, 3705–

3708. 

 

Conference papers 

Pao Y-C, Chen T-W, Stützel H. 2020. Coordination between dynamics in canopy structure 

and photosynthetic acclimation strategy optimizes canopy productivity. Abstract Book, 

iCROPM 2020 International Crop Modelling Symposium, Montpellier, France, 58–59. 

Pao Y-C, Chen T-W, Moualeu-Ngangue DP, Stützel H. 2019. Functional adaptation 

strategies in photosynthesis to light and nitrogen availabilities of two highly productive 

cucumber cultivars with contrasting canopy structures. Mitteilung der Gesellschaft für 

Pflanzenbauwissenschaften 31, Berlin, Germany, 123–124. 

Pao Y-C, Chen T-W, Moualeu-Ngangue DP, Stützel H. 2018. Modelling dynamic 

photosyntheticacclimation based on nitrogen turnover under different photoperiods. 

Mitteilung der Gesellschaft für Pflanzenbauwissenschaften 30, Kiel, Germany, 35–36. 

Pao Y-C, Moualeu-Ngangue DP, Chen T-W, Stützel H. 2017. Modelling dynamic leaf 

photosynthesis based on nitrogen turnover depending on leaf age, light and nitrogen supply. 

Mitteilung der Gesellschaft für Pflanzenbauwissenschaften 29, Kassel, Germany, 38–39. 

Pao Y-C, Chen T-W, Stützel H. 2016. Optimal photosynthetic nitrogen partitioning in 

cucumber leaves for maximizing canopy photosynthesis. Abstract Book, iCROPM 2016 

International Crop Modelling Symposium, Berlin, Germany. 119–120. 

Pao Y-C, Chen T-W, Stützel H. 2016. Model-assisted greenhouse management – an example 

for supplemental lighting in cucumber production. Mitteilung der Gesellschaft für 

Pflanzenbauwissenschaften 28, Gießen, Germany, 196–197. 

Pao Y-C, Chen T-W, Stützel H. 2015. Optimal nitrogen partitioning in the cucumber canopy. 

Mitteilung der Gesellschaft für Pflanzenbauwissenschaften 27, Braunschweig, Germany, 

205–206. 


