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ABSTRACT: 

As a consequence of the wide-spread application of digital geo-data in Geoinformation Systems (GIS), quality control has become 

increasingly important. A high degree of automation is required in order to make quality control efficient enough for practical 

application. In order to achieve this goal we have designed and implemented a semi-automatic technique for the verification of 

cropland and grassland GIS objects using 1 m pan-sharpened multispectral IKONOS imagery. The approach compares the GIS 

objects and compares them with data derived from high resolution remote sensing imagery using image analysis techniques. 

Textural, structural, and spectral features are assessed in a classification based on Support Vector Machines (SVM) in order to check 

whether a cropland or grassland object in the GIS is correct or not. The approach is explained in detail, and an evaluation is 

presented using reference data. Both the potential and the limitations of the system are discussed. 
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1. INTRODUCTION 

Today, many public and private decisions rely on geospatial 

information. Geospatial data are stored and managed in 

Geoinformation Systems (GIS) such as the Authoritative 

Topographic Cartographic Information System (ATKIS) or the 

Digital Landscape Model (DLM-DE) in Germany (Arnold, 

2009). In order for a GIS to be generally accepted, the 

underlying data need to be consistent and up-to-date. As a 

consequence, quality control has become increasingly 

important. In the European Norm DIN EN ISO 8402 (1995), 

quality is defined as the “Totality of characteristics of an entity 

that bear on its ability to satisfy stated and implied needs”. In 

the context of GIS this means that the data model must 

represent the real world with sufficient detail and without any 

contradictions (quality of the model). Secondly, the data must 

conform to their specification (quality of the data). There are 

four important measures for quality control of geodata: 

consistency, completeness, correctness, and accuracy (Joos, 

2000). Only the consistency can be checked without any 

comparison of the data to the real world. All the other quality 

measures can be derived by comparing the GIS data to the real 

world, as it is represented in aerial or satellite images. In order 

to reduce the amount of manual work required for quality 

control, a high degree of automation is required. In this paper, 

we describe a method for the verification of agricultural objects 

for quality control that is based on 1 m pan-sharpened 

multispectral IKONOS images. The focus will be on the 

separation of grassland and cropland objects for the quality 

management of ATKIS, because it has been found that these 

classes are not easily separated, e.g. (Regners & Prinz, 2009). 

After giving an overview on related work in Section 2, our new 

approach is described in Section 3. First results are presented in 

Section 4. The paper concludes with a discussion about the 

potential and the limitations of this approach. 

 

 

 

2. RELATED WORK 

Lu and Wenig (2007) gave an overview about the state of the 

art classification techniques. They emphasise that besides 

textural and spectral approaches, approaches using context 

information (such as structures) become more important with 

increasing resolution of the images. In this section we briefly 

review approaches for extracting different agricultural object 

types based on textural, structural and spectral features using 

high resolution images.  
 

Textural features are related to local spatial patterns of grey 

levels inside an object. There have been quite a few attempts to 

use the textural characteristics for the classification of different 

agricultural object classes. For instance, autocorrelation is used 

by Warner and Steinmaus (2005) to identify orchards and 

vineyards in IKONOS panchromatic imagery. After defining a 

square kernel and after radiometric normalization, the 

autocorrelation is determined for the cardinal directions and 

both diagonals, which results in one autocorrelogram per 

direction. An orchard pixel is detected if an orchard pattern is 

identified in more than one autocorrelogram centred on that 

pixel. This method assumes the rows of plants to be equally 

spaced. Rengers and Prinz (2009) use the neighbourhood grey-

tone difference matrix (NGTDM) to classify cropland, forest, 

water, grassland and urban areas in aerial and IKONOS images. 

This method is based on the differences of the grey values of 

two pixels and the differences of the grey values of the local 

neighbours, from which textural features such as coarseness, 

complexity and textural strength are derived. The results 

presented in (Rengers & Prinz, 2009) show that with the 

exception of grassland and cropland the classes mentioned 

above can be distinguished well. A similar conclusion is drawn 

by Busch et al. (2004), who apply a texture-based classification 

method based on Markov random fields (Gimel’farb, 1996) to 

aerial and IKONOS satellite images. Their method is well-

suited to classify settlement areas, industrial areas, forests, and 
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the combined class cropland/grassland. The results reported in 

(Rengers & Prinz, 2009) and (Busch et al., 2004) show that a 

purely textural analysis is not sufficient for separating cropland 

and grassland. Spectral and / or structural information is 

required for that purpose. 
 

Haralick et al. (1973) used textural features derived from the 

grey level co-occurence matrix such as energy, contrast, 

correlation and entropy are used along with the mean and 

standard deviation of the gray values of all four available 

channels to classify coastline, forest, grassland, urban areas and 

irrigated and non-irrigated cropland using a linear discriminant 

function method. By combining a textural analysis with the 

spectral features the classification accuracy could be improved 

over a purely radiometric analysis. More recently, Itzerott and 

Kaden (2007) tried to distinguish various types of farmland 

using solely the Normalised Difference Vegetation Index 

(NDVI) that is computed from the near infrared and the red 

bands of a multispectral image. Analysing typical crops and 

grassland in Germany, they could show that grassland possesses 

an NDVI that is significantly larger than zero in all seasons, 

whereas untilled cropland has a very low NDVI except for a 

short period. However, they observed strong regional and 

temporal variations of the NDVI, so that statistical parameters 

describing the NDVI of the different agricultural classes in one 

region are hard to transfer to other regions. Training with a 

multitemporal dataset within a large area would be necessary. 

Hall et al. (2003) use the NDVI to separate vines and bare soil 

in aerial images with a spatial resolution of 0.25 m. Afterwards, 

the orientation of the rows is calculated using a priori 

knowledge about the distances between the rows and between 

the individual plants within a row. However, such a priori 

knowledge is usually not available for cropland objects. 
 

Structural features have been used frequently to distinguish 

agricultural object classes such as vineyards, orchards, or 

plantations. The structural characteristics exploited for the 

extraction of these objects, namely straight parallel lines, also 

occur in cropland, where they are caused by tilling. However, 

some assumptions usually made in the extraction of vineyards 

or orchards cannot usually be made for cropland. For instance, 

Chanussot et al. (2005) estimate the orientation of vineyard 

rows automatically from aerial images by using the Fourier 

spectrum of an image and its Radon transform. Wassenaar et al. 

(2002) detect orchards and different kinds of vineyards in aerial 

images using a Fast Fourier Transformation, using specific 

knowledge about the distances between vine rows to reduce the 

search space in the frequency domain. Delenne et al. (2008) use 

a frequency analysis based on Gabor filters to estimate the row 

width and orientation and to detect the boundaries of vineyards. 

All these methods assume the rows of vines to be approximately 

equally spaced or even utilize knowledge about the actual 

spacing of these rows. Both assumptions cannot be made for 

cropland. In cropland the distance between furrows can vary 

from one field to the next depending on the type of crop planted 

in the field, on the kind of machine used for tilling, and on the 

visibility of the structures in the image.  
 

Trias-Sanz (2006) uses only structural features to discriminate 

objects with similar radiometric and textural properties, namely 

cropland, forest, orchards, and vineyards. These object classes 

can be distinguished only by orientation characteristics. A small 

window is extracted randomly inside an object to be classified, 

and this window (called texton) is used to compute a variogram 

of the image. A histogram of direction angles is derived from 

the Radon transform of the variogram. The maximum of this 

histogram corresponds to the primary direction of edges in the 

image, and it is used in the classification process. The approach 

can be used to discriminate a large number of object classes by 

properly choosing the texton, but can give wrong results if the 

texton size is selected inappropriately. Another disadvantage of 

this approach is that the cultivation structures and field crop 

have to be homogeneous in appearance. Therefore, LeBris and 

Boldo (2007) use a segmentation to extract homogenous 

regions before applying the algorithm of Trias-Sanz (2006).  
 

A differentiation between agricultural classes such as grassland 

and cropland only on the basis of spectral, structural or textural 

features in monotemporal imagery seems to be impossible. An 

approach which combines these features is introduced by Ruiz 

et al., (2004, 2007) and Recio et al. (2006). Besides spectral 

(mean and deviation of the red, infrared and NDVI channel) and 

textural features determined from the grey level co-occurrence 

matrix (Ruiz et al., 2004), structural features determined from a 

semi-variogram, Hough- and Fourier transformation (Ruiz et 

al., 2007) are used to detect olive trees, citrus orchards, forests 

and shrubs using images of 0.50 m spatial resolution. The final 

decision is based on a decision tree (Recio et al., 2006). In 

addition to the features described so far, information about the 

shape of the object can be use for the classification process. 

Such information can be derived e.g. from a given GIS. 

Hermosilla et al. (2010) extend the approach of Ruiz et al. 

(2007) by using object shape as an additional feature to 

distinguish the classes building, forest, greenhouse, shrub lands, 

arable land and vineyard. Whereas this could improve the 

classification accuracy, it resulted in an increase of the number 

of undetected errors in a GIS to be verified by that approach.  
 

Our method differs from the cited approaches by the way the 

textural analysis is carried out and by the definition of the 

structural, spectral and textural features. Furthermore, we use a 

different method for classification. The fact that our approach is 

embedded in a system for the verification of GIS objects has 

some implications for the strategy used for classification. The 

parameters of the method have to be tuned according to the 

quality requirements of the GIS: an undetected false 

classification in the GIS is penalized higher than a correct 

classification erroneously highlighted as false.  
 

3. APPROACH 

3.1 Overview 

The goal of our approach is the separation and verification of 

cropland and grassland GIS objects using 1 m orthorectified and 

pan-sharpened multispectral IKONOS images. In this paper we 

assume that each ATKIS GIS object corresponds to exactly one 

class. The verification process is carried out separately for each 

GIS object. The object’s boundary polygon given by the GIS is 

used to limit the analysis to areas inside the object. In a first 

step we use a supervised classification technique that analyses 

image texture with the help of Markov Random Fields (Müller, 

2007, Busch et al., 2004) to distinguish the combined class 

‘agriculture’, which comprises both cropland and grassland 

objects, from other classes such as ‘settlement’, ‘industry’ or 

‘forest’. If a cropland or grassland object is classified as 

belonging to any other class than ‘agriculture’, it is considered 

to correspond to an error in the GIS. As the algorithm of Busch 

et al. (2004) cannot differentiate between grassland and 

cropland objects, all the other objects (i.e., those passing the 

first classification stage) are passed on to a second classification 

process designed to discriminate grassland and cropland. The 

second classification and the following verification process is 

the main focus of this paper. 
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This second classification process is based on Support Vector 

Machines, which have been applied successfully in the field of 

remote sensing and pattern recognition, e.g. (Vapnik, 1998; 

Fujimura et al., 2008). Whereas we only want to distinguish the 

classes ‘grassland’ and ‘cropland’, it is necessary to split the 

latter into the two classes ‘tilled cropland’ and ‘untilled 

cropland’, because they appear differently in the data. Hence, 

we have to apply multi-class SVM (Vapnik, 1998) to our 

problem. In the subsequent sections we describe the features 

used in the SVM classification and the actual classification 

process, including the training required for the SVM classifier. 
 

3.2 Features 

3.2.1 Textural Features: Textural features derived from of 

the co-occurrence matrix can give important hints to separate 

different agricultural classes. We use the Haralick features 

energy, contrast, correlation and homogeneity in our 

classification approach (Haralick et al., 1973). Figure 1 shows a 

scatter plot of texture homogeneity and contrast for the objects 

of a reference dataset. There are relatively clear clusters 

corresponding to grassland and untilled cropland. However, the 

figure also shows that there is a considerable overlap between 

the cluster for tilled cropland and the others; hence the need for 

additional features that support a clear separation of these 

classes.  
 

 
 

Figure 1. Scatter plot of Haralick features contrast and 

homogeneity of objects of a reference dataset. 
 

3.2.4 Spectral Features: Information about vegetation is 

contained in the infrared band of multispectral images and in 

features derived from it (Ruiz et al., 2004; Hall et al., 2003; 

Itzerott &Kaden, 2007). Similar to the cited works, we use the 

mean and standard deviation of the red, infrared and NDVI as 

spectral features. Figure 2 shows a scatter plot of the mean 

NDVI (scaled from 0 to 255) and the infrared band for the same 

objects as in Figure 1. The spectral features are well-suited for 

separating tilled cropland from untilled cropland, but the 

clusters for grassland and tilled cropland still overlap.   
 

3.2.3 Structural Features: A main difference in the appearance 

of cropland and grassland objects in satellite images is caused 

by cultivation, which is conducted more frequently in crop 

fields than in grassland. The agricultural machines normally 

cause parallel straight lines which can be observed in the image. 

The derivation of structural features is limited to the internal 

area of the object, and starts with the extraction of edge pixels 

using the Canny operator (Canny, 1986). These edge pixels are 

transformed into Hough space. In Hough space, parallel lines 

are mapped into points having the same line orientation φ 

(Figure 3). From the accumulator in Hough space, a histogram 

of the line orientations is derived. This histogram is smoothed 

using a Gaussian kernel. All local minima and maxima in the 

histogram are detected and sorted (highest maximum/lowest 

minimum first); if two local maxima are found to be nearly 

coincident (i.e., if they are separated by an orientation 

difference smaller than 45°), the stronger maximum is selected, 

and the smaller one is discarded. The first and second largest 

surviving maxima (Max1 and Max2) and the smallest minimum 

(Min1) of the histogram are then used to derive the structural 

features used in the SVM classification. The first structural 

features are s1 = Min1, s2 = Max1, s3 = Max2, the ratio between 

first minimum and first maximum: s4 = Min1 / Max1, and the 

ratio between first minimum and second maximum: s5 = Min1 / 

Max2. If there is a significant peak in the histogram s2 will be 

much higher than s3, and s4 will have a smaller value compared 

to a histogram without a significant peak (cf. Figure 3). Another 

structural feature s5, also used by Durrieu et al. (2005) is 

derived from the ratio between Max1 and Max2: s5 = 1- Max2 / 

Max1. If there is a significant first but no significant second 

peak, s5 will be close to 1, whereas in case there are two peaks 

that are nearly identical, s5 will be close to 0. The existence of a 

single significant peak in the histogram indicates tilling, 

because our model assumes that there is only one significant 

tilling direction in the GIS object. 
 

 
 

Figure 2. Scatter Plot of mean NDVI and Infrared of the 

objects of a reference dataset. 
 

 
 

Figure 3. Steps of the structural analysis. 
 

This approach fails if line structures caused by cultivation are 

not observable (e.g. maize close to harvest, untilled crop fields), 

if lines in crop fields are not straight respectively parallel to 

each other (e.g. on hillsides), if grassland possesses parallel 

lines (e.g. mowed grassland), and at a specific point in time 

when the crop looks like green grass and structures are not 

visible. The first three problems may be compensated by 

spectral features, though the differentiation between cropland 

and mowed grass may be difficult if the mowed grass (which is 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

277



 

no longer vivid) covers the ground so densely that its spectral 

signature is close to bare soil. The time when the crop looks like 

grass (shortly after gestation) has to be avoided by not using 

images acquired during this time.  
 

3.3 SVM Classification and Verification of GIS Objects 

The SVM classifier is a supervised learning method used for 

classification and regression. Given a set of training examples, 

each marked as belonging to one of two classes, SVM training 

builds a model that predicts whether a new example falls into 

one class or the other. The two classes are separated by a 

hyperplane in feature space so that the distance of the nearest 

training sample from the hyperplane is maximised; hence, SVM 

belong to the class of max-margin classifiers (Vapnik, 1998). 

Since most classes are not linearly separable in feature space, a 

feature space mapping is applied: the original feature space is 

mapped into another space of higher dimension so that in the 

transformed feature space, the classes become linearly 

separable. Both training and classification basically require the 

computation of inner products of the form ΦΦΦΦ(fi)
T ⋅ ΦΦΦΦ(fj), where 

fi and fj are feature vectors of two samples in the original feature 

space and ΦΦΦΦ(fi) and ΦΦΦΦ(fj) are the transformed features. These 

inner products can be replaced by a Kernel function K(fi, fj), 

which means that the actual feature space mapping ΦΦΦΦ is never 

explicitly applied (Kernel Trick). In our application we use the 

Gaussian Kernel K(fi, fj) = exp(-γ⋅  || fi – fj||
2), which implies that 

the transformed feature space has an infinite dimension. The 

concept of SVM has been expanded to allow for outliers in the 

training data to avoid overfitting. This requires a parameter ν 

that corresponds to the fraction of training points considered to 

be outliers. Furthermore, classical SVM only can separate two 

classes, and SVM do not scale well to a multi-class problem. 

The most common way to tackle this problem is the one-versus-

the rest-strategy where for each class a two-class SVM 

separating the training samples of this class from all other 

training samples is trained, and a test sample is assigned to the 

class achieving the highest vote from all these two-class 

classifiers (Vapnik, 1998). 
 

For the classification process in our approach, the SVM 

algorithm needs to learn the properties of the classes to be 

classified, namely the classes ‘grassland’, ‘tilled cropland’ and 

‘untilled cropland’. The training is done using a set of objects 

with known class labels. The class labels are assigned to the 

training objects interactively by a human operator. In a first step 

a feature vector consisting of the spectral (6), textural (4) and 

structural (5) features defined in Section 3.2 is determined from 

the image data for all the training objects. Hence, the overall 

dimension of the feature vectors is 12. Each feature is 

normalised so that its value is between 0 and 1 for all training 

objects. Then, the feature vectors of all segments are used to 

train the three SVM classifiers required for the one-versus-the 

rest strategy.  
 

In the classification itself, the feature vector is determined for 

each test object, and it is normalised using the normalisation 

parameters determined in training. The object is classified using 

the previously trained SVM classifiers into one of the classes 

‘tilled cropland’, ‘untilled cropland’ or ‘grassland’. However, 

for the process of GIS verification, the separation between tilled 

and untilled cropland is meaningless. Hence, for the verification 

process, a cropland GIS object will be accepted (and classified 

as ‘correct’) if the object is classified as ‘tilled cropland’ or 

‘untilled cropland’. Otherwise it is classified as an error and 

thus rejected. A grassland object is verified as correct if the 

object was classified as ‘grassland’. Otherwise it will be 

rejected and classified as an error in the data base. The 

classification and the verification of the test objects are carried 

out independently from each other.  
 

4. EVALUATION 

In this section, we present the evaluation of our approach using 

a pan-sharpened IKONOS scene in the area of Halberstadt, 

Germany, acquired on June-18, 2005 and having a ground 

resolution of 1 m. The reference dataset is based on ATKIS. 

However, according to the ATKIS specifications, any cropland 

or grassland object may actually contain areas corresponding to 

another class as long as certain area limitations are met (AdV, 

2010). In this work, we assume each GIS object to correspond 

to exactly one of the classes. Furthermore, both for training and 

for the evaluation we have to distinguish untilled cropland from 

tilled cropland, information that is not contained in ATKIS. The 

original ATKIS database was thus modified for our tests: each 

ATKIS cropland or grassland object consisting of units 

corresponding to different classes was split manually into 

individual objects corresponding to a single class. All the 

cropland objects in the resulting GIS data set were classified 

manually into tilled vs. untilled cropland according to a visual 

inspection of the images. Finally, GIS objects smaller than 

5000 m2 were discarded because we cannot assume the 

structural approach to work with such small objects. Of the 

remaining GIS objects, less than 50% were used for training, 

whereas the other objects were used for the evaluation of our 

method. As the original data base did not contained any errors, 

we changed the class label of about 10% of the test objects that 

were chosen randomly. Figure 4 shows the test scene with 

super-imposed GIS objects. The numbers of objects used for 

training and evaluation as well as the number of errors added 

for testing the verification approach are summarised in  

Table 1.  
 

class training test / errors 

‘grassland’ 32 89 / 8 

‘tilled cropland’ 165 223 / 23 

‘untilled cropland’ 11 21 / 2 

Σ 208 333 / 33 
 

Table 1. Objects used in the training and test datasets. 
 

In the training phase we fixed the maximum training error ν to 

ν = 0.1%. The parameter γ of the Gaussian Kernel was fixed at 

γ = 0.01. The training results were used to classify the test 

objects. In order to evaluate the classification process, the 

results of classification were compared to the reference. Table 2 

shows the confusion matrix of the classification results, whereas 

the completeness and the correctness of these classes are 

presented in  

Table 3.  
 

    algorithm 

ref. 

‘tilled 

cropland’  

‘untilled 

cropland’ 

‘grassland  

Σ 

‘tilled c.’ 176 0 47 223 

‘untilled c’. 1 12 8 21 

‘grassland’ 3 0 86 89 

Σ 180 12 141 333 
 

Table 2. Confusion matrix of the test objects.  
 

The confusion matrix in Table 2 shows that our approach does a 

good job in separating tilled cropland from untilled cropland, 

but the separation of both cropland classes from grassland is 

very uncertain. Since tilled and untilled cropland can be 
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separated by the textural and the spectral features, the structural 

features used in the classification are still not efficiency enough, 

and additional features need to be investigated in the future. The 

classification errors shown in the confusion matrix also cause 

some of the completeness and correctness values in Table 3 to 

be very low.  
 

class completeness correctness 

tilled cropland 78,9% 97,8% 

untilled cropland 57,1% 100% 

cropland (untilled + tilled) 77,1% 97,9% 

grassland 96,6% 61,0% 
 

Table 3: Completeness and correctness of the classification. 
 

 
 

Figure 4.  Training and test objects super-imposed to the 

Ikonos scene. Blue: training objects; green: correct 

test objects; red: errors. 
 

Figure 5 shows an example for a grassland object misclassified 

as ‘untilled cropland’. The reason for this is the fact that the 

bare soil is visible in a large part of the object.  
 

 
 

Figure 5.  Classification errors. 'grassland' object classified as 

'untilled cropland' 
 

As mentioned before, the main focus of our approach is the 

verification of the GIS objects. It is embedded in a semi-

automatic system that uses the automatic tool to focus the 

attention of the human operator to possible errors in the GIS. 

Thus, work is saved largely due to the fact that the operator 

needs no longer to check any object that was accepted by the 

automatic module. Under these circumstances, and given the 

fact that quality control is essentially carried out to remove 

errors in the data base, classification errors that cause errors in 

the GIS to remain undetected, i.e. the erroneous acceptance of a 

wrong object, are to be avoided by all means. As a 

consequence, the acceptance of objects has to be very reliable. 

On the other hand, the erroneous rejection of a correct GIS 

object may reduce the economical effectiveness of the system, 

but it will not result in an error remaining in the data base. The 

confusion matrices for the verification process carried out on 

the basis of the classification results described above are 

presented in  

Table 4 and 5 for cropland and grassland objects, respectively. 

Note that these numbers also contain objects that were rejected 

based on the texture-based classification described in (Busch et 

al., 2004).  
 

           automatic 

reference 

accepted rejected 

correct 162 (66.4%) 57 (23.4%) 

false   1 (0.4%) 7 (2.9%) 
 

Table 4. Confusion matrix for the verification of cropland.  
 

           automatic 

reference 

accepted Rejected 

correct 20 (22.5%) 61 (56.6%) 

false 0 (0.0%) 25 (28.1%) 
 

Table 5: Confusion matrix for the verification of grassland.  
 

The confusion matrix in Table 4 shows that our approach does a 

reasonably good job in verifying cropland objects. Only one of 

eight errors in cropland objects (Table 1) remains undetected, 

and the number of wrong cropland objects in the GIS is thus 

reduced by 87.5%. The economical efficiency is at 66.4%, i.e. 

66.4% of the cropland objects need not to be inspected by the 

human operator because these objects were accepted 

automatically. Of the 23.4% of the objects that are erroneously 

rejected by the system, 3.3% were rejected by the texture-based 

classification described in (Busch et al., 2004). Unfortunately, 

the verification of grassland objects is far less successful. On 

one hand, all errors contained in the GIS could be detected, but 

on the other hand, the efficiency of the system is only at 22.5%. 

Of the objects rejected erroneously by the system, 5.6% can be 

attributed to texture-based classification. Unlike with cropland, 

the texture-based classification rejected one object correctly. It 

is clear that the classification of grassland and cropland objects 

still needs to be improved. In particular, the structural features 

used for classification seem to require a revision.  
 

5. CONCLUSION AND OUTLOOK 

The method used to separate cropland from grassland objects 

described in this paper achieved reasonable results when 

applied to the verification of cropland objects, but the results 

for grassland objects are still unsatisfactory. In the future we 

will revise the structural features used for classification, which 

apparently fail to separate grassland from cropland objects 

properly in the current version of the approach. For instance, 

rather than focusing on the orientation of lines alone, we could 

also consider the distance between lines by designing features 

that highlight periodical patterns corresponding to parallel lines. 

Structural features based on other types of analysis, e.g. 

variograms, could be added to the classification process. In 

addition, we could try to use training for determining the 

parameter γ of the Gaussian Kernel in the SVM classification. 

Finally, we need to analyse which features are the most relevant 

ones and have the biggest impact on the classification result.  
 

The main goal of our approach is its application for the 

verification of ATKIS grassland and cropland objects. In 

ATKIS one agricultural object may consist of different 

management units. For instance, a cropland object may consist 

of fields covered by different crops. It has been stated above 
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that the generalisation of agricultural objects in ATKIS even 

allows that within such an object there may be small areas 

having another land use as long as they do not exceeded a 

certain size. This is why segmentation is necessary to subdivide 

the original GIS objects into radiometrically homogeneous 

regions (Helmholz & Rottensteiner, 2009). These regions can 

be classified into ‘grassland’, ‘tilled cropland’ and ‘untilled 

cropland’ in the way described in this paper. Afterwards, the 

overall classification of the GIS object is carried out by a 

combination of the classification results of the individual 

regions, taking into account the specifications for the 

generalisation of ATKIS objects. The final decision about 

acceptance or rejection of an ATKIS object will be based on 

this combined classification according to the ATKIS object 

catalogue (AdV, 2010). 
 

We also hope to be able to detect other object classes with 

similar structural features such as vineyards and plantations. 

However, in this case, the image resolution would have to be 

adapted for the structural analysis, because the rows of plants 

only appear as parallel lines at a coarser resolution than 1 m. 

This future research would also have to determine the optimal 

scale for each object class. 
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