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Abstract

Asset pricing anomalies refer to robust empirical patterns in asset prices
and returns which are contradictory to theoretical asset pricing models.
This compilation thesis comprises four empirical essays which study
selected anomalies from a behavioral perspective and cover the following
research topics:

The discounts on Closed-End Funds make a strong case for behavioral
finance since the stylized fact that two identical cash flows have different
prices is hard to reconcile with the law of one price, an important pillar of
neoclassical finance. Research in psychology and decision theory suggests
that investment decisions of retail investors are subject to a preference
for skewness, tantamount to a higher demand for assets with lottery-
like payoffs. The first essay introduces the difference between market
prices and fundamental values of Closed-End Funds as a novel testing
ground to quantify pricing effects of lottery demand. Skewness and
economy-wide skewness preferences are a new piece towards solving the
Closed-End Fund puzzle and explain variations in discounts above and
beyond alternative propositions in the literature.

The positive trade-off between risk and return is a second pillar of
neoclassical finance. Risk-averse investors accept higher risk only in
expectation of higher returns. Empirically, however, the relationship
between average returns and the two most widely adopted risk measures
volatility and market beta is negative. The three remaining essays of
this dissertation propose unaccounted factors as an explanation for the
negative expected returns of risky stocks. Each of the three studies pro-
poses novel approaches to quantify latent factors in the investors factor
model without a conjecture about the source of unaccounted risk, thus
facilitating an ex ante impartial evaluation of existing theories, e.g. short
sale constraints or investor sentiment.

Although each study proposes a different technical identification strat-
egy, thorough discrimination tests highlight that behaviorally motivated
propositions attain the highest explanatory power which is not easily
shared by alternative theories. Stocks with high idiosyncratic volatility
and high beta are exposed to demand of sentimental investors, so-called
noise traders. This unexpected buying pressure inflates prices and causes
temporary spikes in volatility, followed by negative expected returns in
the near future.

The results in this thesis are interesting for future research in empirical
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finance and investors alike. Each essay pins down adverse effects due to
skewness preferences and noise trader demand in aggregate asset prices
and thus helps understanding determinants of asset prices and returns.

Keywords: Closed-End Fund puzzle, investor sentiment, risk-return
trade-off
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Zusammenfassung

Die empirische Kapitalmarktforschung liefert zahlreiche Widersprüche
zu den Vorhersagen theoretischer Kapitalmarktmodelle, besser bekannt
als Anomalien. Diese kumulative Dissertation thematisiert ausgewählte
Kapitalmarktanomalien aus verhaltensökonomischer Perspektive und
untersucht in vier empirischen Beiträgen die folgenden Themenbereiche:

Die Preisabschläge auf börsengehandelte Closed-End Funds gelten
als Aushängeschild der Verhaltensökonomik, da zwei Preise für identis-
che Kapitalströme nur schwer mit dem No-Arbitrage Prinzip der neok-
lassischen Theorie vereinbar sind. Erkenntnisse der Psychologie legen
nahe, dass die Anlageentscheidung privater Investoren durch eine Schiefe-
präferenz geprägt ist und daher mit einer erhöhten Nachfrage nach Wert-
papieren mit lotterieähnlichem Auszahlungsprofil einhergeht. Die Ab-
schläge auf den Preis von Closed-End Funds relativ zum Nettoinven-
tarwert liefern eine neue Möglichkeit, die Preiseffekte dieser Nachfrage
zu quantifizieren. So zeigt der erste Beitrag dieser Dissertation, dass
sowohl Schiefe als auch marktweite Schiefepräferenz einen statistisch
und ökonomisch signifikanten Beitrag zur Lösung des Closed-End Fund
Puzzles leisten.

Ein weiterer Baustein der neoklassischen Theorie ist der Zielkonflikt
zwischen Risiko und Rendite. Aus der Annahme risikoaverser Investoren
folgt, dass Investoren nur unter der Erwartung höherer Rendite bereit
sind, höhere Risiken einzugehen. Empirisch hingegen hat der Zusammen-
hang zwischen erwarteten Renditen und den beiden wichtigsten Risiko-
maßen Volatilität und Marktbeta das entgegengesetzte Vorzeichen. Die
drei anschließenden Beiträge zeigen auf, dass die negativen erwarteten
Renditen riskanter Aktien auf unberücksichtigte Risikofaktoren zurück-
zuführen sind. Jede der drei Studien stellt eine neue Methodik vor, um
die Sensitivität gegenüber latenten Risikofaktoren ohne die Unterstel-
lung expliziter Faktorzeitreihen zu schätzen. Dies erlaubt es, existierende
Erklärungen, beispielsweise Short-Sale Restriktionen oder Investorenstim-
mung, unvoreingenommen gegeneinander aufzuwiegen.

Trotz jeweils unterschiedlicher Methoden zur Identifikation latenter
Faktoren liefern verhaltensökonomische Erklärungsansätze den größten
Erklärungsgehalt. So sind Aktien mit hoher idiosynkratischer Volatil-
ität und hohem Beta besonders sensitiv gegenüber der Marktstimmung
privater Kleininvestoren, sogenannter Noise Trader. Die Nachfrage von
Noise Tradern nach diesen Aktien führt kurzfristig zu Preiserhöhungen,
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die mit temporär erhöhter Volatilität und negativen zukünftigen Renditen
einhergehen.

Die Inhalte und Ergebnisse der vorgestellten Beiträge sind für Wis-
senschaftler aus dem Bereich Kapitalmarktforschung und Investoren gle-
ichermaßen interessant. Die vorgeschlagenen Erklärungsansätze leisten
einen Beitrag zum besseren Verständnis der Preisbildung auf Aktien-
märkten und ermöglichen die Quantifizierung adverser Effekte durch
Schiefepräferenz und Noise Trading auf aggregierter Ebene.

Schlagwörter: Closed-End Fund Puzzle, Investorenstimmung, Risiko-
Ertrags-Verhältnis
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Chapter 1

Preface

1.1 Motivation

In the beginning, there was chaos. Practitioners thought that one only

needed to be clever to earn high returns. Then came the CAPM. Every

clever strategy to deliver high average returns ended up delivering

high market betas as well. Then anomalies erupted, and there was

chaos again. Cochrane (2011)

Empirical patterns in security prices and returns qualify as anomalies if

they contradict the predictions of theoretical asset pricing models or a

prevalent paradigm, for example neoclassical finance with rational and

efficient markets (Lee et al., 1990). “Asset prices should equal discounted

expected cash flows” as Cochrane (2011) points out. Very often, however,

they don’t. From a neoclassical perspective, this equality rests on the two

pillars of “beautiful markets” and “beautiful people” (De Bondt et al.,

2008). In order to explain anomalies, the literature either studies the

predictions of asset pricing models in less than beautiful markets by

introducing frictions or relaxes the assumption of the methodologically
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Preface

beautiful homo oeconomicus. This thesis pursues the latter road and is

built around two building blocks of behavioral finance, namely investor

preferences and investor sentiment (De Bondt et al., 2008).

The analogy between prices and discounted expected cash flows is an

ideal vantage point to organize the contributions of this thesis. Taken

literally, the equality condition inheres the law of one price: Two assets

with identical cash flows must sell for the same price (Ross, 2005). The

discounts on Closed-End Funds are undoubtedly the most prominent

violations of the law of one price. Chapter 2 exploits the Closed-End

Fund Puzzle as a natural experiment to study connections between in-

vestor preferences and investor sentiment. Extreme investor sentiment

reveals preferences for lottery-like returns measured from S&P 500 index

options in a novel non-parametric approach. Periods of extremely high

and low investor sentiment are tantamount to high aggregate probability

weighting and come along with higher average Closed-End Fund dis-

counts. This aggregate skewness preference interacts with the impact of

lottery characteristics on fund level discounts. Lottery-like assets trade at

higher prices due to skewness preferences, so the market prices of funds

with more lottery-like stocks are lower than the sum of their holdings

because diversification erodes desirable skewness. Conversely, if the fund

itself is perceived as a lottery, fund share prices increase relatively to their

net asset values and discounts are lower. The study is the first to relate

skewness preferences to market-wide investor sentiment and quantify the

impact of gambling demand on violations of the law of one price.

Usually, financial assets are claims on future cash flows which imply

2
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certain amounts of risk. Determining prices thus requires appropriate

risk-adjusted discount rates. In terms of the analogy of Cochrane (2011),

riskier assets should trade at lower prices today, equivalent to higher

rates of return in the future. This positive risk-return relation is another

important pillar of neoclassic finance. Empirically, the two most widely

used risk measures volatility and market beta “point rather strongly in the

wrong direction” (Baker et al., 2011). The negative relation between risk

and returns is better known as the low-risk anomaly and comes in two

flavors, depending on the risk measure at hand. In both cases, supposedly

risky stocks earn lower average returns and exhibit negative alphas in a

variety of factor models, including the CAPM.

However, as stressed out by Cochrane (2011): There is no alpha, only

beta we do and beta we do not understand. The three remaining studies

of this thesis embrace this premise and transform the negative alphas

of high-risk stocks into betas. This transformation relies on the theoret-

ical framework of MacKinlay (1995) and MacKinlay and Pastor (2000)

who introduce the optimal orthogonal portfolio. Chapters 3, 4 and 5

each propose novel strategies to identify omitted factors represented by

the optimal orthogonal portfolio. Thus, we can evaluate the role of po-

tentially latent factors in the context of the low-risk anomaly without

conjectures about explicit proxies for those factors. From an economic

point of view, this technical advantage comes at the cost of an ambiguity

with respect to the economic forces behind the low-risk effect. To this end,

we perform thorough discriminating tests in Chapters 3 and 5 and use

the optimal orthogonal portfolio as a tool to discriminate between exist-

3
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ing theoretical explanations for the anomaly. Despite different technical

approaches to the identification of latent factors in the CAPM and the

Fama and French (1993) three factor model, the studies in Chapters 3 and

5 arrive at the conclusion that the low-risk anomaly is attributable to the

demand of sentimental traders for high-volatility and high-beta stocks.

Sentiment investors or noise traders bid up prices of risky stocks which

goes along with temporary spikes in volatility and lower future returns.

Investor sentiment outperforms alternative explanations based on market

imperfections, most importantly leverage constraints.

Bringing order to the chaos is the current challenge in asset pricing.

Naturally, this discourse is inherently chaotic, either until a new paradigm

becomes accepted or until existing challenges are rationalized in the

prevalent framework. Although this thesis will certainly not put an end

to a 40 year-long debate, we introduce novel tools to distinguish between

existing theories. For example, the non-parametric aggregate probability

weighting measure in Chapter 2 might finally separate variations in risk

aversion from investor sentiment, an important issue raised by Cochrane

(2011) as well. The composite factor in Chapter 5 is systematic and

behavioral at the same time, thus challenging old habits in the field,

for example the seemingly clear distinction between characteristics and

covariances to separate rational from behavioral theories (Kozak et al.,

2018). In the end, the debate between rational and irrational explanations

is more “philosophical than economic”, as Tetlock (2007) points out. So

all it takes is a new beauty standard.

4
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1.2 Outline

Each of the chapters in this thesis provides an independent introduction

to the respective research question as well as a conclusion. The remainder

of this chapter summarizes the contribution of each paper:

Chapter 2: Lottery characteristics, time-varying skewness preference,

and the Closed-End Fund Puzzle (joint work with Maik Dierkes) The

Closed-End Fund Puzzle, i.e. the wedge between the fund’s market prices

and net asset values, is a long-standing challenge to the law of one price.

The stock market effectively puts two prices on the same future cash flows,

but typical market frictions such as agency costs and taxes neither account

for the magnitude, nor the time dynamics of the discounts (Malkiel, 1977;

Lee et al., 1991).

The study starts from the premise that retail investors prefer stocks

with lottery-like payoffs. Recent literature vividly proves that this lottery

demand leads to price patterns which differ from neoclassical predictions

(e.g. Barberis and Huang, 2008; Boyer et al., 2010; Bali et al., 2011).

Lottery-like assets trade at higher prices, while future expected returns

are lower. We propose Closed-End Fund discounts as a novel measure to

quantify violations of the law of one price due to lottery demand.

The study shows that the differential between lottery characteristics

of the fund’s share return and the assets in the fund’s portfolio explains

Closed-End Fund discounts. The more attractive gamble – either the

fund share or the fund’s constituent assets – ceteris paribus trades at a

higher price. Since diversification erodes desirable skewness, average

5
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Closed-End Funds trade at a discount. This result holds for a variety

of well-accepted lottery characteristics in the literature, for example the

lottery index of Kumar et al. (2016) or the five highest daily returns in the

previous month proposed by Bali et al. (2017).

Furthermore, we introduce two measures for economy-wide skewness

preferences. The first measure is based on S&P 500 index options, the

second measure is derived from extreme investor sentiment. We relate

both measures to aggregate discounts and times of high skewness prefer-

ences are tantamount to higher aggregate discounts. Interaction effects

between skewness preferences and lottery characteristics indicate a par-

ticularly strong impact of lottery characteristics on fund-level discounts

when skewness preferences are high. Skewness and skewness preferences

explain Closed-End Fund discounts above and beyond alternative propo-

sitions, for example liquidity or manager ability as proposed by Cherkes

et al. (2009) and Berk (2005).

Chapter 3: What is the latent factor behind the idiosyncratic volatility

puzzle? (joint work with Arndt Claußen and Maik Dierkes) The under-

performance of high-volatility stocks is another challenge to neoclassical

theory. Theoretically, idiosyncratic risk either carries no risk premium

at all in standard asset pricing theory, or a positive risk premium if in-

vestors are unable to diversify properly (Merton, 1987). Ang et al. (2006),

however, document a negative empirical risk premium which coins the

idiosyncratic volatility puzzle.

Our study shows that the idiosyncratic volatility puzzle originates
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from common risk in Fama and French (1993) three factor model residuals.

We adapt the theoretical framework of MacKinlay (1995) and MacKinlay

and Pastor (2000) to the nonlinear relationship between returns and id-

iosyncractic volatility to form an active portfolio which tracks this specific

source of risk. Including this portfolio to the initial model explains the co-

movement of high idiosyncratic volatility portfolios and alleviates their

negative average returns and factor model alphas. The proposed factor

satisfies all criteria of a genuine risk factor according to the risk factor

protocol of Pukthuanthong et al. (2019). Discriminating tests between

competing theoretical explanations for the puzzle highlight noise trader

risk as an economic mechanism behind the puzzle.

Our findings suggest that high-volatility stocks are attractive to senti-

mental investors who bid up prices and cause temporary volatility spikes,

followed by negative subsequent returns. This is in line with many well-

known characteristics of high-volatility stocks, for example a higher retail

ownership (Brandt et al., 2010) or smaller size (Bali and Cakici, 2008).

To the best of our knowledge, we are the first to relate the idiosyncratic

volatility puzzle to systematic noise trader risk.

Chapter 4: Dissecting idiosyncratic volatility in the cross section of

stock returns (joint work with Arndt Claußen and Maik Dierkes) This

study generalizes the findings in the previous Chapter to the cross section

of stock returns. The analysis in Chapter 3 relies on sorted portfolios as

base assets which improves the parameter estimation in the Fama and

French (1993) three factor model. However, Ang et al. (2018) point out

7
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that the construction of portfolios destroys valuable information and

individual stocks are a better choice to evaluate asset pricing models.

We address this concern in Chapter 4 and derive an economically

motivated regression-based procedure which facilitates the estimation of

sensitivities to latent factors as long as the number of assets is considerably

large. We decompose the full cross section of idiosyncratic volatility

into two components: First, a stock’s exposure to latent risk and second,

purely idiosyncratic variation. Again, the optimal orthogonal portfolio

of MacKinlay (1995) plays an important role in the derivation of the

volatility decomposition.

Indeed, we find that the quantitatively small systematic component in

supposedly idiosyncratic volatility explains a large fraction of the nega-

tive Fama and MacBeth (1973) risk premium on idiosyncratic volatility

in the cross section of stock returns. At least 35% of this risk premium

is attributable to the systematic component which is higher than any

alternative explanation under consideration. The risk premium on the

systematic component is historically stable and increasingly important,

while the risk premium estimate on the purely asset-specific component

is driven by a single peak in the early 1980s. The evidence in this study is

consistent with the previous paper and supports a risk-based explanation

for the idiosyncratic volatility puzzle. Existing explanations, for example

aggregate variance or aggregate correlation as proposed by Chen and

Petkova (2012), however, are unlikely to account for our findings.
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Chapter 5: Betting against sentiment: Seemingly unrelated anomalies

and the low-risk effect (joint work with Maik Dierkes) Idiosyncratic

volatility is not the only risk measure which commands a negative risk

premium in empirical studies. More broadly, the low-risk effect sum-

marizes the historically negative alphas of high-beta and high-volatility

stocks (Baker et al., 2011). Both findings contradict the predictions of

the CAPM which implies a positive trade-off between returns and beta,

while diversifiable risk such as volatility should yield no significant risk

premium at all.

While the literature usually studies both phenomena separately (see

e.g. Asness et al., 2019), we break with this habit and trace back the

low-risk effect to unaccounted factors in the CAPM. Once more, the

identification of unaccounted factors in the investor’s factor model relies

on the optimal orthogonal portfolio of MacKinlay (1995) and MacKinlay

and Pastor (2000). We use decile portfolios of nine seemingly unrelated

anomalies to construct a composite factor which identifies the optimal

orthogonal portfolio empirically. While this difference to the two previous

studies seems technical, the composite factor in this study does not only

track the risk behind idiosyncratic volatility, but is expected to embody all

relevant asset pricing information for the test assets under consideration.

Since the composite risk factor is orthogonal to the market portfolio, we

can extend the CAPM without affecting market beta estimates.

The extended CAPM explains not only the nine constituent anomalies,

but also alleviates the low-risk effect. The negative alphas of high-beta and

high-volatility decile portfolios become insignificant and returns increase
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in market beta as soon as we control for the unaccounted factors in the

CAPM. This result extends to double sorted portfolios and cross-sectional

Fama and MacBeth (1973) regressions.

Turning to economic explanations again highlights behavioral mech-

anisms as a likely source of the low-risk effect. High-risk stocks earn

low returns because “betting against sentimental investors is costly and

risky” (Baker and Wurgler, 2007). Conversely, we find little evidence

for leverage constraints or disagreement, the propositions of Asness et al.

(2019) and Hong and Sraer (2016).
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Chapter 2

Lottery characteristics, time-varying

skewness preference, and the

Closed-End Fund puzzle

This Chapter refers to the working paper:

Dierkes, Maik and Sebastian Schroen (2019): ‘Lottery Characteristics,
Time-Varying Skewness Preference, and the Closed-End Fund Puzzle’,
Working Paper, Leibniz Universität Hannover.

Abstract
We test the impact of lottery features of Closed-End Fund shares

and their equity portfolio holdings on Closed-End Fund premia.
Proxies for lottery-characteristics include the previous month’s max-
imum return, a lottery index based on idiosyncratic volatility, id-
iosyncratic skewness, and prices as well as a quantile-based skew-
ness proxy. A one standard deviation increase of fund (asset) lottery
features increases (decreases) monthly premia ceteri paribus up to
133 (151) basis points on average. The economic impact interacts
with time-varying skewness preference which is related to extreme
sentiment. Low skewness preference is tantamount to a desire for
diversification and predicts Closed-End Fund IPOs.

Keywords: Closed-End Fund puzzle, lottery characteristics, skewness
preference

JEL: G10, G12, G32.
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2.1 Introduction

Closed-End Mutual Fund shares trade publicly in the stock market and

provide a claim on a portfolio of traded securities. Effectively, the stock

market puts two price tags on the same claim on future cash flows. At odds

with traditional financial theory, especially the law of one price and the no-

arbitrage principle, the two prices typically deviate systematically from

each other. On average, seasoned Closed-End Funds trade at discounts

(or negative premia) relative to the net asset value of their assets (NAV).

Typical market frictions, such as taxes or agency costs, have a hard time

explaining all characteristics of this price deviation (Malkiel, 1977; Lee

et al., 1991). Any possible explanation must have enough differential

impact on demand and supply of Closed-End Fund shares and fund

holdings to disturb arbitrage forces.

In this paper, we show that (option-implied) skewness preferences

and the differential in lottery characteristic of Closed-End Fund shares

versus their assets are key determinants of the fund premium. Our results

implicitly show that the liquid and competitive S&P 500 index option

market and the seemingly remote corner of the Closed-End Fund market

are linked by aggregate gambling preferences.

Closed-End Funds are ideal to study lottery demand’s pricing impacts,

because differences in market valuation and fundamental value, the NAV,

are easily measurable. Put differently, our analyses give hints to what

extent skewness preference can suppress the elimination of arbitrage

opportunities. Our argument is as follows. All else equal, if assets in
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the fund portfolio provide more attractive gambles, the price for this

asset increases because of lottery demand in the stock market (e.g. Kumar,

2009). Thereby, the fund’s NAV increases. However, the Closed-End

Fund share’s return distribution does not necessarily inherit its single

assets’ lottery characteristic, because the fund’s diversification across

many stocks destroys the lottery characteristic on the portfolio level

(Mitton and Vorkink, 2007). Therefore, the fund’s stock price does not

increase, at least not as much as the NAV does, and trades at an even

lower premium relative to its NAV. Conversely, the premium increases if

the fund’s stock appears to provide better lottery characteristics, given

fixed lottery characteristics of the holdings.

The recent literature vividly proves that skewness preferences lead to

price patterns distinct from neoclassical theory’s predictions. Theoretical

models are based on, for example, Cumulative Prospect Theory’s probabil-

ity weighting (Barberis and Huang, 2008), optimal beliefs (Brunnermeier

et al., 2007), or equilibrium underdiversification despite rational prefer-

ences for skewness (Mitton and Vorkink, 2007). Empirical support comes

from, among others, Green and Hwang (2012) who analyze puzzling

returns of IPO stocks (excluding Closed-End Funds), the cross section of

stock returns (Boyer et al., 2010; Bali et al., 2011, 2017), or the option

market (Boyer and Vorkink, 2014; Blau et al., 2016; Baele et al., 2019).

Doran et al. (2012) find that gambling preference at the turn of a year

impact option prices and stock returns. Kumar et al. (2011), Kumar et al.

(2016), and Han and Kumar (2013) show that gambling preferences in

the stock market vary geographically and drive prices in the cross section
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of returns. The relationship between lottery features and future Open-

End Mutual Fund Flows reflects high investor demand in response to

lottery-like fund returns in the past (Akbas and Genc, 2018; Goldie et al.,

2017). Given that Open-End Mutual Fund shares - and similarly Exchange

Traded Fund (ETFs) shares - are in perfectly elastic supply and invest-

ment companies issue or redeem shares in order to alleviate differences

between share prices and net asset values (Malkiel, 1977), an analysis of

Closed-End Funds yields more profound conclusions about the relation-

ship between lottery characteristics and violations of the law of one price.

Similar to Closed-End Funds, conglomerates trade at discounts relative

to a matched portfolio of single-segments firms (Lang and Stulz, 1994;

Berger and Ofek, 1995). Mitton and Vorkink (2010) relate this so-called

diversification discount to the more skewed returns of single-segments

firms. Schneider and Spalt (2016) explain the diversification discount

with the tendency of CEOs to over-invest in highly skewed segments as

a result of behavioral biases. Our results are consistent with Mitton and

Vorkink (2010) and suggest that Closed-End Fund discounts are in part

diversification discounts. Presumably, the measurement of discounts on

Closed-End Funds is more precise because matching single-segment firms

to conglomerates can introduce some noise (see Graham et al., 2002). Our

results suggest that investment professionals, such as fund managers are

also subject to the behavioral biases found by Schneider and Spalt (2016)

among corporate managers. After all, the Closed-End Fund market is a

particularly clean research environment - compared to Open-End Mutual

Funds, ETFs, and conglomerates - for analyzing the limits of the law of
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one price due to skewness preferences.

Using five recently proposed proxies for lottery characteristics, our em-

pirical baseline analyses of 51 US-equity Closed-End Funds for which we

collected all holdings from 1997 to 2015 and 955 Closed-End Fund IPOs

from 1986 to 2015 in the US are largely consistent with our predictions.

On the fund level, the crudest proxy is portfolio concentration mea-

sured as the sum of squared portfolio weights (SSPW, sometimes called

Herfindahl index, see Goetzmann and Kumar, 2008). Less concentrated

holdings are tantamount to better diversification, and diversification cor-

rodes skewness and ultimately demand for the fund. We find that less

concentration by one standard deviation leads to lower premia for Closed-

End Funds by 115 basis points (bps) after controlling for other factors,

including liquidity (Cherkes et al., 2009), managerial ability (Berk and

Stanton, 2007), fund size and age, costs of arbitrage or leverage (Pontiff,

1996; Cherkes et al., 2009).

Bali et al. (2011) propose the maximum daily return of the previous

month. This statistic is easily accessible and likely to catch investor at-

tention because of its salience (Bordalo et al., 2013). More importantly, it

is a good estimate for a stock’s lottery feature in the subsequent month.

Bali et al. (2017) use the average of the five maximum returns as a more

robust estimate. Consistent with our hypothesis, higher average maxi-

mum returns on the fund level increase fund premia and higher average

maximum returns of funds’ assets decrease fund premia, all else equal.

The latter effect of assets’ maximum returns is particularly strong and

reliable: a one standard deviation increase reduces the premium by 151
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bps with absolute t-statistics exceeding four. However, increasing a fund’s

maximum return increases the premium by 133 bps, all else equal. Again,

all reported figures are net of various controls. To compare with recently

proposed liquidity-based explanations of Closed-End Fund premia (see

Cherkes et al., 2009), increasing the assets’ (fund’s) illiquidity, measured

according to Amihud (2002), by one standard deviation increases (de-

creases) the fund premium by 157 (182) bps.

Kumar et al. (2016) coin the lottery index (LIDX) measure, specifically

designed to capture the lottery characteristic of a stock. It sorts stocks

according to idiosyncratic skewness, idiosyncratic volatility, and price.

Our adaption of LIDX on a monthly basis has a particularly strong and

reliable impact, with absolute t-statistics around five. On the fund (assets)

level, a one standard deviation increase changes the fund premium by 92

(-92) bps.

Hinkley (1975) proposes a quantile-based measure for skewness which

is robust against outliers. Green and Hwang (2012) apply this measure

to explain puzzling returns in IPOs with skewness preferences.1 It is the

normalized sum of the deviations of the 1st and 99th percentile from

the median. Increasing this lottery characteristic estimated across the

previous three months for funds (assets) changes the fund premium by 22

(-34) bps, all else equal, with both effects being significant at the 5% level.

Beyond our main focus on lottery demand effects, our estimates are

in favor of a number of previously proposed explanations for Closed-
1Conrad et al. (2013) adapt this measure, compare it with option-implied skewness,

and find return patterns consistent with skewness preference.
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End Fund premia. Illiquidity of funds versus assets plays a cruicial role

(Cherkes et al., 2009). Better manager ability leads to higher Closed-End

Fund premia, as proposed by Berk and Stanton (2007) and Chay and

Trzcinka (1999). Higher fund dividend yields increase premia (Cherkes

et al., 2009; Pontiff, 1996). Still, lottery characteristics on the fund and

particularly on the asset level, as measured by various proxies, have

significant explanatory power above and beyond existing theories of

Closed-End Funds. Robustness checks, including different definitions of

lottery characteristics (e.g. estimation period) or weighting schemes of

assets’ lottery characteristics (value versus equal weighting) do not alter

our conclusions.

There is evidence in the literature that skewness preference can vary

over time, and very likely does so systematically. This variation in skew-

ness preference leads to further testable predictions that are not shared by

alternative interpretations of the Closed-End Fund market. Our skewness

preference theory of Closed-End Fund premia predicts that the effects of

lottery characteristics are stronger in times of high skewness preference.

In addition, Closed-End Fund IPOs should be more likely in times of

low skewness preference, when there is higher demand for diversified

investments.

We employ two proxies for aggregate skewness preference. The first

one is based on the psychologically motivated concept of probability

weighting which is the driving pricing factor in lottery stocks in the Bar-

beris and Huang (2008) model with Cumulative Prospect Theory agents.

Polkovnichenko and Zhao (2013) estimate option-implied aggregate prob-
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ability weighting and show that it varies over time. We use a new non-

parametric methodology to estimate probability weighting from index

options. This implicit link between the Closed-End Fund market and the

index option market is new to the literature.

Our second skewness preference proxy is based on extreme sentiment.

Specifically, we define a dummy that equals one in times of pessimistic

or optimistic economic outlook, whereas it is zero during moderate sen-

timent measured by the University of Michigan Consumer Sentiment

Index.2 Recent literature lends support to the definition of our second

proxy. For example, Kumar (2009) finds stronger gambling demand in

the stock market during economic downturns. Green and Hwang (2012)

analyze IPO returns in the short and long run and find a stronger impact

of expected skewness in times of high investor sentiment, as measured by

the Michigan Consumer Sentiment index. In the laboratory, Rottenstreich

and Hsee (2001) find that probability weighting, and thus skewness pref-

erence, is stronger in affect-rich situations. Presumably, times of economic

crises as well as economic exuberance can serve as affect-rich situations

in our setting, which would be consistent with the mentioned findings

in Kumar (2009) and Green and Hwang (2012). Bordalo et al. (2013)

show that Salience Theory’s probability distortion can generate variation

in risk premia, and thus skewness preference. In a model with rational
2Kumar et al. (2016) note that measuring variation in skewness preference is notori-

ously difficult. They use the Catholic/Protestant ratio as a proxy of skewness preference
and rely on retail investors trading local stock (see e.g. Coval and Moskowitz, 1999;
Huberman, 2001; Ivkovic and Weisbenner, 2005). For our purposes, we are interested in
a monthly measurement with sufficient time variation. Our sentiment-based dummy,
therefore, appears as a more natural choice than survey data collected in 1990, 2000 and
2010 from the American Religion Data Archive (ARDA).
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investors who like positive skewness, Mitton and Vorkink (2007) predict

underdiversification, much in line with the empirical evidence above.

Zhang (2014) elaborates on their model and shows that more gambling

investors enter the market in economic upturns whereas the few investors

remaining in the stock market during economic crises gamble more ag-

gressively. In summary, there is more gambling or skewness preference in

times of economic extremes, both in crises and in economic highs. Finally,

both our skewness preference proxies are consistent since there is more

extreme inverse-S shaped probability weighting implied in S&P500 index

options when sentiment is extreme.

Our sentiment-based skewness preference proxy allows for a par-

ticularly easy interpretation because the dummy variable distinguishes

between high and low skewness preference regimes. Consistent with

our predictions, in high skewness preference regimes, a one standard

deviation increase in the maximum return of assets leads to a 195 bps

drop in the fund premium, exceeding the baseline effect mentioned above

by 44 bps. In high skewness preference times, the LIDX impact on premia

magnifies and becomes more reliable, too (both t-statistics are greater

than five in absolute terms). The asset effect changes to -105 from -92 bps

in the baseline scenario. For the Green and Hwang (2012) measure, the

differential impact in high skewness preference times on fund premia is

significant, but less strong (e.g. -42 instead of -34 bps for assets). Our

option-implied skewness preference proxy delivers even more reliable

results, thereby corroborating our conjectures. It is noteworthy that our

preditions and results about the interaction between lottery characteris-
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tics and time-varying skewness preference are not easily shared by other

theories about stylized facts in the Closed-End Funds market.

Two papers are close to ours. According to our hypothesis lower

valuations of portfolios are driven by skewness preferences and a resulting

desire to underdiversify on average. Hwang et al. (2017) construct similar

valuation differences with heterogeneity in beliefs about single stocks

such that portfolios of those stocks are less preferred on aggregate. For

example, an increase of their belief-crossing measure by one standard

deviation leads to a 49 basis point drop in Closed-End Fund premia on

average. We consider both their and our explanation to be complementary,

especially since our skewness preference proxies estimated from either

the S&P500 index option market or aggregate sentiment are orthogonal

to a belief-based explanation about single stocks. Liu’s (2017) analysis

of Closed-End Funds can be regarded as a special case of our analyses

in the sense that he explains fund premia with disparity in maximum

returns of a fund’s stock and a fund’s top 10 holdings in its portfolio. In

contrast, our novel analyses reveal consistent results for up to four lottery

characteristics based on overall holdings data and further find predictions

about the interaction with time-varying skewness preference confirmed.

In addition, we look at Closed-End Fund IPOs to provide a broader

perspective on the Closed-End Fund Puzzle. Recall that Closed-End

Funds are better diversified investments and less-skewed returns than

single stocks. Indeed, the average Hinkley (1975) measure is negative for

funds and positive for funds’ holdings. If the demand for Closed-End

Funds is driven by time-varying skewness preference, then we should
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see more IPOs of Closed-End Funds in times of low skewness preference.

Consistent with this hypothesis, Green and Hwang’s (2012) conjecture

that skewness preference is a key driver of IPO underpricing predicts no

underpricing in the Closed-End Fund IPO market. Hanley et al. (1996)

support this conjecture.

Given that IPOs need some organizational preparation (e.g. filings

with the SEC) and can be called off, we propose that lagged skewness pref-

erence is the appropriate independent variable. Count regressions across

Closed-End Fund categories, explaining the number of IPOs, are largely

consistent with this prediction. The total number of IPOs, especially IPOs

of US-Equity-focused funds, are significantly higher in times of low skew-

ness preference as measured by both our proxies (p < 0.05). Taxable Bond

Close-End Funds apparently address an investor clientele without much

lottery demand. None of our skewness preference proxies is significant at

conventional levels when analyzing Taxable Bond Closed-End Funds.

Lee et al. (1991) propose a sentiment story of Closed-End Funds.

However, in linear regressions, Qiu and Welch (2004) find no significant

relationship between the time series of discounts and survey-based senti-

ment indexes. We suggest a mechanism that can be consistent with both

papers. Discounts depend on skewness preference which is higher during

times of extreme sentiment. In other words, Closed-End Fund discounts

do depend on sentiment, but in a u-shaped, i.e. non-linear way.
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2.2 Data, variable definitions and descriptive

statistics

2.2.1 Data

We use monthly Closed-End Fund prices and NAV to calculate the Closed-

End Fund premium P remi,t on a monthly basis as

P remi,t =
Pi,t −NAVi,t
NAVi,t

, (2.1)

where Pi,t is the price per share of Closed-End Fund i in month t and

NAVi,t is the corresponding NAV. The core of the Closed-End Fund puzzle

refers to the stylized fact that fund shares typically trade at a discount,

i.e. P remi,t < 0. We obtain Closed-End Fund prices and NAV from several

sources and perform cross validations. In general, we follow Cherkes

et al. (2009) and use monthly fund prices from the Center for Research in

Security Prices (CRSP).3 For monthly NAV time series we cross-validate

Datastream and Morningstar data and find an average difference of less

than 0.1% with a standard deviation of 3.26%. Due to a different coverage

of both sources, we maximize the number of observations by taking

averages of both NAV sources. We find consistent results when using

either of the individual sources.
3The Gabelli Global Deal Fund (GDL Fund) with ISIN US3615701048 is the only

exception to this. Here, the CRSP adjusted price in the first 23 trading months of
the fund is far off the prices from other sources, including the fund prospectus. For
example, the first month-end adjusted price is $14.62, compared with an unadjusted
price of $20.00 that equals the value in the shareholder report of March 2007. We use
the unadjusted price on CRSP in this particular case, which is identical to the prices
reported on Datastream and Morningstar.
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We obtain quarterly holdings statements of in total 66 Closed-End

Funds in the Morningstar category US Equity from Thomson One and

Morningstar during the time from March 1997 to March 2015. Sample

selection and sample period are restricted by the availability of hold-

ings data. Detailed holdings are available from the first quarter in 1997

on Thomson One and early 2000 on Morningstar, independently of the

fund’s inception date. Thus, fund inception and initial filings can de-

viate significantly. The filings contain names and identification codes

(Reuters Identification Code or ISIN) of the fund’s holdings as well as

corresponding portfolio weights in percent. In some cases, identification

codes are missing and we search security names manually, such that only

few holdings have to be excluded due to missing stock identification. We

exclude funds with a filing history of less than 12 months or major breaks

in the filing history, individual cases with inconsistent asset allocations,

as well as funds of funds.4 The final sample dataset comprises 51 US

Equity Closed-End Funds due to the aforementioned restrictions in the

data.5 Portfolio weights are assumed to remain constant between filing

dates. Although this might raise the concern of window dressing issues,

it conveys the information set for Closed-End Fund investors. Unlike

mutual fund managers, Closed-End Fund managers have no incentive to

attract fund flows. Furthermore, we normalize portfolio weights to ensure
4We interpolate one-quarter gaps in the filing history, but exclude observations with

longer gaps.
5A comparison with the Closed-End Fund literature puts this sample size into

perspective. For example, Wu et al. (2016) analyze 83 US Equity funds during 1985 to
2010. The sample of Cherkes et al. (2009) comprises 65 funds in the category US Equity
in the time from 1985 to 2004.

23



Lottery characteristics and the Closed-End Fund puzzle

that the mimicking portfolios are as close as possible to the available

information.

Fund characteristics are from Datastream and Morningstar. We obtain

daily and monthly total return indices as well as market capitalizations

and trading volumes from Datastream, and perform data screenings

recommended by Ince and Porter (2006) in order to compute returns.

Monthly fund dividend yields are from Datastream. Annual fund ex-

pense ratios and turnover ratios are from Morningstar. Furthermore, we

use fund inception dates from Morningstar to analyze fund IPOs. The

larger sample of Closed-End Fund IPOs is based on all funds with US

domicile and legal structure Closed-End Fund Investment Company on

Morningstar with non-missing Inception Dates, ISIN and Category. We

restrict the analysis to the period from June 1986 to December 2015 due

to availability of control variables (see below). The final sample comprises

955 Closed-End Fund IPOs.

Individual stock data are from Datastream. The Closed-End Fund

holdings comprise 6214 individual stocks. Daily and monthly total re-

turns, prices, market capitalizations and trading volumes are available for

6182 stocks. Daily and monthly stock returns are also screened according

to Ince and Porter (2006).

Economic data are from common sources and are selected based on

the literature. Constant maturity Treasury Rates with 20 years, 10 years,

1 year and 3 month times to maturity are from the Federal Reserve Bank

of St. Louis database (FRED). The one-month Treasury Rate as well as

daily and monthly Fama and French (1993) factors are from Kenneth
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French’s website. The monthly Pastor and Stambaugh (2003) liquidity

factor return is from Lubos Pastor’s website. The Chicago Board Options

Exchange (CBOE) Volatility Index VIX and the CBOE S&P 100 Volatility

Index VXO are from CBOE’s website. We collect S&P 500 index option

data from Optionmetrics and www.historicaloptiondata.com. The Uni-

versity of Michigan Index of Consumer Sentiment is from the University

of Michigan website and Baker and Wurgler (2006) sentiment data are

from Jeffrey Wurgler’s website. Their sentiment data include the average

Closed-End Fund discounts of equity funds from 1978 to 2015.

2.2.2 Variable definitions

We employ a variety of measures for expected skewness or lottery-like

payoffs in Closed-End Fund returns.

Fund Diversification

Fund concentration is a simple measure to analyze the effect of diver-

sification on Closed-End Fund discounts. Ex ante, this effect is rather

ambiguous. Lee and Hong (2002) find diversification benefits from in-

vesting in Closed-End Country Funds, i.e. funds that invest in foreign

markets. Although this argument is less applicable to US equity funds, the

positive relationship between diversification and subsequent performance

documented by Pollet and Wilson (2008) for US mutual funds possibly

relates to Closed-End Funds.6 Investors might perceive diversification

as a sign of manager skill, and reward it with higher demand and thus a
6In contrast, Kacperczyk et al. (2005) find that a higher industry concentration of

mutual funds is an indicator of higher performance and manager skill.
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higher price. Conversely, the diversification discount on conglomerates

supports an opposite effect of diversification. If investors prefer positively

skewed returns, more diversified funds could trade at a discount in rela-

tion to the comparable portfolio of single assets, because diversification

erodes desirable skewness (Mitton and Vorkink, 2010). To test the latter

conjecture, we follow Blume and Friend (1975) and Goetzmann and Ku-

mar (2008) and measure portfolio concentration of fund i in month t as

the sum of squared portfolio weights (SSPW)

SSPWi,t =
N∑
j=1

(
wj,i −wj,M

)2
≈

N∑
i=1

w2
j,i , (2.2)

where wj,i is the weight of stock j in fund i and wj,M is the weight of

stock i in the market portfolio, which is assumed to be infinitely small.

SSPWi,t is simply the sum of squared weights over all assets N in fund

i. A higher level of SSPWi,t is associated with a lower diversification

in the fund.7 We expect that more diversified funds trade at higher

discounts. By construction of the fund holdings, SSPW fluctuates in

a quarterly frequency. In unreported robustnes checks, we employ the

natural logarithm of the number of stocks in the fund, motivated by Pollet

and Wilson (2008) and Goetzmann and Kumar (2008), as an even simpler

measure of diversification and find qualitatively identical results.

Lottery Demand: Max
7At first glance, the diversification measure SSPWi,t appears to be similar to the

active share measure of Cremers and Petajisto (2009) who use absolute deviations of a
stock’s weight in the fund portfolio from the benchmark portfolio. However, Cremers
and Petajisto (2009) use the current weight of the stock in the benchmark index which
implies an active deviation from the benchmark rather than portfolio concentration.
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Bali et al. (2011) present the highest daily return of asset i in month t

as a predictor of lottery-like payoffs in the subsequent month. Although

the authors technically separate lottery-like payoffs from skewness in

statistical terms, Jacobs et al. (2016) show a mathematical connection

between extremely high returns and the third moment of the return

distribution as well as a strong predictive power for future skewness.

Furthermore, this measure is highly intuitive and easily observable by

investors. We follow Bali et al. (2017) and calculate Max as the average of

the five highest daily returns of asset i in month t − 1 in order to define a

proxy for lottery qualities in month t. In unreported robustness checks,

we also employ the originally proposed measure of Bali et al. (2011) in

a strict sense as the (single) maximum daily return and draw similiar

conclusions. The calculation of Max requires at least 15 daily returns.

LIDX

Most recently, Kumar et al. (2016) present a measure for the attractive-

ness of a stock as a gambling object, the lottery index LIDX. We compute

a monthly adaption of the annual LIDX measure. To construct LIDX,

Kumar et al. (2016) sort stocks into vigintiles (20 bins) each year by price,

idiosyncratic skewness and idiosyncratic volatility. Instead of annual

sorts into vigintiles, we compute monthly rolling window estimates of

idiosyncratic skewness and volatility over the preceding twelve months.

The highest vigintile is assigned to stocks with the lowest price and the

highest idiosyncratic volatility and skewness over the past twelve months.

Then, the vigintile bins are added up to a score between 3 and 60. LIDX
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of asset i in month t is calculated as

LIDXi,t =
Score − 3

60− 3
, (2.3)

where the denominator ensures a lottery index value between zero and

one. A higher value of LIDX indicates a higher attractiveness for investors

with a preference for lottery stocks. We refer to the monthly adaption of

the measure as LIDXi,t. We also employ the strict, i.e. annual, estimation

as proposed by Kumar et al. (2016) in unreported robustness checks.

Conclusions remain unchanged. We require at least 200 daily observations

when estimating idiosyncratic skewness and volatility in the calculation

of LIDX.

Skew

We furthermore adapt the Green and Hwang (2012) measure for ex-

pected skewness, which is defined as

SkewkMi,t =
P99 + P1 − 2 · P50

P99 − P1
, (2.4)

where Pj is the jth percentile of the daily return distribution of asset i over

the preceding k months. Our baseline regressions use k = 3 months, and

unreported robustness checks confirm results for k = 1 or k = 6. A positive

value of Skew indicates more realizations to the right of the median, i.e.

right skewness. The normalization in the denominator guarantees values

in the interval of minus one and plus one and controls for the dispersion

of the distribution. Green and Hwang (2012) argue that this measure

captures lottery-like payoffs better than the third moment of the return

distribution. Schneider and Spalt (2016) use it to measure skewness in
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segments of conglomerates. We adopt this quantile-based measure in the

spirit of Hinkley (1975) in a time series context (see, e.g. Ghysels et al.,

2011; White et al., 2008) rather than cross-sectionally (see, e.g. Green

and Hwang, 2012; Conrad et al., 2013). We require at least 50 valid daily

returns for Skew3M
i,t .8.

Control Variables

The choice of control variables is motivated by Cherkes et al. (2009),

Chan et al. (2008) and Berk and Stanton (2007) as well as by the empirical

work cited therein.

Fund Illiquidity (FundIlliq): Closed-End Funds are relatively liquid

investment vehicles that grant investors access to illiquid underlying

assets (Cherkes et al., 2009). Although this advantage is less applicable to

US equity funds, illiquid funds are expected to trade at higher discounts.

Similar to Chan et al. (2008), we measure fund illiquidity on a monthly

basis with the adapted Amihud (2002) measure

FundIlliqi,t = log

 1
Dt

Dt∑
d=1

|ri,d |
V oli,d

 . (2.5)

FundIlliqi,t reflects the average ratio of absolute daily fund share returns

ri,d over dollar trading volume V oli,d on all days Dt during month t. We

follow Amihud (2002) and employ the logarithmic transformation of the

measure in order to reduce the skewness of the variable. We require 15

valid daily observations to calculate monthly fund illiquidity.

Asset Illiquidity (AssetIlliq): Since liquidity benefits strongly depend

on the relation between liquidity of fund shares and their underlying
8In robustness checks, we require 15 valid returns for Skew1M

i,t and 100 valid returns
for Skew6M

i,t
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assets, we further include the value-weighted average of stock-specific

illiquidity measures. We calculate logarithmic stock illiquidity according

to Equation (2.5) for all holdings of the fund and compute the value-

weighted average for each fund i in month t. Similar to the fund illiquidity

measure, taking natural logarithms reduces skewness. We expect higher

fund premia when (value-weighted) average asset illiquidity is high.

Fund Size (Size): Lottery characteristics are most strongly pronounced

among stocks with low market capitalizations (see, e.g. Bali et al., 2011).

In order to separate the skewness effect from mere size effects, we include

the market capitalization of the fund in million USD. Taking natural

logarithms reduces the skewness of the variable.

Fund Age (LogAge): Seasoned funds trade at higher discounts (c.p)

than newly issued funds. As common in the mutual fund literature, we

include the natural logarithm of the fund age in years (see, e.g. Pollet and

Wilson, 2008).

Fund Dividend Yield (DivY ld): A higher payout to investors is ex-

pected to positively affect the fund premium, as shown by Cherkes et al.

(2009) and Pontiff (1996). We include the fund dividend yield to control

for this effect.

Fund Expense Ratio (ExpRatio): The effect of fund expenses is the ex-

act opposite of dividends, i.e. payouts to investors are reduced. Thus, the

fund expense ratio is expected to affect fund premia negatively (Cherkes

et al., 2009) unless it signals superior fund manager ability (Berk and

Stanton, 2007) in the recent compensation period.

Fund Turnover (T urnover): The role of fund turnover is ambiguous.

30



Lottery characteristics and the Closed-End Fund puzzle

On the one hand, portfolio turnover increases transaction costs, thus

lowering payouts to investors (Cherkes et al., 2009). Moreover, earlier

research in the mutual fund literature finds a negative relationship be-

tween turnover and fund manager skill (Chevalier and Ellison, 1999).

Both effects suggest a negative coefficient on turnover in the cross-section

of fund premia. On the other hand, investors with a preference for lottery

stocks are more likely to invest in funds with high turnover ratios (see

Bailey et al. (2011) for evidence from mutual funds).

Managerial Ability (T (α)): Chay and Trzcinka (1999) provide em-

pirical evidence that manager ability can drive fund premia. Berk and

Stanton (2007) develop a model that explains Closed-End Fund premia

with the trade-off between managerial ability and fees. Whenever the

value added by the fund manager exceeds the fees charged to investors,

funds trade at a premium and vice versa. This effect, however, is non-

linear. Investors reward manager ability with higher demand for the fund

and thus a higher premium, but anticipate an increase in fund manager

compensation in response to unusually good performance which in turn

decreases premia. We closely follow Ramadorai (2012) who suggests to

measure this relationship with the risk-adjusted performance measure

T (αi,t) =
αi,t

se(αi,t)
, (2.6)

where αi,t is the constant of a Fama and French (1993) three-factor model

estimated over months t to t−11. The author argues that normalizing α by

its standard error se(αi,t) reduces the impact of outliers. Furthermore, the

squared estimate T (αi,t)2 addresses the non-linearity of the relationship.
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In line with Ramadorai (2012), we expect a positive sign on T (αi,t) and

a negative sign on T (αi,t)2.9 We estimate T (αi,t) from daily returns and

require at least 200 valid observations.

Market Liquidity (Liq): Under a liquidity-based explanation, high ag-

gregate market liquidity offsets potential liquidity benefits of Closed-End

Funds and is thus negatively related to Closed-End Fund premia (Cherkes

et al., 2009). As shown by Baker and Stein (2004), high market liquidity

also indicates unusually high sentiment. Since we control for potential

sentiment effects, we expect a negative sign of aggregate liquidity in the

panel regressions. We include the Pastor and Stambaugh (2003) liquidity

measure as a common proxy for market liquidity.

Cost of Leverage (T ERM): Furthermore, Closed-End Funds are ex-

pected to provide liquidity benefits by using leverage. Cherkes et al.

(2009) argue that this effect increases with the slope of the term-structure.

We calculate two measures for the term spread which is defined as the

slope of the Treasury yield curve due to limited data availability for certain

time series on FRED. The first proxy for the term spread is the difference

between the 20-year and the 3-month constant maturity Treasury rate

(Cherkes et al., 2009). The second proxy is the difference between the

10-year and the 1-year Treasury rate. The first proxy is employed in the

panel data analysis and we use the latter in the IPO regressions.
9Berk and van Binsbergen (2015) argue that neither net alpha, nor gross alpha

accurately measure fund manager skills. The proposed value-added measure is generally
less applicable to Closed-End Funds for which managers have no incentive to attract fund
flows. We could not appropriately apply the methodology of Berk and van Binsbergen
(2015) due to limited data. Nevertheless, alpha measures the risk-adjusted return earned
by the fund which is sufficient for our purpose.
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Investor Sentiment (ConSent): Lee et al. (1991) find various similar-

ities between Closed-End Fund discounts and investor sentiment and

argue that on aggregate, Closed-End Funds are an indicator for sentiment.

Although several studies challenge this finding (see, e.g. Chen et al., 1993;

Elton et al., 1998; Cherkes et al., 2009), a considerable body of literature

presents empirical support (see, e.g. Baker and Wurgler, 2006; Anderson

et al., 2013). We include the University of Michigan Consumer Sentiment

Index as a direct proxy for the effect of sentiment on Closed-End Fund

premia and expect a positive relationship with P rem.

VIX (V IX): The CBOE volatility index VIX is expected to be a negative

predictor for investor sentiment, as argued by Cherkes et al. (2009) and

Anderson et al. (2013). In addition, a low VIX indicates sufficient aggre-

gate liquidity. Finally, the VIX might be related to probability weighting

and thereby reflects skewness preference (Baele et al., 2019). Hence, a

precise prediction of the impact of VIX on fund premia is unclear.

Skewness Preference (SkewP ref ): Probability weighting is largely

considered to be a key driver behind lottery preferences (e.g. Tversky

and Kahneman, 1992; Barberis and Huang, 2008; Snowberg and Wolfers,

2010). We use the degree of aggregate inverse-S shaped probability weight-

ing as one skewness preference proxy. Polkovnichenko and Zhao (2013)

show that aggregate probability weighting in an economy can be esti-

mated with index options. A detailed description of how we estimate

this skewness preference proxy SkewP refoption−implied is given in Section

2.3.2.

Furthermore, we use extreme sentiment as a proxy for skewness pref-
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erence. We define a dummy variable SkewP refsentiment equal to zero if

the University of Michigan Sentiment Index ConSent is in its middle

time series tercile and equals one otherwise. It turns out that this defini-

tion is consistent with our skewness preference proxy based on option-

implied probability weighting, i.e. aggregate probability weighting is

more inverse-S shaped when sentiment is extreme (see below). Further

support comes from Kumar (2009) and Green and Hwang (2012) who

show that gambling activity is stronger in economic downturns and ups,

respectively. Zhang (2014) builds on Mitton and Vorkink’s (2007) model

with heterogeneous skewness preference. She finds that more gamblers

are lured to the equity market in good times while the few traders staying

in the market during bad times gamble more aggressively. These papers

motivate our tercile dummy definition of SkewP refsentiment.

The advantage of the dummy definition is that it is available for a

longer time series when analyzing Closed-End Fund IPOs while option-

implied estimates start only in 1996. Also, this dummy is easily accessible

for future research.

2.2.3 Descriptive statistics

Table 2.1 summarizes descriptive statistics and correlation coefficients of

the all fund variables. If applicable, the prefix Fund relates to the respec-

tive characteristic measured at the Closed-End Fund share level, whereas

the prefix Asset depicts the value-weighted average of characteristics over

all holdings of the corresponding fund.
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Panel A presents descriptive statistics and reveals several interesting

facts. First of all, considering the dependent variable, the negative aver-

age of P rem illustrates that the Closed-End Fund Puzzle, i.e. a negative

average premium of seasoned funds, is given for the sample funds in the

period from March 1997 to March 2015. The rather anomalous maximum

P rem of 98.53% corresponds to the Herzfeld Carribean Baisin Fund in

December 2006. A cross-validation of this value with the fund company’s

semi-annual report as of December 2006 confirms this value.10 With

regard to the baseline lottery measures, the average proxies for lottery

characteristics are lower for funds relative to the holdings. This reflects

the diversification effect of the funds in comparison to individual stocks.

Average FundSkew is even negative, while average AssetSkew is positive.

A closer look at the illiquidity measures for fund shares and holdings

illustrates that the variables adequately measure the different aspects of

liquidity. On average, US equity Closed-End Funds appear to be less liq-

uid than the investment universe, which strongly distinguishes US equity

funds from other categories. The illiquidity measure of fund holdings

reflects the fund’s respective focus. The minimum AssetIlliq of 0.0119

belongs to the Dow 30 Enhanced Premium & Income Fund – a fund

investing in rather liquid blue chip stocks. Conversely, the maximum

of 5.8658 which belongs to the Royce Micro Cap fund is well aligned
10The Herzfeld Carribean Baisin Fund with ISIN US42804T1060 trades with the

ticker symbol CUBA and is invested in companies that supposedly benefit from a
repeal of the Cuban trade embargo. Chairman Thomas J. Herzfeld relates the high
premium in December 2006 to a structural improvement of the relationship between
the USA and Cuba at the end of 2006: https://docs.wixstatic.com/ugd/7ba5b8_

c31dd980e21d4c86b4d7668279c450fb.pdf.
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with the fund’s investment strategy, i.e. investing in small stocks with a

market capitalization up to $1 billion. This observation also holds true

for average FundIlliq and AssetIlliq of the two exemplary funds. For

the Dow 30 Enhances Premium & Income Fund, illiquidity of holdings

on average equals 0.026, while the fund exhibits an average illiquidity

measure of 2.14. We observe the opposite relation for the Royce Micro

Cap Fund, where average AssetIlliq of 3.87 exceeds average FundIlliq

of 3.23. Panel B illustrates the correlation structure of the panel dataset.

The negative correlation between Closed-End Fund premia P rem and

the baseline measures for lottery characteristics does not account for the

simultaneity of our research hypothesis and is not surprising due to the

negative relationship between lottery characteristics and returns. Panel

B further alleviates concerns of a high correlation between the skewness

measures of funds and their respective holdings. Except for Max, the

correlation between the respective Fund measure and the Asset measure

is moderate, but always positive. Different measures for lottery charac-

teristics unveil moderately positive correlation coefficients. Obviously,

the baseline measures convey similarities, but capture distinct features

of the respective return distribution. FundIlliq and AssetIlliq are only

moderately correlated with a correlation coefficient of 0.2980. Similar

to common stocks, fund liquidity strongly increases with the size of the

fund, given a correlation of -0.7370. Larger funds also tend to have lower

expense ratios and generate lower α.
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2.3 Results

2.3.1 Baseline results on lottery characteristics and

Closed-End Fund premia

To analyze the effect of lottery characteristics on the Closed-End Fund

premium P remi,t of fund i in month t, we estimate the following panel

regression:

P remi,t = αi + β1 ·FundLCi,t + β2 ·AssetLCi,t +γλi,t + δχt + εi,t. (2.7)

In Equation (2.7), LCi,t represents a placeholder for lottery characteristics,

λi,t represents fund-specific control variables, and χt represents system-

atic control variables. The prefix Fund describes lottery characteristics

of the Closed-End Fund shares and the prefix Asset – not applicable for

SSPW – represents the lottery characteristics of the funds’ underlying

assets in terms of a value-weighted average.11

Specification (2.7) guarantees a simultaneous estimation of the two

distinct dimensions in which we expect lottery-like characteristics to affect

Closed-End Fund premia. Ex ante, this affects Closed-End Fund shares

similarly to common stocks, and lottery characteristics are associated

with more demand and a higher price. Consequently, funds that are

attractive to lottery investors trade at higher premia and we expect β1 > 0.

Conversely, investors’ lottery demand increases prices of common stocks

with strong lottery characteristics, which directly manifests in higher

NAV of funds holding the particular stock, therefore predicting β2 < 0.
11In unreported robustness checks, we use an equal-weighting scheme without

changes in our conclusions.
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A pooled OLS regression of Equation (2.7) raises two major method-

ological concerns. First, residuals in Equation (2.7) are likely to be cor-

related in two dimensions, both serially and cross-sectionally. As a con-

sequence, standard errors exhibit a downward bias, leading to an over-

rejection of the null hypothesis (Petersen, 2009). Second, the dependent

variable might be non-stationary.

We address the first concern parametrically, as suggested by Petersen

(2009), by clustering standard errors in the more frequent dimension of

the panel and including a dummy variable in the remaining dimension.12

Given a panel dimension of T = 220 and N = 51, we include a fund

dummy and estimate heteroscedasticity-consistent standard errors clus-

tered by time (Rogers standard errors).13 Panel unit-root tests alleviate

the second concern regarding non-stationarity. We perform the Im et al.

(2003) IPS test as well as the Pesaran (2007) CADF test, and both tests

strongly reject the null hypothesis of a unit root.

Table 2.2 presents results of the panel regression in Equation (2.7)

for the sample of US equity funds in the period from March 1997 to

March 2015. The dependent variable is the Closed-End Fund premium of

each fund i in month t, i.e. P remi,t. Columns (1)–(4) report regressions
12In specification tests we find that the number of clusters in the cross-sectional

direction is insufficient for two-way clustering as proposed by Petersen (2009) and
Thompson (2011) due to the strongly unbalanced panel. Unbalanced panels require
more clusters than balanced datasets (Cameron and Miller, 2015). The parametric
approach taken above yields similar standard errors given this particular dimension of
the dataset (see Petersen, 2009, p. 460).

13The time effect, i.e. a correlation of residuals among funds at each point in time, is
also expected to arise without systematic control variables for two reasons. First, the
average stock in the sample is traded in about 3.2 funds such that lottery characteristics
computed from holdings are correlated. Second, Closed-End Fund portfolios comprise a
broad range of the US stock market and are thus subject to common systematic shocks.

39



Lottery characteristics and the Closed-End Fund puzzle

Table 2.2: Lottery Characteristics and Closed-End Fund Premia.

(1) (2) (3) (4) (5) (6) (7) (8)
SSPW -0.067 0.267

(-3.38) (7.91)
FundMax 0.652 1.025

(1.78) (3.19)
AssetMax -1.799 -1.258

(-5.51) (-4.19)
FundLIDX 0.056 0.087

(2.97) (5.16)
AssetLIDX -0.187 -0.158

(-4.46) (-4.83)
FundSkew3M -0.010 0.011

(-1.29) (2.14)
AssetSkew3M -0.023 -0.046

(-0.62) (-2.28)
FundIlliq -0.011 -0.010 -0.013 -0.010

(-4.78) (-4.45) (-5.45) (-4.63)
AssetIlliq 0.018 0.019 0.015 0.018

(4.70) (5.03) (4.05) (4.97)
Size 0.005 0.005 0.006 0.005

(3.48) (4.00) (4.33) (3.88)
LogAge -0.040 -0.040 -0.032 -0.040

(-14.27) (-14.66) (-10.50) (-14.37)
DivY ld 0.280 0.285 0.271 0.292

(7.74) (7.46) (7.76) (7.97)
T (α) 0.113 0.108 0.107 0.109

(24.70) (24.31) (24.19) (24.39)
T (α)2 0.002 -0.001 -0.003 -0.003

(0.63) (-0.60) (-1.21) (-1.09)
T urnover 0.006 0.006 0.005 0.006

(5.30) (5.32) (5.06) (5.51)
ExpRatio 1.607 1.722 1.671 2.010

(3.96) (4.47) (4.19) (4.66)
V IX -0.001 -0.001 -0.001 -0.001

(-4.11) (-2.59) (-3.76) (-4.01)
Liq -0.046 -0.049 -0.034 -0.039

(-1.83) (-2.13) (-1.38) (-1.61)
T ERM 0.188 0.161 0.216 0.200

(1.24) (1.13) (1.46) (1.31)
ConSent 0.000 0.001 0.001 0.001

(2.84) (3.12) (3.75) (2.96)

R
2

0.370 0.403 0.388 0.379 0.589 0.597 0.591 0.588
N 5667 5617 5451 5572 5313 5289 5313 5289

Table 2.2 presents coefficient estimates of the panel regression in Equation (2.7). We include the

following lottery characteristics: SSPW is the sum of squared portfolio weights to measure port-

folio concentration following Goetzmann and Kumar (2008). Max is the average of the highest

five daily returns in month t −1 as proposed by Bali et al. (2017). Skew is the adapted Green and

Hwang (2012) quantile-based skewness measure, calculated over the preceding three months.

LIDX is a monthly adaption of the Kumar et al. (2016) lottery index measure. Fund-specific

control variables are the following: Illiq is the logarithm of the adapted Amihud (2002) illiquid-

ity measure. Size is the natural logarithm of the fund’s market capitalization in million USD,

LogAge is the natural logarithm of the fund age in years, and DivY ld is the fund’s dividend yield.

ExpRatio is the expense ratio and T urnover is the portfolio turnover. T (α) is the t-statistic of the

fund alpha over the past twelve months. Systematic control variables: T ERM is the term spread

as the difference between 20-year and 3-month constant maturity Treasury rates, Liq is the Pastor

and Stambaugh (2003) liquidity factor, ConSent is the Michigan University Consumer Sentiment

Index and V IX is the CBOE volatility index. The sample period is March 1997 to March 2015.

Each regression contains a fund dummy variable to absorb the fund effect in the correlation of the

residuals, and standard errors are clustered by month (Petersen, 2009). T-statistics in parenthe-

ses are calculated from heteroscedasticity-consistent clustered standard errors (Rogers standard

errors). 40
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without control variables, and in Columns (5)–(8) we extend the lottery

characteristics by the baseline set of control variables. Starting with the

most simplistic measure for lottery-like payoffs of fund shares, i.e. SSPW ,

results are mixed. In Column (1) we find a negative relation between

SSPW and P remi,t, suggesting higher premia for more diversified funds.

This effect is highly statistically significant with a t-statistic of -3.38. The

inclusion of control variables in Column (5) changes the sign of the SSPW

loading. This change suggests that the negative coefficient for SSPW in

Model (1) is likely to be driven by the omission of important fund char-

acteristics. Apparently, size, age, managerial ability, or sophistication as

might be indicated by the expense ratio can interfere with portfolio con-

centration SSPW . Including controls, the coefficient estimate for SSPW

matches the hypothesis regarding the relation between fund premia and

lottery-like payoffs. The coefficient of 0.267 is positive and highly signifi-

cant at any conventional level. Closed-End Funds with more concentrated

portfolios, and thus a higher likelihood of lottery-like payoffs, trade at

higher premia as soon as we include control variables.

Columns (2) and (6) repeat the analysis for the Bali et al. (2017) lottery

demand measure Max. Both models, with and without control vari-

ables, support our theoretical hypotheses. While lottery characteristics in

Closed-End Fund shares are granted with ceteri paribus higher fund pre-

mia, indicated by the positive coefficient on FundMax, the opposite holds

true for lottery-like payoffs in the portfolio of the corresponding fund,

measured by AssetMax. The latter effect is stronger, both statistically

as well as economically. When including controls, a standard deviation

41



Lottery characteristics and the Closed-End Fund puzzle

increase of FundMax is associated with an increase of the fund premium

by 133 bps, compared with a decrease of 151 bps for AssetMax. Both

FundMax and AssetMax attain t-statistics well beyond three in absolute

terms.

LIDX provides further support for our main hypothesis, indepen-

dently of the exact specification. In Column (3), the regression coefficients

are significant at any conventional level with the expected sign. Similar

to Max, the Asset characteristic performs better statistically and economi-

cally. This finding also extends to the full model in Column (7). We find

significant coefficients, a positive coefficient of 0.087 for FundLIDX, and

a negative coefficient of -0.158 for AssetLIDX. The respective changes in

economic terms are 92 and -92 bps for a one standard deviation rise in

LIDX. In both cases, t-statistics around ±5 indicate statistical significance

well beyond conventional levels.

Finally, results for Skew over the preceding three months are mixed

to some extent, similar to SSPW . The specification without control vari-

ables in Column (4) yields insignificant results, while the full model in

Column (8) provides further support to our hypotheses. The coefficients

on FundSkew and AssetSkew are statistically significant at the 5% level,

with t-statistics of 2.14 and -2.28, respectively. Again, the economic sig-

nificance of AssetSkew (-34 bps) exceeds FundSkew (22 bps) in absolute

terms. The results are somewhat weaker, but similar to Max.

A closer look at selected control variables also yields novel insights,

especially with respect to the illiquidity measures. Although US Equity

Closed-End Funds are less likely to provide liquidity benefits to investors,
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we find strong evidence for the importance of the relation between fund

liquidity and the liquidity of assets in a fund’s portfolio. More illiquid

funds trade at lower premia. Conversely, funds grant liquidity benefits

given rather illiquid stocks in their respective portfolio. Similar to lottery

characteristics, AssetIlliq is of stronger economic significance compared

with FundIlliq. We thus, provide new empirical evidence in favor of

Cherkes et al. (2009). Furthermore, there is rather weak evidence with

respect to the non-linear relationship between managerial ability and

Closed-End Fund discounts. While the coefficient on T (α) is positive

and highly significant at any conventional level, evidence regarding the

negative effect of T (α)2 is inconclusive. There is no statistical significance

of the coefficient on T (α)2. The negative estimate for V IX supports an

interpretation of the variable as a negative sentiment measure rather than

as an indicator for systematic liquidity. This effect is significant in all

specifications.

Our main conclusions are not altered when using different definitions

of the lottery characteristics. In unreported robustness checks, we use the

logarithm of the number of stocks in a fund’s portfolio NSTKS instead of

SSPW as a fund’s diversification proxy. Max is calculated as the previous

month’s maximum daily return instead of the average of the top five

returns. The quantile-based measure of skewness is calculated over just

one month or six months instead of three months. Finally, the lottery

index LIDX is calculated on an annual instead of a monthly basis. These

alternative variable definitions all yield significant results with predicted

sign. Further, a change in the weighting scheme on the asset level, i.e.
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equal instead of value-based weighting does not alter our conclusions.14

In summary, the majority of lottery characteristics is consistent with

our initial hypotheses. Lottery-like funds trade at higher premia for given

lottery characteristics in their underlying assets, while the opposite is

true for lottery-like payoffs in the investment universe of US stocks. This

effect is highly statistically significant, especially forMax and LIDX. This

finding also holds after the inclusion of several control variables which,

in turn, lend support to the models of Cherkes et al. (2009) and Berk and

Stanton (2007).

2.3.2 Skewness preferences and Closed-End Funds

S&P 500 option prices and skewness preferences

In the previous Section, we showed that Closed-End Fund premia are

driven to a significant degree by the lottery characteristics provided by

fund stock returns relative to a fund’s asset returns. A premise is that

investors’ preferences for idiosyncratic skewness or lottery demand drive

stock prices. Theoretical models by, for example, Brunnermeier et al.

(2007), Barberis and Huang (2008), and Mitton and Vorkink (2007) moti-

vate this link. However, there is also evidence that skewness preference

varies predictably over time. Kumar (2009) finds stronger gambling

demand in the stock market during economic downturns. During the

so-called Dotcom Bubble, with high investor sentiment, skewness char-

acteristics had greater pricing impacts as shown by Green and Hwang
14These results are available upon request.
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(2012), pointing to stronger skewness preferences. The Barberis and

Huang (2008) model focuses on Cumulative Prospect Theory’s probability

weighting. The degree of probability weighting drives the magnitude of

lottery stocks’ overpricing. Polkovnichenko and Zhao (2013) infer aggre-

gate probability weighting from index option prices, and find significant

time variation.

Here, we nonparametrically estimate monthly probability weighting

functions from S&P 500 index option prices. The curvature index of these

weighting functions serves as a proxy for aggregate skewness preferences

as motivated theoretically by Barberis and Huang (2008). We find that

option-implied probability weighting is stronger in times of extreme, i.e.

low and high sentiment. From laboratory experiments, we know that

probability weighting is more extreme in affect-rich situations (Rotten-

streich and Hsee, 2001). In our investment context, economic crises and

periods of economic exuberance might be good proxies for affect-rich

situations.15

Three testable predictions emerge. First, in times of strong skewness

preference, the average Closed-End Fund premium is lower because only

few investors want to hold diversified funds relative to individual stocks.

Second, the impact of lottery characteristics found in the previous section

is stronger during high skewness preference times. In Section 2.3.2, we
15There are more papers that motivate time varying skewness preferences with

similar patterns. Bordalo et al.’s (2012) Salience Theory implies a different probability
weighting scheme that can generate time-varying skewness preference (see Bordalo
et al., 2013). Zhang (2014) elaborates on Mitton and Vorkink’s (2007) equilibrium
underdiversification and skewness preference model. She shows that, even though
there are fewer gamblers in economic downturns, the remaining ones gamble more
aggressively.
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use regression analyses with interaction terms to test this prediction.

Third, we should see fewer Closed-End Fund IPOs when there is high

skewness preference because of low demand for diversified investments

and fund managers do not want to start a fund with a high discount.

Our results further indicate that the seemingly remote corner of the

Closed-End Fund Market is linked to the highly liquid S&P500 index

option market via aggregate gambling preferences. Put differently, the

same risk preferences that drive option prices in equilibrium are helpful

in understanding the Closed-End Fund prices relative to their holdings.

Further, this result highlights the complementary nature of our finding

compared to Hwang et al. (2017) who focus on heterogeneity in beliefs

as estimated from analysts’ earnings forecasts for Closed-End Funds’

holdings.

We now turn to the implications of probability weighting for option

pricing and describe our nonparametric estimation procedure which

closely follows Dierkes (2013). We assume a representative agent with

monotonically increasing utility function u and monotonically increas-

ing probability weighting function w. Both u and w are assumed to be

smooth (twice continuously differentiable). Utility is derived from an

index with St and ST denoting values today and in the future, respectively.

Following, among others, Jackwerth (2000), we normalize St to one and

the representative agent derives utility over returns.

Let fP and fQ denote the density functions of the data-generating

process and the risk-neutral measure with corresponding cumulative

distribution functions FP and FQ, respectively. With probability weight-
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ing (non-linear w), the investor prices options as if the data-generating

process’ distribution function is FP̃ (x) = 1−w(1−FP (x)). Thus, the corre-

sponding density is given by

fP̃ (ST ) = fP (ST )) ·w′(1−FP (ST )), (2.8)

and the option-implied risk-neutral measure is calculated with a nonlinear

w according to

fQ(ST ) = fP (ST ) ·w′
(
1−FP (ST )

)
· βu

′(ST )
u′(St)

. (2.9)

A formal derivation can be found in, e.g. Xia and Zhou (2014) or

Polkovnichenko and Zhao (2013). Note that, given preferences by w

and u, the pricing kernel fQ(ST )
fP (ST ) = w′

(
1− FP (ST )

)
· β u

′(ST )
u′(St)

varies with the

physical distribution FP if w is not linear. Taking derivatives with respect

to ST and rearranging then yield

f ′P (ST )
fP (ST )

−
f ′Q(ST )

fQ(ST )
= ARAu(ST ) +

(w′′(1−FP (ST ))
w′(1−FP (ST ))

fP (ST )
)
, (2.10)

where ARAu(ST ) = −u
′′(ST )
u′(ST ) denotes the absolute risk aversion function

across index levels ST associated only with the agent’s utility function u.

The term w′′(1−FP (ST ))
w′(1−FP (ST )) fP (ST ) on the right-hand side of (2.10) displays the

probabilistic risk attitude. The denominator is always positive due to the

strictly increasing weighting function.

A natural identification strategy that cleanly estimates w and u stems

from the fact that the risk attitude associated with w varies with the

physical distribution FP whereas the risk attitude associated with u stays

constant. We now set out to identify w and u nonparametrically. To the
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best of our knowledge we are the first to estimate w nonparametrically

without parametric assumptions about u. Polkovnichenko and Zhao

(2013) use a semiparametric approach and presuppose u(x) = x1−α

1−α with

α = 2 or α = 0 and aggregate risk aversion not explained by this utility

function shows up in their weighting function estimate.

Consider the equilibrium condition (2.9). For convenience, we drop

the time index T and convolve constants u′(St) and β to a single normal-

ization constant β. Obviously, for two different physical distributions

P1 and P2, the term w′(1−FPi (S)) changes with Pi whereas u′(S) remains

unaffected, i = 1,2. This allows for the following identification strat-

egy to estimate w nonparametrically. Rearrange Equation (2.9) for both

distributions P1 and P2 to

fQ1
(S)

w′(1−FP1
(S))fP1

(S) · β1
= u′(S),

fQ2
(S)

w′(1−FP2
(S))fP2

(S) · β2
= u′(S).

Equating both left hand sides of the above equations with each other and

rearranging yields:

w′(1−FP2
(S)) =

fQ2
(S)

fQ1
(S)

fP1
(S)

fP2
(S)

β1

β2
·w′(1−FP1

(S)) for all states S. (2.11)

The only unknown in this equation is the function w because all other

quantities are estimated from market outcomes. Under appropriate as-

sumptions on FP1
and FP2

, Equation (2.11) constitutes a delay differential

equation (DDE) of neutral type.16 This is the case if, for example, 1−FP2
is

16DDEs are characterized by the fact that today’s derivative of the unknown func-
tion depends on the function’s behavior in the past. Neutral type means that today’s
derivative of the unknown function depends on its derivative in the past.
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always above 1−FP1
and both actually coincide in one point. In this case,

w′(1−FP2
(S)) is known at some “time point” 1−FP2

(S) because the “time

point” 1 − FP1
(S) lies in the past and therefore w′(1 − FP1

(S)) is already

known. How can we guarantee this assumption? If P1 has more mass in

the tails than P2, then, for some value Ŝ, it holds FP1
(S) ≥ FP2

(S) for all

S ≤ Ŝ and FP1
(S) ≤ FP2

(S) for all S ≥ Ŝ and FP1
(Ŝ) = FP2

(Ŝ). We call this

restriction the single crossing assumption. On the two intervals [0, Ŝ] and

[Ŝ,∞], the DDE can be solved for w.

We follow Dierkes (2013) and use different times to maturity to en-

sure the single crossing property. One advantage is that it allows for a

time series of estimates of the probability weighting functions and, thus,

implicitly idiosyncratic skewness preference.

DDEs require not only one initial value as initial condition (as do

ordinary differential equations). Instead, a small range of values needs to

be given. We get a reasonable initial condition from our environment as

follows. Considering two distributions P1 and P2 with their risk neutral

counterparts Q1 and Q2, respectively, and rearranging the decomposition

of aggregate absolute risk aversion in Equation (2.10) yields the following

two equations

f ′P1
(Ŝ)

fP1 (Ŝ)
−
f ′Q1

(Ŝ)

fQ1 (Ŝ)
−ARAu(Ŝ)

fP1
(Ŝ)

=
w′′(1−FP1

(Ŝ))

w′(1−FP1
(Ŝ))

,

f ′P2
(Ŝ)

fP” (Ŝ)
−
f ′Q2

(Ŝ)

fQ2 (Ŝ)
−ARAu(Ŝ)

fP2
(Ŝ)

=
w′′(1−FP2

(Ŝ))

w′(1−FP2
(Ŝ))

.

Given that FP1
(Ŝ) = FP2

(Ŝ) for the state Ŝ, we equate the left hand sides of
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both equations with each other, rearrange, and have

ARAu(Ŝ) = −u
′′(Ŝ)

u′(Ŝ)
=

(ARAM1
(Ŝ)

fP1
(Ŝ)

−
ARAM2

(Ŝ)

fP2
(Ŝ)

)
/
( 1

fP1
(Ŝ)
− 1

fP2
(Ŝ)

)
, (2.12)

where ARAMi
(S) =

f ′Pi
(S)

fPi (S) −
f ′Qi

(S)

fQi (S) , i ∈ {1,2}, is the market’s aggregate risk

aversion implied by asset prices. Importantly, Equation (2.12) can be

solved without knowing w or u.

From Equation (2.12), we gain a rough estimate of u in the tiny neigh-

borhood of Ŝ. To come up with an initial condition for our delay differen-

tial equation, we make a parametric assumption about u for a tiny range

around Ŝ. Then, in the interval, say, [Ŝ − 0.001, Ŝ + 0.001], we have an

initial condition for w′ in Equation (2.11) from Equation (2.9). Together

with w(0) = 0 and w(1) = 1, we can identify w nonparametrically. We

assume that ARAu(S) = ARAu(Ŝ) for all S ∈ [Ŝ − 0.001, Ŝ + 0.001], i.e. on

this small interval absolute risk aversion associated with u is a constant

and thus u is given by the exponential utility function on this interval.

An unreported simulation study revealed that, even if the utility function

u is not given by the exponential function, this parametric choice for u on

a tiny interval around Ŝ does not distort our results for the probability

weighting function w. There is virtually perfect identification.

Figure 2.1 depicts the average of 236 probability weighting functions

estimated between February 1996 and September 2015. Additionally, ±2

times the pointwise standard error is plotted (dotted lines). The gray

line indicates the identity line (45 degree line). The average probability

weighting function clearly exhibits an inverse-S shape. This finding

matches results by psychologists. The intersection with the identity line
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Figure 2.1: Average nonparametric estimate of the probability weighting
functions.
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We estimate 236 probability weighting functions and utility functions without any parametric

restrictions. Figure 2.1 depicts our estimate of the average probability weighting function w

(solid line) and ±2 times the empirical pointwise standard error (dotted lines). The gray line

corresponds to the identity function.

is roughly at probability p = 0.26. This value is remarkably close to those

found in lab experiments (typically around 0.30).

To compare our nonparametric estimates to results by psychologists

and behavioral economists, we fit the “linear in log odds" probability

weighting function w(p) = δpγ

δpγ+(1−p)γ to our average estimate w. The linear

regression of log odds for p = 0.01,0.02, . . . ,0.98,0.99 is nearly perfect

with adjusted R2 = 0.993. We yield the curvature parameter γ = 0.757

and the logarithm of the elevation parameter δ is -0.171, i.e. δ = 0.843.

Standard errors are 0.007 and 0.011, respectively, again suggesting a

strong deviation from EUT. These parameter values are slightly greater

than what is reported by psychologists. Bleichrodt and Pinto (2000)

51



Lottery characteristics and the Closed-End Fund puzzle

review estimates from the literature and report values in [0.44,0.69] and

[0.65,0.84] for γ and δ, respectively. That our values for γ and δ are

closer to one indicates less pronounced probability weighting which is not

surprising because our results are obtained from one of the most liquid

and most competitive option markets in the world. So, ex ante we expect

estimates to be closer to EUT.

Of particular interest to our analyses is the variation of the curvature

of the probability weighting function over time. The upper panel of Figure

2.2 shows the times series of estimated γ . Recall that the curvature pa-

rameter γ can be interpreted as a measure of inverse skewness preference

(Barberis and Huang, 2008). We thus, define our first skewness preference

proxy as SkewP refoption−implied = 1/γ in each month and standardize it

for ease of interpretation (zero mean and unit standard deviation). To get

a better sense of w’s impact on aggregate risk aversion, the middle panel

in Figure 2.2 depicts stacked bars that represent concave (black bar) and

convex (white bar) parts of the fitted probability weighting function as

displayed on the vertical axis. Recall that convex parts of w increase risk

aversion and concave parts decrease it. For example, the first stacked bar

from the left indicates that, in February 1996, the weighting function was

concave for the probabilities in [0,0.51] and convex for probabilities in

[0.51,1], i.e. probability weighting alone induces (local) risk proclivity for

the 51% best wealth states according to the physical distribution and it

induces risk aversion for the 49% worst wealth states.

The lower panel shows the same information as the upper one, but is

less noisy because it depicts the curvature of the parametric probability
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Figure 2.2: Curvature index of probability weighting functions over time.
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Figure 2.2 presents time series dynamics of the curvature index of probability weighting func-

tions. We estimate 236 nonparametric probability weighting functions without any parametric

restrictions on the utility function. Panel a) depicts the curvature parameter γ of the probability

weighting function wγ,δ(p) = δpγ

δpγ+(1−p)γ when fitted to our nonparametric estimates of the prob-

ability weighting functions. Panel b) shows stacked bars that represent concave (black bar) and

convex (white bar) parts of the probability weighting function. For example, the first stacked bar

from the left indicates that in February 1996, w was concave for probabilities in [0,0.51] and con-

vex for probabilities in [0.51,1]. The lower Panel c) presents the same information as the middle

one for the fitted parametric probability weighting function wγ,δ instead of the nonparametric

w.
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weighting function wγ,δ(p) = δpγ

δpγ+(1−p)γ when fitted to w. The parametric

fit of the “linear in log odds" probability weighting function wγ,δ is in all

months remarkably good. The adjusted R2 of the linear regression of log

odds for p = 0.01,0.02, . . . ,0.98,0.99 never falls below 0.947.

We see three large chunks with rather stable general shape patterns.

The probability weighting function was inverse-S shaped from February

1996 until January 2000 and from March 2007 until October 2009. From

February 2004 to September 2005, w was S-shaped. With few exceptions,

this period extends to February 2007. May 2002 until December 2002 is

another, shorter period with inverse-S shape pattern. After 2010, S-shape

dominates, with some months showing an inverse-S shape. For other time

periods the general shape is less stable. However, it is surprising that we

do not see entirely erratic behavior. For example, the curvature captures

the beginnings of the financial crisis quite well. From February to March

in 2007, the shape of the probability weighting function reverses from

S-shaped to inverse-S shaped. In February 2007, HSBC had to announce

one of the first major losses ($10.5 billion) from the US mortgage lending

business. However, the information in the variation of the probability

weighting function’s curvature is much richer as we show below.

From lab experiments we know (see Rottenstreich and Hsee, 2001)

that the probability weighting function is more inverse-S shaped when

subjects are more emotional, i.e. hope and fear decrease the curvature

index γ . We use the University of Michigan’s Consumer Confidence Index

to proxy extreme sentiment in the economy. Our prediction is an inverse-

U shaped relation between our curvature index γ and the sentiment
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Figure 2.3: The probability weighting functions’ curvature and consumer
sentiment.
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Figure 2.3 presents the relation between probability weighting and consumer sentiment. For

236 months, we estimate the representative agent’s probability weighting function. For each

weighting function, we estimate its curvature index. The curvature index γ is derived from fitting

the “linear in log odds" probability weighting functionwγ,δ(p) = δpγ

δpγ+(1−p)γ to our nonparametric

estimates. We depict the fitted values of a locally polynomial regression of γ on the University of

Michigan’s Consumer Sentiment Index.

index.

Figure 2.3 shows a locally polynomial regression fit (see e.g. Cleve-

land, 1979) and confirms the inverse-U shaped relation. Skewness pref-

erence is stronger (lower γ values) during times of extreme sentiment,

either good or bad. Hence, we define the skewness preference dummy

SkewP refsentiment such that it equals one if the University of Michigan

Sentiment Index is in the lowest or highest tercile; otherwise it equals

zero.

Now, we provide first descriptive analyses between Closed-End Funds

and our skewness preference proxies SkewP refoption−implied and
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SkewP refsentimewnt. The upper panels of Figure 2.4 depict the average

premium (left panel) and the total number of Closed-End Fund IPOs

(right panel) over deciles of option-implied skewness preference proxy

SkewP refoption−implied . Consistent with our hypotheses, both the premium

and the number of IPOs is lower when skewness preference is high. For

example, the 286 bps premium difference between the first and tenth

decile is significant at the 5% level (two sided t-test, t = 2.16). Similarly,

the difference of 1.3 IPOs on average between the first and tenth decile is

also significant at the 5% level (two-sided t-test, t = 2.15).

The middle panels presents the average Closed-End Fund premium

(left panel) and average number of Closed-End Fund IPOs from two

different sources over deciles of the University of Michigan Consumer

Sentiment Index, respectively. Dark gray bars are computed from the full

data of equity Closed-End Funds from 1978 to 2015. Note that we start in

1978 because monthly recording of ConSent starts in this year. Light gray

bars cover our sample of US Equity Closed-End Funds from 1997-2015.

In line with our conjectures, both panels reveal a U-shaped pattern with

lower premia and lower IPOs for extreme sentiment which we argued is

tantamount to high skewness preference.

Our definition of the skewness preference dummy SkewP refsentiment

further supports this insight. Similar to the middle panels, the bottom

panels depict average premia (left panel) and the number of IPOs (right

panel) for two samples (as above in dark or light gray), but now over

SkewP refsentiment instead of Consumer sentiment. We find our hypotheses

supported because there are lower premia and fewer IPOs when the
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Figure 2.4: Average Premium and IPOs depending on Skewness
Preference and Sentiment.
(a) Average premium (left panel) and number of IPOs (right panel) over deciles
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(b) Average premium (left panel) and number of IPOs (right panel) over deciles
of Consumer Sentiment ConSent
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(c) Average premium (left panel) and number of IPOs (right panel) over
SkewP refSentiment
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Figure 2.4 depicts the average monthly Closed-End Fund premia (left panels) and the average

number of Closed-End Fund IPOs (right panels) over deciles of option-implied skewness prefer-

ence SkewP refOption−implied (top panels), deciles of investor sentiment measured by the Univer-

sity of Michigan Consumer Sentiment Index ConSent (middle panels), and the sentiment-based

skewness preference dummy SkewP refSentiment (bottom panels).
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dummy variable equals one. The difference between premia of high versus

low skewness preference regimes is around 400 bps for both samples with

both t-statistics exceeding six. Similarly, the difference in IPOs across

skewness preference regimes is in both samples around 1.4 on average

and highly significant (both t-statistics exceed four).

Skewness preferences and premia

Now, we provide more rigorous statistical analyses. To begin with, simple

time series regressions of the monthly average Closed-End Fund Pre-

mium P remt, taken from Jeffrey Wurgler’s website, on both our monthly

skewness preference proxies yield

P remt = −0.0026∗∗∗
(−3.09)

SkewP refoption−implied,t + δχt + εt (2.13)

N = 236,R2 = 0.082,

P remt = −0.0182∗∗
(−2.50)

SkewP refsentiment,t + δχt + εt (2.14)

N = 354,R2 = 0.106.

The control variables χt, motivated by Cherkes et al. (2009), are the

S&P100 volatility index VXO17, the term spread T ERM as the difference

between 10-year and 1-year constant maturity Treasury Rates, the Pastor
17VXO has a longer time series starting in 1986 compared with the more common

VIX which starts in 1990. Calculation methods are slightly different between both.
Still, correlation between the two volatility indices is close to perfect, with a correlation
coefficient of 0.9855.
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and Stambaugh (2003) liquidity factor, and a constant.18 While the option-

implied skewness preference proxy SkewP refoption−implied is available only

since February 1996 (Regression (2.13)), data in Regression (2.14) is lim-

ited by the VXO starting in June 1986. As predicted, in periods of high

skewness preference, the average Closed-End Fund premium is lower. If

option-implied skewness preference increases by one standard deviation,

all else equal, the premium is 26 bps lower (Newey/West t-statistic -3.09,

p < 0.01). For the sentiment-based dummy SkewP refsentiment, strong skew-

ness preference decreases the average premium by 182 bps (Newey/West

t-statistic -2.50, p < 0.05). The time series evidence favors our hypothesis

and corroborates the descriptive analyses in the previous section.

We continue with cross-sectional analyses. The more specific pre-

diction of our theory is that, in the cross section, there should be an

interaction effect between skewness preference and lottery characteristics

provided by Closed-End Funds and their assets. Given some lottery char-

acteristic in fund stock returns and assets’ returns, their impact should be

stronger in high skewness preference times because then there is higher

lottery demand in the stock market.

Table 2.3 shows results from a rerun of the baseline panel regres-

sions in Table 2.2 while adding one of the skewness preference proxies,

SkewP refoption−implied (Columns (1)-(4)) and SkewP refsentiment (Columns

(5)-(8)), and their interaction with the lottery characteristics on the fund
18Similar to the VXO, we apply the alternative measure for the term spread, i.e. the

difference between 10-year and 1-year constant maturity Treasury rates, because of
a better coverage on FRED. Furthermore we orthogonalized the VXO with respect to
SkewP refoption−implied because both variables are calculated from S&P500 index options.
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and asset level. We are interested in cross-sectional effects and focus on

lottery characteristics and their interaction with skewness preference as

stated in Panel A. Recall that we standardized SkewP refoption−implied to

zero mean and unit standard deviation. Given a one standard deviation

increase in SkewP refoption−implied , Column (1) in Table 2.3 suggests that,

all else equal, a one standard deviation increase in portfolio concentra-

tion SSPW leads to a significantly higher increase in a fund’s premium

than without stronger skewness preference because the interaction effect

SSPW × SkewP refoption−implied is significant (t-stat > 4). However, this

effect is economically small with less than 3 bps.19 The interaction with

the skewness preference dummy is not significant at conventional lev-

els, as shown in Column (5). SSPW ’s overall effect given high skewness

preference is highly significant and economically about as large as in

our baseline regressions. A one standard deviation increase in portfolio

concentration SSPW increases fund premia by more than 121 bps, on

average (see Panel B).

As predicted, the interactions of SkewP ref withAssetMax,AssetLIDX,

andAssetSkew3M are significantly negative at the 1% level. For the option-

implied skewness preference proxy t-statistics range between -5.77 and

-9.46. Given SkewP refoption−implied is up by one standard deviation, the

additional economic impact on top of the baseline effects are -47, -15,

and -7 bps for a one standard deviation rise of AssetMax, AssetLIDX,

and AssetSkew3M , respectively. Similary, given the skewness preference
19SSPW has a standard deviation of 0.043. So, the additional effect as indicated by

the interaction term is 0.006× 0.043 = 0.000258 which corresponds to 2.58 bps.
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Table 2.3: Closed-End Fund Premia depending on Lottery
Characteristics and Skewness Preferences.

Panel A: Panel Regression with Interaction Effects
Skewness Preference Skewness Preference

based on Index Options based on Sentiment

(1) (2) (3) (4) (5) (6) (7) (8)

SSPW 0.275 0.264
(8.22) (3.92)

SSPW × SkewP ref 0.006 0.025
(4.89) (0.45)

FundMax 1.014 1.360
(3.18) (1.98)

FundMax × SkewP ref -0.183 -0.447
(-1.35) (-0.65)

AssetMax -1.231 0.646
(-4.10) (1.51)

AssetMax × SkewP ref -0.392 -2.129
(-5.77) (-4.88)

FundLIDX 0.084 0.065
(4.96) (1.90)

FundLIDX × SkewP ref 0.001 0.023
(0.32) (0.66)

AssetLIDX -0.155 -0.064
(-4.67) (-1.36)

AssetLIDX × SkewP ref -0.026 -0.145
(-9.46) (-3.26)

FundSkew3M 0.011 0.008
(2.14) (1.11)

FundSkew3M × SkewP ref 0.000 0.005
(0.41) (0.46)

AssetSkew3M -0.046 0.020
(-2.33) (0.76)

AssetSkew3M × SkewP ref -0.010 -0.083
(-9.14) (-2.62)

R
2

0.588 0.595 0.589 0.586 0.594 0.611 0.596 0.592
N 5313 5289 5313 5289 5313 5289 5313 5289

Panel B: Tests for Joint Effects of Lottery Characteristics and Skewness Preferences

β1 + β2 0.282 0.831 0.084 0.011 0.289 0.913 0.088 0.012
(8.508) (2.419) (5.217) (2.272) (8.603) (3.002) (5.161) (1.765)

β3 + β4 -1.624 -0.181 -0.057 -1.483 -0.209 -0.063
(-5.450) (-5.431) (-2.914) (-4.877) (-6.257) (-2.493)

Panel A of Table 2.3 presents coefficient estimates of the panel regression

P remi,t = αi + β1 ·FundLCi,t + β2 ·FundLCi,t × SkewP reft + β3 ·AssetLCi,t
+β4 ·AssetLCi,t × SkewP reft + β5SkewP reft +γλi,t + δχt + εi,t ,

where P remi,t is the monthly premium of Closed-End Fund i in month t, LC is a placeholder for
different lottery characteristics, λi,t represents fund-specific control variables and χt represents
systematic control variables. The prefix Fund describes characteristics calculated on the Closed-
End Fund share level. The prefix Asset – if applicable – represents the value-weighted average
of characteristics of all holdings of the corresponding funds. SkewP ref is a skewness preference
dummy. In models (1)-(4), it is based on option-implied probability wieghting. In models (5)-(8),
it is a dummy variable which equals one if Consumer Sentiment is in the lowest or highest tercile,
otherwise it is zero. Lottery characteristics cover the following, well-accepted measures: SSPW
is the sum of squared portfolio weights to measure portfolio concentration following Goetzmann
and Kumar (2008). Max is the average of the highest five daily returns in month t−1 as proposed
by Bali et al. (2017). Skew is the adapted Green and Hwang (2012) quantile-based skewness
measure, calculated over the preceding three months. LIDX is a monthly adaption of the Kumar
et al. (2016) lottery index measure. The regressions include the following control variables: Illiq
as the logarithm of the adapted Amihud (2002) illiquidity measure. Size as the natural logarithm
of the fund’s market capitalization in million USD, LogAge as the natural logarithm of the fund
age in years andDivY ld as the fund’s dividend yield. ExpRatio as the expense ratio and T urnover
as the portfolio turnover. T (α) as the t-statistic of the fund alpha over the past twelve months.
T ERM as the term spread, i.e. the difference between 20-year and 3-month constant maturity
Treasury rates, Liq as the Pastor and Stambaugh (2003) liquidity factor and V IX as the CBOE
volatility index. The sample period is March 1997 to March 2015. Each regression contains a fund
dummy variable to absorb the fund effect in the correlation of the residuals, and standard errors
are clustered by month (Petersen, 2009). Panel B reports magnitude and statistical significance
of the joint effect between lottery characteristics and skewness preferences for the model in the
respective column. T-statistics in parentheses are calculated from heteroscedasticity consistent
clustered standard errors (Rogers standard errors).
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dummy SkewP refsentiment equals one, the corresponding additional eco-

nomic effects due to high skewness preference – above and beyond the

baseline impacts of AssetMax, AssetLIDX, and AssetSkew3M – are -255,

-84, and -61 bps, respectively. t-statistics of these interaction effects range

between -2.62 and -4.88. These results support our conjecture that higher

skewness preference amplifies the impact of lottery characteristics in a

fund’s portfolio on the fund’s premium. However, we do not find sig-

nificant interactions with lottery characteristics of the fund’s stock. One

reason could be that, in times of high skewness preference, increases

in lottery characteristics on the fund level, e.g. a rise in FundMax, are

offset by the perceived detriments from diversification when investing in

Closed-End Funds.

Panel B depicts the overall impact of lottery characteristics given high

skewness preference by either SkewP refoption−implied being up by one

standard deviation (Columns (1)-(4)) or SkewP refsentiment = 1 (Columns

(5)-(8)). Given high skewness preference, a one standard deviation jump

in Max, LIDX, or Skew on the asset level leads to an average premium

drop of at least 178, 105, or 42 bps, respectively.20 On the fund level,

given high skewness preference, a step-up of these lottery characteristics

by one standard deviation boosts the fund premium on average by at least

108, 89, or 22 bps, with all figures being statistically significant.

Overall, the results are consistent with our conjecture that investors’

preference for lottery characteristic in stock returns can drive a wedge be-
20We took the minimum overall impact on the asset level over both skewness prefer-

ence proxies.
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tween a Closed-End Fund’s market valuation and its NAV. The differential

is greater when investors’ lottery appetite is greater, because diversified

investments then appear less attractive.21 Further, the change in fund

premia (or discounts) is mainly driven by asset characteristics of the assets

in a fund’s portfolio.

Skewness preferences and Closed-End Fund IPOs

Finally, we analyze Closed-End Fund IPOs. Lee et al. (1991) state that

Closed-End Funds start at a positive premium when initiated.22 We

propose that, above and beyond liquidity reasons, Closed-End Fund IPOs

take place when investors look for diversified investments or, in our

nomenclature, in times of low skewness preferences. Our conjecture

precisely matches the empirical evidence of differential secondary market

pricing after Closed-End Fund IPOs and Non-Closed-End Fund IPOs.

Green and Hwang (2012) show that high skewness preference is a driver

of underpricing in Non-Closed-End Fund IPOs. Our hypothesis of low

skewness preference triggering Closed-End Fund IPOs implies that, in

the Closed-End Fund Market, there is no significant underpricing of IPOs

– which is exactly what is found by Hanley et al. (1996).

Following Cherkes et al. (2009), we distinguish four sectors: Closed-

End Funds focussing on US Equity, International Equity, Municipal Bonds,
21In unreported robustness checks we address the concern that the state of the

economy is a main driver behind this result. As motivated by Allen et al. (2012), we
employ the Chicago Fed National Activity Index (CFNAI) as a measure for economic
activity. We find that bad economic states (recessionary states), as indicated by CFNAI <
0 (CFNAI < −0.7) are not accountable for our results.

22Cherkes et al. (2009) argue that the premium should be sufficiently high to pay
underwriting fees out of IPO proceeds.
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and Taxable Bonds. We conjecture that our skewness preference proxies

SkewP ref negatively predict the number of IPOs in US Equity. Since

SkewP ref is estimated with US data, we expect a weaker impact on Inter-

national Equity Closed-End Fund IPOs. SkewP ref might also negatively

predict the number of IPOs of Closed-End Funds specializing in Munic-

ipal Bonds. Presumably, SkewP ref has the least explanatory power, if

any, for IPOs of Taxable Bond Closed-End Funds because this investment

category presumably attracts a different investor clientele who are not

looking for lottery exposure in the first place.

Table 2.4 shows results from a negative binomial count regression.

Columns (1)-(5) employ SkewP refoption−implied whereas Columns (6)-(10)

use SkewP refsentiment as skewness proxy. Since IPOs need some prepa-

ration time, e.g. for preparation of a prospectus or filing with the SEC,

and can be called off, we want to explain the one-month-ahead number of

Closed-End Fund IPOs. That is, all explanatory variables are lagged by

one month. In addition to SkewP ref , we include controls motivated by

Cherkes et al. (2009), i.e. the CBOE S&P 100 Volatility Index VXO, the

Pastor and Stambaugh (2003) liquidity index Liq, the one-month Treasury

Bill T − Bill, and the term spread T ERM as the difference between 10-

year and 1-year constant maturity Treasury Rates. The listed dispersion

parameter α indicates whether a less elaborate Poisson count regression

(α = 1) would have been sufficient.

Consistent with our conjecture, SkewP ref negatively predicts the

total number of Closed-End Fund IPOs (Models (1) and (6)) and IPOs of

Closed-End Funds specializing in US Equity (Models (2) and (7)). The
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Table 2.4: Count Data Regressions of Closed-End Fund IPOs in different
categories

Skewness Preference Skewness Preference
based on Index Options based on Sentiment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Total US Equity Int. Equity Mun. Bonds Tax. Bonds Total US Equity Int. Equity Mun. Bonds Tax. Bonds

SkewP reft−1 -4.816 -14.854 -0.382 -10.032 -3.951 -0.360 -0.832 -0.585 -0.359 -0.019
(-2.491) (-2.087) (-0.272) (-3.163) (-1.576) (-2.870) (-2.515) (-1.956) (-1.467) (-0.121)

Liqt−1 -1.737 -7.919 -0.745 -1.375 -0.562 -1.123 -5.029 -1.232 -1.008 -0.192
(-1.185) (-1.895) (-0.172) (-0.618) (-0.432) (-0.787) (-1.732) (-0.429) (-0.395) (-0.169)

T ERMt−1 31.003 20.720 5.895 72.535 19.652 64.345 5.204 38.008 109.198 48.648
(2.242) (0.474) (0.119) (2.220) (1.374) (8.220) (0.286) (2.488) (6.260) (5.477)

T −Billt−1 193.384 189.917 314.830 591.526 -71.350 290.877 43.510 450.574 572.744 112.249
(2.204) (0.689) (0.846) (3.050) (-0.849) (8.484) (0.442) (5.196) (7.836) (2.157)

VXOt−1 0.031 -0.085 -0.115 0.144 -0.012 -0.012 -0.061 -0.080 0.035 -0.026
(2.234) (-1.271) (-2.243) (5.434) (-0.825) (-1.346) (-1.880) (-3.055) (2.384) (-2.362)

(Intercept) -1.646 -2.980 -0.714 -7.326 -0.883 -0.734 -0.747 -1.615 -4.163 -0.904
(-3.218) (-2.134) (-0.879) (-6.862) (-1.391) (-2.709) (-1.087) (-2.954) (-6.527) (-2.552)

log(α) -0.085 -2.940 1.510 1.409 -88.812 -0.260 -0.613 0.729 1.041 -0.519

Pseudo-R2 0.031 0.119 0.063 0.091 0.062 0.055 0.054 0.085 0.067 0.036
N 236 236 236 236 236 354 354 354 354 354
log likelihood -378.992 -78.493 -83.434 -192.251 -222.672 -661.154 -141.033 -201.055 -416.410 -402.806

Table 2.4 presents coefficient estimates of negative binomial regressions

#CategoryIPOst = α + β1SkewP reft−1 + δχt−1 + εt ,

where #CategoryIPOst is the number of IPOs in the respective fund category, SkewP ref is our

skewness preference proxy. For Models (1)-(5), it is equal to the option-implied skewness pref-

erence SkewP refOption−implied . In Models (6)-(10), it is the sentiment-based dummy variable

SkewP refSentiment that takes a value of one if the University of Michigan Consumer Sentiment

Index is in the highest or lowest tercile and zero otherwise. χt is a vector of control variables.

Control variables cover the CBOE S&P 100 Volatility Index VXO, the Pastor and Stambaugh

(2003) Liq, the one-month Treasury Bill T − Bill, and the term spread T ERM as the difference

between 10-year and 1-year constant maturity Treasury Rates. Each column represents the re-

spective fund category. In Models (1)-(5), the sample period is March 1996 to October 2015, in

Models (6)-(10), the sample covers July 1986 to December 2015. T-statistics in parentheses.

evidence on International Equity Closed-End Fund IPOs is rather weak.

Although loadings on both skewness preference proxies are negative, only

SkewP refsentiment is significant at the 10% level. For Closed-End Funds

specializing in Municipal Bond, both loadings on skewness preference

are negative, but only SkewP refoption−implied is significantly negative (p <

0.01). We find no statistical significance in the Taxable Bond categories

which is, as argued above, less surprising.

Overall, the regression analyses confirm our impression from our
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descriptive outlines (see, e.g, right panels in Figure 2.4), net of controls

suggested in the literature (Cherkes et al., 2009): Closed-End Fund IPOs

are less likely during times of high lottery demand.

2.4 Conclusion

The existing literature presents strong evidence that investors’ lottery

demand in the stock market and lottery characteristics provided by stocks

have pricing effects distinct from neoclassical equilibrium models. Still,

quantifying the magnitude of mispricing is tedious because the funda-

mental value is not observable.

In the present study, we show that the wedge between a Closed-End

Fund’s market valuation and its NAV is related to the relative differential

in lottery characteristics of a Closed-End Fund’s stock return versus the

lottery characteristics of assets in the fund’s portfolio. Hence, the discount

on Closed-End Funds can be used to quantify the mispricing in the stock

market which originates from lottery preferences. The intuition is straight

forward. On average, diversified funds trade at a discount, or negative

premium, because there is lottery demand in the stock market on average

and diversification removes lottery-features. This premium increases, all

else equal, if the Closed-End Fund’s stock return distribution provides

more lottery-like features and vice versa. Conversely, if assets in the

fund portfolio improve their lottery-characteristics then the premium

decreases, all else equal, including the fund return distribution.

Our proxies for measuring the degree of lottery character include
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the sum of squared portfolio weights (Herfindahl index, Goetzmann

and Kumar, 2008), the previous month’s maximum returns (Bali et al.,

2011, 2017), the lottery index developed by Kumar et al. (2016), and a

quantile-based estimate of the return distribution’s skewness (e.g. Green

and Hwang, 2012). Across this wide range of proxies for lottery features,

we find our conjecture confirmed. Results for maximum returns and the

lottery index are particularly strong and reliable, especially for the assets

in funds’ portfolios with t-statistics exceeding four in absolute terms.

As a new contribution, we estimate option-implied skewness prefer-

ence from S&P500 index options and show that pricing impacts of lottery

characteristics interact with skewness preference. Further, we derive

from the existing literature that extreme sentiment, i.e. low and high

sentiment, also proxies for high skewness preference. In fact, both our

skewness preference proxies are consistent with each other. The inter-

action effects between both our skewness preference proxies and lottery

characteristics on Closed-End Fund premia are especially relevant for

stocks in Closed-End Funds’ portfolios.

Finally, time-varying skewness preference (negatively) predicts the

number of Closed-End Fund IPOs for various Closed-End Fund sectors.

One exception is the Taxable Bond sector, which is arguably less affected

by lottery demand and presumably caters to a different investor clientele.

In particular, aggregate gambling preferences manifest in index option

prices as well as in the Closed-End Fund market.
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Chapter 3

What is the latent factor behind the

idiosyncratic volatility puzzle?

This Chapter refers to the working paper:

Claußen, Arndt, Maik Dierkes and Sebastian Schroen (2019): ‘What is
the latent factor behind the idiosyncratic volatility puzzle?’, Working
Paper, Leibniz Universität Hannover.

Abstract
The negative relation between idiosyncratic risk and subsequent

returns, commonly known as the idiosyncratic volatility puzzle, is
attributable to latent systematic risk. High idiosyncratic volatility
stocks underperform in subsequent months because they have high
exposures to this risk factor. The latent factor exhibits all charac-
teristics of a genuine risk factor, but is unrelated to fundamental
economic state variables and largely unexplained by well-accepted
risk factors. Our evidence points to noise trader risk induced by
sentiment as a promising solution to the puzzle and is consistent
with many well known characteristics of high idiosyncratic volatility
stocks.

Keywords: Idiosyncratic volatility, latent risk factor, mispricing

JEL: G10, G12, G32.
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3.1 Introduction

The negative relation between idiosyncratic volatility (IV ol) and subse-

quent returns, introduced by Ang, Hodrick, Xing and Zhang (2006, 2009)

as the idiosyncratic volatility puzzle, presents a long-standing challenge

to theoretical and empirical asset pricing. Theoretically, the negative rela-

tionship is hard to reconcile with standard asset pricing theory because

idiosyncratic risk either carries no risk premium at all, or a positive risk

premium if investors are unable to diversify properly (Merton, 1987).

Empirically, the largest fraction of the puzzle remains unexplained (Hou

and Loh, 2016) and the literature is tied between risk-based explanations

(Chen and Petkova, 2012; Barinov, 2013) and mispricing (Stambaugh

et al., 2015). A unified solution is yet to be found.

This paper shows that the IV ol puzzle originates from common risk

in residuals of the investor’s factor model. We propose an active portfolio

which tracks this risk, explains the co-movement of high-IV ol stocks

and fully alleviates the puzzle. IV ol stocks are exposed to a common

risk factor – most likely attributable to noise trader risk – and earn low

future returns due to this exposure. This exposure fully explains the IV ol

puzzle in Fama and MacBeth (1973) regressions, the Hou and Loh (2016)

decomposition and portfolio sorts.

We adapt the theoretical framework of MacKinlay (1995) and MacKin-

lay and Pastor (2000) to the empirical relationship between IV ol and stock

returns to form an active portfolio based on factor model residuals. This

active portfolio, referred to as OP , satisfies the orthogonality condition
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of the optimal orthogonal portfolio of MacKinlay (1995). Once we in-

clude it into the Fama and French (1993) three or Fama and French (2018)

six factor model, the negative Fama and MacBeth (1973) coefficient on

IV ol becomes insignificant and the mispricing of IV ol sorted portfolios

reduces considerably. The extended factor model explains the alpha of 25

portfolios sorted by Size and IV ol. Finally, we provide a full Hou and Loh

(2016) decomposition of the Fama and MacBeth (1973) coefficient on IV ol

in 200 IV ol portfolios. Almost 50% of the IV ol puzzle is attributable to

the latent risk in the Fama and French (1993) three factor model. Taken

together, the stock characteristics firm size, short-term reversal, illiquidity

and mispricing account for the remainder of the puzzle.

A mimicking factor portfolio (FOP ) which tracks the latent risk fac-

tor behind the IV ol puzzle accounts for the negative alpha of high-IV ol

deciles in portfolio sorts. The trade-off between IV ol and alphas even

turns positive if we combine FOP with the CAPM. FOP is significantly

related to the covariance matrix of stock returns and earns a significant

risk premium with an annualized Sharpe ratio below the upper bound

of 0.6. Thus the latent factor behind the IV ol puzzle satisfies the con-

ditions of a genuine risk factor according to the risk factor protocol of

Pukthuanthong et al. (2019).

Discriminating tests between theoretical explanations based on arbi-

trage constraints and behavioral explanations for the IV ol puzzle mo-

tivated by Asness et al. (2019) favor behavioral explanations. FOP is

significantly negatively related to the Baker and Wurgler (2006) Investor

Sentiment Index and US equity mutual fund flows, while evidence with
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respect to leverage constraints is inconclusive. Focusing on behavioral ex-

planations for the IV ol puzzle suggests that FOP traces back to systematic

noise trader risk. FOP shares the explanatory power of investor senti-

ment with respect to market-wide stock price anomalies (Stambaugh et al.,

2012; Jacobs, 2015). Anomalies earn higher alphas when arbitrageurs are

exposed noise trader risk due to correlated trading of sentiment traders.

Furthermore, in line with the theoretical model of De Long et al. (1990),

noise trader risk as proxied by FOP is positively associated with tempo-

rary increases in aggregate volatility. Our findings are consistent with the

theoretical model of Kozak et al. (2018) who show that time-varying senti-

ment imposes systematic state-variable risk. The positive contribution of

noise trader risk to aggregate variance explains the findings of Chen and

Petkova (2012) and Barinov (2013) who directly focus on volatility risk.

Our latent factor and its mimicking portfolio counterpart are more

than just IV ol in disguise and we provide three robustness checks to

illustrate this conclusion. First, the explanatory power of the latent factor

in the Fama and MacBeth (1973) regressions is insensitive to the choice

of assets which generate residuals. Including the weighted residuals of

25 portfolios sorted by Size and Book-to-Market or Size and Momentum

explains the negative Fama and MacBeth (1973) coefficient on IV ol in

25 Size-IV ol portfolios just as well as OP formed on Size-IV ol residuals.

Second, comparing the mimicking portfolio for the latent factor with two

alternative factor candidates directly formed on IV ol reveals that its ex-

planatory power in IV ol sorts is not mechanically driven by IV ol. While

the inclusion of FOP to the Fama and French (1993) model subsumes
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both alternative IV ol factor candidates in factor spanning tests (Barillas

and Shanken, 2017, 2018), this does not hold in the opposite direction.

Third, a discriminating test confirms that our adaption to the weight

vector in the active portfolio of MacKinlay and Pastor (2000) pins down a

systematic component in factor model residuals which is economically dif-

ferent from IV ol. IV ol is a symptom of FOP which traces back to priced

noise trader risk. In particular, FOP is not a statistical transformation

of IV ol itself. Two additional robustness checks verify that our baseline

results are robust to the choice of the residual generating factor model

and a tradable version of the mimicking portfolio performs equally well

in explaining the IV ol puzzle.

Our study contributes to two streams in the literature. First, the lit-

erature on the optimal orthogonal portfolio shows that mispricing due

to a missing factor in asset pricing models induces a systematic com-

ponent in the covariance matrix of factor model residuals (MacKinlay,

1995). MacKinlay and Pastor (2000) impose a strong form assumption on

the residual covariance matrix to identify the exposure of the systematic

component and improve portfolio selection. Under the same assumption,

Asgharian (2011) presents a conditional version of the optimal orthogonal

portfolio which allows an estimation of the exposure for a considerable

number of portfolios, e.g. 48 industry portfolios. We relax the strong

form assumption and adapt the active portfolio proposed by MacKinlay

and Pastor (2000) to the nonlinear relationship between IV ol and alphas.

Residual variance is positively related to squared alpha, not alpha and

an active portfolio in the spirit of MacKinlay and Pastor (2000) who pro-
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pose a weighting vector proportional to alpha is misspecified. Once we

account for this empirical feature of the IV ol-return relation, the active

portfolio consistently captures IV ol. Our approach facilitates the identifi-

cation of risk-based deviations from the investor’s factor model without

conjecturing a characteristic which is potentially related to alphas.

Second, the negative relation between IV ol and expected returns has

been explored extensively. The literature proposes a large number of

mechanisms and potentially unaccounted factors, for example: Lottery

demand (e.g. Bali et al., 2011; Han and Kumar, 2013; Boyer et al., 2010),

liquidity risk (e.g. Bali and Cakici, 2008), credit risk (e.g. Duarte et al.,

2014; Avramov et al., 2013), mispricing due to limits to arbitrage (e.g.

Stambaugh et al., 2015; Stambaugh and Yuan, 2017) or variance risk (Ang

et al., 2006; Chen and Petkova, 2012; Barinov, 2013).1 Chen and Petkova

(2012) describe a link between the optimal orthogonal portfolio and the

IV ol puzzle and conjecture that average variance and average correlation

are the two missing components of the Fama and French (1993) three

factor model. We exploit this link and derive an active portfolio which

precisely pins down the latent systematic component and is consistent

with the theoretical framework of Chen and Petkova (2012). Our evidence

is consistent with arbitrage risk due to noise trader risk (De Long et al.,

1990; Stambaugh et al., 2015). This imposes genuine risk which is likely

to explain the impact of sentiment on the risk-return tradeoff (Antoniou

et al., 2016; Shen et al., 2017).
1For a detailed analysis of potential explanations we refer to Hou and Loh (2016).
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3.2 Dissecting idiosyncratic volatility

3.2.1 The optimal orthogonal portfolio as a latent risk

factor

We follow the framework of MacKinlay (1995) and MacKinlay and Pastor

(2000) to examine the role of a latent systematic risk factor in the negative

relationship between IV ol and subsequent stock returns. Let ri,t denote

the excess return of asset i ∈ {1, ...,N } in period t and ζt ∈ RK represent

realizations of K observable risk factors. Assuming a linear relationship

between asset returns and the risk factor returns, the return generating

process is

ri,t = αi +βi
′ζt + εi,t, (3.1)

E(εt) = 0, E (εtεt
′) = Σ and cov(εt,ζt) = 0,

where βi ∈RK are the sensitivities of asset i with respect to the K factors,

εi,t is the error in each time period, and αi denotes mispricing. An exact

linear relation between the asset returns and the risk factor returns implies

an intercept αi of zero. An intercept which is significantly different from

zero indicates mispricing.

In the presence of a missing factor, MacKinlay and Pastor (2000) show

that the covariance matrix Σ contains information about the missing factor

which drives αi . This relationship can be developed using the optimal

orthogonal portfolio defined as “the unique portfolio given N assets that can

be combined with the factor portfolios to form the tangency portfolio and is

orthogonal to the factor portfolios” (MacKinlay, 1995, p. 8). An advantage
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of the optimal orthogonal portfolio is that, by definition, it leaves the

factor sensitivities βi unaffected once the missing variable is included.

We denote the return on the optimal orthogonal portfolio (OP ) at time t

with rOP ,t which governs the asset return with sensitivity βOP and its first

two moments are E

(
rOP ,t

)
= µOP and var

(
rOP ,t

)
= σ2

OP . Per definition, it

holds cov(ζt, rOP ,t) = 0. Replacing αi in Equation (3.1) with the return of

the optimal orthogonal portfolio yields

ri,t = βOP ,irOP ,t +βi
′ζt + νi,t, (3.2)

E(νt) = 0, E(νtνt
′) = Φ , and cov(νt,ζt) = cov(νt, rOP ) = 0.

MacKinlay and Pastor (2000) employ the assumption that the covariance

matrix Φ is proportional to the identity matrix. We relax this strong form

assumption and set Φ as a diagonal matrix with asset-specific error term

variances σ2
ν,i := var(νi,t). Equaling the expectation of Equation (3.1) and

Equation (3.2) leads to

αi = βOP ,iE(rOP ) = βOP ,iµop. (3.3)

Given cov(νt, rOP ) = 0, we express the variance of the error term in Equa-

tion (3.1) in terms of two components

σ2
ε,i := var(εi,t) = β2

OP ,iσ
2
OP + σ2

ν,i . (3.4)

Equation (3.4) illustrates that σ2
ε,i , i.e. the idiosyncratic variance of the

K factor model known to the investor, consists of two components. The

first component β2
OP ,iσ

2
OP reflects systematic deviations from the return

generating process due to the latent factor rOP . This component prevents
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the diversification of idiosyncratic risk to zero when forming a portfolio

(MacKinlay, 1995). The second component, σ2
ν,i , is truly non-systematic.

3.2.2 An active portfolio to track IVol

Ang et al. (2006, 2009) employ the square root of idiosyncratic variance

σ2
ε,i in Equation (3.4) from the Fama and French (1993) three factor model

(FF3) as a measure for idiosyncratic risk. Empirically, they find a negative

relationship between IV ol and subsequent returns. This finding is known

as the IV ol puzzle because theoretically, idiosyncratic risk carries no risk

premium at all according to standard asset pricing theory, or a positive

risk premium if investors cannot diversify properly (Merton, 1987).

The theoretical framework above proposes an explanation for this puz-

zle. Equation (3.4) indicates that the empirical measure for IV ol contains

a systematic component which is attributable to a latent risk factor in the

investor’s factor model. In this case, the negative relation between IV ol

and subsequent returns is not a puzzle, but the compensation for latent

risk as pointed out by Chen and Petkova (2012).2

An empirical analysis of the framework above requires a model-based

or empirical conjecture because OP is unobservable. To approximate

OP empirically, MacKinlay and Pastor (2000) propose an active portfolio

which assumes long positions in stocks with positive alphas and short

positions in stocks with negative alphas. To guarantee that the active port-

folio is zero-beta with respect to the factor portfolios of the initial model,
2Stambaugh et al. (2015) point out that the negative alphas of high IV ol stocks imply

a negative risk premium for the latent risk factor.
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the factor portfolios are included with corresponding weights. Including

this active portfolio into the initial factor model in Equation (3.1) reduces

the mispricing of the model.

Our main objective is the formation of an active portfolio which ex-

plains the latent risk behind the negative relation between IV ol and

subsequent returns. If IV ol is a proxy for the sensitivity to a latent risk

factor, an active portfolio in the spirit of MacKinlay and Pastor (2000)

explains the IV ol puzzle if and only if IV ol and alphas are proportional.

Combining Equation (3.3) and Equation (3.4) reveals that

σ2
ε,i = α2

i

σ2
OP

µ2
OP

+ σ2
ν,i . (3.5)

Thus, idiosyncratic variance is linearly related to squared alpha, not alpha.

This relationship, however, also holds for squared alpha and idiosyncratic

volatility because we analyze a small range of values and the root function

is approximately linear in this case.3 We thus propose an active portfolio

which addresses this finding and set the weight of asset i proportional to

its squared alpha according to

wi =
α2
i∑N

i=1α
2
i

. (3.6)

Intuitively, this weighting scheme overweights mispriced assets, both

overpriced and underpriced. As suggested from Equation (3.5), the weight

is independent of the sign of alpha. Robustness checks in Section 3.7.3

illustrate that portfolio weights proportional to squared alpha correctly

identify mispriced stocks instead of spuriously capturing IV ol itself.
3Results are almost identical if we choose weights proportional to absolute alphas.
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The denominator guarantees that the portfolio weights sum up to one

(MacKinlay and Pastor, 2000).

Instead of the zero-beta weights in the factor portfolios as proposed by

MacKinlay and Pastor (2000), we directly formOP on factor model residu-

als. By construction, any cross-sectional linear combination of εi,t satisfies

the orthogonality condition for OP . We multiply the weight in Equa-

tion (3.6) with the vector of residuals εt to approximate OP empirically

as

OPt := w′εt. (3.7)

Our approach allows us to test the latent factor explanation for the IV ol

puzzle without a conjecture about potential factors and implies three

predictions. First, an inclusion of the active portfolio OPt reduces the

commonality in the residuals of the factor model in Equation (3.1) and

thus the factor structure in the covariance matrix Σ. Second, the sensi-

tivity of asset i to this active portfolio βOP ,i explains the low alpha of

high-IV ol stocks. Third, OPt brings down the mispricing compared to

the initial model.

3.3 Data and methodology

Our stock sample covers the CRSP common stock universe (share code

10 and 11) from July 1963 to December 2016. We obtain returns, market

capitalizations, trading volumes and prices on a daily and monthly basis

from CRSP. Returns are adjusted for delistings as motivated by Shumway

(1997). We apply a five dollar price screen to exclude penny stocks. Chen
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et al. (2012) show that the IV ol puzzle is particularly robust under this

price filter.

The empirical measure for IV ol is model-dependent. Despite the

rapid growth in the number of factor models since the seminal paper

of Ang et al. (2006), their proxy for IV ol as the standard deviation of

residuals from a daily FF3 model regression is still the most adopted

measure. For each asset i, we estimate monthly within-month time series

regressions with at least 15 valid daily observations and refer to the

standard deviation of these residuals as IV ol1MFF3.4

We use the residuals of the FF3 model to compute OPt. To compute

the full sample counterpart of βOP ,i , we estimate the FF3 model in within-

month regressions using daily data and compute alphas as well as resid-

uals. Next, we use squared monthly alphas as weights to compute OPt

according to Equation (3.7). In the last step, we re-evaluate the FF3 model,

but include OPt as an additional factor to estimate βOP ,i in an additional

full sample regression according to Equation (3.2). By construction, this

weighted average is orthogonal to the FF3 factors. In the rolling window

analysis, we estimate the FF3 model over five years using daily data up

to month t. Again we compute alphas and residuals and calculate OPt

according to Equation (3.7). We finally re-estimate the model with the

additional factor to estimate βOP ,i and repeat this step on a monthly basis.

Returns on the risk factors of the models proposed by Fama and French

(1993), Carhart (1997) and Fama and French (2018) as well as several test
4In the robustness checks in Section 3.7.4 we adjust this model selection and also

compute IV ol from the more recent Fama and French (2018) six factor model (FF6).

79



What is the latent factor behind the idiosyncratic volatility puzzle?

portfolios are from Kenneth French’s website. We use 25 double sorted

portfolios on Size and Operating Profit (5x5), Size and Beta (5x5), Size

and Book-to-Market (5x5), as well as 32 three-way sorted portfolios on

Size, Book-to-Market and Investment (2x4x4) as test assets. The lottery

demand factor of Bali et al. (2017) is downloaded from Turan Bali’s web-

site. The Pastor and Stambaugh (2003) liquidity factor, the Stambaugh

et al. (2015) mispricing measure and the four Stambaugh and Yuan (2017)

mispricing factors are from Robert F. Stambaugh’s website. Expected

idiosyncratic skewness of Boyer et al. (2010) is from the website of Brian

Boyer. The monthly Chicago Fed National Activity Index CFNAI is from

the Federal Reserve Bank of Chicago and the daily Aruoba et al. (2009)

(ADS) business conditions index is from the Federal Reserve Bank of

Philadelphia. Mutual fund flows of US equity mutual funds are from

Morningstar, margin debt of NYSE customers in relation to NYSE market

capitalization is from Datastream and the Ted Spread is from the Federal

Reserve Bank of St. Louis. The Baker and Wurgler (2006) Investor Sen-

timent index is from the website of Jeffrey Wurgler and the Baker et al.

(2016) economic policy uncertainty index is from policyuncertainty.com.

The Chicago Board of Option Exchange (CBOE) S&P 100 Volatility Index

VXO is from the CBOE’s website. We follow Barinov (2018) and use this

longer time series to approximate the V IX. Appendix 3.A.1 describes the

control variables based on this data and their respective estimation. We

gratefully acknowledge the provision of risk factors and economic data

by fellow colleagues.
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3.4 Absolving IVol of latent systematic risk

3.4.1 The IVol puzzle and preliminary evidence

Table 3.1 illustrates that the IV ol puzzle is present and not explained by

the most prominent factor models in our sample period. Each month,

we sort stocks into deciles conditional on IV ol1MFF3, hold the portfolio for

one month and record excess returns as well as alphas of different factor

models. The right column presents the return and alpha of a portfolio

which consists of a long position in the highest decile of IV ol1MFF3 and a

short position in the bottom decile of IV ol1MFF3. The factor models cover a

CAPM single factor model, the Fama and French (1993) model FF3, the

Carhart (1997) four factor model (CAR), the Pastor and Stambaugh (2003)

model (PS) which adds a liquidity factor to the FF3 model, as well as

the the Fama and French (2015) five factor FF5 model. We furthermore

present alphas from more recent factor models, i.e. the Stambaugh and

Yuan (2017) four factor mispricing model M4, the Hou et al. (2015) q-

factor model and the six factor model proposed by Fama and French (2018)

(FF6) which adds the Momentum factor to the FF5 model.5 Returns and

alphas of the decile portfolios are presented in percent per month and we

report equal-weighted sorts in Panel A as well as value-weighted sorts in

Panel B. We report t-statistics based on Newey and West (1987) standard

errors with six lags in parentheses.

Excess returns and alphas are statistically significant and the cor-
5Technically, Fama and French (2018) replace operating profitability with cash

profitability, but this factor is not available online. We thus use operating profitability
instead, but refer to this model as FF6.
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Table 3.1: Revisiting the idiosyncratic volatility puzzle.

Panel A: Equal-weighted sorts

Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
Excess Return 0.6576 0.8262 0.8500 0.9530 0.9424 0.9917 0.8169 0.7515 0.4834 -0.1769 -0.8345

(4.17) (4.55) (4.25) (4.44) (4.14) (4.03) (3.08) (2.62) (1.57) (-0.53) (-3.38)
CAPM Alpha 0.3501 0.4104 0.3848 0.4429 0.3968 0.4073 0.1903 0.0841 -0.2309 -0.8892 -1.2394

(3.47) (4.17) (3.72) (4.08) (3.57) (3.38) (1.46) (0.61) (-1.46) (-4.70) (-6.03)
FF3 Alpha 0.1733 0.2053 0.1787 0.2306 0.1923 0.2205 0.0228 -0.0431 -0.3299 -0.9588 -1.1320

(2.24) (3.24) (2.85) (4.13) (3.76) (4.35) (0.48) (-0.86) (-5.45) (-10.06) (-7.88)
PS Alpha 0.1807 0.2111 0.1832 0.2254 0.1784 0.2232 0.0134 -0.0448 -0.3219 -0.9729 -1.1536

(2.20) (3.07) (2.67) (3.63) (3.12) (4.00) (0.26) (-0.85) (-4.90) (-9.42) (-7.63)
C4F Alpha 0.1614 0.2169 0.1975 0.2655 0.2228 0.2539 0.0666 -0.0072 -0.2534 -0.8645 -1.0258

(2.21) (3.88) (3.59) (5.14) (4.74) (5.54) (1.48) (-0.15) (-3.93) (-8.50) (-7.38)
FF5 Alpha 0.0516 0.0737 0.0550 0.1271 0.1089 0.1784 0.0244 0.0371 -0.1598 -0.6602 -0.7118

(0.73) (1.36) (0.96) (2.44) (2.07) (3.06) (0.48) (0.69) (-2.39) (-7.71) (-6.64)
M4 Alpha 0.0132 0.0691 0.0581 0.1526 0.1430 0.2165 0.0641 0.0734 -0.0902 -0.6044 -0.6175

(0.17) (1.03) (0.88) (2.62) (2.66) (4.07) (1.20) (1.20) (-1.13) (-4.69) (-3.92)
q-factor Alpha 0.0830 0.0848 0.0545 0.1366 0.1156 0.2004 0.0728 0.0942 -0.0422 -0.5418 -0.6248

(0.84) (0.91) (0.58) (1.61) (1.44) (2.32) (1.05) (1.22) (-0.46) (-4.54) (-4.01)
FF6 Alpha 0.0561 0.0985 0.0849 0.1677 0.1435 0.2105 0.0608 0.0578 -0.1158 -0.6158 -0.6719

(0.81) (2.02) (1.66) (3.70) (3.17) (4.34) (1.38) (1.17) (-1.87) (-6.86) (-6.11)

Panel B: Value-weighted sorts

Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
Excess Return 0.5127 0.5404 0.5079 0.6117 0.6287 0.5956 0.6848 0.3000 0.2689 -0.3761 -0.8887

(3.36) (3.30) (2.80) (3.16) (2.96) (2.44) (2.57) (1.01) (0.83) (-1.07) (-3.06)
CAPM Alpha 0.1522 0.1048 0.0164 0.0785 0.0508 -0.0345 0.0003 -0.4145 -0.5123 -1.1550 -1.3072

(1.92) (1.65) (0.38) (1.40) (0.81) (-0.42) (0.00) (-3.25) (-3.20) (-5.85) (-5.17)
FF3 Alpha 0.0875 0.0591 -0.0120 0.0371 0.0268 -0.0395 0.0079 -0.3748 -0.4334 -1.1156 -1.2031

(1.44) (1.08) (-0.29) (0.66) (0.44) (-0.53) (0.10) (-3.87) (-3.62) (-6.89) (-6.24)
PS Alpha 0.0948 0.0658 -0.0049 0.0412 0.0007 -0.0567 0.0129 -0.4171 -0.4633 -1.1755 -1.2703

(1.41) (1.08) (-0.11) (0.67) (0.01) (-0.71) (0.15) (-3.82) (-3.49) (-6.72) (-6.08)
CAR Alpha 0.0445 0.0373 -0.0386 0.0308 0.0683 -0.0130 0.0469 -0.3498 -0.3510 -0.9621 -1.0065

(0.73) (0.64) (-0.76) (0.57) (1.08) (-0.17) (0.60) (-3.77) (-3.02) (-5.96) (-5.25)
FF5 Alpha -0.0374 -0.0337 -0.0907 -0.0169 0.0242 0.0470 0.1240 -0.1975 -0.1619 -0.6678 -0.6304

(-0.65) (-0.60) (-1.83) (-0.27) (0.39) (0.64) (1.57) (-2.25) (-1.64) (-4.85) (-3.98)
M4 Alpha -0.1107 -0.0666 -0.0975 0.0018 0.1055 0.1174 0.2089 -0.1133 -0.0458 -0.4972 -0.3864

(-1.53) (-1.03) (-1.33) (0.02) (1.65) (1.45) (2.41) (-1.17) (-0.37) (-2.76) (-1.77)
q-factor Alpha -0.0846 -0.0339 -0.1346 -0.0479 0.0109 0.0453 0.1964 -0.1620 -0.0657 -0.5686 -0.4840

(-1.07) (-0.50) (-2.06) (-0.67) (0.14) (0.50) (2.30) (-1.62) (-0.50) (-3.64) (-2.51)
FF6 Alpha -0.0584 -0.0412 -0.1043 -0.0165 0.0587 0.0578 0.1429 -0.1976 -0.1250 -0.5923 -0.5339

(-0.95) (-0.71) (-1.83) (-0.26) (0.93) (0.77) (1.85) (-2.24) (-1.22) (-4.21) (-3.26)

Table 3.1 presents univariate portfolio sorts on Fama and French (1993) three factor model (FF3)

idiosyncratic volatility IV ol1MFF3 over the past month. The last column presents the difference in

excess returns and respective alphas between stocks in the highest and the lowest IV ol1MFF3 decile.

Panel A presents sorts with equal weights, in Panel B we weight returns by market capitalization.

We hold each portfolio for one month and record the monthly returns and different factor alphas.

Factor alphas cover the following factor models: CAPM is a one factor model, FF3 is the Fama

and French (1993) three factor model, PS is the FF3 model extended by the Pastor and Stambaugh

(2003) liquidity factor, CAR is the Carhart (1997) four factor model and FF5 is the Fama and

French (2015) five factor model. Furthermore, M4 is the Stambaugh and Yuan (2017) four factor

mispricing model, q-factor is the four factor model of Hou et al. (2015) and and FF6 is the Fama

and French (2018) six factor model. Returns and alphas are reported in % per month. Newey

and West (1987) adjusted t-statistics with six lags in parentheses. The sample period for excess

returns and alphas of the models CAPM, FF3, CAR, FF5, FF6 and M4 is July 1963 to December

2016. The sample period for the PS model is January 1968 to December 2015. The q-factor alpha

covers January 1967 to December 2015.
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responding t-statistics exceed minus three in Panel A. Regarding the

value-weighted sorts in Panel B, we find two exceptions of this finding.

The alphas of the M4 model and the q-factor model amount to -39 basis

points (bps) and -48 bp per month with t-statistics of -1.77 and -2.51,

respectively. In both models, however, high-IV ol1MFF3 have negative alphas

which are significant at any conventional level and the factor models leave

highly significant alphas in equal-weighted sorts. The IV ol puzzle is

well and alive, irrespectively of the factor model and the choice of decile

portfolio weights. The negative alphas are mainly driven by the highest

IV ol decile, i.e. the short leg of the difference portfolios.

The IV ol1MFF3 decile portfolios are useful to illustrate the first prediction

in Section 3.2.2. The latent factor in the investors model in Equation (3.1)

prevents the diversification of idiosyncratic risk to zero. The covariance

matrix Σ of the FF3 model residuals thus exhibits a factor structure. We

address this prediction in Figure 3.1 which presents correlations of factor

model residuals from the daily IV ol1MFF3 decile portfolio returns. Each

month, we estimate the FF3 model for daily decile portfolio returns and

compute residuals on the portfolio level for which we plot the pairwise

correlations between IV ol1MFF3 deciles. The bars right from the main diago-

nal plot correlations of FF3 model residuals. Next, we use the FF3 model

residuals, computeOP and add the latent factor to the initial model to cal-

culate residuals for which we compute correlations. We plot correlations

of the extended model left from the main diagonal.

In case of the FF3 model, residuals in high IV ol1MFF3 deciles comove

and the pairwise correlation between the highest two deciles amounts
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Figure 3.1: Barplots of residual correlations.
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Figure 3.1 presents the correlation of factor model residuals before and after including OP into

the Fama and French (1993) three factor model (FF3). The figure plots time series correlations

of factor model residuals from 10 value-weighted portfolios sorted by idiosyncratic volatility

IV ol1MFF3 in ascending order from decile 1 to decile 10. We estimate the FF3 model as well as the

extended model within each month on daily decile portfolio returns and compute residuals for

which we estimate correlations. Right from the main diagonal, we plot correlations of the FF3

model residuals εi,t which are used to compute the standard measure IV ol1MFF3. Left from the

main diagonal, we extend the model by the latent factor OP , re-estimate the model and compute

factor model residuals for which we plot the correlations. The sample period is August 1963 to

December 2016.

to 0.43. Additionally, the correlation between high- and low-IV ol1MFF3

deciles is negative. The highest and the lowest decile exhibit a correlation

coefficient of -0.22. Extending the model by OP reduces the correlation

in both examples. Now, the pairwise correlation between the highest

two deciles is 0.02 and the negative correlation between the highest and

the lowest decile reduces to -0.02. Both correlations are still statistically

significant at the five percent level, but lower in comparison to the FF3
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Figure 3.2: Scatter plot of residual standard deviations.
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Figure 3.2 presents a scatter plot of residual standard deviations before and after including OP

into the Fama and French (1993) three factor model FF3. Each month, we sort stocks in decile

portfolios based on FF3 idiosyncratic volatility IV ol1MFF3 and compute value-weighted returns on

a daily basis. We estimate the FF3 model as well as the extended model including OP within

each month on daily decile portfolio returns and compute residuals. Given these residuals, we

estimate residual standard deviations of the FF3 model and the FF3 model extended by OP . The

ordinate depicts the standard deviation of FF3 factor model residuals and the abscissa depicts

the residual standard deviation of the extended model. The color of the markers indicates the

decile portfolio. The sample period is August 1963 to December 2016.

model. The cluster in positive correlations between high IV ol1MFF3 reduces

considerably after including OP into the FF3 model.

Figure 3.2 extends the analysis to the standard deviations of the factor

model residuals from both models, i.e. the FF3 model as well as the ex-

tended model including OP . The ordinate depicts the standard deviation

of FF3 factor model residuals and the abscissa depicts the residual stan-
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dard deviation of the extended model. The color of the markers indicates

the decile portfolio.

The difference between the residual standard deviations depends on

the IV ol decile. For low deciles, including OP into the FF3 model leaves

the residual standard deviations unaffected. Both standard deviation

measures are correlated with correlation coefficients well above 0.90 for

the lowest five IV ol1MFF3 deciles. From decile six to nine, the correlation

monotonically decreases from 0.86 to 0.74 and then plunges down to

0.45 in the tenth decile. The additional explanatory power of OP is thus

particularly large for high IV ol1MFF3 stocks which are the prime cause of

the IV ol puzzle.6

Both findings suggest that an omitted factor in the FF3 model is a

likely explanation for the commonality in IV ol found by Herskovic et al.

(2016). The FF3 model residuals and residual standard deviations of IV ol

decile portfolios convey a factor structure which is largely attributable

to the latent factor OP . The covariance matrix of the extended model is

closer to diagonal, as predicted in Section 3.2.2.

3.4.2 Can a latent factor explain the IVol puzzle?

We move on to the second prediction in Section 3.2.2. If the IV ol puzzle

is the result of a latent factor in the FF3 model, the inclusion of an asset’s

sensitivity to the latent factor βOP explains the negative relation between

IV ol and subsequent stock returns.
6In an untabulated analysis we evaluate the risk premium for the residual standard

deviation of the extended model in Fama and MacBeth (1973) regressions for the IV ol1MFF3
decile portfolios. The coefficient is insignificant, while IV ol1MFF3 itself is highly significant.
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The weight of asset i in the active portfolio in Equation (3.7) requires

an estimate for the FF3 alpha which is subject to measurement error.

To reduce the measurement error, we test risk-based IV ol explanations

on the portfolio level. Each month, we sort stocks into five portfolios

conditional on monthly market capitalizations (Size) and then further

sort stocks by IV ol1MFF3 into five portfolios. We hold the portfolios one

month and calculate value-weighted excess returns. We follow Bali and

Cakici (2008) and Chen and Petkova (2012) and use NYSE breakpoints

for the market capitalizations.7 Given the daily return on these 25 Size-

IV ol1MFF3 portfolios, we estimate the FF3 model on the portfolio level, use

residuals to compute OP according to Equation (3.7) and include OP into

the model to estimate βOP . We estimate βOP and all risk factor betas in

5-year rolling windows. Given the portfolio-level estimates for IV ol1MFF3

and βOP for each month t and portfolio p we perform the cross-sectional

Fama and MacBeth (1973) regressions

rp,t+1 = γ0,t +γ1,tIV ol
1M
p,t +γ2,tβ

OP
p,t +Γ′tBp,t + εp,t, (3.8)

where rp,t+1 is the excess return of portfolio p one month ahead and Bp,t is

a vector of risk factor betas.8 We control for betas with respect to the fol-

lowing risk factors: Mkt, SMB and HML are the factors of the Fama and

French (1993) three factor model. AV (AC) is monthly average variance

(correlation) of Chen and Petkova (2012), CIV (MV ) is common idiosyn-
7The findings are almost identical if we use the 25 Size-residual variance portfolios

of Fama and French (2016) who suggest conditional NYSE breakpoints for residual
variance as well.

8In this Section, we focus on risk-based explanations and thus include covariances
rather than characteristics. We evaluate characteristics as alternative explanations in the
Hou and Loh (2016) analysis in Section 3.4.3.
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cratic volatility (market variance) as proposed by Herskovic et al. (2016),

FMax is the Bali et al. (2017) lottery demand factor and FV IX is the

Barinov (2018) aggregate variance factor.9 Appendix 3.A.1 describes the

estimation of factor betas. Table 3.2 presents the second stage coefficients

Table 3.2: Fama and MacBeth (1973) regressions on 25 Size-IV ol
portfolios.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Intercept 0.3717 0.3837 0.5735 0.5602 0.1964 0.1943 0.2572 0.3972 0.3535 0.1694 0.1043 0.1995 0.1751 0.1097

(4.70) (4.97) (3.01) (3.81) (2.90) (2.77) (4.42) (4.91) (4.00) (2.14) (1.68) (2.53) (2.16) (1.40)
IV ol1MFF3 -57.355 21.5872 -5.1652 -63.770 -115.05 -52.272 -39.164 -26.335 -34.411 -7.0241 -5.0191

(-3.20) (0.48) (-0.30) (-3.80) (-4.53) (-2.03) (-2.16) (-1.65) (-1.34) (-0.28) (-0.28)
βOP -0.1966 -0.1905 -0.2755 -0.2606 -0.2889 -0.2781 -0.2507 -0.1491

(-1.92) (-2.48) (-4.81) (-4.79) (-5.61) (-5.21) (-4.24) (-2.11)
βMkt 0.1520 0.2613 0.3643 0.3573 0.3782 0.1697 0.2878 0.5642 0.4700 0.3598 0.3785 0.5597

(0.85) (1.49) (2.04) (1.99) (2.07) (1.03) (1.71) (2.49) (2.58) (2.10) (2.20) (2.47)
βSMB -0.0136 -0.0029 0.1189 0.1167 0.0539 -0.1817 0.0292 0.0913 0.1833 0.0132 0.1481 0.1714

(-0.11) (-0.02) (0.87) (0.86) (0.42) (-1.51) (0.24) (0.67) (1.35) (0.10) (1.12) (1.13)
βHML 0.4269 0.3827 0.3087 0.3287 0.3333 0.1570 0.3233 0.3316 0.3442 0.2177 0.2813 0.2962

(2.81) (2.56) (2.08) (2.22) (2.09) (1.07) (2.31) (1.85) (2.14) (1.53) (1.99) (1.63)
βAV 0.0463 0.0349

(0.63) (0.45)
βAC -2.4482 -1.8399

(-2.16) (-1.87)
βMV -0.0050 -0.0044

(-3.68) (-3.42)
βCIV -0.0166 -0.0373

(-0.80) (-1.86)
βFMax -0.1283 -0.1092

(-1.06) (-0.91)
βFV IX -0.1792 -0.1172

(-2.57) (-1.61)

avg.R
2
in % 56.57 56.94 18.23 28.49 61.12 61.00 59.90 60.42 57.68 59.26 62.66 63.28 61.53 61.92

Table 3.2 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio level

regressions of excess returns in month t+1 on IV ol1MFF3, the sensitivity βOP to the latent factorOP

and control variables in month t. IV ol1MFF3 is the monthly idiosyncratic volatility of daily portfolio-

level returns. Residuals are computed from the Fama and French (1993) three factor model (FF3).

The base assets are 25 portfolios sorted on Size and monthly idiosyncratic volatility IV ol1MFF3.

Betas are calculated for the following risk factors: Mkt, SMB and HML are the FF3 factors. AV

(AC) is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV ) is common

idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016), FMax is the Bali

et al. (2017) lottery demand factor and FV IX is the Barinov (2018) volatility risk factor. We

estimate all betas in 5-year rolling window regressions. The sample period in all Columns is June

1968 to December 2016 except for Column (10) and (15) which start in May 1986. We report the

average cross-sectional adjusted r-squared avg.R
2

in %. Average coefficients are multiplied by

one hundred and the factor portfolios Mkt, SMB and HML are included among the test assets.

t-statistics calculated from Newey and West (1987) standard errors with six lags in parentheses.

and the average cross-sectional adjusted R
2

in %. Average coefficients
9We use βFMax instead of the maximum daily return (Max) because IV ol1MFF3 and

Max are almost perfectly correlated. Thus, it is impossible to distinguish between Max
and IV ol1MFF3 (Hou and Loh, 2016).
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are multiplied by one hundred. We follow Lewellen et al. (2010) and

include the factor portfolios Mkt, SMB and HML among the test assets.

The t-statistics in parentheses calculated from Newey and West (1987)

standard errors with six lags. The sample period is June 1968 to December

2016 except for Columns (10) and (14) where the sample period starts in

May 1986 due to the inclusion of FV IX.

The coefficient on IV ol1MFF3 is statistically significant in each specifica-

tion without βOP as revealed by Columns (2) and (7) to (10). Thus, neither

the FF3 risk factors, nor the control variables explain the negative IV ol1MFF3

coefficient in the 25 Size-IV ol1MFF3 portfolios. As soon as we include βOP in

Columns (3) to (6) and (12) to (14), IV ol1MFF3 becomes insignificant. Col-

umn (11) which controls for βAV and βAC is one exception, the IV ol1MFF3

coefficient reduces considerably, but remains statistically significant at

the edge of the 10% level. Conversely, the coefficient on βOP is always

significantly negative, with the least negative t-statistic of -1.92 in the

univariate analysis in Column (3). In multivariate analyses, βOP is statisti-

cally significant at least at the 5% level, but mostly at any conventional

level with t-statistics beyond minus three.

Control variables are mostly statistically significant, but hardly affect

the coefficients of IV ol1Mp,t and βOP , respectively. In Column (7) and (11),

the beta with respect to average correlation βAC is significantly negative.

This result differs from the findings in Chen and Petkova (2012), but is

in line with Hou and Loh (2016) and Barinov (2018) who present mixed

evidence regarding βAV and βAC . The variance factor betas βMV , βCIV and

βFV IX are also significant in Columns (8), (10) and (12), but leave IV ol1MFF3
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statistically significant. βFV IX becomes insignificant once we include

βOP . Regarding the FF3 factors, the inclusion of βOP yields coefficient

estimates closer to the risk factor premia of the factors Mkt and SMB. In

the FF3 model in Column (1), βMkt is statistically insignificant, but once

we include βOP we obtain a coefficient of roughly 0.36 with a t-statistic of

1.99, although Mkt and OP are uncorrelated.

The inclusion of βOP into the FF3 model reduces the Intercept from

37 bps in Column (1) to 19 bps in Column (6) with t-statistics of 4.70 and

2.77, respectively. βOP reduces mispricing, but the Intercept remains sta-

tistically significant. Chen and Petkova (2012) show that full sample beta

estimates are more precise and we re-evaluate the analysis in Table 3.3,

but use full sample beta estimates instead of rolling windows. The Model

number in Table 3.3 corresponds to the respective Column in Table 3.2.

Table 3.3: Fama and MacBeth (1973) regressions on 25 Size-IV ol
portfolios with full sample betas.

Model Intercept IV ol1MFF3 βOP βMkt βSMB βHML avg.R
2

in %

(1) 0.1572 (4.75) 0.3656 (2.01) 0.0741 (0.55) 0.8717 (4.95) 54.87
(2) 0.1610 (4.42) -57.313 (-3.33) 0.4948 (2.79) 0.0828 (0.62) 0.8211 (5.07) 54.95
(5) 0.0378 (1.08) -2.6421 (-0.17) -0.3904 (-4.59) 0.5638 (3.02) 0.1859 (1.34) 0.5502 (3.84) 60.08
(6) 0.0418 (1.24) -0.3835 (-4.69) 0.5547 (2.92) 0.1820 (1.31) 0.5596 (3.90) 60.24

Table 3.3 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio level

regressions of excess returns in month t + 1 on IV ol1MFF3, the sensitivity βOP to the latent factor

OP and the factors Mkt, SMB and HML of the Fama and French (1993) three factor model. We

estimate betas over the full sample. The sample period is July 1963 to December 2016. We report

the average cross-sectional adjusted r-squared avg.R
2

in %. Average coefficients are multiplied

by one hundred and the factor portfolios Mkt, SMB and HML are included among the test assets.

t-statistics calculated from Newey and West (1987) standard errors with six lags in parentheses.

Model (1) illustrates that the FF3 model leaves a significant Intercept

of about 16 bps with a t-statistic of 4.75. The coefficient on IV ol1MFF3 in

Model (2) amounts to -57.313 with a t-statistic of -3.33 if we control for
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full sample betas of the FF3 model. Including the full sample estimate for

βOP alleviates both of these observations. In Model (3), IV ol1MFF3 becomes

insignificant. The same holds true for the Intercept, both in Model (5) and

(6). The extended model prices the the 25 Size-IV ol1MFF3 more efficiently

than the FF3 model. The risk premium on βMkt increases from 37 bps to

55 bps from Model (1) to Model (6) and the estimate for βHML reduces

from 87 bps to 56 bps. Both estimates are closer to the full sample risk

premia of 51 bps and 37 bps for Mkt and HML. βSMB, however, remains

insignificant.

The portfolio regressions confirm that a latent factor in the FF3 model

is a likely explanation for the negative relation between IV ol1MFF3 and

subsequent returns. In line with the predictions in Section 3.2.2, the sensi-

tivity of a portfolio to the latent factor OP alleviates the negative IV ol1MFF3

coefficient and the alphas of 25 Size-IV ol1MFF3 portfolios. Conversely, we

find little evidence for alternative explanations. Betas with respect to

lottery demand or different measures of aggregate variance and volatility

have no explanatory power with regard to the IV ol puzzle.

3.4.3 Hou and Loh (2016) analysis for alternative test

assets

Finally, we apply the methodology of Hou and Loh (2016) to estimate

the share of the negative risk premium on IV ol1MFF3 in Fama and MacBeth

(1973) regressions which is attributable to βOP . The Hou and Loh (2016)

approach provides an estimate for the fraction of the puzzle which can
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be explained by the explanatory variable. Furthermore, the approach

provides statistical inference about the significance of this fraction as well

as the unexplained fraction.

We follow Hou and Loh (2016) and apply the decomposition technique

to 200 portfolios sorted by IV ol1MFF3. Given the daily IV ol1MFF3 portfolio

returns, we estimate the FF3 model, compute OP from the residuals and

include OP into the model to estimate βOP . We estimate βOP and all risk

factor betas in 5-year rolling windows on the portfolio level. In contrast to

the baseline analysis which only considers risk-based explanations for the

IV ol puzzle, we also control for stock characteristics in the Hou and Loh

(2016) analysis. Portfolio characteristics are the value-weighted average

over all stocks in the respective portfolios. We include the following con-

trol variables: The Amihud (2002) illiquidity measure (Illiq), short-term

reversal (LagRet), the logarithm of the monthly market capitalization

(Size), idiosyncratic skewness of FF3 residuals (ISkew), the share of zero

returns (ZeroRet), co-skewness (CoSkew), expected idiosyncratic skew-

ness (EIS) and a mispricing score (MISP). We describe the calculation of

stock characteristics in Appendix 3.A.2. Following Hou and Loh (2016),

we compute IV ol1MFF3 as the value-weighted portfolio average.

Table 3.4 presents results of the univariate Hou and Loh (2016) de-

composition for βOP and control variables. We report the IV ol1MFF3 risk

premium γ t for each candidate regression separately and present the

decomposed coefficients as well as the fraction of γ t which is related to

this candidate and the residual. All coefficients are multiplied with one

hundred. The t-statistics indicate whether this fraction is statistically
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different from zero.

Table 3.4: Univariate Hou and Loh (2016) analysis for 200 IV ol
portfolios.

rp,t+1 ∼ αt +γtIV olp,t + εp,t Candidate Residual Sample Period
Candidate γ t t-stat Coeff. Fract. in % t-stat Coeff. Fract. in % t-stat

βOP -33.470 (-3.85) -0.2867 85.65 (12.41) -0.0480 14.35 (2.08) 1968/06 – 2016/12

Illiq -34.068 (-3.93) -0.1702 49.96 (6.81) -0.1705 50.04 (6.82) 1968/06 – 2016/12
LagRet -33.470 (-3.85) -0.0850 25.39 (4.34) -0.2497 74.61 (12.76) 1968/06 – 2016/12
Size -33.470 (-3.85) -0.1707 50.99 (8.18) -0.1640 49.01 (7.87) 1968/06 – 2016/12
ISkew -33.570 (-3.87) -0.0253 7.55 (2.46) -0.3104 92.45 (30.18) 1968/06 – 2016/12
ZeroRet -33.470 (-3.85) -0.04 10.66 (3.92) -0.2990 89.34 (32.90) 1968/06 – 2016/12
CoSkew -33.570 (-3.87) -0.0210 6.26 (1.20) -0.3147 93.74 (18.04) 1968/06 – 2016/12
EIS -34.489 (-3.65) -0.0670 19.41 (3.12) -0.2779 80.59 (12.95) 1969/07 – 2011/12
MISP -34.753 (-3.97) -0.1376 39.61 (6.59) -0.2099 60.39 (10.06) 1968/06 – 2015/12

βAC -33.470 (-3.85) -0.0260 7.77 (3.86) -0.3087 92.23 (45.85) 1968/06 – 2016/12
βAV -33.470 (-3.85) -0.0043 1.27 (0.56) -0.3304 98.73 (43.51) 1968/06 – 2016/12
βMV -33.470 (-3.85) -0.1100 32.87 (3.94) -0.2247 67.13 (8.05) 1968/06 – 2016/12
βCIV -33.470 (-3.85) -0.0695 20.77 (3.30) -0.2652 79.23 (12.57) 1968/06 – 2016/12
βFMax -33.470 (-3.85) -0.2070 61.84 (8.69) -0.1277 38.16 (5.36) 1968/06 – 2016/12
βFV IX -26.575 (-2.52) -0.1217 45.81 (3.58) -0.1440 54.19 (4.23) 1986/05 – 2016/12

Table 3.4 presents results of the first and the final stage of the Hou and Loh (2016) decomposition

methodology for βOP and control variables. IV ol is the standard deviation of Fama and French

(1993) factor model residuals. The table presents the average coefficient of the decomposed risk

premium γt which is related to respective candidate variables and the residual, respectively. t-

statistics in parentheses test the null hypothesis that the explained fraction is equal to zero. We

include the following stock characteristics as control variables: Illiq is the Amihud (2002) illiq-

uidity measure, LagRet is the return in month t, Size is the logarithm of the monthly market

capitalization in 1,000 USD and ISkew is idiosyncratic skewness of Fama and French (1993) three

factor model residuals. ZeroRet is the share of zero returns, CoSkew is co-skewness as proposed

by Harvey and Siddique (2000), EIS is expected idiosyncratic skewness as proposed by Boyer

et al. (2010) and MISP is the Stambaugh et al. (2015) mispricing score. Betas are calculated to the

following risk factors: AV (AC) is monthly average variance (correlation) of Chen and Petkova

(2012), CIV (MV) is common idiosyncratic volatility (market variance) as proposed by Herskovic

et al. (2016), FMax is the Bali et al. (2017) lottery demand factor and FVIX is the Barinov (2018)

aggregate variance factor.

In the univariate analysis, βOP explains 86.65% of the IV ol1MFF3 coeffi-

cient γ t. This fraction is highly statistically significant with a t-statistic

of 12.41. Conversely, the fraction of 14.35% which is attributable to the

residual exhibits a t-statistic of 2.06. The common component in FF3

residuals of 200 IV ol portfolios accounts for the largest part of the puzzle.

To put this into perspective, alternative explanations on average explain
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27.15% of the IV ol puzzle.

The explanatory power of alternative explanations is comparable to

Hou and Loh (2016). Illiquidity, Size and lottery demand – measured

as βFMax – attain the highest fractions of 49.96%, 50.99% and 61.84%

(t-statistics of 6.81, 8.18 and 8.69). Conditional skewness (Co-Skew) of

Harvey and Siddique (2000) and βAV of Chen and Petkova (2012) explain

insignificant fractions of 6.26% and 1.27%.

We evaluate the explanatory power of βOP in the presence of alter-

native explanations in Table 3.5 which presents a multivariate decom-

position of the IV ol1MFF3 coefficient γ t. Table 3.5 presents the coefficient

which is attributable to each candidate, the corresponding fraction in %

and t-statistics in parentheses for the null hypothesis that this fraction is

equal to zero.

We present kitchen sink models in Model 1 and Model 2. The only

difference is the exclusion of βFV IX in Model 1 due to the short sample

period for which FV IX is available. βOP attains the highest individual

explanatory power of 33.94% (t-statistic = 6.98), followed by Size with

24.2% (t-statistic = 6.49). Illiq and βFMax each explain roughly 12.7%. For

the remaining alternative explanations, the explanatory power reduces

to 6% and less and the majority of candidates is insignificant. The unex-

plained fraction of 6.21% (t-statistic = 2.13) is statistically significant at

the 5% level.

Model 2 is very similar and βFV IX does not explain a significant frac-

tion of γ t. The explained fraction of βOP reduces to 25.94%, while the

alternative explanations Illiq, LagRet and Size gain higher fractions. Com-
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Table 3.5: Multivariate Hou and Loh (2016) analysis for 200 IV ol
portfolios.

Model 1 Model 2 Model 3
Candidate Coeff. Fract. in % t-stat Coeff. Fract. in % t-stat Coeff. Fract. in % t-stat
βOP -11.8087 33.94 (6.98) -7.2455 25.94 (3.99) -16.4427 46.69 (9.56)

Illiq -4.4214 12.71 (4.51) -5.363 19.2 (2.79) -3.2729 9.29 (4.29)
LagRet -2.002 5.75 (2.73) -2.5271 9.05 (2.26) -2.9968 8.51 (3.05)
Size -8.4213 24.2 (6.49) -7.9411 28.43 (3.91) -7.7365 21.97 (5.89)
Iskew 0.5493 -1.58 (-1.12) 0.9876 -3.54 (-1.71) - - -
ZeroRet 1.4772 -4.25 (-1.81) 1.5924 -5.7 (-1.66) - - -
CoSkew 0.0456 -0.13 (-0.10) -0.1632 0.58 (0.29) - - -
EIS -0.4964 1.43 (0.94) -0.7018 2.51 (1.01) - - -
MISP -1.7437 5.01 (3.43) -1.2463 4.46 (1.91) -3.0013 8.52 (4.60)

βAC -0.3414 0.98 (1.16) -0.368 1.32 (1.10) - - -
βAV -0.4008 1.15 (1.83) -0.2653 0.95 (0.84) - - -
βMV -0.6278 1.8 (0.55) -0.381 1.36 (0.24) - - -
βCIV 0.0034 -0.01 (-0.01) 0.9326 -3.34 (-1.13) - - -
βFMax -4.4422 12.77 (1.92) -3.0654 10.98 (0.62) - - -
βFV IX - - - 0.2425 -0.87 (-0.13) - - -

Residual -2.162 6.21 (2.13) -2.4146 8.65* (1.72) -1.7628 5.01 (1.08)
Sample Period 1969/07 – 2011/12 1986/05 – 2011/12 1968/06 – 2015/12

Table 3.5 presents results of the final stage of the multivariate Hou and Loh (2016) decomposition

methodology for βOP and control variables. IV ol is the standard deviation of Fama and French

(1993) factor model residuals. The table presents the average coefficient of the decomposed risk

premium γt which is related to respective candidate variables and the residual, respectively. t-

statistics in parentheses test the null hypothesis that the explained fraction is equal to zero. We

include the following stock characteristics as control variables: Illiq is the Amihud (2002) illiq-

uidity measure, LagRet is the return in month t, Size is the logarithm of the monthly market

capitalization in 1,000 USD and ISkew is idiosyncratic skewness of Fama and French (1993) three

factor model residuals. ZeroRet is the share of zero returns, CoSkew is co-skewness as proposed

by Harvey and Siddique (2000), EIS is expected idiosyncratic skewness as proposed by Boyer

et al. (2010) and MISP is the Stambaugh et al. (2015) mispricing score. Betas are calculated to the

following risk factors: AV (AC) is monthly average variance (correlation) of Chen and Petkova

(2012), CIV (MV) is common idiosyncratic volatility (market variance) as proposed by Herskovic

et al. (2016), FMax is the Bali et al. (2017) lottery demand factor and FVIX is the Barinov (2018)

aggregate variance factor.

pared to Model 1, Size exhibits the largest fraction with 28.43%. In

contrast, the explained fraction of 10.98% attributable to βFMax is now

insignificant. Since βFV IX itself adds little to the IV ol puzzle, we consider

Model 2 as a sample split.

Consequently, Model 3 only keeps candidates which have positive and
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significant explanatory power with respect to γ t in both sample periods.

The reduced Model 3 leaves an insignificant unexplained fraction of 5.01%

and thus fully decomposes γ t. Again, the highest fraction is attributable

to OP and βOP alone explains 46.69% (t-statistic = 9.56). Among the

characteristics, Size is the dominant candidate with an explained fraction

of 21.97%, whereas the remainder is equally shared between illiquidity,

short-term reversal and mispricing. The Hou and Loh (2016) analysis

reveals that the common component in FF3 residuals explains almost 50%

of the IV ol puzzle. Thus, IV ol is largely attributable to a common, yet

unknown risk factor.

3.5 Mispricing versus risk

3.5.1 An economic tracking portfolio for the IVol puzzle

In this Section, we address the question whether the source of the IV ol

puzzle, i.e. OP , represents mispricing or latent systematic risk. However,

OP implicitly depends on the set of test assets and is not a tradable risk

factor. To generalize the findings in Section 4.4 we follow Breeden et al.

(1989) and form a mimicking portfolio which tracks OP . We estimate the

regression

OPt = a+ bXt +ut, (3.9)

where OPt are the weighted residuals of a FF3 regression for monthly

excess returns of 25 Size-IV ol1MFF3 portfolios. Xt is a matrix of the same

25 portfolios serving as base assets. The fitted values of the regression in

96



What is the latent factor behind the idiosyncratic volatility puzzle?

Equation (3.9) minus the constant constitute the mimicking factor for OP

which we refer to as FOP . The correlation between OP and FOP amounts

to 0.90. We follow Barinov (2018) and use full sample estimates. We

provide robustness checks in Section 3.7.5 with an extending window

estimation to eliminate the look-ahead bias.

To constitute a valid risk factor candidate for the IV ol puzzle, FOP

should earn a significant risk premium and explain the underperformance

of high IV ol stocks. First, we address the risk premium. The average

monthly excess return of FOP is -57bp with a Newey and West (1987) t-

statistic of -10.38 as shown in Column (1) of Table 3.6. This risk premium

is also statistically significant after accounting for existing risk factors.

In Columns (2) to (11) of Table 3.6 we present factor model alphas in %

per month as well as the corresponding risk factor betas and the adjusted

R2 in %. We account for the following risk factors: Mkt, SMB, HML,

RMW , CMA and MOM correspond to the factors of the FF6 model,

MktM4, SMBM4, MGMT and P ERF constitute the M4 model, MktQ, ME,

IA and ROE are the four factors of the q-factor model, FV IX is the

Barinov (2018) aggregate volatility factor and FMax is the Bali et al.

(2017) lottery demand factor. The sample period in Columns is August

1963 to December 2016 except Column (4), (8) and (10). The sample

period in Column (4) is January 1968 to December 2015, January 1967

to December 2015 in Column (8) and May 1986 to December 2016 in

Column (10). The t-statistics in parentheses are calculated from Newey

and West (1987) standard errors with six lags.

The factor model alphas are significant at any conventional level and
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Table 3.6: Factor model alphas of the mimicking factor FOP .

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
α in % -0.5720 -0.5722 -0.5060 -0.4924 -0.4668 -0.3774 -0.3384 -0.3218 -0.3594 -0.3425 -0.3867

(-10.38) (-10.04) (-10.08) (-9.09) (-8.87) (-8.72) (-5.73) (-5.47) (-7.69) (-3.81) (-8.71)
Mkt 0.0003 -0.0388 -0.0382 -0.0471 -0.0757 -0.0788 0.4809 -0.1291

(0.01) (-2.30) (-2.21) (-3.18) (-5.07) (-5.38) (2.54) (-8.31)
SMB 0.0616 0.0474 0.0623 -0.0051 -0.0034 -0.0515

(2.98) (2.11) (2.73) (-0.27) (-0.19) (-2.68)
HML -0.1669 -0.1691 -0.1826 -0.0960 -0.1094 -0.0554

(-4.45) (-4.18) (-4.87) (-4.67) (-5.59) (-2.69)
Liq 0.0024

(0.15)
MOM -0.0441 -0.0247

(-1.72) (-1.57)
CMA -0.1510 -0.1408

(-4.41) (-4.45)
RMW -0.2963 -0.2903

(-12.59) (-13.42)
MktM4 -0.0899

(-5.28)
SMBM4 -0.0098

(-0.32)
MGMT -0.2250

(-6.49)
PERF -0.0754

(-3.44)
MktQ -0.0592

(-3.55)
ME -0.0104

(-0.42)
IA -0.2413

(-5.29)
ROE -0.1989

(-5.34)
FVIX 0.3403

(2.74)
FMax 0.1979

(10.86)

R
2

in % - -0.16 15.69 15.38 17.73 40.02 20.50 25.20 40.59 8.98 41.09

Table 3.6 presents the alpha of the tracking portfolio for the latent factor OP , i.e. FOP for dif-

ferent factor models. Column (1) is the monthly average return of FOP , and Column (2) to (11)

contain alphas of the following factor models in the respective order: A CAPM one factor model,

the Fama and French (1993) three factor model FF3, the FF3 model extended by the Pastor and

Stambaugh (2003) liquidity factor, the Carhart (1997) four factor model, the Fama and French

(2015) five factor model, the Stambaugh and Yuan (2017) four factor mispricing model, the q-

factor model of Hou et al. (2015), the Fama and French (2018) six factor model, the ICAPM model

of Barinov (2018) and the FF3 model extended by the Bali et al. (2017) lottery demand factor. We

report alphas in % per month and the adjusted R
2

for each model in %. The sample period in

Columns (1) – (3), (5) – (7), (9) and (11) is August 1963 to December 2016. The sample period

in Column (4) is January 1968 to December 2015, January 1967 to December 2015 in Column (8)

and May 1968 to December 2016 in Column (10). t-statistics calculated from Newey and West

(1987) standard errors with six lags in parentheses.

range from -57 bps for the CAPM in Column (2) to -32 bps per month in

Column (8) which includes the Stambaugh and Yuan (2017) mispricing

factors. At most, the factor models explain roughly 40% of the time
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series variation in FOP . The risk premium of FOP is significant after

risk-adjustment.

Table 3.7 illustrates the correlation of FOP with the same set of risk

factors as in Table 3.6. Although the mimicking factor does not satisfy the

orthogonality condition of OP , the correlation between FOP , Mkt and

SMB is close to zero. The correlation between FOP and HML amounts

to -0.49. The highest correlation is found between FOP and the Robust-

Table 3.7: Correlation of FOP with existing risk factors.

FOP Mkt SMB HML RMW CMA MOM MktM4 SMBM4 MGMT PERF MktQ ME IA ROE FVIX

Mkt 0.07
SMB 0.16 0.19
HML -0.49 -0.23 -0.17
RMW -0.60 -0.38 -0.45 0.36
CMA -0.37 -0.39 -0.07 0.66 0.20
MOM -0.12 -0.18 0.03 -0.18 0.09 0.06
MktM4 0.07 1.00 0.19 -0.23 -0.38 -0.39 -0.18
SMBM4 0.05 0.17 0.94 -0.13 -0.36 -0.04 0.07 0.17
MGMT -0.45 -0.51 -0.34 0.69 0.45 0.76 0.07 -0.51 -0.29
PERF -0.19 -0.36 -0.10 -0.25 0.41 0.04 0.73 -0.36 -0.04 0.09
MktQ 0.07 1.00 0.20 -0.23 -0.39 -0.39 -0.19 1.00 0.18 -0.51 -0.37
ME 0.12 0.21 0.97 -0.11 -0.44 -0.04 0.07 0.21 0.93 -0.31 -0.09 0.22
IA -0.39 -0.36 -0.18 0.68 0.29 0.91 0.02 -0.36 -0.15 0.77 -0.01 -0.37 -0.15
ROE -0.50 -0.33 -0.39 0.10 0.73 0.07 0.50 -0.33 -0.29 0.26 0.64 -0.35 -0.31 0.14
FVIX 0.00 -0.98 -0.12 0.19 0.28 0.35 0.18 -0.98 -0.10 0.44 0.33 -0.97 -0.14 0.32 0.26
FMax 0.55 0.60 0.51 -0.51 -0.75 -0.48 -0.11 0.60 0.44 -0.70 -0.30 0.61 0.48 -0.53 -0.58 -0.50

Table 3.7 presents pairwise correlations of the mimicking factor FOP and several risk factors.

We include the following risk factors: Mkt , SMB, HML, RMW , CMA and MOM correspond

to the factors of the Fama and French (2018) six factor model, MktM4, SMBM4. MGMT and

P ERF constitute the M4 mispricing factor model of Stambaugh and Yuan (2017), MktQ, ME, IA

and ROE are the four factors of the q-Factor model of Hou et al. (2015), FV IX is the Barinov

(2018) factor which tracks daily innovations in the V IX and FMax is the Bali et al. (2017) lottery

demand factor.

minus-Weak factor RMW of -0.60 followed by FMax with a correlation

of 0.55. The latter correlation is high by construction, because lottery

demand Max and IV ol are mechanically correlated (see Hou and Loh,

2016, p. 172). Including FMax into the analysis thus allows us to distin-

guish between IV ol and aggregate lottery demand. FOP is furthermore
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almost uncorrelated with FV IX, which is itself close to perfectly nega-

tively correlated with Mkt. Considering the low correlation with FOP

and collinearity concerns, we dismiss FVIX as an alternative risk-based

candidate for the IV ol puzzle.10 The correlations between FOP and the

existing risk factors, however, raise no concerns that other models sub-

sume FOP and we can add FOP to each of the models without collinearity

issues.

Second, we include FOP to the factor models in Table 3.1 to evaluate

the ability of FOP to explain the negative alphas of high IV ol1MFF3 stocks.

We present the results in Table 3.8 which is otherwise identical to the

baseline sorts in Table 3.1. We report alphas in % per month and βFOP of

each decile. Estimates for βOP which are significantly different from zero

at the 10% level are printed in bold numbers.

The inclusion of FOP in the factor models consistently explains the

negative alphas of the high IV ol1MFF3 deciles as well as the difference port-

folio between high and low IV ol1MFF3 stocks. The extended models perform

equally well in the equal-weighted sorts in Panel A and the value-weighted

sorts in Panel B. Alphas of the difference portfolios are insignificant with

three exceptions. In case of the extended CAPM, i.e. CAPM + FOP , al-

phas increase from low to high IV ol1MFF3 deciles. In equal-weighted sorts,

the alpha of the difference portfolio of 32 bps with a t-statistic of 1.75
10Although our mimicking regression shown in Appendix 3.A.1 is slightly different

from the coefficients reported by Barinov (2018), we find that our fitted FV IX factor
perfectly matches the results in Table 1 in Barinov (2018). If we use his coefficients with
our quintile VIX portfolios, we obtain an even higher correlation between FV IX and
Mkt. The correlation of -0.97 is most likely due to our reproduction of FV IX. However,
we closely follow Barinov (2018).
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Table 3.8: Revisiting the idiosyncratic volatility puzzle with FOP.
Panel A: Equal-weighted sorts

Model Parameter Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOP α 0.0199 0.0281 0.0451 0.1530 0.2128 0.3803 0.3622 0.5126 0.5309 0.3435 0.3236

(0.20) (0.31) (0.46) (1.53) (2.00) (3.03) (2.50) (3.15) (2.93) (1.77) (1.75)
βFOP -0.5771 -0.6681 -0.5938 -0.5067 -0.3216 -0.0472 0.3005 0.7490 1.3314 2.1546 2.7317

FF3 + FOP α -0.0866 -0.0988 -0.1161 -0.0481 -0.0267 0.0967 0.0322 0.1415 0.1251 -0.0852 0.0014
(-1.05) (-1.51) (-1.76) (-0.82) (-0.46) (1.57) (0.59) (2.31) (1.70) (-1.16) (0.01)

βFOP -0.5135 -0.6011 -0.5825 -0.5507 -0.4328 -0.2447 0.0186 0.3650 0.8991 1.7263 2.2398
PS + FOP α -0.0882 -0.1058 -0.1225 -0.0573 -0.0445 0.1007 0.0353 0.1431 0.1395 -0.1186 -0.0304

(-1.00) (-1.50) (-1.70) (-0.89) (-0.69) (1.49) (0.59) (2.22) (1.77) (-1.51) (-0.28)
βFOP -0.5461 -0.6436 -0.6208 -0.5741 -0.4528 -0.2488 0.0443 0.3816 0.9370 1.7350 2.2811

CAR + FOP α -0.0810 -0.0747 -0.0875 -0.0093 0.0058 0.1261 0.0617 0.1563 0.1534 -0.0670 0.0140
(-1.02) (-1.38) (-1.61) (-0.20) (0.12) (2.41) (1.20) (2.63) (2.18) (-0.88) (0.13)

βFOP -0.5191 -0.6248 -0.6106 -0.5887 -0.4647 -0.2736 -0.0104 0.3504 0.8713 1.7083 2.2274
FF5 + FOP α -0.0827 -0.0779 -0.0930 -0.0174 -0.0004 0.1237 0.0415 0.1381 0.1302 -0.0943 -0.0116

(-1.06) (-1.41) (-1.63) (-0.33) (-0.01) (2.26) (0.74) (2.37) (1.87) (-1.39) (-0.13)
βFOP -0.3560 -0.4017 -0.3922 -0.3828 -0.2894 -0.1449 0.0451 0.2676 0.7682 1.4993 1.8552

M4 + FOP α -0.1553 -0.1464 -0.1487 -0.0518 -0.0162 0.1263 0.0744 0.2104 0.2220 -0.0057 0.1496
(-1.82) (-2.19) (-2.22) (-0.94) (-0.29) (2.35) (1.40) (3.45) (3.28) (-0.07) (1.38)

βFOP -0.4979 -0.6367 -0.6113 -0.6041 -0.4705 -0.2664 0.0304 0.4048 0.9226 1.7693 2.2671
Q-Factor + FOP α -0.1274 -0.1597 -0.1760 -0.0877 -0.0630 0.0903 0.0518 0.1962 0.2173 -0.0330 0.0944

(-1.24) (-1.78) (-1.91) (-1.04) (-0.74) (0.95) (0.68) (2.27) (2.15) (-0.33) (0.83)
βFOP -0.6537 -0.7599 -0.7162 -0.6970 -0.5550 -0.3421 -0.0651 0.3171 0.8063 1.5810 2.2347

FF6 + FOP α -0.0743 -0.0531 -0.0644 0.0194 0.0306 0.1506 0.0690 0.1504 0.1536 -0.0808 -0.0065
(-0.97) (-1.08) (-1.23) (0.40) (0.63) (2.96) (1.27) (2.65) (2.31) (-1.18) (-0.07)

βFOP -0.3627 -0.4217 -0.4152 -0.4125 -0.3143 -0.1665 0.0229 0.2576 0.7494 1.4885 1.8512

Panel B: Value-weighted sorts

Model Param. Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOP α -0.2079 -0.1266 -0.2001 -0.0684 0.0136 0.1249 0.3884 0.1715 0.3974 0.1761 0.3840

(-2.72) (-2.00) (-3.17) (-0.90) (0.18) (1.32) (3.79) (1.23) (2.30) (1.06) (1.87)
βFOP -0.6294 -0.4044 -0.3783 -0.2568 -0.0650 0.2785 0.6783 1.0244 1.5900 2.3265 2.9559

FF3 + FOP α -0.1355 -0.0715 -0.1646 -0.0723 -0.0265 0.0111 0.2274 -0.0639 0.1048 -0.1428 -0.0072
(-2.01) (-0.99) (-2.81) (-0.98) (-0.37) (0.13) (2.64) (-0.58) (0.87) (-0.90) (-0.04)

βFOP -0.4408 -0.2581 -0.3017 -0.2162 -0.1055 0.1000 0.4339 0.6145 1.0635 1.9225 2.3633
PS + FOP α -0.1322 -0.0754 -0.1722 -0.0791 -0.0594 -0.0098 0.2336 -0.1118 0.0724 -0.2012 -0.0690

(-1.87) (-0.96) (-2.84) (-1.03) (-0.80) (-0.11) (2.46) (-0.89) (0.53) (-1.16) (-0.35)
βFOP -0.4610 -0.2868 -0.3397 -0.2444 -0.1219 0.0954 0.4482 0.6201 1.0879 1.9785 2.4395

CAR + FOP α -0.1532 -0.0795 -0.1748 -0.0708 0.0047 0.0266 0.2425 -0.0632 0.1327 -0.0892 0.0640
(-2.18) (-1.10) (-2.76) (-0.97) (0.07) (0.30) (2.85) (-0.58) (1.10) (-0.57) (0.35)

βFOP -0.4235 -0.2502 -0.2917 -0.2177 -0.1362 0.0848 0.4190 0.6139 1.0360 1.8698 2.2933
FF5 + FOP α -0.1411 -0.0625 -0.1480 -0.0503 -0.0079 0.0369 0.2282 -0.0683 0.0989 -0.1424 -0.0014

(-2.26) (-0.91) (-2.52) (-0.73) (-0.11) (0.47) (2.74) (-0.66) (0.85) (-0.92) (-0.01)
βFOP -0.2746 -0.0764 -0.1518 -0.0883 -0.0849 -0.0267 0.2759 0.3421 0.6910 1.3920 1.6666

M4 + FOP α -0.2456 -0.1491 -0.2023 -0.0835 0.0388 0.1229 0.3361 0.0864 0.3110 0.1009 0.3465
(-3.32) (-2.13) (-2.72) (-0.97) (0.56) (1.43) (3.84) (0.87) (2.64) (0.68) (2.01)

βFOP -0.3986 -0.2440 -0.3099 -0.2519 -0.1973 0.0164 0.3760 0.5902 1.0544 1.7674 2.1660
Q-Factor + FOP α -0.2234 -0.1266 -0.2206 -0.1144 -0.0403 0.0556 0.3165 0.0238 0.2672 -0.0242 0.1992

(-2.82) (-1.54) (-3.20) (-1.44) (-0.49) (0.57) (3.62) (0.23) (2.07) (-0.15) (1.08)
βFOP -0.4313 -0.2880 -0.2672 -0.2066 -0.1593 0.0320 0.3734 0.5773 1.0347 1.6918 2.1231

FF6 + FOP α -0.1535 -0.0673 -0.1564 -0.0487 0.0201 0.0457 0.2390 -0.0732 0.1179 -0.1033 0.0503
(-2.39) (-1.00) (-2.49) (-0.71) (0.29) (0.58) (2.87) (-0.71) (0.99) (-0.67) (0.30)

βFOP -0.2646 -0.0726 -0.1451 -0.0896 -0.1074 -0.0337 0.2672 0.3460 0.6757 1.3605 1.6251

Table 3.8 revisits the univariate portfolio sorts in Table 3.1 with factor models extended by the

mimicking factor FOP . The last column presents the difference in excess returns and respective

alphas between stocks in the highest and the lowest IV ol1MFF3 decile. Panel A presents sorts with

equal weights, in Panel B we weight returns by market capitalization. We hold each portfolio

for one month and record the monthly returns and different factor alphas. For each decile, we

furthermore present the beta with respect to FOP , βFOP . Bold values for βFOP indicate estimates

which are statistically significant at the 10% level. We present the same factor model setup as in

Table 3.1. CAPM is a one factor model, FF3 is the Fama and French (1993) three factor model,

PS is the FF3 model extended by the Pastor and Stambaugh (2003) liquidity factor, CAR is the

Carhart (1997) four factor model and FF5 is the Fama and French (2015) five factor model. Fur-

thermore, M4 is the Stambaugh and Yuan (2017) four factor mispricing model, q-factor is the four

factor model of Hou et al. (2015) and FF6 is the Fama and French (2018) six factor model. Returns

and alphas are reported in % per month. Newey and West (1987) adjusted t-statistics with six

lags in parentheses. The sample period for excess returns and alphas of the models CAPM, FF3,

CAR, FF5, FF6 and M4 is August 1963 to December 2016. The sample period for the PS model is

January 1968 to December 2015. The q-factor alpha covers January 1967 to December 2015.
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is significantly positive at the 10% level level. The same holds true for

the extended CAPM in value-weighted sorts in Panel B. This alpha of 38

bps is even higher and exhibits a t-statistic of 1.87. Without the consid-

eration of additional risk factor, the relationship between IV ol1MFF3 and

subsequent stock returns is positive, in line with Merton (1987). The

alpha of the Stambaugh and Yuan (2017) mispricing model M4 is also

significantly positive in Panel B. This finding challenges the interpretation

of IV ol1MFF3 as mispricing because high IV ol1MFF3 stocks are not overpriced

after adjusting for the latent risk factor FOP .

The portfolio estimates for βFOP are in line with the theoretical con-

siderations in Section 3.2.2. Stocks with high IV ol1MFF3 have a high positive

βFOP . The different signs of βFOP between high and low IV ol1MFF3 stocks

are also consistent with the theoretical predictions of Chen and Petkova

(2012). However, when we consider equal-weighted sorts in Panel A, the

relationship between IV ol1MFF3 and βFOP appears nonlinear for low IV ol1MFF3

deciles. The mimicking factor FOP consistently explains the negative

alpha of high-IV ol1MFF3 stocks, earns a significant risk premium and is not

subsumed by existing risk factors.

3.5.2 Relation to the covariance matrix of stock returns

The mimicking factor FOP tracks the latent factor behind the IV ol puzzle.

Pukthuanthong et al. (2019) propose a two-stage protocol to separate

genuine risk factors from firm characteristics and mispricing. First, a

genuine risk factor is significantly related to the covariance matrix of the
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cross section of stock returns and second, it commands a significant risk

premium with a reasonable Sharpe ratio. We address the first stage in this

Section. The analysis closely follows Pukthuanthong et al. (2019).

To relate risk factor candidates to the covariance matrix of stock re-

turns, Pukthuanthong et al. (2019) adopt the methodology of Connor

and Korajczyk (1988) and compute L = 10 asymptotic PCs from the T × T

matrix Ωt = (1/T)RR′ where R is the matrix of sample stock returns. We

also consider five subsamples: 1963 to 1976 and four decades thereafter

up to 2016. We obtain ten PCs for five sub-periods. The factors under

consideration are the six Fama and French (2018) risk factors Mkt, SMB,

HML, RMW , CMA and MOM as well as the mimicking factor FOP .11

We thus evaluate K = 7 risk factor candidates.

Given the two vectors L and K we compute canonical correlations

between the two vectors. This allows us to test whether the group of factor

candidates is correlated with the PC representation of the covariance

matrix of stock returns. We obtain min(L,K) = 7 orthogonal canonical

variates, sorted from the highest to the smallest correlation between the

PCs and the factor candidates. Table 3.9 summarizes the results for each

of the five sub-periods.

We present canonical correlations between the ten PCs and the risk

factor candidates as well as a z-statistic which tests the null hypothesis
11We also evaluate FOP in the context of other factors in untabulated robustness

checks. We include FOP into the factor models of Stambaugh and Yuan (2017) and Hou
et al. (2015) and also evaluate larger sets of factors. We include several combinations
of non-redundant factors and also consider the Pastor and Stambaugh (2003) liquidity
factor, short-term reversal as well as FMax. FOP passes the required threshold in
contrast to existing factors. This discussion, however, is not subject of this paper. Our
conclusions are robust to the factor choice in the canonical correlation.
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Table 3.9: Risk factor protocol: Canonical correlations.

1963 – 1976 1977 – 1986 1987– 1996 1997 – 2006 2007 – 2016
Canonical Variate Correlation z-Statistic Correlation z-Statistic Correlation z-Statistic Correlation z-Statistic Correlation z-Statistic
1 0.9963 27.9161 0.9962 23.9361 0.9939 22.7353 0.9852 20.3433 0.9958 23.6801
2 0.8877 15.6400 0.8672 12.7499 0.8376 11.8652 0.9079 14.2500 0.6942 8.7133
3 0.8069 12.8680 0.6505 7.9562 0.7343 9.4699 0.7404 9.5929 0.6766 8.4006
4 0.6177 8.6489 0.6186 7.4377 0.5129 5.8761 0.6059 7.2384 0.4577 5.1273
5 0.4790 6.3220 0.3933 4.2918 0.4059 4.4529 0.4011 4.3921 0.3786 4.1066
6 0.3201 3.9781 0.3608 3.8827 0.3514 3.7659 0.3460 3.6986 0.3539 3.7974
7 0.1242 1.1923 0.0741 0.1982 0.2632 2.6797 0.1608 1.4096 0.0993 0.5810

Table 3.9 presents canonical correlations between the six Fama and French (2018) factors plus

the mimicking factor FOP with ten principal components. The risk factors are Mkt, SMB, HML,

CMA, RMW , MOM and FOP and the principal components are extracted according to the

methodology of Connor and Korajczyk (1988) as proposed by Pukthuanthong et al. (2019). We

report canonical correlations in descending order and a z-statistic to test the null hypothesis

that the canonical correlation in the current row equals zero. Bold numbers indicate canonical

correlations which are statistically significant (5% level).

that the canonical correlation in the given row equals zero. Bold figures

indicate canonical correlations which are significant at the 5% level. The

results are similar to Pukthuanthong et al. (2019). The first canonical

variate exhibits a correlation close to one and the first six canonical corre-

lations are statistically significant in each of the sub-periods. From 1987

to 1996, all canonical correlations are statistically significant.

The next step is the actual test whether the factor candidates are signif-

icantly related to the PC representation of the covariance matrix. Given

the seven canonical variates, we regress the canonical variates on the full

set of candidate factors in each sub-period. We thus estimate 35 individ-

ual regressions to evaluate whether the factor candidates are significantly

related to the covariance matrix of stock returns. Panel A of Table 3.10

presents the average absolute t-statistic for each factor candidate as well

as the average absolute t-statistic for canonical correlations which are

statistically significant at the 5% level. Following Pukthuanthong et al.

(2019), the latter is the relevant screening criterion. The risk factor pro-

104



What is the latent factor behind the idiosyncratic volatility puzzle?

Table 3.10: Risk factor protocol: Significance tests.

Panel A: Significance levels of the FF6 factors and FOP
Risk factors

Mkt SMB HML RMW CMA MOM FOP
Mean |t-statistic| 11.3742 7.1479 2.8551 2.0397 1.7010 2.9397 1.9619
Mean |t-statistic| sign. 12.8133 8.0284 3.1405 2.2404 1.8388 3.2671 2.1238

Panel B: Number of |t-statistics| ≥ 1.96 out of 7
Subsample Mkt SMB HML RMW CMA MOM FOP
1963 – 1976 3 5 4 3 4 6 3
1977 – 1986 3 3 2 5 0 4 4
1987 – 1996 3 4 3 3 4 4 3
1997 – 2006 4 3 4 4 5 4 3
2007 – 2016 2 4 4 3 3 3 0
Average # 3 3.8 3.4 3.6 3.2 4.2 2.6

Table 3.10 presents the second stage of the Pukthuanthong et al. (2019) risk factor protocol, i.e. a

test whether factor candidates are significantly correlated with the cross-section of stock returns.

Panel A presents the average absolute t-statistic of a multivariate regression of the canonical

variates in Table 3.9 on the 7 factor candidates. We perform this regression for the five sub-

periods and thus estimate 35 regressions. We further report the mean of significant absolute

t-statistics, i.e. the mean for significant canonical correlations. Panel B presents the number of

absolute t-statistics which exceed the critical value of 1.96 in each of the sub-periods. The last row

reports the average over the sub-periods. Factors which pass the thresholds of Pukthuanthong

et al. (2019), i.e. a mean absolute t-statistic≥ 1.96 in Panel A and an average number of significant

absolute t-statistics ≥ 2.5 in Panel B are presented in bold letters.

tocol requires that the mean of significant absolute t-statistics exceeds

1.96. Risk factor candidates which satisfy this criterion are printed in

bold numbers. Panel B of Table 3.10 presents the second screening cri-

terion. In each subsample, we estimate seven regressions which is the

upper bound for the number of absolute t-statistics which exceed 1.96.

We report the total number of |t-statistics| ≥ 1.96 as well as the average

over all subsamples. Pukthuanthong et al. (2019) impose a threshold of

2.5 for genuine risk factors.12

12Pukthuanthong et al. (2019) originally estimate ten regressions in each subsample,
such that the threshold of 2.5 is more rigorous in our analysis.
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According to Table 3.10, only the conservative-minus-aggressive factor

CMA falls short of the threshold in Panel A. This result is consistent with

Pukthuanthong et al. (2019) who neglect CMA as a genuine risk factor.

FOP , however, exhibits a mean absolute t-statistic higher than 1.96 in

Panel A and an average number of 2.6 in Panel B. FOP passes the first

stage of the risk factor protocol.

3.5.3 Is FOP priced?

In the second stage, the risk factor protocol requires that the risk factor

under consideration earns a significant risk premium within reasonable

bounds. Thus, we include βFOP as an additional risk factor to the risk

factor betas of the models FF3 and FF6. Following Lewellen et al. (2010),

we use different test assets in Fama and MacBeth (1973) regressions.13

The test assets are 25 portfolios sorted by Size and Operating Profitability

(5x5) in Panel A, 25 portfolios sorted by Size and CAPM Beta (5x5) in

Panel B and 32 portfolios sorted by Size, Book-to-Market and Investment

(2x4x4) in Panel C. The test assets are also used in Fama and French (2015,

2018). In each analysis, we include the risk factors as dependent variables,

as suggested by Lewellen et al. (2010) as well. We report full sample

beta estimates in Column (1) to (6) and 5-year rolling window betas in

Column (7) to (12). Other than that, Table 3.11 is identical to the Fama
13In untabulated robustness checks we perform Fama and MacBeth (1973) regres-

sions in the cross-section of stock returns and find a significant risk premium on βFOP .
However, the nonlinearity becomes more severe in the cross-section of stock returns,
also shown in Barinov (2018). Since high IV ol1MFF3 stocks are very illiquid with a high
fraction of zero returns, a precise estimation of βFOP presents another challenge for
future research.
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and MacBeth (1973) regression in Section 3.4.2.

First, we consider the univariate analyses in Columns (1), (4), (7) and

(10). The negative coefficient on βFOP is significantly negative with t-

statistics beyond minus three with two exceptions. In Column (4) of Panel

A, the average coefficient on βFOP of -0.27 exhibits a t-statistic of -2.09.

Furthermore, βFOP is insignificant in Column (10) . In both cases, however,

t-statistics increase in absolute terms as soon as we control for the FF6 risk

factors such that both coefficients are significant at conventional levels.

In multivariate analyses, βFOP is always statistically significant with a

negative risk premium. Although this premium depends on the set of test

assets, it exhibits a similar magnitude around -45 bps. The inclusion of

βFOP alleviates alphas of the base assets in several cases of the full sample

beta analysis. In Panel A, comparing Column (2) and (3), the negative

Intercept of -0.1275 with a t-statistic of -4.98 becomes insignificant as

soon as we include βFOP . Similarly, in Panel C, the FF3 and the FF6 models

both leave a significant negative Intercept in case of full sample betas.

Including βFOP into both of the models leads to insignificant Intercepts

in Column (3) and (6). We conclude that βFOP is priced with a significant

risk premium in multiple test assets.

Finally, MacKinlay (1995) proposes an upper bound of 0.6 for the

annual Sharpe ratio for the tangency portfolio. Since FOP is a zero-

investment portfolio, we follow Pukthuanthong et al. (2019) and combine

FOP with the market portfolio to test whether the resultant Sharpe ratio

is greater than 0.6. The annualized Sharpe ratio of 0.0455 is well below

this threshold. To rule out that the underlying characteristic itself violates
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Table 3.11: Fama and MacBeth (1973) portfolio regressions with FOP.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A: Size/ Operating Profitability 5x5

Full Sample Betas 5-year rolling window betas
Intercept 0.5507 -0.1275 -0.0371 0.5738 0.0717 0.0557 0.5867 -0.0555 -0.0168 0.5864 0.1521 0.1134

(2.70) (-4.98) (-0.99) (3.02) (2.97) (2.35) (2.85) (-1.27) (-0.45) (3.12) (4.71) (4.23)
βFOP -0.4475 -0.3885 -0.2721 -0.3103 -0.4476 -0.3384 -0.1136 -0.2094

(-4.50) (-3.91) (-2.09) (-3.04) (-5.14) (-4.63) (-1.30) (-2.93)
βMkt 0.5996 0.5132 0.4694 0.4543 0.5231 0.4813 0.3887 0.4208

(2.95) (2.48) (2.31) (2.23) (2.71) (2.45) (1.92) (2.08)
βSMB 0.1821 0.1600 0.0964 0.1376 0.1733 0.2027 0.1487 0.1651

(1.35) (1.20) (0.73) (1.06) (1.35) (1.59) (1.16) (1.31)
βHML 0.4493 0.3506 0.3613 0.3133 0.2792 0.3171 0.2634 0.2818

(2.91) (2.36) (2.32) (2.08) (1.67) (2.06) (2.10) (2.17)
βCMA 0.2217 0.2657 0.1346 0.1839

(2.13) (2.51) (1.61) (2.18)
βRMW 0.2551 0.2381 0.2088 0.2135

(2.17) (2.07) (2.05) (1.99)
βMOM 0.5348 0.5745 0.3989 0.4502

(2.80) (3.03) (2.16) (2.50)

avg.R
2

in % 6.57 52.41 61.23 1.82 67.26 70.53 4.13 55.23 59.35 0.79 67.00 68.97
Panel B: Size/ Beta 5x5

Full Sample Betas 5-year rolling window betas
Intercept 0.5620 -0.1302 -0.0765 0.5564 -0.2379 -0.0860 0.5898 -0.0283 -0.0031 0.5713 0.0120 0.0580

(2.73) (-4.39) (-2.03) (3.06) (-4.87) (-2.32) (2.89) (-0.67) (-0.08) (3.14) (0.35) (1.80)
βFOP -0.3723 -0.3761 -0.5378 -0.3153 -0.2979 -0.2914 -0.2925 -0.2761

(-3.54) (-4.06) (-4.85) (-3.73) (-3.18) (-4.06) (-3.36) (-3.87)
βMkt 0.5771 0.4859 0.6525 0.5254 0.5068 0.4767 0.5169 0.4637

(2.84) (2.33) (3.24) (2.55) (2.53) (2.36) (2.54) (2.27)
βSMB 0.1388 0.2302 0.2480 0.2366 0.1528 0.1736 0.1750 0.1780

(1.07) (1.80) (1.89) (1.80) (1.19) (1.35) (1.37) (1.39)
βHML 0.8314 0.5562 0.6839 0.4651 0.4917 0.4355 0.3311 0.3011

(4.59) (3.77) (3.53) (2.84) (2.90) (2.95) (2.26) (2.16)
βCMA 0.4988 0.4027 0.2668 0.2639

(4.03) (3.50) (2.65) (2.78)
βRMW 0.4738 0.2603 0.1447 0.1191

(2.88) (2.02) (1.46) (1.12)
βMOM 0.8905 0.7305 0.5589 0.5084

(4.39) (3.64) (2.89) (2.79)

avg.R
2

in % 5.35 55.14 60.85 2.64 65.29 67.88 5.77 56.19 60.60 3.30 65.13 67.95
Panel C: Size/ Book-to-Market/ Investment 2x4x4

Full Sample Betas 5-year rolling window betas
Intercept 0.5782 -0.0448 0.0120 0.5900 -0.1344 -0.0311 0.6161 0.0278 0.0456 0.5990 0.0644 0.0703

(2.92) (-2.11) (0.48) (3.27) (-6.17) (-1.29) (3.09) (1.05) (1.68) (3.30) (2.58) (2.79)
βFOP -0.4608 -0.4322 -0.5977 -0.3962 -0.3112 -0.2940 -0.2863 -0.2951

(-4.99) (-5.47) (-5.15) (-5.05) (-6.10) (-5.45) (-5.14) (-4.76)
βMkt 0.5728 0.4467 0.5858 0.4850 0.4793 0.4518 0.4653 0.4472

(2.83) (2.19) (2.92) (2.42) (2.54) (2.38) (2.39) (2.28)
βSMB 0.1727 0.2421 0.2253 0.2350 0.1923 0.2015 0.1675 0.1819

(1.35) (1.90) (1.75) (1.83) (1.52) (1.59) (1.32) (1.44)
βHML 0.3115 0.2778 0.3671 0.3083 0.2509 0.2587 0.2857 0.2910

(2.06) (1.87) (2.39) (2.06) (1.83) (1.88) (2.11) (2.14)
βCMA 0.3703 0.3543 0.2491 0.2570

(3.76) (3.61) (2.93) (3.00)
βRMW 0.4598 0.2767 0.0782 0.1415

(3.36) (2.32) (0.85) (1.44)
βMOM 0.7777 0.6889 0.4651 0.4800

(4.09) (3.60) (2.72) (2.81)

avg.R
2
in % 2.24 48.59 50.35 1.44 58.94 59.81 0.69 46.88 48.89 0.40 57.29 59.07

Table 3.11 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio

level regressions of excess returns in month t + 1 the factor model betas of the Fama and French

(1993) three factor model (FF3), the Fama and French (2018) six factor model (FF6) and both

models extended by the mimicking factor FOP in month t. Columns (1) to (6) contain full sam-

ple betas and Columns (7) to (12) cover 5-year rolling window estimations with monthly data.

We use the following base assets as dependent variables: 25 portfolios sorted by Size and oper-

ating profitability (5x5) in Panel A, 25 portfolios sorted by Size and beta (5x5) in Panel B and

32 portfolios sorted by Size, book-to-market and investment (2x4x4) in Panel C. The base assets

are sorted according to the methodology in Fama and French (2015). Average coefficients are

multiplied by one hundred and the factor portfolios of the respective model are included among

the test assets. We report the average cross-sectional adjusted r-squared avg.R
2

in %. t-statistics

calculated from Newey and West (1987) standard errors with six lags in parentheses. The sample

period is August 1963 to December 2016 in Columns (1) to (6) and June 1968 to December 2016

in Columns (7) to (12).
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this threshold, we repeat the analysis and combine the IV ol1MFF3 decile

hedge portfolio in Table 3.1. This combination exhibits an annualized

Sharpe ratio of 0.13, also well below the upper bound of 0.6.

The latent factor behind the IV ol puzzle satisfies all criteria of a

genuine risk factor. The mimicking factor FOP is significantly related to

the covariance matrix of stock returns and earns a negative risk premium

within reasonable bounds. We conclude that the IV ol puzzle is the result

of latent systematic risk and address potential sources of this risk in the

following Section.

3.6 Testing economic drivers behind the IVol

puzzle

3.6.1 Arbitrage constraints versus behavioral

explanations

Having shown that FOP alleviates the IV ol puzzle and is attributable

to systematic, yet unidentified risk, we can address potential sources of

this risk. First, to facilitate the quest for the source of the IVol puzzle, we

discriminate between arbitrage constraints (e.g. Frazzini and Pedersen,

2014; Asness et al., 2019) and behavioral explanations (e.g. Bali et al.,

2011, 2017; Liu et al., 2018) as the two major theoretical propositions to

the underperformance of high-risk stocks.

Following Asness et al. (2019), we run time series regressions of the

mimicking factor FOP on proxies for arbitrage constraints and investor
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sentiment. The dependent variable is FOP in month t as well as one

month ahead t + 1. Proxies for arbitrage constraints cover the Ted Spread

and Margin Debt of NYSE customers in relation to the NYSE market capi-

talization. A high Ted Spread indicates tight funding liquidity conditions

while low Margin Debt is tantamount to tight leverage constraints (see

Frazzini and Pedersen, 2014; Jacobs, 2015; Asness et al., 2019). Thus,

the expected sign is negative for the Ted Spread and positive for Margin

Debt. The two measures for investor sentiment are the Baker and Wurgler

(2006) (BW) Investor Sentiment Index and Equity Fund Flows in Billion

USD as the net flows into US equity mutual funds. Brown et al. (2002)

and Da et al. (2015) provide evidence that flows to equity funds are an

instrument for investor sentiment. We expect a negative sign for both

sentiment proxies since the IV ol puzzle is stronger during periods of high

investor sentiment (Stambaugh et al., 2015). We control for the economic

state by including the CFNAI index.14 All coefficients are multiplied with

one hundred. The sample period is 1986 to 2016 in Columns (1) and (6),

1967 to 2016 in Columns (2) and (7), 1965 to 2015 in Columns (3) and

(8) and 1993 to 2015 in Columns (4), (5), (9) and (10). The t-statistics in

parentheses are calculated from Newey and West (1987) standard errors

with six lags.

The results in Table 3.12 support behavioral explanations for the risk

factor behind the IV ol puzzle. While the Ted Spread is overall insignifi-

cant, the coefficient for Margin Debt is mostly statistically significant, but

switches signs. The sign on Margin Debt is significantly positive in the
14Excluding CFNAI yields identical results with respect to the variables of interest.
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Table 3.12: Arbitrage constraints versus behavioral explanations.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
FOPt FOPt+1

Ted Spread 5.2124 24.2808 7.5907 42.4575
(0.34) (0.91) (0.43) (1.13)

Margin Debt 188.8351 72.9243 139.0789 -499.5209
(2.49) (0.33) (1.87) (-1.96)

BW Sentiment -0.1300 -0.5592 -0.1194 -0.4946
(-2.16) (-2.70) (-2.24) (-2.48)

Equity Fund Flows -0.0001 0.0122 -0.0160 -0.0251
(-0.01) (0.91) (-1.72) (-1.81)

CFNAI -0.1235 -0.0524 -0.0717 -0.1673 -0.1143 -0.1893 -0.0200 -0.0368 -0.1870 -0.1469
(-1.45) (-1.07) (-1.52) (-2.20) (-0.86) (-1.79) (-0.31) (-0.56) (-1.82) (-1.03)

Intercept -0.5311 -0.8766 -0.5632 -0.4378 -0.5780 -0.5531 -0.7922 -0.5640 -0.4423 0.5332
(-4.75) (-7.12) (-10.25) (-4.29) (-1.11) (-4.90) (-6.53) (-10.15) (-4.25) (0.92)

N 372 598 583 287 272 371 597 583 286 272

Table 3.12 presents time series regressions of the mimicking factor FOP on predictor variables

for constraints to arbitrage and investor sentiment. We include the following variables: The Ted

spread, Margin Debt of NYSE customers in relation to NYSE market capitalization, the Baker

and Wurgler (2006) (BW) Investor Sentiment Index, Fund Flows as the net flow of equity minus

bond mutual fund flows and the Chicago Fed National Activity Index CFNAI. All coefficients are

multiplied with one hundred. The sample period is 1986 to 2016 in Columns (1) and (6), 1967 to

2016 in Columns (2) and (7), 1965 to 2015 in Columns (3) and (8) and 1993 to 2015 in Columns

(4), (5), (9) and (10). t-statistics calculated from Newey and West (1987) standard errors with six

lags in parentheses.

bivariate analyses in Columns (2) and (7) with t-statistics of 2.49 and 1.87,

but becomes insignificant once we include alternative proxies in Column

(5). In Column (10), Margin Debt is even significantly negative with a

coefficient of -499.52 and a t-statistic of -1.96. By and large, the evidence

with respect to arbitrage constraints is inconclusive at best.

Conversely, the coefficients on BW Sentiment are significantly negative

in each Column with t-statistics of -2.16 and -2.24 in the bivariate analy-

sis in Columns (3) and (8) as well as -2.70 and -2.48 in the multivariate

analysis in Columns (5) and (10). Equity Fund Flows are unrelated to

contemporary FOPt, but negatively predict FOPt+1 bivariately and mul-

tivariately in Columns (9) and (10). Both findings are consistent with a

behavioral explanation for the IV ol puzzle and in line with Asness et al.
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(2019) who relate IV ol to behavioral factors as well. We thus focus on

behavioral explanations for the IV ol puzzle.

3.6.2 Sentiment, noise traders and the IVol puzzle

The negative relationship between BW Investor Sentiment and FOP is

consistent with a strand of literature which relates IV ol to noise trading

(e.g. Foucault et al., 2011; Aabo et al., 2017). Black (1986) and De Long

et al. (1990) provide a theoretical framework in which sentiment or noise

traders trade on a noisy signal – for example sentiment – and expose

arbitrageurs who encounter limits to arbitrage to systematic noise trader

risk. As a consequence, changes in investor sentiment lead to greater

mispricing and temporary volatility spikes (see Da et al., 2015; Brown,

1999). A formal test of this economic mechanism requires that FOP shares

the predictive power of investor sentiment with respect to market-wide

mispricing and is positively related to short-term volatility.

To test the first implication above, we make use of the explanatory

power of BW Investor sentiment with respect to stock market anoma-

lies. Stambaugh et al. (2012) and Jacobs (2015) show that several well-

documented stock market anomalies are stronger during periods of high

sentiment. If FOP represents noise trader risk, we expect that the results

of Stambaugh et al. (2012) for BW Investor Sentiment translate to FOP ,

but with an opposite sign. Thus, anomalous returns are expected to be

higher during periods of more negative FOP , tantamount to high levels

of noise trader risk given the negative risk premium on FOP .
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Following Stambaugh et al. (2012), we run the time series regression

ri,t = αHdH,t +αLdL,t + βMktMkt + βSMBSMB+ βHMLHML+ εi,t, (3.10)

where dH,t (dL,t) is an indicator variables which is equal to one if BW

Investor Sentiment or FOP are above (below) the sample median and

zero otherwise.15 We furthermore include the FF3 risk factors in order

to compare our results to Stambaugh et al. (2012). Average benchmark-

adjusted returns in the different states are the estimates on αH and αL.

The left-hand side assets are spread portfolios of the anomalies considered

in Stambaugh et al. (2012, 2015).16

Table 3.13 presents the coefficient estimates on the indicator variables

dH,t and dL,t, separately for BW Investors Sentiment (Sent) and FOP . We

furthermore report the difference between high and low periods of Sent

(FOP ) and the corresponding t-statistic for the null hypothesis that this

difference equals zero. The t-statistics in parentheses are computed from

Newey and West (1987) standard errors with six lags. All coefficients are
15Stambaugh et al. (2012) use lagged sentiment to compute the indicator variables

which yields almost identical results.
16Stambaugh et al. (2012, 2015) consider the following anomalies: Total Accruals as

changes in working capital minus depreciation expense (Sloan, 1996), Asset Growth as
the total growth rate of assets in the previous fiscal year (Cooper et al., 2008), Composite
Stock Issue as the growth in market equity which is not attributable to stock returns
(Daniel and Titman, 2006), Failure Probability as the expected default probability from
a logit model (Campbell et al., 2008), Gross Profitability as the ratio of gross profits to
assets (Novy-Marx, 2013), Investment-to-Asset as the annual change in gross property,
plant and equipment plus inventories, scaled by lagged book value of assets (Titman et al.,
2004), Momentum as the cumulative return over the previous eleven months (Jegadeesh
and Titman, 1993), Net Operating Assets as the cumulative difference between operating
income and free cash flow (Hirshleifer et al., 2004), the O-Score as a probability of
bankruptcy from a static model with accounting data (Ohlson, 1980), Return on Assets
as the ratio of quarterly earnings to last quarter’s assets (Chen et al., 2011) and Net
Stock Issue of Ritter (1991) as the growth rate of split-adjusted shares outstanding (see
Stambaugh et al., 2015, pp. 1942–1944). For details regarding the measurement of the
anomalies, we refer to Stambaugh et al. (2015).
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Table 3.13: FOP, sentiment and unrelated anomalies.

BW Investor Sentiment FOP
Anomaly High Low High–Low High Low High–Low
Total Accruals 0.2166 (1.08) 0.7382 (4.20) -0.5216 (-2.17) 0.7032 (3.40) 0.2235 (1.15) 0.4797 (1.73)
Asset Growth 0.3489 (2.08) 0.1253 (0.88) 0.2236 (1.03) 0.0036 (0.02) 0.4958 (2.83) -0.4922 (-1.96)
Composite Equity Issue 0.5691 (3.39) 0.3480 (2.61) 0.2211 (1.04) 0.2615 (1.61) 0.6782 (4.60) -0.4167 (-1.89)
Failure Probability 1.7865 (5.88) 0.5405 (2.08) 1.2461 (3.17) 0.4527 (1.56) 2.0631 (5.69) -1.6104 (-3.22)
Gross Profitability 0.8285 (5.23) 0.5144 (3.01) 0.314 (1.39) 0.3990 (2.29) 0.9755 (5.39) -0.5765 (-2.19)
Investment-to-Assets 0.4090 (2.35) 0.4610 (2.97) -0.052 (-0.23) 0.5090 (3.16) 0.3537 (1.91) 0.1553 (0.63)
Momentum 1.6668 (5.06) 1.4781 (3.89) 0.1887 (0.37) 1.2402 (2.83) 1.9351 (5.32) -0.695 (-1.08)
Net Operating Assets 0.7590 (4.27) 0.2364 (1.47) 0.5226 (2.28) 0.3784 (2.19) 0.6470 (3.53) -0.2686 (-1.10)
O-Score 0.6265 (4.28) 0.2035 (1.29) 0.423 (2.00) 0.2247 (1.33) 0.6359 (4.39) -0.4112 (-1.85)
Return on Assets 1.1642 (5.49) 0.5215 (2.16) 0.6427 (2.21) 0.1305 (0.53) 1.6573 (6.60) -1.5268 (-4.23)
Net Stock Issue 0.7188 (4.67) 0.4952 (3.80) 0.2236 (1.12) 0.5022 (3.25) 0.7282 (5.11) -0.226 (-1.05)

Table 3.13 presents average FF3 alphas of the 11 anomalies in Stambaugh et al. (2012, 2015)

during periods of high and low investor sentiment (FOP) as well as the difference between high

and low periods. High (low) periods are defined as months in which Baker and Wurgler (2006)

Investor Sentiment or FOP are higher (lower) than the sample median. Periods of low FOP are

tantamount to periods of high noise trader risk. Stambaugh et al. (2012, 2015) consider the

following anomalies: Total Accruals as changes in working capital minus depreciation expense,

Asset Growth as the total growth rate of assets in the previous fiscal year, Composite Stock Issue

as the growth in market equity which is not attributable to stock returns, Failure Probability as

the expected default probability from a logit model, Gross Profitability as the ratio of gross profits

to assets, Investment-to-Asset as the annual change in gross property, plant and equipment plus

inventories, scaled by lagged book value of assets, Momentum as the cumulative return over the

previous eleven months, Net Operating Assets as the cumulative difference between operating

income and free cash flow, the O-Score as a probability of bankruptcy from a static model with

accounting data, Return on Assets as the ratio of quarterly earnings to last quarter’s assets and

Net Stock Issue as the growth rate of split-adjusted shares outstanding (see Stambaugh et al.,

2015, pp. 1942–1944). The sample period is 1963 to 2016 except for the anomalies Accruals,

Failure Probability and Return on Assets which start in 1966, 1973 and 1971, respectively. t-

statistics calculated from Newey and West (1987) standard errors with six lags in parentheses.

presented in % per month. The sample period is 1963 to 2016 except for

the anomalies Accruals, Failure Probability and Return on Assets which

start in 1966, 1973 and 1971, respectively. The results for the different

BW Investor Sentiment regimes resemble the findings of Stambaugh et al.

(2012). For five anomalies, the difference between benchmark-adjusted

returns in the two sentiment regimes is statistically significant at the

five percent level. Except for Total Accruals, anomaly spread returns are

higher during periods of high sentiment, consistent with the hypothesis
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that overpricing is more likely to prevail when individual investors are op-

timistic.17 However, the Total Accruals anomaly is exposed to sentiment

as well with a difference of roughly -52 bps (t-statistic = -2.17).

Consistent with the noise trading hypothesis, the difference between

high and low sentiment periods translate to FOP . Anomalies which are

exposed to sentiment tend to have significant exposure to FOP and thus

significantly different average returns in the two FOP regimes. This differ-

ence has the exact opposite sign compared to the BW Investor Sentiment

regimes and is statistically significant for seven out of eleven anomalies.

Comparing the magnitude of the difference further supports the hypothe-

sis that FOP represents noise trader risk due to sentiment. For example,

in case of Failure Probability which exhibits the highest difference be-

tween high and low sentiment regimes with 125 bps (t-statistic = 3.17),

we find that FOP has the largest effect of all anomalies with -161 bps and

a t-statistic of 3.22. Furthermore, the five anomalies Asset Growth, Com-

posite Equity Issue, Failure Probability, O-Score and Return on Assets

only prevail in the high noise trading regime, i.e. when FOP is below the

sample median.18

The second implication of the proposed economic mechanism requires

that noise trading is positively related to temporary volatility increases

(De Long et al., 1990; Da et al., 2015). To illustrate that this effect is

short-lived, we compute a daily counterpart of FOP and daily changes in
17The different sign is likely due to different data for the anomaly spreads and a more

recent vintage of BW Investor Sentiment.
18Including FOP into the FF3 model alleviates the alphas on the anomalies Asset

Growth, Failure Probability and O-Score. Since the latter two are also considered
low-risk anomalies, this evidence further supports our findings.
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Table 3.14: Noise trader risk and volatility.

GARCHd GARCHd+1 GARCHd+2 GARCHd+3 GARCHd+4 GARCHd+5 FOP
neg
d FOP

neg
d+1 FOP

neg
d+2 FOP

neg
d+3 FOP

neg
d+4 FOP

neg
d+5

FOPneg 0.0438 -0.0071 0.0033 -0.0037 -0.0045 -0.0009
(3.11) (-0.41) (0.37) (-0.42) (-0.64) (-0.13)

GARCH 0.1355 -0.0443 -0.0137 0.0257 0.0303 -0.0232
(4.68) (-1.34) (-0.57) (1.14) (1.35) (-1.07)

ADS 0.2873 0.1752 0.0619 -0.0080 -0.0085 0.0854 0.5648 0.5721 0.6000 0.5741 0.6340 0.7759
(0.97) (0.55) (0.21) (-0.03) (-0.03) (0.29) (1.62) (1.64) (1.72) (1.67) (1.84) (2.24)

EPU 0.0084 0.0027 -0.0014 -0.0041 -0.0040 0.0003 -0.0003 -0.0020 -0.0016 -0.0028 -0.0005 0.0043
(2.44) (0.96) (-0.67) (-1.90) (-1.84) (0.10) (-0.11) (-0.62) (-0.48) (-0.86) (-0.15) (1.25)

Table 3.14 presents results from time series regressions of changes in daily volatility (GARCH)

on FOP and vice versa over different leads of the dependent variable. We estimate daily condi-

tional variance from an asymmetric GARCH(1,1) model as proposed by Glosten et al. (1993). We

control for the Aruoba et al. (2009) (ADS) business cycle index as well as a news-based policy

uncertainty index (EPU) as proposed by Baker et al. (2016). The sample period is January 1985

to December 2016. t-statistics calculated from Newey and West (1987) standard errors with six

lags in parentheses.

volatility of the market portfolio from an asymmetric GARCH(1,1) model

rd = a+ b · rd−1 + εd , (3.11)

σ2
d =ω+α1ε

2
d +α2σ

2
d−1 + β · I · ε2

d , (3.12)

where rd is the daily return of the CRSP market portfolio and I is an

indicator variable which is equal to one if εd−1 > 0 (see Glosten et al.,

1993). We take the square root of σ2
d and include first differences. For

the ease of interpretation we include the negative of FOP such that a

higher level of FOP neg is equivalent to higher levels of noise trader risk.

Following Da et al. (2015), we control for daily economic conditions and

policy uncertainty by including the Aruoba et al. (2009) business cycle

index (ADS) and the Baker et al. (2016) policy uncertainty index (EPU).

The t-statistics in parentheses are computed from Newey and West (1987)

standard errors with six lags. All coefficients are multiplied by 104. The

sample period is January 1985 to December 2016. The contemporaneous

relationship between noise trader risk and aggregate volatility is signifi-
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cantly positive at conventional levels in both directions. High noise trader

risk today is associated with high volatility in the market portfolio today

and vice versa with t-statistics well beyond three. Consistent with noise

trading, this effect is short-lived and thus insignificant over the following

five trading days. While policy uncertainty is unrelated to FOP , the ADS

business cycle index is weakly positively related to FOP neg .

FOP resembles the explanatory power of BW Investor sentiment with

respect to asset pricing anomalies, in line with the findings of Stambaugh

et al. (2012) and Jacobs (2015). Anomalies earn higher average FF3 alphas

when arbitrageurs are exposed to high levels of noise trading risk and

market-wide mispricing is more likely to prevail. As suggested from

the theoretical model of De Long et al. (1990), higher noise trader risk

contributes to temporary increases in volatility. Both findings support the

noise trading hypothesis as an explanation for the IV ol puzzle.

3.7 Robustness checks

3.7.1 OP and the choice of base assets

The framework of MacKinlay (1995) and MacKinlay and Pastor (2000)

is agnostic with respect to the assets which constitute OP . Constructing

OP from the residuals of 25 Size-IV ol1MFF3 portfolios might be subject to

the concern that the baseline results depend on this particular choice and

thus, OP could be tautology.

We extend the set of portfolios which generate the residuals to form
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Table 3.15: Fama and MacBeth (1973) regressions with OP from different
portfolios.

Panel A: Explaining 25 Size-IV ol portfolios with OP from 25 Size-BM portfolios

Model Intercept IV ol1MFF3 βOPBM βMkt βSMB βHML avg.R
2

in %

(1) 0.1570 (4.26) -55.791 (-3.20) 0.4827 (2.68) 0.0985 (0.72) 0.8113 (4.94) 55.38
(2) 0.6015 (4.40) 59.9537 (1.45) -0.5842 (-3.00) 26.40
(3) 0.6852 (3.84) -0.4661 (-1.80) 20.21
(4) 0.0130 (0.35) -0.9493 (-0.06) -0.7000 (-4.91) 0.5854 (3.10) 0.2190 (1.57) 0.6599 (4.23) 59.27
(5) 0.0099 (0.28) -0.7022 (-4.89) 0.5736 (2.97) 0.2212 (1.57) 0.6841 (4.27) 59.45

Panel B: Explaining 25 Size-IV ol portfolios with OP from 25 Size-Mom portfolios

Model Intercept IV ol1MFF3 βOPMom βMkt βSMB βHML avg.R
2

in %

(6) 0.1529 (4.00) -50.802 (-3.04) 0.4752 (2.61) 0.0916 (0.68) 0.7514 (4.56) 55.89
(7) 0.6247 (4.70) 10.3992 (0.25) -0.2874 (-2.29) 23.57
(8) 0.6305 (3.56) -0.2866 (-1.63) 17.52
(9) 0.0825 (2.16) -23.680 (-1.59) -0.2547 (-2.56) 0.5245 (2.75) 0.1436 (1.04) 0.6715 (4.30) 60.13
(10) 0.0774 (2.06) -0.2703 (-2.70) 0.4734 (2.43) 0.1429 (1.03) 0.6907 (4.30) 60.30

Table 3.15 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio

level regressions of excess returns in month t + 1 on IV ol1MFF3, the sensitivity βOPP F to the latent

factorOP and the factorsMkt, SMB andHML of the Fama and French (1993) three factor model.

The subscript P F indicates the portfolios which generate residuals to from OP . We use three sets

of double sorted portfolios: In Panel A, we use the residuals of 25 portfolios sorted by Size and

Book-to-Market (Size-BM) to form OP , add OP to the FF3 factors and estimate the extended FF3

model to explain returns of 25 Size-IV ol portfolios. Panel B uses 25 portfolios sorted by Size and

Momentum (Size-Mom) to form OP . We estimate betas over the full sample. The sample period

is July 1964 to December 2016. We report the average cross-sectional adjusted r-squared avg.R
2

in %. Average coefficients are multiplied by one hundred and the factor portfolios Mkt, SMB

and HML are included among the test assets. t-statistics calculated from Newey and West (1987)

standard errors with six lags in parentheses.

OP . We use the daily FF3 residuals of 25 portfolios sorted by Size and

Book-to-Market (BM) as well Size and Momentum (Mom) to construct

OPP F according to Equation (3.7).19 The subscript P F indicates the port-

folios which generate the residuals for OP . Next, we add OPP F to the FF3

factors, estimate the model for 25 Size-IV ol1MFF3 portfolios and re-evaluate

the analysis in Table 3.3 which relies on full sample beta estimates. Panel

A (B) of Table 3.15 presents the results for 25 Size-BM (Size-Mom) portfo-

lios and is otherwise identical to the baseline analysis.
19In untabulated robustness checks we also consider other sort variables and draw

identical conclusions.
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In Models (1) and (6), the FF3 model leaves a significant coefficient

on IV ol1MFF3 with a magnitude of -55.79 (t-statistic = -3.20) and -50.80

(t-statistic = -3.05), respectively. The inclusion of βOPP F explains these

negative coefficients. This holds true in the bivariate analysis in Models

(2) and (7) as well as the multivariate analysis in Models (4) and (9) which

controls for the FF3 risk factor betas. In general, Panel A is similar to

the baseline analysis and the inclusion of βOPBM does not only alleviate

IV ol1MFF3, but also fully explains the Intercept of the 25 Size-IV ol1MFF3 port-

folios. The reduction of the Intercept extends to Panel B, although the

Intercept remains statistically significant in Models (9) and (10). The find-

ing that the latent factor OP alleviates the IV ol puzzle is independent of

the assets which constitute OP .

3.7.2 FOP versus FIVOL

To address the concern that OP and thus FOP are statistical transfor-

mations of IV ol itself, we directly form two factor candidates on IV ol,

referred to as FIVOL. For the first factor FIVOL2x3 we follow the sorting

procedure of Fama and French (1993). Each month, we sort stocks into

two groups based on market capitalizations with NYSE breakpoints and

then further sort stocks into three IV ol groups. The IV ol breakpoints

are the 30th and the 70th percentile. The second factor FIVOL10 is a

value-weighted portfolio which is long in the highest IV ol decile and

short in the lowest IV ol decile.

Table 3.16 presents correlations between FOP , the two IV ol factors
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Table 3.16: FOP versus FIVOL: Correlations.

- FOP FIVOL2x3 FIVOL10 IV ol Dec 1 IV ol Dec 2 IV ol Dec 3 IV ol Dec 4 IV ol Dec 5 IV ol Dec 6 IV ol Dec 7 IV ol Dec 8 IV ol Dec 9

FIVOL2x3 0.5362
FIVOL10 0.5249 0.9322
IV ol Dec 1 -0.2149 0.2506 0.1532
IV ol Dec 2 -0.1227 0.3902 0.3295 0.8929
IV ol Dec 3 -0.1032 0.4605 0.4073 0.8657 0.9306
IV ol Dec 4 -0.0641 0.5235 0.4654 0.8364 0.9057 0.9374
IV ol Dec 5 -0.0141 0.6005 0.5372 0.7994 0.8852 0.9233 0.9333
IV ol Dec 6 0.0599 0.6941 0.6269 0.7484 0.8387 0.8849 0.9021 0.9263
IV ol Dec 7 0.1315 0.7602 0.6979 0.7155 0.8199 0.862 0.8814 0.9152 0.9323
IV ol Dec 8 0.1829 0.8367 0.7478 0.6638 0.7699 0.8152 0.8438 0.8793 0.9186 0.9448
IV ol Dec 9 0.2519 0.8674 0.794 0.6183 0.7321 0.7803 0.8087 0.8589 0.8998 0.9301 0.9439
IV ol Dec 10 0.3465 0.8892 0.9038 0.5613 0.6626 0.7160 0.7519 0.7960 0.8491 0.8943 0.9138 0.9327

Table 3.16 presents correlations between FOP , the two IV ol factors FIVOL2x3 and FIVOL10 as

well as value-weighted IV ol decile portfolios. The superscripts indicate the sorting methodology

which is used to construct IV ol factors: FIVOL2x3 is constructed according to the methodology

of Fama and French (1993) as the intersection of two Size and three IV ol portfolios. FIVOL10

is the high-minus low portfolio from the value-weighted IV ol decile sorts. The sample period is

August 1963 to December 2016.

FIVOL2x3 and FIVOL10 as well as the value-weighted IV ol1MFF3 decile

portfolios which are the left-hand side assets in Table 3.8. The sample pe-

riod is August 1963 to December 2016. The correlation between FOP and

the two IV ol factors is moderate and amounts to 0.5362 for FIVOL2x3 and

0.5249 for FIVOL10, respectively. In contrast, FIVOL2x3 and FIVOL10

are close to perfectly correlated with a correlation coefficient of 0.9322.

The correlation between FOP and the decile portfolios is moderate as well

and increases monotonically from -0.2149 for the lowest to 0.3465 to the

highest decile. Clearly, FOP is not an IV ol factor in disguise.

To further emphasize this conclusion, Table 3.17 presents spanning

regressions in the spirit of Barillas and Shanken (2017, 2018) for FOP

and the two IV ol factors FIVOL2x3 and FIVOL10. We explain each asset

pricing factor with the two remaining factors extended by the FF3 risk

factors. We present t-statistics from Newey and West (1987) adjusted

standard errors with six lags in parentheses. The sample period is August

1963 to December 2016.
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Table 3.17: FOP versus FIVOL: Spanning regressions.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
FOP FIVOL2x3 FIVOL10

Intercept in% -0.5018 -0.3250 -0.4893 -0.3214 -0.5161 0.6928 0.1178 0.0630 -0.0553 -0.8887 0.8040 -0.0072 -0.2005 -0.2802
(-10.70) (-8.16) (-10.29) (-7.73) (-2.57) (2.74) (1.05) (0.85) (-0.79) (-3.06) (2.49) (-0.04) (-1.92) (-2.45)

FOP 2.1136 1.6045 2.9593 2.3633
(6.08) (15.64) (7.08) (11.96)

FIVOL2x3 0.1360 0.2608 1.3334 1.3296
(7.52) (17.48) (35.34) (18.22)

FIVOL10 0.0931 0.1534 0.6517 0.5310
(7.64) (16.66) (30.98) (36.61)

MktRF -0.1460 -0.1135 0.4731 0.1525 0.5782 -0.0598
(-11.91) (-8.98) (12.57) (7.75) (8.32) (-1.75)

SMB -0.1282 -0.1184 0.6289 0.1046 1.0279 0.2059
(-6.71) (-6.78) (9.98) (2.37) (13.70) (2.90)

HML -0.0095 -0.0657 -0.3356 -0.2532 -0.2651 0.1427
(-0.65) (-3.93) (-5.28) (-6.27) (-2.49) (2.49)

R
2

in % 28.64 50.89 27.44 46.17 - 28.64 80.55 86.88 90.17 - 27.44 73.92 86.88 87.97
N 641 641 641 641 641 641 641 641 641 641 641 641 641 641

Table 3.17 presents spanning regressions for FOP and the two IV ol factors FIVOL2x3 and

FIVOL10. The superscripts indicate the sorting methodology which is used to construct IV ol

factors: FIVOL2x3 is constructed according to the methodology of Fama and French (1993) as

the intersection of two Size and three IV ol portfolios. FIVOL10 is the high-minus low portfolio

from the IV ol decile sorts. t-statistics in parentheses are computed from Newey and West (1987)

standard errors with six lags. The sample period is August 1963 to December 2016.

In Columns (1) to (4) we explain FOP with different combinations of

the two IV ol factors and the FF3 factors. FIVOL2x3 and FIVOL10 explain

FOP neither individually, nor jointly in combination with the FF3 risk

factors. The Intercept remains statistically significant at conventional

levels with t-statistics well beyond minus three.

Conversely, accounting for FOP individually alleviates the negative

Intercept estimates of FIVOL2x3 and FIVOL10. In both cases, the negative

Intercept changes its sign. In Columns (5) and (6), the negative risk

premium on FIVOL2x3 increases from -52 bps (t-statistic = -2.75) to 69

bps (t-statistic = 2.74). This finding extends to Columns (10) and (11),

where the Intercept increases from -89 bps (t-statistic = -3.06) to 80 bps

(t-statistic = 2.49). Similar to Table 3.8 in case of the extended CAPM,

idiosyncratic risk earns a positive risk premium after controlling for FOP .

For both IV ol factors, as shown in Columns (7) and (12), this positive risk
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premium is fully attributable to the FF3 risk factors. FOP is statistically

and economically different from IV ol.20 Hence, FOP more likely proxies

for the latent factor in the FF3 model which explains the IV ol puzzle.

3.7.3 FOP and the choice of weights

Section 3.2.2 proposes an adaption of the weights in the active portfolio of

MacKinlay and Pastor (2000) from alpha to squared alpha. The positive

relation between IV ol and squared alpha in Equation (3.5) might raise the

concern that the weight vector in Equation (3.6) is tantamount to forming

OP on IV ol itself.

To address this concern, we perform a litmus test by re-estimating

FOP with an alternative weight vector which replaces squared alpha with

IV ol.21 If the weight vector in Equation (3.6) resembles IV ol, the result-

ing factor FOPIV ol performs just as well as FOP in Table 3.8. We present

the results in Table 3.18 which is otherwise identical to the baseline anal-

ysis. For the sake of brevity, however, we do not present the sensitivity

of each decile with respect to FOPIV ol . The IV ol puzzle remains well

and alive in Table 3.18, similar to Table 3.1 which revisits the puzzle.

Including FOPIV ol into the factor model setup leaves the negative return

of the difference portfolio largely unaffected. The negative alphas of the
20In untabulated robustness checks we also regress FOP on the IV ol1MFF3 decile re-

turns components which are orthogonal to the FF3 risk factors. The cross correlation
is lower after orthogonalization with the FF3 factors and we can perform spanning
regressions without collinearity concerns. The orthogonalized IV ol1MFF3 decile returns do
not span FOP . We also repeat the analysis for orthogonalized versions of the IV ol fac-
tors FIVOL2x3 and FIVOL10 and find identical results. Put differently, the explanatory
power of FOP is unrelated to the orthogonalization with the FF3 factors.

21The results are almost identical if we use idiosyncratic variance instead of IV ol.
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Table 3.18: Revisiting portfolio sorts with FOP formed on IV ol.
Panel A: Equal-weighted sorts

Model Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOPIV ol 0.2949 0.3734 0.3653 0.4437 0.4196 0.4553 0.2814 0.2294 -0.0250 -0.6182 -0.9132

(3.14) (4.15) (3.77) (4.34) (4.01) (3.97) (2.25) (1.74) (-0.17) (-3.47) (-5.09)
FF3 + FOPIV ol 0.1192 0.1673 0.1458 0.2046 0.1720 0.2048 0.0272 -0.0106 -0.2606 -0.8472 -0.9664

(1.57) (2.71) (2.38) (3.74) (3.38) (3.98) (0.56) (-0.21) (-4.30) (-9.03) (-7.09)
PS + FOPIV ol 0.1271 0.1745 0.1539 0.1984 0.1629 0.2086 0.0236 -0.0073 -0.2424 -0.8540 -0.9811

(1.61) (2.68) (2.35) (3.34) (2.95) (3.83) (0.46) (-0.14) (-3.85) (-8.47) (-6.93)
CAR + FOPIV ol 0.1233 0.1881 0.1716 0.2429 0.2048 0.2390 0.0652 0.0126 -0.2110 -0.7933 -0.9166

(1.74) (3.48) (3.25) (4.92) (4.44) (5.24) (1.44) (0.25) (-3.34) (-7.88) (-6.93)
FF5 + FOPIV ol 0.0390 0.0721 0.0554 0.1292 0.1111 0.1778 0.0273 0.0437 -0.1449 -0.6411 -0.6800

(0.55) (1.35) (0.98) (2.52) (2.15) (3.10) (0.54) (0.82) (-2.25) (-7.57) (-6.49)
M4 + FOPIV ol 0.0188 0.0730 0.0617 0.1564 0.1466 0.2207 0.0661 0.0726 -0.0940 -0.6127 -0.6315

(0.25) (1.14) (0.97) (2.81) (2.83) (4.36) (1.24) (1.18) (-1.21) (-4.97) (-4.33)
Q-Factor + FOPIV ol 0.0688 0.0750 0.0461 0.1290 0.1094 0.1942 0.0707 0.0977 -0.0328 -0.5266 -0.5953

(0.70) (0.81) (0.50) (1.52) (1.37) (2.27) (1.03) (1.26) (-0.35) (-4.33) (-3.82)
FF6 + FOPIV ol 0.0484 0.0965 0.0838 0.1673 0.1434 0.2088 0.0610 0.0609 -0.1087 -0.6063 -0.6547

(0.71) (1.99) (1.65) (3.68) (3.16) (4.32) (1.38) (1.23) (-1.79) (-6.79) (-6.13)

Panel B: Value-weighted sorts

Model Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOPIV ol 0.5127 0.5404 0.5079 0.6117 0.6287 0.5956 0.6848 0.3000 0.2689 -0.3761 -0.8887

(3.36) (3.30) (2.80) (3.16) (2.96) (2.44) (2.57) (1.01) (0.83) (-1.07) (-3.06)
FF3 + FOPIV ol 0.0224 0.0305 -0.0197 0.0720 0.0840 0.0693 0.1756 -0.1582 -0.1857 -0.7451 -0.7675

(0.33) (0.57) (-0.49) (1.25) (1.44) (0.89) (2.13) (-1.48) (-1.40) (-4.80) (-4.07)
PS + FOPIV ol 0.0026 0.0167 -0.0270 0.0385 0.0501 0.0214 0.1162 -0.2211 -0.2423 -0.8545 -0.8571

(0.04) (0.30) (-0.64) (0.66) (0.85) (0.29) (1.57) (-2.67) (-2.42) (-5.81) (-5.01)
CAR + FOPIV ol 0.0134 0.0108 -0.0229 0.0429 0.0176 -0.0020 0.1153 -0.2426 -0.2572 -0.9016 -0.9149

(0.21) (0.18) (-0.51) (0.69) (0.29) (-0.03) (1.44) (-2.67) (-2.45) (-5.76) (-5.09)
FF5 + FOPIV ol -0.0127 0.0087 -0.0468 0.0325 0.0809 0.0285 0.1216 -0.2407 -0.2207 -0.7884 -0.7757

(-0.22) (0.15) (-0.91) (0.57) (1.32) (0.37) (1.69) (-2.93) (-2.20) (-5.25) (-4.45)
M4 + FOPIV ol -0.0667 -0.0438 -0.0875 -0.0077 0.0383 0.0706 0.1661 -0.1396 -0.0966 -0.5878 -0.5211

(-1.22) (-0.77) (-1.74) (-0.12) (0.63) (0.97) (2.21) (-1.70) (-1.05) (-4.45) (-3.56)
Q-Factor + FOPIV ol -0.1018 -0.0628 -0.0968 0.0012 0.1041 0.1119 0.1970 -0.1311 -0.0669 -0.5242 -0.4224

(-1.52) (-0.99) (-1.32) (0.02) (1.62) (1.39) (2.42) (-1.47) (-0.61) (-3.28) (-2.24)
FF6 + FOPIV ol -0.1047 -0.0455 -0.1376 -0.0474 0.0142 0.0571 0.2193 -0.1278 -0.0247 -0.5181 -0.4134

(-1.39) (-0.66) (-2.08) (-0.65) (0.19) (0.62) (2.65) (-1.28) (-0.20) (-3.31) (-2.18)
Q-Factor + FOPIV ol -0.0749 -0.0468 -0.1018 -0.0110 0.0657 0.0714 0.1672 -0.1632 -0.0877 -0.5478 -0.4729

(-1.28) (-0.80) (-1.78) (-0.17) (1.04) (0.94) (2.28) (-1.97) (-0.93) (-4.06) (-3.10)

Table 3.18 revisits the univariate portfolio sorts in Table 3.1 with factor models extended by the

mimicking factor FOPIV ol . In contrast to the baseline analysis, we adapt the weighting vector of

residuals and choose weights proportional to IV ol instead of α2. Other than that, Table 3.18 is

identical to Table 3.1.

highest IV ol1MFF3 are statistically significant with t-statistics beyond minus

three. FOPIV ol does not explain the IV ol puzzle.

3.7.4 Alternative residual generating factor model

This Section repeats the baseline analysis in Section 3.4.2, but varies the

set of test assets as well as the residual generating factor model. Instead

of 25 Size-IV ol1MFF3 portfolios, we use 200 portfolios sorted by IV ol1MFF6, i.e.

idiosyncratic volatility of FF6 model residuals instead of the FF3 model.

In contrast to the results in Table 3.2, we also consider the risk factor

betas of the corresponding model as control variables and include RMW ,
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Table 3.19: Fama and MacBeth (1973) regressions on 200 IV ol portfolios
with the Fama and French (2018) model.

Variable (1) (2) (3) (4) (5) (6) (7)
Intercept 0.7262 0.5213 0.6061 0.3635 0.3400 0.3296 0.3155

(4.36) (2.47) (3.58) (4.45) (4.10) (4.10) (3.86)
IV ol1MFF6 -44.211 -10.832 -13.316 -5.9039

(-2.91) (-1.07) (-2.30) (-1.02)
βOP -0.5176 -0.4690 -0.2536 -0.2564

(-3.29) (-3.47) (-2.83) (-2.87)
βMkt 0.3718 0.3097 0.3195 0.2853

(1.90) (1.60) (1.65) (1.47)
βSMB -0.5285 -0.5577 -0.3139 -0.3231

(-3.77) (-3.94) (-2.42) (-2.48)
βHML 0.0679 0.0994 0.0446 0.0559

(0.61) (0.89) (0.39) (0.50)
βRMW 0.3698 0.3877 0.3316 0.3421

(3.37) (3.59) (3.13) (3.26)
βCMA -0.1199 -0.1090 -0.1521 -0.1461

(-1.25) (-1.11) (-1.77) (-1.68)
βMOM -0.2623 -0.2733 -0.0929 -0.0799

(-1.44) (-1.53) (-0.53) (-0.46)

avg.R
2
in% 4.96 6.86 8.51 13.83 13.61 14.55 14.36

Table 3.19 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio

level regressions of excess returns in month t + 1 on IV ol1MFF6, the sensitivity βOP to the latent

factorOP and control variables. IV ol1MFF6 is the monthly idiosyncratic volatility of daily portfolio-

level returns in month t. Residuals are computed from the Fama and French (2018) six factor

model. The base assets are 200 portfolios sorted on monthly idiosyncratic volatility IV ol1MFF6.

Betas are calculated for the following risk factors: Mkt, SMB, HML, RMW , CMA and MOM are

the factors of the Fama and French (2018) six factor model. We estimate all betas in 5-year rolling

window regressions. The sample period in all columns is June 1968 to December 2016. We report

the average cross-sectional adjusted r-squared avg.R
2

in %. Average coefficients are multiplied by

one hundred and the factor portfolios are included among the test assets. t-statistics calculated

from Newey and West (1987) standard errors with six lags in parentheses.

CMA and MOM among the test assets. Other than that, the framework

in Table 3.19 is identical to Table 3.2.

The IV ol puzzle persists in the Fama and MacBeth (1973) regressions

if we use residuals from the recent model of Fama and French (2018).

The negative coefficient on IV ol1MFF6 in the univariate model in Column (1)
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amounts to -44.2 and is statistically significant at any conventional level.

Once we control for the risk factor betas of the FF6 model, this coefficient

reduces to -13.3, but remains significant at the 5% level with a t-statistic

of -2.30. Including βOP fully explains the negative IV ol1MFF6, either in the

bivariate analysis in Column (3) and in the full model in Columns (6) and

(7). βOP performs similar to the baseline analysis. The coefficient exhibits

t-statistics around minus three and is thus highly statistically significant.

Our main finding that the IV ol puzzle arises from a latent factor in the

investor’s factor model also extends to the residuals of the recent Fama

and French (2018) six factor model.22

3.7.5 Extending window analysis

Section 3.5 relies on full sample beta estimates for the construction of the

mimicking factor FOP . We re-evaluate the key findings in Section 3.5 with

an extending window estimation (EW) of Equation (3.9) which eliminates

the look-ahead bias. We refer to this mimicking factor as FOP (EW ).

First, we show that the inclusion of FOP (EW ) into the factor mod-

els under consideration alleviates the IV ol puzzle in the decile sorts of

Table 3.1. Except for the different estimation of FOP , the analysis is iden-

tical. In contrast to the baseline sorts, the sample period starts in 1968.

Table 3.20 presents the results.

FOP (EW ) performs equally well in equal-weighted sorts in Panel A

and value-weighted sorts in Panel B. The negative alphas of the difference
22In untabulated robustness checks we repeat the analysis for residuals of the other

factor models under consideration and draw identical conclusions.
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Table 3.20: Robustness: revisiting the idiosyncratic volatility puzzle with
FOP (EW).

Panel A: Equal-weighted sorts

Model Parameter Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOP (EW) α -0.0561 -0.0396 -0.0274 0.0657 0.1109 0.2530 0.2109 0.3106 0.2844 0.0241 0.0803

(-0.56) (-0.47) (-0.30) (0.70) (1.05) (2.03) (1.40) (1.88) (1.53) (0.12) (0.45)
βFOP -0.7167 -0.7938 -0.7272 -0.6653 -0.5044 -0.2722 0.0364 0.3996 0.9090 1.6112 2.3278

FF3 + FOP (EW) α -0.0950 -0.0861 -0.0908 -0.0173 0.0075 0.1253 0.0572 0.1312 0.0824 -0.1969 -0.1019
(-1.17) (-1.39) (-1.47) (-0.32) (0.14) (2.07) (1.00) (2.08) (1.08) (-2.28) (-0.88)

βFOP -0.5547 -0.6024 -0.5570 -0.5124 -0.3821 -0.1969 0.0711 0.3605 0.8523 1.5750 2.1296
PS + FOP (EW) α -0.0902 -0.0835 -0.0872 -0.0165 -0.0057 0.1306 0.0493 0.1261 0.0897 -0.2362 -0.1459

(-1.07) (-1.27) (-1.32) (-0.28) (-0.09) (2.00) (0.80) (1.88) (1.09) (-2.64) (-1.23)
βFOP -0.5749 -0.6252 -0.5739 -0.5133 -0.3907 -0.1966 0.0761 0.3626 0.8736 1.5636 2.1385

CAR + FOP (EW) α -0.0895 -0.0619 -0.0624 0.0218 0.0399 0.1550 0.0877 0.1484 0.1168 -0.1681 -0.0786
(-1.13) (-1.17) (-1.19) (0.48) (0.83) (2.97) (1.62) (2.45) (1.62) (-1.98) (-0.68)

βFOP -0.5591 -0.6215 -0.5794 -0.5433 -0.4077 -0.2204 0.0470 0.3469 0.8251 1.5522 2.1112
FF5 + FOP (EW) α -0.1018 -0.0780 -0.0799 0.0029 0.0250 0.1464 0.0651 0.1343 0.0969 -0.1901 -0.0883

(-1.33) (-1.44) (-1.43) (0.06) (0.47) (2.61) (1.12) (2.23) (1.34) (-2.38) (-0.88)
βFOP -0.4216 -0.4169 -0.3707 -0.3412 -0.2306 -0.0878 0.1116 0.2672 0.7054 1.2918 1.7134

M4 + FOP (EW) α -0.1604 -0.1341 -0.1284 -0.0272 0.0084 0.1457 0.0894 0.1977 0.1868 -0.0913 0.0691
(-1.95) (-2.17) (-2.08) (-0.54) (0.15) (2.81) (1.65) (3.26) (2.65) (-1.04) (0.64)

βFOP -0.5415 -0.6335 -0.5815 -0.5607 -0.4199 -0.2206 0.0787 0.3878 0.8638 1.6001 2.1416
Q-Factor + FOP (EW) α -0.1299 -0.1456 -0.1525 -0.0600 -0.0362 0.1127 0.0678 0.1870 0.1878 -0.1079 0.0220

(-1.35) (-1.80) (-1.81) (-0.79) (-0.45) (1.22) (0.89) (2.13) (1.79) (-0.98) (0.19)
βFOP -0.6757 -0.7313 -0.6568 -0.6239 -0.4817 -0.2784 -0.0159 0.2947 0.7298 1.3769 2.0526

FF6 + FOP (EW) α -0.0927 -0.0521 -0.0504 0.0409 0.0566 0.1741 0.0937 0.1480 0.1243 -0.1700 -0.0773
(-1.21) (-1.07) (-0.98) (0.85) (1.13) (3.37) (1.67) (2.56) (1.83) (-2.21) (-0.78)

βFOP -0.4271 -0.4324 -0.3883 -0.3639 -0.2495 -0.1044 0.0945 0.2590 0.6891 1.2798 1.7069

Panel B: Value-weighted sorts

Model Param. Low IV ol1MFF3 2 3 4 5 6 7 8 9 High IV ol1MFF3 Diff
CAPM + FOP (EW) α -0.1658 -0.0825 -0.1662 -0.0556 0.0263 0.0896 0.3144 0.0238 0.1943 -0.1443 0.0215

(-2.23) (-1.27) (-2.86) (-0.77) (0.36) (1.00) (3.05) (0.17) (1.12) (-0.78) (0.10)
βFOP -0.5610 -0.3304 -0.3220 -0.2365 -0.0432 0.2189 0.5541 0.7733 1.2465 1.4700 2.3439

FF3 + FOP (EW) α -0.1227 -0.0502 -0.1446 -0.0533 0.0089 0.0328 0.2310 -0.1005 0.0358 -0.3196 -0.1969
(-1.85) (-0.67) (-2.67) (-0.76) (0.12) (0.38) (2.61) (-0.83) (0.26) (-1.72) (-0.94)

βFOP -0.4347 -0.2261 -0.2742 -0.1869 -0.0370 0.1494 0.4613 0.5672 0.9700 1.6455 2.0802
PS + FOP (EW) α -0.1198 -0.0477 -0.1390 -0.0452 -0.0161 0.0126 0.2265 -0.1584 -0.0034 -0.3899 -0.2701

(-1.72) (-0.58) (-2.46) (-0.60) (-0.21) (0.14) (2.31) (-1.16) (-0.02) (-1.98) (-1.21)
βFOP -0.4553 -0.2409 -0.2846 -0.1834 -0.0356 0.1472 0.4531 0.5490 0.9759 1.6672 2.1225

CAR + FOP (EW) α -0.1433 -0.0605 -0.1572 -0.0531 0.0405 0.0485 0.2479 -0.0966 0.0716 -0.2489 -0.1056
(-2.07) (-0.82) (-2.66) (-0.77) (0.58) (0.56) (2.84) (-0.81) (0.52) (-1.39) (-0.52)

βFOP -0.4185 -0.2180 -0.2642 -0.1871 -0.0620 0.1370 0.4480 0.5642 0.9418 1.5896 2.0080
FF5 + FOP (EW) α -0.1396 -0.0530 -0.1375 -0.0391 0.0268 0.0678 0.2425 -0.0869 0.0548 -0.2835 -0.1438

(-2.25) (-0.75) (-2.43) (-0.57) (0.38) (0.87) (2.83) (-0.78) (0.43) (-1.65) (-0.78)
βFOP -0.2808 -0.0530 -0.1284 -0.0608 0.0072 0.0570 0.3255 0.3038 0.5956 1.0562 1.3370

M4 + FOP (EW) α -0.2364 -0.1355 -0.1873 -0.0683 0.0669 0.1398 0.3376 0.0544 0.2551 -0.0232 0.2132
(-3.22) (-1.92) (-2.54) (-0.81) (0.97) (1.65) (3.89) (0.52) (2.04) (-0.14) (1.13)

βFOP -0.3921 -0.2149 -0.2801 -0.2186 -0.1204 0.0701 0.4017 0.5230 0.9382 1.4782 1.8703
Q-Factor + FOP (EW) α -0.2148 -0.1076 -0.2018 -0.0951 -0.0093 0.0767 0.3196 -0.0046 0.2173 -0.1413 0.0734

(-2.77) (-1.29) (-3.06) (-1.23) (-0.11) (0.77) (3.63) (-0.04) (1.59) (-0.81) (0.37)
βFOP -0.4131 -0.2339 -0.2133 -0.1496 -0.0642 0.0996 0.3911 0.4996 0.8982 1.3560 1.7691

FF6 + FOP (EW) α -0.1534 -0.0585 -0.1470 -0.0379 0.0552 0.0760 0.2539 -0.0909 0.0777 -0.2345 -0.0812
(-2.39) (-0.86) (-2.42) (-0.56) (0.78) (0.97) (2.97) (-0.82) (0.60) (-1.39) (-0.45)

βFOP -0.2726 -0.0497 -0.1227 -0.0615 -0.0098 0.0521 0.3187 0.3062 0.5819 1.0269 1.2995

Table 3.20 revisits the univariate portfolio sorts in Table 3.1 with factor models extended by

the mimicking factor FOP from an extending window estimation (EW). Table 3.20 is otherwise

identical to Table 3.8.
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Table 3.21: Robustness risk factor protocol: Canonical correlations with
FOP from extending window (EW).

Panel A: Significance levels of the FF6 factors and FOP
Risk factors

Mkt SMB HML RMW CMA MOM FOP (EW)
Mean |t-statistic| 5.2252 3.6871 1.9686 1.4980 1.2667 1.8491 1.5314
Mean |t-statistic| sign. 11.4564 6.3385 2.9331 2.9371 2.4629 3.1351 2.0614

Panel B: Number of |t-statistics| ≥ 1.96 out of 7
Subsample Mkt SMB HML RMW CMA MOM FOP (EW)
1968 – 1976 3 3 4 3 3 5 3
1977 – 1986 3 3 3 5 0 4 4
1987– 1996 2 3 3 2 4 3 3
1997 – 2006 4 3 4 4 3 5 3
2007 – 2016 2 4 4 3 3 3 0
Average # 2.8 3.2 3.6 3.4 2.6 4 2.6

Table 3.21 presents the second stage of the Pukthuanthong et al. (2019) risk factor protocol, i.e. a

test whether factor candidates are significantly correlated with the cross-section of stock returns.

In contrast to the baseline analysis, we estimate FOP from an extending window (EW) regression

instead of a full sample estimation. Other than that, Table 3.21 is identical to Table 3.10.

portfolio between high and low IV ol1MFF3 becomes insignificant for each

of the factor model combinations. The only difference to the baseline

analysis in Table 3.8 is that the positive alphas of the CAPM and the M4

model are now insignificant.

Second, we review the first stage of the risk factor protocol in Sec-

tion 3.5.2 and focus on the actual test for the canonical correlations.

FOP (EW ) also passes both thresholds of the risk factor protocol, i.e. a

mean absolute t-statistic ≥ 1.96 in the second row of Panel A and an

average number of absolute t-statistics ≥ 2.5 in Panel B.

Third, we address the question whether FOP (EW ) is also priced in

the Fama and MacBeth (1973) regressions in Section 3.5.3. The analysis

is identical to Table 3.11, except that we replace FOP with it’s extending

window equivalent FOP (EW ). The risk premium estimates on βFOP (EW )
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Table 3.22: Robustness: Fama and MacBeth (1973) portfolio regressions
with FOP (EW).

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A: Size/ Operating Profitability 5x5

Full Sample Betas 5-year rolling window betas
Intercept 0.5459 -0.1408 -0.2061 0.5779 0.0688 0.0548 0.5692 -0.0497 -0.1488 0.5825 0.1520 0.1129

(2.65) (-5.23) (-6.07) (3.04) (2.93) (2.34) (2.78) (-1.18) (-4.15) (3.10) (4.50) (4.28)
βFOP (EW ) -0.3382 -0.3911 -0.2395 -0.3096 -0.2115 -0.2861 -0.1382 -0.2260

(-2.89) (-3.30) (-1.72) (-2.94) (-2.29) (-3.31) (-1.66) (-2.97)
βMkt 0.6251 0.6531 0.4727 0.4545 0.5175 0.6008 0.3866 0.4206

(3.09) (3.24) (2.34) (2.24) (2.69) (3.10) (1.91) (2.09)
βSMB 0.1582 0.1908 0.0909 0.1424 0.1654 0.2245 0.1404 0.1677

(1.19) (1.41) (0.69) (1.09) (1.30) (1.77) (1.10) (1.33)
βHML 0.4568 0.4749 0.3576 0.3087 0.2683 0.3847 0.2615 0.2761

(2.90) (2.98) (2.29) (2.05) (1.65) (2.43) (2.11) (2.12)
βCMA 0.2275 0.2676 0.1269 0.1881

(2.20) (2.53) (1.51) (2.22)
βRMW 0.2555 0.2377 0.2115 0.2100

(2.17) (2.07) (2.07) (1.96)
βMOM 0.5408 0.5756 0.4073 0.4509

(2.84) (3.03) (2.17) (2.50)

avg.R
2
in % 5.7039 52.2246 60.8671 2.1995 67.2982 70.4695 3.3687 55.2033 59.2435 0.9258 67.0087 68.9524

Panel B: Size/ Beta 5x5
Full Sample Betas 5-year rolling window betas

Intercept 0.5724 -0.1627 -0.2173 0.5556 -0.2313 -0.2115 0.5861 -0.0049 -0.0661 0.5711 0.0167 -0.0071
(2.71) (-5.58) (-7.14) (2.98) (-4.69) (-4.99) (2.82) (-0.11) (-1.53) (3.11) (0.50) (-0.23)

βFOP (EW ) -0.2418 -0.3835 -0.2822 -0.2094 -0.0905 -0.2078 -0.1263 -0.1728
(-1.33) (-3.04) (-1.73) (-2.03) (-0.81) (-2.47) (-1.24) (-2.12)

βMkt 0.6117 0.6276 0.6473 0.6254 0.5211 0.5672 0.5125 0.5313
(3.00) (3.09) (3.23) (3.10) (2.51) (2.77) (2.52) (2.63)

βSMB 0.1713 0.2317 0.2467 0.2552 0.1407 0.1817 0.1748 0.1812
(1.29) (1.77) (1.88) (1.95) (1.10) (1.43) (1.37) (1.42)

βHML 0.7954 0.6803 0.6787 0.5960 0.4069 0.3640 0.3285 0.3577
(4.30) (4.16) (3.48) (3.45) (2.68) (2.33) (2.24) (2.47)

βCMA 0.4946 0.4812 0.2644 0.2988
(3.98) (3.97) (2.62) (3.10)

βRMW 0.4691 0.3838 0.1430 0.1474
(2.85) (2.81) (1.45) (1.35)

βMOM 0.8843 0.8535 0.5552 0.5613
(4.37) (4.27) (2.88) (3.09)

avg.R
2
in % 7.0994 54.5413 59.3731 3.2643 65.2661 68.2396 5.5814 52.9725 57.2931 3.2896 65.0270 67.6436

Panel C: Size/ Book-to-Market/ Investment 2x4x4
Full Sample Betas 5-year rolling window betas

Intercept 0.6002 -0.0496 -0.1182 0.5978 -0.1324 -0.1384 0.6136 0.0250 -0.0296 0.5994 0.0658 0.0209
(2.92) (-2.21) (-4.18) (3.26) (-5.84) (-5.87) (3.06) (0.93) (-1.04) (3.29) (2.72) (1.00)

βFOP (EW ) -0.1894 -0.3929 -0.1727 -0.2626 -0.1465 -0.2631 -0.1235 -0.2562
(-1.40) (-3.80) (-1.13) (-2.48) (-2.07) (-3.89) (-1.95) (-3.43)

βMkt 0.5787 0.5787 0.5819 0.5765 0.4820 0.5217 0.4633 0.4945
(2.87) (2.87) (2.91) (2.89) (2.55) (2.74) (2.38) (2.54)

βSMB 0.1679 0.2425 0.2248 0.2440 0.1901 0.2125 0.1638 0.1862
(1.32) (1.90) (1.75) (1.90) (1.51) (1.67) (1.30) (1.47)

βHML 0.3125 0.3029 0.3655 0.3477 0.2510 0.2671 0.2834 0.3025
(2.06) (2.01) (2.37) (2.29) (1.83) (1.92) (2.10) (2.19)

βCMA 0.3702 0.3789 0.2472 0.2723
(3.76) (3.83) (2.91) (3.16)

βRMW 0.4493 0.3974 0.0812 0.1574
(3.30) (3.14) (0.85) (1.56)

βMOM 0.7794 0.7953 0.4590 0.5017
(4.12) (4.21) (2.66) (2.97)

avg.R
2
in % 2.7482 48.5051 50.0814 0.7369 58.9302 59.8995 0.6049 46.8371 48.4295 -0.1675 57.3278 58.7383

Table 3.22 presents average coefficients of Fama and MacBeth (1973) cross-sectional portfolio

level regressions of excess returns in month t + 1 on the factor model betas of the Fama and

French (1993) three factor model (FF3), the Fama and French (2018) six factor model (FF6) and

both models extended by the mimicking factor FOP in month t. In contrast to the baseline

analysis, we estimate FOP from an extending window (EW) regression instead of a full sample

estimation. Other than that, Table 3.22 is identical to Table 3.11.
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are similar to the baseline analysis. However, βFOP (EW ), performs slightly

worse in univariate models, e.g. Columns (1), (7) and (10) of Panel B. If

we consider the full set of risk factor betas, the estimate on βFOP (EW ) is

statistically significant with a similar magnitude to the baseline analysis.

FOP (EW ) explains the underperformance of high IV ol stocks, is sig-

nificantly related to the covariance matrix of returns and earns a signifi-

cant risk premium. The finding that FOP is a genuine risk factor is robust

to the extending window analysis.

3.8 Conclusion

The IV ol puzzle originates from latent risk in the investor’s factor model.

We construct an active portfolio formed on factor model residuals to

approximate this risk factor and include it in the residual generating

factor models of Fama and French (1993) and Fama and French (2018).

Empirically, the sensitivity to the latent factorOP as well as its mimicking

portfolio FOP alleviate the IV ol puzzle in Fama and MacBeth (1973)

regressions and portfolio sorts. The sensitivity to OP fully accounts for

the unexplained fraction of the IV ol puzzle in the analysis of Hou and

Loh (2016). High-IV ol portfolios perform poorly in subsequent months

because they are exposed to noise trader risk. Our evidence is consistent

with a risk-based explanation for the IV ol puzzle, but previously pro-

posed risk factors are unlikely to account for our findings. Our results

are robust to the choice of test assets and the residual generating factor

model.
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Our study explains several well-known characteristics of the IV ol

puzzle. First, the IV ol-return relation is nonlinear in alpha such that

empirical factors which assume long positions in stocks with high alphas

and short positions in stocks with low alphas only partly explain IV ol.

Second, this finding also explains the switching sign of the IV ol-return

relation between supposedly underpriced and overpriced stocks (Stam-

baugh et al., 2015). Alphas are proportional to the sensitivity to the latent

factor, but the calculation of IV ol wipes out the sign of this relationship.

Third, the IV ol effect is asymmetric because the distribution of βFOP is

not symmetric. Fourth, high IV ol-stocks exhibit many attractive features

for retail investors and are thus subject to the exposure to noise trader risk.

Excluding these stocks weakens the puzzle (Bali and Cakici, 2008). This

finding is consistent with Brandt et al. (2010) who show that increases in

aggregate IV ol are related to speculative episodes. Fifth, noise trader risk

contributes to aggregate volatility as pointed out by by Brown (1999) and

Bollerslev et al. (2018) which explains the empirical support for volatility

risk-based explanations for the IV ol puzzle (Chen and Petkova, 2012;

Barinov, 2013).
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3.A Appendix

3.A.1 Risk factor betas

In this Section, we describe the calculation of control variables used in

the main paper. For variables which require daily data, we require 200

(15) valid daily observations within the annual (monthly) estimation

periods. Variables with monthly estimation windows are computed with

60 monthly returns and require at least 24 valid observations.

Aggregate Lottery Demand (FMax): We estimate the beta of asset i with

respect to aggregate lottery demand FMax in month t from the regression

ri,t = αi + βFMax,iFMaxt + εi,t,

where ri,t is the excess return of asset i in month t and FMax is the return

on the Bali et al. (2017) lottery demand factor.

Market Variance (MV): Following Herskovic et al. (2016), innovations to

market variance are monthly changes in the variance of value weighted

market returns. We compute the variance beta of asset i in month t from

the time series regression

ri,t = αi + βMV ,i,t∆MVt + εi,t,

where ri,t is the excess return of asset i in month t and ∆MV is the inno-

vation in market variance MV .

Average Correlation and Average Variance (AC and AV): We follow

Chen and Petkova (2012) in the construction of average correlation (AC)

131



What is the latent factor behind the idiosyncratic volatility puzzle?

and average variance (AV ) and adapt the calculation of factor betas in

line with Hou and Loh (2016). First, average variance in month t is

AVt =
Nt∑
i=1

wi,t

 Dt∑
d=1

r2
i,d + 2

Dt∑
d=2

ri,dri,d−1

 ,
where ri,d is the excess return of stock i on date d in month t with Dt

days per month, Nt is the number of stocks in that month and wi,t is the

relative market capitalization of stock i in month t. The right-hand term

adjusts for autocorrelation in daily returns. Second, average correlation is

the value-weighted average of pairwise correlations of daily returns ri,d

within each month t. We estimate the beta of asset i to innovations in AC

and AV in the monthly time series regression

ri,t = αi + βAC,i,t∆ACt + βAV ,i,t∆AVt + βMkt,iMktt + βSMB,iSMBt

+βHML,iHMLt + εi,t,

where ri,t is the excess return of asset i in month t and ∆AV and ∆AC are

innovations in monthly average variance and average correlation, respec-

tively. We follow Chen and Petkova (2012) and control for Mkt, SMB and

HML in the beta estimation, but estimate a linear model instead of the

VAR approach in the original paper.

Common Idiosyncratic Volatility (CIV): Herskovic et al. (2016) define

common idiosyncratic volatility (CIV ) as the equally-weighted average

over all individual within-month idiosyncratic volatility measures of

common stocks. Idiosyncratic volatility of asset i is the standard deviation

of Fama and French (1993) three factor model residuals, estimated within
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month t using daily data. We follow Herskovic et al. (2016) and include

MV when we estimate the following monthly time series regression

ri,t = αi + βCIV ,i,t∆CIVt + βMV ,i,t∆MVtεi,t,

where ri,t is the excess return of asset i in month t and ∆CIV and ∆MV

are innovations in monthly common idiosyncratic volatility and market

variance, respectively.

Aggregate Volatility Risk Factor (FVIX): Barinov (2013, 2018) form a

mimicking factor which tracks daily innovations in the daily CBOE S&P

100 Volatility Index (in the following referred to as VIX) from a regression

of daily innovations in the VIX on quintile portfolios sorted by stock betas

with respect to innovations in the VIX. We fit the regression given daily

data and use the fitted values to form the mimicking factor as

FV IX = −0.157 ·V IX1,t − 0.588 ·V IX2,t − 0.365 ·V IX3,t

−0.579 ·V IX4,t + 0.164 ·V IX5,t

where V IX1,t,..., V IX5,t are quintile portfolios sorted by within-month

betas of individual stocks with respect to daily VIX innovations while

controlling for market returns. The R2 of this regression of 51.31% is

almost identical to the value of 51.10% reported in Barinov (2018). We

follow Barinov (2018) and use full sample estimates. In the second step,

we estimate the suggested ICAPM specification of Barinov (2018) for each

asset i as

ri,t = αi + βFV IX,i,tFV IXt + βMkt,iMktt + εi,t,

where ri,t is the excess return of asset i in month t.
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3.A.2 Stock characteristics

Size: Size is the natural logarithm of a firm’s market capitalization as

provided by CRSP. Taking logs reduces skewness of market capitalization.

Illiquidity (Illiq): Illiquidity of stock i in month t is the adapted Amihud

(2002) illiquidity measure given as

Illiqi,t =
1
Dt

Dt∑
d=1

|ri,d |
VOLDi,d

,

where ri,d is the return of stock i on day d, VOLDi,d is the trading volume

in US Dollars and Dt is the number of days in month t.

Idiosyncratic Skewness (ISkew): Boyer et al. (2010) estimate historical

idiosyncratic skewness of the returns of stock i in month t as

ISkewi,t =
1

N (t)

∑
d∈S(t) ε

3
i,d

IV ol3i,t
,

where N (t) denotes the number of days d in the estimation period S(t),

and ε is the residual from the Fama and French (1993) three factor model

estimated over the estimation period S(t) using daily data. We estimate

ISkewi,t over the past twelve months. We refer to the twelve month mea-

sure of idiosyncratic skewness relatively to the Fama and French (1993)

three factor model as ISkew.

Short-Term Reversal (LagRet): Short-Term Reversal of stock i in month

t is commonly the return of the stock in the previous month, i.e.

LagReti,t = ri,t−1.
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Momentum (Mom): Momentum of stock i in month t is the stock return

during the 11 months prior to the most recent month t, i.e. months t − 11

through t − 1.

Co-Skewness (CoSkew): Co-skewness, adapted from Harvey and Sid-

dique (2000), is the slope coefficient of a stock’s excess return on the

squared excess return of the market portfolio, measured over the past

twelve months using daily data. This measure of co-skewness is not the

baseline measure proposed by Harvey and Siddique (2000) and we follow,

among others, Bali et al. (2017).

Mispricing (MISP): Stambaugh et al. (2015) construct the cross-sectional

mispricing measure MISP as a composite rank based on eleven prominent

anomalies. The highest rank is assigned to stocks with the lowest average

returns based on each anomaly. The composite rank is the simple average

over all eleven ranks. A higher value of MISP indicates a higher likelihood

of a stock to be overpriced. For details regarding the anomalies, we refer

to Stambaugh et al. (2015).

Expected idiosyncratic skewness (EIS): Boyer et al. (2010) present a

model for the prediction of idiosyncratic skewness in the cross section

of stock returns. The first step is a cross-sectional regression of contem-

poraneous idiosyncratic skewness on historical measures of skewness,
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volatility and a set of control variables

ISi,t = αt + β1,tISi,t−T + β2,tIVi,t−T +γ ′tXi,t−T ,

where

ISi,t =
1

N (t)

∑
d∈S(t) ε

3
i,d

IV 3
i,t

,

and

IVi,t =

 1
N (t)

∑
d∈S(t)

ε2
i,d


1/2

.

N (t) denotes the number of days d in the estimation period S(t) adjusted

for degrees of freedom, and ε is the residual of a Fama and French (1993)

three-factor model that we estimate for daily data in S(t). Xi,t represents

a vector of firm-characteristic variables, namely momentum and turnover,

as well as dummy variables for Size, industry, and NASDAQ stocks. In the

next step, Boyer et al. (2010) use the fitted regression coefficients of the

equation above to predict expected idiosyncratic skewness for the next T

months

EIS = α̂t + β̂1,tISi,t + β̂2,tIVi,t + γ̂ ′tXi,t.

In the baseline analysis, Boyer et al. (2010) estimate EIS with T = 60

months of data.23

23For details regarding the estimation of expected idiosyncratic skewness, we refer
to the methodology appendix on the website of Brian Boyer: http://boyer.byu.edu/
Research/skew/skewmethodology.pdf.
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Chapter 4

Dissecting idiosyncratic volatility in

the cross section of stock returns

This Chapter refers to the working paper:

Claußen, Arndt, Maik Dierkes and Sebastian Schroen (2019): ‘Dissecting
idiosyncratic volatility in the cross section of stock returns’, Working
Paper, Leibniz Universität Hannover.

Abstract
A simple, yet robust regression-based decomposition technique

unveils that systematic noise trader risk accounts for the largest part
of the negative relation between idiosyncratic risk and subsequent
returns, commonly known as the idiosyncratic volatility puzzle. The
systematic component in factor model residuals attributable to noise
trader risk alone explains almost 50% of the puzzle. The pricing of
the remaining purely idiosyncratic component of idiosyncratic risk
is short-lived and historically unstable. Our results are robust to the
choice of factor models as well as recently proposed rational and
behavioral determinants of expected returns.

Keywords: Idiosyncratic volatility, latent risk factor, mispricing

JEL: G10, G12, G32.
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4.1 Introduction

The underperformance of high-volatility stocks is widely considered to be

one of the most compelling “candidates for the greatest anomaly in finance”

(Baker et al., 2011, p. 40). Theoretically, idiosyncratic risk either carries

no risk premium at all in standard asset pricing theory, or a positive risk

premium if investors are unable to diversify properly (Merton, 1987).

However, the seminal papers of Ang et al. (2006, 2009) find a strong

negative relationship between idiosyncratic return volatility and future

returns which marks the nucleus of the idiosyncratic volatility puzzle.

Although the theoretical and empirical asset pricing literature1 went to

great lengths to explain the anomaly, “all existing explanations still leave a

sizeable portion of the puzzle unexplained” (Hou and Loh, 2016, p. 191).

In this paper, we reduce this portion by providing further evidence

for the results of Claußen et al. (2019) who show that the idiosyncratic

volatility puzzle results from latent systematic risk in the Fama and

French (1993) three factor model, most likely attributable to noise trader

risk. We adapt the framework of Claußen et al. (2019) to the cross section

of stock returns to derive an economically motivated regression-based

procedure which treats this risk as a latent state variable and decompose

idiosyncratic volatility into two components: First, a stock’s exposure

to latent but systematic risk – presumably induced by sentiment-driven

noise trading – and second, purely idiosyncratic variation.

Approximately 93.5% of average monthly idiosyncratic volatility is
1For a summary of the long list of candidates and an extensive analysis of their

explanatory power, we refer to Hou and Loh (2016).
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indeed non-systematic. However, the quantitatively small latent factor

volatility explains up to 55% of the puzzle. Accounting for alternative

candidate variables, our latent factor volatility measure for noise trader

risk attains an explained fraction of at least 35% which is by far the

greatest share achieved by a single candidate in the multivariate analysis

in Hou and Loh (2016) for the cross section of stock returns.

In full sample cross-sectional Fama and MacBeth (1973) regressions,

the purely asset-specific component nevertheless earns a negative risk

premium. A rolling window analysis, however, unveils that this premium

is short lived and driven by a peak in the early 1980s. In contrast, the

slope coefficient on the systematic component is steadily negative, highly

significant and becomes economically more relevant in the recent past.

Thus, latent systematic risk in supposedly idiosyncratic volatility reflects

information above and beyond the purely asset-specific component, raw

idiosyncratic volatility or alternative stock characteristics.

Our study generalizes the findings in Claußen et al. (2019) to the

cross section of stock returns and contributes to the ongoing quest for the

sources of the idiosyncratic volatility puzzle. More specifically, we provide

further evidence in favor of a risk-based explanation for the idiosyncratic

volatility puzzle, in line with the theoretical framework of Chen and

Petkova (2012). The largest part of the negative premium on idiosyncratic

volatility is attributable to a systematic component, most likely driven

by sentiment-induced noise trading as shown by Claußen et al. (2019).

Alternative risk-based explanations, especially aggregate variance risk

as proposed by Chen and Petkova (2012) and Herskovic et al. (2016)
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add little to this explanation. Our framework yields an explicit stock

characteristic to further discriminate between risk-based explanations and

mispricing, the main explanation in Stambaugh et al. (2015). The findings

of Stambaugh et al. (2015) fully extend to the asset-specific component of

idiosyncratic volatility, but the sign of the systematic component does not

depend on mispricing. Therefore, mispricing is unlikely to be the sole

explanation for the puzzle.

Furthermore, we contribute to the literature on the optimal orthogonal

portfolio of MacKinlay (1995) and MacKinlay and Pastor (2000). By

relaxing the strong from assumption in MacKinlay and Pastor (2000),

we allow the residual variance to vary cross-sectionally and exploit this

co-variation in a simple auxiliary regression on the cross-sectional average

of factor model residuals. This facilitates an estimation of the exposure to

latent factors in the investor’s factor model without a proxy for the latent

state variable as long as the number of assets is considerably large.

4.2 Dissecting idiosyncratic volatility in the

cross section of stock returns

4.2.1 The optimal orthogonal portfolio

As motivated from Claußen et al. (2019), we follow the framework of

MacKinlay (1995) and MacKinlay and Pastor (2000) to examine the role of

a latent systematic risk factor in the negative relationship between idiosyn-

cratic volatility and subsequent stock returns. Consequently, this section
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closely follows MacKinlay (1995) and MacKinlay and Pastor (2000).

Let ri,t denote the excess return of asset i ∈ {1, ...,N } in period t and

ζt ∈ RK represent realizations of K observable risk factors. Assuming a

linear relationship between asset returns and the risk factor returns, the

return generating process is

ri,t = αi +βi
′ζt + εi,t, (4.1)

E(εt) = 0, E (εtεt
′) = Σ and cov(εt,ζt) = 0,

where βi ∈RK are the sensitivities of asset i with respect to the K factors,

εi,t is the error in each time period, and αi denotes mispricing. An exact

linear relation between the asset returns and the risk factor returns implies

an intercept αi of zero. An intercept which is significantly different from

zero indicates mispricing.

In the presence of a missing factor, MacKinlay and Pastor (2000) show

that the covariance matrix Σ contains information about the missing factor

which drives αi . This relationship can be developed using the optimal

orthogonal portfolio defined as “the unique portfolio given N assets that can

be combined with the factor portfolios to form the tangency portfolio and is

orthogonal to the factor portfolios” (MacKinlay, 1995, p. 8). An advantage

of the optimal orthogonal portfolio is that, by definition, it leaves the

factor sensitivities βi unaffected once the missing variable is included. We

denote the return on the optimal orthogonal portfolio (op) at time t with

rop,t which governs the asset return with sensitivity βop and its first two

moments are E

(
rop,t

)
= µop and var

(
rop,t

)
= σ2

op. Per definition, it holds

cov(ζt, rop,t) = 0. Replacing αi in Equation (4.1) with the return of the
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optimal orthogonal portfolio yields

ri,t = βop,irop,t +βi
′ζt + νi,t, (4.2)

E(νt) = 0, E(νtνt
′) = Φ , and cov(νt,ζt) = cov

(
νt, rop

)
= 0.

MacKinlay and Pastor (2000) employ the assumption that the covariance

matrix Φ is proportional to the identity matrix. We relax this strong form

assumption and set Φ as a diagonal matrix with asset specific error term

variances σ2
ν,i := var(νi,t). Equaling the expectation of Equation (4.1) and

Equation (4.2) leads to

αi = βop,iE(rop) = βop,iµop. (4.3)

Further, comparison of Equation (4.1) and (4.2) results in

εi,t = βop,irop,t + νi,t −αi . (4.4)

Given cov
(
νt, rop

)
= 0, we express the variance of the error term in Equa-

tion (4.4) in terms of two components

σ2
ε,i := var(εi,t) = β2

op,iσ
2
op + σ2

ν,i . (4.5)

Equation (4.5) illustrates that σ2
ε,i , i.e. the idiosyncratic variance of the

K factor model known to the investor, consists of two components. The

first component on the right hand side of Equation (4.5), β2
op,iσ

2
op, re-

flects systematic deviations from the return generating process due to

the latent character of rop. This component prevents the diversification

of idiosyncratic risk to zero when forming a portfolio (MacKinlay, 1995).

The second component, σ2
ν,i , is truly non-systematic.
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4.2.2 A simple regression-based decomposition of

idiosyncratic volatility

Instead of an economically motivated conjecture about the latent factor

op and the subsequent estimation of βop,i for individual stocks, we implic-

itly derive βop,i without explicit knowledge about the unobserved state

variable op.

First, we assume the linear model in Equation (4.1) to be known to

the investor. The investor is thus able to estimate regression residuals

εi,t based on this model. Consider an auxiliary regression of individual

regression residuals εi,t on the cross-sectional average of all residuals εt,

i.e.

εi,t = δ0,i + δ1,i · εt + ηi,t. (4.6)

In contrast to MacKinlay and Pastor (2000) and Claußen et al. (2019) who

suggest weights which are proportional to mispricing, we form the proxy

for the active portfolio εt as an equally-weighted average for two reasons.

First, this reduces noise in the weighting vector which is supposedly larger

for single stocks compared to portfolios used in Claußen et al. (2019).

Second, we can now rewrite an analytical expression for the independent

variable in Equation (4.6)

εt =
1
N

N∑
`=1

(
βop,`rop,t + ν`,t −α`

)
= βop,Mrop,t +

1
N

N∑
`=1

ν`,t −αM , (4.7)

where βop,M = 1
N

∑N
`=1βop,` and αM = 1

N

∑N
`=1α`. To express the regression
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coefficient analytically, we need the variance of εt, which is given by

σ2
ε := var(εt) = β2

op,Mσ
2
op +

1
N 2

N∑
`=1

σ2
ν,`, (4.8)

because Φ is diagonal and cov
(
νt, rop

)
= 0. Recall that we allow Φ to have

different entries on the diagonal which relaxes the strong form assumption

in MacKinlay and Pastor (2000). This leads to a closed-form solution for

the regression coefficient δ1,i :

δ1,i =
cov(εi,t,εt)

σ2
ε

=
βop,iβop,Mσ

2
op +

σ2
ν,i
N

β2
op,Mσ

2
op + 1

N2

N∑̀
=1
σ2
ν,`

(4.9)

If the number of assets N is considerably large and σ2
ε,i < 1∀i, the regres-

sion coefficient is proportional to the unknown factor sensitivity βop,i ,

more precisely

δ1,i ≈
βop,iβop,Mσ

2
op

β2
op,Mσ

2
op

=
βop,i
βop,M

. (4.10)

Further, for large N , we can approximate Equation (4.8) with

σ2
ε ≈ β

2
op,Mσ

2
op, (4.11)

leading to

βop,i ≈
δi,1σε̄
σop

⇒ β̂op,i ≈
δ̂i,1 · σ̂ε̄
σop

, (4.12)

where the circumflex indicates estimates for the unknown true parame-

ters. The yet unknown denominator σop cancels out in the final step. To

estimate the second component of σ2
ε,i , i.e. σ2

ν,i , we insert the approxima-

tions in Equation (4.10) and (4.11) into the R-squared of the univariate
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auxiliary regression in Equation (4.6):

R2
i =

(
cov(εi,t,εt)
σε,iσε

)2

=
(
δ1,iσε
σε,i

)2

≈

β2
op,iβ

2
op,Mσ

2
op

β2
op,Mσ

2
ε,i

 =

β2
op,iσ

2
op

σ2
ε,i


Given an estimate for R̂2

i , it follows

σν,i ≈
√

(1−R2
i )σ2

ε,i ⇒ σ̂ν,i ≈
√

(1− R̂2
i )σ̂2

ε,i . (4.13)

Finally, combining Equation(4.12) and (4.13) with Equation (4.5) we can

pin down the two components of σ̂2
ε,i :

σ̂2
ε,i = β̂2

op,iσ
2
op + σ̂2

ν,i ≈
(
δ̂i,1σ̂ε̄
σop

)2

σ2
op + σ̂2

ν,i

= (δ̂i,1σ̂ε̄)
2︸   ︷︷   ︸

Exposure to latent factor variance

+ σ̂2
ν,i︸︷︷︸

Asset-specific variance

(4.14)

We introduce the following nomenclature for the remainder of this paper:

We define the square root of the exposure to the latent factor variance as

latent factor volatility LFVFM and refer to the asset-specific volatility as

ASVFM . The square-root of σ̂2
ε,i , i.e. idiosyncratic volatility is referred to

as IV olFM , following the methodology of Ang et al. (2006, 2009). β̂FMop

refers to the estimate for the sensitivity to the latent factor. FM indicates

the corresponding factor model which is used to generate residuals.

4.2.3 Asset pricing implications of the volatility

decomposition

Ang et al. (2006, 2009) employ the square root of idiosyncratic variance

σ̂2
ε,i from the Fama and French (1993) three factor model as a measure for
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idiosyncratic risk. Empirically, they find a strong negative relationship

between idiosyncratic volatility (IV ol) and expected returns and alphas,

also known as the idiosyncratic volatility puzzle. Based on the theoretical

framework in Section 4.2.1, Claußen et al. (2019) identify latent but

systematic noise trader risk as the most promising explanation for the

puzzle. Their analysis relies on portfolios rather than individual stocks as

base assets. Ang et al. (2018), however, argue that individual stocks permit

more efficient factor pricing tests. To address this concern, we analyze the

implications of the volatility decomposition in the cross section of stock

returns. We organize the analysis in two testable hypotheses.

Ex ante, LFV is unlikely to be a large fraction of idiosyncratic risk

because factor asset pricing models such as the Fama and French (1993)

three factor model receive vast empirical support and capture a large

amount of commonality in stock returns. Thus, we expect the latent

factor component LFV to be only a small fraction of IV ol. However, if

latent systematic risk is an important determinant of the idiosyncratic

volatility puzzle, we expect that this small fraction contributes a large

share to the negative IV ol risk premium and hypothesize:

Hypothesis H1: LFV is a small fraction of IV ol, but carries a large fraction

of the negative IV ol risk premium.

Claußen et al. (2019) directly test the linear relationship in Equa-

tion (4.2) and show that high-IV ol portfolios exhibit negative alphas due

to the exposure to noise trader risk. In line with the considerations of

Stambaugh et al. (2015), the latent risk behind the IV ol puzzle com-

mands a negative risk premium. Given this premise, high-IV ol stocks
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should have higher exposures βop,i . Thus, the cross-sectional risk pre-

mium on βop,i should be negative. We expect that the linear relation in

Equation (4.2) extends to the cross section as well and postulate:

Hypothesis H2: Stocks with a high βop,i have low expected returns.

4.3 Data, methodology and descriptive

statistics

4.3.1 Data and methodology

Our stock sample covers the CRSP common stock universe (share code

10 and 11) from July 1963 to December 2016. We obtain returns, market

capitalizations, trading volumes and prices on a daily and monthly basis

from CRSP. We follow Hou and Loh (2016) and apply a one dollar price

screen. Returns are adjusted for delistings as motivated by Shumway

(1997).

Following Ang et al. (2006), we define IV ol in month t as the standard

deviation of residuals from a daily Fama and French (1993) three factor

model (FF3) regression. At least 15 valid daily observations are required.

In robustness checks we adjust the estimation window as well as the factor

model. This one-month (1M) baseline measure is referred to as IV ol1MFF3.

We perform an additional within-month regression on the daily residuals

of each stock i in month t on the cross-sectional average of residuals

according to Equation (4.6). We approximate the latent factor sensitivity

βFMop,i , the volatility attributable to the latent systematic factor LFV 1M
FF3, as
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well as the asset specific component ASV 1M
FF3 according to Equation (4.12)

and Equation (4.14), respectively.

Returns on the risk factors of the models proposed by Fama and French

(1993), Carhart (1997) and Fama and French (2015) are from Kenneth

French’s website. The Bali et al. (2017) lottery demand factor is down-

loaded from Turan Bali’s website. The Pastor and Stambaugh (2003)

liquidity factor and the Stambaugh, Yu and Yuan (2015) mispricing mea-

sure are from Robert F. Stambaugh’s and Yu Yuan’s website, respectively.

Appendix 3.A describes the control variables based on this data and their

respective estimation. We gratefully acknowledge the provision of risk

factors and economic data by fellow colleagues.

4.3.2 Descriptive statistics

Table 4.1 provides summary statistics over the sample period from July

1963 to December 2016. We report means, standard deviations, the

number of observations and quantile measures of our variables of interest,

i.e. IV ol1MFF3, LFV 1M
FF3 andASV 1M

FF3, as well as control variables. Descriptives

of ASV 1M
FF3 and IV ol1MFF3 are very similar. IV ol1MFF3 is largely idiosyncratic

and the latent systematic factor on average accounts for 6.46% of its

magnitude. The average monthly LFV 1M
FF3 of 0.55% is consequently low

compared to an average ASV 1M
FF3 of 2.59% per month. This observation

extends to extreme values of LFV 1M
FF3. Even in the 99th percentile, the

share of LFV 1M
FF3 accounts for 38.33% of IV ol1MFF3. This empirical evidence

is in line with the preliminary considerations that factor models capture a
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Table 4.1: Summary statistics of the baseline analysis.

Variable Mean Std. Dev. N 1st Pctl Q1 Median Q3 99th Pctl

IV ol1MFF3 0.0267 0.0222 2,853,719 0.0023 0.0130 0.0209 0.0335 0.1063
LFV 1M

FF3 0.0055 0.0071 2,853,719 0.0000 0.0014 0.0034 0.0070 0.0324
ASV 1M

FF3 0.0259 0.0214 2,838,344 0.0035 0.0127 0.0203 0.0324 0.1029
LFV 1M

FF3 (%) 0.0646 0.0840 2,838,344 0.0000 0.0071 0.0316 0.0895 0.3833
ASV 1M

FF3 (%) 0.9354 0.0840 2,838,344 0.6168 0.9105 0.9684 0.9929 1.0000
βFF3
op 0.0011 0.0090 2,853,719 -0.0210 -0.0027 0.0004 0.0042 0.0291

Mkt Cap (th.) 1,500,003 10,217,437 2,851,186 1,670 21,668 85,866 432,042 25,873,417
Return 0.0063 0.1596 2,845,668 -0.3713 -0.0682 -0.0038 0.0669 0.5083
Illiq 1.8997 10.3142 2,249,893 0.0001 0.0077 0.0839 0.6876 33.0751
CoSkew -4.9360 26.5109 2,638,990 -89.6172 -13.1366 -2.6563 4.5527 66.7917
ISkew 0.6111 1.4613 2,638,990 -3.2040 0.0590 0.4434 0.9738 6.1830
Max 0.0419 0.0346 2,797,007 0.0064 0.0205 0.0325 0.0523 0.1682
MOM 0.1641 0.7086 2,616,597 -0.7505 -0.1791 0.0667 0.3452 2.5500
ZeroRet 0.2267 0.2358 2,853,208 0.0000 0.0476 0.1500 0.3333 0.9545
MISP 50.3301 13.4269 1,726,244 21.8800 40.8700 49.7600 59.2400 82.5800
βAV 0.1237 7.1789 2,282,492 -21.3019 -1.7718 0.0895 2.0152 21.6210
βAC 0.0067 0.3136 2,282,492 -0.8570 -0.1304 -0.0010 0.1332 0.9352
βLiq 0.0112 0.8276 2,282,491 -2.1844 -0.3495 0.0103 0.3744 2.2194
βMax 0.9821 0.9302 2,277,053 -0.5318 0.3342 0.8589 1.4836 3.5948
βCIV -0.5736 15.3343 2,282,492 -42.4499 -8.2273 -0.2146 7.2735 39.6381
βMV -252.2155 465.0155 2,282,492 -1,780.1260 -407.7942 -149.4328 -35.2598 810.9744
βMkt 0.8754 0.6381 2,638,990 -0.5150 0.4471 0.8482 1.2495 2.5890
βHML 0.1141 0.9259 2,638,990 -2.5611 -0.3178 0.1318 0.5803 2.6054
βSMB 0.7449 0.8192 2,638,990 -0.9922 0.2054 0.6585 1.1967 3.0979

Table 4.1 presents summary statistics of the baseline analysis. We report means, standard devia-

tions, numbers of observations N and quantiles of: IV ol1MM is the one-month idiosyncratic volatil-

ity of Fama and French (1993) three factor model residuals. LV F1M
FF3 (ASV 1M

FF3) is the volatility

attributable to the latent systematic factor (asset-specific factor) of IV ol1MFF3 after its decompo-

sition. We further report descriptive statistics for the share of each component in relation to

IV ol1MFF3 as well as the estimate for the sensitivity βFF3
op . Mkt Cap is the monthly market cap-

italization in 1,000 USD and Return is the monthly return of the respective stock. Illiq is the

Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed by Harvey and Siddique

(2000), ISkew is idiosyncratic skewness of Fama and French (1993) three factor model residuals

and Max is the average of the five highest daily return in the previous month (Bali et al., 2017).

MOM is the cumulative return over the previous year. ZeroRet is the share of zero returns and

MISP is the Stambaugh et al. (2015) mispricing measure. Betas are calculated to the following

risk factors: AV (AC) is monthly average variance (correlation) of Chen and Petkova (2012), CIV

(MV) is common idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016).

Finally, Mkt, SMB and HML are the factors of the Fama and French (1993) three factor model.

The sample period is July 1963 to December 2016.
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large fraction of commonality in stock returns, leading to Hypothesis H1.

Table 4.2 presents time series averages of cross-sectional correlations.

The correlation coefficient between IV ol1MFF3 and ASV 1M
FF3 is close to one.

This mechanical relation is due to the decomposition in Equation (4.14),

the large difference between the variances of the two IV ol1MFF3 components

by roughly factor ten and the positive skewness of the marginal distribu-

tions. The large difference in variances might also explain the results of

Stambaugh et al. (2015) who find an almost perfect correlation between

IV ol1MFF3 and a model extended by a mispricing factor. The correlation be-

tween LFV 1M
FF3 and IV ol1MFF3 (ASV 1M

FF3) is lower and amounts to 0.64 (0.57).

In general, the correlation between LFV 1M
FF3 and other stock characteristics

and risk factor betas is reduced compared to IV ol1MFF3 (ASV 1M
FF3). For exam-

ple, Max and IV ol1MFF3 (ASV 1M
FF3) are highly correlated with a correlation of

0.87 (0.88), but the decomposed variance attributable to the latent factor

conveys a smaller correlation of 0.57. This finding is very similar for the

beta to FMax, the systematic lottery demand factor proposed in Bali et al.

(2017), although the correlation is generally lower. LFV 1M
FF3 is almost un-

correlated to the market beta and βSMB. The correlation between LFV 1M
FF3

and βHML is also substantially reduced after the decomposition. This

illustrates that the latent systematic factor behind LFV 1M
FF3 is indeed not

captured by the FF3 model or alternative candidate variables.
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Figure 4.1 illustrates the effectiveness of our IV ol decomposition.

Panel A presents binned scatter plots of the two IV ol1MFF3 components

LFV 1M
FF3 and ASV 1M

FF3 as well as the relative amount of stocks in different

regions conditional on the ratio of both components, i.e. LFV
ASV . The dashed

line separates observations in different LFV
ASV regimes. The color bar indi-

cates the number of observations in each bin. Both figures consider 99%

of the sample stocks to remove outliers from the illustration.

In 65% of the observations, LFV 1M
FF3 is less than a quarter of ASV 1M

FF3.

This is consistent with our considerations which lead to hypothesis H1

that the FF3 factor model captures a large fraction of common factors in

stock returns and idiosyncratic volatility is indeed largely asset-specific.

For the remaining 35%, the model does not appropriately account for

the volatility of a latent risk factor. More specifically, one percentage

point of ASV 1M
FF3 is associated with at least 0.5 percentage points of latent

factor volatility LFV 1M
FF3 for roughly 7.5% of the stocks. Although average

LFV 1M
FF3 is small, Panel A unveils that a sizable fraction of the sample

exhibits latent factor volatility in a magnitude comparable to ASV 1M
FF3.

It turns out that the LFV
ASV -ratio amplifies the relation between IV ol and

subsequent returns. The IV ol risk premium decreases monotonically

from -18.13% in the first regime with LFV
ASV < 25% to -33.14% for stocks

with LFV
ASV > 75%. This is a first hint that LFV is a stronger driver of the

negative idiosyncratic volatility premium than ASV .

Panel B presents binned scatter plots of IV ol1MFF3 and its asset-specific

component ASV 1M
FF3 as well as the ratio between the two variables ASV

IV ol .

The dashed line separates the sample into different regions conditional
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on the ASV
IV ol -ratio. We choose cutoff values to match the relative number

of observations in Panel A.

If we consider the aforementioned 65% of observations, the fraction of

latent factor volatility in LFV 1M
FF3 is close to zero and ASV 1M

FF3 accounts for

the entire magnitude of IV ol1MFF3. For observations with a sizable fraction

of LFV 1M
FF3 in relation to ASV 1M

FF3, the decomposition absolves IV ol1MFF3 of

the volatility attributable to the latent factor. LFV 1M
FF3 accounts for at least

10% of IV ol1MFF3 for the 7.5% of observations which exhibit 0.5 percentage

points LFV 1M
FF3 for each percentage point of ASV 1M

FF3. Despite the high

correlation between ASV 1M
FF3 and IV ol1MFF3, the asset-specific component

ASV 1M
FF3 differs from IV ol1MFF3 for observations which exhibit a sizable

latent factor volatility LFV 1M
FF3.

4.4 Empirical analysis

4.4.1 Asset pricing implications of latent noise trader

risk

First of all, Hypothesis H1 implies an underperformance of stocks with

high latent factor volatility LFV . Thus, we perform Fama and MacBeth

(1973) cross-sectional regressions to test the negative relation between

LFV 1M
FF3 and subsequent excess returns. We control for IV ol1MFF3 or its purely

asset-specific component ASV 1M
FF3 and other firm characteristics as well

as risk factor betas.2 Table 4.3 presents average coefficient estimates of
2We follow Hou and Loh (2016) and do not consider lottery demand Max due to

the high mechanical correlation with IV ol1MFF3 and ASV 1M
FF3, respectively. Instead, we
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the monthly cross-sectional regressions. Newey and West (1987) adjusted

t-statistics with six lags in parentheses test the null hypothesis that the

average slope coefficient is zero. Average coefficients are multiplied with

one hundred. The sample period is June 1964 to December 2016 in

Columns (1) - (6) and June 1968 to December 2016 in Columns (7) - (12).

We winsorize all explanatory variables at the 0.5% level (0.25% in each

tail) on a monthly basis.

Column (1) in Table 4.3 confirms the results of Ang et al. (2006, 2009)

in our sample period. The average coefficient on IV ol amounts to -20.882

and is statistically significant with a t-statistic of -4.02. Column (2) is

in line with the mechanical relation between IV ol1MFF3 and ASV 1M
FF3. We

find an almost identical average coefficient on ASV 1M
FF3 of -20.963 with a

t-statistic of -3.95. Consequently, we include the asset-specific component

ASV 1M
FF3 instead of IV ol1MFF3 in the further analysis.

Column (3) to (5) focus on the volatility attributable to the latent sys-

tematic factor LFV . In the univariate regression of Column (3), LFV 1M
FF3

exhibits an average coefficient of -45.399 with a t-statistic of -4.76. Col-

umn (4) and (5) show that the coefficient on LFV 1M
FF3 remains statistically

significant once we control for ASV 1M
FF3, several stock characteristics and

betas with respect to the three Fama and French (1993) factors. Although

the magnitude of the coefficient decreases when we include ASV 1M
FF3 as a

control variable, this does not affect the statistical significance of LFV 1M
FF3

estimate the beta to aggregate lottery demand proposed in Bali et al. (2017) in order to
capture the aggregate effect of lottery demand. In Section 4.5.4 we include Max and show
that our results are robust to an inclusion of lottery demand as a stock characteristic as
well.
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Table 4.3: Fama and MacBeth (1973) regressions.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Intercept 1.2479 1.2316 0.9918 1.2393 3.7775 2.5669 2.3764 2.4475 2.3797 2.4454 2.3924 2.3235

(6.47) (6.39) (4.32) (6.47) (7.50) (4.47) (4.25) (4.24) (4.19) (4.23) (4.50) (4.48)
IV ol1MFF3 -20.822

(-4.02)
ASV 1M

FF3 -20.963 -16.892 -23.862
(-3.95) (-3.31) (-8.03)

LFV 1M
FF3 -45.399 -19.735 -17.719 -40.557 -42.610 -42.486 -42.448 -42.178 -42.279 -41.433

(-4.76) (-4.97) (-5.25) (-8.78) (-9.84) (-9.76) (-9.70) (-9.68) (-10.17) (-10.11)
LagRet -4.0599 -4.2864 -4.5263 -4.3785 -4.4060 -4.4263 -4.5983 -4.7115

(-9.03) (-9.61) (-9.53) (-9.27) (-9.38) (-9.26) (-9.78) (-9.62)
Mom 0.7157 0.7775 0.7311 0.7352 0.7231 0.7188 0.7043 0.7020

(5.32) (5.64) (4.99) (4.98) (4.99) (4.93) (5.05) (5.15)
Illiq 0.0324 0.0193 0.0115 0.0111 0.0107 0.0114 0.0109 0.0107

(3.33) (1.97) (1.35) (1.30) (1.27) (1.33) (1.30) (1.27)
ISkew -0.0400 -0.0492 -0.0450 -0.0413 -0.0437 -0.0431 -0.0452 -0.0388

(-2.37) (-2.79) (-2.55) (-2.28) (-2.47) (-2.41) (-2.67) (-2.26)
CoSkew -0.0085 -0.0078 -0.0053 -0.0080 -0.0074 -0.0087 -0.0059 -0.0049

(-1.83) (-1.69) (-1.48) (-1.68) (-1.76) (-1.83) (-1.59) (-1.59)
ZeroRet -0.3280 -0.0098 -0.1595 -0.1607 -0.1731 -0.1670 -0.1444 -0.1561

(-1.26) (-0.04) (-0.62) (-0.61) (-0.67) (-0.64) (-0.57) (-0.64)
Size -0.2054 -0.1336 -0.1139 -0.1178 -0.1135 -0.1179 -0.1151 -0.1103

(-6.07) (-3.40) (-3.02) (-3.04) (-2.96) (-3.03) (-3.24) (-3.22)
βMkt -0.0318 -0.1330 -0.1656 -0.1464 -0.1505 -0.1324 -0.1901 -0.2000

(-0.23) (-0.89) (-1.12) (-0.94) (-0.97) (-0.84) (-1.52) (-1.63)
βHML 0.1473 0.1835 0.1891 0.1833 0.1797 0.1769 0.1802 0.1773

(2.21) (2.64) (2.72) (2.55) (2.54) (2.50) (3.09) (3.10)
βSMB -0.1041 -0.1136 -0.1491 -0.1488 -0.1452 -0.1537 -0.1458 -0.1430

(-2.10) (-2.19) (-3.04) (-3.01) (-2.96) (-3.16) (-3.19) (-3.21)
βMV -0.0005

(-1.94)
βAV -0.0071 -0.0055

(-1.01) (-0.82)
βAC 0.0444 0.1124

(0.56) (1.28)
βCIV -0.0017 -0.0005

(-0.61) (-0.17)
βLiq 0.0050 -0.0038

(0.12) (-0.09)
βFMax 0.0476 0.0589

(0.53) (0.62)

avg.R
2

in % 1.8708 1.8536 0.7687 1.9535 6.8888 6.5895 6.6191 6.6437 6.6187 6.6611 6.8409 7.1854
avg.N 3301 3301 3301 3301 3301 3301 3147 3147 3147 3147 3147 3147

Table 4.3 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions of

excess returns in month t + 1 on IV ol1MFF3 and its two components ASV 1M
FF3 and LFV 1M

FF3 in month

t as well as several control variables. We include the following set of control variables: LagRet is

the return in month t, Mom is the cumulative return over the previous year, Illiq is the Amihud

(2002) illiquidity measure, CoSkew is co-skewness as proposed by Harvey and Siddique (2000)

and ISkew is idiosyncratic skewness of Fama and French (1993) three factor model residuals.

ZeroRet is the share of zero returns and Size is the logarithm of the monthly market capitalization

in 1,000 USD. Betas are calculated to the following risk factors: Mkt, SMB and HML are the

factors of the Fama and French (1993) three factor model. AV (AC) is monthly average variance

(correlation) of Chen and Petkova (2012), CIV (MV) is common idiosyncratic volatility (market

variance) as proposed by Herskovic et al. (2016). Liq is the Pastor and Stambaugh (2003) liquidity

factor and FMax is the Bali et al. (2017) lottery demand factor. The sample period in Model (1)

- (6) is June 1964 to December 2016 and the sample period in Model (7) - (12) is June 1968 to

December 2016. We report the average cross-sectional adjusted r-squared avg.R
2

in % as well

as the average number of observations N . Average coefficients are multiplied by one hundred.

We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on a monthly basis.

t-statistics calculated from Newey and West (1987) standard errors with six lags in parentheses.
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with t-statistics around minus five.

To focus on the asset pricing implications of LFV 1M
FF3, we drop ASV 1M

FF3

in Column (6) to Column (12) and include alternative explanations for

the idiosyncratic volatility puzzle. The t-statistic of LFV 1M
FF3 increases sub-

stantially from around minus five to roughly minus nine. The magnitude

of the coefficient of -40.557 in Column (6) is similar to the univariate anal-

ysis in Column (3). Average coefficients on LFV 1M
FF3 are largely unrelated

to the inclusion of control variables. This supports the latent nature of the

systematic risk factor. In Column (6), control variables are also significant

with expected signs, except for the market beta and ZeroRet.

In Column (7) to (12) we include potential systematic risk factors

which provide alternative explanations for the idiosyncratic volatility

puzzle and thus might relate to LFV 1M
FF3. We start with aggregate market

variance risk in Column (7), as motivated by Chen and Petkova (2012), and

include a stock’s beta to average monthly market variance. In line with

the literature, this coefficient is significantly negative at the ten percent

level, but its inclusion does not change the estimate for LFV 1M
FF3. The

two components of aggregate variance risk, average variance and average

cross-correlation proposed by Chen and Petkova (2012) in Column (8)

are not significant. This result is similar to Hou and Loh (2016). The

betas to the Herskovic et al. (2016) measure for common idiosyncratic

volatility (CIV), Pastor and Stambaugh (2003) aggregate liquidity risk and

the Bali et al. (2017) aggregate lottery demand factor are also insignificant

in Columns (9) to (11). This also holds true for the full regression model
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in Column (12).3 Either way, LFV 1M
FF3 remains statistically significant at

any conventional level with an average estimate of roughly -42. The

difference between the estimates in Column (6) and the Columns (7) to

(12) is caused by the shorter sample period starting in June 1968 instead

of June 1964 due to the availability of control variables. In summary, the

negative relationship between LFV 1M
FF3 and subsequent returns is robust to

the inclusion of well-accepted stock characteristics and risk factor betas.

The results in Table 4.3 support hypothesis H1.

The asset-specific component ASV 1M
FF3 remains significant when includ-

ing LFV 1M
FF3. To illustrate that the full sample evidence draws an incom-

plete picture, we compute the Fama and MacBeth (1973) estimates in a

rolling window analysis as motivated from Lewellen (2015). Figure 4.2

presents ten-year rolling window averages of the coefficient estimates in

Column (4) in Table 4.3, i.e. an analysis of the two components without

control variables. The figure plots the average coefficient estimate over

the preceding ten years in bold lines as well as the upper and lower 95%

confidence bound in dashed lines. The dates on the abscissa indicate the

end of each ten-year window, so the depicted significance relates to the

previous ten years. Panel A (B) shows the evolution of the coefficient on

LFV 1M
FF3 (ASV 1M

FF3) over time.

Before 1988, the upper 95% confidence bound for the average coef-

ficient on LFV 1M
FF3 is above zero, indicating that the slope coefficient is

insignificant from 1963 to 1978. Thereafter, however, the upper bound is
3Instead of βMV , we include the two components of aggregate market variance, i.e.

βAC and βAV .
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Figure 4.2: Rolling window Fama and MacBeth (1973) estimates.
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Figure 4.2 presents ten-year rolling window estimates of the Fama and MacBeth (1973) average

coefficients in Column (4) of Table 4.3. Panel A (B) presents the ten-year rolling window average

slope coefficient on LFV 1M
FF3 (ASV 1M

FF3) in bold lines while controlling for both components of

IV ol1MFF3. Dashed lines represent 95% confidence bounds of the average slope coefficient. The

dates on the abscissa indicate the end of each ten-year window. The sample period is 1963 to

2016.
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well below zero and the rolling window coefficients indicate a significantly

negative relation between LFV 1M
FF3 and subsequent returns. Considering

the more recent time period, the strength of this effect increases.

Similarly, the first part of the sample period shows mixed results

for ASV 1M
FF3 in Panel B. The upper bound of the 95% confidence bound

falls below zero in 1985, tantamount to an insignificant slope coefficient

before 1975. Recall that the dates on the abscissa indicate the end of the

respective estimation window. Afterwards, the average slope coefficient

on ASV 1M
FF3 is significantly negative from 1975 to 1989 for approximately

14 years. The relationship is rather unstable with a stronger negative

relation in recent years.

Considering the rolling window estimates of the Fama and MacBeth

(1973) regressions, the full sample evidence on ASV 1M
FF3 is intriguing and

mostly driven by a negative peak in the 1980s. In contrast, LFV 1M
FF3 is

statistically significant for more than 38 consecutive years after October

1978. When controlling for this factor, the truly idiosyncratic component

ASV 1M
FF3 is rather short lived and concentrates in a small part of the full

sample period. At the same time, the negative risk premium associated

with LFV 1M
FF3 becomes stronger in recent years. The time variation of the

two slope coefficients differs substantially, indicating that LFV 1M
FF3 and

ASV 1M
FF3 reflect different determinants of stock returns. From a historical

perspective, the negative risk premium on LFV 1M
FF3 seems more robust

than the explanatory power of ASV 1M
FF3.

Both, the findings of the Fama and MacBeth (1973) regressions as well

as the rolling window coefficient estimates support our hypothesis H1.
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Stocks with high LFV 1M
FF3 have low expected returns and alphas. Although

the idiosyncratic component ASV 1M
FF3 remains significant in the full sam-

ple analysis, the rolling window estimates unveil that this negative risk

premium is driven by a short negative peak, while the slope coefficient

LFV 1M
FF3 is steadily negative after 1978 and becomes increasingly more

negative in recent years. Furthermore, LFV 1M
FF3 and ASV 1M

FF3 are far from

identical and perform differently in the cross section of stock returns.4

Hypothesis H2 postulates low expected returns and alphas for stocks

with a high sensitivity βop to the latent factor. Therefore we replace

LFV 1M
FF3 with βFF3

OP in the Fama and MacBeth (1973) cross-sectional regres-

sions in Table 4.4. Other than that, the econometric framework is identical

to Table 4.3. The sample period is June 1964 to December 2016 except for

Column (5) with a sample period from June 1968 to December 2016.

We find consistently significant negative signs for the coefficient esti-

mate on βFF3
OP for each specification. In the univariate analysis in Column

(1), βFF3
OP attains an average coefficient of -13.04 with a t-statistic of -3.06.

Including ASV 1M
FF3 in Column and (3) reduces the coefficient estimates,

but leaves the estimate βFF3
OP statistically significant. The inclusion of

control variables in Columns (4) to (10) has little effect on the average

coefficient of βFF3
OP in comparison to the univariate specification in Column

(1). High βFF3
OP earn low returns in the subsequent month and this effect is

robust to the inclusion of control variables. The findings are in line with

Hypothesis H2 and highlight the importance of a systematic component
4We present additional empirical support in Section 4.5.1 and show that this results

is robust to the orthogonalization of the two components LFV 1M
FF3 and ASV 1M

FF3.

161



Dissecting idiosyncratic volatility in the cross section of stock returns

Table 4.4: Fama and MacBeth (1973) regressions with βop.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.7787 1.2172 2.0457 1.8332 1.9059 1.8394 1.9054 1.8602 1.8030

(3.02) (6.30) (3.41) (3.15) (3.17) (3.11) (3.17) (3.37) (3.36)
βFF3
op -13.040 -9.0947 -13.712 -13.873 -13.568 -13.703 -13.596 -13.916 -13.382

(-3.06) (-2.78) (-4.34) (-4.20) (-4.09) (-4.13) (-4.12) (-4.34) (-4.27)
ASV 1M

FF3 -19.912
(-3.79)

LagRet -4.4132 -4.6663 -4.5236 -4.5512 -4.5727 -4.7468 -4.8508
(-10.00) (-9.98) (-9.71) (-9.83) (-9.71) (-10.26) (-10.07)

MOM 0.8006 0.7517 0.7578 0.7442 0.7402 0.7245 0.7230
(5.79) (5.11) (5.13) (5.12) (5.06) (5.18) (5.29)

Illiq 0.0135 0.0053 0.0050 0.0046 0.0053 0.0048 0.0048
(1.38) (0.63) (0.59) (0.54) (0.62) (0.57) (0.56)

ISkew -0.0548 -0.0513 -0.0474 -0.0500 -0.0493 -0.0515 -0.0449
(-3.06) (-2.87) (-2.58) (-2.78) (-2.71) (-2.99) (-2.58)

CoSkew -0.0083 -0.0060 -0.0086 -0.0080 -0.0094 -0.0066 -0.0056
(-1.72) (-1.55) (-1.73) (-1.80) (-1.87) (-1.64) (-1.63)

ZeroRet 0.1763 0.0285 0.0264 0.0155 0.0197 0.0417 0.0300
(0.73) (0.11) (0.10) (0.06) (0.08) (0.17) (0.13)

Size -0.1035 -0.0826 -0.0866 -0.0823 -0.0867 -0.0844 -0.0804
(-2.52) (-2.10) (-2.15) (-2.07) (-2.14) (-2.29) (-2.26)

βMkt -0.1770 -0.2110 -0.1922 -0.1964 -0.1780 -0.2314 -0.2396
(-1.17) (-1.41) (-1.21) (-1.25) (-1.12) (-1.82) (-1.93)

βHML 0.1930 0.1983 0.1923 0.1891 0.1861 0.1879 0.1847
(2.73) (2.82) (2.64) (2.63) (2.59) (3.17) (3.17)

βSMB -0.1169 -0.1535 -0.1534 -0.1495 -0.1580 -0.1495 -0.1466
(-2.22) (-3.11) (-3.07) (-3.01) (-3.21) (-3.25) (-3.26)

βMV -0.0005
(-1.95)

βAV -0.0071 -0.0053
(-1.00) (-0.79)

βAC 0.0374 0.1086
(0.47) (1.23)

βCIV -0.0014 -0.0002
(-0.49) (-0.07)

βLiq 0.0060 -0.0040
(0.14) (-0.10)

βFMax 0.0395 0.0504
(0.44) (0.53)

avg.R
2
in % 0.3040 2.0903 6.9160 6.9919 7.0500 6.9931 7.0344 7.2164 7.6898

avg.N 3301 3301 3301 3147 3147 3147 3147 3147 3147

Table 4.4 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions of

excess returns in month t+1 on IV ol1MFF3, its asset specific component ASV 1M
FF3 and the sensitivity

to the latent factor βFF3
op as well as several control variables in month t. We include the following

set of control variables: LagRet is the return in month t, Mom is the cumulative return over the

previous year, Illiq is the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed

by Harvey and Siddique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993)

three factor model residuals. ZeroRet is the share of zero returns and Size is the logarithm of the

monthly market capitalization in 1,000 USD. Betas are calculated to the following risk factors:

Mkt, SMB and HML are the factors of the Fama and French (1993) three factor model. AV (AC)

is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV) is common

idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor

and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery demand factor.

The sample period is June 1964 to December 2016 except for Column (5) with a sample period

from June 1968 to December 2016. We report the average cross-sectional adjusted r-squared

avg.R
2

in % as well as the average number of observations N . Average coefficients are multiplied

by one hundred. We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on

a monthly basis. t-statistics calculated from Newey and West (1987) standard errors with six lags

in parentheses.
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in supposedly idiosyncratic risk. Our evidence in favor of H2 is consistent

with Claußen et al. (2019) who relate the low average returns of βFF3
OP to

latent but systematic noise trader risk.

4.4.2 Dissecting the idiosyncratic volatility risk

premium

Hypothesis H1 further postulates that the negative risk premium on the

latent factor volatility LFV 1M
FF3 explains a large fraction of the risk pre-

mium on IV ol1MFF3. Therefore we apply the methodology of Hou and Loh

(2016) to estimate the share of the negative risk premium on IV ol1MFF3 in

the Fama and MacBeth (1973) regressions which is attributable to LFV 1M
FF3.

Furthermore, the approach provides statistical inference about the sig-

nificance of the fraction which is explained by the respective candidate

variable as well as the unexplained fraction.

Table 4.5 presents results of the univariate decomposition methodol-

ogy. We report the coefficient for the candidate variable as well as the

fraction of the IV ol1MFF3 risk premium γt which is related to this candi-

date. The t-statistics indicate whether this fraction is statistically different

from zero. Motivated by the rolling window regressions in Figure 4.2, we

present a sample split to illustrate the effect that the explanatory power

of LFV 1M
FF3 increases over time. The sample split in 1989 divides the total

sample period from 1963 to 2016 equally.

Over the full sample in Column (1), LFV 1M
FF3 explains 45.38% of the
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Table 4.5: Quantization of the systematic risk in the idiosyncratic
volatility puzzle.

(1) (2) (3)
Full Sample 1963 - 2016 Sub period 1963 - 1989 Sub period 1990 - 2016

Description Variable Coeff T Coeff T Coeff T
ri,t+1 ∼ αt +γtIV oli,t + εi,t Intercept 1.1687 (6.85) 1.0471 (4.24) 1.2885 (5.47)

IV ol1MFF3 -19.251 (-4.82) -19.6043 (-3.00) -18.904 (-4.07)

Decomposition of γt LFV 1M
FF3 -8.7359 -6.9923 -10.4525

Fraction in % 45.38 (15.29) 35.67 (9.84) 55.29 (12.09)
Residual -10.5155 -12.6117 -8.4517
Fraction in % 54.62 (15.01) 64.33 (17.76) 44.71 (9.78)
# Stocks/ Month 4388 3845 4962

Table 4.5 presents results of the first and the final stage of the Hou and Loh (2016) decomposition

methodology over three different sample periods. IV ol1MFF3 is the idiosyncratic volatility as the

standard deviation of Fama and French (1993) factor model residuals and LFV 1M
FF3 is the variance

of these residuals which is attributable to a latent systematic risk factor. The table presents the

average coefficient of the decomposed risk premium γt which is related to LFV 1M
FF3 and the resid-

ual as well as the fraction of γt explained by either LFV 1M
FF3 or the residual. Average coefficients

are multiplied by one hundred. Independent variables are winsorized at the 0.5% level (0.25%

in each tail) on a monthly basis. t-statistics are presented in parentheses. The sample period as

well as the average number of stocks per month are presented for each respective model.

average Fama and MacBeth (1973) coefficient γt on IV ol1MFF3.5 This fraction

is statistically significant with a t-statistic of 15.29. In comparison with

the results of Hou and Loh (2016) who consider a larger set of potential

candidate variables for the idiosyncratic volatility puzzle, this is by far

the largest fraction attained by a single candidate.6 In the first half of

the sample, as shown in Column (2), this fraction is smaller with 35.67%

which is still statistically significant. In contrast, LFV 1M
FF3 explains more

than 55% of the average γt in the second half of the sample period from
5This estimate for γt slightly differs from the univariate average Fama and MacBeth

(1973) coefficient in Table 4.3 because the latter estimate does not consider stocks for
which control variables are missing.

6One exception of this observation is the highest daily return Max which attains
an explanatory fraction of 112% due to almost perfect correlation with IV ol1MFF3. In the
light of this strong result, Hou and Loh (2016) argue that Max is an alternative measure
rather than a candidate variable. To capture the aggregate effect of lottery demand, we
include the beta to the lottery demand factor FMax as proposed by Bali et al. (2017).
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1990 to 2016 in Column (3). This is in line with the rolling window

estimates in Figure 4.2 which confirms that the negative risk premium on

LFV 1M
FF3 is stronger in the recent half of the sample.

Table 4.6 extends the analysis to a multivariate setting and we include

the same set of control variables as in the Fama and MacBeth (1973) re-

gressions.7 In Column (1), we restrict the choice of candidate variables to

the candidates comparable to Hou and Loh (2016). Still, LFV 1M
FF3 explains

more than 40% of the puzzle, followed by LagRet with an explained

fraction of roughly ten percent. To put this into perspective, the fraction

explained by LFV 1M
FF3 alone is almost as high as the total explained fraction

in the best performing model of Hou and Loh (2016) which amounts to

roughly 55% and includes as many as nine candidates. The inclusion

of Momentum and the Fama and French (1993) risk factors reduces this

share to approximately 37% which is, again, by far the largest fraction

of a single candidate. Momentum attains a fraction of 8.19% which is

statistically significant at the one percent level. Column (3) includes the

risk factor betas to average variance (AV), average correlation (AC), com-

mon idiosyncratic volatility (CIV) and aggregate lottery demand (FMax).

Although the results are similar to the Fama and MacBeth (1973) regres-

sions above, the beta to aggregate lottery demand performs better in the

decomposition methodology. Here, βFMax explains almost nine percent of

the average γt. The fraction explained by LFV 1M
FF3 still amounts to 34.91%

7We make two exceptions and exclude Size and βMV . The exclusion of Size is
motivated by the choice of Hou and Loh (2016). An inclusion of Size in Column (2)
in unreported robustness checks leads to an explained fraction of approximately -10%
which makes Size an unlikely candidate for the idiosyncratic volatility puzzle. Instead
of βMV we include its two components βAC and βAV .
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Table 4.6: Multivariate Hou and Loh (2016) decomposition.

(1) (2) (3) (4)
Description Variable Coeff T Coeff T Coeff T Coeff T
ri,t+1 ∼ αt +γtIV oli,t + εi,t Intercept 1.2525 (6.89) 1.2478 (6.86) 1.2426 (6.51) 1.2426 (6.51)

IV ol1MFF3 -21.147 (-4.78) -20.820 (-4.70) -24.445 (-5.51) -24.445 (-5.51)

Decomposition of γt LFV 1M
FF3 -8.5174 -7.6306 -8.5330

40.28 (11.87) 36.65 (10.72) 34.91 (12.50)
LagRet -2.0904 -2.3014 -2.3075 -2.9867

9.89 (3.39) 11.05 (3.70) 9.44 (3.88) 12.22 (3.81)
CoSkew 0.0706 -0.1076 -0.2030 -0.2714

-0.33 (-0.29) 0.52 (0.92) 0.83 (1.88) 1.11 (1.72)
ISkew 0.1557 0.2202 0.0059 -0.0063

-0.74 (-0.67) -1.06 (-1.09) -0.02 (-0.04) 0.03 (0.03)
ZeroRet 0.4624 0.4056 0.2670 0.3474

-2.19 (-1.67) -1.95 (-1.93) -1.09 (-1.66) -1.42 (-1.66)
Illiq 0.1819 0.3661 -0.5092 -0.7760

-0.86 (-0.22) -1.76 (-0.44) 2.08 (0.74) 3.17 (0.88)
Mom -1.7054 -1.6772 -2.3543

8.19 (3.89) 6.86 (4.06) 9.63 (4.30)
βMkt -0.7042 -0.2496 -0.3749

3.38 (1.32) 1.02 (0.53) 1.53 (0.63)
βSMB -0.3583 -0.9639 -1.3336

1.72 (0.48) 3.94 (1.79) 5.46 (1.91)
βHML -0.7500 -0.2189 -0.4863

3.6 (2.38) 0.9 (0.90) 1.99 (1.54)
βAV 0.0032 -0.0485

-0.01 (-0.04) 0.2 (0.40)
βAC -0.0463 -0.0672

0.19 (0.89) 0.27 (1.05)
βCIV 0.3462 0.3889

-1.42 (-2.44) -1.59 (-1.99)
βLiq -0.0919 -0.2214

0.38 (1.08) 0.91 (2.11)
βFMax -2.1055 -2.7461

8.61 (3.40) 11.23 (3.11)
Residual -11.4099 -8.2547 -8.1611 -13.5085

53.95 (13.97) 39.65 (8.54) 33.39 (9.21) 55.26 (9.28)
# Stocks/ Month 3322 3302 3147 3147
Sample Period 1964/06 - 2016/12 1964/06 - 2016/12 1968/06 - 2016/12 1968/06 - 2016/12

Table 4.6 presents results of the first and the final stage of the Hou and Loh (2016) decomposition

methodology in an multivariate analysis. IV ol1MFF3 is the idiosyncratic volatility as the standard

deviation of Fama and French (1993) factor model residuals and LFV 1M
FF3 is the variance of these

residuals which is attributable to a latent systematic risk factor. The table presents the average

coefficient of the decomposed risk premium γt which is related to LFV 1M
FF3 or several control

variables and the residual as well as the fraction of γt explained by either LFV 1M
FF3, the control

variables or the residual. Control variables cover the following stock characteristics and risk

factor betas: LagRet is the return in month t, Mom is the cumulative return over the previous year,

Illiq is the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed by Harvey

and Siddique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993) three factor

model residuals. ZeroRet is the share of zero returns. Betas are calculated to the following risk

factors: Mkt, SMB and HML are the factors of the Fama and French (1993) three factor model. AV

(AC) is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV) is common

idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor

and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery demand factor.

Average coefficients are multiplied by one hundred. Independent variables are winsorized at

the 0.5% level (0.25% in each tail) on a monthly basis. t-statistics are presented in parentheses.

The sample period as well as the average number of stocks per month are presented for each

respective model.
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with a t-statistic of 12.50.

To emphasize the relevance of this fraction, we exclude LFV 1M
FF3 in

Column (4). The joint explanatory power of the control variables amounts

to 45.74% which marginally exceeds the univariate fraction of LFV 1M
FF3

in Column (1) of Table 4.5. Individually, the control variables LagRet,

Momentum and βFMax attain higher fractions in comparison to Column

(3). This suggests that LFV 1M
FF3 captures effects of these variables to some

extent, but the largest part of the 35.91% fraction explained by LFV 1M
FF3

is not related to control variables. The inclusion of LFV 1M
FF3 reduces the

unexplained fraction of the idiosyncratic volatility puzzle above and

beyond alternative candidates.

From the results in Table 4.5 and Table 4.6, we conclude that the quali-

tatively small latent factor volatility LFV 1M
FF3 explains a sizable fraction of

the negative IV ol risk premium. This fraction is substantially higher than

any individual alternative candidate presented in Hou and Loh (2016).

LFV 1M
FF3 performs almost equally well in multivariate settings. This lies in

contrast to other alternative candidates, which lose explanatory power in

multivariate decompositions and supports our conjecture that the idiosyn-

cratic volatility puzzle is driven by unaccounted risk in the Fama and

French (1993) three factor model. These findings support hypothesis H1

and the importance of a latent systematic risk factor in the cross section

of stock returns.
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4.5 Robustness checks

4.5.1 Orthogonal components of idiosyncratic volatility

The correlation between ASV 1M
FF3 and LFV 1M

FF3 might raise the concern that

the results in Section 4.4.1 are driven by the information in LFV 1M
FF3 which

is related to ASV 1M
FF3. We therefore orthogonalize the two components

LFV 1M
FF3 and ASV 1M

FF3 and refer to the orthogonal component of LFV 1M
FF3 as

⊥LFV 1M
FF3.

We review the cross-sectional Fama and MacBeth (1973) regressions in

Section 4.4.1 with ⊥LFV 1M
FF3 instead of LFV 1M

FF3 in Table 4.7. Independently

of the exact specification, ⊥LFV 1M
FF3 is highly significant with t-statistics

beyond four in absolute terms. The results in Section 4.4.1 are therefore

robust to the orthogonalization. This analysis further supports Hypothesis

H1 and highlights the difference between LFV 1M
FF3 and ASV 1M

FF3.

4.5.2 Alternative factor models and estimation windows

The Fama and French (1993) three factor model benchmark and the

one-month estimation window is in line with Ang et al. (2006) and the

literature, but this choice might not capture systematic components in

stock returns sufficiently and thus drive the results.

We perform two robustness checks to address this concern. First,

we estimate IV ol1MFM and its two components LFV 1M
FM and ASV 1M

FM from

the Carhart (1997) four factor model (CAR) and the Fama and French

(2015) five factor model (FF5). Second, we estimate the three models,
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Table 4.7: Fama and MacBeth (1973) regressions with ⊥LFV 1M
FF3.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Intercept 1.2479 1.2316 0.7647 1.2294 3.7695 1.9642 1.7580 1.8300 1.7615 1.8292 1.7896 1.7378

(6.47) (6.39) (2.93) (6.39) (7.48) (3.22) (2.97) (3.00) (2.93) (2.99) (3.20) (3.19)
IV ol1MFF3 -20.822

(-4.02)
ASV 1M

FF3 -20.963 -20.904 -27.519
(-3.95) (-3.92) (-8.95)

⊥LFV 1M
FF3 -18.693 -19.735 -17.719 -14.030 -15.799 -15.868 -15.673 -15.480 -15.616 -15.104

(-4.74) (-4.97) (-5.25) (-4.34) (-4.82) (-4.86) (-4.76) (-4.76) (-4.78) (-4.68)
LagRet -4.0599 -4.4078 -4.6521 -4.5006 -4.5320 -4.5514 -4.7283 -4.8346

(-9.03) (-9.92) (-9.87) (-9.58) (-9.71) (-9.58) (-10.14) (-9.96)
MOM 0.7157 0.8045 0.7558 0.7608 0.7484 0.7440 0.7284 0.7264

(5.32) (5.80) (5.12) (5.13) (5.14) (5.07) (5.19) (5.29)
Illiq 0.0324 0.0137 0.0055 0.0053 0.0049 0.0055 0.0050 0.0049

(3.33) (1.38) (0.64) (0.61) (0.57) (0.64) (0.59) (0.58)
ISkew -0.0400 -0.0559 -0.0522 -0.0483 -0.0508 -0.0502 -0.0521 -0.0455

(-2.37) (-3.10) (-2.91) (-2.62) (-2.81) (-2.74) (-3.03) (-2.61)
CoSkew -0.0085 -0.0074 -0.0050 -0.0076 -0.0070 -0.0084 -0.0056 -0.0046

(-1.83) (-1.57) (-1.36) (-1.57) (-1.64) (-1.72) (-1.47) (-1.44)
ZeroRet -0.3280 0.1733 0.0216 0.0188 0.0091 0.0126 0.0352 0.0229

(-1.26) (0.72) (0.09) (0.07) (0.04) (0.05) (0.14) (0.10)
Size -0.2054 -0.0980 -0.0776 -0.0816 -0.0772 -0.0817 -0.0798 -0.0761

(-6.07) (-2.35) (-1.94) (-1.99) (-1.90) (-1.98) (-2.13) (-2.11)
βMkt -0.0318 -0.1821 -0.2150 -0.1973 -0.2011 -0.1828 -0.2332 -0.2415

(-0.23) (-1.19) (-1.42) (-1.23) (-1.26) (-1.14) (-1.82) (-1.93)
βSMB 0.1473 0.1982 0.2038 0.1984 0.1951 0.1920 0.1925 0.1891

(2.21) (2.79) (2.88) (2.70) (2.70) (2.66) (3.24) (3.24)
βHML -0.1041 -0.1129 -0.1487 -0.1483 -0.1446 -0.1536 -0.1438 -0.1413

(-2.10) (-2.12) (-2.97) (-2.94) (-2.88) (-3.09) (-3.08) (-3.11)
βMV -0.0005

(-1.88)
βAV -0.0069 -0.0048

(-0.97) (-0.72)
βAC 0.0383 0.1120

(0.48) (1.25)
βCIV -0.0014 -0.0001

(-0.51) (-0.05)
βLiq 0.0050 -0.0037

(0.12) (-0.09)
βFMax 0.0329 0.0436

(0.36) (0.45)

avg.R
2

in % 1.9047 1.8876 0.1276 2.0213 7.2735 6.8394 6.9172 6.9753 6.9162 6.9586 7.1464 7.6245
avg.N 3301 3301 3301 3301 3301 3301 3147 3147 3147 3147 3147 3147

Table 4.7 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions

of excess returns in month t + 1 on IV ol1MFF3 and its two orthogonalized components ASV 1M
FF3

and ⊥LFV 1M
FF3 in month t as well as several control variables. We include the following set of

control variables: LagRet is the return in month t, Mom is the cumulative return over the pre-

vious year, Illiq is the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed

by Harvey and Siddique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993)

three factor model residuals. ZeroRet is the share of zero returns and Size is the logarithm of the

monthly market capitalization in 1,000 USD. Betas are calculated to the following risk factors:

Mkt, SMB and HML are the factors of the Fama and French (1993) three factor model. AV (AC)

is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV) is common id-

iosyncratic volatility (market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor

and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery demand factor.

The sample period in Model (1) - (6) is June 1964 to December 2016 and the sample period in

Model (7) - (12) is June 1968 to December 2016. We report the average cross-sectional r-squared

avg.R
2

in % as well as the average number of observations N . Average coefficients are multiplied

by one hundred. We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on

a monthly basis. t-statistics calculated from Newey and West (1987) standard errors with six lags

in parentheses.
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i.e. FF3, CAR and FF5 with a longer estimation window instead of

within-month regressions. We estimate the corresponding factor model

in twelve-month rolling window regressions with daily data, calculate

residuals and perform the decomposition methodology on the longer daily

time series of residuals. At least 200 valid daily observations are required

for the twelve-month window. The target variables are referred to as

IV ol12M
FM , LFV 12M

FM and ASV 12M
FM , where FM denotes the corresponding

factor model FF3, CAR or FF5.

Table 4.8 (Table 4.9) present results for the alternative factor mod-

els CAR (FF5). In general, the results are qualitatively identical to the

baseline analysis in Table 4.3. LFV 1M
FM performs equally well in the CAR

model and the FF5 model, independently of the exact specification. The

t-statistics exceed values of minus four in any case. We conclude that

our main findings are independent of the underlying factor model which

generates residuals.

Table 4.10 presents results from an extended estimation window,

i.e. twelve-month rolling window regressions to generate estimates for

LFV 12M
FM and ASV 12M

FM . We furthermore present different factor models,

the baseline model FF3, as well as the Carhart (1997) CAR and the Fama

and French (2015) model FF5. We omit the univariate results since id-

iosyncratic volatility is not significant in univariate regressions for the

longer estimation window. In Column (1), (4) and (7) when we include

both components of IV ol12M
FM , the performance of LFV 12M

FM is lower com-

pared to the one-month regressions. Still, the average LFV 12M
FM coefficient

is highly significant, especially with regard to the CAR model. Neverthe-
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Table 4.8: Fama and MacBeth (1973) regressions: Carhart (1997) model
residuals.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Intercept 1.2341 1.2195 0.9733 1.2253 3.7489 2.5447 2.3331 2.4030 2.3357 2.4043 2.3525 2.2839

(6.41) (6.33) (4.25) (6.40) (7.46) (4.44) (4.18) (4.17) (4.12) (4.17) (4.44) (4.42)
IV ol1MCAR -20.980

(-3.95)
ASV 1M

CAR -21.196 -17.789 -24.361
(-3.87) (-3.38) (-8.01)

LFV 1M
CAR -42.661 -16.246 -16.059 -38.881 -39.509 -39.361 -39.349 -39.277 -39.176 -38.462

(-4.49) (-4.45) (-4.74) (-8.27) (-8.58) (-8.52) (-8.48) (-8.49) (-8.83) (-8.81)
LagRet -4.0696 -4.2973 -4.5500 -4.4028 -4.4305 -4.4483 -4.6204 -4.7327

(-9.04) (-9.65) (-9.61) (-9.35) (-9.46) (-9.34) (-9.85) (-9.69)
MOM 0.7196 0.7816 0.7343 0.7384 0.7264 0.7217 0.7074 0.7042

(5.34) (5.67) (5.01) (5.01) (5.02) (4.96) (5.08) (5.16)
Illiq 0.0318 0.0191 0.0111 0.0107 0.0103 0.0110 0.0105 0.0104

(3.28) (1.95) (1.30) (1.26) (1.23) (1.29) (1.25) (1.23)
ISkew -0.0414 -0.0505 -0.0462 -0.0425 -0.0449 -0.0443 -0.0464 -0.0399

(-2.46) (-2.87) (-2.63) (-2.36) (-2.55) (-2.49) (-2.75) (-2.34)
CoSkew -0.0082 -0.0076 -0.0051 -0.0078 -0.0072 -0.0086 -0.0057 -0.0048

(-1.82) (-1.68) (-1.46) (-1.67) (-1.75) (-1.83) (-1.56) (-1.57)
ZeroRet -0.3212 0.0003 -0.1426 -0.1435 -0.1555 -0.1509 -0.1283 -0.1402

(-1.24) (0.00) (-0.56) (-0.55) (-0.60) (-0.58) (-0.51) (-0.58)
Size -0.2038 -0.1324 -0.1114 -0.1152 -0.1109 -0.1155 -0.1128 -0.1080

(-6.03) (-3.37) (-2.96) (-2.97) (-2.90) (-2.97) (-3.18) (-3.16)
βMkt -0.0422 -0.1406 -0.1762 -0.1573 -0.1613 -0.1426 -0.1993 -0.2088

(-0.30) (-0.94) (-1.19) (-1.00) (-1.04) (-0.91) (-1.59) (-1.70)
βHML 0.1513 0.1871 0.1933 0.1876 0.1837 0.1809 0.1835 0.1803

(2.27) (2.68) (2.77) (2.60) (2.59) (2.55) (3.13) (3.14)
βSMB -0.1042 -0.1141 -0.1492 -0.1489 -0.1453 -0.1540 -0.1459 -0.1432

(-2.10) (-2.19) (-3.04) (-3.00) (-2.95) (-3.16) (-3.18) (-3.20)
βMV -0.0005

(-1.92)
βAV -0.0070 -0.0054

(-1.00) (-0.81)
βAC 0.0400 0.1095

(0.51) (1.24)
βCIV -0.0016 -0.0004

(-0.58) (-0.14)
βLiq 0.0038 -0.0055

(0.09) (-0.14)
βFMax 0.0449 0.0563

(0.50) (0.59)

avg.R
2

in % 1.8494 1.8349 0.7378 1.9128 6.8747 6.5831 6.6161 6.6406 6.6154 6.6584 6.8385 7.1832
avg.N 3301 3301 3301 3301 3301 3301 3147 3147 3147 3147 3147 3147

Table 4.8 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions of

excess returns in month t+1 on IV ol1MCAR and its two components ASV 1M
CAR and LFV 1M

CAR in month

t as well as several control variables. In contrast to the baseline results, residuals are calculated

from a Carhart (1997) four factor model (CAR). We include the following set of control variables:

LagRet is the return in month t, Mom is the cumulative return over the previous year, Illiq is

the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed by Harvey and Sid-

dique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993) three factor model

residuals. ZeroRet is the share of zero returns and Size is the logarithm of the monthly market

capitalization in 1,000 USD. Betas are calculated to the following risk factors: Mkt, SMB and HML

are the factors of the Fama and French (1993) three factor model. AV (AC) is monthly average

variance (correlation) of Chen and Petkova (2012), CIV (MV) is common idiosyncratic volatility

(market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor and Stambaugh (2003)

liquidity factor and FMax is the Bali et al. (2017) lottery demand factor. The sample period in

Model (1) - (6) is June 1964 to December 2016 and the sample period in Model (7) - (12) is June

1968 to December 2016. We report the average cross-sectional r-squared avg.R
2

in % as well

as the average number of observations N . Average coefficients are multiplied by one hundred.

We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on a monthly basis.

t-statistics calculated from Newey and West (1987) standard errors with six lags in parentheses.
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Table 4.9: Fama and MacBeth (1973) regressions: Fama and French
(2015) model residuals.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Intercept 1.2346 1.2173 0.9865 1.2243 3.7477 2.5695 2.3565 2.4255 2.3579 2.4257 2.3713 2.3039

(6.39) (6.31) (4.29) (6.38) (7.44) (4.47) (4.22) (4.21) (4.16) (4.20) (4.48) (4.47)
IV ol1MFF5 -21.694

(-4.00)
ASV 1M

FF5 -21.816 -17.382 -24.350
(-3.90) (-3.23) (-7.81)

LFV 1M
FF5 -46.366 -21.039 -19.806 -41.834 -41.791 -41.667 -41.673 -41.430 -41.508 -40.719

(-4.94) (-5.94) (-6.59) (-9.48) (-9.36) (-9.26) (-9.25) (-9.23) (-9.59) (-9.50)
LagRet -4.0735 -4.2845 -4.5365 -4.3881 -4.4159 -4.4366 -4.6066 -4.7196

(-9.04) (-9.59) (-9.56) (-9.29) (-9.40) (-9.29) (-9.80) (-9.63)
MOM 0.7179 0.7777 0.7306 0.7347 0.7223 0.7183 0.7041 0.7019

(5.34) (5.66) (5.00) (5.00) (5.00) (4.94) (5.06) (5.16)
Illiq 0.0316 0.0190 0.0110 0.0107 0.0103 0.0110 0.0105 0.0103

(3.26) (1.95) (1.31) (1.26) (1.23) (1.29) (1.26) (1.23)
ISkew -0.0407 -0.0494 -0.0451 -0.0414 -0.0438 -0.0432 -0.0453 -0.0389

(-2.40) (-2.78) (-2.55) (-2.28) (-2.47) (-2.41) (-2.67) (-2.26)
CoSkew -0.0084 -0.0077 -0.0052 -0.0079 -0.0072 -0.0086 -0.0058 -0.0048

(-1.83) (-1.69) (-1.46) (-1.67) (-1.75) (-1.82) (-1.57) (-1.56)
ZeroRet -0.3195 -0.0029 -0.1421 -0.1434 -0.1559 -0.1508 -0.1283 -0.1404

(-1.23) (-0.01) (-0.55) (-0.54) (-0.60) (-0.58) (-0.51) (-0.58)
Size -0.2037 -0.1339 -0.1129 -0.1167 -0.1123 -0.1169 -0.1140 -0.1093

(-6.01) (-3.40) (-2.99) (-3.01) (-2.93) (-3.00) (-3.22) (-3.20)
βMkt -0.0425 -0.1369 -0.1707 -0.1522 -0.1563 -0.1378 -0.1955 -0.2051

(-0.30) (-0.92) (-1.15) (-0.97) (-1.01) (-0.88) (-1.56) (-1.68)
βHML 0.1492 0.1845 0.1910 0.1853 0.1817 0.1789 0.1818 0.1788

(2.23) (2.65) (2.75) (2.57) (2.56) (2.52) (3.12) (3.12)
βSMB -0.1051 -0.1133 -0.1497 -0.1494 -0.1458 -0.1547 -0.1462 -0.1438

(-2.12) (-2.17) (-3.05) (-3.01) (-2.96) (-3.18) (-3.19) (-3.22)
βMV -0.0005

(-1.91)
βAV -0.0073 -0.0056

(-1.04) (-0.84)
βAC 0.0459 0.1140

(0.58) (1.29)
βCIV -0.0017 -0.0005

(-0.60) (-0.17)
βLiq 0.0050 -0.0039

(0.12) (-0.09)
βFMax 0.0464 0.0581

(0.52) (0.61)

avg.R
2

in % 1.8337 1.8183 0.7349 1.9034 6.8732 6.5812 6.6150 6.6399 6.6147 6.6571 6.8387 7.1842
avg.N 3301 3301 3301 3301 3301 3301 3147 3147 3147 3147 3147 3147

Table 4.9 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions

of excess returns in month t + 1 on IV ol1MFF5 and its two components ASV 1M
FF5 and LFV 1M

FF5 in

month t as well as several control variables. In contrast to the baseline results, residuals are

calculated from a Fama and French (2015) five factor model (FF5). We include the following

set of control variables: LagRet is the return in month t, Mom is the cumulative return over the

previous year, Illiq is the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed

by Harvey and Siddique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993)

three factor model residuals. ZeroRet is the share of zero returns and Size is the logarithm of the

monthly market capitalization in 1,000 USD. Betas are calculated to the following risk factors:

Mkt, SMB and HML are the factors of the Fama and French (1993) three factor model. AV (AC)

is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV) is common

idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor

and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery demand factor.

The sample period in Model (1) - (6) is June 1964 to December 2016 and the sample period in

Model (7) - (12) is June 1968 to December 2016. We report the average cross-sectional r-squared

avg.R
2

in % as well as the average number of observations N . Average coefficients are multiplied

by one hundred. We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on

a monthly basis. t-statistics calculated from Newey and West (1987) standard errors with six lags

in parentheses. 172
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Table 4.10: Fama and MacBeth (1973) regressions: Twelve-month
windows.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 3.7262 2.3107 2.1252 3.7438 2.3850 2.1927 3.7298 2.3094 2.1203

(8.06) (4.13) (4.02) (8.12) (4.27) (4.17) (8.06) (4.11) (4.00)
LFV 12M

FF3 -24.733 -71.322 -74.342
(-2.14) (-4.45) (-4.97)

ASV 12M
FF3 -27.379

(-5.00)
LFV 12M

CAR -34.661 -81.000 -84.863
(-3.03) (-5.13) (-5.68)

ASV 12M
CAR -26.549

(-4.78)
LFV 12M

FF5 -25.158 -72.226 -74.503
(-2.24) (-4.60) (-5.00)

ASV 12M
FF5 -27.481

(-4.94)
LagRet -4.4491 -4.4546 -4.8658 -4.4464 -4.4451 -4.8612 -4.4433 -4.4479 -4.8668

(-8.61) (-8.64) (-8.41) (-8.60) (-8.62) (-8.39) (-8.60) (-8.61) (-8.41)
MOM 0.8342 0.8417 0.7541 0.8369 0.8451 0.7555 0.8346 0.8435 0.7556

(5.40) (5.39) (4.77) (5.41) (5.39) (4.77) (5.40) (5.39) (4.78)
Illiq 0.0260 0.0137 0.0026 0.0260 0.0141 0.0032 0.0262 0.0138 0.0026

(2.36) (1.20) (0.32) (2.34) (1.23) (0.38) (2.37) (1.20) (0.31)
ISkew -0.0092 -0.0467 -0.0346 -0.0093 -0.0451 -0.0329 -0.0095 -0.0470 -0.0350

(-0.55) (-2.87) (-2.12) (-0.55) (-2.74) (-2.00) (-0.56) (-2.86) (-2.14)
CoSkew -0.0083 -0.0073 -0.0045 -0.0089 -0.0080 -0.0050 -0.0084 -0.0073 -0.0045

(-1.81) (-1.61) (-1.44) (-1.85) (-1.69) (-1.57) (-1.82) (-1.61) (-1.44)
ZeroRet 0.1816 0.1472 -0.0161 0.1829 0.1496 -0.0058 0.1839 0.1492 -0.0171

(0.78) (0.61) (-0.07) (0.78) (0.61) (-0.02) (0.79) (0.61) (-0.07)
Size -0.2051 -0.1202 -0.1011 -0.2066 -0.1251 -0.1052 -0.2055 -0.1201 -0.1007

(-6.75) (-3.12) (-2.89) (-6.82) (-3.23) (-3.02) (-6.76) (-3.09) (-2.87)
βMkt 0.0220 -0.1311 -0.1944 0.0234 -0.1220 -0.1895 0.0213 -0.1296 -0.1959

(0.20) (-0.97) (-1.76) (0.21) (-0.88) (-1.71) (0.19) (-0.94) (-1.76)
βHML 0.1149 0.1809 0.1708 0.1110 0.1740 0.1628 0.1169 0.1841 0.1740

(1.73) (2.52) (2.86) (1.65) (2.40) (2.74) (1.75) (2.54) (2.91)
βSMB -0.0913 -0.1065 -0.1404 -0.0952 -0.1106 -0.1422 -0.0932 -0.1090 -0.1408

(-1.91) (-1.98) (-2.87) (-2.02) (-2.09) (-2.98) (-1.94) (-2.02) (-2.88)
βAV -0.0035 -0.0036 -0.0034

(-0.54) (-0.56) (-0.53)
βCIV -0.0002 -0.0002 -0.0002

(-0.08) (-0.07) (-0.08)
βAC 0.0489 0.0516 0.0467

(0.51) (0.52) (0.48)
βLiq -0.0086 -0.0076 -0.0087

(-0.20) (-0.18) (-0.21)
βFMax 0.0425 0.0461 0.0401

(0.43) (0.46) (0.40)

avg.R
2

in % 7.1644 6.7140 7.3034 7.1341 6.6813 7.2759 7.1536 6.6966 7.2889
avg.N 3268 3268 3112 3268 3268 3112 3268 3268 3112

Table 4.10 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions of excess
returns in month t + 1 of the two components of twelve-month FF3 idiosyncratic volatility ASV 12M

FM and

LFV 12M
FM in month t as well as several control variables. In contrast to the baseline results, residuals are cal-

culated from twelve-month rolling window regressions with different factor models. CAR indicates residuals
from a Carhart (1997) four factor model and FF5 indicates the Fama and French (2015) five factor model. We
include the following set of control variables: LagRet is the return in month t, Mom is the cumulative return
over the previous year, Illiq is the Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed
by Harvey and Siddique (2000) and ISkew is idiosyncratic skewness of Fama and French (1993) three factor
model residuals. ZeroRet is the share of zero returns and Size is the logarithm of the monthly market capital-
ization in 1,000 USD. Betas are calculated to the following risk factors: Mkt, SMB and HML are the factors of
the Fama and French (1993) three factor model. AV (AC) is monthly average variance (correlation) of Chen
and Petkova (2012), CIV (MV) is common idiosyncratic volatility (market variance) as proposed by Herskovic
et al. (2016). Liq is the Pastor and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery
demand factor. The sample period in Model (1) - (6) is June 1964 to December 2016 and the sample period

in Model (7) - (9) is June 1968 to December 2016. We report the average cross-sectional r-squared avg.R
2

in % as well as the average number of observations N . Average coefficients are multiplied by one hundred.
We winsorize all explanatory variables at the 0.5% level (0.25% in each tail) on a monthly basis. t-statistics
calculated from Newey and West (1987) standard errors with twelve lags in parentheses.
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less, LFV 12M
FM is highly significant when we control for the baseline set

of control variables. The t-statistics for LFV 12M
FM vary around minus five,

indicating statistical significance at any conventional level. Our results

are robust and neither an extension of risk factors nor a longer estimation

window changes our main conclusions.

4.5.3 Mispricing

Stambaugh et al. (2015) argue that relative mispricing explains the id-

iosyncratic volatility puzzle. The sign of the relationship between idiosyn-

cratic volatility and subsequent returns depends on mispricing. While

underpriced stocks exhibit a positive relationship between idiosyncratic

volatility and subsequent returns, the negative relation shown in Sec-

tion 4.4 only holds among overpriced stocks (Stambaugh et al., 2015, p.

1916). Arbitrage asymmetries imply that the effect of overpriced stocks

is stronger and thus the negative sign extends to the whole cross section

of stocks. If mispricing also explains the negative sign on the system-

atic component LFV 1M
FF3, we would expect that this sign also depends on

mispricing.

Following the approach of Stambaugh et al. (2015), Table 4.11 presents

bivariate double sorts on mispricing (Misp) and the two components of

FF3 idiosyncratic volatility.8 Each month, we sort stocks into quintiles

based on mispricing (Misp). In each Misp quintile, we then further sort
8For details regarding the estimation of Misp, we refer to Appendix 3.A.2 or Stam-

baugh et al. (2015). Due to the fact that Stambaugh et al. (2015) provide Misp with a
price filter of five USD, the analysis in this Section imposes a higher price filter compared
to the baseline analysis.
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Table 4.11: Conditional double sorts on mispricing and the two
components of IV ol.

Panel A: Mispricing and the idiosyncratic component ASV

Quintiles of ASV 1M
FF3: Excess Returns High minus low ASV 1M

FF3 factor alphas

Low ASV 1M
FF3 2 3 4 High ASV 1M

FF3 Diff CAPM Alpha FF3 Alpha CAR Alpha PS Alpha FF5 Alpha

Q
u

in
ti

le
s

of
M
is
p

Low Misp 0.4567 0.7302 1.0013 0.9660 1.0154 0.5587 0.3412 0.3298 0.3127 0.3589 0.5962
(2.73) (4.05) (5.07) (4.13) (3.61) (2.58) (1.72) (1.93) (1.80) (1.99) (3.61)

2 0.5136 0.6260 0.6456 0.6410 0.5781 0.0645 -0.1881 -0.1730 -0.2170 -0.1973 0.1056
(2.97) (3.15) (2.83) (2.36) (1.91) (0.29) (-0.91) (-0.97) (-1.09) (-1.09) (0.58)

3 0.4927 0.4393 0.5834 0.5609 0.5186 0.0259 -0.2932 -0.2050 -0.2510 -0.2208 0.0927
(2.70) (2.05) (2.50) (2.04) (1.60) (0.11) (-1.36) (-1.08) (-1.40) (-1.13) (0.51)

4 0.3799 0.3369 0.5064 0.2754 -0.0460 -0.4259 -0.7674 -0.6767 -0.5521 -0.7229 -0.3361
(2.05) (1.49) (1.79) (0.88) (-0.13) (-1.56) (-3.12) (-3.39) (-2.80) (-3.46) (-1.76)

High Misp 0.2140 0.0099 -0.0071 -0.4943 -1.0663 -1.2803 -1.6355 -1.5445 -1.3893 -1.5944 -1.1476
(0.93) (0.03) (-0.02) (-1.29) (-2.53) (-4.14) (-5.95) (-7.10) (-6.23) (-6.78) (-5.42)

Panel B: Mispricing and the systematic component LFV

Quintiles of LFV 1M
FF3: Excess Returns High minus low LFV 1M

FF3 factor alphas

Low LFV 1M
FF3 2 3 4 High LFV 1M

FF3 Diff CAPM Alpha FF3 Alpha CAR Alpha PS Alpha FF5 Alpha

Q
u

in
ti

le
s

of
M
is
p

Low Misp 0.6761 0.5804 0.7568 0.6918 0.9365 0.2604 0.1409 0.1328 0.0757 0.0902 0.2301
(3.78) (3.14) (4.48) (3.67) (4.08) (1.66) (0.93) (0.93) (0.51) (0.60) (1.58)

2 0.5994 0.5502 0.5820 0.5485 0.6107 0.0114 -0.1072 -0.0934 -0.1637 -0.1177 0.0151
(3.21) (2.79) (2.92) (2.49) (2.35) (0.07) (-0.69) (-0.65) (-1.10) (-0.79) (0.10)

3 0.4320 0.5470 0.4889 0.5820 0.4699 0.0379 -0.1204 -0.0665 -0.0651 -0.1141 0.1176
(1.99) (2.77) (2.26) (2.61) (1.73) (0.25) (-0.79) (-0.44) (-0.44) (-0.72) (0.76)

4 0.5200 0.3926 0.4279 0.3020 0.1512 -0.3688 -0.5447 -0.4788 -0.3809 -0.4999 -0.3507
(2.46) (1.85) (1.93) (1.19) (0.49) (-1.98) (-3.20) (-3.14) (-2.55) (-3.05) (-2.36)

High Misp 0.0867 0.0178 0.0260 -0.0877 -0.5981 -0.6848 -0.8952 -0.7992 -0.7508 -0.8029 -0.5546
(0.33) (0.07) (0.09) (-0.28) (-1.54) (-2.97) (-4.19) (-3.75) (-3.44) (-3.62) (-2.83)

Table 4.11 presents dependent bivariate portfolio sorts (value-weighted) conditional on mispric-

ing. In Panel A (B), we first sort all stocks into quintiles based on the Stambaugh et al. (2015) mis-

pricing measure and then in each quintile we further sort stocks into quintiles based on the asset

specific (systematic) component of monthly FF3 idiosyncratic volatility, i.e. ASV 1M
FF3 (LFV 1M

FF3). In

Panel A (B), we further present excess returns of each double sorted portfolios as well as the differ-

ence between the portfolio in the highest and the lowest quintile of ASV 1M
FF3 (LFV 1M

FF3) conditional

on Misp. All portfolio returns are weighted by market capitalization. We hold each portfolio for

one month and record the monthly returns and different factor alphas. Factor alphas cover the

following factor models: CAPM is a simple one factor model, FF3 is the Fama and French (1993)

three factor model, P S is the FF3 model extended by the Pastor and Stambaugh (2003) liquidity

factor, CAR is the Carhart (1997) four factor model and FF5 is the Fama and French (2015) five

factor model. Returns and alphas are reported in % per month. Newey and West (1987) adjusted

standard t-statistics with six lags in parentheses. The sample period for excess returns and alphas

of the models CAPM, FF3, CAR, FF5 and is July 1965 to December 2015. The P S model covers

January 1968 to December 2015.
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stocks in quintiles based on ASV 1M
FF3 in Panel A or LFV 1M

FF3 in Panel B, hold

the respective portfolios for one month and record monthly returns. We

calculate the difference in excess returns between stocks in the highest

and the lowest quintile of LFV 1M
FF3 within each ASV 1M

FF3 quintile. We also

present alphas of the following factor models: The CAPM single factor

model, the Fama and French (1993) three factor model (FF3), the Carhart

(1997) four factor model (CAR), the Pastor and Stambaugh (2003) model

(P S) which adds a liquidity factor to the FF3 model, as well as the Fama

and French (2015) five factor (FF5) model. Monthly excess returns and

alphas are reported in % per month and are weighted by market capital-

ization. We present Newey and West (1987) adjusted standard t-statistics

with six lags in parentheses.

Panel A supports the results of Stambaugh et al. (2015). The rela-

tionship between the asset-specific component of idiosyncratic volatil-

ity ASV 1M
FF3 and expected returns is positive and statistically significant

among underpriced stocks in the first quintile of Misp. High ASV 1M
FF3

outperform low ASV 1M
FF3 stocks by 0.5587% per month with a t-statistic of

2.58. This outperformance also withstands the various risk adjustments.

Alphas are significantly positive and vary from 0.3127% for the Carhart

(1997) four factor model to almost 0.60% for the Fama and French (2015)

five factor model. The latter is highly statistically significant at any con-

ventional level. While the spread between high and low ASV 1M
FF3 is almost

flat for stocks in the second and third quintile of Misp, overpriced stocks

in the two highest Misp quintiles show a strong negative pattern when

sorting on ASV 1M
FF3. This supports both of the findings in Stambaugh
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et al. (2015). The asset-specific part of idiosyncratic volatility is related

to relative mispricing and more pronounced among overpriced stocks,

which accounts for the overall negative relation between idiosyncratic

volatility and subsequent returns.

This finding does not fully translate to Panel B, i.e. the sorts on LFV 1M
FF3

in each Misp quintile. Here, the positive spread between high and low

LFV 1M
FF3 among underpriced stocks is not significant after risk-adjustment.

Although the negative spread between high and low LFV 1M
FF3 stocks is

highly significant among overpriced stocks, the sign in the risk-return

trade-off does not change.

Consequently, mispricing is unlikely to explain the full extent of our

results. Nevertheless, the results in Panel A unveil that mispricing is

an important aspect in explaining the negative sign on the asset-specific

component of idiosyncratic volatility.

4.5.4 Lottery demand

In the baseline analysis of Section 4.4, we follow Hou and Loh (2016)

and exclude the Bali et al. (2017) lottery demand measure Max due to

the high correlation with idiosyncratic volatility IVOL1M
FF3. Given a lower

cross-sectional correlation between Max and LFV 1M
FF3, Table 4.12 presents

a reevaluation of the negative risk premium of the latent factor volatility

from different factor models and time horizons. In addition to the baseline

measure LFV 1M
FF3 in Column (1) and (2), we report the estimate for the

alternative factor models (Columns (3) – (6)) and estimation windows
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(Columns (7) – (12)) presented in Section 4.5.2.

The negative coefficient on Max, as presented by Bali et al. (2011,

2017) is highly significant at any conventional level. Although this is also

true for LFVFM independently of the estimation window or factor model,

t-statistics and coefficient estimates are lower compared to the baseline

analysis in Table 4.3. Nevertheless, the consideration of lottery demand

does not explain or alleviate the baseline results.

4.6 Conclusion

We derive a regression-based procedure to decompose residual standard

deviations into two components: A stock’s exposure to latent but system-

atic risk and a purely idiosyncratic component. Our theoretical framework

is consistent with Claußen et al. (2019) who relate the systematic risk in

supposedly idiosyncratic volatility of the Fama and French (1993) three

factor model to sentiment-induced noise trader risk. Theoretically and

empirically, the volatility attributable to noise trader risk is a promising

candidate to explain the idiosyncratic volatility puzzle in the cross section

of stock returns. We find a strong and robust negative relationship be-

tween the latent factor volatility and subsequent returns. The systematic

component accounts for up to 55% of the idiosyncratic volatility puz-

zle. This fraction is largely unrelated to alternative candidate variables

and factor models, although alternative candidates convey explanatory

power as well. Alternative candidates perform worse when combined

with each other, while our approach pins down a systematic component
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Table 4.12: Fama and MacBeth (1973) regressions controlling for Max.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Intercept 3.7992 3.4585 3.8042 3.4593 3.8098 3.4665 3.6431 3.5335 3.7014 3.5817 3.6449 3.5320

(7.86) (7.65) (7.86) (7.65) (7.90) (7.69) (7.56) (7.60) (7.71) (7.76) (7.56) (7.61)
LFV 1M

FF3 -13.123 -14.535
(-3.88) (-4.67)

LFV 1M
CAR -10.703 -10.638

(-3.24) (-3.33)
LFV 1M

FF5 -14.851 -13.648
(-4.90) (-4.38)

LFV 12M
FF3 -38.285 -37.189

(-2.72) (-2.86)
LFV 12M

CAR -48.982 -47.518
(-3.55) (-3.65)

LFV 12M
FF5 -38.898 -37.360

(-2.84) (-2.89)
Max -18.622 -18.095 -18.994 -18.666 -18.455 -18.330 -18.737 -18.633 -18.552 -18.472 -18.768 -18.666

(-7.51) (-7.79) (-7.75) (-8.21) (-7.43) (-7.97) (-7.96) (-8.47) (-7.79) (-8.35) (-7.87) (-8.42)
LagRet -3.0982 -3.5063 -3.0832 -3.4898 -3.1146 -3.4958 -3.2272 -3.5444 -3.2348 -3.5528 -3.2226 -3.5417

(-6.51) (-6.68) (-6.51) (-6.68) (-6.55) (-6.66) (-5.57) (-5.80) (-5.58) (-5.81) (-5.57) (-5.80)
MOM 0.7103 0.6405 0.7122 0.6414 0.7097 0.6397 0.6885 0.6690 0.6902 0.6708 0.6899 0.6698

(5.21) (4.79) (5.22) (4.80) (5.21) (4.80) (4.15) (4.35) (4.14) (4.36) (4.15) (4.35)
Illiq 0.0357 0.0270 0.0356 0.0269 0.0354 0.0268 0.0218 0.0213 0.0223 0.0217 0.0219 0.0214

(3.69) (3.22) (3.70) (3.24) (3.69) (3.22) (2.46) (2.49) (2.48) (2.52) (2.45) (2.48)
ISkew -0.0363 -0.0271 -0.0368 -0.0273 -0.0358 -0.0264 -0.0285 -0.0221 -0.0268 -0.0207 -0.0286 -0.0222

(-2.16) (-1.63) (-2.19) (-1.65) (-2.13) (-1.59) (-1.76) (-1.37) (-1.64) (-1.28) (-1.76) (-1.38)
CoSkew -0.0081 -0.0051 -0.0079 -0.0049 -0.0081 -0.0050 -0.0077 -0.0046 -0.0085 -0.0051 -0.0079 -0.0047

(-1.76) (-1.68) (-1.75) (-1.65) (-1.76) (-1.67) (-1.63) (-1.53) (-1.70) (-1.64) (-1.65) (-1.55)
ZeroRet -0.3359 -0.4634 -0.3409 -0.4679 -0.3393 -0.4617 -0.4450 -0.4710 -0.4245 -0.4541 -0.4423 -0.4705

(-1.29) (-1.79) (-1.31) (-1.81) (-1.30) (-1.78) (-1.61) (-1.81) (-1.51) (-1.73) (-1.59) (-1.80)
Size -0.2062 -0.1768 -0.2066 -0.1769 -0.2070 -0.1774 -0.1891 -0.1826 -0.1930 -0.1856 -0.1893 -0.1824

(-6.34) (-6.06) (-6.33) (-6.05) (-6.36) (-6.08) (-5.97) (-6.10) (-6.09) (-6.24) (-5.96) (-6.11)
βMkt 0.0635 -0.0153 0.0630 -0.0161 0.0613 -0.0181 0.0644 -0.0001 0.0751 0.0044 0.0669 -0.0001

(0.49) (-0.14) (0.48) (-0.15) (0.47) (-0.17) (0.51) (-0.00) (0.58) (0.05) (0.52) (-0.00)
βSMB 0.1322 0.1346 0.1347 0.1369 0.1328 0.1352 0.1278 0.1227 0.1203 0.1158 0.1298 0.1250

(2.08) (2.54) (2.11) (2.58) (2.08) (2.54) (1.91) (2.27) (1.80) (2.16) (1.93) (2.31)
βHML -0.0941 -0.1341 -0.0951 -0.1343 -0.0949 -0.1346 -0.1354 -0.1349 -0.1399 -0.1375 -0.1372 -0.1353

(-1.93) (-3.14) (-1.95) (-3.13) (-1.95) (-3.15) (-2.73) (-2.89) (-2.87) (-3.02) (-2.76) (-2.90)
βAV -0.0068 -0.0068 -0.0069 -0.0057 -0.0058 -0.0057

(-1.03) (-1.04) (-1.05) (-0.91) (-0.92) (-0.90)
βAC 0.1124 0.1093 0.1141 -0.0013 -0.0013 -0.0013

(1.35) (1.31) (1.37) (-0.47) (-0.47) (-0.47)
βCIV -0.0015 -0.0014 -0.0015 0.0609 0.0612 0.0592

(-0.54) (-0.52) (-0.54) (0.65) (0.64) (0.62)
βLiq -0.0024 -0.0038 -0.0023 -0.0081 -0.0065 -0.0083

(-0.06) (-0.10) (-0.06) (-0.20) (-0.16) (-0.20)
βFMax 0.0869 0.0864 0.0874 0.0752 0.0791 0.0738

(0.96) (0.96) (0.97) (0.79) (0.82) (0.77)

avg.R
2

in % 7.3200 8.0424 7.3130 8.0353 7.3167 8.0426 7.3896 8.1673 7.3570 8.1429 7.3734 8.1575
avg.N 3301 3147 3301 3147 3301 3147 3112 3112 3112 3112 3112 3112

Table 4.12 presents average coefficients of Fama and MacBeth (1973) cross-sectional regressions of excess

returns in month t + 1 on the systematic component LFVFM of FF3 idiosyncratic volatility. The superscript

indicates the time-horizon of the estimation and the subscript refers to the factor model which generates

residuals. FF3 refers to the (Fama and French, 1993) three factor model, CAR indicates residuals from a

Carhart (1997) four factor model and FF5 indicates the Fama and French (2015) five factor model. We include

the following set of control variables: Max is the average of the five highest returns in month t (Bali et al.,

2017). LagRet is the return in month t, Mom is the cumulative return over the previous year, Illiq is the

Amihud (2002) illiquidity measure, CoSkew is co-skewness as proposed by Harvey and Siddique (2000) and

ISkew is idiosyncratic skewness of Fama and French (1993) three factor model residuals. ZeroRet is the

share of zero returns and Size is the logarithm of the monthly market capitalization in 1,000 USD. Betas are

calculated to the following risk factors: Mkt, SMB and HML are the factors of the Fama and French (1993)

three factor model. AV (AC) is monthly average variance (correlation) of Chen and Petkova (2012), CIV (MV)

is common idiosyncratic volatility (market variance) as proposed by Herskovic et al. (2016). Liq is the Pastor

and Stambaugh (2003) liquidity factor and FMax is the Bali et al. (2017) lottery demand factor. The sample

period in Model (1), (3) and (6) is June 1964 to December 2016 and the sample period in the remaining

Models is June 1968 to December 2016. We report the average cross-sectional r-squared avg.R
2

in % as well

as the average number of observations N . Average coefficients are multiplied by one hundred. We winsorize

all explanatory variables at the 0.5% level (0.25% in each tail) on a monthly basis. t-statistics calculated from

Newey and West (1987) standard errors with six lags in parentheses.
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in idiosyncratic risk which is unrelated to existing models and most likely

attributable to noise trader risk, as highlighted in the previous work of

Claußen et al. (2019).
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Chapter 5

Betting against sentiment: Seemingly

unrelated anomalies and the low-risk

effect

This Chapter refers to the working paper:

Dierkes, Maik and Sebastian Schroen (2019): ‘Betting against sentiment:
Seemingly unrelated anomalies and the low-risk effect’, Working Paper,
Leibniz Universität Hannover.

Abstract
The negative relation between CAPM alphas and the two most

widely adopted risk measures – beta and volatility – is attributable
to unaccounted factors in the CAPM. We use seemingly unrelated
anomaly portfolios to construct a composite factor in the spirit of
the optimal orthogonal portfolio. Controlling for the exposure to
this factor re-establishes a significantly positive relation between
beta and average returns and explains the negative alphas of high-
beta and high-volatility stocks. A thorough evaluation of existing
explanations for the low-risk effect suggests a unified behavioral
explanation: Risky stocks earn lower returns because betting against
investor sentiment is risky and costly.

Keywords: Low-risk effect, CAPM, optimal orthogonal portfolio

JEL: G10, G12, G40.
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5.1 Introduction

Empirical asset pricing provides rich and robust evidence that the rela-

tionship between average returns and the two most widely adopted risk

measures in finance – market beta and volatility – points in the wrong

direction (Baker et al., 2011). This so-called low-risk effect1 presents

a standing challenge to the capital asset pricing model (CAPM) which

predicts a positive trade-off between market beta and returns, whereas

diversifiable risk such as volatility should yield no significant risk pre-

mium at all.2 While early evidence goes back more than 40 years to Black

(1972), the seminal papers of Ang et al. (2006) and Frazzini and Peder-

sen (2014) refueled the debate about the underlying mechanisms of the

low-risk effect. Asness et al. (2019) boil down this debate to the two most

promising explanations: Leverage constraints and thus systematic risk

versus idiosyncratic risk due to behavioral biases for lottery-like returns.

Our paper seeks to resolve this debate and shows that the low-risk

effect is both, behaviorally driven and attributable to a common system-

atic factor. To illustrate this, we break up with the old habit of separating

between the two risk measures beta and variance by tracing back both

phenomena to unaccounted factors in the CAPM. Our empirical proxy

for the optimal orthogonal portfolio of MacKinlay and Pastor (2000) –

referred to as FOP – explains the negative CAPM alphas of high-beta
1We follow Asness et al. (2019) and use the term “low-risk effect” to summarize the

negative alphas of high-beta and high-volatility stocks. The literature mostly considers
both phenomena separately.

2If investors are unable to diversify properly, Merton (1987) predicts a positive risk
premium for volatility-risk. The negative relationship, however, remains a puzzle.
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and high-variance stocks, both in time series regressions as well as cross-

sectional. Furthermore, controlling for the exposure to FOP reestablishes

a significantly positive relation between beta and average returns. After

having shown that FOP explains the flat and sometimes even negative

slope of the empirical security market line (SML), we use FOP to challenge

theoretical propositions for the low-risk anomaly. Baker and Wurgler

(2006) Investor Sentiment is the most promising state variable behind

FOP and our results suggest that high-risk stocks earn low returns be-

cause “betting against sentimental investors is costly and risky” (Baker

and Wurgler, 2007).

We use the optimal orthogonal portfolio of MacKinlay (1995) to con-

struct the composite factor FOP from seemingly unrelated anomalies.

FOP captures unaccounted factors in the CAPM, explains the anomalies

in Fama and French (1993, 2015, 2016) with the exception of momen-

tum and spans the risk factor models of Fama and French (2018) as well

as Stambaugh and Yuan (2017). By construction, FOP is uncorrelated

to the market portfolio which allows us to extend the CAPM by FOP

while leaving market beta (βMkt) estimates unchanged. The extended

CAPM predicts that high-beta and high-volatility stocks exhibit negative

exposures to FOP which alleviates their negative CAPM alphas.

Once we extend the CAPM by FOP , the negative CAPM alphas of

high-beta and high-variance (V ar) stocks in univariate portfolio sorts

become insignificant. Returns of βMkt decile portfolios increase in βMkt

after controlling for the exposure to FOP . This result extends to 25 Size-

βMkt and 25 Size-V ar portfolios, albeit to a lesser extent. Accounting for
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the exposure to FOP reestablishes a positive trade-off between βMkt and

average returns in Fama and MacBeth (1973) regressions and explains the

cross-sectional pricing errors of the CAPM.

Turning to the economic explanations for the low-risk effect, we reeval-

uate the theoretical propositions of Frazzini and Pedersen (2014), Anto-

niou et al. (2016), and Hong and Sraer (2016), i.e. leverage constraints,

investor sentiment, and disagreement. All three explanations share the

common prediction that the slope of the SML depends on the respective

economic state variables and is flatter in times of high leverage constraints,

sentiment or disagreement. Since FOP and the exposure of βMkt deciles to

FOP fully capture this time-variation in the slope of the SML, FOP facili-

tates an impartial horse race to discriminate between the three competing

explanations. Any potential candidate for the low-risk effect should not

only affect the slope of the SML, but also explain the time series dynamics

of FOP . Baker and Wurgler (2006) Investor Sentiment is the only state

variable which consistently satisfies both criteria and turns out to be the

most promising candidate to explain the low-risk anomaly.

Our study contributes to three strands in the literature. First and most

importantly, we shed further light on the mechanisms behind the low-risk

effect. We pick up where Asness et al. (2019) left off the debate and focus

on the controversy between risk-based and behavioral explanations. Since

FOP is a priori unrelated to the low-risk anomaly, our perspective on

the explanation starts purely agnostic. In line with Asness et al. (2019),

our results suggest that the low-risk effect is indeed systematic. The ex-

posure to our composite factor FOP explains the underperformance of
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both high-beta and high-variance portfolios. FOP serves as a powerful

tool to discriminate between so far observationally equivalent predic-

tions of leverage constraints, disagreement and sentiment and our results

make a strong case for a common sentiment-based and thus behavioral

explanation.

In the current literature, papers explaining the low-risk effect with

price pressure from demand for lottery-like stocks (e.g. Bali et al., 2017)

focus on idiosyncratic risk. To this end, Liu et al. (2018) argue that volatil-

ity is the driver behind the anomaly and beta is guilty by correlation.

Although high-volatility stocks tend to have high market betas, returns

significantly increase in market beta after controlling for FOP , but not

in variance. Risky stocks are likely to be exposed to common but unac-

counted factors attributable to investor sentiment which goes beyond and

above correlation.

Second, there is closely related and growing evidence that investor

sentiment affects the aggregate risk-return trade-off (Yu and Yuan, 2011;

Antoniou et al., 2016; Shen et al., 2017). Antoniou et al. (2016) and Shen

et al. (2017) both investigate the spreads of market beta sorted portfolios

and find that the slope of the SML decreases in sentiment and even

becomes negative during periods of high sentiment. Our evidence offers

a new perspective on this finding. The tilted SML is attributable to the

negative exposure of risky stocks to the unaccounted factor FOP and the

average return on FOP is higher during periods of high investor sentiment.

The return spread of high-beta and high-variance stocks attributable to

FOP exceeds their expected return from the CAPM during waves of high
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sentiment and the slope SML appears to be negative.

Third, empirical asset pricing recently went from a zoo of factors

(Cochrane, 2011; Harvey et al., 2016) to a variety of factor models with

substantial common ground (Hou et al., 2019). Clearly, the fact that

FOP explains its constituting anomalies better than alternative factor

models has little implication beyond the law of one price (Kozak et al.,

2018). However, the explanatory power of FOP with respect to seemingly

unrelated anomalies indicates that many characteristics align with the

exposure to a few common factors as pointed out by Kelly et al. (2019).

In this spirit, FOP fully captures the CAPM alphas of portfolios sorted

by Investment, although that particular anomaly attains a zero weight in

the construction of FOP . As Asness et al. (2019) argue, existing factors

are correlated with one another or the market portfolio – for example the

Frazzini and Pedersen (2014) betting-against-beta (BAB) and the Bali et al.

(2017) lottery demand factor (FMAX) – which impedes discriminating

tests between the factors. FOP on the other hand captures only mispricing

above and beyond market risk and leaves existing market beta estimates

unchanged. Thus, the theoretically motivated factor FOP might help

separating important from redundant factors without suffering from guilt

by association (Liu et al., 2018).
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5.2 The optimal orthogonal portfolio,

seemingly unrelated anomalies and the

low-risk effect

5.2.1 Introducing the optimal orthogonal portfolio

Our explanation for the low-risk effect relies on unaccounted factors

in the CAPM. We treat this factor as a latent variable and propose an

empirical approach to the theoretical framework of MacKinlay (1995)

and MacKinlay and Pastor (2000) who show that mispricing due to latent

factors is embodied in the covariance matrix of factor model residuals.

Starting from the CAPM, the excess return ri,t of asset i ∈ {1, ...,N } in

period t is

ri,t = αi + βMkt,irMkt,t + εi,t, (5.1)

E(εt) = 0, E (εtεt
′) = Σ and Cov

(
εt, rMkt,t

)
= 0,

where βMkt,i is the market beta of asset i, εi,t is the error in each time

period, and αi denotes mispricing. As long as an exact factor which

proxies for additional state variable risk is missing in Equation (5.1), all

deviations from the return generating process are embodied in a nonzero

intercept αi . In this case, MacKinlay and Pastor (2000) show that the

covariance matrix Σ contains information about the missing factor which

drives αi . This relationship can be developed using the optimal orthogo-

nal portfolio (OP ).3 OP is optimal and orthogonal such that the inclusion
3MacKinlay (1995) defines the optimal orthogonal portfolio as “the unique portfolio
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of OP to the factor model in Equation (5.1) alleviates the mispricing αi

while preserving the coefficient estimate βMkt,i .

We denote the return on OP at time t with rOP ,t which governs the

asset return with sensitivity βOP and its first two moments are E

(
rOP ,t

)
=

µOP and var
(
rOP ,t

)
= σ2

OP . Per definition, it holds Cov(rMkt,t, rOP ,t) = 0.

Replacing αi in Equation (5.1) with the return of the optimal orthogonal

portfolio yields

ri,t = βOP ,irOP ,t + βMkt,irMkt,t + νi,t, (5.2)

E(νt) = 0, E(νtνt
′) = Φ , and Cov(νt,ζt) = Cov(νt, rOOP ) = 0.

Taking the unconditional expectations of Equations (5.1) and (5.2) leads

to

αi = βOP ,iE(rOP ) = βOP ,iµOP . (5.3)

It follows that the variance of the residual in Equation (5.1) is positively

linked to the mispricing vector α according to

Σ = βOP β
′
OP σ

2
OP +Φ = αα′

1

s2OP
+Φ , (5.4)

where sOP is the Sharpe ratio of OP . In absence of this link, near-arbitrage

opportunities arise (MacKinlay and Pastor, 2000, p. 886).

MacKinlay and Pastor (2000) propose an active portfolio which al-

leviates mispricing by using the strong-form link between Σ and the

mispricing vector α. MacKinlay and Pastor (2000) show that the weight

given N assets that can be combined with the factor portfolios to form the tangency portfolio
and is orthogonal to the factor portfolios” (MacKinlay, 1995, p. 8).
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vector w of N + 1 assets in the active portfolio is

w = c

 α

−β′α

 , (5.5)

where c is a normalizing constant such that portfolio weights add up

to one. Thus, the weights of the N assets in the active portfolio are

proportional to the mispricing vector α (see MacKinlay and Pastor, 2000,

p. 891). The weight −β′α in the (N + 1)th asset, i.e. the factor portfolio,

guarantees that the active portfolio is orthogonal to the market factor.

5.2.2 Tracking down the optimal orthogonal portfolio

empirically

To construct an empirical counterpart to the optimal orthogonal portfolio,

we directly form the active portfolio from the residuals in Equation (5.1).

Following MacKinlay (1995), we employ subsets S ⊂ {1, . . . ,N } of the N

assets. The sample representation of the optimal orthogonal portfolio for

a given subset S is

OPt,S =
∑
s∈S

αsεs,t (5.6)

In Equation (5.6), αs is the weight of asset s and S is the subset of assets

we employ in the estimation of Equation (5.1). By construction, this linear

combination is orthogonal to the traded factor. To address the fact that

OPS is formed on residuals and thus not tradable, we form a mimicking

portfolio from the sample assets. We estimate the regression

OPS,t = a+ bXS,t +uS,t (5.7)
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and the fitted values of this regression minus the constant constitute the

mimicking factor for OPS , referred to as FOPS . The base assets’ returns

XS,t are the returns of the same subset of assets S. FOPS contains informa-

tion about the mispricing of the subset S with respect to the CAPM which

is unrelated to the market risk of the asset because FOPS and rMkt are

uncorrelated. We estimate Equation (5.7) over the full sample period to

reduce the measurement error. FOPS thus represents an ex-post estimate

for the optimal orthogonal portfolio for the subset S.

To further reduce dimensionality, we form an aggregate mimicking

factor for the optimal orthogonal portfolio FOP from the sample rep-

resentations FOPS .4 FOP is the linear combination of the sample FOPS

which maximizes the Sharpe ratio s. In particular, for any given subset S

of assets, it holds that s2FOPS ≤ s
2
FOP (MacKinlay, 1995).

A formal analysis of the theoretical framework above requires sam-

ple assets to construct FOP empirically. These sample assets should be

informative about CAPM deviations and allow a precise estimation of

the weight vector in Equation (5.5). Anomaly portfolios satisfy these re-

quirements. Anomalies typically refer to patterns in stock returns which

are not explained by the CAPM (Fama and French, 1996) and are thus

particularly informative with respect to CAPM violations. Furthermore,

the portfolios are homogeneous in the characteristics behind the CAPM

deviation which reduces the measurement error of α.
4In untabulated robustness checks we estimate the residuals for all anomaly port-

folios except beta and compute FOP according to OPt = w′(α + εt) directly from all
anomaly portfolios. Both representations of FOP are highly correlated. The weights in
this approach, however, are more unbalanced and less tractable.
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We use decile portfolios of the following nine anomalies as base assets

to construct OP : Accruals (Accr), book-to-market (BM), investment (Inv),

long-term reversal (LRev), momentum (Mom), net share issues (NetIss),

operating profitability (P rof ), short-term reversal (ShRev) and size (Size).

See Appendix 5.A.1 and Fama and French (1993, 2015, 2016) for further

details. We treat each set of anomaly decile portfolios as a subset, form

nine FOPS according to Equations (5.6) and (5.7) and then estimate the

linear combination with the highest Sharpe ratio referred to as FOP .

5.2.3 Seemingly unrelated anomalies and the low-risk

effect

Now that we are equipped with an empirical measure for unaccounted

factors in the CAPM, we can assemble the pieces in the novel context of

the low-risk anomaly. In the first part of the paper, we take the source

of the unaccounted factors as exogenous and focus on the asset pricing

implications of the two factor model in Equation (5.2). We facilitate this

analysis with two testable predictions.

First, as an empirical counterpart of the optimal orthogonal portfolio,

FOP is expected to embody all relevant asset pricing information for

a given set of test assets (Asgharian, 2011). FOP should therefore not

only explain the nine constituent anomalies, but also span multi factor

models which rely on related anomalies, e.g. the factor models in Fama

and French (2015, 2018) and Stambaugh and Yuan (2017).

Second, turning to the low-risk effect, Equations (5.3) and (5.4) point
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out how unaccounted factors in the CAPM might explain the underperfor-

mance of risky stocks. For the negative CAPM alphas of high-beta stocks,

the prediction of the two factor model is straightforward. Since the ex-

pected return of FOP is positive by construction, Equation (5.3) implies

negative βFOP for high-beta stocks. To alleviate the low-beta anomaly, this

exposure should account for the negative alphas of high-beta stocks and

furthermore re-establish a positive trade-off between βMkt and average

returns.

Implications for volatility as a risk measure are less obvious. As shown

in Equation (5.4), βFOP also contributes to variance, i.e. idiosyncratic risk.

Thus, the negative CAPM alphas of high-volatility stocks might compen-

sate for unaccounted factors in the initial model (see Chen and Petkova,

2012). This additional systematic component prevents the diversification

of idiosyncratic risk to zero when forming a portfolio (MacKinlay, 1995).

We focus on return variance rather than the more common residual vari-

ance to measure idiosyncratic risk because the latter measure is model

dependent and usually measured from multifactor models. Robustness

checks in Section 5.6, however, illustrate that our results are robust to this

choice.

5.3 Data

We obtain value-weighted monthly returns of eleven decile portfolios for

the following anomalies: Accruals (Accr), market beta (βMkt), book-to-

market (BM), investments (Inv), long-term reversal (LRev), momentum
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(Mom), net share issues (NetIss), operating profitability (P rof ), short-

term reversal (ShRev), size (Size) and return variance (V ar). We provide

a detailed description with respect to portfolio formation in Appendix

5.A.1 and refer to Fama and French (2015, 2016) for further information.

Furthermore, we obtain 25 portfolios sorted by size and market beta

(Size-βMkt, 5x5) and size and return variance (Size-V ar, 5x5).

The aggregate market return is proxied by the market factor Mkt

which is the value-weighted excess return of all stocks in the CRSP uni-

verse and we use the risk factors of the models of Fama and French

(1993, 2015, 2018). SMB and HML are the Small-minus-Big and the

High-minus-Low factors of the Fama and French (1993) three factor

model (FF3). Fama and French (2015) extend this model by the profitabil-

ity factor RMW (Robust-minus-Weak) and the investment factor CMA

(Conservative-minus-Aggressive) to the five factor model FF5. Most re-

cently, Fama and French (2018) add the Carhart (1997) momentum factor

UMD (Up-minus-Down) to constitute the six factor model FF6.5 All of

the above data is from Kenneth French’s website. We furthermore obtain

decile portfolios sorted by and idiosyncratic volatility (IV ol) from the

website of Robert Novy-Marx.

The risk factors of the Stambaugh and Yuan (2017) mispricing model

M4 are from the website of Robert F. Stambaugh. The M4 model com-

prises Mkt, a size factor SMBM4 as well as the mispricing factors P ERF
5Technically, the six factor model FF6 replaces the operating profitability factor

RMW with a cash profitability factor RMWC . However, this version of the factor is not
publicly available and we use the initial definition of RMW instead, but refer to the
model as FF6.
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and MGMT which are formed on anomaly portfolios.

Other economic data is from common sources: The University of

Michigan Index of Consumer Sentiment is from the University of Michi-

gan website and Baker and Wurgler (2006) (BW) sentiment data are from

Jeffrey Wurgler’s website.6 The Chicago Fed National Activity Index (CF-

NAI) is from the website of the Federal Reserve Chicago and the Ted

Spread is from the Federal Reserve Bank of St. Louis. Margin debt of

NYSE customers in relation to NYSE market capitalization is from Datas-

tream. Disagreement as the standard deviation of analysts long-term EPS

growth forecasts (time series item LTSD) is also from Datastream. In

constructing aggregate disagreement, we follow Hong and Sraer (2016)

and weight the standard deviation of individual stocks by the pre-ranking

market beta. Betas are estimated over the previous five years with monthly

return data from Datastream as well. We thank our fellow colleagues for

the provision of the research data.

5.4 Explaining the low-risk effect

5.4.1 Seemingly unrelated anomalies and the optimal

orthogonal portfolio

The first prediction states that FOP embodies all relevant asset pricing

information for the given set of test assets. To illustrate that this prediction

does not hold for the initial factor model, we start with the CAPM. Panel A
6We use the orthogonalized BW Investor Sentiment Index.
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Table 5.1: CAPM deviations and the two factor model

βMkt V ar Accr BM Inv LRev Mom NetIss P rof ShRev Size

Panel A: GRS test for the null hypothesis that all ten CAPM anomaly alphas are zero
GRS statistic 1.9754 3.9353 3.4662 2.1825 4.3445 2.0026 5.5176 4.2293 2.4017 2.0110 2.4015
p–value 0.0336 <0.001 0.0002 0.0173 <0.001 0.0308 <0.001 <0.001 0.0084 0.0300 0.0084

Panel B: Average returns of anomaly FOPS
Excess return in % 0.1561 0.4662 0.1709 0.2070 0.2048 0.1550 0.5700 0.2533 0.1928 0.1733 0.1085

(2.42) (4.40) (4.81) (2.65) (4.28) (2.72) (4.92) (5.16) (3.45) (3.77) (1.17)
SD in % 1.4827 2.6269 0.8533 1.6983 1.0456 1.3091 2.8731 1.0740 1.2822 1.1986 2.1597
Sharpe ratio (ann) 0.3646 0.6148 0.6938 0.4222 0.6785 0.4103 0.6873 0.8170 0.5208 0.5008 0.1740
N 642 642 642 642 642 642 642 642 642 642 642

Panel C: GRS test for the null hypothesis that all ten anomaly alphas from selected factor models are zero
Mkt + FOP

GRS statistic 1.2663 1.2221 0.8946 1.2106 1.1563 0.8291 2.3730 1.3152 0.7748 0.3266 1.0411
p–value 0.2459 0.2731 0.5379 0.2806 0.3177 0.6007 0.0092 0.2182 0.6533 0.9741 0.4068

FF6 model
GRS statistic 2.0348 2.2082 4.0555 1.1183 2.5343 0.9630 3.3039 3.0621 1.6837 1.1926 1.6781
p–value 0.0278 0.0159 <0.001 0.3456 0.0053 0.4747 0.0003 0.0008 0.0808 0.2926 0.0821

M4 model
GRS statistic 1.2947 1.9837 2.8288 0.7098 1.2188 0.9803 2.3263 2.0121 1.3970 1.3827 1.9476
p–value 0.2295 0.0327 0.0019 0.7157 0.2753 0.4592 0.0108 0.0299 0.1774 0.1840 0.0366

Table 5.1 compares the CAPM with the two factor model. The two factor model extends the

CAPM by the mimicking portfolio for the optimal orthogonal portfolio FOP . Panel A presents

Gibbons et al. (1989) (GRS) test statistics and the corresponding p-values for the null hypoth-

esis that all CAPM alphas of the decile anomalies are zero. Panel B presents monthly excess

returns (in %), t-statistics for the null hypothesis that excess returns are zero, monthly standard

deviations in % as well as annualized Sharpe ratios for FOPS from the anomaly portfolios. t-

statistics in parentheses are computed from Newey and West (1987) with six lags. Panel C repeats

the GRS test for selected multifactor models. The two factor model Mkt + FOP , the Fama and

French (2018) six factor model FF6 and the Stambaugh and Yuan (2017) four factor model M4.

The following anomalies are covered: Market beta (βMkt), return variance (V ar), accruals (Accr),

book-to-market (BM), investments (Inv), long-term reversal (LRev), momentum (Mom), net share

issues (NetIss), operating profitability (P rof ), short-term reversal (ShRev) and size (Size). The

sample period is July 1963 to December 2016.

of Table 5.1 presents results of the Gibbons, Ross and Shanken (1989) GRS

test for the null hypothesis that the CAPM alphas of the decile anomaly

portfolios are jointly equal to zero. We present the test statistic as well

as a p-value for each of the eleven anomalies. The sample period is July

1963 to December 2016.

The GRS test rejects the null hypothesis for each and every anomaly

at conventional significance levels. This also holds true for βMkt and V ar
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portfolios, indicating the existence of the low-risk effect in our sample.

For βMkt, the GRS test rejects the null hypothesis at the 5% level with a

p-value of 0.0336. The GRS test statistic for V ar portfolios is more than

twice as high, tantamount to a rejection of the null hypothesis at any

conventional level. Consequently, the CAPM fails to price all anomaly

portfolios and we compute FOPS for the full set of anomalies according

to the procedure in Section 5.2.2.

Panel B presents descriptive statistics for each FOPS . We provide

average monthly excess returns in %, a t-statistic for the null that this

excess return equals zero as well as monthly standard deviations and an

annualized Sharpe ratio. Unless stated otherwise, t-statistics throughout

this paper are computed from Newey and West (1987) standard errors

with six lags.

With the exception of Size with an average return of roughly 11 basis

points (bps) and a t-statistic of 1.17, the average returns are statistically

significant. These anomaly returns provide significant information after

accounting for market risk. Significant average returns vary from 16

bps for FOPβMkt to 57 bps for FOPMom with t-statistics of 2.42 and 4.92,

respectively. FOPV ar attains an average return of 47 bps with a t-statistic

of 4.40. We use the full set of sample FOPS except βMkt and V ar to form

a single factor representation as the linear combination which maximizes

the Sharpe ratio. Since FOPS are zero investment portfolios, we form

FOP with long-only portfolio weights. The exclusion of βMkt and V ar

guarantees that FOP is a priori unrelated to the low-risk effect. Figure 5.1

presents the weights in FOP which maximize its Sharpe ratio.
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Figure 5.1: Pie chart of anomaly weights in FOP .
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Figure 5.1 presents the weights of the anomaly FOPS in the maximum Sharpe ratio combination

FOP . The anomalies are: Accruals (Accr), book-to-market (BM), investments (Inv), long-term re-

versal (LRev), momentum (Mom), net share issues (NetIss), operating profitability (P rof ), short-

term reversal (ShRev) and size (Size). The sample period is July 1963 to December 2016.

Accr attains the largest fraction in FOP with a weight of roughly 32%,

followed by Size with 18%, P rof with 17%, and NetIss with 14%, respec-

tively. Other than that, weights in FOP are rather balanced. Despite their

high individual Sharpe ratios, Mom attains a comparatively low weight

of 4% whereas Inv even drops out completely. The average monthly ex-

cess return of FOP is 19 bps with a Newey and West (1987) t-statistic

of 9.51. FOP exhibits an annualized Sharpe ratio of 1.5648 which is, by

construction, higher than each of its subsample counterparts in Panel B

of Table 5.1.
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In Panel C of Table 5.1 we present the ability of FOP to explain its con-

stituent anomaly portfolios as well as the two low-risk anomaly portfolios.

Again, we present GRS test statistics and p-values for the null that all ten

anomaly alphas are zero. For βMkt and V ar portfolios, the null hypothesis

cannot be rejected with p-values of 0.2107 and 0.2731, respectively. This

finding extends to the other anomalies with the exception of Mom where

the GRS test indicates that the alphas of the two factor model are jointly

different from zero. Interestingly, the two factor model also performs well

in explaining Inv, although FOPInv attains a zero weight in FOP .

To put the negative result in case of Mom into perspective, we report

GRS test statistics and p-values for the factor models FF6 and M4 as well

since both models explicitly account for Mom. In both cases, the null

hypothesis is rejected and the two factor model performs similar to M4

and better than FF6. Although this is not a fair comparison since FOP is

constructed from an ex post perspective, this result illustrates that FOP

performs similarly well in terms of dimensionality reduction.

To further emphasize the latter finding, Table 5.2 presents spanning

regressions which are less sensitive to the choice of test assets (see Barillas

and Shanken, 2017; Hou et al., 2019).7 In Panel A of Table 5.2, we

regress risk factors of the factor models FF6 and M4 on FOP to evaluate

the factor’s alphas. We follow Stambaugh and Yuan (2017) and focus on

unique factors, i.e. do not includeMkt, to analyze whether FOP subsumes
7The objective of the spanning regressions is not a model comparison, but the indica-

tion to what extent FOP explains existing asset pricing factors to reduce dimensionality.
For an extensive comparison of factor models we refer to Fama and French (2018),
Ahmed et al. (2019) and Hou et al. (2019).

198



Betting against sentiment

Table 5.2: Spanning regressions and GRS test

Panel A: Spanning regressions
FF6 Factors M4 Factors

Mkt SMB HML RMW CMA UMD SMBM4 P ERF MGMT

FOP 0.0471 0.9457 2.0662 1.6447 1.7726 3.4792 1.2393 2.7652 2.5844
(0.06) (2.50) (4.25) (3.87) (5.16) (6.50) (3.41) (4.13) (5.00)

α in % 0.5012 0.0834 -0.0245 -0.0744 -0.0310 -0.0048 0.2108 0.1468 0.0855
(2.19) (0.63) (-0.17) (-0.74) (-0.31) (-0.02) (1.73) (0.74) (0.65)

N 642 642 642 642 642 642 642 642 642

Panel B: GRS test for joint alphas of unique factors
αSMB = αHML = 0 αSMB = αHML = αRMW = αCMA = αUMD = 0 αSMBM4

= αP ERF = αMGMT = 0

GRS 0.2297 0.2416 2.5367
p-value 0.7948 0.9440 0.0558

Table 5.2 presents spanning regressions and Gibbons et al. (1989) (GRS) test results for different

asset pricing factors. Panel A presents spanning regressions for the market factor Mkt and the

asset pricing factors of the Fama and French (2018) six factor model FF6 and the Stambaugh and

Yuan (2017) four factor modelM4. Mkt enters both of the factor models FF6 andM4. t-statistics

in parentheses are computed from Newey and West (1987) adjusted standard errors with six

lags. In Panel B, we perform the GRS test for the null hypothesis that the alphas of unique asset

pricing factors are jointly zero. We present the GRS test statistic and the corresponding p-value.

The sample period is July 1963 to December 2016.

the asset pricing qualities of multifactor models. We report coefficient

estimates as well as t-statistics from Newey and West (1987) standard

errors in parentheses. The first Column with Mkt as the dependent

variable indicates that FOP and Mkt are unrelated in statistical terms.

The coefficient on FOP of 0.04714 is insignificant (t-statistic = 0.06). The

correlation between FOP and Mkt amounts to 0.0045 and is insignificant

as well, in line with the orthogonality condition of the optimal orthogonal

portfolio. We find quite the opposite for the FF6 factors SMB, HML,

RMW , CMA and UMD. All factor alphas are statistically insignificant.

The GRS test for the joint alphas of the factor models FF3 and FF6 in

Panel B does not reject the null hypothesis that all alphas are jointly zero.

The p-values are 0.7948 and 0.9440, respectively. FOP consistently spans

the FF6 risk factors and represents a reasonable univariate representation
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of the mutlifactor models in Fama and French (1993) and Fama and

French (2018). This finding extends to the M4 model, however, to a lesser

extent. FOP spans the mispricing factors P ERF and MGMT , but not

the M4 counterpart of the SMB factor. The difference between SMB

and SMBM4 is due to different breakpoints in the portfolio formation.

Nevertheless, the GRS test in Panel B does not reject the null hypothesis at

the 5% level. We conclude that FOP does not only explain its constituent

anomaly portfolios, but also subsumes the largest part of the information

in the multifactor models FF6 and M4. FOP is a reasonable single factor

representation of the multifactor models and embodies all important

information for the set of test assets.

5.4.2 Explaining the low-risk effect in time series

regressions

Having shown that FOP satisfies the theoretical properties of the optimal

orthogonal portfolio, we can turn to the performance of FOP in the

context of the low-risk anomaly. The second prediction postulates that

the inclusion of FOP into the CAPM alleviates the negative alphas of

high-beta and high-volatility stocks.

Table 5.3 revisits the single sorted βMkt and V ar portfolios in further

detail and presents unadjusted monthly excess returns, alphas of several

risk factor combinations, as well as the exposure of each decile with

respect to the two factorsMkt and FOP . Returns and alphas are presented

in % per month with Newey and West (1987) adjusted t-statistics in
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Table 5.3: Explaining the returns of decile portfolios.

Panel A: βMkt decile portfolios
Low βMkt 2 3 4 5 6 7 8 9 High βMkt Diff

Unadjusted 0.5382 0.5021 0.5635 0.6475 0.5300 0.6146 0.5034 0.6540 0.6193 0.6118 0.0736
(3.89) (3.12) (3.30) (3.55) (2.74) (3.04) (2.14) (2.57) (2.18) (1.81) (0.26)

Mkt 0.2243 0.1268 0.1383 0.1508 0.0102 0.0617 -0.0882 0.0022 -0.0909 -0.2106 -0.4349
(2.57) (1.56) (1.96) (1.98) (0.19) (0.98) (-1.20) (0.02) (-0.80) (-1.38) (-2.06)

FOP 0.2933 0.2562 0.3311 0.5411 0.4018 0.5875 0.4569 0.7213 0.7872 0.9551 0.6618
(1.82) (1.42) (1.64) (2.38) (1.70) (2.25) (1.64) (2.33) (2.31) (2.30) (1.98)

FOP +Mkt -0.0147 -0.1121 -0.0863 0.0533 -0.1087 0.0445 -0.1242 0.0811 0.0893 0.1469 0.1617
(-0.15) (-1.29) (-1.20) (0.70) (-1.69) (0.61) (-1.61) (0.81) (0.79) (0.97) (0.76)

βMkt 0.6146 0.7350 0.8327 0.9733 1.0185 1.0834 1.1593 1.2775 1.3923 1.6125 0.9979
(20.82) (22.26) (33.87) (47.33) (47.75) (48.18) (39.13) (41.43) (39.38) (38.39) (16.15)

βFOP 1.2449 1.2442 1.1698 0.5076 0.6191 0.0897 0.1874 -0.4106 -0.9388 -1.8619 -3.1068
(4.15) (3.55) (3.90) (1.42) (3.40) (0.36) (0.97) (-1.24) (-2.98) (-4.36) (-4.99)

Panel B: V ar decile portfolios
Low V ar 2 3 4 5 6 7 8 9 High V ar Diff

Unadjusted 0.4543 0.5817 0.5917 0.5842 0.6084 0.7089 0.7424 0.7549 0.5732 -0.0169 -0.4712
(3.24) (3.55) (3.51) (3.06) (3.03) (3.11) (2.97) (2.69) (1.79) (-0.04) (-1.39)

Mkt 0.1577 0.1827 0.1432 0.0809 0.0723 0.1089 0.0965 0.0401 -0.2106 -0.8682 -1.0259
(1.83) (3.05) (2.25) (1.10) (1.04) (1.35) (1.02) (0.39) (-1.58) (-4.33) (-3.89)

FOP 0.1961 0.3436 0.4009 0.4301 0.5004 0.6791 0.7625 0.8850 0.8283 0.7028 0.5067
(1.26) (1.81) (1.99) (1.90) (2.06) (2.46) (2.43) (2.58) (2.08) (1.43) (1.22)

OP +Mkt -0.0949 -0.0481 -0.0395 -0.0642 -0.0260 0.0898 0.1280 0.1827 0.0581 -0.1342 -0.0393
(-1.11) (-0.62) (-0.52) (-0.83) (-0.31) (1.11) (1.23) (1.76) (0.43) (-0.64) (-0.15)

βMkt 0.5807 0.7816 0.8787 0.9861 1.0504 1.1759 1.2659 1.4011 1.5368 1.6701 1.0894
(21.33) (32.98) (43.23) (34.93) (40.56) (45.71) (46.19) (44.37) (41.81) (26.95) (14.03)

βFOP 1.3158 1.2019 0.9510 0.7554 0.5122 0.0996 -0.1644 -0.7427 -1.3994 -3.8226 -5.1384
(5.04) (3.85) (3.06) (2.11) (1.05) (0.32) (-0.46) (-2.28) (-3.61) (-5.33) (-5.80)

Panel A (B) of Table 5.3 presents returns and factor model alphas of decile portfolios sorted

by market beta βMkt (return variance V ar) as well as a difference portfolio which is long in the

highest and short in the lowest decile. Alphas and excess returns are multiplied with one hundred

and the t-statistics in parentheses are computed from Newey and West (1987) adjusted standard

errors with six lags. Mkt is the market factor and FOP is the mimicking factor for the optimal

orthogonal portfolio. The sample period is July 1963 to December 2016.

parentheses.

Panel A presents βMkt decile portfolios. The unadjusted excess returns

and the CAPM alphas confirm the beta anomaly. The relation between

βMkt and average excess returns is flat with an insignificant difference

between high and low βMkt stocks of roughly 7 bps. Controlling for Mkt

leaves an alpha of approximately -44 bps with a t-statistic of -2.06. In

contrast to the predictions of the CAPM, high-βMkt stocks significantly

underperform low-βMkt stocks.

Extending the CAPM by FOP alleviates the anomaly. Once we control

for the portfolio’s exposure with respect to FOP , alphas increase in βMkt
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and the difference portfolio exhibits an alpha of approximately 66 bps

with a t-statistic of 1.98. Adding FOP to the market factorMkt fully wipes

out this unexplained return and the alpha of the difference portfolio of 16

bps is insignificant. In line with our second prediction, high-βMkt stocks

have negative exposures to FOP . βFOP decreases in the βMkt deciles, but

this effect is asymmetric and nonlinear. Stocks in the high βMkt decile have

a significantly negative βFOP of -1.86 (t-statistic = -4.36), while low-βMkt

exhibit portfolios a βFOP of 1.24 (t-statistic = 4.15).

Panel B of Table 5.3 repeats the analysis for V ar decile portfolios and is

otherwise identical to Panel A. The underperformance of high V ar deciles

is stronger compared to βMkt. Unadjusted returns decrease from low to

high V ar, but the return of the difference portfolio is insignificant. This

lies in stark contrast to the CAPM regressions. Here, high-V ar stocks earn

significantly negative alphas of -87 bps (t-statistic = -4.33). The negative

alpha of the difference portfolio of -103 bps is highly significant with a

t-statistic of -3.89, even when considering the standards of Harvey et al.

(2016).

Including FOP alone reveals an interesting pattern. The average al-

phas slightly increase in the V ar deciles, but the difference of roughly

51 bps is now insignificant (t-statistic = 1.22). Although the V ar decile

portfolios and the beta sorted portfolios have almost identical βMkt, the

increasing return pattern of the beta portfolios when controlling for FOP

does not extend to the V ar deciles. Again, combiningMkt and FOP wipes

out unexplained returns in the individual decile portfolios and reduces

alpha of the difference portfolio to -4 bps (t-statistic = -0.15). High-V ar
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deciles also exhibit highly negative exposures to FOP . While the positive

exposures in the lowest deciles of 1.3158 and 1.2019 are similar to the

βMkt sorted portfolios, the negative βFOP exposure in the highest decile

is more than twice as large as for the top βMkt decile. Furthermore, the

nonlinearity appears even stronger.

We extend the set of test assets to double-sorted portfolios. Table 5.4

presents time series regressions for 25 portfolios sorted by Size and βMkt.

Panel A (B) reports unadjusted excess returns (CAPM alphas) with cor-

responding t-statistics in parentheses which confirm the results of the

univariate decile portfolios.

In Panel A, the relationship between βMkt and excess returns is flat

in each of the Size quintiles, whereas CAPM alphas in Panel B decrease

from low to high βMkt quintiles. The beta anomaly persists in double

sorted portfolios. The GRS test rejects the null hypothesis for the CAPM

at conventional levels with a test statistic of 2.14 (p-value = 0.0011).

Panel C presents results for the two factor model which includes Mkt

and FOP . We present alphas as well coefficient estimates for βMkt and

βFOP . The GRS test statistic for the two factor model amounts to 1.26 with

a p-value of 0.1795, thus not rejecting the null hypothesis that all alphas

are jointly zero. None of the alphas in Panel C is statistically significant,

in contrast to the CAPM estimates in Panel B. Again, βFOP decreases in

βMkt quintiles and stocks in the highest βMkt quintiles have negative βFOP

except for the Small quintile. These quintiles largely correspond to the

stocks which exhibit negative CAPM alphas in Panel B. βFOP estimates

furthermore monotonically decrease from Small to Big quintiles. This
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Table 5.4: Explaining the returns of 25 Size-βMkt portfolios.

βMkt → Low 2 3 4 High Low 2 3 4 High
Coefficients t-statistics

Panel A: Unadjusted excess returns
Small 0.7442 0.8991 0.9154 0.9748 0.7733 (4.29) (4.48) (3.92) (3.81) (2.39)
2 0.7129 0.8723 0.9570 0.8928 0.6932 (4.20) (4.64) (4.45) (3.66) (2.22)
3 0.6916 0.8611 0.8480 0.7965 0.7277 (4.57) (4.74) (4.12) (3.38) (2.42)
4 0.6643 0.7687 0.7316 0.5935 0.7433 (4.37) (4.24) (3.61) (2.59) (2.49)
Big 0.4889 0.5235 0.4916 0.4956 0.4188 (3.44) (3.14) (2.57) (2.21) (1.49)

Panel B: CAPM α

Small 0.3588 0.4390 0.3822 0.3598 0.0188 (3.16) (3.51) (2.61) (2.46) (0.10)
2 0.3180 0.4109 0.4122 0.2736 -0.0995 (3.07) (4.01) (3.82) (2.25) (-0.64)
3 0.3261 0.3859 0.3082 0.1816 -0.0566 (3.79) (4.72) (3.36) (1.71) (-0.41)
4 0.2968 0.2819 0.1805 -0.0282 -0.0410 (3.45) (3.91) (2.44) (-0.33) (-0.31)
Big 0.1495 0.0707 -0.0382 -0.1197 -0.3069 (1.81) (1.14) (-0.62) (-1.53) (-2.30)

Panel C: Two Factor Model Coefficients
α

Small 0.0315 0.0637 -0.0049 0.0723 -0.0537 (0.26) (0.48) (-0.03) (0.46) (-0.25)
2 -0.0354 0.0483 0.0840 -0.0115 -0.1032 (-0.33) (0.45) (0.74) (-0.09) (-0.61)
3 0.0400 0.1176 0.0570 -0.0087 0.0708 (0.44) (1.37) (0.58) (-0.08) (0.47)
4 0.0239 0.0865 -0.0157 -0.1223 0.1668 (0.26) (1.13) (-0.20) (-1.30) (1.17)
Big -0.0741 -0.0684 -0.0596 -0.0393 0.1283 (-0.84) (-1.02) (-0.88) (-0.46) (0.91)

βMkt
Small 0.7546 0.9009 1.0441 1.2046 1.4786 (30.59) (33.19) (32.62) (37.22) (33.67)
2 0.7732 0.9034 1.0671 1.2129 1.5534 (34.78) (41.25) (45.62) (45.22) (44.67)
3 0.7157 0.9306 1.0574 1.2046 1.5375 (38.68) (52.91) (52.83) (51.04) (50.09)
4 0.7196 0.9537 1.0795 1.2183 1.5376 (38.68) (60.65) (66.65) (63.29) (52.70)
Big 0.6646 0.8872 1.0382 1.2061 1.4233 (36.94) (64.63) (74.86) (68.85) (49.45)

βFOP
Small 1.7044 1.9544 2.0158 1.4974 0.3776 (6.65) (6.93) (6.06) (4.45) (0.83)
2 1.8406 1.8884 1.7090 1.4846 0.0198 (7.96) (8.29) (7.03) (5.32) (0.05)
3 1.4898 1.3974 1.3083 0.9910 -0.6635 (7.75) (7.64) (6.29) (4.04) (-2.08)
4 1.4212 1.0172 1.0217 0.4902 -1.0819 (7.35) (6.22) (6.07) (2.45) (-3.57)
Big 1.1647 0.7241 0.1113 -0.4187 -2.2667 (6.23) (5.07) (0.77) (-2.30) (-7.58)

Table 5.4 presents time series regressions of 25 Size-βMkt portfolios on different factor models.

Intercepts are multiplied with one hundred to facilitate interpretation. The corresponding t-

statistics are presented in parentheses. Panel A (B) presents unadjusted excess returns (CAPM

alphas). Panel C presents results for the two factor model which extends the CAPM by the mim-

icking factor for the optimal orthogonal portfolio FOP . We present the model Intercept as well

as coefficient estimates for the two factors, i.e. βMkt and βFOP . The sample period is July 1963 to

December 2016.
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pattern, however, perfectly matches the patterns in average returns in

Panel A.

Table 5.5 repeats the analysis for Size-V ar portfolios and is otherwise

identical to Table 5.4. In Panel A and B, unadjusted excess returns and

CAPM alphas decrease from low to high V ar quintiles. The highest

V ar quintiles exhibit significantly negative CAPM alphas over all Size

quintiles. The strength of this relationship decreases from Small to Big

quintiles. Consequently, the GRS test rejects the null in case of the CAPM

with a test statistic of 6.67 at conventional levels (p-value < 0.001).

The extended CAPM again reduces the mispricing considerably and

largely accounts for the negative alphas of the highest V ar quintiles. The

smallest quintile – referred to as the lethal combination (Fama and French,

2016) – is the only exception and alphas still significantly decrease from

low to high V ar quintiles. Similar to Table 5.4, portfolios with negative

CAPM alphas exhibit negative βFOP . Although FOP improves the asset

pricing abilities of the CAPM, the GRS test still rejects the null hypothesis

with a test statistic of 4.71 (p-value < 0.001).8 The results of Table 5.4

extend to 25 Size-V ar portfolios, albeit to a lesser extent.

The time series regressions make a strong case for the second predic-

tion. Adding FOP to the CAPM explains the negative alphas of high-βMkt

and high-V ar stocks in decile portfolios. As predicted, high-risk portfo-

lios exhibit highly negative exposures with respect to FOP . Both findings

extend to double sorted portfolios in case of 25 Size-βMkt, but the negative
8To put this into perspective, the FF6 model attains a GRS test statistic of 4.80

(p-value < 0.001) and the negative V ar spread in the second Size quintile remains
significant as well.
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Table 5.5: Explaining the returns of 25 Size-V ar portfolios.

V ar → Low 2 3 4 High Low 2 3 4 High
Coefficients t-statistics

Panel A: Unadjusted excess returns
Small 1.0240 1.1668 1.0751 0.7734 -0.1949 (6.39) (5.24) (4.20) (2.60) (-0.54)
2 0.9126 1.0350 1.0406 0.9065 0.2719 (5.75) (5.01) (4.48) (3.39) (0.79)
3 0.7557 0.8384 0.9512 0.8738 0.4225 (5.22) (4.47) (4.50) (3.59) (1.33)
4 0.6866 0.7439 0.7663 0.7563 0.4771 (4.71) (4.24) (3.82) (3.33) (1.59)
Big 0.4317 0.5405 0.5261 0.4634 0.4743 (3.22) (3.45) (3.00) (2.32) (1.80)

Panel B: CAPM α

Small 0.6630 0.6350 0.4560 0.0609 -0.9940 (6.45) (4.91) (3.16) (0.36) (-4.10)
2 0.5329 0.5228 0.4517 0.2161 -0.5853 (5.80) (4.76) (3.88) (1.70) (-3.20)
3 0.4042 0.3539 0.4004 0.2336 -0.3954 (4.98) (3.99) (4.14) (2.18) (-2.61)
4 0.3433 0.2885 0.2303 0.1409 -0.3174 (3.96) (3.54) (2.83) (1.65) (-2.46)
Big 0.1119 0.1302 0.0478 -0.0917 -0.2339 (1.43) (1.86) (0.76) (-1.47) (-2.25)

Panel C: Two Factor Model Coefficients
α

Small 0.3136 0.2652 0.2035 0.0215 -0.7120 (2.91) (1.93) (1.30) (0.11) (-2.69)
2 0.1126 0.1002 0.1043 0.0185 -0.2922 (1.22) (0.88) (0.85) (0.13) (-1.47)
3 0.0093 0.0499 0.0807 -0.0029 -0.0521 (0.12) (0.54) (0.80) (-0.03) (-0.32)
4 -0.0205 0.0275 -0.0098 0.0549 0.1122 (-0.23) (0.32) (-0.11) (0.59) (0.83)
Big -0.0764 -0.0814 -0.1021 -0.0635 0.1914 (-0.91) (-1.10) (-1.51) (-0.93) (1.80)

βMkt
Small 0.7067 1.0414 1.2128 1.3962 1.5668 (32.02) (37.00) (37.80) (36.30) (28.92)
2 0.7433 1.0029 1.1533 1.3526 1.6806 (39.31) (43.13) (45.71) (47.79) (41.20)
3 0.6880 0.9488 1.0788 1.2541 1.6037 (41.67) (49.90) (51.85) (53.07) (48.11)
4 0.6719 0.8919 1.0498 1.2059 1.5581 (37.08) (50.65) (59.35) (62.86) (56.20)
Big 0.6264 0.8035 0.9372 1.0880 1.3891 (36.40) (52.93) (67.49) (77.48) (63.58)

βFOP
Small 1.8201 1.9257 1.3148 0.2050 -1.4689 (7.93) (6.58) (3.94) (0.51) (-2.61)
2 2.1890 2.2012 1.8095 1.0292 -1.5265 (11.14) (9.11) (6.90) (3.50) (-3.60)
3 2.0567 1.5831 1.6650 1.2320 -1.7875 (11.98) (8.01) (7.70) (5.02) (-5.16)
4 1.8948 1.3593 1.2506 0.4477 -2.2373 (10.06) (7.43) (6.80) (2.25) (-7.76)
Big 0.9807 1.1021 0.7804 -0.1469 -2.2152 (5.48) (6.98) (5.41) (-1.01) (-9.75)

Table 5.5 presents time series regressions of 25 Size-V ar portfolios on different factor models.

Intercepts are multiplied with one hundred to facilitate interpretation. The corresponding t-

statistics are presented in parentheses. Panel A (B) presents unadjusted excess returns (CAPM

alphas). Panel C presents results for the two factor model which extends the CAPM by the mim-

icking factor for the optimal orthogonal portfolio FOP . We present the model Intercept as well

as coefficient estimates for the two factors, i.e. βMkt and βFOP . The sample period is July 1963 to

December 2016.
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alphas of small high-V ar portfolios remain statistically significant. The

low-risk effect is likely to arise from unaccounted factors in the CAPM.

5.4.3 Cross-sectional evidence

We use the time series estimates in Tables 5.4 and 5.5 to evaluate the asset

pricing performance of the two factor model cross-sectionally as well. We

perform cross-sectional Fama and MacBeth (1973) regressions with the

full sample estimates according to

rp,t = γ0,t +γ1,tβMkt,p +γ2,tβOP ,p + εp,t, (5.8)

where rp,t is the excess return of portfolio p in month t. Table 5.6 presents

the second stage coefficients. We report the average cross-sectional ad-

justed r-squared avg.R
2

in %. Average coefficients are multiplied by one

hundred. We follow Lewellen et al. (2010) and include the factor port-

folios Mkt and FOP among the test assets. t-statistics calculated from

Newey and West (1987) standard errors are shown in parentheses.

Panel A of Table 5.6 presents the results for 25 Size-βMkt portfolios.

Comparing the CAPM in Model (1) and the two factor Model (2) reveals

two major differences. First, the risk premium for βMkt increases from

roughly 20 bps to 52 bps after the inclusion of βFOP , with t-statistics of

0.88 and 2.12, respectively. This estimate is close to the full sample risk

premium of Mkt of 51 bps. Second, the pricing error of the CAPM of 50

bps with a t-statistic of 4.19 becomes insignificant once we include βFOP .

Since we include excess returns on the left-hand side, a nonzero Intercept
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Table 5.6: Fama and MacBeth (1973) regressions for double sorted
portfolios.

Panel A: 25 Size-βMkt portfolios
Model Intercept βMkt βFOP avg. R

2
in % N

(1) 0.4976 (4.19) 0.1976 (0.88) 31.01 27
(2) 0.0119 (0.09) 0.5181 (2.12) 0.1856 (3.34) 43.88 27

Panel B: 25 Size-V ar portfolios
Model Intercept βMkt βFOP avg. R

2
in % N

(3) 0.7905 (5.57) -0.1020 (-0.42) 34.61 27
(4) -0.0281 (-0.23) 0.5097 (2.05) 0.2478 (5.30) 44.65 27

Panel A (B) of Table 5.6 presents second stage Fama and MacBeth (1973) estimates for 25 Size-

βMkt (25 Size-V ar) portfolios. All coefficients are multiplied with one hundred and the t-

statistics in parentheses are computed from Newey and West (1987) standard errors with six

lags. βMkt (βFOP ) is the beta with respect to the market portfolio (mimicking factor FOP ). We

follow Lewellen et al. (2010) and include the factor portfoliosMkt and FOP among the test assets.

The sample period is July 1963 to December 2016.

indicates mispricing. Model (2) prices the test assets more efficiently and

explains a larger fraction of cross-sectional variation than the CAPM.

This result also extends to Panel B in which 25 Size-V ar portfolios

serve as base assets. Again, the risk premium for βMkt increases from

-10 bps to 51 bps due to the consideration of βFOP . The latter estimate is

statistically significant at the five percent level with a t-statistic of 2.05

and again close to the full sample market risk premium. The pricing error

of the two factor model becomes insignificant and reduces from 79 bps

(t-statistic = 5.57) to -3 bps (t-statistic = -0.23). The average coefficient

for βFOP of 25 bps is also close to the full sample risk premium of FOP .

To further emphasize the difference between the CAPM and the two

factor model, Figure 5.2 plots average realized returns against the ex-

pected returns from the respective models. Panel A (B) plots the expected
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Figure 5.2: Expected returns of the CAPM versus the two factor model.
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Figure 5.2 plots expected versus realized returns of the CAPM (Panels A and C) and the CAPM

extended by the mimicking factor for the optimal orthogonal portfolio FOP (Panel B and D). The

test assets are 25 portfolios sorted by Size and βMkt (Size and V ar) in Panel A and B (C and D).

The 45-degree line indicates a perfect relationship between realized and expected returns. The

sample period is July 1963 to December 2016.

returns from the CAPM model (CAPM extended by FOP ) in % per month

against the average realized returns of the 25 Size-βMkt portfolios. Panels

C and D repeat the same analysis for 25 Size-V ar portfolios. The solid

45-degree line corresponds to a perfect relationship between expected

returns and average realized returns.

For both sets of test assets, the relation between realized and expected

returns is flat in case of the CAPM shown in Panel A and C. In Panel

A, low-βMkt portfolios earn higher realized return than expected from
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the model, whereas the opposite is true for high-βMkt stocks. This result

extends to Panel C where high-V ar portfolios are plotted well above

the 45-degree line, indicating that expected returns from the CAPM are

too low compared to realized returns. In both cases, the model leaves

significant pricing errors.

Including βFOP into the model improves both of the problems in

the CAPM. Expected returns of 25 Size-βMkt and 25 Size-V ar portfolios

are now closer to the 45-degree line. As expected from the time series

regressions, the two factor model performs better in case of Size-βMkt

portfolios since high-V ar portfolios do not line up well with the 45-degree

line in Panel D. The improvements over the CAPM, however, are easily

visible.

Extending the CAPM with the mimicking factor for the optimal or-

thogonal portfolio FOP explains the underperformance of high-βMkt and

high-V ar portfolios. The negative exposure of risky stocks with respect

to FOP explains their negative CAPM alphas. Furthermore, the positive

trade-off between βMkt in decile portfolio sorts extends to cross-sectional

regressions.

5.5 Testing economic theories

5.5.1 FOP and the slope of the security market line

The two factor model solves the issues of the CAPM in pricing risky

portfolios, but remains agnostic with respect to the economic mechanisms
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behind FOP . The most prominent economic explanations – no matter

whether they are based on leverage constraints, investor sentiment or

disagreement – share the common prediction that the slope of the security

market line (SML) depends on the respective state variables. During

periods of high leverage constraints, investor sentiment or disagreements,

the SML takes on a flatter slope because high-βMkt stocks tend to be

overpriced and earn lower future returns (see, e.g. Frazzini and Pedersen,

2014; Hong and Sraer, 2016; Antoniou et al., 2016; Jylhä, 2018).

If FOP is related to existing theoretical explanations, we expect the

same prediction for the SML. Since the CAPM suffers from the omission of

the latent factor FOP in the first place, the exposure to βFOP should fully

account for variations in the slope of the SML. This powerful additional

prediction is possible because the inclusion of FOP to the CAPM leaves

estimates for βMkt unchanged. This Section focuses on βMkt sorted port-

folios and leaves V ar portfolios for a litmus test of the most promising

explanation in Section 5.5.2.

Figure 5.3 presents sample splits at the median of FOP for βMkt decile

portfolios. We plot the monthly realized returns and expected returns

from the CAPM against post formation βMkt. The dashed line is the

theoretical SML as expected from the CAPM, the solid line is a least

squares fit of the relationship between realized returns and post formation

βMkt. Marker colors indicate high and low deciles. For each sample split,

we plot the return spread of the decile portfolios which is attributable

to FOP , i.e. βFOP times the average return of FOP in the respective

subsample period.
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Figure 5.3: FOP and the slope of the SML.
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Figure 5.3 plots the empirical (solid) versus the theoretical (dashed) slope of the Security Market
Line (SML) for decile βMkt portfolios. Panel A and B consider the full sample, in Panel C and
D (E and F) we present the slopes during months in which the mimicking factor for the optimal
orthogonal portfolio FOP is lower (higher) than the sample median. The sample period is July
1963 to December 2016.
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Panel A presents the full sample period from July 1963 to December

2016. In line with results in the previous literature, the empirical SML is

flat. The difference between the theoretical and the empirical SML almost

perfectly lines up with the FOP return spread in Panel B. For example, the

lowest βMkt decile earns an average return of 54 bps, while the expected

return in the CAPM amounts to 31 bps. The βFOP exposure times the

average return on FOP is 24 bps and thus matches this difference. Overall,

the correlation between the difference of the two SML lines and the FOP

spread is 0.90. This finding, however, is no surprise considering the good

performance of the two factor model in the previous Section.

Panel C presents the same estimates for the subperiod in which FOP

is below the historical median and reveals the expected pattern. Now

the empirical SML is steeper than its theoretical counterpart, in line

with periods of low leverage constraints, disagreement, or sentiment as

presented in Jylhä (2018), Hong and Sraer (2016), and Antoniou et al.

(2016). Now that the realized returns exceed their expectations from the

CAPM, the FOP return spread in Panel D lines up positively from low

to high βMkt deciles. This switch is due to a negative average FOP of

-11 bps in this subsample whereas the βFOP exposures of the βMkt decile

portfolios hardly change and still decrease monotonically from low to

high deciles.

Panel E plots the most interesting case, subperiods with FOP above

the sample median. If FOP is consistent with the theoretical explanations

above, the negative slope of the SML should be fully attributable to the

βFOP exposure. The slope of the empirical SML now turns negative, in
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line with previous studies. Again, the pricing error of the theoretical

SML almost perfectly lines up with the FOP return spread. Interestingly,

the spread increases from the first to the third decile and then decreases

monotonically. The overall spread is stronger compared to Panel B which

might reflect an arbitrage asymmetry documented by Stambaugh et al.

(2015). Now the correlation between the FOP return spread and the

differences between empirical and theoretical SML is even higher and

amounts to 0.96.

Overall, the sample splits reveal familiar patterns with respect to the

slope of the SML. The finding that this pattern is fully attributable to

the exposure to FOP , however, provides another powerful implication to

test theoretical propositions for the tilted SML. In order to constitute a

consistent explanation for the low-risk effect, any potential state variable

should induce a higher average return on FOP and significantly affect

the sign of the βMkt decile return spread in the same direction as FOP .

The factor FOP thus facilitates a horse race to discriminate between the

otherwise observationally equivalent predictions of leverage constraints,

disagreement, and sentiment.

5.5.2 Leverage constraints versus behavioral

explanations

Now that we established FOP as the new contender in the context of the

low-risk effect, we can evaluate existing theoretical propositions. Follow-

ing Asness et al. (2019), we focus on leverage constraints and promising
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behavioral alternatives. Specifically, our analysis considers leverage con-

straints, investor sentiment and disagreements as proposed by Frazzini

and Pedersen (2014), Antoniou et al. (2016) and Hong and Sraer (2016).9

We include the Ted spread and Margin Debt of NYSE customers as two

proxies for leverage constraints (Frazzini and Pedersen, 2014; Asness et al.,

2019). Since the latter exhibits a time trend and is therefore nonstationary,

we remove the trend in a linear regression. To facilitate the interpretation,

we furthermore multiply Margin Debt by minus one such that a higher

value of Margin Debt in our analysis is tantamount to higher leverage con-

straints.10 Our two proxies for sentiment are the BW Investor Sentiment

Index and the University of Michigan Consumer Confidence Index. As in

Hong and Sraer (2016), Disagreement is the beta-weighted average of the

standard deviation from analyst forecasts for the long-term EPS growth

rate.

Table 5.7 presents time series regressions of FOP on proxies for lever-

age constraints and investor sentiment. We include explanatory variables

in terms of levels in Columns (1) to (6) and first differences in Columns

(7) to (12). The sample period is 1986 to 2016 in Columns (1) and (7),

1967 to 2016 in Columns (2) and (8), 1965 to 2015 in Columns (4) and

(10) and 1978 to 2016 in Columns (5) and (11). The kitchen sink models
9In unreported robustness checks, we account for the following alternatives, but

find no significant evidence: The CBOE VIX (Ang et al., 2006; Barinov, 2018), average
variance (Chen and Petkova, 2012), the CFNAI, Economic Policy Uncertainty of (Baker
et al., 2016), inflation (Cohen et al., 2005), the term spread, the earnings price ratio and
the default yield spread (all as defined in Welch and Goyal, 2008).

10We refer to Asness et al. (2019) for the discussion regarding the interpretation of
Margin Debt as a measure of leverage constraints. Unreported robustness checks reveal
that the detrended time series exhibits an even better predictive power for the Frazzini
and Pedersen (2014) betting-against-beta factor BAB, a key result in Asness et al. (2019).
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Table 5.7: Leverage constraints versus behavioral explanations.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Levels First differences

Ted -6.3626 -4.9871 -10.4614 -5.0251
(-1.16) (-0.99) (-0.73) (-0.33)

Margin Debt 30.9768 -82.9420 573.3206 458.8819
(0.47) (-1.25) (2.16) (1.51)

BW Sentiment 0.0615 0.2103 0.3648 0.4365
(2.01) (4.16) (2.37) (1.61)

Consumer Confidence 0.0043 -0.0002 0.0021 0.0031
(1.83) (-0.10) (0.46) (0.54)

Disagreement 0.1662 0.1223 0.2198 0.2434
(4.01) (3.57) (1.38) (1.49)

Intercept 0.2349 0.1924 0.1934 -0.1735 -0.2043 -0.1016 0.1968 0.1922 0.1914 0.1918 0.1994 0.1979
(4.61) (9.50) (9.36) (-0.89) (-2.23) (-0.49) (6.09) (9.57) (9.01) (7.32) (7.02) (5.92)

Table 5.7 presents time series regressions of FOP on predictor variables for constraints to arbi-

trage and investor sentiment. We include the following variables: The Ted spread, Margin Debt of

NYSE customers in relation to NYSE market capitalization, the Baker and Wurgler (2006) (BW)

Investor Sentiment Index, the University of Michigan Consumer Confidence Index and aggre-

gate Disagreement. All coefficients are multiplied with one hundred. We include explanatory

variables in terms of levels in Columns (1) to (6) and first differences in Columns (7) to (12). The

sample period is 1986 to 2016 in Columns (1) and (8), 1967 to 2016 in Columns (2) and (9), 1965

to 2015 in Columns (4) and (11), 1978 to 2016 in Columns (5) and (12) and 1982 to 2016 in

Columns (6) and (3). The kitchen sink models in Columns (6) and (12) reduce the sample period

to 1986 to 2015. t-statistics calculated from Newey and West (1987) standard errors with six lags

in parentheses.

in Columns (6) and (12) reduce the sample period to 1986 to 2015. All

coefficients are multiplied with one hundred with t-statistics from Newey

and West (1987) standard errors in parentheses.

Results in levels, i.e. Columns (1), (2) and (6) provide little support to

leverage-based explanations. The Ted spread and Margin Debt exhibit in-

significant coefficients, both in the univariate models in Columns (1) and

(2) as well as the kitchen sink regression in Column (6). Both sentiment

measures are significantly positive with coefficients of 0.0614 (t-statistic

= 2.01) for BW Sentiment and 0.0043 (t-statistic = 1.83). Only the latter,

however, survives when we control for all predictive variables in Col-

umn (6) with a highly significant coefficient of 0.2103 (t-statistic = 4.16).

This also holds true for Disagreement which is statistically significant in
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Columns (5) and (6).

In terms of first differences, results are mixed at best. Margin Debt

and BW Sentiment are statistically significant at the 5% level in Columns

(8) and (9) with coefficients of 573.32 and 0.3648 (t-statistics = 2.16 and

2.37, respectively). Both predictors, however, lose explanatory power

in the multivariate regression in Column (14) and become insignificant.

The time series regressions highlight behavioral explanations, most im-

portantly BW Sentiment and Disagreement. Conversely, we find little

support for leverage constraints.

As stated above, the two factor model yields a second, even stronger

prediction to identify economic state variables behind variations in the

slope of the SML. In order to account for the effects in Figure 5.3, a regime

switch from low to high states in the economic variable should induce

a significantly positive change in FOP and negatively affect the sign of

the return difference between high and low βMkt deciles. To test this

prediction formally, we follow Stambaugh et al. (2012) and run the time

series regression

rt = αHdH,t +αLdL,t + εi,t, (5.9)

where dH,t (dL,t) is an indicator variables which is equal to one if the

respective predictor variable in the previous month is above (below) the

sample median and zero otherwise. rt is either the return on FOP or the

difference between the highest and the lowest βMkt decile portfolio. In

the latter regressions we include Mkt to effectively measure the CAPM

alpha of the βMkt decile spread.11

11Including both, Mkt and FOP yields qualitatively identical results.
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Table 5.8: Testing economic theories.

Panel A: FOP Panel B: βMkt decile return spread
High Low Diff High Low Diff

Ted 0.1930 (4.18) 0.2007 (4.87) -0.0078 (0.13) -0.4978 (-1.18) -0.6667 (-1.94) 0.1688 (0.31)
Margin Debt 0.1872 (6.86) 0.1974 (6.98) -0.0102 (0.27) -0.3479 (-1.36) -0.5239 (-1.60) 0.1761 (0.43)
BW Sentiment 0.2408 (7.1) 0.1459 (6.19) 0.0949 (2.32) -1.1652 (-4.96) 0.3347 (1.03) -1.4999 (-3.82)
Consumer Confidence 0.2333 (5.97) 0.1509 (5.19) 0.0824 (1.77) -1.1469 (-3.45) -0.1289 (-0.43) -1.0181 (-2.25)
Disagreement 0.2567 (5.05) 0.1417 (6.92) 0.1151 (2.14) -0.5634 (-1.48) -0.9395 (-3.27) 0.3761 (0.83)

Table 5.8 presents time series regressions with different indicator variables based on the median

split of constraints to arbitrage and investor sentiment. The dependent variable is FOP in Panel

A and the decile return spread of βMkt decile portfolios in Panel B. Regressions in Panel B include

Mkt as an explanatory variable. We include the following variables: The Ted spread, Margin Debt

of NYSE customers in relation to NYSE market capitalization, the Baker and Wurgler (2006) (BW)

Investor Sentiment Index, the University of Michigan Consumer Confidence Index and aggregate

Disagreement. All coefficients are multiplied with one hundred. The sample period is 1986 to

2016 for the Ted Spread, 1967 to 2016 for Margin Debt, 1965 to 2015 for BW Sentiment, 1978

to 2016 for Consumer Confidence and 1981 to 2016 for aggregate Disagreement. t-statistics

calculated from Newey and West (1987) standard errors with six lags in parentheses.

Table 5.8 presents the coefficient estimates as well as their respective

difference αH −αL which indicates whether the difference of the depen-

dent variable in the two states is significantly different from zero. The

dependent variables are the returns on FOP in Panel A and the return

spread between the highest and the lowest βMkt decile in Panel B. Coeffi-

cients are multiplied with one hundred and t-statistics in parentheses are

computed from Newey and West (1987) robust standard errors.

Panel A, again, accentuates behaviorally motivated predictive vari-

ables over leverage constraint-based explanations. The difference in FOP

between high and low leverage constraint regimes is insignificant both

in case of the Ted spread as well as Margin Debt. Hence, leverage con-

straints are unlikely to explain variation in the state variable proxied

by FOP . BW Sentiment, Consumer Confidence and Disagreement all

induce significantly higher average returns on FOP . For example, when
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previous months BW Sentiment is high, FOP is also higher on average

and a high-FOP state – tantamount to a negative slope of the SML – is

more likely.

The second condition refers to the sign of the βMkt decile spread during

periods of high leverage constraints, sentiment or disagreement. Panel

B presents the coefficient estimates as well as their respective difference

while controlling for Mkt. Once more, behavioral explanations attain

more promising results. When sentiment is high – either measured by BW

Sentiment or Consumer Confidence – the decile return spread on βMkt is

significantly negative and insignificant otherwise. The difference of -150

bps and -102 bps is statistically significant at least at the 5% level with

t-statistics of -3.82 and -2.25, respectively. Disagreement is not in line

with the second prediction. Here, the βMkt decile spread is significantly

negative when disagreement is low, opposite of what the model in Hong

and Sraer (2016) predicts. Again, predictors for leverage constraints are

insignificant.

In summary, investor sentiment satisfies the predictions from Sec-

tion 5.5.1 best and is a likely source to explain both parts of the low-risk

anomaly. To further emphasize this finding, we test the pricing perfor-

mance of FOP for V ar decile portfolios during periods of high or low BW

Investor Sentiment. Table 5.9 presents the results. Sentiment is referred

to as high (low) when BW Investor Sentiment in the previous month is

above (below) the sample median. Other than that, Table 5.9 matches

Table 5.3.

Similar to βMkt deciles, the negative difference between high and low
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Table 5.9: Explaining the returns of V ar decile portfolios conditional on
sentiment.

Low V ar 2 3 4 5 6 7 8 9 High V ar Diff
Low Sentiment

Mkt -0.1881 0.0026 -0.0105 -0.0369 0.0736 0.2497 0.2312 0.2263 0.0784 -0.2244 -0.0363
(-1.54) (0.03) (-0.15) (-0.42) (0.85) (2.08) (1.59) (1.32) (0.37) (-0.74) (-0.09)

Mkt + FOP -0.3006 -0.0746 -0.0448 -0.0635 0.1558 0.3164 0.3084 0.3136 0.1850 0.1053 0.4059
(-2.36) (-0.80) (-0.54) (-0.67) (1.80) (2.56) (1.97) (1.90) (0.86) (0.30) (0.92)

High Sentiment
Mkt 0.4883 0.3397 0.2816 0.1951 0.0714 -0.0222 -0.0100 -0.1133 -0.5393 -1.5192 -2.0075

(3.92) (4.12) (2.72) (1.84) (0.62) (-0.20) (-0.08) (-0.95) (-3.26) (-6.15) (-6.24)
Mkt + FOP 0.0961 -0.0392 -0.0618 -0.0592 -0.2455 -0.1488 -0.0154 0.0920 -0.0416 -0.2668 -0.3630

(0.72) (-0.31) (-0.46) (-0.47) (-1.73) (-1.42) (-0.10) (0.67) (-0.23) (-1.12) (-1.13)

Panel A (B) of Table 5.9 presents returns and factor model alphas of decile portfolios sorted

by market beta βMkt (return variance V ar) as well as a difference portfolio which is long in the

highest and short in the lowest decile. Alphas and excess returns are multiplied with one hundred

and the t-statistics in parentheses are computed from Newey and West (1987) adjusted standard

errors with six lags. Mkt is the market factor and FOP is the mimicking factor for the optimal

orthogonal portfolio. The sample period is July 1963 to December 2016.

V ar deciles concentrates in high sentiment periods. When sentiment

is low, both the CAPM and the two factor model leave no significant

unexplained return in the difference portfolio. During high sentiment

periods, the difference between high and low V ar deciles increases to

-201 bps (t-statistic = -6.24) which is significant at any conventional level.

Including FOP fully wipes out this unexplained return which is also

reflected in the GRS test statistic of 1.2727 (p-value = 0.2446).

5.6 Robustness checks

The literature on idiosyncratic risk usually measures idiosyncratic risk in

terms of idiosyncratic volatility (IV ol) as the standard deviation of Fama

and French (1993) three factor model residuals. Since this measure is

model-dependent, we focus on return variance in the baseline analysis.

However, to illustrate that our findings are robust to this choice, we extend
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Table 5.10: Explaining idiosyncratic volatility (IV ol) portfolios.

Low IV ol 2 3 4 5 6 7 8 9 High IV ol Diff
CAPM 0.1819 0.1161 0.1212 0.0508 0.0825 0.1505 0.0258 0.0487 -0.1330 -0.8920 -1.0739

(2.45) (1.99) (2.20) (0.69) (0.94) (1.88) (0.29) (0.47) (-0.92) (-4.25) (-4.03)
CAPM + FOP -0.0295 -0.0519 -0.0470 -0.1115 0.0101 0.1355 0.1332 0.2015 0.2877 -0.2679 -0.2384

(-0.39) (-0.73) (-0.59) (-1.53) (0.11) (1.61) (1.49) (1.83) (1.84) (-1.18) (-0.86)

Table 5.10 presents returns and factor model alphas of decile portfolios sorted by and idiosyn-

cratic volatility (IV ol) as well as difference portfolios which are long in the highest and short in

the lowest deciles. Alphas are multiplied with one hundred and the t-statistics in parentheses

are computed from Newey and West (1987) adjusted standard errors with six lags. Mkt is the

market factor and FOP is the mimicking factor for the optimal orthogonal portfolio. The sample

period is August to December 2013 in Panel A (B).

the set of test portfolios by decile portfolios sorted by IV ol. We present

results in Table 5.10 which is otherwise identical to the baseline analysis

in Table 5.3. The sample period is August 1963 to December 2013. The

alternative risk measure IV ol hardly affects the baseline findings. The

difference portfolio earns a highly significant negative CAPM alpha of

-107 bps with a t-statistic of 4.03. Extending the CAPM fully explains

this anomalous return. The alpha of the difference portfolio reduces to

roughly -24 bps with a t-statistic of -0.86. Thus, our baseline findings

fully extend to IV ol sorted portfolios.

5.7 Concluding remarks

We use seemingly unrelated anomaly portfolios to construct the mimick-

ing factor FOP which approximates the optimal orthogonal portfolio of

MacKinlay and Pastor (2000) and test the asset pricing implications of the

extended CAPM. The exposure to FOP explains the negative alphas of

high-beta and high-variance stocks and reestablishes a positive trade-off
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between beta and returns. Our extended CAPM is theoretically motivated,

computationally tractable, and allows a multidimensional approach to the

identification of characteristics which provide independent information

about average returns (Cochrane, 2011). For example, our composite fac-

tor explains average return differentials caused by investment, although

the characteristic itself attains a zero weight in its construction. Our

evidence promotes sentiment as an explanation for the low-risk effect and

is not supported by alternative predictors, e.g. leverage constraints.
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5.A Appendix

5.A.1 Anomalies

Following Fama and French (1993, 2015, 2016), we consider the following

setup of anomalies. All portfolios are formed on NYSE breakpoints at the

end of June each year. Double-sorted portfolios are independent sorts

with NYSE breakpoints as well.

Accruals (Accr): Sloan (1996) shows that companies with high accruals

earn lower future returns. Accruals are the change in operating work-

ing capital per split-adjusted share divided by the book equity per share

(Fama and French, 2016, p. 74).

Book-to-Market (BM): Fama and French (1993) show that average re-

turns are related to the book-to-market ratio which is defined as the ratio

of book equity to market equity.

Investments (Inv): Investments is the growth of total assets from the

fiscal year t − 2 to t − 1 (Fama and French, 2015, p. 4).

Long-term Reversal (LRev): Long-term reversal is the prior return over

the prior 13 to 60 months.

Momentum (Mom): Momemtum, as documented by Jegadeesh and Tit-

man (1993), is the cumulative return over the prior 2 to 12 months (Fama

and French, 2016, p. 75).

Net Share Issues (NetIss): Returns following share issues are lower,

as documented by Loughran and Ritter (1995). We use decile portfolios

formed on NetIss, defined as the change in the natural log of split-adjusted

shares outstanding from fiscal year-end in t − 2 to t − 1 (Fama and French,
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2016, p. 74).

Operating Profitability (Prof): Novy-Marx (2013) shows that profitable

firms earn higher returns. Operating profitability is annual revenues

minus cost of goods sold, interest expense, selling, general and adminis-

trative expenses divided by book equity (Fama and French, 2015, p. 4).

Short-term Reversal (ShRev): Short-term Reversal is the return in the

previous month.

Size (Size): Size is the market equity at the end of June.

Return Variance (Var): Ang et al. (2006) show that highly volatile stocks

earn lower future returns. We consider portfolios on the variance of daily

returns over the previous 60 days with a minimum of 20 days (Fama and

French, 2016, p. 74).

Market Beta (βMkt): Market Beta is estimated over the previous 5 years

of monthly returns with a minimum of 24 observations (Fama and French,

2016, p. 74).

Additionally, we obtain decile portfolios sorted by idiosyncratic volatility

(IV ol) as considered in Novy-Marx and Velikov (2016). Returns are value-

weighted and rebalanced on a monthly basis using NYSE breakpoints:

Idiosyncratic Volatility (IVol): Idiosyncratic volatility is the standard

deviation of Fama and French (1993) three factor model residuals over

the previous three months (Novy-Marx and Velikov, 2016, p. 117). High

IV ol stocks earn low returns and negative alphas (Ang et al., 2006).
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