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Kurzzusammenfassung

Diese Arbeit ist zweigeteilt. Der erste Teil beschäftigt sich mit Satellitenorbits für
eine Weltraummission zur Detektion von Gravitationswellen. Gravitationswellen
sind von Albert Einstein erstmals vorhergesagte Vibrationen der vierdimension-
alen Raum-Zeit, die durch astrophysikalische Ereignisse (z.B. Verschmelzung von
Schwarzen Löchern, Explosion von Sternen) ausgelöst werden können und sich als
Längenänderungen zwischen Objekten, z.B. Satelliten, manifestieren. Mit Hilfe von
Laserlicht, interferometrisch, ist es möglich diese relativen Längenänderungen zu
messen, die etwa dem Verhältnis eines Atomdurchmessers zu der Entfernung zwis-
chen Sonne-Erde entsprechen. Es wird in dieser Arbeit untersucht, ob drei Satelliten
in der Nähe der sog. Librationspunkte (Lagrangepunkte) so fliegen können, dass sie
eine Konstellation bilden, die sich nur geringfügig über die Missionslaufzeit verändert
und somit zwischen den Satelliten interferometrische Messungen ermöglicht. Dazu
werden die Besonderheiten der Librationspunkte erläutert und die grundlegende
Dynamik einzelner Objekte in ihrer Umgebung hergeleitet. Im Anschluss wird die
Kombination von mehreren Trajektorien zu einer Konstellation untersucht und nu-
merisch optimiert.

Im zweiten Teil der Arbeit wird auf die Satellitenmission GRACE Follow-On einge-
gangen, die aus zwei Satelliten besteht und das Schwerefeld der Erde vermessen
soll. Dazu müssen Entfernungänderungen zwischen den Satelliten präzise in einem
Frequenzbereich von 2 mHz bis zu 100 mHz bestimmt werden. Dafür wird am Albert-
Einstein-Institut in Zusammenarbeit mit Industrie und internationalen Partnern ein
Instrument entwickelt, welches mit Hilfe von Laserlicht, interferometrisch, Entfer-
nungsänderungen mit einer Auflösung von unter 0.001 Millimeter detektieren kann.
Die allgemeine Funktionsweise und die einzelnen Komponenten dieses sog. Laser
Ranging Interferometer werden erläutert, sowie verschiedenste Effekte, welche die
Messung verfälschen können, analysiert. Die Simulationsergnisse zeigen zudem wie
Ungenauigkeiten in der Positionierung von einzelnen Komponenten die Messungen
beeinflussen.



Abstract

This thesis is separated into two parts. The first part is about satellite orbits for
space-based gravitational wave detectors. Gravitational waves are ripples in the
four-dimensional spacetime and were firstly predicted by Albert Einstein. They can
be caused by astrophysical events (e.g. merging black holes, stellar explosions) and
manifest as length changes between objects, for example, satellites. The order of
magnitude of the relative length changes corresponds approximately to the size of
an atom over a measurement distance between Sun and Earth. However, even this
tiny effect can be measured with laser light, interferometrically. In this thesis the
construction of satellite constellations in the vicinity of the so-called Lagrangian
points is investigated, which might be stable enough over the mission duration to
allow interferometric measurements between the spacecrafts. Therefore, the funda-
mental dynamics of single objects in the proximity of Lagrangian points are studied,
followed by attempts to construct constellations by combining different trajectories.
Finally, numerical optimization techniques are applied to further improve the con-
stellations.

The second part of this thesis is concerned with an instrument for the GRACE
Follow-On mission. This planned mission consists of two satellites in a low Earth
orbit, which shall measure Earth’s gravity field. Therefore, the inter-satellite dis-
tance fluctuations need to be determined very precisely in the frequency range from
2 mHz to 100 mHz. For this purpose the Albert-Einstein-Institute develops in co-
operation with industry and international partners a Laser Ranging Interferometer
with a target precision better than 0.001 millimeter. An overview about the working
principle of the instrument as well as the purpose of single components is presented.
The contribution of various perturbations like spacecraft attitude jitter on the per-
formance is computed. Finally, simulation results show how various misadjustments
of components influence the measurements.
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Abbreviations and
Nomenclature

� a tilde denotes the Fourier transform of a quantity e.g. Φ̃ � FpΦq
p a hat denotes always a matrix�δΦ a tilde with delta denotes the linear spectral density with units

r�δΦs � rΦs{?Hz

CoM Center of Mass

CR3BP Circular Restricted Three Body Problem

DPS Differential Power Signal

DWS Differential Wavefront Sensing

ESA European Space Agency

GFO GRACE Follow-On

GFZ German Research Centre for Geoscience (GeoForschungsZentrum),
Potsdam

IC Initial Configuration

KBR K/Ka band microwave ranging system

LEO Low Earth Orbit

LISA Laser Interferometer Space Antenna

LOS Line of Sight, connection line between CoM and CoM

LRI Laser Ranging Interferometer

PLL Phase Lock Loop

POMC Point Of Minimal Coupling

QPD Quadrant photodiode

RX Received / Receiver

S/C Spacecraft

SEZ Solar Exclusion Zone

SM Steering Mirror

SSB Solar System Barycentric (frame)
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TMA Triple Mirror Assembly

TX Transmitted / Transmitter
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Chapter 1

Introduction

1.1 Satellite orbit constellations at Lagrangian points

The first part of this thesis is concerned with satellite orbits in the proximity of the
Sun-Earth Lagrangian points, in particular with reference to space-borne gravita-
tional wave detectors. Therefore, the chapter starts with a short introduction to the
LISA and LISA-like missions and points out some constraints and key parameters
for the constellations of such missions.
Then the fundamental dynamics in the vicinity of the Lagrangian points are studied
in a simplified dynamical model called the circular restricted three body problem.
This approximation reduces the complexity, which is apparent in an full ephemeris
model1, and allows analytical and semi-analytical approaches, which yields a better
understanding of the system. In this context the determination of reference trajec-
tories, analytically and numerically, is treated and provides a brief historical survey
of this field.
Afterwards a combination of these natural trajectories to a detector constellation is
discussed. Three exemplary constellations are chosen and the constellation defor-
mations and key figures are computed. Then a numerical optimization method is
introduced and the results of the optimized constellations are given.
In the end also an alternative optimization approach is sketched, which was devel-
oped in an early stage of the research and was a first attempt to optimize trajectories
in a full ephemeris model.
The focus of this thesis was to study the dynamics and constellations in general,
even if the results might not fulfill the required constraints, yet, e.g. on constellation
stability.

The analytical expressions were derived using Mathematica. The numerical studies
including orbit integration and optimization were written in C/C++. In fig. 1.1 the
graphical front-end is shown, which was used to visualize the orbit trajectories and
important constellation figures during the optimization. It was also used to control
and adjust the optimization parameters. Matlab was mainly used to produce the
plots.

1.2 Interferometer simulations for GRACE Follow-On

The second part of this thesis is about the Laser Ranging Interferometer for the
GRACE Follow-On mission. A short introduction to the mission as well as an
overview about the working principle of the instrument is given, where basic knowl-
edge about laser interferometers is presupposed. However, the equations for the

1accounting for the precise position of all planets and corresponding forces
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Figure 1.1: Graphical front-end of the orbit simulator used to optimize the space-
craft constellations.

signals of an heterodyne interferometer and the contribution of some expected noise
sources are derived or provided. The subunits of the optical part of the Laser Rang-
ing Interferometer are discussed, whereby it was tried to derive parameter, which are
also useful for the design process and for the laboratory experiments. Various aspects
are covered, which are necessary for the understanding of later simulation results.
Furthermore, two simplified models are presented for the influence of spacecraft rota-
tions on the phase measurement between two spacecrafts and for the measurements
of the optical bench on a single spacecraft. In the end the previously derived equa-
tions and models are applied in simulations on a particular optical bench setup. The
coupling of various setup parameters into the final length measurement is studied,
trying to reveal important factors for the design process and for the final perfor-
mance.

For the simulations a tool called IfoCad was used, which was initially devel-
oped by Gerhard Heinzel (AEI Hannover). It is a framework of C subroutines to
plan and optimize the geometry of laser interferometers2. Recently the development
of a C++ version including general astigmatic Gaussian beams [Kochkina et al. ,
2013], polarization tracing and full 3-d support was expedited. During this thesis
the software was extended to meet the required functionality.

2Download: http://www.lisa.aei-hannover.de/ifocad/
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Chapter 2

Satellite constellations at
Lagrangian points for LISA-like
missions

2.1 Laser Interferometer Space Antenna (LISA)

The Laser Interferometer Space Antenna is a satellite mission to detect and measure
gravitational waves. It was firstly proposed to ESA in 1993 for the M3 slot of ESA’s
Horizon 2000 program [LISA, 1993]. In the subsequent years the proposal evolved to
a mission concept with three identical spacecraft (S/C) in a heliocentric orbit [LISA,
2011]. The satellites are arranged in a rotating equilateral triangle with 5 million km
armlength, trailing the Earth by about 20� (see fig. 2.1). The constellation plane is
thereby inclined by 60� w.r.t. the ecliptic plane.

Figure 2.1: The LISA constellations constisting of 3 identical S/C in a heliocentric
orbit [LISA, 2000, p. 64].

The scientific measurement of space-based gravitational wave detectors is the inter-
satellite distance variation, which contains the signature of a gravitational wave.
A gravitational wave distorts the space-time, in the context of general relativity it
is expressed as a variation in the metric tensor hij . The relative length change,
the so-called strain, due to gravitational waves is expected to be   10�21, requiring
picometer (10�12 m) precision for a 5 million km long section of measurement at least
in the interesting frequency band of the gravitational wave oscillation. Therefore,
each spacecraft will have free-falling (and free-floating) testmasses, which serve as
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reference points for the distance measurement. The spacecrafts are operated in
a drag-free mode, shielding the testmasses from perturbations and compensating
external disturbances (e.g. solar radiation pressure), allowing to reach the required
picometer sensitivity between the testmasses.
In the end of 2011 the mission was reformulated and proposed to ESA as Next Gen-
eration Observatory [NGO-Yellowbook, 2011], sometimes also called eLISA, where
an armlength of 1 million km and only two arms (sides of the triangle) were fore-
seen. These changes were mainly driven by attempts of cost reduction and to the
detriment of scientific output.

2.1.1 LISA orbits and constellation

LISA as well as NGO utilize the same satellite constellation, which differs only by
the armlength L and the amount of used arms. The equilateral constellation triangle
rotates with a period of one year around the constellation center (fig. 2.2) and does
not require orbit corrections during the 5 year science mission time.
The constellation can be obtained (up to first order) by slightly increasing the incli-
nation ε w.r.t. the ecliptic plane and the eccentricity e of each S/C orbit according
to [Dhurandhar et al. , 2005, eq. (3)+(4)]

tanpεq � L{p2 � 1 AUq
1� L{p2 � ?3 � 1 AUq , (2.1)

e �
�

1� L?
3 � 1 AU

� 2L

3 � 1 AU


1{2

� 1 (2.2)

which can be seen at the light green line in fig. 2.2. The other orbital elements need
to be adjusted for each spacecraft, individually. Changing the inclination of an orbit
is expensive in terms of energy and fuel ([Vallado & McClain, 2007, p. 353], [Wertz
& Larson, 1999, p. 148]), hence constellations with smaller armlength (and therefore
smaller required inclination change) are easier to realize.

Figure 2.2: LISA orbit evolution for one year from [LISA, 2000, p. 65]

The LISA formation has been studied extensively ([Li et al. , 2008], [Bik et al. , 2007],
[Dhurandhar et al. , 2005], [Hughes, 2002]) and was optimized in a full ephemeris
model accounting for accelerations due to all planets and relativistic post-Newtonian
corrections. Some key parameters and their consequences are:

� Arms: 3 (= 6 links)
The measured amplitude of a gravitational wave in a Michelson detector de-
pends on the polarization of the gravitational wave, on the distance to the
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source and on the sky location. With a LISA-like configuration with three
arms (between the three S/C) one can instantaneously determine the polar-
ization and the distance to the source. In a two arm configuration the polar-
ization and distance to the source are entangled and one needs the rotation of
the constellation (due to the orbital evolution) to distinguish these effects.

� Armlength: 5 million km with variations   1%
The armlength of the interferometer determines the measurement band of the
detector. The advantage of space-based detectors over ground-based detectors
is the lack of seismic noise in space, which yields in combination with longer
armlengths a better sensitivity at low frequencies. The measurement band for
a detector with armlengths of the order 1 million km is approximately between
0.1 mHz and 1 Hz [LISA, 2000].

� Doppler rate: The first time derivative of the armlength, also called the
line-of-sight velocity, is below 20 m{s, which corresponds to a Doppler shift
in frequency of below approximately 20 MHz for 1064 nm light. The current
hardware development for LISA assumes signals below 20 MHz, however, there
might be schemes to handle even larger relative velocities (e.g. by adjusting
the offset frequencies).

� Inner constellation angles: 60.0� on each S/C with variations   0.81�

Each spacecraft emits (and receives) two laser beams. The variations of the
relative angle between the beams is a critical parameter, since large variations
require the rotation of the telescopes on each S/C or some other beam steer-
ing mechanism. The best sensitivity on gravitational waves is obtained for a
Michelson detector topology with 90.0� angle between the arms 1.

� Constellation revolution frequency in SSB: once per year
The rotation of the constellation in the solar-system barycentric (SSB) frame
modulates the signal of the gravitational waves. A higher revolution rate allows
better distinction and parameter estimation of the gravitational wave sources.2

� Orbit correction and stationkeeping during science mission time: None
Stationkeeping maneuvers would require an interruption of the measurements,
since the testmasses would be non free-falling. The orbit corrections should
be kept as small and rare as possible to reduce the costs, amount of fuel and
measurement gaps.

A drawback of the constellation is the expensive orbit injection in terms of fuel,
which requires approximately ∆V � 1 km{s for each S/C after reaching an escape
orbit (∆V � 10.9 km{s from LEO [Turner, 2009, p. 23]), and a transfer time of
14 months [LISA, 2011].
Satellite orbits in the vicinity of the Lagrangian points can be reached usually with
less fuel and costs (e.g. ∆V � 3.3 km{s from LEO to L1 Halo orbits [Rausch, 2005,
p. 86]), which also motivated the research on LISA-like constellations in the vicinity
of Lagrangian points.

2.1.2 Other LISA-like concepts

The LISA concept has been studied for the recent two decades by a worldwide grav-
itational wave community. Over the years the concept evolved from a mission with

1Gravitational waves are transverse waves, stretching and squeezing space in two orthogonal
directions [Misner et al. , 1973, ch. 35, propagation of gravitational waves]

2private communication with Stanislav Babak, Albert-Einstein-Institute, Golm
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six S/C to a mission with three S/C. The idea of LISA, measuring gravitational
waves interferometrically with laser links between S/C withstood, although the con-
crete implementation evolved and changed. Especially due to the introduction of
the new name NGO in 2011/2012, the term LISA-like is used here as a synonym
for space-based gravitational wave detector utilizing laser interferometric measure-
ments.
There have been other LISA-like mission proposals, which should be mentioned for
the sake of completeness:

LAGOS

The predecessor of LISA was already proposed in 1984/1985 [Faller et al. , 1985].
The concept was based on a V-shaped constellation in heliocentric orbit with 120�

angle between the 1 million km long arms. The three S/C should head the Earth by
15�.

OMEGA / SAGITTARIUS

An mission utilizing retro-grade geocentric orbits with 600 000 km radius is OMEGA
[Hellings, 1996] (predecessor SAGITTARIUS in 1993). The vertices of the equilateral
triangle are distributed evenly on the orbit and host two probes, such that the total
constellation consists of six S/C. The baseline armlength is 1.04 million km.

LAGRANGE

The LAGRANGE [Conklin et al. , 2011] proposal foresees three S/C located at the
Earth-Moon Lagrange points L3, L4 and L5 forming an equilateral triangle with
baseline armlength of 0.67 million km. The armlength variation is specified with
  5%, which yields Doppler rates   150 m{s, while the inner angle varies by �   5�.

DECIGO

The Japanese proposal DECIGO [DECIGO-Team, 2009, DECI-Hertz Interferome-
ter Gravitational wave Observatory] consists in the final stage out of 3-4 clusters of
3 S/C in heliocentric orbits. The S/C in each cluster are controlled with formation
flying techniques and form an equilateral triangle with 1000 km baseline armlength.

For a more detailed comparison of different mission schemes refer to [NASA, 2012].

2.2 Circular Restricted Three Body Problem

In this thesis the circular restricted three-body problem (CR3BP) is used as an
approximation for the Sun-(Earth+Moon) system. All objects are treated as point
masses. The primary body is the Sun with mass m@, while the secondary body has
a mass mCK, which is the sum of Earth mass and Moon mass. We are interested in
the motion of a satellite with mass msat. In the restricted problem the satellite does
not influence the motion of both bodies, such that

m@ " msat ^ mCK " msat, (2.3)

while the circular indicates a circular orbit of the secondary body around the primary
body. The radius of the circular orbit is r � 1 AU � 149.598 �106 km and the angular
velocity of the secondary body is

ω �
c
G � pm@ �mCKq

r3
� 1.99098 � 10�7 rad{sec, (2.4)
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which is well known from the circular restricted two-body (Kepler) problem [Mon-
tenbruck & Gill, 2000, eq. 2.27].
Usually a co-rotating (synodic) normalized frame is chosen (Howell & Pernicka
[1988], Richardson [1980]). The time is normalized to

T � 1

ω
, (2.5)

which yields ω � 1 and a simplification of the equations of motion in the synodic
normalized frame. The spatial coordinates are unitless and normalized to r � 1 AU,
the origin of the coordinate frame is co-located with the barycenter of primary and
secondary body and the x-direction is co-aligned with the connection line of primary
and secondary. The z-direction is co-aligned with the angular momentum vector of
mCK (see fig. 2.3). Using the reduced mass for the secondary object

µ � mCK
m@ �mCK

� 3.0404 � 10�6 , (2.6)

one can write the position of the primary body as ~p@ � pµ, 0, 0qT and of the sec-
ondary body as ~pCK � pµ� 1, 0, 0qT [Gómez et al. , 1998].
Then, the potential at a point ~psat � px, y, zqT is [Zazzera et al. , 2004, eq. 1.7]

Up~psatq � 1

2
px2 � y2q � 1

2
µp1� µq � 1� µ

|~psat � ~p@| �
µ

|~psat � ~pCK| (2.7)

� 1

2
px2 � y2q � 1

2
µp1� µq �

8̧

n�2

cn � ρn � Pn
�
x

ρ



, (2.8)

where the last two terms of the first line have been expanded in a series of Legendre
polynomials3 Pnpxq with ρ �

a
x2 � y2 � z2 and constant coefficients cn [Richard-

son, 1980].
Then the equations of motion can be written as [Zazzera et al. , 2004, eq. 1.6]

:x� 2 9y � BU
Bx , (2.9)

:y � 2 9x � BU
By , (2.10)

:z � BU
Bz . (2.11)

These equations have a first integral, called Jacobi’s integral, given by [Zazzera et al.
, 2004, eq. 1.9]

C � 2 � Upx, y, zq � p 9x2 � 9y2 � 9z2q, (2.12)

where C is the so-called Jacobi constant. The Jacobi constant for a particular orbit
can be used to determine forbidden areas in the phase space for the trajectory
[Zazzera et al. , 2004, p.11] or is often used as a parameter for the characterization
of orbit families.

2.2.1 Symmetries

It is easy to show (see e.g. [James, 2006], [Thurman & Worfolk, 1996]), that the
CR3BP has symmetries, which can be exploited to simplify the computation or re-
duce the computational effort. Assume an orbit pxptq, yptq, zptqq fulfilling the equa-
tions of motion of the CR3BP, then the following two orbits also fulfill the equations
of motion:

3Such an expansion is sometimes used in orbit simulations to compute the acceleration due to
celestial bodies [Vallado & McClain, 2007, p.571, Third-Body Perturbations]
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1. pxptq, yptq,�zptqq: corresponds to a reflection across the xy-plane.

2. pxp�tq,�yp�tq, zp�tqq: corresponds to a reflection across the xz-plane and
time-reversal.

From the first point one can conclude that for an orbit located in the half space
z ¡ 0, there exists a counter-part in the half-space z   0.

2.2.2 Lagrangian Points

The equilibrium points of the CR3BP are the points, where the gravitational force
and the centrifugal force acting on the spacecraft, cancel each other. These points
are denoted as Lagrangian, Lagrange or Libration points. They can be found by
solving

∇Upx, y, zq � 0. (2.13)

The solution consists of three co-linear points (L1, L2, L3), which are on the x-axis,
and two triangular points (L4, L5), as depicted in fig. 2.3. The co-linear points can
be found by solving a polynomial equation of degree five [Zazzera et al. , 2004],
while the triangular points are the vertices of two equilateral triangles, where the
other two vertices are the primary and secondary body. All five points are in the
xy-plane, which is the ecliptic plane. It is known that the co-linear equilibrium
points are unstable, whereas the triangular points are stable for particular values of
µ [Wie, 1998, sec. 3.7.3]. The numerical values for the Sun-(Earth+Moon) system
are:

~L1 �
���0.9900

0
0

�
, ~L2 �
���1.0101

0
0

�
, ~L3 �
��1.0

0
0

�
,
~L4 �

���0.4999
0.8661

0

�
, ~L5 �
���0.4999
�0.8661

0

�
. (2.14)

The distance between Earth+Moon and the L1 or L2 point is approximately 1.5 million
km.

Figure 2.3: CR3BP frame and Lagrangian points
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2.2.3 Dynamics near Lagrangian Points L1 and L2

To study the dynamics we expand the equations of motion (eq. (2.9)-(2.11)) up to
third order in x,y,z

:x� 2 9y � p1� 2c2qx � B
Bx

8̧

n�3

cn � ρn � Pn
�
x

ρ



� �3

2
c3p2x2 � y2 � z2q � 2c4xp2x2 � 3y2 � 3z2q �Op4q,

(2.15)

:y � 2 9x� p1� c2qy � B
By

8̧

n�3

cn � ρn � Pn
�
x

ρ



� �3c3xy � 3

2
c4yp4x2 � y2 � z2q �Op4q, (2.16)

:z � c2z � B
Bx

8̧

n�3

cn � ρn � Pn
�
x

ρ



� �3c3xz � 3

2
c4zp4x2 � y2 � z2q �Op4q, (2.17)

and we shift the coordinate system origin to the L1 or L2 point px0, 0, 0q by substi-
tuting

xÑ x� x0. (2.18)

The constants cn can then be computed using the expression

cn � |γ| µ

γn�2
� µ� 1

p1� γqn�1
, (2.19)

with

γ � µ� 1� Li,x pi � 1, 2q, (2.20)

being the signed distance in x-direction between Earth+Moon and Lagrangian point
under investigation. In the literature (Richardson [1980] and Gómez [2001]) usually
an additional spatial normalization is introduced4, which yields a different expression
for the cn constants:

c̃n � 1

γ3

�
p�1qnµ� p�1qn p1� µqγn�1

p1	 γqn�1



, (2.21)

with upper sign for L1 and lower sign for L2 and with unsigned distance γ � |µ �
1 � Li,x|. The numerical values for both formulas are tabulated in table 2.1 and
deviate for n ¡ 2.

L1 L2

n cn c̃n cn c̃n
2 4.06107 4.06107 3.94052 3.94052
3 -301.670 3.02001 295.671 -2.97984
4 30239.0 3.03054 29243.2 2.97026

Table 2.1: Coefficients cn and c̃n at the L1 and L2 point.

4the spatial coordinates are normalized to the distance |γ| between secondary body and La-
grangian point under investigation
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If a satellite is at rest at the Lagrangian point (x � y � z � 9x � 9y � 9z � 0),
it will experience no acceleration (:x � :y � :z � 0) in the synodic frame of the
CR3BP. The S/C remains fixed w.r.t. the primary and secondary body. However,
small deviations increase exponentially due to the unstable character of the collinear
Libration points.
The dynamics consisting of periodic and quasi-periodic orbits near the Lagrangian
point are often visualized in a Poincaré map, which consists of intersection points of
the ecliptic plane with orbits of a particular energy value (see fig. 2.4). A periodic
orbit, which is located completely in the ecliptic plane, is directly visible in the
Poincare map (horizontal Lyapunov orbit, black line in fig. 2.4). Other periodic
orbits, which are not completely in the ecliptic plane, intersect with the ecliptic
plane always at the same points, hence these orbits are single points on the Poincaré
map. Quasi-periodic orbits intersect after each orbit revolution at another point
with the ecliptic plane. Thus, these orbits are shown as lines on a Poincaré map
(blue lines in fig. 2.4).
Such maps can be derived from the Hamiltonian of the system in a systematic semi-
analytical approach using Dynamical System Theory. For further details refer to
Jorba & Masdemont [1999].

Figure 2.4: The perodic and quasi-periodic orbits around L2 shown on a Poincaré
section of the ecliptic plane (from [Kolemen et al. , 2007]). The red cross indicates
the Lagrange point.

In the next subsections we discuss the aforementioned orbits in more detail.

2.2.4 Lissajous Orbits

The Lissajous orbits arise as a solution of the linearized equations of motion. The
linearized equations of motion are obtained, if the right-hand-side of eq. (2.15)-(2.17)
is set to zero. Then the z-component is the differential equation of an harmonic
oscillator, while the xy-components are coupled ordinary differential equations. A
bounded solution for the linearized equations, when only the oscillatory modes are
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excited, is derived in detail in [Wie, 1998, sec. 3.7.4] and can be transformed to

xptq � �Ay
k

cospλt� φq, (2.22)

yptq � Ay sinpλt� φq, (2.23)

zptq � Az cospνt� ψq, (2.24)

where ν � ?
c2 is the oscillation frequency of the out-of-plane motion. The in-plane

frequency λ is a solution of the characteristic equation [Richardson, 1980]

x4 � pc2 � 2qx2 � pc2 � 1qp1� 2c2q � 0, (2.25)

whereby two roots are purely imaginary and denote the oscillatory (stable) modes

x1,2 � �iλ, (2.26)

while the other two real roots yield the unstable modes. The factor k is given by
[Richardson, 1980]

k � 1

2λ
pλ2 � 1� 2c2q. (2.27)

In general the frequencies ν and λ are unequal. For the L1 point of the Sun-
(Earth+Moon) system the numerical dimensionless values are ν � 2.015 and λ �
2.086, which correspond to orbital periods of 181 days and 175 days, respectively.
For the L2 point the in-plane period is 177.5 days, while the out-of-plane oscillation
has a period of 184 days. Thus, eq. (2.22)-(2.24) parameterize in general Lissajous
trajectories around the Libration points, as depicted in fig. 2.6. The amplitudes
Ay and Az as well as two phase angles φ and ψ are the parameters defining the
trajectory.
The Lissajous solution (eq. (2.22)-(2.24)) for the linearized equations of motion can
be successively extended to fulfill the equations of motion of higher orders (eq. (2.15)-
(2.17)) using a Lindstedt-Poincaré approach (see sec. 2.3).

2.2.5 (Solar) Exclusion Zone

Already in [Clarke, 1947] orbits in the vicinity of the Lagrangian points of the Earth-
Moon system were suggested for communication with the surface of the Moon. In
[Farquhar, 1968] Lissajous trajectories at the L2 point were discussed to establish a
communication link between the far side of the Moon and the Earth.
A Lissajous trajectory for the communication with the far side of the Moon needs
to be designed to minimize the time in the occulted zone, where the satellite is
occluded by the Moon when observed from Earth. For the L1 point of the Sun-
(Earth+Moon) system the so-called Solar Exclusion Zone (SEZ) should be avoided,
where a communication downlink is disturbed by interference with solar radiation.
The SEZ is defined by an enlarged solar disk as viewed from Earth (fig. 2.5). For the
S-band link of the ISEE-3 mission a cone with half opening angle 3� was assumed
[Dunham & Farquhar, 2002]. In [Davis et al. , 2004] a conservative exclusion zone
with 4.75� is defined for the ACE mission. In this thesis a SEZ half opening angle
of 4.5� is used, which corresponds to a disk perpendicular to the ecliptic plane with
118 000 km radius at the L1 point.

2.2.6 Lyapunov Orbits

Assuming a motion only in the ecliptic plane (in-plane), the so-called horizontal
Lyapunov orbits are obtained. They have in case of the linearized equations of
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Figure 2.5: Solar Exclusion Zone

Figure 2.6: Large (blue) and small (green) Lissajous orbits around the Langrange
point (located at p0, 0, 0q) solving the linearized equations of motion.

motion an elliptical shape with amplitudes Ay{k and Ay. For higher orders and
large amplitudes the shape is distorted due to non-linear contributions to a bean-
like orbit (see fig. 2.4, top-left).
A pure vertical excursion yields the vertical Lyapunov orbits, which are simple
oscillations in the z-direction for the linearized equations of motion. Non-linear
contributions result also in xy-motion yielding orbits shown in fig. 2.4 (bottom-left).

2.2.7 Halo Orbits

Already in [Farquhar, 1968] the Halo orbit concept is mentioned, where the in-plane
frequency λ and the out-of-plane frequency ν are equalized by S/C thrusters (so-
called “frequency-control”). This three-dimensional periodic orbit does not enter
the occulted zone. Later Farquhar & Kamel [1973] derived analytical expressions
for “natural” Halo orbits for the translunar L2 point in the Earth-Moon system in
a third-order approximation. Richardson [1980] derived the equations for the Halo
orbits in the CR3BP of the Sun-(Earth+Moon) system in a compact form. For large
amplitudes Ax and Az the frequencies λ and ν can be matched due to non-linear
contributions on the right-hand-side of eq. (2.15)-(2.17), if both amplitudes fulfill an
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equation of the form [Richardson, 1980, eq. (18)]

α �A2
x � β �A2

z � δ, (2.28)

which is often denoted as amplitude relationship for Halo orbits. α, β and δ are
constants, which depend on the Lagrangian point under investigation and on the
reduced mass µ of the system. From the functional dependency shown in fig. 2.7
for the Sun-(Earth+Moon) system one can determine a minimum Ax amplitude of
approximately 200.000 km for Halo orbits.
In addition the phase relationship [Richardson, 1980, eq. (19)]

ψ � n � π
2
� φ, n � 1, 3 (2.29)

between the in-plane and out-of-plane components emerges during the development
of the solution. The switch variable n indicates two families of Halo orbits, often
denoted as type/class I and II or northern and southern Halo orbits, which are
caused by symmetries in the equations of motion (symmetry 1 in sec. 2.2.1). The
conversion from a northern to a southern Halo orbit is given by a reflection of the
trajectory at the ecliptic plane. A spacecraft on a northern Halo orbit is visible
most of the time from Earth’s northern hemisphere (see fig. 2.8). This usually
also requires the communication infrastructure to be located and available on the
northern hemisphere, when communication with the S/C is desired.
The periodic Halo orbits of the CR3BP, which bifurcate from the horizontal Lya-
punov orbits [Gómez, 2001, p.434], are only an approximation to the real problem,
where the primary and secondary body are not on a perfect circular orbit and where
the Halo orbits are perturbed by the gravitational attraction of other planets and
solar radiation pressure. In Gómez [2001] and Farquhar & Kamel [1973] the solu-
tions for the equations of motion including perturbations are called quasi-periodic
orbits, since the trajectories are not closed in the general perturbed case.

Figure 2.7: Amplitude relationship between Az and Ay and between AZ and
Ax � �Ay{k for the Halo orbits around Lagrange points L1 and L2 obtained from
a third order solution (sec. 2.3.3).

2.2.8 Quasi-Halo Orbits

Another type of quasi-periodic orbits are so-called Quasi-Halo orbits, which are
Lissajous orbits around the Halo orbits [Gómez et al. , 1997] (see fig. 2.4, top-right).
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Figure 2.8: top-left: Northern and southern Halo orbits in yz-plane with flight di-
rection (arrows) top-right: Northern and southern Halo orbit in xz-plane bottom:
Isometric plot

These orbits form a torus around the Halo, such that spacecrafts on a Quasi-Halo
orbit can circle around a spacecraft on an inner Halo orbit. A detailed analytical and
numerical treatment of Quasi-Halo orbits can be found in [Gómez et al. , 1997] and
[Gómez et al. , 1998]. These trajectories are of special interested for formation flying.
For example Howell & Barden [1999] made numerical studies on a constellation
consisting of 6 spacecraft distributed evenly on a circle with radii of 100 km and
1000 km (see fig. 2.9). The constellation experiences distortions during an orbital
period, but can be maintained with low costs in terms of ∆V . Since the required ∆V
increases approximately linearly with the radius size [Howell & Barden, 1999], this
scheme seems unfeasible for LISA-like applications with armlengths of � 106 km.
However, these trajectories might be of interest for smaller space-based gravitational
wave detectors.
During a lecture week5 in 2011 a combination of Halo and Quasi-Halo orbits was
suggested to host an octahedral gravitational wave detector consisting of six S/C.
However, the deformation of the constellation and formation control possibilities
were not investigated. A paper describing the detector concept is being prepared.

2.3 Analytical Determination of Reference Orbits

We would like now to compute analytical expressions for the trajectories from pre-
vious section, so we can search for constellations of three spacecrafts on these orbits.
Since the solution for the linearized equations of motion (up to first order in x,y,z)
is known (eq. (2.22)-(2.24)), it will serve as the initial point to develop a series solv-

5IMPRS Lecture Week in Palma de Mallorca, Spain, November 2011, organized for PhD students
of the Albert-Einstein-Institute

17



Figure 2.9: Quasi-Halo orbits: six spacecrafts (dots with different colors) on a
natural torus enveloping a periodic Halo orbit (from Howell & Barden [1999])

ing higher orders of the equations of motion using the so-called Lindstedt-Poincaré
method from perturbation theory. Farquhar & Kamel [1973] and Richardson [1980]
used this approach to obtain results up to third order in x,y,z. However, it is a
lengthy and tedious work [Richardson, 1980] and requires an algebraic manipulation
software for high orders. As shown in the books by Gómez [2001] this approach can
be automatized to derive solutions even up to orders ¡ 20.

2.3.1 Lindstedt-Poincaré Method

The Lindstedt-Poincaré method can be used to obtain a solution to a non-linear
differential equation of the form [Mickens, 1981]

:u� ω2
0 � u� ε � fpu, 9uq � 0, (2.30)

where ε is a small parameter and f is an arbitrary function of two parameters. The
zeroth order in ε yields a harmonic oscillation with fundamental frequency ω0. A
common approach to obtain a solution for the non-linear differential equation is to
use a perturbation series ansatz

u � y0 � εy1 � ε2y2 � ... �
8̧

n�0

εn � yn, (2.31)

and then to solve the differential equations for each order of ε recursively, e.g. the
solution for the zeroth order in ε has to be used in the equation of first order in ε
and so on. However, it turns out that the solution can contain unphysical secular
terms6, because the series expansion retains only a finite number of terms [Mickens,
1981]. Therefore, the astronomer Lindstedt introduced a new time variable τ , which
is given by

τ � t � ω � t � p1� ε � ω1 � ε2 � ω2 � ...q, (2.32)

to suppress the secular terms by choosing properly ωi (i ¡ 0) and to take into
account the fact that non-linearities can also alter the fundamental frequency.

6terms of the form tn � cosptq or tn � sinptq are called secular terms [Mickens, 1981]
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As an example we take the so-called Duffing equation [Nayfeh, 2008, p.58]

d2u

dt2
� u� ε � u3 � 0, (2.33)

and rescale the time according to eq. (2.32)

d2u

dτ2
� p1� ε � ω1 � ...q2 � pu� ε � u3q � 0. (2.34)

Then we substitute eq. (2.31) into eq. (2.34) and obtain the sum�
d2y0

dτ2
� y0



(2.35)

� ε �
�
d2y1

dτ2
� y1 � y3

0 � 2 � ω1 � y0



(2.36)

� ε2 �
�
d2y2

dτ2
� y2 � ω2

1 � y0 � 2 � ω2 � y0 � 2 � ω1 � y3
0 � 2 � ω1 � y1 � 3 � y2

0 � y1



(2.37)

�O �ε3� � 0. (2.38)

One can now solve each order of ε separately. The first line (2.35) is of order ε0 and
leads to the fundamental solution y0:

y0pτq � a � sinpτ � φq, (2.39)

while the second line (order ε1) can be transformed using y0 and trigonometric
identities to�

d2y1

dτ2
� y1 � y3

0 � 2 � ω1 � y0



� 0 (2.40)

ô d2y1

dτ2
� y1 � a3

4
� sinp3 � pτ � φqq � sinpτ � φq � 3a3 � 8aω1

4
. (2.41)

Terms on the right hand side proportional to sinpτq or cospτq will yield secular terms
in the final solution and can be avoided here by choosing

ω1 � �3

8
a2. (2.42)

We can prove this by solving the differential equation directly (e.g. with Mathematica):

y1pτq � �a3

32
sinp3 � pτ � φqq � 3 � a3 � 8 � a � ω1

16
sinpτ � φq � τ

3 � a3 � 8 � a � ω1

8
cospτ � φq.
(2.43)

We note that the (last) secular term proportional to τ vanishes, if eq. (2.42) is
fulfilled. The solution of y0 and y1 could now be used to solve the differential
equation for y2 and so on. However, we give the final solution for eq. (2.33) only up
to first order in ε as

uptq � y0ptq � ε � y1ptq � a � sinpωt� φq � ε
a3

32
sinp3 � pωt� φqq (2.44)

with ω � 1� ε � 3{8 � a3.
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2.3.2 Lissajous orbits up to 3rd order

We will now sketch the Lindstedt-Poincaré procedure to develop an analytical ex-
pressions of the Lissajous trajectories for the equations of motion up to third order
in x,y,z (eq. (2.15)-(2.17)). Thus, recall the equations of motion��:x� 2 9y � p1� 2c2qx

:y � 2 9x� p1� c2qy
:z � c2z

�
�
���3

2c3p2x2 � y2 � z2q � 2c4xp2x2 � 3y2 � 3z2q
�3c3xy � 3

2c4yp4x2 � y2 � z2q
�3c3xz � 3

2c4zp4x2 � y2 � z2q

�
,
(2.45)

and note that the terms containing c3 are of second order in the amplitudes, and
c4 terms are of third order in x, y, z. Then we can use the following perturbation
series ansatz for the orbit

~qpt, ωxy, ωzq �

���q
p0q
x pωxytq
q
p0q
y pωxytq
q
p0q
z pωztq

��
� ε

���q
p1q
x pωxytq
q
p1q
y pωxytq
q
p1q
z pωztq

��
� ε2

���q
p2q
x pωxytq
q
p2q
y pωxytq
q
p2q
z pωztq

��
, (2.46)

where the subscript indicates the component (x,y, or z), while the superscript indi-
cates the order. Since we already know that the solution of the linearized equations
of motion are Lissajous orbits with in-plane frequency λ and out-of-plane frequency
ν, two separate frequencies are used in the Lindstedt-Poincaré method:

ωxy � ωp0qxy � ε � ωp1qxy � ε2 � ωp2qxy , (2.47)

ωz � ωp0qz � ε � ωp1qz � ε2 � ωp2qz . (2.48)

We substitute the ansatz eq. (2.46) into eq. (2.45) and perform a series expansion
in ε on both sides. For each power of ε we obtain differential equations, which
we can solve recurrently. This classical approach is a tedious process with lengthy
expressions and requires solving differential equations in each step.
However, one notices during the development of the solution, that the final trajectory
can be written as a power series in the amplitudes Ay and Az. Using the ansatz
[Canalias et al. , 2004, p. 85]

~qLJ �
��xptqyptq
zptq

�
� 8̧

i,j�1

�� ¸
|k| i,|m| j

��xijkm � cospkθ1 �mθ2q
yijkm � sinpkθ1 �mθ2q
zijkm � cospkθ1 �mθ2q

�
�AiyAjz
�
, (2.49)

with

θ1 � ωxyt� φ (2.50)

θ2 � ωzt� ψ (2.51)

ωxy �
8̧

i,j�0

ωxy,ijA
i
yA

j
z (2.52)

ωz �
8̧

i,j�0

ωz,ijA
i
yA

j
z, (2.53)

we can directly determine the coefficients xijkm, yijkm, zijkm, ωxy,ij and ωz,ij recur-
rently up to a particular order N � i� j without solving differential equations.

First order: N � 1

From the solution of the linearized equations of motion (eq. (2.24)) we can directly
deduce the first non-zero constants:

ωxy,00 � λ, ωz,00 � ν, x1010 � �1{k, y1010 � 1, z0101 � 1. (2.54)
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Second order: N � 2

To obtain the coefficients of the second order we substitute eq. (2.49) into eq. (2.45).
Then we dismiss all terms with larger or smaller amplitude order than N � 2 (keep
terms with i� j � 2 in AiyA

j
z). The smaller orders have been solved already, while

the larger orders will be solved subsequently. The right-hand-side contains only
known terms and variables. The left-hand-side has also the unknown coefficients of
order N � 2. We can bring all terms on one side and zero each prefactor of the sine
and cosine terms by solving a linear system, which yields the unknown coefficients:

x0200 � 3c3

8c2 � 4
, x2000 �

3c3

�
k2 � 2

�
4p2c2 � 1qk2

, (2.55)

x2020 � � c3

�
9
�
3c2

2 � 4
�
k � 2p9c2 � 32qλ�

4
�
2
�
18c2

2 � 23c2 � 32
�
λ� �54c3

2 � 21c2
2 � 32c2 � 52

�
k
� , (2.56)

x0202 � 3p3c2c3 � c3q
72c2

2 � 28c2 � 4
, y0202 � � 3c3ν

18c2
2 � 7c2 � 1

, (2.57)

y2020 � � c3

�
18c2

2 � 9c2λ
2 � 7c2 � 4λ2 � 8

�
2
�
2
�
18c2

2 � 23c2 � 32
�
λ� �54c3

2 � 21c2
2 � 32c2 � 52

�
k
� , (2.58)

z1111 � � 3c3

2kλ2 � 4kλν
, z111p�1q � � 3c3

2kλ2 � 4kλν
(2.59)

Third order: N � 3

The coefficients of third order are obtained in the same way as for the second order.
They can be found in Appendix A.

Evaluation and Validation

The Lissajous orbits obtained here depend on two amplitudes and two phase angles

~qLJptq � ~qLJpt, Ay, Az, φ, ψq, (2.60)

where the special case of Az � 0, Ay � 0 provides the planar (horizontal) Lyapunov
orbits and Az � 0, Ay � 0 yields vertical Lyapunov orbits (see fig. 2.10). A variety
of orbit shapes and sizes can be adjusted with the four parameters, but they usually
enter the SEZ after some time, since the trajectories are not periodic.
The frequency of the in-plane and out-of-plane component is depicted in fig. 2.11.
For large Ay (� 106 km) both frequencies can be matched due to non-linear contri-
butions, which results in the Halo orbits. One should keep in mind that the actual
size of the orbit may differ from the amplitudes Ay and Az (for orders ¡ 1), because
the higher-order terms also influence the size of the orbit.
A method to validate the expressions is to compute the amount of ∆V required to
stay on the trajectory when a continuous (perfect) thruster compensates the residual
acceleration, which tries to pull the spacecraft from the trajectory. The acceleration
in the CR3BP without any approximation can be written as (eq. (2.9)-(2.11))

~fp~qq �
�� 2 9y � BU

Bx px, y, zq
�2 9x� BU

By px, y, zq
BU
Bz px, y, zq

�
 (2.61)

for a trajectory ~qptq � pxptq, yptq, zptqqT and at a time t. The integrated difference
between the acceleration of a free-falling satellite and the second derivative of the
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Figure 2.10: Different Lissajous orbits obtained from the third order solution.

Figure 2.11: Frequencies of Lissajous orbits around L1 v.s. the amplitudes Ay and
Az in the third order solution. The upper surface shows the dependency of the out-
of-plane frequency (ωz,00 � ωz,20 � A2

y � ωz,02 � A2
z), while the lower one the in-plane

frequency (ωxy,00 � ωxy,20 �A2
y � ωxy,02 �A2

z).

orbit trajectory yields the ∆V value:

∆V �
» te
t0

���:~qLJptq � ~fpt, ~qLJq
���dt. (2.62)

Some numerical examples can be found in table 2.2. The amount of ∆V decreases
with higher orders of the solution, showing that the trajectory is becoming more
accurate. However, the ∆V increases with the orbit size and even higher orders
would be beneficial to model correctly large Lissajous orbits.

Amplitude in km Phase in rad ∆V in m/s

Ay Az φ ψ Order 1 Order 2 Order 3

1 000 000 0 0.0 0.0 932.8 847.1 204.5
600 000 600 000 0.0 0.0 620.4 473.5 219.7
600 000 600 000 0.6 0.0 618.9 478.9 196.9
60 000 60 000 0.0 0.0 6.7 0.31 0.023

Table 2.2: ∆V values for some Lissajous orbits around L1 with integration time
te � t0 � 1{2 yr and for different orders of the solution. The initial conditions are
the four columns on the left side.
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2.3.3 Halo orbits up to 3rd order

The classical Lindstedt-Poincaré approach can also be used to compute an analytical
expression for Halo orbits. Therefore, one usually starts with re-arranged equations
of motion��:x� 2 9y � p1� 2c2qx

:y � 2 9x� p1� c2qy
:z � λ2z

�
�
���3

2c3p2x2 � y2 � z2q � 2c4xp2x2 � 3y2 � 3z2q
�3c3xy � 3

2c4yp4x2 � y2 � z2q
�3c3xz � 3

2c4zp4x2 � y2 � z2q � z �∆

�
,
(2.63)

where the c2 coefficient in the z-component on the left-hand side has been replaced
by λ2 and on the right-hand-side a term with ∆ � λ2 � c2 was introduced. One
needs to assume that ∆ is of the same order as c4, meaning that this term is only
treated in orders ¥ 3.
The solution of the linear order in x,y,z is now the periodic trajectory given by

~qp0q �
��xptqyptq
zptq

�
�
���Ay

k cospλt� φq
Ay sinpλt� φq
Az cospλt� ψq

�
 (2.64)

with single frequency λ. Using a perturbation series ansatz

~qptq � ~q p0qpωtq � ε � ~q p1qpωtq � ε � ~q p2qpωtq (2.65)

with ω � 1 � ε � ωp1q � ε2 � ωp2q one can determine recurrently the higher orders.
One needs to constrain the amplitudes Ay, Az as well as the phases φ, ψ to remove
all secular terms. Since solving the differential equations in each step is a tedious
process with lengthy expressions, we assume a formal expansion in powers of the
amplitude as ansatz [Canalias et al. , 2004, p. 86]��xptqyptq

zptq

�
� 8̧

i,j�1

�� ¸
|k|,|m| i�j

��xijkm � cospkθ1 �mθ2q
yijkm � sinpkθ1 �mθ2q
zijkm � cospkθ1 �mθ2q

�
�AiyAjz
�
, (2.66)

with

θ1 � ωt� φ, (2.67)

θ2 � ωt� ψ, (2.68)

ω �
8̧

i,j�0

ωijA
i
yA

j
z. (2.69)

One should note that these equations provide periodic orbits, because only one
frequency appears in the ansatz. To simplify the computation of the amplitude
relationship, we use the following slightly modified equations of motion:��:x� 2 9y � p1� 2c2qx

:y � 2 9x� p1� c2qy
:z � c2z

�
�
���3

2c3p2x2 � y2 � z2q � �2c4xp2x2 � 3y2 � 3z2q �OpA4q
�3c3xy � 3

2c4yp4x2 � y2 � z2q �OpA4q
�3c3xz � 3

2c4zp4x2 � y2 � z2q � z �∆pAy, Azq �OpA4q

�
,
(2.70)

with

∆pAy, Azq �
¸
i,j�0

dijA
i
yA

j
z. (2.71)

If the amplitude relationship ∆pAy, Azq � 0 is fulfilled, the term z � ∆pAy, Azq on
the right-hand-side vanishes and eq. (2.70) is equal to the unmodified equations of
motion (eq. (2.15)-(2.17)).
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First Order: N � 1

From eq. (2.64) we deduce the first non-zero coefficients

ω00 � λ x1010 � �1{k, y1010 � 1, z0101 � 1 (2.72)

and substitute the first order trajectory into the equations of motion (eq. 2.70).
Taking the first amplitude order on both sides yields�� 0

0
Azpc2 � λ2q � cospλt� ψq

�
�
�� 0

0
Azd00 � cospλt� ψq

�
 (2.73)

and hence the first coefficient of the amplitude relationship:

d00 � c2 � λ2. (2.74)

Second Order: N � 2

Using the second amplitude order (on both sides) we can determine a linear system,
which zeros each term. This yields the (non-zero) coefficients:

x0200 � 3c3

8c2 � 4
, x2000

3c3

�
k2 � 2

�
4p2c2 � 1qk2

, (2.75)

x2020 �
c3

�
18c2

2 � c2

�
9λ2 � 23

�� 32λ2 � 4
�

16k2
��10c2

2 � c2 p4λ2 � 5q � 8λ2 � 5
� , (2.76)

x0202 � � 3c3

�
c2 � 4λ2 � 1

�
4
�
�2c2

2 � 4c2λ2 � c2 � p1� 4λ2q2
	 , (2.77)

y2020 � c3p3pc2 � 1qk � 2λq
2k2
��10c2

2 � c2 p4λ2 � 5q � 8λ2 � 5
� , (2.78)

y0202 � � 3c3λ

�2c2
2 � 4c2λ2 � c2 � p1� 4λ2q2 , (2.79)

z1111 � � 3c3

6c2k � 8k � 16λ
, z111p�1q �

3c3

2c2k
(2.80)

Third Order: N � 3

Substituting the trajectory of second order into the eq. (2.70) and taking only the
third order terms into account yields a system of equations, which can not be solved
without further assumptions. To obtain the Halo orbits we have to constrain the
phases to obey

cospφ� ψq � �1 ô ψ � φ� nπ, n P t0, 1u. (2.81)

This phase-relationship has a π{2 offset compared to the phase relationship in
eq. (2.29) [Richardson, 1980], since we used a cosine in the z-component of the
ansatz (eq. (2.66)) instead of a sine.
With this phase constraint one can solve the linear system and obtains the coef-
ficients given in appendix B. We note that the coefficients do not depend on the
phase-angle switch n. In [Richardson, 1980] the assumption Az ¥ 0, Ax ¥ 0 was
made and n was used as a switch for the two types of Halo orbits. We can omit
the n, when we allow also negative amplitude values. The type of the orbit (north-
ern/southern) depends then on sgnpAyq � sgnpAzq and on the Libration point under
investigation.
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Finally, the Halo orbits can be written in the compact form

x � �Ay{k � cospτ1q �A2
y � x2000 �A2

z � x0200 � pA2
y � x2020 �A2

z � �x0202q � cosp2τ1q
� pA3

y � x3030 �Ay �A2
zx1212q � cosp3τ1q

y � pAy �Ay �A2
z � y1210 �A3

y � y3010q � sinpτ1q � pA2
y � y2020 �A2

z � y0202q � sinp2τ1q
� pA3

y � y3030 �Ay �A2
z � y1212q � sinp3τ1q

z � Az � cospτ1q �Ay �Az � z111p�1q �Ay �Az � z1111 � cosp2τ1q
� pA3

z � z3030 �A2
y �Az � z2121q � cosp3τ1q (2.82)

with time and frequency dependency

τ1 � ω � t� φ � pλ�A2
y � ω20 �A2

z � ω02q � t� φ (2.83)

and amplitude constraint

d0,0 �A2
y � d20 �A2

z � d02 � 0. (2.84)

As pointed out in [Gómez, 2001, p. 56] the term Ay � A2
z � y1210 � A3

y � y3010 in the
y-component of eq. (2.82) is missing in [Richardson, 1980] (and [Richardson, 1980b]).

Evaluation and Validation

The Halo families around the L1 and L2 point bifurcate from the horizontal Lya-
punov orbit. They form a kind of funnel (see fig. 2.12) originating at the Lyapunov
orbit (green traces) and opening towards the Earth+Moon.
A Halo orbit in the third order approximation is fully characterized with the Az
amplitude, since the amplitude relationship provides Ay (fig. 2.7). Orbits around L1

have almost the same size as orbits around L2. However, the orbit period is slightly
different for Halos around L1 than around L2, as one can see on fig. 2.13.
The accuracy of the obtained analytical expression is assessed again with the amount
of ∆V required to stay on the orbits (eq. 2.62), which is tabulated for some orbits
in table 2.3.

Amplitude in km ∆V in m/s

Az Order 1 Order 2 Order 3

1 000 000 2024.4 4822.1 447.26
600 000 1014.45 1063.43 114.51
60 000 420.35 191.70 36.42

0� 414.79 186.32 35.93

Table 2.3: ∆V values for some Halo orbits around L1 with integration time te�t0 �
1{2 yr and for different orders. The amplitude relationship of the third order was
also used for the second and first order. *: corresponds to a horizontal Lyapunov
orbit.

2.4 Numerical Determination of Periodic Reference Or-
bits

The analytical expressions obtained in the previous section are only valid for small
amplitudes, since only the first three amplitude orders have been considered in the
series expansion of the equations of motion. However, the analytical solutions can be
used to derive numerically trajectories in the full CR3BP. Therefore, we will utilize
the differential correction method, which is explained in the next section.
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Figure 2.12: The two families of Halo orbits around L1 and L2 in xz (top) and
isometric (bottom) view.

2.4.1 Differential Correction method

The differential correction method is based on the Newton’s method and is a powerful

tool for targeting problems. Assume a spacecraft with initial state ~s
p0q

0 � p~r0, 9~r0qT
at time t0 propagating in the CR3BP to the final state ~s

p0q
f � p~rf , 9~rf qT at time tf ,

which we will also write as

~s
p0q
f � Pp~s p0q

0 , t0, tf ,CR3BPq. (2.85)

The propagation is obtained by a numerical integration, for example, with a Runge-
Kutta method. Let ~st be the target state at the time tf . We wish to compute a
variation in initial state δ~s0, which yields a new initial state ~s0t � ~s0 � δ~s0. This
new initial state shall propagate to the target state:

~stptf q � p~rt, 9~rtqT � Pp~s0t, t0, tf ,CR3BPq|tf . (2.86)

Subtracting eq. (2.85) from eq. (2.86) and linearization of P in the first argument

around ~s
p0q

0 provides

δ~s
p0q
tf � ~st � ~s p0q

f � pΦp0q � δ~s p0q
0 , (2.87)
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Figure 2.13: Orbit periods for Halo orbits around L1 and L2 in the third order
solution.

where pΦ is the state transition matrix relating a variation of the input parameter to
a variation of the output parameter. If pΦ is invertible, the sought initial state can
be computed iteratively (like in Newton’s method) with

~s
pn�1q

0 � ~s
pnq

0 � δ~s
pnq

0 � ~s
pnq

0 � pΦ�1
pnq � δ~s

pnq
tf , (2.88)

whereas for convergence

lim
nÑ8

~s
pn�1q

0 � ~s0t (2.89)

a good initial guess is required (||~s p0q
0 � ~st||   ε) in general. The state transition

matrix consists of partial derivatives of the output parameters (final state) w.r.t. the
input parameters (initial state),

ppΦqij � Bp~sf qj
Bp~s0qi , (2.90)

and can be computed in general with a numerical differentiation scheme,

ppΦqij � pPp~s0 � δ~εj , t0, tf ,CR3BPq � Pp~s0 � δ~εj , t0, tf ,CR3BPqqi
2 � ε , (2.91)

where the vector δ~εj has only a single non-zero component at the j-th position
with some small value ε. This method is very general and can be used even if the
dynamical model (here CR3BP) is unknown or not well understood. Since the state
transition matrix is a 6x6 matrix in case of a spacecraft with a state vector of 6
components (3 position and 3 velocity components), it requires multiple evaluations
of trajectories, which might become very time consuming.
Another method to compute the state transition matrix, which requires only a single
integration, exploits the fact that the state transition matrix is equal to the spatial
differential of the flow generated by the differential equations of the dynamical model
(see for example the excellent lecture notes on numerical celestial mechanics by J.D.
Mireles James [James, 2006, Set 2, p. 3]). One can show [James, 2006] that the time
derivative of the state transition matrix for the CR3BP can be written as

dpφ
dt

� pAptq � pΦpt, t0q (2.92)
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with

pAptq6x6 �
�

03x3 13x3

pUxxq3x3 Ω3x3



, Ω3x3 �

�� 0 2 0
�2 0 0
0 0 0

�
 (2.93)

and Uxx being the second derivatives of the CR3BP potential (eq. 2.8). Since the
initial value

pΦpt0, t0q � 16x6 (2.94)

is known, one can integrate numerically the 36 components of eq. (2.92), for exam-
ple, together with the spacecraft state to obtain the state transition matrix for the
final state.

So far we considered a targeting problem, where the arrival time tf and all pa-
rameters of the final state are specified, while all six input parameters (position and
velocity) are free. We assume now a more open problem, where we want to target
only a position ~pt, but the final velocity and the arrival time are not specified. In
addition only the initial velocity is a free parameter. To solve this problem, we use
in an intermediate step an extended transition state matrix pΦe, which accounts also
for a variation in the arrival time:

ppΦeq7x7 �

����������

vx
vypΦ6x6 vz
ax
ay
az

v�1
x v�1

y v�1
z a�1

x a�1
y a�1

z 1

���������

, (2.95)

with velocity 9~rptf q � pvx, vy, vzqT and acceleration :~rptf q � pax, ay, azqT at the arrival
time tf . The variational equation is��δ~ptδ 9~pt

δtf

�

7x1

� ppΦeq7x7 �
��δ~p0

δ 9~p0

δtf

�

7x1

, (2.96)

where we note that δtf is on the left and on the right hand side. Then, we use the

extended matrix to derive a reduced matrix pΦr, which accounts only for the free pa-
rameters p 9~p0, δtf q and for the target parameters p~ptq, by choosing the corresponding
rows and columns. In this example we obtain:

�
δ~pt
�

3x1
� ppΦrq3x4 �

�
δ 9~p0

δtf



4x1

(2.97)

with

ppΦrq3x4 �

���pΦ14
pΦ15

pΦ16 vxpΦ24
pΦ25

pΦ26 vypΦ34
pΦ35

pΦ36 vz

��
. (2.98)

We note that eq. (2.97) has an infinite number of solutions, since there are more
free than target parameters (in other words: more free variables than equations). In
this case we seek for a least-norm solution, which minimizes ||pδ 9~p0, δtf qT||2 in this
example. This ensures that the imposed variations will be as small as possible.
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In general the variational equation:

δp~xf qm�1 � ppΦm�nq � δp~x0qn�1 (2.99)

can be solved using the following three different methods (as long as pΦ has full rank
and is well-conditioned)

� m � n: exact solution using the matrix inverse

δp~x0q � pΦ�1 � δp~xf q, (2.100)

� m ¡ n: over-determined system using the least-squares method

δp~x0q � ppΦTpΦq�1pΦT � δp~xf q, (2.101)

which minimizes the residual norm ||ppΦq � δp~x0q � δp~xf q||2,

� m   n: under-determined system using the least-norm solution

δp~x0q � pΦTppΦpΦTq�1 � δp~xf q, (2.102)

which minimizes the solution norm ||δp~x0q||2.

These three solutions should be obtained using a QR or singular value decomposi-
tion (SVD), since these methods provide a better numerical stability than a direct
implementation of eq. (2.101)-(2.102).7

With the above methods we solve eq. (2.97) and obtain an updated initial state:�
9~p0

tf



�
�
δ 9~p0

δtf



. (2.103)

One can iteratively repeat the procedure, until the computed final position ~pf reaches
the target position ~pt up to a certain precision ε. We use a short notation for the
differential correction procedure

~pf � Dp~s0, t0, tf , t~ptu, t 9~p0, tfu, εq, (2.104)

where the first three parameters of D are the initial-guess parameters, the fourth
parameter provides the target variables, the fifth the free variables, while the sixth
parameter indicates that the final solution is only equal to the target solution within
some defined precision ε.

2.4.2 Halo Orbits

The numerical determination of Halo orbits can be accomplished efficiently by ex-
ploiting the symmetries across the xz-plane. We can verify at the analytical expres-
sions that the x and z component of the velocity vanishes on intersection of Halo
orbit with the xz-plane. In case of a trajectory��������

xpt � t0q
ypt � t0q
zpt � t0q
9xpt � t0q
9ypt � t0q
9zpt � t0q

�������
�
��������

x0

0
z0

0
9y0

0

�������
Ñ
��������

xpt � t1q
ypt � t1q
zpt � t1q
9xpt � t1q
9ypt � t1q
9zpt � t1q

�������
�
��������

x1

0
z1

0
9y1

0

�������
 (2.105)

7It is well known that inverting the normal equations (ppΦr pΦ
T
r q

�1) might lead to numerical prob-
lems. In this thesis a singular value decomposition was used, which was provided by the Eigen C++
matrix library (http://eigen.tuxfamily.org/) and directly computed the three different solution
types.
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the symmetry 2 in sec. 2.2.1 yields a periodic orbit, because backward integration
provides ��������

xpt � t0q
ypt � t0q
zpt � t0q
9xpt � t0q
9ypt � t0q
9zpt � t0q

�������
�
��������

x0

0
z0

0
9y0

0

�������
Ñ
��������

xpt � �t1q
ypt � �t1q
zpt � �t1q
9xpt � �t1q
9ypt � �t1q
9zpt � �t1q

�������
�
��������

x1

0
z1

0
9y1

0

�������
. (2.106)

In other words, it is sufficient to compute only half of the Halo orbit, since the
second half is symmetric. One can now use a differential corrector to aim for the
above conditions:

t~sfu � Dp~s0, t0, t1, tyt � 0, 9xt � 0, 9zt � 0u, tz0, 9y0, t1u, εq, (2.107)

where the initial position and velocity ~s0 � px0, 0, z0, 0, 9y0, 0qT and the guessed half
period time t1 � T {2 are used from an analytical orbit with small orbit amplitude,
since large orbits are not modeled correctly by the analytical expressions. The target
parameters are tyt � 0, 9xt � 0, 9zt � 0u and the free parameters are tz0, 9y0, t1u.
With this method we obtain the first initial conditions for a Halo orbit ~s

p1q
halo ��

x0, 0, z
(1, fit)
0 , 0, 9y

(1, fit)
0 , 0

	T
for a particular x0 value and with the half period time

t
(1, fit)
1 , which are valid in the non-approximated (fully non-linear) CR3BP.

The idea then is to continue this orbit by increasing (respectively decreasing) x0 by
a small amount ∆x0, such that the differential correction method with initial guess

~s0 �
�
x0 �∆x0, 0, z

(1, fit)
0 , 0, 9y

(1, fit)
0 , 0

	T
yields the initial conditions for the second

slightly larger (or smaller) Halo ~s
p2q

halo with half orbit period time t
(2, fit)
1 .

This method is repeated until the whole family of Halo orbits is obtained (see
fig. 2.14). For decreasing orbit size the differential corrector method converges at
some point to the planar Lyapunov orbits, which serves as a stop criterion for the
differential corrector loop. For increasing orbit sizes, where the orbits get closer to
the Earth+Moon, the funnel of Halo orbits starts to close after reaching a maximum
diameter. Therefore, the z-amplitude of the Halo is not a good choice to parame-
terize the orbits and we use the x value, when the northern Halo orbit intersects the
xz-plane in the lower half space (z   0)8.
For even larger orbits the corrector looses track and is not able to find suited initial
conditions. Using the differential corrector to find directly full periodic orbits (not
half of the orbit) is possible, but decreases the maximum orbit size since the corrector
looses track earlier due to the limited numerical precision of the initial conditions.
The orbit period for large Halo orbits is significantly smaller than for small Halos,
since the large orbits are closer to the Earth+Moon (see fig. 2.15).
The state transition matrix pΦ for a periodic orbit, evaluated for one orbit cycle pΦpt0�
T, t0q, is called the monodromy matrix and has some interesting properties. Making
use of the symmetries of the CR3BP, the monodromy matrix can be computed from
the state transition matrix for a half cycle pΦpt1, t0q � pΦpt0 � T {2, t0q [Thurman &
Worfolk, 1996]: pΦpt0 � T, t0q � pS � pK1 � pΦpt1, t0qT � pK2 � pS � pΦpt1, t0q (2.108)

with symmetry matrix pS � pS6x6 � diagp1,�1, 1,�1, 1,�1q, which follows from
symmetry 2 in sec. 2.2.1, and matrices pK1 and pK2:

pK1 �
�

03x3 13x3

�13x3 Ω3x3



, pK2 �

�
Ω3x3 �13x3

13x3 03x3



, (2.109)

8It is the most southern point on a northern Halo, where z reaches its minimum.
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Figure 2.14: Northern Halo orbits around L1 and L2 obtained by the continuation
method in the full CR3BP.

Figure 2.15: Orbit periods for Halo orbits around L1 and L2 obtained by the
continuation method in the full CR3BP. The Earth+Moon is located approximately
at x � �1.

where Ω3x3 was given in eq. (2.93). Although the monodromy matrix depends on the
start point on the Halo orbit, the eigenvalues, which are also called multipliers, are
invariant and describe the dynamics near the nominal Halo orbit. Since the CR3BP
is a phase-space volume preserving Hamiltonian system [Thurman & Worfolk, 1996],

the monodromy matrix xM is symplectic and has the following properties [Thurman
& Worfolk, 1996]:

1. detpxMq � 1,

2. If λ is an eigenvalue of xM , then so is 1{λ,

3. Since the CR3BP is time invariant, two eigenvalues are one [James, 2006].

Moreover, the associated eigenvectors, which are not invariant along the orbit, have
some geometrical meaning [Gómez, 2001, p. 145]:

1. λ1 � λ2 � 1: One eigenvector of the unity eigenvalue points along the flow, so
it is tangent to the Halo orbit. The eigenvector of the second unity eigenvalue
points in the direction of change in energy (Jacobi constant C).

2. λ3 � λ̄4 � 1: These eigenvalues lie on the complex unit circle and allow
oscillating orbits around the Halo orbits (Quasi-Halo orbits, sec. 2.2.3).
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3. λ5 � 1{λ6 ¡ 1: The eigenvector to the eigenvalue ¡ 1 is a local approximation
(tangent) to the unstable manifold of the orbit, while the other eigenvector is
a local approximation (tangent) to the stable manifold of the Halo. The stable
(respectively unstable) manifold of a Halo orbit can be defined as the subset of
points in the phase-space, which converge to the Halo orbit when propagating
forward (respectively backward) in time. These manifolds are interesting for
mission design, especially for entering or leaving the orbits, since the manifolds
extend partly towards the Earth [James, 2006].

In fig. 2.16 the numerical values of the eigenvalues for L1 Halos are shown. The
eigenvalue ¡ 1 causes the instability of Halo orbits. However, there is a small
region, where Halo orbits are stable.

Figure 2.16: Modulus (absolute value) of the monodromy eigenvalues for L1 Halos
close to the Earth. A region where all eigenvalues have modulus one marks stable
Halo orbits.

The numerical trajectory for the j-th orbit with period Tj obtained in this section
can be stored as a Fourier series, since each vector component is periodic:

~qptq �
Ņ

n�0

��cx,n,j � cospnωjtq
cy,n,j � sinpnωjtq
cz,n,j � cospnωjtq

�
, (2.110)

with ωj � 2π{Tj . To reduce the amount of data, the Fourier series is truncated
at an appropriate order N . In fig. 2.14 approximately 350 orbits for the L1 and
L2 branch are shown. Another reduction can be obtained by choosing about 10 to
20 orbits and interpolating the Fourier coefficients and orbit period, such that the
trajectories become

~qhalopx0, t, ϕq �
Ņ

n�0

��cx,npx0q � cospn � ωpx0q � t� n � ϕq
cy,npx0q � sinpn � ωpx0q � t� n � ϕq
cz,npx0q � cospn � ωpx0q � t� n � ϕq

�
, (2.111)

where x0 was used again to parameterize the Halos. In addition an initial phase
ϕ was incorporated, so the starting point on the Halo orbit can be specified. The
eq. (2.111) is now an analytical expression for Halo orbits in the CR3BP, which is
also valid for large amplitudes.
The Fourier coefficients cx,1, cy,1, cz,1 associated to the oscillations with the full
orbit period T px0q are shown in fig. 2.17. The orbit size is dominated by these
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coefficients, because higher harmonics have smaller amplitudes. Hence, fig. 2.17
provides the amplitude relationship for the Halos in the full CR3BP.
The minimal amplitude for a Halo orbit, when |cz,1| � 0, is in the y-direction
approximately 650 000 km and in the x-direction approximately 200 000 km, which
is in accordance to the previous results (see fig. 2.7). However, for a particular orbit
size the y and z amplitudes intersect, meaning that the Halo has a circular shape in
a yz-projection, which was not modeled by the third order approximation (fig. 2.7).

Figure 2.17: The absolute value of the Fourier coefficients for L2 Halos (left side)
and L1 Halos (right side). The Earth is located at x0 � �1.496 � 108 km.

2.4.3 Targeting a Nominal Trajectory: Lissajous Orbits

The numerical determination of Lissajous orbits in the full CR3BP was treated by
Howell & Pernicka [1988]. Assuming a given nominal trajectory ~rnomptq, there are
several reasons why the true trajectory of a spacecraft will deviate in general from
the nominal path:

� Perturbations of the spacecraft,

� The nominal trajectory does not fulfill the equations of motions (completely),

� Instability of the orbit and errors due to numerical integration.

Thus, it is in general required to apply orbit corrections for stationkeeping from time
to time, which we assume to be instantaneous changes in the spacecraft velocity, so-
called ∆V maneuvers9. We wish now to compute a (true) trajectory, which is close
to the nominal trajectory and requires only small ∆V corrections. The nominal
trajectory does not have to be a Lissajous trajectory, hence the method presented in
[Howell & Pernicka, 1988] is applicable to various other problems. In the beginning
the nominal trajectory is divided into N � 1 segments, so we obtain N target points
~Ti

~T
p0q
i � ~rnomptiq, i � 0, .., N � 1, (2.112)

where the time intervals ∆t
p0q
i � t

p0q
i�1 � t

p0q
i do not have to be of the same length.

The method works iteratively, therefore the superscript indicates the iteration step.

9It is advisable, especially in early space mission design studies, to use velocity changes with units
of m/s to specify spacecraft maneuvers, since this quantity is independent of the spacecraft mass,
which might be subject to changes. The actual thrust in units of Newton requires the knowledge
of the S/C mass.
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For each segment one can use the initial conditions p~rnomptiq, 9~rnomptiqq to compute

the true trajectory ~r
p0q
i ptq from time t

p0q
i to time t

p0q
i�1 using numerical integration

techniques.
As illustrated in 1) at fig. 2.18 the true trajectory is in general discontinuous in the
position due to the aforementioned reasons.
With a differential correction scheme one can adjust the initial velocities and travel
times ∆ti for each segment independently, such that the discontinuities in position
vanish up to some precision ε:

t~r p1q
i ptq, 9~r p1q

i ptq, tp1qi�1u � Dpt~r p0
i , ~9r

p0q
i u, ti, ti�1, t~r � ~T

p0q
i�1 u, t 9~ri, tp0qi�1u, εq. (2.113)

This means the new segment trajectory ~r
p1q
i ptq fulfills

~r
p1q
i ptiq � T

p0q
i � ~rnomptiq, , i � 0, .., N � 1, (2.114)

~r
p1q
i pti�1q � T

p0q
i�1 � ~rnompti�1q, , i � 0, .., N � 1, (2.115)

hence, it is continuous in position, but not in velocity (see the second line in fig. 2.18).
The ∆~Vi at each target point can be computed with:

∆~V
p1q

i � 9~r
p1q
i ptiq � 9~r

p0q
i ptiq, i � 0, .., N � 1, (2.116)

where the total ∆V p1q is given by the sum:

∆V p1q �
Ņ

i�0

|∆~V
p1q

i |. (2.117)

The total ∆V in the first iteration step can be quite large and depends on the
correctness and stability of the nominal trajectory. The reduction of the total ∆V p1q

can be achieved with a modified differential corrector method, which we will discuss
in detail subsequently. The idea of the method is to compute a variation in the
travel times and in the position of the target points (= the initial position of each
segment), which in turn produces a variation in the velocity discontinuity of

δ∆~V
p1q

i � �~∆V p1q
i , (2.118)

yielding a net ∆~V
p2q

i � δ~V
p1q

i �∆~V
p1q

i of approximately zero. Since a variation of
the ith target point influences the trajectories ~ri�1 and ~ri, all target points need to
be adjusted at the same time. The variational equation can be written in the form

�����
δ∆~V

p1q
1

δ∆~V
p1q

2

...

δ∆~V
p1q

N�2

����

3N-6x1

� pQ3N-6x4N �

������������

δ ~T
p0q

0

δt
p1q

0

δ ~T
p0q

1

δt
p1q

1

...

δ ~T
p1q
N�1

δt
p1q
N�1

�����������

4Nx1

, (2.119)

and can be solved by using eq. (2.102):������������

δ ~T
p0q

0

δt
p1q

0

δ ~T
p0q

1

δt
p1q

1

...

δ ~T
p0q
N�1

δt
p1q
N�1

�����������

4Nx1

� pQT � p pQ � pQTq�1

�����
δ∆~V

p1q
1

δ∆~V
p1q

2

...

δ∆~V
p1q

N�2

����

3N-6x1

, (2.120)
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such that the solution (the vector on the left-hand-side) has a minimal l2-norm. This
ensures that the variations of the target points are small and that the new trajectory

will be close to the nominal path (see 3a and 3b in fig. 2.18). We note that ∆~V
p0q

0

is not modified by eq. (2.120), since this quantity is an orbit insertion parameter,
which is not included in the stationkeeping costs to be minimized.

The new trajectories ~r
p2q
i ptq given by the initial conditions

~r
p2q
i ptiq � ~T

p1q
i � ~T

p0q
i � δ ~T

p0q
1 , i � 0, ..., N � 1, (2.121)

9~r
p2q
i ptiq � 9~r

p1q
i ptiq, i � 0, (2.122)

9~r
p2q
i ptiq � 9~r

p1q
i ptiq � δ∆~V

p1q
i , i � 1, ..., N � 2, (2.123)

are now continuous in the velocity, but slightly discontinuous in the position, since
the differential correction is based on a linear approximation (see 3b in fig. 2.18).

However, these discontinuities can be fixed again by introducing ∆~V
p3q

i steps with
the differential correction scheme (eq. (2.113)) with smaller costs in terms of total
∆V than before (cf. plot 2 and 4 in fig. 2.18). The procedure of alternately varying
the target point position and introducing ∆~Vi corrections can be repeated until a
threshold ε for the total ∆Vi is reached.

Figure 2.18: Working principle of the method described in [Howell & Pernicka,
1988] to obtain a trajectory with low ∆V consumption close to a nominal trajectory.
The green circles mark the target points ~Ti. The blue-dashed line is the nominal
trajectory. The red lines are the trajectory segments obtained from integrating the
equations of motion. The purple vectors indicate instantaneous corrections in the
velocity (∆~V ). The shorter arrows in 4) indicate a smaller total ∆V consumption
than in 2). The steps 3a, 3b, and 4 are repeated until the total ∆V is below some
threshold. See text for further description.

It will be investigated in subsequent sections, if the least-norm approach used to
invert eq. (2.119) can be replaced by methods, which solve the equation under some
other (more important) constraints than a minimum norm. These constraints on the
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variations of the target points might be imposed, for example, by some constellation
requirements.

Derivation of the correction matrix pQ
To understand the derivation of the correction matrix pQ we assume at first only
three target points ~T0, ~T1, ~T2 and a continuous trajectory in position (which means
~riptiq � ~Ti), but discontinuous in the velocity. We wish to reduce ∆V1, which occurs
at time t1. We recall that the variational equation for the propagation from t0 to t1
can be written as�

δ~r1Ð0

δ~v1Ð0



6x1

�
� pA1Ð0

pB1Ð0 ~v1Ð0pC1Ð0
pD1Ð0 ~a1Ð0

�
6x7

�
�� δ~r0

δ~v0

δt1Ð0 � δt0

�

7x1

, (2.124)

with 3-by-3 submatrices pA, pB, pC and pD such that

pΦrpt1, t0q �
� pA1Ð0

pB1Ð0pC1Ð0
pD1Ð0

�
. (2.125)

The position, velocity and acceleration of the satellite at time t1, when propagating
from t0, is denoted as ~r1Ð0, ~v1Ð0 and ~a1Ð0, respectively. In the same way we derive
the variational equations for the propagation from t2 to t1, which is backward in
time [Howell & Pernicka, 1988, eq. 11]:

�
δ~r1Ð2

δ~v1Ð2



�
� pA1Ð2

pB1Ð2 ~v1Ð2pC1Ð2
pD1Ð2 ~a1Ð2

�
�
�� δ~r2

δ~v2

δt1Ð2 � δt2

�
. (2.126)

In the next step we solve the first vector equation in eq. (2.124) and eq. (2.126) for
δ~v0 and δ~v2, respectively. This requires the inverse of the corresponding pB matrix.
Then we use the second vector equation of eq. (2.124) and eq. (2.126) and substitute
the results for δ~v0 and δ~v2. This yields

δ~v1Ð0 �p pC1Ð0 � pD1Ð0
pB�1

1Ð0
pA1Ð0qδ~r0 � pD1Ð0

pB�1
1Ð0δ~r1Ð0

� p pD1Ð0
pB�1

1Ð0~v1Ð0 � ~a1Ð0qpδt1Ð0 � δt0q, (2.127)

δ~v1Ð2 �p pC1Ð2 � pD1Ð2
pB�1

1Ð2
pA1Ð2qδ~r2 � pD1Ð2

pB�1
1Ð2δ~r1Ð2

� p pD1Ð2
pB�1

1Ð2~v1Ð2 � ~a1Ð2qpδt1Ð2 � δt2q, (2.128)

where we note that

~v1Ð2 � ~v1Ð0 �∆~V1, (2.129)

δ~v1Ð2 � δ~v1Ð0 �δ∆~V1. (2.130)

Thus, we obtain a functional dependency between δ∆~V1 and, for example, variations
in the points ~r0 and ~r2. In addition we require that any variation produces a self-
consistent and continuous trajectory in position:

δt1Ð2 � δt1Ð0 � δt1, (2.131)

δ~r1Ð2 � δ~r1Ð0 � δ~r1, (2.132)

which simplifies the expressions. The velocity-dependent coriolis force term in the
equations of motion of the CR3BP causes an inequality between ~a1Ð0 and ~a1Ð2,
although both accelerations are evaluated at the same position, but with different
velocities due to the ∆V maneuver.
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The final variational equation can be written in linear form:

δ∆~V1 � p pQ0,1,2q3x12 �

��������

δ~r0

δt0
δ~r1

δt1
δ~r2

δt2

�������

3x12

�
� pQa pQb pQc pQd pQe pQf	

3x12
�

��������

δ~r0

δt0
δ~r1

δt1
δ~r2

δt2

�������

12x1

,

(2.133)

where the right-hand-side contains the variations in the target point position δ ~Ti �
δ~ri and where the sub-matrices are [Howell & Pernicka, 1988, eq. 15]:

pQa � pD1Ð0
pB�1

1Ð0
pA1Ð0 � pC1Ð0,pQb � ~a1Ð0 � pD1Ð0
pB�1

1Ð0~a1Ð0,pQc � pD1Ð2
pB�1

1Ð2 � pD1Ð0
pB�1

1Ð0,pQd � pD1Ð0
pB�1

1Ð0~v1Ð0 � pD1Ð2
pB�1

1Ð2~v1Ð2 � ~a1Ð2 � ~a1Ð0,pQe � pC1Ð2 � pD1Ð2
pB�1

1Ð2
pA1Ð2,pQf � pD1Ð2

pB�1
1Ð2~a1Ð2 � ~a1Ð2. (2.134)

A trajectory with N ¥ 3 target points can be processed with this matrix equation:

�������
δ∆~V1

δ∆~V2

δ∆~V3

...

δ∆~VN�2

������

3N-6x1

�

��������

pQ0,1,2 p03x4 p03x4 � � � p03x4p03x4
pQ1,2,3 p03x4 � � � p03x4p03x4 p03x4

pQ2,3,4 � � � p03x4
...

. . .
. . .

. . .
...p03x4 � � � � � � p03x4

pQN�3,N�2,N�1

�������
�

�������������������

δ~r0

δt0
δ~r1

δt1
δ~r2

δt2
δ~r3

δt3
...

δ~rN�1

δtN�1

������������������

4Nx1

,

(2.135)

where the large matrix is the sought pQ.

Results for Lissajous Orbits

We examine the described method by choosing two Lissajous paths from the third-
order approximation (eq. (2.49)) as the nominal trajectories with the following initial
conditions

� small: Ay � Az � 300 000 km, ϕ � 0.6 rad, ψ � 0.0 rad,

� large: Ay � Az � 600 000 km, ϕ � 0.6 rad, ψ � 0.0 rad,

and an integration time of approximately 320 days. The trajectories are divided
into 5 segments (equidistant in time) yielding 6 target points. The integration of
the initial conditions at each target point yields segment trajectories, which are
combined neither continuous in position nor in velocity (see red and blue traces
in fig. 2.19). Using the differential corrector one obtains continuous trajectories in
position (green traces in fig. 2.19), which intersect with the initial target points on
the nominal path (blue crosses). The initial total ∆V is shown in table 2.4.
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total ∆V in m/s

Iteration small large

initial 18.37 139.64
1 0.0283 1.744
2   0.0001 0.0287
3   0.0001

Table 2.4: Reduction of total ∆V for the large and small Lissajous orbit.

Iteratively the target point position is adjusted and a continuous track in position
is maintained with the differential corrector until the total ∆V reached 1 mm{s.
For the small trajectory 2 iterations were required, for the large trajectory 3 itera-
tions, to converge to the final orbit (magenta traces in fig. 2.19). Since the nominal
trajectory is only an approximation valid for small amplitudes, the large final tra-
jectory deviates spatially more than the small trajectory from the nominal track, as
apparent on the plot.

Figure 2.19: Small (left side) and large (right side) Lissajous orbits in yz-projection
(top and middle) and the magnitude of the spacecraft velocity (bottom).
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2.5 Search for Constellations

In this section we investigate the possibility of combining three reference orbits
(~r0ptq, ~r1ptq, ~r2ptq) of the CR3BP, which analytical expressions were derived in the
previous sections, to obtain a spacecraft constellation, which might be applicable for
space-based gravitational wave detectors. These results will also serve as starting
point for further optimization attempts.
Recall that a halo orbit (eq. (2.111))

~qhalopx0, t, φq

has two free parameters (the amplitude and phase), while a Lissajous orbit (eq. (2.49))

~qLJptq � ~qLJpt, Ay, Az, φ, ψq

has four parameters, where we restricted the problem, for example, to orbits around
L1. If all three spacecrafts are on Lissajous orbits, we wish to find good constellations
in a 12 dimensional parameter space. Where we define a good constellation as a
configuration where

� all S/C avoid the SEZ cone,

� the inner constellation angle, which is the angle between the two arms, is
between 50� and 130� and the angle variations are small,

� the detector armlength is larger than 1 Mkm and the difference between both
arms is small.

Since the parameter space is not very large, one can use e.g. Mathematica to inter-
actively vary the parameters for each S/C orbit and directly observe the changes in
quantities like inner constellation angle and armlength. One can also use numerical
algorithms to obtain initial orbit parameter sets for good constellations. However,
this usually depends on the definition of a figure of merit (see subsequent sec. 2.6.1)
and does not provide a deep understanding of the problem under investigation.
Therefore, the manual approach was used in this thesis.
After choosing a set of orbit parameters with the support of the analytical expres-
sions, we transform the initial configurations to trajectories in the full CR3BP with
minimal ∆V according to the method described in sec. 2.4.3. This eliminates a
falsification due to the fact, that the analytical orbits are only approximations.
In this thesis the following initial configurations (IC) have been selected for further
analysis:

2.5.1 Constellation: HHL120

This Halo-Halo-Lissajous (HHL) constellation consists of two daughter S/C on the
same large Halo orbit (phase shifted by approximately 180�) and a center S/C on
a Lissajous orbit close to the SEZ (see fig. 2.20). The angle between the arms is
approximately 120�, whereas the angle variation (peak-peak) for a three year period
is about 18� (first plot of the bottom fig. 2.21). The two arms of the detector have
an average length of 1.4 Mkm and 1.3 Mkm with a Doppler rate up to �200 m{s.
The center S/C is only for short periods within the SEZ, where the SEZ angle is
below 4.5� (second plot in the bottom fig. 2.21).
A secular drift is apparent in the armlength. It is caused by the dependency of
orbital period on the orbit size (see fig. 2.13). For some configurations the effect
can be minimized by adjusting the orbit parameters, however, not in general for
arbitrary long periods.

39



Figure 2.20: 3-d plot of the constellation HHL120 and orbits (top) and constella-
tion information (bottom) for a three year period of the natural orbits.

2.5.2 Constellation: HHL90

There are two straight forward methods to achieve a constellation with 90� angle
between the two interferometer arms, when the constellation HHL120 is taken as
starting point. On the one hand, one can decrease the phase angle difference of
the S/C on the large Halo orbit, such that the daughter S/C are closer together.
However, this approach leads to large peak-peak angle variations of approximately
40�. On the other hand, one can leave the S/C on the large Halo separated by
180�, but increase the Halo orbit amplitude. With this approach, we obtain the
constellation denoted here as HHL90. The average armlength is 1.7 Mkm and the
peak-peak inner angle variation is approximately 27� (see fig. 2.21).

2.5.3 Constellation: HHH60

In this configuration all S/C are on the same large Halo orbit, separated by 120�

orbital phase (see fig. 2.22). This configuration is an attempt to obtain an equilateral
triangle constellation with three arms and 60� inner angle at each S/C. The (peak-
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Figure 2.21: 3-d plot of the constellation HHL90 and orbits (top) and constellation
information (bottom) for a three year period of the natural orbits.

peak) inner angle variation is approximately 24�. The baseline armlength is 2.0 Mkm.

The initial configurations presented in this section are formed by the natural orbits.
They have some disadvantages for an application for a space-based gravitational
wave detector. A major drawback is the large variation in the inner constellation
angle, which definitely requires actuation of the outgoing beam direction on each
S/C. Also the center S/C enters the SEZ zone in some constellations, causing po-
tential communication problems with the S/C.
Therefore, the next section is dedicated to the optimization of these constellations
by introducing orbit corrections.
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Figure 2.22: 3-d plot of the constellation HHH60 and orbits (top) and constellation
information (bottom) for a three year period of the natural orbits.

2.6 Optimization

The initial configurations (IC) derived in the previous section are natural orbits,
which require only small orbit corrections below 1 m{s{yr to compensate the orbit
instability. We take N points spaced equally over the mission period (e.g. Tm �
3 years). For the i-th spacecraft we obtain for each point in time a target point (or
waypoint) ~T pICq:

~T
pICq
j,i :� ~r

pICq
i ptj,iq, j � 0, ..., N � 1, i � 0, 1, 2, (2.136)

where we note that the target points are evaluated at the same time on all S/C

t
pICq
j,i :� j � Tm

N � 1
, j � 0, ..., N � 1, i � 0, 1, 2. (2.137)

Furthermore, we assume that S/C i applies a ∆~Vj,i thrust at time tj,i. We wish now
to compute a position of target points and times, such that
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� the amount of total thrust ∆V required to fly through all target points is
small,

� the constellation figure of merit F , describing the goodness of the orbits for a
space-based GW detector, is good.

The figure of merit is an objective function, which maps the trajectories, or equiva-
lently the initial conditions, onto a single positive real number. If we consider orbit
corrections, each trajectory can be described by N target points (per S/C) and the
dimension of the parameter space is

d � 3 �N � 3, (2.138)

where we assumed fixed times tj,i.
The figure of merit is then the following map:

F : X � Rd Ñ R¥0, (2.139)

where a smaller figure of merit value (usually) denotes a better constellation.
The here required optimization can be formulated as a non-linear multidimensional
minimization problem. Various methods exist to tackle such problems (e.g. Particle
Swarm Optimization, Evolutionary algorithms, Simplex). The main difficulty is to
find a global (and not a local) minimum in a large parameter space for an objective
function with several local minima. The results of the numerical methods usually
will depend on an initial guess for the solution. In addition for problems with such a
high dimension of the parameter space (here: d ¡ 100), the search might take long
since various evaluations of the objective function are required.
Another problem may arise from a practical point of view: The evaluation of the
figure of merit with a set of target points requires a fit (optimization) of a trajectory
through these points, as described in sec. 2.4.3. Since this (inner) method utilizes
linear approximations and the knowledge of the previous trajectory (which should
be close to the new solution), a large variation in the target point positions would
cause problems. This complicates the search for a global solution.
Due to this problem and the high dimension number, we will use here a simple
minimization method based on linearizations, which will be introduced in the next
sections.

2.6.1 Definition of the Figure of Merit

The definition of a figure of merit is a subjective topic and requires often weighting
and iterative adjustments to yield reasonable results, which usually also depend on
the chosen numerical optimization method. For a given set of target points ~Tj,i
and arrival times tj,i we compute the trajectory of each satellite (~r0ptq, ~r1ptq, ~r2ptq)
through the points and some evaluation data, which we will use for the figure of
merit:

� Armlengths of the detector

L01ptq � |~r0ptq � ~r1ptq|, L02ptq � |~r0ptq � ~r2ptq|, L12ptq � |~r1ptq � ~r2ptq|,
(2.140)

� Inner constellation angles αi at S/C i

α0ptq � >p~n01, ~n02q, α1ptq � >p~n01, ~n12q, α2ptq � >p~n12, ~n02q, (2.141)

with normalized arm directions

~n01ptq � ~r0ptq � ~r1ptq
L01ptq , ~n02ptq � ~r0ptq � ~r2ptq

L02ptq , ~n12ptq � ~r1ptq � ~r2ptq
L12ptq ,

(2.142)
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� Solar Exclusion Zone angles βi at S/C i

βiptq � >
�
~ri � pµ� 1, 0, 0qT, p1, 0, 0qT

	
, i � 0, 1, 2, (2.143)

which are zero, if the spacecraft is on the connection line between Sun and
Earth+Moon (x-axis). In the CR3BP the Earth+Moon is located at pµ �
1, 0, 0qT,

� Armlength mismatch Siptq at each spacecraft

S0ptq � L01ptq � L02ptq, S1ptq � L01ptq � L12ptq,
S2ptq � L12ptq � L02ptq. (2.144)

Considering that the trajectories are computed numerically in a discrete time do-
main, we should also use discrete time steps:

tÑ tk :� k
Tm

Nm � 1
, k � 0, .., Nm � 1, (2.145)

where Tm is the mission duration and Nm the number of sample points.
Then we can define the figure of merit F according to

?
F � pSavg

2 {k1q2 � δ � pSavg
1 {k1q2 � δ � pSavg

0 {k1q2
� pαavg

2 � αnomq2{k2 � δ � pαavg
1 � αnomq2{k2 � δ � pαavg

0 � αnomq2{k2

� pαstd
2 {k3q2 � δ � pαstd

1 {k3q2 � δ � pαstd
0 {k3q2

� 1� δ

k3
�
Nm�1¸
k�0

expp�pβ2ptkq{k4q4q, (2.146)

where the superscript ’avg’ and ’std’ denotes the average and the standard deviation,
respectively, of the corresponding time series. The constants k1, .., k4 are normaliza-
tion constants and allow some tuning of the figure of merit. δ is used as a switch to
distinguish between a two arm or three arm constellation:

δ �
"

0 2 arm constellation,
1 3 arm constellation.

(2.147)

The first line of eq. (2.146) suppresses the inequality in the armlengths of the detec-
tor, the second line should ensure that the inner constellation angles are close to a
nominal value αnom, the third line should suppress the inner angle variation, while
the fourth line is a punishment term for constellations, where S/C 3 enters the SEZ.
We note that the figure of merit can be written as a function of the target points
(waypoints) ~T � p~T0,0, ~T0,1, ~T0,2, ~T1,0, ~T1,1, ~T1,2, ..., ~TN�1,0, ~TN�1,1, ~TN�1,2qT and
arrival times ~t � pt0,0, t0,1, t0,2, t1,0, t1,1, t1,2, ..., tN�1,0, tN�1,1, tN�1,2qT

F � F p~T ,~tq, (2.148)

since the trajectory (with minimal ∆V ) through the target points and the evaluation
data can be computed from the target points. A smaller value of F denotes a more
rigid constellation and therefore a better applicability for a space base GW detector
mission.
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2.6.2 Gradient Descent

For the initial configuration (e.g. HHL120) the target points ~T
(IC)
j,i are on the natural

orbits and one obtains a particular value for F . A straight forward method to
decrease the figure of merit F is to use the gradient descent. Iteratively, the target
points are changed according to

~T psq � ~T ps�1q � γps�1q � ~∇~TF p~T ps�1q,~tq, ~T p0q :� ~T pICq (2.149)

where γps�1q is the step size of the gradient step and ~∇~TF are the numerically

computed partial derivatives of F w.r.t. the d components of ~T (eq. 2.138). It is
well known that the gradient descent converges to a local minimum of the function
F . However, the convergence might be very slow and can be improved by adjusting
the step size γps�1q [Lau et al. , 2008, p.785], but this adaptive step size was not
implemented here for the sake of simplicity. The computation of the derivatives is
computational expensive, since for N � 40 target points (per S/C) the vector ~T has
d � 360 components. Because a symmetric numerical differentiation scheme of the
form

f 1pxq � fpx� εq � fpx� εq
2ε

, (2.150)

is used, one needs to evaluate 2 � d � 720 times the function f (= F ). This requires
720 orbit integrations. Here we reduce the computational effort by integrating not
the trajectory for the whole mission duration, but only for the changed segments.
In fig. 2.23 an exemplary gradient descent of the HHL120 constellation for a three
year period with N � 40 is shown. Every 28 days a ∆V thrust is applied and the
figure of merit is decreased. The inner constellation angle variation was reduced
from 17.6� to approximately 10�.
The final trajectory after 8 iteration steps is depicted in fig. 2.24. When the results
are compared to the initial configuration (fig. 2.20), one can see that the trajectories
moved only slightly. However, the SEZ angle as well as the inner constellation angle
variation improved. The ∆V steps are visible as discontinuities in the Doppler rate
(fig. 2.24, bottom plot). The total amount of ∆V is illustrated in the fig. 2.23 (top).
Finally, approximately 700 m{s per S/C for three years are required. The value will
increase further, if a constellation with lower figure of merit is desired.
With the gradient descent the target points are moved in the direction of steepest
decrease of the figure of merit, without considering that other directions might
decrease the figure of merit as well, but with less costs in terms of ∆V . Therefore,
the gradient descent was introduced only for demonstration and validation purpose.
In the next section we introduce a method to decrease the figure of merit in a less
expensive with in terms of total ∆V .

2.6.3 Constrained Descent

The basic principle of the method called constrained descent within this thesis is
based on a combination of

� the vector ~∇~TF , which describes how the figure of merit F changes upon a

variation δ ~T in the target points ~T ,

� the matrix pQ, which is computed from the linearized flow in sec. 2.4.3 and
describes how the ∆~V changes upon a variation δ ~T in the target points ~T ,
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Figure 2.23: Top: The evolution of total ∆V for each S/C during a gradient
descent. In the last two iteration steps only the target points of S/C 1 and 2 were
varied, therefore the ∆V of S/C 3 stayed constant. For the first two iteration steps a
smaller step size was used than for the other steps. Bottom: The peak-peak inner
constellation angle variation (ICA-range), SEZ angle and figure of merit (FoM)
during a gradient descent.

and on a solution for the constrained linear least-squares problem

min
δ~x

|| pC � δ~x� ~dc||2 such that

$'&'%
pA � δ~x ¤ ~bpAe � δ~x � ~be
~l ¤ δ~x ¤ ~u

, (2.151)

where δ~x is a variation in the target point positions and arrival (=thrust) times for
all S/C, min || pC �δ~x� ~dc||2 minimizes the total ∆V , pA�δ~x ¤ ~b ensures a minimization
of the figure of merit, pAe � δ~x � ~be constrains the instant of time for the thrusts to
be equal on all S/C and ~l ¤ δ~x ¤ ~u guarantees that the variation δ~x is small enough
to lie within the linearization regime.
The vector ~x consists of appended target points and arrival times for the three S/C:

~xpsq � p~T psq0,0 , t
psq
0,0,

~T
psq
1,0 , t

psq
1,0, ...,

~T
psq
N�1,0, t

psq
N�1,0

~T
psq
0,1 , t

psq
0,1,

~T
psq
1,1 , t

psq
1,1, ...,

~T
psq
N�1,1, t

psq
N�1,1

~T
psq
0,2 , t

psq
0,2,

~T
psq
1,2 , t

psq
1,2, ...,

~T
psq
N�1,2, t

psq
N�1,2qT, (2.152)

where we recall that the first index j in ~Tj,i and tj,i is the target point number, the
index i is the S/C number and the superscript s is an iteration number.
In each iteration step eq. (2.151) is used to derive a variation in ~x and therefore
a variation in the target point positions and arrival times. The state is updated
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Figure 2.24: Satellite trajectories and constellation parameters of constellation
HHL120 after a gradient descent with 8 iterations.

according to

~xps�1q � ~xpsq � δ~xpsq. (2.153)

To derive the matrix pA, the figure of merit F is expanded into a Taylor series of first
order

F p~T ,~t0q � F p~T0,~t0q � ~∇~TF � δ ~T . (2.154)

From this the matrix pA is deduced, which can be written as vector:pA � p ~AqT � pp~∇~TF q0,0, 0, p~∇~TF q1,0, 0, ..., p~∇~TF qN�1,0, 0,

p~∇~TF q0,1, 0, p~∇~TF q1,1, 0, ..., p~∇~TF qN�1,1, 0,

p~∇~TF q0,2, 0, p~∇~TF q1,2, 0, ..., p~∇~TF qN�1,2, 0q. (2.155)

It consists of the spatial partial derivatives of the figure of merit F

p~∇~TF qj,i :�
�

BF
Bp~Tj,iqx

,
BF

Bp~Tj,iqy
,

BF
Bp~Tj,iqz

�
, (2.156)

47



where j is again the target point number, i is the spacecraft number and the super-
script s was neglected for simplicity. Thus, we can write eq. (2.154) as

F p~T ,~t0q � F p~T0,~t0q � ~∇~TF � δ ~T � F p~T0,~t0q � pA � δ~x (2.157)

and the condition pA � δ~x ¤ ~b in eq. (2.151) with ~b � b ¤ 0 yields a variation δ~x,
which decreases the figure of merit F .
The equality constraint in eq. (2.151) for the ∆~V thrust times can be stated aspApsqe � δ~xpsq � ~be � ~0 ô t

psq
j,0 � t

psq
j,1 ^ t

psq
j,0 � t

psq
j,2 @j, (2.158)

and can be formulated by a sparse matrix pApsqe with 2 � N rows and only two ones
per row.
The minimization of the total ∆V thrust with min || pC � δ~x� ~dc||2 can be written as

min

�������
�������
���pQ0 0 0

0 pQ1 0

0 0 pQ2

��
� δ~x�
���∆~V0

∆~V1

∆~V2

��

�������
�������
2

, (2.159)

with pQi being the correction matrix for S/C i (cf. eq. (2.119)) and ∆~Vi is a large
vector consisting of N appended single thrust vectors for S/C i required to fly the
current trajectory. This is basically an extension of the method described in sec. 2.4.3
for the minimization of the ∆V of one S/C to a minimization of the ∆V of three
S/C at once. One should note that this method minimizes the accumulated ∆V
of all S/C and not the ∆V of the individual S/C. However, the amount of thrust
stayed balanced between the S/C as the final results will show.
Finally, the box-boundaries ~l ¤ δ~x ¤ ~u are simply given by

~l :�

����
�α
�α
...
�α

���
, ~u :�

����
�α
�α
...
�α

���
, (2.160)

where α � 3 � 10�5 corresponds (in non-normalized units) to a spatial constraint
of approx. �4500 km for a variation in the target point position and to a temporal
constraint of �2.5 min for a variation in the thrust time in each iteration step.
A solution to eq. (2.151) can be obtained with the function lsqlin, which is im-
plemented in matlab and based on Coleman & Li [1996] and Gill et al. [1981]. It
is an iterative method and required in our case an initial estimate for δ~x0 to yield
reasonable results. We use the gradient step (eq. 2.155) rescaled to fit into the
box-boundaries as the initial estimate:

δ~x0 :�
~A

maxtmax ~A, |min ~A|uα, (2.161)

where the denominator is the maximum absolute vector component in ~A.

The constrained descent method minimizes the objective function F under the con-
strained of minimal ∆V in a local region. The locality is caused by the fact, that
the minimization as well as the constraint are based on linearizations. It is therefore
very likely, that the solution will converge to a local minimum instead of to a global
minimum of the function F . Although in each iteration step the direction with the
smallest possible ∆V increment is chosen, it does not guarantee a final constellation
with minimal ∆V . Other effects may arise due to non-linearities, which are present
if the step size is not infinitesimal small.
Therefore, it should be clear that the method presented here is not optimal and only
an attempt under investigation. It was chosen because of it’s relative simplicity and
applicability for problems with high dimension number.
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2.7 Constrained Descent Results

In this section the results for the optimization attempt with the constrained descent
method are summarized. For the simulations we varied mainly the orbit correction
frequency, the box-boundary size α (eq. (2.160)) and therefore the initial guess
(eq. 2.161). The parameter b � ~b (eq. 2.151) was used to influences the rate of
descent. Usually a smaller b value leads to a higher descent rate and a smaller figure
of merit, however, to the detriment of a high ∆V consumption.

2.7.1 Constellation: HHL120

Figure 2.25: Evolution of the ∆V per S/C and constellation parameters during
the optimization of constellation HHL120.

This constellation was simulated with a mission period of Tm � 3 years. Every
28 days a ∆V thrust was introduced, which corresponds to N � 40 target points.
The evolution of the optimization for 100 iteration steps is shown in fig. 2.25. The
amount of thrust increased initially, but decreased to 60 m{s, 52 m{s and 72 m{s
for the three S/C for the three year period. Some objectives of the optimization
are shown at the bottom plot of fig. 2.25. The inner-constellation angle variation
(peak-peak) decreased from approx. 18� to 8.3� (ICA-range) and the figure of merit
from 2.31 to 1.47. Also the third S/C avoids the SEZ, since the green trace is above
4.5�. One can see a zick-zacking of the objective parameters, especially in the last
30 iterations. This is a well known feature of gradient descent like methods.
The final trajectory is depicted in fig. 2.26 (top). In comparison to the initial
trajectory (fig. 2.20) one notices a significant change in the orbit of S/C 3, which
became more elliptical or Halo-like10. The bottom plot of fig. 2.26 confirms that the
center S/C stays out of the SEZ. A secular trend is apparent in the armlengths due
to the fact that the center S/C has a longer orbital period than the S/C on the large
Halo.
The optimization was repeated with N � 45 target points, which corresponds to a
∆~V thrust every 24.9 days. The results are quite similar, although more iteration
steps are required to decrease the total ∆V after an initial peak. A noteworthy
improvement in the figure of merit (and inner-constellation angle variation) was not
observed. Also for N � 35 target points no significant change was observed, neither

10Halo orbits with small amplitude, which are close to the Lagrangian points L1 or L2, are very
elliptical.
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Figure 2.26: The constellation HHL120 in a 3-d plot (top) and constellation pa-
rameters (bottom) after the optimization.

in the figure of merit nor in the total ∆V . This indicates that even less frequent
orbit corrections are sufficient to achieve this constellation.

2.7.2 Constellation: HHL90

The two arm configuration with 90� angle between the arms was optimized using
changing parameters during the optimization (see fig. 2.27). For the first 10 iteration
steps a steep descent of the figure of merit F was used (large |b| value), which at
the same time increased strongly the ∆V value. Then a less steep descent was set,
which allowed a relaxation of the fuel consumption. At the end, during iteration 103
to 123, again a steep descent was forced. This should illustrate how the optimization
parameters can be used to control the ∆V consumption and the figure of merit.
In this scenario a mission duration of 2 years was used and a ∆~V thrust was applied
approximately every 18.7 days (N � 40). The trajectory at iteration step 102 is
shown in fig. 2.28. Again, the small Lissajous orbit was optimized to an elliptical
(Halo-like) orbit. The large Halos of S/C 1 and 2 moved away from the nominal
trajectories, while in the HHL120 constellation the trajectories stayed close to the
nominal path (cf. fig. 2.26). The inner angle variation (peak-peak) was reduced from
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Figure 2.27: Evolution of the ∆V per S/C and constellation parameters during
the optimization of the constellation HHL90.

26.8� to 16.0� due to the optimization. The actual thrust required at each target
point for each S/C is shown in fig. 2.29. The maximum value is below 25 m{s.

2.7.3 Constellation: HHH60

The constellation HHH60 is an attempt for a LISA-like constellation with three arms
in an equilateral triangle formation. The optimization evolution is shown in fig. 2.30,
where a mission period of 3 years and ∆~V thrusts every 28 days (N � 40 target
points) are used. As for the constellation HHH120 an initial peak in the accumulated
∆V is present, but the fuel consumption decreases during the optimization. A good
compromise between low figure of merit and low ∆V seems to be at the iteration
number 58. The trajectories of this iteration step are depicted in fig. 2.31 and require
approximately 200 m{s per S/C per year.
The trajectories seem to run away at the start and ending points. This is a known
feature of numerical optimization methods 11 and is usually suppressed by choosing
s slightly larger simulation period than required. Another possibility to suppress
the effect is by imposing some boundary conditions for the start and end points.
However, in the inner time period the inner-angle variation (peak-peak) was reduced
from approximately 24� to 13� by the optimization.
During the optimization the constellation armlength decreased from initially 2.0 Mkm
to approximately 1.3 Mkm and the Doppler rate was reduced from approximately
�200 m{s to below �100 m{s (fig. 2.31, third plot at the bottom). The distribution
of the ∆V of 200 m{s per S/C per year over the simulated mission period is shown
in fig. 2.32. The maximum required thrust at a target point is below 20 m{s.

11In the orbit simulations of the LISA mission the constellation breaks also quickly apart at the
end of the optimization period.

51



Figure 2.28: The constellation HHL90 in a 3-d plot (top) and constellation param-
eters (bottom) after the optimization. The glitches in the Doppler rate are spurious
numerical artifacts and denote the ∆V thrusts.

2.8 Alternative Approach with Constellation HHh115

An alternative approach is introduced here, which was tried out in an early stage of
the research presented in this thesis.
At first a constellation is defined using the analytical expressions in the CR3BP.
We use a large Halo orbit to host two daughter S/C and a center S/C is on a small
Halo orbit, which avoids the SEZ. The formed detector has an average angle of 115�

between the two arms and an armlength of approximately 1.4 Mkm (see fig. 2.33).
The initial parameters of the constellation (position and velocity) are transformed
into a solar system barycentric frame. Then the orbits are integrated in a dynamical
model considering the full solar system (JPL DE405 ephemeris). Every 80 days ∆V
thrusts are introduced to keep the constellation stable, close to the nominal Halo
orbits, and to reduce constellation distortions. The optimization is performed using
a nonlinear multidimensional minimizer (combination of Nelder-Mead simplex and
modified Levenberg-Marquardt [Heinzel, 2012]).
The obtained optimized trajectories are shown in fig. 2.34. They are close to the
nominal Halo orbits, since the figure of merit contained a punishment term for
trajectories getting away too far. This was required to keep the orbits in the vicinity
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Figure 2.29: The magnitude of ∆~V thrusts at each target point for the optimized
constellation HHL90.

of the Lagrangian point and the constellation stable. Therefore, the distortions of
the constellation (e.g. inner angle variations) were suppressed only weakly. However,
the proximity of analytical and optimized orbits indicates that the perturbations due
to Earth’s Moon, other planets or the eccentricity of Earth’s orbit do not change
the shape or position of the orbits significantly.
Another difficulty of the method arises due to the fact that a weighting is required
between the minimal ∆V criterion and the constellation stability, since the numerical
minimizer requires a single figure of merit function.
The constellation parameters after the optimization in the full ephemeris system
are shown in fig. 2.35. The peak-peak variation in the inner constellation angle is
approximately 14� and a secular drift in the armlengths is clearly apparent due to
the different orbit periods of large and small Halo orbit. The ∆V consumption is
below 50 m{s for each S/C for the two year period (see fig. 2.36). However, as already
mentioned, this attempt did not suppress the constellation deformations well, since
it was developed in an early stage of the research.

2.9 Summary, Conclusion and Outlook

The aim of this thesis chapter was the study of possible satellite constellations and
orbits in the vicinity of the Sun-(Earth+Moon) Lagrangian points in particular for
applications in space-based gravitational wave detectors.
In the beginning the orbits of the LISA mission and other LISA-like mission pro-
posals were briefly introduced. Then the fundamental dynamics in the proximity of
the Lagrangian points were studied in the simplified circular restricted three body
dynamical model. The analytical expressions for Halo and Lissajous orbits were de-
rived. Also numerical approaches for the determination of trajectories in the CR3BP
were presented, which require only minimal orbit correction maneuvers.
Using these natural orbits three exemplary constellations (HHL120, HHL90, HHH60)
were selected for further studies. These constellations are by far not as stable as the
LISA constellation in terms of constellation deformations. The cartwheel formation
of LISA, which can produced by three elliptical orbits, allows naturally a very rigid
constellation. Whereas the trajectories in the vicinity of the Lagrangian points are
more complex. For constellations with baseline armlengths of ¡ 1 km, the inner
constellation angle varies by a few tenth degree and the Doppler rates are in the
order of �200 m{s.
One should also note that the LISA formation does not require any orbit corrections
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Figure 2.30: Evolution of the ∆V per S/C and constellation parameters during
the optimization of the constellation HHH60.

for the mission duration of a few years, while trajectories at the Lagrangian points
are in general intrinsically unstable. However, it is very likely that a space-based
gravitational wave detector is also feasible with orbit corrections as long as they
are rare, since the measurements need to be interrupted during the thrusts, where
the testmasses do not follow geodesics. Therefore, it was also analyzed if the three
constellations can be improved by introducing instantaneous ∆V thrusts. It was
required that the orbit corrections are executed at the same time at all S/C to
minimize the measurement gaps.
For the computation of thrust magnitude and direction (and partly of the instant of
time) an optimization method based on linearizations was established. The driving
factors were the improvement of the constellation goodness and simultaneous mini-
mization of total amount of required thrust. The constellation goodness considered
various aspects like detector armlength mismatch or avoidance of the solar exclusion
zone, but the main focus was on the stabilization of the inner-constellation angle.
The results of the optimization revealed that the inner-constellation angle variation
(peak-peak) could be reduced to below �4.5�, �7.0� and �6.5� for the constellation
HHL120, HHL90 and HHH60, respectively. The fuel consumption in terms of ∆V
could be kept below 200 m{s per S/C per year.

It is very likely that these results can be improved further, although reaching the
LISA stability with Doppler rates below 20 m{s and angle variations below �2�

seems very challenging. There are several parameters in the optimization chain,
which were not adjusted in this thesis and could yield better results. On the other
hand the definition of the figure of merit does not account for the (peak-peak) vari-
ation and tuning of some constants may also allow improvements. Also the optimal
thrust frequency was not determined, as well as the thrust times were allowed only
to change a within small boundaries. Hence, the here presented method should be
considered as immature.
In the future one could try to use small Halo orbits instead of Lissajous orbits as
starting point for the constellations HHL120 and HHL60, since the optimization
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Figure 2.31: The constellation HHH60 in a 3-d plot (top) and constellation pa-
rameters (bottom) after the optimization. The glitches in the Doppler rate are due
to the ∆V thrusts.

converges to small Halo-like orbits. One should also recall that the main simu-
lations were performed within the idealized CR3BP and not in a full ephemeris
system. Since all algorithms and methods presented here can be transitioned to
a full ephemeris model, an optimization in the more realistic full ephemeris model
should be performed to confirm the applicability in the real world. However, as
the brief simulation on the constellation HHh115 showed, the deviations between
CR3BP and full ephemeris model are assumed to be small.
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Figure 2.32: The magnitude of ∆~V thrusts at each target point for the optimized
constellation HHH60.

Figure 2.33: Armlength (top) and inner constellation angle (bottom) of the ana-
lytical (CR3BP) constellation HHh115 for a one year period.
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Figure 2.34: 3-d plot of the optimized constellation HHh115. The black traces
(visible at S/C 3) are the nominal Halo orbits. The units of the axes are kilometer.

Figure 2.35: Armlength (top) and inner constellation angle (bottom) of the opti-
mized constellation HHh115 for a two year period in a full ephemeris model. The
constellation angle varies between 112� and 126�.
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Figure 2.36: The ∆V consumption for each S/C of the optimized constellation
HHh115 in a full ephemeris model.

58



Chapter 3

GRACE Follow-On LRI
Simulations

The satellite pair GRACE (Gravity Recovery and Climate Experiment) was launched
in 2002 to measure Earth’s gravity field. The main scientific device is a microwave
ranging instrument providing variations of the inter-satellite distance (low-low satel-
lite tracking) down to the micrometer level. The signature of Earth’s gravity field
can be extracted in post-processing when ranging information is combined with other
on-board instruments like GPS (high-low tracking) and accelerometer data.
The mission was designed for a nominal lifetime of 5 years, but was extended multiple
times until now (2012) due to its great scientific impact. The monthly gravity field
maps allow, for example, tracking of the hydrologic balance in Africa [Boy et al. ,
2012] or inference on glacier ice melting over Greenland and Antarctic [Velicogna,
2009]. Figure 3.1 shows the major contributions to Earth’s mass flux in spatial and
temporal extent. Various disciplines in geoscience benefit from these data.
GRACE provides Earth gravity field maps with typical monthly temporal resolution,
mainly due to the fact that enough data with global coverage has to be collected.
The spatial resolution extents down to about 250 km. As these signals are observed
with satellites flying with an orbital velocity of about 7.7 km{sec, the signal with
250 km spatial resolution corresponds to a frequency of approximately 31 mHz in the
measured data.
In 2012 the battery capacity of GRACE was already critically low, leading to shut-
down periods of some components and to gaps in the scientific data1. To keep the
gap after the end of the GRACE mission as short as possible and ensure continuity
of the recorded 10 year long-term data, a fast GRACE Follow-On (GFO) mission is
planned by NASA/GFZ. The current mission design foresees a launch in 2017 into
a circular polar orbit with 450 km height and with about 200 km spacecraft (S/C)
separation. To accomplish the tight time schedule, the satellites for GFO should be
basically a copy of the GRACE satellites. The main instruments and components
for GFO will be taken over from GRACE and will be

� K/Ka band ranging (KBR) ranging system: positioned on-axis and
measuring inter-satellite distance variations.

� Accelerometer: needs to be positioned at S/C center of mass (CoM) in order
to measure non-gravitational forces like drag and solar-radiation pressure; data
is used to correct ranging information for non-gravitational contributions in
gravity field computation.

� GPS receiver: providing location of satellites down to cm level.

1see http://podaac.jpl.nasa.gov/grace/
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Figure 3.1: Spatial and temporal scales of geoid signals associated to solid Earth
(orange), ocean (green), ice (dark blue) and continental hydrology (light blue) pro-
cesses. The red lines show the spatial and temporal resolution limits of the CHAMP,
GRACE and GOCE missions; from [Ilk et al. , 2005]

� Star cameras: attitude information of the S/C.

� Magneto-torquers: used for attitude control of S/C.

� Cold-gas thruster: for adjustment of orbits and attitude of S/C.

In contrast to GRACE, GFO will also include a laser ranging interferometer (LRI),
which will fly as a technical demonstrator and will provide a second independent
ranging measurement as well as pointing information [Sheard et al. , 2012]. The
principle of measuring satellite distances with laser interferometers has been evolv-
ing for more than three decades in the context of space-based gravitational wave
detectors (NGO-Yellowbook [2011], Faller et al. [1985]). Testing the first inter-
satellite laser interferometer in space in the GFO mission provides the opportunity
to compare the results to another ranging measurement and to validate the readi-
ness of this technology for further space-based applications, in addition to producing
better ranging measurements for GFO itself.

This chapter is structured as follows: In section 3.1, an overview of the LRI is given
and the measured signal is derived from Doppler shifts. In section 3.2, a deriva-
tion of the measured phase is given, taking into account the different pathlengths
on the optical bench. Furthermore, contributions of the laser phase or frequency
noise as well as off-racetrack pathlength fluctuations are discussed. Corner-cubes
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and in particular the Triple Mirror Assembly, which is a key component of the LRI
concept, is treated are section 3.3. The optical bench and its subunits are described
in section 3.4. Also second order effects like astigmatism are discussed there. The
simulation of the LRI is divided into a model for the inter-satellite propagation and
into a model of the LRI on one spacecraft. Details on the modeling can be found in
section 3.5. The second last section contains various tables and simulation results for
a particular optical bench setup, where the previously derived equations and models
are applied. On the one hand the simulation section should verify the previously
derived equation, for example for the desired position of the steering mirror. On
the other hand a particular optical bench setup is analyzed in detail by computing
various coupling factors and investigating their origin. This provides a better un-
derstanding of the optical system. The summary and some conclusive statements in
the very end conclude this chapter.

3.1 Laser Ranging Interferometer Overview

The main scientific measurement in GRACE as well as in GFO is the inter-satellite
distance, more precisely the distance variations measured between the CoM of
one spacecraft to the CoM of the other spacecraft. In order to sense only non-
gravitational forces, the accelerometer needs to be located at the CoM of the space-
craft, otherwise gravitational torque and corresponding attitude jitter disturbs the
measurements2. This fact and the location of the KBR at the rear center on the
leading spacecraft and at front center of the trailing spacecraft excludes an on-axis
interferometer concept, where two mirrors (or test masses) are co-located with each
CoM and laser beams measure along the CoM connection line (called Line Of Sight,
LOS). Measuring not directly from CoM to CoM requires in the case of the KBR
corrections, if one antenna phase center is not on the LOS. Then attitude informa-
tion, e.g. from star cameras, has to be used to derive the equivalent LOS length
changes (so called ‘geometric correction’, Horwath et al. [2011]).
Because the CoM is occupied by the accelerometer and the direct LOS by the mi-
crowave ranging system and cold-gas fuel tanks, an off-axis interferometer in a ‘race-
track’ configuration has been proposed for GFO3. In fig. 3.2 the optical setup is
depicted. The Triple Mirror Assemblies (TMA) on each spacecraft act as retro-
reflectors and form the ‘racetrack’, which is divided into symmetric halves by the
red and blue beams. The total pathlength of the round track is twice the distance
between both accelerometers or CoM of each S/C due to the special properties of
the TMA (cf. section 3.3).
The current performance requirement is visualized in fig. 3.3. The measurement
band is from 2 mHz up to 100 mHz, while lower frequencies are seen as goal (dashed
lines). The upper frequency limit is due to the sampling rate of the data. It is
assumed that the accelerometer noise4 will limit the overall performance at low
frequencies, because the correction for non-gravitational forces would have a higher
noise than the ranging measurement. At high frequencies the laser frequency noise
and spacecraft attitude jitter limit the LRI performance, but here the accuracy of the
final gravity field is anyway limited by aliasing and not by the ranging performance.

2a detailed analysis can be found in [Wang, 2000]
3to my knowledge first by Dr. William (Bill) Folkner (Jet Propulsion Laboratory - NASA)
4assumed is the differential accelerometer noise of two uncorrelated accelerometer with a sensi-

tivity of 10�10 m{s2 for each, which are integrated in frequency domain to obtain a displacement
noise
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Figure 3.2: Optical LRI setup depicted without laser frequency stabilization unit;
the spacecraft separation is approximately 200 km; from [Sheard et al. , 2012];
© Springer

Figure 3.3: GFO LRI requirement (red), estimated accelerometer noise (black),
and contribution due to laser frequency noise with 30 Hz{?Hz for two different
spacecraft separations.
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3.1.1 LRI Basic Principle

The inter-satellite distance variations are measured by a round-trip measurement.
Each spacecraft has a laser, whereby one S/C is designated as a master (fig. 3.2: S/C
1 on the left). The master laser light is guided over a steering mirror and two beam-
splitter to the TMA, where it is retro-reflected towards the slave spacecraft. The
slave spacecraft receives frequency shifted light from the master due to the Doppler
effect, which is caused by the relative motion of the spacecrafts. The received light
is interfered with the local light of the slave spacecraft (fig. 3.2: blue light), whereas
most of the local light is sent back over the TMA to the master spacecraft. The
interference is measured with a photodiode on the slave S/C (fig. 3.2: fslave

PD ). This
information is used to operate the slave S/C laser in a transponder mode, where the
slave laser produces basically a phase-copy of the received light from the master.
On the way back to the master S/C, the light gains again a Doppler shift. On
the master S/C the received light is also interfered with the local light, which was
initially sent out. With a photodiode the frequency difference between the light,
initially sent out, and the light, which was in total Doppler shifted twice, is mea-
sured (fig. 3.2: fmaster

PD ). This yields the relative velocity and therefore the distance
variations between both S/C.
The master and slave S/C will use a technique called Differential Wavefront Sensing
to achieve an accurate pointing of the laser beams towards the distant spacecraft.
Therefore the overlap of the received light with the local light is also measured with
the photodiodes on each S/C. A control loop actuates the steering mirror such that
both beams have perfect angular overlap. Then the outgoing light is parallel to the
incoming due to the properties of the TMA and hence ensures pointing towards the
distant spacecraft.

3.1.2 Principle of Active Transponder

The LRI is based on an active transponder system using an offset phase locked loop
(PLL) [Sheard et al. , 2012]. One spacecraft is chosen to be the master spacecraft
(fig. 3.2: S/C 1 on the left), but the S/C are designed to be interchangeable. The
master emits frequency stabilized laser light with λ � 1064 nm wavelength towards
the other spacecraft in 200 km distance. The laser beam will diverge to a size of
about 30 m radius at the distant (slave) spacecraft and is shifted in frequency by the
Doppler shift [Halliday et al. , 2010, p.1040],

f slave
RX � fmaster

d
1� vr

c

1� vr
c

, (3.1)

due to the relative LOS velocity vr of the spacecraft. A fraction of the beam will be
cut out by an 8 mm diameter aperture [Sheard et al. , 2012, tab. 1] on the optical
bench. The received beam, in the best case a few hundred picowatt in optical power
[Sheard et al. , 2012, fig. 8], is interfered with the local laser beam on the slave
spacecraft. Because the slave laser is arranged to have a frequency offset foff of a
few MHz w.r.t. to the received light, a beatnote is produced on the photodiode of
the slave spacecraft at foff,

f slave
PD � f slave � f slave

RX � foff. (3.2)

This sinusoidal signal is kept at constant frequency and phase by adjusting the local
laser frequency and phase via the PLL feedback control loop5.

5this may sound contradictory, because the phase is the time integral of frequency. In the context
of PLLs the phase is understood as the integrated frequency without the frequency offset, which is
introduced in a mixer and desired from the spacecraft master oscillator.
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Most of the light of the laser aboard the slave spacecraft is sent back to the master
spacecraft, meaning that the slave spacecraft emits light with same phase as it has
received, but shifted in frequency by an offset

f slave
TX � f slave � f slave

RX � foff. (3.3)

Thus the slave spacecraft acts as an active retro-reflector (transponder), enhancing
the laser power and shifting the frequency, but maintaining the phase. 6

The master spacecraft receives light, which is Doppler shifted a second time:

fmaster
RX � f slave

TX

d
1� vr

c

1� vr
c

� pf slave
RX � foffq

d
1� vr

c

1� vr
c

(3.4)

� fmaster

����1� vr
c

1� vr
c

����� foff

d
1� vr

c

1� vr
c

. (3.5)

Again, only a few hundred picowatt of light power arrive at the optical bench, where
the received light is interfered with the local laser light, which results in a beatnote
on the photodiode with frequency

fmaster
PD � fmaster � fmaster

RX . (3.6)

The LOS velocity vr is time-dependent with assumed magnitude of a few m/s. Thus
we can write the frequency of the beatnote on the photodiode of the master S/C in
the 1st order series expansion as

fmaster
PD ptq � foff � 2

vrptq
c

pfmaster � foff

2
q �O

�
v2
r

c2



(3.7)

� foff � 2vrptq
�

1

λ
� foff

2c



. (3.8)

This beatnote frequency contains the ranging information. A phasemeter will track
this signal and provides a phase measurement

Ψptq � 2π

» t
t0

fmaster
PD pt1q � f 1off dt

1, (3.9)

where a frequency offset f 1off has been subtracted. In the optimal case both offset
frequencies are equal (f 1off � foff), requiring that both S/C clocks can produce the
same absolute frequency or the frequency difference is known. Then the following
equations for the inter-satellite distance variations ρ are valid

Ψptq � �4π

�
1

λ
� foff

2c


» t
t0

vrpt1qdt1 � �4π

�
1

λ
� foff

2c



pρptq � ρpt0qq (3.10)

ô ρptq � �1

2

2λc

2πp2c� λfoffqlooooooomooooooon
�:1{k

Ψptq � ρpt0q � � 1

2 � kΨptq � ρpt0q. (3.11)

Eq. (3.11) differs from [Sheard et al. , 2012, eq. 12] by the initial bias ρpt0q and
the foff term. The latter one causes for an offset frequency foff � 10 MHz a relative

6this approximation holds for a perfect phase-lock on the transponder. In reality small phase
deviations will remain due to the finite loop gain, but these will be recorded by the phasemeter of
the slave S/C and will be used in the processing. In fact this system would also work with only
a loose lock that just maintains the beatnote frequency in the operating range of the photodiodes
and phasemeter.
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deviation of � 10�8 in the range computation. The wavelength λ and therefore the
wavenumber k are assumed to be known well, however, they might be also estimated
together with the initial bias ρpt0q in post-processing (see also [Sheard et al. , 2012,
sec. 12]). In case of a time-dependent offset frequency, the computation is more
complicated, because the offset frequency needs to be integrated in eq. (3.10). This
scenario is evaluated in appendix E, but current planning foresees a constant offset
frequency.
The treatment presented herein does not consider phase fluctuations along the op-
tical path, especially on the satellites. These contributions are treated in the next
section.

3.2 Phase Propagation

A model of the measurement accounting for the light paths can be obtained by
observing the phase evolution of the light. Recall that distances ρ are measured via
the travel time τ of light. In a medium with refractive index n

ρ � vmedium

τ
� n

c

τ
(3.12)

provides the relation between both quantities. We define an operator τ r...s, which
returns the travel time of a distance, e.g. a1, depicted in fig. 3.4. The optical
pathlength of the distance is denoted by P ,

Pa1 � c � τ ra1s.

The refractive index n at an orbit altitude of 400 km is assumed to be very close
to 1 and index fluctuations are assumed to be negligible at the desired wavelength.
However, we tried to account for these effects by distinguishing between optical
pathlengths or travel times and (ordinary) geometrical pathlengths in this section.
The aim of the derivation here is to obtain a very general formula for the measured
longitudinal signal on the photodiode of the master spacecraft.
First we assume a static configuration with resting spacecraft. In this case, the
round-trip is twice the separation of the spacecraft,

x1 � L12 � y2 � x2 � L21 � y1 � 2 � ρ, (3.13)

Figure 3.4: Light path separated into different segments, from [Sheard et al. ,
2012], © Springer
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which is due to the property of the TMAs (see section 3.3). The round-trip photon
travel time is in the order of

τRT � τ r2 � ρs � n
2 � 200 km

c
� 1.3 ms. (3.14)

It will be convenient to use a recursively defined time-delay operator D...Φ, which
delays Φptq by the photon travel time over distances (e.g. a1, x1, L12) or introduces
a delay by another time (e.g. t2ptq):

Da1Φ � Φ pt� τ ra1ptqsq (3.15)

Dt2Da1Φ � Da1,t2Φ � Φ pt� τ ra1ptqs � t2pt� τ ra1ptqsqq (3.16)

DL12Dx1Da1Φ � Da1,x1,L12Φ (3.17)

� Φ pt� τ ra1ptqs � τ rx1pt� τ ra1ptqsqs � τ rL12pt� τ rx1pt� τ ra1ptqsqsqsq
(3.18)

� Φ pt� τ ra1ptqs � τ rDa1x1s � τ rDx1,a1L12sq (3.19)

As stated in [Tinto & Dhurandhar, 2005, p. 24] the inverse of a time delay operator
can be obtained by requiring

D
�1
a1 Da1Φ � Φ � Da1,a

�1
1

Φ, (3.20)

which is not the same as a time advance,

D
�1
a1 Da1Φ � D�a1Da1Φ. (3.21)

This operator is widely used in time-delay interferometry technique developed for
LISA/NGO. Further information can be found in [Tinto & Dhurandhar, 2005].
We assume planar monochromatic electromagnetic waves being emitted by the lasers
on each spacecraft with amplitude

Emasterptq � A0 � exp ripωmt� φ1ptqqs (3.22)

Eslaveptq � A1 � exp ripωst� φ2ptqqs , (3.23)

where each laser has a phase fluctuation φ on top of its nominal frequency ω. The
local beam of the master spacecraft leaves the optical bench of the master spacecraft
in the direction to the slave satellite. The electric fields at the photodiode of the
slave spacecraft are

EPD, slave
1 ptq � A2 � exp ripωm � pt� t1ptqq � φ1pt� t1ptqq qs (3.24)

EPD, slave
2 ptq � A1 � exp ripωs � pt� t2ptqq � φ2pt� t2ptqqqs , (3.25)

with accumulated travel time between the master and slave spacecraft (see fig. 3.4)

t1ptq :� τ rDb2,y2,L12,x1a1s � τ rDb2,y2,L12x1s � τ rDb2,y2L12s
� τ rDb2y2s � τ rb2ptqs (3.26)

and for the short distance on the slave spacecraft

t2ptq :� τ rDb2a2s � τ rb2ptqs. (3.27)

The relation to the time-delay operator is

φ1pt� t1ptqq � Db2,y2,L12,x1,a1φ1, (3.28)

φ2pt� t2ptqq � Db2,a2φ2. (3.29)
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The photodiode measures the intensity of the interfered beams, see for example
[Saleh & Teich, 1991],���EPD, slave

1 ptq � EPD, slave
2 ptq

���2 � ���|E1ptq| � ei argpE1ptqq � |E2ptq| � ei argpE2ptqq
���2 (3.30)

� |E1ptq|2 � |E2ptq|2 � 2 � <pE�
1 ptq � E2ptqq (3.31)

� |E1ptq|2 � |E2ptq|2 � 2 � |E1ptq| � |E2ptq| � cos p arg pE�
1 ptq � E2ptqq q , (3.32)

where “arg” is the phase argument of a complex number. The oscillations at optical
frequencies cannot be resolved by the photodiode, therefore the first two terms are
time-averaged and equal to the DC power of the light fields. The previous equation
can be proved easily by showing that

|A1 � ei�α �A2 � ei�β|2 �pA1 � ei�α �A2 � ei�βq � pA�1 � e�i�α �A�2 � e�i�βq (3.33)

�|A1|2 � |A2|2 � 2 � |A1| � |A2| � cospα� βq, (3.34)

using Euler’s relation for complex numbers and trigonometric identities. This com-
plex notation with the exponential function for the electric field does not require
time-averaging in contrast to pure trigonometric functions.
The phase of the measured beatnote is then

Ψ2ptq � arg
�
E�PD, slave

1 ptq � EPD, slave
2 ptq

	
� �ωm � pt� t1ptqq � φ1pt� t1ptqq � ωs � pt� t2ptqq � φ2pt� t2ptqq
� pωs � ωmq � t� ωmt1ptq � ωst2ptq � φ1pt� t1ptqq � φ2pt� t2ptqq, (3.35)

where E1 and therefore ωm is assumed to have a lower optical frequency than E2 or
ωs. This defines the sign convention for phases in this derivation.
In the optimal case, the PLL will drive the signal (eq. (3.35)) to a desired value
[Sheard et al. , 2012, sec. 4],

Ψ2ptq � ωofft,

by changing ωs and φ2 to these values7:

ωs � ωm � ωoff, (3.36)

φ2pt� t2q � Dt2φ2 � ωst2ptq � ωm � t1ptq � Dt1φ1. (3.37)

The inverse of the time-delay operator leads to the function

φ2ptq �ωsDt�1
2
t2 � ωm � Dt�1

2
t1 � Dt�1

2 ,t1
φ1. (3.38)

The slave spacecraft sends the light back to the master spacecraft, where it inter-
feres with the local beam of the master S/C leading to the field amplitudes on the
photodiode

EPD, master
1 ptq � A3 � exp ripωs � pt� t3ptqq � φ2pt� t3ptqqqs , (3.39)

EPD, master
2 ptq � A0 � exp ripωm � pt� t4ptqq � φ1pt� t4ptqqqs , (3.40)

with the accumulated delays

t3ptq :� τ rDb1,y1,L21,x2a2s � τ rDb1,y1,L21x2s � τ rDb1,y1L21s (3.41)

� τ rDb1y1s � τ rb1ptqs
t4ptq :� τ rDb1a1s � τ rb1ptqs. (3.42)

7it has been assumed that the frequencies ω are constant in this derivation
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Evaluation of the φ2 term using eq. (3.38) provides

φ2pt� t3ptqq � ωs � Dt3,t�1
2
t2 � ωm � Dt3,t�1

2
t1 � Dt3,t

�1
2 ,t1

φ1

� pωm � ωoffq � Dt3,t�1
2
t2 � ωm � Dt3,t�1

2
t1 � Dt3,t

�1
2 ,t1

φ1

� ωm � pDt3,t�1
2
t2 � Dt3,t

�1
2
t1q � ωoffDt3,t

�1
2
t2 � Dt3,t

�1
2 ,t1

φ1. (3.43)

This result can be used to compute the phase signal at the photodiode of the master
spacecraft

Ψ1ptq � arg
�
E�PD, master

2 EPD, master
1

	
(3.44)

�ωs � pt� t3ptqq � φ2pt� t3ptqq � ωm � pt� t4ptqq � φ1pt� t4ptqq
�ωoff � t� ωm � p�t3ptq � t4ptq � Dt3,t

�1
2
t2 � Dt3,t

�1
2
t1qloooooooooooooooooooooooomoooooooooooooooooooooooon

�:αptq

� ωoff � pDt3,t�1
2
t2 � t3ptqq � Dt3,t

�1
2 ,t1

φ1 � Dt4φ1.

A further evaluation of αptq is necessary to simplify the result:

Dt3,t
�1
2
�Db1,y1,L21,x2,a2,a

�1
2 ,b�1

2
� Db1,y1,L21,x2,b

�1
2

(3.45)

Dt3,t
�1
2
t1 �τ rDb1,y1,L21,x2,y2,L12,x1a1s � τ rDb1,y1,L21,x2,y2,L12x1s�

τ rDb1,y1,L21,x2,y2L12s � τ rDb1,y1,L21,x2y2s (3.46)

� τ rDb1,y1,L21,x2,b
�1
2
b2s

Dt3,t
�1
2
t2 �τ rDb1,y1,L21,x2a2s � τ rDb1,y1,L21,x2,b

�1
2
b2s (3.47)

αptq � � τ rDb1,y1,L21,x2a2s � τ rDb1,y1,L21x2s � τ rDb1,y1L21s
� τ rDb1y1s � τ rb1ptqs � τ rDb1a1s � τ rb1ptqs
� τ rDb1,y1,L21,x2a2s � τ rDb1,y1,L21,x2,b

�1
2
b2s

� τ rDb1,y1,L21,x2,y2,L12,x1a1s � τ rDb1,y1,L21,x2,y2,L12x1s
� τ rDb1,y1,L21,x2,y2L12s � τ rDb1,y1,L21,x2y2s
� τ rDb1,y1,L21,x2,b

�1
2
b2s

� � Db1τRT � τ rDb1a1s � τ rDb1,RTa1s. (3.48)

Six of the 14 terms cancel in αptq, while other six of the 14 terms provide the round-
trip time τRT. All three remaining terms have a common delay Db1 , which is due to
the common path between beamsplitter and photodiode on the master spacecraft.
The equation

Ψ1ptq � ωoff � t� ωm � p�Db1τRTptq � τ rDb1a1s � τ rDb1,RTa1sq
� ωoff � pDt3,t�1

2
t2 � t3ptqq � Dt3,t

�1
2 ,t1

φ1 � Dt4φ1 �Ψbias (3.49)

provides the most general description of the measured phase in this derivation. The
term Ψbias accounts for the fact that the absolute phase is not measurable. It is
also worthy to notice that an ideal PLL has been considered without introducing
any delays or residual phase offsets. The delays due to b1, t2 and t4 are in the order
of nanoseconds and can be neglected in the time arguments, because distances on
the spacecraft are assumed not to change within such timescales. It is convenient to
use flight-times, because this incorporates the effect of fluctuations of the refractive
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index in the measurement. The use of optical pathlenghts P ptq instead of flight-times
would be equivalently

Ψ1ptq � ωoff � t� ωm

c
� p�PRTptq � Pa1ptq � Pa1pt� τRTqq (3.50)

� ωoff

c
� Pb1,y1,L21,x2ptq � φ1pt� τRTq � φ1ptq �Ψbias

� ωoff � t� 2π

λ
� p�2ρmeasptq � Pa1ptq � Pa1pt� τRTqq (3.51)

� ωoff

c
� ρmeasptq � φ1pt� τRTq � φ1ptq �Ψbias.

However, as stated in the beginning of this subsection, the deviation of the refractive
index from 1 is considered to be negligible. The use of the quantity

ρmeasptq � 1

2
PRTptq � Pb1,y1,L21,x2ptq (3.52)

is justified in the subsequent section. Pb1,y1,L21,x2 is the optical pathlength from the
beamsplitter at the slave spacecraft to the photodiode of the master spacecraft. The
term φ1pt � τRTq � φ1ptq in eq. (3.51) accounts for the laser frequency noise and is
treated in section 3.2.2. The term Pa1ptq �Pa1pt� τRTq is analyzed in section 3.2.3.
The ratio ωoff{ωm � 10�7 indicates that the 3rd term might be neglected in eq. (3.51)
as it was done in [Sheard et al. , 2012, eq. 2]. Assuming a particular form with
constant velocity vr for ρmeasptq,

ρmeasptq � vr � t, (3.53)

yields the same expression for the beatnote frequency in the phase measurement as
derived in the previous section (eq. (3.7))

Ψ1ptq �
�
ωoff � 2vr

ωm

c
� vr

ωoff

c

	
� t (3.54)

� ωm

c
� pPa1ptq � Pa1pt� τRTqq

� φ1pt� τRTq � φ1ptq �Ψbias.

3.2.1 Instantaneous Range and Special Relativity

In eq. (3.51) a phase-derived range ρmeas was introduced. This quantity is one-half
of a round-trip length measurement performed at the master spacecraft with the
on-board clock and it is subject to time-delays due to the finite speed of light. For
simplicity we assume that both spacecraft move along the LOS. In fig. 3.5 the world
line of the slave spacecraft is depicted. The instantaneous spacecraft separation is
given by ρinstptq, whereas the time-derivate of ρinst is assumed to be constant over
the travel time of light. The relation of flight times to the phase-derived range is

2 � ρmeasptq � ρbias � cτ12ptq � cτ21ptq � 2 � cτ21ptq �: cτRTptq. (3.55)

The unknown initial offset is denoted as ρbias. Simple geometric derivation using
line intersections leads to

τ21ptq � ρinstptq
c� 9ρinst

� τ12ptq (3.56)

and finally to a relation between the instantaneous and measured range:

ρinstptq �c� 9ρinst

2c
� 2cτ21ptq � 1

2
� cτRTptq � 1

2
τRTptq 9ρinst (3.57)

�ρmeasptq � 1

2
ρbias �1

2
τRTptq 9ρinstlooooooomooooooon

light time correction

. (3.58)
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Figure 3.5: Measurement as seen from master spacecraft.

Figure 3.6: Measurement in an inertial frame.

With 9ρinst � 9ρmeas the second term is called light-time correction for a round-trip
measurement [Montenbruck & Gill, 2000, p.213]. Because the distances cτ21 and
cτ12 in fig. 3.5 are equal, the measured inter-satellite distance ρmeas can be defined
through the one-way pathlength or through one half of the round-trip measurement,
as done in eq. (3.52).
With given S/C positions ~S1ptq � p0, 0, 0qT and ~S2ptq, the following relations are
valid

2 � ρmeasptq � ρbias � PRTptq �
���~S1ptq � Dτ21

~S2

���� ���Dτ21 ~S2 � Dτ21,τ12
~S1

��� , (3.59)

ρinstptq �
���~S1ptq � ~S2ptq

��� , (3.60)

where a refractive index of n � 1 was assumed.
For the GRACE data analysis an instantaneous range is used, which is referred to
an inertial frame with global time t provided, for example, by GPS [Case et al. ,
2010, Light time correction].
As stated by Special Relativity, the simultaneous or instantaneous measurement is in
general not instantaneous in the non-moving frame. The Minkowski-like diagramm
in fig. 3.6 illustrates a measurement in the non moving frame. The time deviation ∆t
from an instantaneous measurement can be computed by the Lorentz transformation
[Bowler, 1976, eq. 1.1.11],

γ � 1b
1� �vc �2 � 1� 3 � 10�10, (3.61)

∆t1 �γ vx
c2

� 1.7 � 10�8 s, (3.62)

for an orbital velocity of 7700 m{s and a measured length of x � 200 km. In GRACE
and GFO the LOS and orbital velocity vector are almost parallel, otherwise the
absolute velocity along the LOS would have to be used. The result indicates that the
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measurement in the non-co-moving frame is separated by negligible 17 nanoseconds.
The effect of length contraction is also sufficiently small, especially considering that
the LRI is not able to measure absolute distances,

ρ1inst �
1

γ
ρinst � ρinst. (3.63)

The fact that KBR phase measurements are taken on both GRACE satellites and
need to be combined without time-shifts complicates the flight time correction for the
KBR [Kim, 2000, p. 117]. In case of the GFO LRI, a combination of measurements
from both spacecraft will be required, if the PLL does not drive the phase at the
photodiode of the slave spacecraft to zero.
It is also noteworthy that the distances cτ 121 and cτ 112 in fig. 3.6 measured in the
non-co-moving frame differ by several meters, which is due to the 17 nanoseconds
time difference.

3.2.2 Laser Frequency Noise

The frequency and phase fluctuations of the master laser couple via the term

φ1pt� τRTq � φ1ptq (3.64)

in eq. (3.50) into the phase and hence length measurement. The equivalent single-
way pathlength contribution due the laser noise ρLN can be written as

2π

λ
� 2 � ρLNptq � φ1pt� τRTq � φ1ptq (3.65)

Transforming this equation to the frequency domain by a Fourier transform and
utilizing the rule for time-shifts in the frequency domain results in

2π

λ
� 2 ��ρLNpfq �

φ̃1pfq � p1� expr�i � 2πf � τRTsq � φ̃1pfq � i � 2πf � τRT � φ̃1pfq � i � 2πf

c
� cτRT

(3.66)

ô 2 ��ρLNpfq � φ̃1pfq � i � f � cτRT � λ
c

, (3.67)

where the approximation holds only for |2πf �τRT| ! 1. This is justified, because the
round-trip time is τRT � 1.3 ms and the interesting frequency band is below 1 Hz.
The term cτRT can be denoted as arm mismatch ∆L in the interferometer, which is
the round-trip length in the case of the LRI. φ1 is a phase and has units of radian.
The connection to the optical frequency ν is given by

9φ1ptq � ωptq � 2πνptq, (3.68)

which is in frequency domain with Fourier frequency f given by

2πfiφ̃1pfq � 2πν̃pfq. (3.69)

Combining eq. (3.67) and eq. (3.69) and switching to linear spectral densities8, which
are denoted with a δ, yields

2 ��δρLNpfq � if�δφ1pfq �
∆L � λ
c

��δνpfq � ∆L

ν
(3.70)

8replacing the Fourier transforms by the corresponding linear spectral densities (LSD). Signs
and imaginary units are omitted, because a LSD is the square root of a power spectral density,
which is real and positive. For information on spectral density estimation refer to [Heinzel et al. ,
2002]
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Figure 3.7: Requirements for laser frequency noise for GFO-LRI, for NGO from
[NGO-Yellowbook, 2011] and a model for a free running NPRO based on data from
[Troebs et al. , 2009]

with r�δνpfqs � Hz{
?

Hz, r�δρLNpfqs � m{
?

Hz (3.71)

and with �δρLN being the single-way pathlength fluctuations due to laser noise, ν
the optical laser frequency and �δνpfq the laser frequency noise. For the LRI a
laser frequency noise of 30 Hz{?Hz causes a single-way pathlength noise of about
25 nm{?Hz. The requirement on laser frequency noise is shown in fig. 3.7, whereas
the equivalent displacement noise was plotted in fig. 3.3.
As depicted, the laser frequency noise of a free-running laser is several orders of
magnitude higher than 30 Hz{?Hz and causes the necessity for a laser frequency
stabilization. Various techniques are currently under investigation for the GFO
laser frequency stabilization. Using conventional locking of the laser frequency to
the resonance frequency of a cavity via the Pound-Drever-Hall technique has almost
shown the required performance (see Folkner et al. [2011] and Thompson et al.
[2011]). Other approaches under investigation are tilt-locking or a fibre-resonator
scheme [ANU, 2012, ANU-website].
The frequency stabilization is only necessary for the master spacecraft. However, to
allow switching of the master/slave role and for the associated redundancy, it will
be present on both satellites.

3.2.3 Off-Racetrack Pathlength Noise

The term “off-racetrack” pathlength within this thesis is used for distances a1, a2, b1, b2
in fig. 3.4.
In the final measurement equation (3.50) the optical pathlength from the fiber cou-
pler via the steering mirror to the beamsplitter is present (cf. figure 3.4)

Pa1ptq � Pa1pt� τRTq �: 2 � ρa1ptq, (3.72)

which can be seen as a single-way pathlength contribution ρa1ptq on the ray path
a1 in the final range measurement ρ9. According to eq. (3.67) the formula can be
rewritten in the frequency domain to

�Pa1pfq � p1� expr�i � 2πf � τRTsq ��Pa1pfq � i � 2πf � τRT. (3.73)

9another way of looking at fluctuations of a1 is to consider the laser noise Φ1 only at the point
when it first becomes measurable by interference, i.e. at the beamsplitter, and to include any
fluctuation of a1 or the steering mirror into Φ1.
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This equation can be transformed directly to spectral densities. Assuming a round-
trip time τRT � 1.3 ms and the interesting frequency band limit at f � 0.1 Hz results
in a suppression factor of approximately 1000. Effects due to thermal expansion,
which are assumed to be below 1µm{?Hz, will have a level below 1 nm{?Hz in the
round-trip measurement. For lower frequencies the suppression is even higher.
Another contribution causing off-racetrack pathlength changes is the steering mirror
motion. The steering mirror will move to compensate spacecraft attitude jitter (also
called receiver tip/tilt within this thesis). In section 3.6.9 the coupling factors of
spacecraft rotations into optical pathlength Pa1 change are determined to be

B2Pa1
Bv2

� 28 nm{mrad2,

BPa1
Bh � 70µm{mrad, (3.74)

which are valid for a particular optical bench setup. We linearize the quadratic
coupling at a working point of 0.5 mrad, because non-linear coupling effects cannot
be treated with transfer functions. The linearization results in a coupling of

BPa1
Bv � 28 nm{mrad. (3.75)

The vertical v rotation corresponds to spacecraft pitch, while the horizontal h is
for the yaw direction. If the S/C jitter spectral density rδjpfq for yaw and pitch is
known, the following equations provide the connection to the noise in the length
measurement

2�δρa1pfq � 2π � f � τRT � BPa1Bv ��δjpitchpfq,

2�δρa1pfq � 2π � f � τRT � BPa1Bh � �δjyawpfq. (3.76)

From these equations one can derive the jitter noise causing a round-trip pathlength
noise with 1 nm{?Hz at 0.1 Hz and with the characteristic noise-shape function
given in fig. 3.3.

Figure 3.8: Spacecraft attitude jitter noise causing 1 nm{?Hz length noise for a
particular optical bench setup.

Current simulations of the spacecraft attitude control system perform with an ap-
proximately three orders of magnitude lower residual noise than depicted in fig. 3.8.
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One should keep here in mind that power spectral densities are not suited to describe
sinusoidal deterministic signals (tones), which need to be addressed separately.
Another off-racetrack noise contribution might come from the path b1 going from
the beamsplitter through the lenses to the photodiode. This path is common to both
beams, but due to the different amplitude and phase shape of the beams, fluctuations
in the lens or photodiode position can cause a phase change on the photodiode. This
effect has been observed in simulations in section 3.6.8. It might add up in the final
measurement for the slave and master spacecraft, but the magnitude of this effect
was uncritical in the simulations.

3.3 Triple Mirror Assembly

In the previous section the general working principle of the LRI was presented, as
well as a connection between inter-satellite range, instantaneous range and measured
phase established. Furthermore, the contributions of laser frequency noise and off-
racetrack noise were estimated.
In this section the Triple Mirror Assembly (TMA) is treated, which is together with
the Optical Bench (see next section 3.4), a subunit of the LRI and a centerpiece of
the optical setup.
The TMA consists of three mutual perpendicular mirrors, which are rigidly mounted
to a tube-like housing with a few centimeter diameter and about 60 cm length (see
fig. 3.9). The task of the TMA on each spacecraft is to retro-reflect an incoming
beam anti-parallelly, but with sufficiently large lateral displacement, such that the
racetrack is not blocked by the gas tank or KBR instrument (see fig. 3.2). The three
mirror planes of the TMA intersect in one point called vertex and form a so-called
corner-cube.

Figure 3.9: Model of the GRACE Follow-On Triple Mirror Assembly (on the right
side) and holding structure; Acc: Accelerometer, MEP: Main Equipment Platform
(source: SpaceTech GmbH Immenstaad).

In the following subsection general information and properties of corner-cubes are
summarized.
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3.3.1 Corner-Cubes

A corner-cube is like a Cat’s-Eye a retro-reflector. One distinguishes between solid
and hollow corner-cubes. A solid (also called prismatic) corner-cube is a tetrahedron,
consisting of a transparent material, a base surface and three mutually perpendicular
surfaces at the back. It can be produced by diagonally cutting a solid glass cube.
Light entering at the base is refracted towards the diagonal line of the former cube
and is being deflected three times due to total internal reflection, before leaving
through the base anti-parallelly to the incident light (Scholl [1995], Liu & Azzam
[1997]).
A hollow corner-cube consists of only three mutually orthogonal mirrors and has no
solid interior. As for the solid corner-cube the incident light ray is reflected at each
surface and exits the corner-cube anti-parallel to the incoming beam (see fig. 3.10).
The acceptance angle for a solid corner-cube is usually higher, due to the refraction
at the base surface, in comparison to a hollow corner-cube with same geometry.
Corner-cube retro-reflectors are widely used in laser tracking systems and in traffic
signs [Kim & Lee, 2007].

Figure 3.10: Two corner-cubes (in 3-d): The red beam is reflected at the first
corner-cube (CC) while the blue beam is transmitted and reflected at the second
corner-cube (CC’), which is shifted and rotated. The green vectors are parallel to
the initial and returning beams and originate at the vertex. The lateral displacement
is divided into equal halves by the green vectors.

In the following the word corner-cube always stands for for hollow corner-cubes and
it is always assumed that light is being reflected at all three mirror surfaces before
leaving the corner-cube.

3.3.2 Ray properties

In this section a summary of the ray properties of corner-cubes valid in 2-d and
3-d is given. The concept of a corner-cube can be simplified to two dimensions
by using just two perpendicular mirror surfaces. In fig. 3.11 the ray path through
two corner-cubes in 2-d is shown. The solid red vectors (~1,~2,~3) indicate the path
through a corner-cube CC, while the dashed blue vectors (~11,~21,~31) show the path
through a shifted and rotated corner-cube CC’. A virtual plane (VP), perpendicular
to the initial rays (~1 and ~11), serves as boundary for returning beams. The vertex
of a corner-cube is the intersection point of all mirror planes10. If a corner-cube is

10The intersection of two (non-parallel) planes forms a line, which is intersected with the third
plane yielding the vertex point.
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subject to motion, the vertex displacement vector (purple vector ~d in fig. 3.11) turns
out to be a helpful quantity.

Figure 3.11: Two corner-cubes in 2-d (perpendicular mirrors) with ray paths and
additional parameters (see text for description).

Ray Properties:

1. The returning beam (~3 and ~31) is always anti-parallel to the initial beam (~1
and ~11), thus independent of the orientation of the corner-cube

2. A transverse vector between vertex and initial beam (~s and ~s 1) is equal to
the negative transverse vector connecting vertex and returning beam (�~s and
�~s 1).
In other words: a vector between initial and returning beam is divided into
equal halves by the vertex.

3. The accumulated pathlength (|~1| � |~2| � |~3| and |~11| � |~21| � |~31|) through a
corner-cube is twice the distance from the virtual plane to the vertex (2 � |~t|
and 2 � |~t 1| ).

4. If a corner-cube is subject to motion along the beam direction, the accumulated
pathlength change is twice the projection of the displacement vector on the
beam direction

p|~11| � |~21| � |~31|q � p|~1| � |~2| � |~3|q � 2 � |~g| � 2 �
~d �~1
|~1| . (3.77)

5. If a corner-cube is subject to motion transverse to the beam direction, the
transverse displacement of the returning beam is twice the transverse displace-
ment vector (2 � ~q). The accumuluated optical pathlength does not change.

6. Rotations of a corner-cube around the vertex do not change the accumulated
pathlength or the returning beam direction.

7. Rotations of a corner-cube around other points than the vertex can be decom-
posed into rotations around the vertex and a translation, which is a general
property of proper rigid transformations in the Euclidean space.

For 3-d corner-cubes four rays have to be used, because reflections occur at three
mirror surfaces. However, the property statements 1-7 remain valid. Proving the
properties in 2-d is easily done by trigonometry. For 3-d corner-cubes the properties
have been verified by ray-tracing simulations. A proof of some properties in three
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dimensions for a solid corner-cube can be found in [Peck, 1948]. The results for the
optical pathlength in that paper can be related to hollow corner-cubes by setting
the refractive index µ of the glass to 1 (vacuum).

3.3.3 TMA Working Principle

As already mentioned, the TMA mirrors form a hollow corner-cube retro-reflector.
Stede [2011] uses the term virtual corner-cube for such a mirror configuration, where
not the full faces of the cube, but only small segments around the actual reflection
points are present.
The basic property of a retro-reflector is that the direction of the reflected beam
is fixed in inertial space, especially invariant under rotations of the retro-reflector,
if the incoming beam stays fixed in inertial space. Furthermore, the incoming and
outgoing beams are always anti-parallel. In case of the LRI this guarantees a correct
pointing of the outgoing beam towards the distant spacecraft, if the incident beam
is coming from the distant spacecraft.
From property 3 above it follows, that the accumulated optical pathlength of the
racetrack, depicted in figure 3.2, is twice the distance between both TMA vertices.
If the TMA vertices are co-located with the CoM of the spacecraft, the racetrack
pathlength is twice the inter-satellite distance and spacecraft rotations around the
CoM will not change the distance measurement.
The anti-parallelism and the immunity of the optical pathlength to spacecraft rota-
tions are the key-properties of the TMA.
Latter one holds only, if the TMA vertex and the CoM (or center of rotation)
coincides. The effect of TMA vertex misplacements is treated in the next subsection.

3.3.4 Linearized Coupling of Rotations

The property 7 in section 3.3.2 can be used to derive simple equations for measured
pathlength changes upon rotations by angles u, v, w around a pivot point ~P , which
does not coincide with the vertex ~V of the corner-cube. Therefore, we define a
rotation matrix R̂ by

R̂pu, v, wq �R̂p~ez, wq � R̂p~ey, vq � R̂p~ex, uq, (3.78)

where u, v, w, are the angles for rotations around ~ex, ~ey, ~ez, respectively. The vertex
displacement vector due to a rotation is then

~d � R̂pu, v, wq � p~V � ~P q � p~V � ~P q. (3.79)

The measured change in the optical pathlength is (property 4, eq. (3.77))

δρ � �2 � ~d � ~ex, (3.80)

where the initial (sensing) beam direction is defined along �~ex (see fig. 3.11). Using
a small angle approximation and p~V � ~P q � pδx, δy, δzq, the following relationship
can be obtained:

δρ � � 2 � δz � v � 2 � δy � w � 2 � δy � u � v � 2 � δz � u � w

�pδx, δy, δzq �
��0 0 0

0 �2u �2
0 �2 �2u

�
�
��uv
w

�
. (3.81)

If the corner-cube vertex and the center of rotation are misplaced by δy � 1 mm,
the coupling factor for a rotation w into a round-trip pathlength is

Bδρ
Bw � 2 mm{rad � 2µm{mrad � 2000 nm{mrad. (3.82)
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This coupling factor can be multiplied with a satellite attitude jitter spectrum to
calculate the contribution of pointing jitter noise in the length measurement. The
pointing jitter and the laser frequency noise are assumed to have the highest noise
contributions in the LRI [Sheard et al. , 2012].
Based on actual simulations of the attitude control system and an allocation of
20 nm{?Hz for the pointing jitter noise, the position of the TMA vertex needs be
co-located with the CoM within 100� 200µm in the sensitive y and z directions.
It is noteworthy that in case of misaligned TMA mirror planes rotations around the
TMA vertex will produce in general a change in the optical pathlength. For the LRI
the point of minimal coupling (POMC) is of interest, where the pathlength changes
are minimal. In other words: if the mirror planes are not mutually orthogonal, the
TMA vertex and the POMC do not coincide in general. Therefore the POMC and
not the TMA vertex should be co-located with the CoM, although the separation
between POMC and vertex is small.
In Appendix F the theoretical effect of TMA mirror misalignments is analyzed, while
in [Schütze et al. , 2013] a method for the determination of the POMC for the GFO
LRI breadboard setup is discussed.
Additional pathlength errors, and hence distance measurement errors, might be
caused by the TMA polarization. This effect is discussed in the following subsection.

3.3.5 TMA Polarization

A corner-cube with perfectly aligned mirrors conjugates the phase of a beam with
plane wavefront and with uniform amplitude [Scholl, 1995] and [Chipman et al. ,
1988], which means the polarization vector is rotated by 180�. In various other
papers (Liu & Azzam [1997], Segre & Zanza [2003], Peck [1962]) polarization prop-
erties of solid corner-cubes are analyzed. In Mayer [1993] the depolarization effects
of a hollow corner-cube in the context of laser-trackers is treated. According to
this work, a ray can propagate on six different paths through a corner-cube de-
pending on the incidence position. If a large Gaussian laser beam is used, different
portions of the beam propagate along different paths through the corner-cube and
result in a degradation of laser-tracking precision, because each path has different
polarization properties. These results are not directly applicable to the LRI TMA,
because in case of the LRI the ray path is always the same and the incidence angle
on each mirror changes only slightly. An analysis of the TMA polarization can be
found in appendix D. The simulated scenarios considering simple Fresnel reflection
showed only very small phase variations, induced by attitude dependent polariza-
tion changes. Also the linear polarization of the light was mainly retained, which is
important for the contrast of the interferometric measurement.

3.4 Optical Bench

In the nominal case each satellite receives a Gaussian beam with a spot size radius of
27 m, from which a fraction will be cut out by an aperture at the front or rear of the
spacecraft, respectively. The received light from the distant spacecraft with a phase
front radius of curvature of 200 km, i.e. nearly a plane wave, propagates through a
baffle to the entrance aperture at the optical bench with 4 mm radius (fig. 3.12).
The large radius of curvature leads to a flat top profile in phase with less than 60µrad
phase deviation on the aperture, while the large original spot size guarantees a flat
intensity profile with a few hundred picowatt power (in the best case). The flat top
beam (also called ‘top hat beam’, shown in red in fig. 3.12 on the OB) is interfered
with the local Gaussian beam (green in fig. 3.12) at a beamsplitter (BS) with 95%
reflectivity, such that most of the power of the flat top beam is reflected towards a
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quadrant photodiode (QPD). The interference of local and remote beam causes a
beatnote on the QPD.
The local beam has initially about 15 mW of optical power and a waist radius of
2.5 mm, which is located at the steering mirror front surface. These parameters
are compromises and derived in [Sheard & Heinzel, 2011]. Most of the local beam
power is reflected towards compensation beamsplitter (CBS) and the TMA. Thus,
the optical bench effectively replaces the weak received beam by a fresh beam.
On the one hand the OB needs to ensure parallelism between outgoing and received
beam, on the other hand it shall measure the relative phase between the received
light and local oscillator beam. To achieve the parallelism, the relative tilt angle
between the local beam and received light can be controlled by a steering mirror (see
subsequent section 3.4.5), while a technique called Differential Wavefront Sensing
(see section 3.4.4 and 3.4.6) provides a measurement of the relative tip and tilt angle.
For the latter one it is beneficial to have fixed beam positions at the QPD of the local
and received beam, regardless the beam tip and tilt angles [Morrison et al. , 1994].
Therefore a beam compressor is placed in front of the QPD, which is discussed in
detail in the next subsection.

Figure 3.12: Model of the LRI Optical Bench.

3.4.1 Beam Compressor

In front of the quadrant photodiode a beam compressor is placed, which decreases
the beam sizes of local and received beam by a factor of 8, so they fit onto a 1 mm di-
ameter quadrant photodiode. The relation between active area size, capacitance and
bandwidth requires a small photodiode with low capacitance to achieve a bandwidth
of about 2-20 MHz for the QPD.
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Figure 3.13: Two lenses beam compressor.

Furthermore, it keeps the beams at a fixed position on the QPD, independent of the
steering mirror state or the incidence angle at the receive aperture.
A scheme of a two lens beam compressor is depicted in fig. 3.13. The properties
of such an optical system can be computed with a ray transfer formalism using
ABCD matrices [Saleh & Teich, 1991, p.28]. Let T̂ pdq be the transfer matrix for a
propagation by a distance d, L̂pfq for a thin lens with focal length f , R̂pr, n1, n2, q
the refraction at a curved surface with radius of curvature r and a refractive index
change from n1 to n2, while B̂pn1, n2q is used for a refraction at a flat surface,
where the refractive index changes from n1 to n2. In the ABCD formalism a ray is
characterized by a vector py, θqT, where y is the distance of the ray from the optical
axis and θ the angle between ray and optical axis.
Assuming thin lenses for the beam compressor, the transfer matrix of the optical
system can be derived as [Sheard & Heinzel, 2011]

M̂1 � T̂ pd3q � L̂pf2q � T̂ pd2q � L̂pf1q � T̂ pd1q �
�
m 0
0 m�1



, (3.83)

with magnification

m � �f2{f1, (3.84)

and the following values for d2 and d3:

d2 � f1 � f2,

d3 � �m2d1 �mp1�mqf1, (3.85)

where f1 and f2 are the focal lengths of lens 1 and lens 2. Two collimated rays
p0, 0qT and py, 0qT, which are parallel to the optical axis and separated by y at the
object plane, will be still collimated and parallel to the optical axis at the image
plane. However, the separation of the rays changes to m �y, meaning that the size of
a collimated beam w changes to m �w . The transfer matrix reveals that ray offsets
are decreased by m (|m| is smaller than 1), while tilts are magnified by 1{m [Sheard
& Heinzel, 2011]. In addition, due to B element of the transfer matrix being zero,
ray tilts at the object plane do not result in a change of the ray position at the image
plane. Thus, placing the steering mirror and receive aperture at the object plane,
provides a fixed beam position at a QPD in the image plane, as recommended for
Differential Wavefront Sensing .
The values derived for d1, d2, d3 in [Sheard & Heinzel, 2011] are all with respect to
principal points of the lenses, while the distances shown in fig. 3.13 are measured
between the vertex points of the surfaces. For some applications like IfoCad
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Figure 3.14: Lens with center thickness c, surface curvature radii of r1 and r2,
and substrate with refractive index n2. The surface vertex points are denoted with
V1 and V2, while the principal points are P1 and P2. The focal length f is equal on
both sides, while the front focal distance (FFD) and back focal distance (BFD) are
in general unequal. The sign convention used in this thesis assumes r2   0 for a
biconvex lens.

simulations or component placement it is useful to have the distances w.r.t. the
surface vertices, because these are physically accessible. Therefore, we compute the
separation of the lenses without the thin lens approximation.
Characteristic points and distances of thick lenses are depicted in fig. 3.14 and
equations for the focal length and focal distances of a thick lens with substrate
refractive index n and center thickness c are given in [Hobbs, 2011, eq. 4.15f]:

1

fpr1, r2, n, cq � pn� 1q
�

1

r1
� 1

r2
� pn� 1qc
n � r1 � r2



,

FFDpr1, r2, n, cq � fpr1, r2, n, cq
�

1� pn� 1qc
n � r1



, (3.86)

BFDpr1, r2, n, cq � fpr1, r2, n, cq
�

1� pn� 1qc
n � r2



.

In the very general case a thick lens can have different radii of curvature for the
front and back surface. However, as shown in [Jha, 2009, p.181] plano-convex lenses
minimize spherical aberration, if the convex side is pointing towards a collimated
beam. The ABCD formalism is not suited to model spherical aberration, because
the formalism is based on a paraxial approximation.
The previous equations can be referred to as the plano-convex case by taking the
limit for r1 or r2 to infinity. Assuming a beam compressor with plano-convex lenses
with lens center thickness c1 and c2 yields the following transfer matrix:

M̂2 � T̂ pd3q � R̂pr2, n2, n1q � T̂ pc2q � B̂pn1, n2q � T̂ pd2q � B̂pn2, n1q � T̂ pc1q
� R̂pr1, n1, n2q � T̂ pd1q

�
� r2
r1

0

0 r1
r2



�
�
m 0
0 m�1



. (3.87)

Here, m � f2{f1 � fpr � �8, r2, n2, c2q{fpr1, r � �8, n2, c1q � r2{r1 was used.
The negative sign is missing in comparison to eq. (3.84) due to the fact that r2
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and hence f2 are negative, while r1 and f1 are positive in this derivation. The
magnification factor is still negative.
The following assumptions need to be made to obtain the result (3.87):

n1 � 1,

d2 � c1 � c2 � n2p�c1 � c2 � r1 � r2q
pn2 � 1qn2

� BFDpr1, r � �8, n2, c1q � FFDpr � �8, r2, n2, c2q, (3.88)

d3pd1q � r2p�r2
1 � d1r1p1� n2q � r1r2q

pn2 � 1qr2
1

� �d1m
2 � p1�mq �m � FFDpr1, r � �8, n2, c1q. (3.89)

As expected, the result is very similar to eq. (3.85), where the focal lengths have
been exchanged by focal distances.
The purpose of the beam compressor is not only to downsize the diameter of the
laser beams and to keep the beams fixed at the QPD. In addition both the entrance
aperture and the waist of the local beam should be imaged onto the photodiode.
Imaging the aperture is necessary, because light that propagated through a small
aperture stop shows in general diffraction patterns [Baune, 2009, p. 11 and App. C].
Imaging the aperture plane cancels the diffraction rings at the image plane and
yields an almost flat phase front of the received beam at the QPD. Imaging the
local Gaussian beam waist provides also a flat phase front of the local beam at
the photodetector. Thus, the local Gaussian beam waist, the steering mirror front
surface11 and the receive aperture should all be located at the object plane.
The geometrical distance between object plane and image plane, dOI, is given by

dOI :� d1 � d2 � d3pd1q � c1 � c2. (3.90)

Hence, the position of the photodiode and aperture is determined by the positions
and by the parameters of the lens system. As one can see in fig. 3.12, the light from
the steering mirror is transmitted through the beamsplitter. For the local beam with
its waist location at the steering mirror surface, the distance d1 in eq. (3.90) has to
be corrected for the effects due to the beamsplitter. This correction is discussed in
the subsequent section 3.4.2 about astigmatism.

The design and working principle can be summarized as follows: The aperture is lo-
cated at the object plane of the beam compressor and centered with the optical axis
of the lens system. The propagation direction of light passing through the aperture
changes upon rotation of the spacecraft. In the optimal case no beamwalk will occur
on the photodiode, because the B element in the ABCD-transfer matrix is zero. If
the light at the aperture is tilted by an angle α w.r.t. the optical axis, the tilt at the
image plane (photodetector) is α{m ¡ α. Furthermore, the almost flat phase front
at the receive aperture is imaged onto the photodiode.
The steering mirror is also located in the object plane of the beam compressor,
although a correction due to the beamsplitter needs to be applied. Rotations of the
steering mirror leading to an angle α of the local beam w.r.t. the optical axis are
transformed to a tilt of α{m at the photodetector. Because the pivot point of the
steering mirror is not directly at the front surface of the mirror, rotations cause a
small lateral offset12 at the object plane. This beamwalk is suppressed by the factor
m at the photodiode. A flat phase front of the local beam at the QPD is obtained

11more precisely: an effective pivot plane of the steering mirror
12at nanometer level, because the offset of a few millimeter is multiplied with the square of the

rotation angle
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by placing the waist of the local Gaussian beam close to the steering mirror front
surface (object plane).

3.4.2 Astigmatism

Unfortunately, a flat plate like a beamsplitter introduces astigmatism, as mentioned
in [Meschede, 2008, p.171] and [Steel, 1983, p.128]. The beamsplitter breaks the
rotational symmetry around the optical axis of the optical system. An example
setup with a beam compressor with plano-convex lenses and a beamsplitter is shown
in fig. 3.15.

Figure 3.15: Ray tracing simulation for a beam compressor shows astigmatism
due to the beamsplitter.

The blue light ray marks the optical axis of the two lenses, while the black ray
is an off-axis beam, which is parallel to the optical axis (x-direction). We define
the s-direction along the z-axis, while the p-direction is in the incidence plane (xy-
plane), as one might be used to from polarization analysis of a beamsplitter. The
two red and green rays are deflected along the s-direction, whereas the gray and
purple rays initially diverge along the p-direction. At the backside of the second
lens the rays converge and form the image plane. However due to the beamsplitter
the red and green image points (s-direction) are closer to the lens than the other
two (p-direction). Such optical systems having two different focal lengths are called
astigmatic. In addition to the astigmatism, the beamsplitter introduces a transverse
offset (here in �y direction), such that the blue ray does not enter the lens centrally
along the optical axis any more. This effect is canceled by shifting the initial blue
beam, such that the lens is entered centrally (on-axis).
We now compute the shift of the image points due to the beamsplitter. We therefore
use the ABCD formalism independently for the s- and for the p-direction. The
components of a ray vector characterize the offset and deflection angle along the s-
or p-direction.

Image Points: s-case

Along the s-direction the beamsplitter looks like a non-tilted flat plate. We assume a
beamsplitter with thickness cBS and refractive index nBS, which is placed dBS before
the first lens. The transfer matrix of the optical system is then given by

M̂ s
3 �T̂ pds3q � R̂pr2, n2, n1q � T̂ pc2q � B̂pn1, n2q � T̂ pds2q � B̂pn2, n1q � T̂ pc1q � R̂pr1, n1, n2q

� T̂ pdBSq � B̂pnBS, n1q � T̂ pGPLq � B̂pn1, nBSq � T̂ pds1 � coa
BS � dBSq, (3.91)
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where GPL is the geometrical pathlength inside a beamsplitter (see fig. 3.16). It can
be derived easily from trigonometry that

GPLpα0q � cBS

cospδq �
cBSb

1� sinpα0q2{n2
BS

. (3.92)

Figure 3.16: Ray path (red) through a tilted beamsplitter in the p-plane.

The matrix B̂pnBS, n1q � T̂ pGPLq � B̂pn1, nBSq is called the sagittal13 transfer matrix
for a tilted slab in [Hodgson & Weber, 1997, eq. 1.83], although it is not specified
there which length has to be used. The parameter coa

BS is the GPL projected onto
the optical axis and can be computed as

coa
BS � GPLpα0q � cospα0 � δq � GPLpα0q � cospα0 � arcsinpsinpα0q{nBSqq. (3.93)

Choosing appropriate values for ds2 and ds3 as in the previous section leads again to
a diagonal form of the transfer matrix M̂ s

3 . The value of ds2 is equal to the sum of
both focal distances as in eq. (3.88),

ds2 � d2, (3.94)

whereas

ds3pd1q � d3pd1q �m2 �GPLpα0q �
�

cospα0 � arcsinpsinpα0q{nBSqq � 1

nBS



loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

�:∆ds

. (3.95)

The first term d3pd1q is the distance without the beamsplitter, which is given in
eq. (3.89). For the optical bench the aperture and the steering mirror are imaged at
the same time. The value for d3 might be fixed by the distance d1 (aperture Ñ first
lens). Therefore, one can express the effect of the beamsplitter also with a shift of
the object plane distance (d1, steering mirror - first lens) using eq. (3.95) and (3.89):

ds1 � d1pd3q �∆ds � d1pd3q �GPLpα0q �
�

cospα0 � arcsinpsinpα0q{nBSqq � 1

nBS



.

(3.96)

The second term is positive so that the steering mirror and the waist position of
the local beam needs to be shifted away from the lenses, if the image of the steering
mirror front surface is to be co-located with the image of the aperture.

13here: s-direction
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Image Points: p-case

The effect of the beamsplitter in p-direction is a transverse shift ∆y (see fig. 3.16 and
fig. 3.17). The direction of the beam stays unchanged, as long as the beamsplitter
has zero wedge angle. The transverse shift can be computed as coa

BS:

∆ypα0, αq :� sin pα0 � δq �GPLpα0 � αq

� cBS
sin pα0 � arcsinpsinpα0 � αq{nBSqqb

1� sinpα0 � αq2{n2
BS

, (3.97)

where an initial ray misalignment of �α was incorporated. The offset ∆y should be
given w.r.t. the optical axis, therefore sin pα0 � δq is used instead of sin pα0 � α� δq.
The offset can be expanded in a series for small ray angles α,

∆ypα0, αq � ∆ypα0, 0q � α �∆y1pα0, 0q, (3.98)

where the prime (1) denotes a derivative w.r.t. α.
The only difference in the transmitted ray of a tilted and a non-tilted beamsplitter
is the offset. The transformation of a ray py, αqT from the ray transfer matrix
formalism can be written as�

ynew

αnew



:�
�

∆ypα0, 0q
0



�
�

1 ∆y1pα0, 0q
0 1



looooooooomooooooooon

�:Q̂

�
y
α



. (3.99)

The constant first term indicates that even an on-axis ray p0, 0qT will gain some
offset, if it passes through the beamsplitter. α0 is still the tilt angle of the beam-
splitter. We neglect the constant first term, because initial rays can simply be shifted
by �∆ypα0, 0q. Under this condition a ray p0, 0qT passes the lenses centrally on the
optical axis. Neglecting the term corresponds to a shift of the coordinate system
from optical axis 1 to optical axis 2 in fig. 3.17. This derivation for Q̂ is basically
the explanation for the tangential transfer matrix for a tilted slab given in [Hodgson
& Weber, 1997, eq. 1.82].

Figure 3.17: Ray path (red) through a tilted beamsplitter with initial ray mis-
alignment.

With the knowledge of Q̂, the beam compressor p-transfer matrix including the
beamsplitter is

M̂p
3 :�T̂ pdp3q � R̂pr2, n2, n1q � T̂ pc2q � B̂pn1, n2q � T̂ pdp2q � B̂pn2, n1q � T̂ pc1q � R̂pr1, n1, n2q

� T̂ pdBSq � Q̂ � T̂ pdp1 � coa
BS � dBSq. (3.100)
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Again, this matrix can be simplified to a diagonal form, if

dp2 �d2, (3.101)

dp3pd1q �d3pd1q �m2 �∆dp � d1pd3q �m2 � �coa
BS �∆y1pα0, 0q

�
or dp1pd3q �d1pd3q �∆dp, (3.102)

with

∆dp �� coa
BS �∆y1pα0, 0q,

�coa
BS �

cBS � nBS � cospα0q2

pn2
BS � sinpα0q2q �

b
1� sinpα0q2{n2

BS

�GPLpα0q �
�

cospα0 � arcsinpsinpα0q{nBSqq � cospα0q2
nBS � p1� sinpα0q2{n2

BSq


.

(3.103)

Here the shift ∆dp is positive as well, making it necessary to shift the steering mirror
and the local beam waist away from the lenses, such that the image of steering mirror
front surface and aperture are co-located.
The resulting shifts ∆d in s- and p-case simplify for a non-tilted beamsplitter α0 � 0
to the same equation and for nBS � 1.0 to ∆dp � ∆ds � 0, as one would expect.
It is important to notice, that the shifts ∆ds and ∆dp are in general unequal. This
means the object planes for the s- and p-direction are not at the same distance from
the lens (or beamsplitter). The position of the steering mirror can be defined, for
example, by the mean of the shifts in each direction. Nevertheless, rotations of the
steering mirror lead to a beamwalk on the photodiode.
The application and verification of these equations in sec. 3.6.1 yields the following
values for a typical setup:

∆ds � 1.6 mm, ∆dp � 3.0 mm. (3.104)

As we will see later in sec. 3.6.3, a misplacement of the object plane of 1 mm results
only in a very small beamwalk of 0.1µm at the photodiode, when the beam deflection
by the steering mirror is 1 mrad. In addition to the beamwalk due to astigmatism
of the beamsplitter, an almost negligible beamwalk is also caused by the offset in
the center of rotation of the steering mirror (see end of sec. 3.4.1).
The results for the astigmatism and the ABCD matrices can be directly applied to
Gaussian beams. So far the derivation used geometrical optics. However, the local
laser beam is supposed to be a Gaussian beam in the fundamental TEM00 mode with
a waist radius of 2.5 mm. The phase and the intensity of the light is of importance
for interferometric measurements and is also subject to changes due to astigmatism,
as we will see subsequently.

Astigmatic Gaussian Beams

Recall that a Gaussian beam can be described with the complex beam parameter
[Saleh & Teich, 1991, eq. 3.1-5]

qpzq � z � i � zr, (3.105)

where z is the coordinate of the evaluation point measured from the waist along the
beam propagation direction and zr is the Rayleigh range. The expression [Saleh &
Teich, 1991, eq. 3.1-6]

1

qpzq �
1

z � i � zr �
z2

z2 � z2
r

� i
z2
r

z2 � z2
r

� 1

Rpzq � i
λ

πωpzq2 (3.106)
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relates the beam parameter q to accessible physical quantities like the radius of
curvature of the phase front Rpzq, the wavelength λ and the waist size ωpzq.
The effect of an optical system on the q-parameter can be described with the corre-
sponding ABCD matrix [Saleh & Teich, 1991, eq. 3.2-21]

qnew � Aqold �B

Cqold �D
. (3.107)

Assuming an initial Gaussian beam with a waist located at the object plane of the
beam compressor with magnification m, e.g. m � 1{8, the q-parameter is purely
imaginary q � qinitial � im2 � zr,initial. The ABCD matrix of the beam compressor
has only diagonal entries m and 1{m. The beam parameter after transformation is
therefore

q � m2qinitial � im2 � zr,initial (3.108)

and is also purely imaginary. This indicates that the waist and hence flat phase
front of the final beam is at the image plane and the beam radius has been reduced
by 1{m according to 3.106. Also the Rayleigh range and hence divergence of the
beam changes due to the beam compressor.
In the more general case considering an initial waist position z0,initial, the result is
very similar:

q � m2qinitial � m2 � z0,initial � im2 � zr,initial. (3.109)

A Gaussian beam, which has propagated 200 km and has therefore roughly a phase
front radius of curvature R � 200 km at the object plane, is transformed to a beam
with

R � m2 � 200 km � 3.1 km (3.110)

at the image plane, where m2 � 1{64 was used.
If a beamsplitter is placed in front of the first lens, the ABCD matrices for the s-
and p-direction are different. The propagation of a Gaussian beam through such a
system can be described by simple astigmatic Gaussian beams, sometimes also called
‘orthogonal astigmatic Gaussian beams’. These beams have two complex parame-
ters, which are in IfoCad denoted to be along sagittal and tangential direction14.
Here the notation qs and qp is used for consistency. The ABCD matrices for p- and
s-direction of the beam compressor with beamsplitter cannot be diagonalized at the
same time. Assuming that d3 is chosen such that M̂p

3 is diagonal, the following
complex beam parameters can be obtained

qp � m2qinitial � im2 � zr,initial , M̂ s
3 �

�
m m � p∆ds �∆dpq
0 1{m



, (3.111)

qs � m2qinitial �m2p∆ds �∆dpq � m2p∆ds �∆dpq � im2 � zr,initial, (3.112)

and the phase front radii of curvature are

Rppzq �8,

Rspzq �z
�

1� z2
r

z2



� m2p∆ds �∆dpq

�
1� m4 � z2

r,initial

m4p∆ds �∆dpq2
�
. (3.113)

14originally ‘sagittal’/‘transverse’ and ‘meridional’/‘tangential’ rays are defined w.r.t. an optical
axis of an optical system [Benenson et al. , 2002, p.359]. In [Freise & Strain, 2010, p.57] ‘sagittal’
and ‘tangential’ are used for the in-plane and out-of-plane direction of an interferometer, which is
confined in one plane. In the context of the beam compressor with beamsplitter (or the whole LRI),
sagittal would be the p-direction.
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The amplitude and intensity of the beam have an elliptical shape in transverse
direction, because the spot size w is unequal in both directions. At the waist in
p-direction, the spot sizes are given by the Rayleigh range [Saleh & Teich, 1991,
eq.3.1-8f] and the offsets ∆ds, ∆dp:

ωppzq �
d
λzr
π

�
1� z2

z2
r



�
c
λm2zr,initial

π
� m � ω0, (3.114)

ωspzq �
d
λzr
π

�
1� z2

z2
r



�
gffeλm2zr,initial

π

�
1� m4p∆ds �∆dpq2

m4z2
r,initial

�

�m � ω0 �
d

1� p∆ds �∆dpq2
z2
r,initial

, (3.115)

whereas ω0 � 2.5 mm is the initial waist size of the local Gaussian beam.
Applications and evaluation of these equations can be found in section 3.6.1 about
simulation results. The resulting phase front distortion and intensity ellipticity are
very small in comparison to effects due to misplacement and misalignment of compo-
nents, which are described in the subsequent section and evaluated in section 3.6.3.
Thus, the here presented analysis using simple astigmatic Gaussian beams confirms
that these effects are not important practically.
In addition, the later simulations of the optical bench are performed using general
astigmatic Gaussian beams. These beams can be described with two q-parameters
and a complex angle θ. General astigmatic Gaussian beams can also handle non-
orthogonal astigmatism. Corresponding functions are implemented in the IfoCad
software [Kochkina et al. , 2013]. For an overview of general astigmatic beam prop-
agation see for example [Alda, 2003] or [Arnaud & Kogelnik, 1969].

Sensitivity on Misalignment and Misplacement

The beam compressor can only be built with a limited precision. The effect of
small variations in the parameters on the ABCD matrix and hence on the output
q-beam parameter or ray offset and direction needs to be investigated. To simplify
the equations, the thin lens equations (eq. (3.84f.)) are used such that d1, d2, d3 are
referred to the principal points of the lenses and not to the vertices. The effect of
the beamsplitter is also omitted here.
If a nominal ABCD matrix M̂1,nom corresponds to a parameter set pi � pd1, d2, d3, f1, f2q,
small variations will result in the following ABCD matrix:

M̂m
1 � M̂1,nom �

¸
i

δpi � BM1

Bpi |nom

. (3.116)

For an initial ray ~rinitial � pyinitial, θinitialqT or Gassian beam qinitial � zr,initial � i �
zr,initial the final state

~rfinal � M̂m
1 � ~rinitial qfinal � Aqinitial �B

Cqinitial �D
(3.117)

reveals much insight when it is evaluated numerically (see sec. 3.6.3 with simulation
results). In the general case the analytical expressions are, however, quite long and
are not given here.

3.4.3 Beamsplitter Intersection and Lateral Shifts

Another effect caused by the beamsplitter and the corresponding astigmatism is
that a light ray coming from the aperture will intersect with the beamsplitter front
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surface at another position than a light ray from the steering mirror, if the steering
mirror position has not been corrected (see fig. 3.18). The correction terms are
the same as for the astigmatism (eq. (3.95), (3.97), (3.103)), because the ABCD
formalism is actually describing ray deflections:

∆y �∆ypα0, 0q � cBS
sin pα0 � arcsinpsinpα0q{nBSqqb

1� sinpα0q2{n2
BS

, (3.118)

∆ds �GPLpα0q �
�

cospα0 � arcsinpsinpα0q{nBSqq � 1

nBS



, (3.119)

∆dp �GPLpα0q �
�

cospα0 � arcsinpsinpα0q{nBSqq � cospα0q2
nBS � p1� sinpα0q2{n2

BSq


,

(3.120)

with (eq. (3.92))

GPLpα0q � cBSb
1� sinpα0q2{n2

BS

, (3.121)

where α0 is the beamsplitter tilt angle, cBS and nBS the beamsplitter thickness and
refractive index, respectively. It is noteworthy that the offsets do not depend on the
beamsplitter position.
The correction terms for the s- and p-directions are in general unequal. This means
the intersection points of both beams with the beamsplitter front surface cannot
coincide for arbitrary deflections. The separation between the intersection points
can have a magnitude of a few µm, depending on the beamsplitter and deflection
angle. This leads also to a lateral separation of the beams propagating towards the
beam compressor. However, it turns out that this discontinuity in the racetrack has
no influence on the length measurement in case of plane waves, as discussed later in
section 3.5.2.

Figure 3.18: Correction of the steering mirror position in the p-plane.

3.4.4 Photodiode and Phasemeter Signals

A photodiode exploits the photoelectric effect and provides an electric current IC ,
which is proportional to the intensity of the total impinging light field. Considering
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two light beams, the electric current can be derived using complex electric fields
with amplitude A1, A2, angular frequency ω1, ω2 and phase ϕ1, ϕ2:

ICptq �k
»

PD
|A1 � exppiω1t� iϕ1q �A2 � exppiω2t� iϕ2q|2 dx dy

� k

»
PD

|A1|2 � |A2|2 � 2 �A1 �A2 � cosppw1 � w2qt� ϕ1 � ϕ2q dx dy

� k

���P1 � P2looomooon
�:PDC

� 2
a
ηP1P2loooomoooon

�:AAC

� cosppw1 � w2qt� Φq

��
. (3.122)

P1 and P2 denote here the power of each beam detected by the photodiode. The
sum of them is the average power PDC on the photodiode, while AAC is called
the heterodyne amplitude (although it has units of power). A1, A2, ϕ1, ϕ2 are in
general spatial dependent functions. η is called the heterodyne efficiency and k
is the photodiode responsivity. The electric current oscillates with the beatnote
frequency w1 � w2. The heterodyne efficiency is connected to the contrast c of a
photodiode signal by the expression

c � Imax � Imin

Imax � Imin
�
?
ηP1P2

P1 � P2
, (3.123)

where Imax and Imin are the maximal and minimal electric current values, respec-
tively. For the LRI a quadrant photodiode is foreseen, where the circular active area
is divided into four quadrants (see fig. 3.19). As depicted, a small gap with width
dg separates the quadrants. The gap is a dead space and has no photoelectric effect,
therefore the received light power decreases due to the gaps in comparison to a single
element diode. The direction of the gaps is used to define a photodiode coordinate
frame. The vertical gap (normal to the bench) defines ~ev, while the horizontal gap
is parallel to ~eh.

Figure 3.19: Quadrant photodiode with slit width dg

The phase Φ, heterodyne amplitude AAC and DC power PDC of each quadrant
can be tracked by a phasemeter, if the signal-to-noise ratio is high enough. The
signal is proportional to the contrast c or

?
η and therefore determined by the

spatial wavefront overlap (integral in eq. (3.122)) of the two beams. The main noise
sources are shot-noise and electronic-noise (see [Sheard et al. , 2012] and [Sheard
& Heinzel, 2011]). The DC power PDC can be obtained by averaging an integer
multiple of beatnote oscillation cycles. The computation of these heterodyne signals
for simulations is described in Wanner [2010] and Wanner et al. [2012].
The average phase of all segments provides the length measurement, also called
longitudinal signal. One way of computing the phase using a complex notation is
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given by

φ � arg
�
AAAC � eiΦ

A �ABAC � eiΦ
B �ACAC � eiΦ

C �ADAC � eiΦ
D
	
, (3.124)

where φ � φptq is time-dependent. A change in the phase can be related to a change
in the optical pathlength δz via

δφ � φptn�1q � φptnq � δz
2π

λ
, (3.125)

whereas one needs to keep in mind that φ is only defined on 0..2π (or equivalent
�π... � π). By tracking the phase changes one can obtain length changes, but
not an absolute distance measurement. Sudden phase changes larger than 2π are
ambiguous (phase wrapping) and are not measured correctly, but slow changes over
many periods (“fringes”) can be tracked by a “phase-tracking” algorithm.
With a differential combination of the DC values one can compute the power centroid
w.r.t. to the photodiode center [Wanner, 2010, eq. 2.44]:

DPSh �Pleft � Pright

Pleft � Pright
� PADC � PCDC � pPBDC � PDDCq

PADC � PBDC � PCDC � PDDC

,

DPSv �Ptop � Pbottom

Ptop � Pbottom
� PADC � PBDC � pPCDC � PDDCq

PADC � PBDC � PCDC � PDDC

. (3.126)

This Differential Power Signal (DPS) is unitless and can be used to detect beamwalk
on the photodiode, though the power center is of course dependent on the position
and power of both beams. For a single beam the DPS is linear for small displace-
ments from center [Wanner, 2010, p. 46], but has also non-linear contributions and
cross-talk between h and v direction for larger offsets. The power on the photo-
diode is additive, such that the equations can be applied for two beams, whereas
the centroid is is an average scaled with the relative power of the beams. If the
beam parameters are known or the QPD has been calibrated [Sommerfeld, 2010],
the beamwalk on the photodiode can be measured and converted to a proper position
(with units of meter).
In the LRI the beam power levels at the photodiodes are in the order of 1 mW for
the local laser beam and 100 pW for the received beam. Hence, the DPS will be
dominated by the local oscillator. Furthermore, the beam compressor suppresses
the beamwalk on the photodiode, such that the DPS is close to zero.
Using the differential phase between the photodiode segments yields information on
the relative wavefront angle between the beams at the photodiode. This technique
is called Differential Wavefront Sensing (DWS) and is used for example in GEO600
[Grote et al. , 2002]. The signal is obtained by [Wanner, 2010, eq. 2.46]

DWSh � ΦA � ΦC

2
� ΦB � ΦD

2
,

DWSv � ΦA � ΦB

2
� ΦC � ΦD

2
. (3.127)

As it will turn out subsequently, the DWS signal is in first order proportional to the
wavefront tilt with an amplification factor, which depends on the wavelength and on
the integrated area on the photodiode. However, DWS is sensitive to beamwalk on
the photodiode. Often common mode beamwalk of both beams is less critical than
differential beamwalk, but in general the influence of beamwalk on DWS is dependent
on the beam and photodiode parameters. Although DWS can also be used without
optics that provide fixed beam positions ([Wanner, 2010, LISA Pathfinder OB],
[Hechenblaikner, 2010]), the DWS signal can be maximized with a beam compressor,
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which at the same time suppresses the beamwalk and magnifies the wavefront tilt.
A beamwalk on the photodiode leads also to varying heterodyne amplitudes on the
quadrants and in case of the small photodiode also to a drop in the SNR, if the
beam moves off the QPD.
Assuming a flat phase front and a flat top amplitude with radius wr

15 for both
beams, the DWS signal for a photodiode without slits and active area radius larger
than wr is [Sheard & Heinzel, 2011]

DWSh,v � αPD
h,v �mDWS � αPD

h,v �
16 � wr

3λ
, (3.128)

where αPD is an infinitesimal small relative tilt (h) or tip (v) between the wavefronts
in front of the photodiode (and not in front of the beam compressor). Since the
beam sizes are reduced by 1{m � 8 by the beam compressor, the flat top radius at
the photodiode is approximately wr � 4.0{8 mm � 0.5 mm. Then a wavelength of
1064 nm results in an amplification factor of mDWS � 2506 rad{rad. If the wavefront
tilt before the beam compressor αBC is used, the αPD in eq. (3.128) needs no be
replaced by αBC{m, because the beam compressor magnifies the wavefront tilt. The
amplification is then mDWS{m � 20050 rad{rad. It is noteworthy that the radian
in the denominator describes a geometrical angle between wavefronts in front of the
photodiode or beam compressor, while the radian in the numerator stands for the
phase of an electric signal (generated by the photodiode). However, this derivation
assumes two flat top beams. A more general analytical treatment of DWS can
be found in [Hechenblaikner, 2010]. Another equation for two beams with Gaussian
intensity shape and waist radii w1 and w2 and flat phase profile is derived in appendix
C. The photodiode radius is denoted as rPD, while Erfpq is the error function:

DWSh,v � mDWS � αPD
h,v �

4 � αPD
h,v

λ
� 2 � rPD � z �

?
π � er2PD�z

2 � ErfprPD � zq
per2PD�z

2 � 1q � z
with z �

b
1{w2

1 � 1{w2
2. (3.129)

In the case of flat intensity (w1 � w2 Ñ8) over the whole photodiode, the equation
simplifies to

DWSh,v �
16 � αPD

h,v � rPD

3λ
. (3.130)

While the case of one flat intensity profile (w1 Ñ8) over the whole photodiode and
a Gaussian profile with w2 � 2.5{8 mm provides an amplification factor of

mDWS � 1888 rad{rad (3.131)

for a photodiode radius of rPD � 0.5 mm. The corresponding IfoCad result for
the same parameter is 1885 rad{rad. The photodiode slit was neglected in this
derivation.
For the LRI the ratio of DWS signal and wavefront tilt before the beam compressor
(and not before the photodiode) is of interest. Thus the effective DWS amplification
factor is

mDWS

m
� 1888 rad{rad � 8 � 15104 rad{rad, (3.132)

whereas this is the more important ratio of relative wavefront tilt before the beam
compressor to phase angle of the electric signal. This effective factor (eq. 3.132)
is independent of the beam compressor magnification m to first order, because the
waist sizes and hence mDWS is proportional to m and cancels with the denominator.
This is obvious for the simplified formula for mDWS (eq. (3.128)), whereas eq. (3.129)
requires a first order expansion in z � 1{m.

15amplitude has a sharp drop to zero at wr
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3.4.5 Steering Mirror

The LRI requires a two axes (tip/tilt) steering mirror (SM) with a few milliradian
range in tip and tilt to compensate the spacecraft attitude jitter and static misalign-
ment between LRI and spacecraft, which might be caused by the spacecraft launch.
It should allow a pointing of the outgoing beam towards the distant spacecraft with
errors far below 100µrad, as we will see later in section 3.5.1.
The actuator can be based for example on the piezo effect or voice-coils.
The local coordinate system of the steering mirror is shown in figure 3.20. A tilt is
defined as a rotation around ~ew by an angle hSM (horizontal), while a tip is around
~ev by an angle vSM (vertical). The mirror normal vector ~eu forms roughly a 45
degree angle with the x-axis, which is the optical axis. Furthermore, we consider
small initial misalignments of the mirror, which are given as rotations by the angles
u, v, w around the axes ~eu, ~ev, ~ew, respectively. A rotation matrix around a vector
~a with rotation angle α is denoted with R̂p~a, αq. With this notation, the mirror
coordinate system can be derived as

~eu �R̂p~ez, 45�q � R̂p~ez, wq � R̂p~ey, vq � R̂p~ex, uq � ~ex, (3.133)

~ev �R̂p~ez, 45�q � R̂p~ez, wq � R̂p~ey, vq � R̂p~ex, uq � ~ey, (3.134)

~ew �R̂p~ez, 45�q � R̂p~ez, wq � R̂p~ey, vq � R̂p~ex, uq � ~ez. (3.135)

Because small angles u, v, w are assumed, the corresponding rotation matrices com-
mute and the order of rotations does not matter. The angle w can be seen as
additional offset to the 45�.

Figure 3.20: Coordinate system of the steering mirror. Beam b1 is reflected at the
mirror into b2 and propagates parallel to the x-axis.

In the nominal state of the steering mirror, a beam ~b1 is reflected into beam ~b2,ini,

whereas ~b2,ini is parallel to the optical axis (x-direction). If the normal vector direc-

tion ~eu is given, the direction of ~b1 is determined by

~b1 :� �R̂p~eu, 180�q �~b2,ini. (3.136)

It is useful to know how rotations by vSM and hSM around the steering mirror axes
change the angle of the reflected beam b2 w.r.t. the y- and z-direction, which are
denoted by hBC, vBC. These are the angles of the local laser beam before the beam
compressor relative to the optical axis. For small angles these expressions can be
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derived:

hBC,v � ~b2 � ~ey � p�R̂p R̂p~ev, vq~eu, 180�q �~b1q � ~ey,
hBC,h � ~b2 � ~ey � p�R̂p R̂p~ew, hq~eu, 180�q �~b1q � ~ey,
vBC,v � ~b2 � ~ey � p�R̂p R̂p~ev, vq~eu, 180�q �~b1q � ~ez,
vBC,h � ~b2 � ~ey � p�R̂p R̂p~ew, hq~eu, 180�q �~b1q � ~ez, (3.137)

while a linearization provides

hBC,v � 2 � u � vSM

hBC,h � 2 � hSM

vBC,v � �
?

2 � vSM � p1� wq
vBC,h � �

?
2 � hSM � pu� vq. (3.138)

This means, if there are no initial misalignments (u � v � w � 0) and the mirror
reflects the initial beam b1 by 90� into the optical axis, a tilt hSM of the steering
mirror causes a beam tilt (and in the plane wave approximation also a wavefront
tilt) at the beam compressor by 2 � hSM, whereas a tip by vSM produces a tip by
�?2 � vSM at the beam compressor. The sign convention for angles hBC,v{h, vBC,v{h

was chosen arbitrarily in this derivation.

3.4.6 DWS Control Loop

In the last two sections we introduced the signals measured by the photodiode on
the optical bench and the steering mirror. In this section the combination of both
in a DWS control loop is explained, which ensures the parallelism of incoming and
outgoing beam on the OB.
The racetrack configuration only works if the incoming received and the outgoing
local beam are sufficiently parallel. If the optical bench introduces a deflection of
the beam in the racetrack, the light might miss the distant spacecraft after the the
propagation of 200 km (see fig. 3.2 and subsequent sec. 3.5.1). Assuming a perfect
TMA, the angle between the received beam and outgoing beam towards the distant
spacecraft depends on the direction of the incoming beam w.r.t. the OB and the
steering mirror state. On left side of figure 3.21, the incoming received beam and
outgoing local beam on the optical bench are parallel. If the local spacecraft is tilted
by β (fig. 3.21, middle), the wavefront of local and received beam will be tilted by
β, assuming a plane wave approximation. The wavefront angle is magnified by 1{m
due to the beam compressor and measured by the DWS at the photodiode. The tip
angle is measured in the same way. This information is used in a feedback control
loop to rotate the steering mirror, such that the DWS signal is kept close to zero in
both axes. In this case the outgoing beam and the received beam will stay parallel
(fig. 3.21, right).

94



Figure 3.21: Left: Nominal configuration, where outgoing and incoming beam are
parallel. Middle: Incoming beam is tilted by β, which results in a wavefront tilt
by β{m at the QPD, beams are non-parallel. Right: Steering mirror rotates such
that DWS is kept close to zero and outgoing and incoming beam are parallel.

It is noteworthy that the received light at the spacecraft is an almost spherical wave
with 200 km phase front radius of curvature and a waist radius of about 27 m. Only
a small fraction is cut out, therefore, the phase front is assumed to be almost flat
and a plane wave approximation on the optical bench is justified. Due the fact that
Gaussian beams are almost spherical in the far-field, the propagation direction of
the light is to first order independent on transmitter rotations. Thus, transmitter
rotations (rotations of the distant spacecraft) do not change the received wavefront
direction in fig. 3.21. This topic is treated in detail in sec. 3.5.1.
When the control loop is closed, the attitude of the steering mirror necessary to
obtain zero DWS signal gives precise information on the spacecraft attitude w.r.t. the
LOS. These data will be collected as part of the science data and used in the on-
ground processing.

3.4.7 Compensation Beamsplitter

A problem arises due to the fact that the optical pathlength through a beamsplitter
is dependent on the incidence angle on the beamsplitter.
Placing a beamsplitter or just a glass plate with a tilt of α0 in an optical path will in
general result in a lateral shift of the transmitted beam as well as in a change of phase
(or accumulated optical pathlength). The pathlength effect can be computed easily
using figure 3.16. The geometrical pathlength GPL(α0) through a beamsplitter is
given in equation (3.92). If this distance is projected onto the original ray direction,
the equivalent pathlength without beamsplitter cao

BSpα0q is obtained (eq. (3.93)). All
other paths are common. If the ray is tilted by α w.r.t. the optical axis, the optical
pathlength difference due to the beamsplitter is

∆p � nBS �GPLpα0 � αq � nvac � cao
BSpα0 � αq. (3.139)

For the orthogonal s-direction, the beam may be deflected by an angle β. For the
beamsplitter, the refraction angle arcsinpsinpβq{nBSq has to be used, while without
beamsplitter, the angle is just β. The contribution is

∆s � nBS � GPLpα0q
cosparcsinpsinpβq{nBSqq � nvac � c

ao
BSpα0q
cospβq . (3.140)

The lateral shift has no effect in the case of plane waves and a beamsplitter with
zero wedge angle. Using a series expansion one can obtain a combined equation for
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the optical pathlength change due to a beamsplitter:

∆OPLpα0, αq � cBS �
�
nBS

b
1� sinpα0q2{n2

BS � cospα0q



� α � cBS � sin pα0 � arcsinpsinpα0q{nBSqqb
1� sinpα0q2{n2

BS

� 1

2
α2 � cBS �

���cospα0q � n2
BS � cospα0q2b
n2

BS � sinpα0q2
3 �

sinpα0q2b
n2

BS � sinpα0q2

��
�Orα3s

� 1

2
β2 � cBS �

��cospα0q � sinpα0q2 � 1

nBS

b
1� sinpα0q2{n2

BS

�
�Orβ4s. (3.141)

Evaluation of the formula for a 5 mm BK7 beamsplitter with �45� tilt angle provides

∆OPL � 3.116 mm� 1.65639µm{mrad � α� 1.50 nm{mrad2 � α�Orα3s
� 0.83 nm{mrad2 � β2 �Orβ4s, (3.142)

which is compared to raytracing results in section 3.6.7. The constant offset is
unimportant16, because the LRI measures only length changes. For a beam tip the
coupling into length change is sufficiently small. The angular dependency for beam
tilts can be decreased by placing a second beamsplitter, which is rotated by 90�. In
the sum of both contributions the linear term cancels, because the sign of the linear
term is dependent on the beamsplitter orientation. However, the constant offsets
and quadratic terms add up.
In figure 3.22 the different pathlengths for the LRI setup are depicted: on the left
side for a non-tilted beam traveling along the optical axis, while on the right side
a beam tilt of �α is used. The local beam is transmitted through the substrate
and is interfering with the received light from the aperture at the interference point
(IP in figure 3.22). In the nominal (and simplified) case, the phase difference of the
local beam and received beam at this point is measured by the photodiode, because
the remaining distance to the QPD is common to both beams. Most of the local
beam light at the IP is reflected towards the TMA. The light passes a second time
through the beamsplitter substrate and accumulates extra pathlength due to the
distance s and some vacuum propagation over t. If the beam is initially tilted by
�α, the tilt at the compensation beamsplitter is �α yielding different angles in the
beamsplitter and a distance s1. Afterwards, the beam travels towards the TMA.
The second beamsplitter also compensates the lateral shift introduced by the first
beamsplitter, which is actually not required.

16The term becomes interesting, if fluctuations of the beamsplitter thickness and refractive index
due to temperature are analyzed.
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Figure 3.22: Working principle of the compensation plate. Left: Local beam has
no tilt and travels along the optical axis. Right: Local beam has a tilt of �α.

The interesting distance is the one between IP and
the reference plane. One can simplify the drawing
(figure 3.22) to the schematic shown in fig. 3.23.
The path t is parallel to the initial ray and can be
swapped with s1. The additional phase has to be
gained on the distance

s� s1 � ∆OPLpα0,�αq �OPLpα0,�αq,
(3.143)

which has no linear term. Furthermore, the dis-
tance between both beamsplitters is unimportant
in case of zero-wedged components.
The backside of the recombination beamsplitter
and both sides of the compensation plate should
have an anti-reflective coating to minimize unde-
sired reflections.
An alternative approach to decrease the influ-
ence of angle-dependent pathlength changes in the
beamsplitter is to reduce the tilt α0 of the beam-
splitter.

Figure 3.23: Detour
through beamsplitter
and compensation plate

The linear term magnitude is approximately proportional to α0. Decreasing α0

would also decrease the astigmatism, but the linear term might be still too large.
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Figure 3.24: Simplified model of the two spacecrafts.

3.5 Simplified LRI Model

The LRI measures the distance between two spacecraft, which are separated by
about 200...300 km. If each satellite is assumed to be a rigid body, each has physically
six degrees of freedom. In addition, each of the steering mirrors provide two angles,
which can be adjusted. Furthermore, the optical bench can introduce further errors
in the optical pathlength or the beam direction.
It is advisable to separate this complex system into smaller subsets, which can be
understood more easily.
In the first subsection, the far-field behavior of a Gaussian beam is analyzed. The
power of the top hat beams on each spacecraft and the propagation direction of
the beams are estimated. Also the phase error at a distant aperture is derived, for
example if the steering mirror does not guide the outgoing beam perfectly to the
distant spacecraft. Finally, a model for the measured phase in a racetrack config-
uration accounting for the S/C attitude and the steering mirror state is presented,
whereas optical bench or TMA construction errors are neglected.
In the second subsection (3.5.2) a simplified model for round-trip measurements
including the optical bench is presented. Based on this model, a particular optical
bench setup is simulated in detail in section 3.6.

3.5.1 Inter-Satellite Propagation

Each satellite receives light at an aperture and sends out a Gaussian beam. We
assume that each spacecraft has a receive aperture for the entering beam at center
~P1 and ~P2, as depicted in figure 3.24. ~P2 and ~P4 are virtual points which are placed
on the transmitted beam. The position and purpose of these points will be explained
later. If the DWS control loop and the optical bench is working on both spacecrafts
without any disturbances, the propagation directions ~k1 and ~k2 are anti-parallel
regardless of the attitude of both spacecrafts.
The coordinate system origin is co-located with the CoM of S/C 1 and aligned with
the LOS. Thus, each satellite has 3 degrees of freedom (yaw, pitch and roll)17. In
addition the inter-satellite distance L can change.

Top hat beam power

An interesting quantity for the interferometer is the power of the top hat beam
on each spacecraft, because it influences the contrast of the interferometer and the

17roll: rotation around LOS; yaw: rotation around z-axis in fig. 3.24
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signal level at the photodiode. The power of the top hat beams is equal to the power
collected by apertures at ~P1 and ~P3. For the computation of the collected power,
the intensity at the apertures is required. In case of the intensity at S/C 2 (S/C 2
is the receiver, RX) a misalignment of S/C 1 (transmitter, TX) results in a drop of
intensity, as one can see in figure 3.25. A misalignment of the receiver has only a
small influence.

Figure 3.25: Tilted Gaussian beam in the far-field.

Recall that the electric field of a Gaussian beam with z-propagation direction can
be written as [Saleh & Teich, 1991, eq.3.1-7]

Epx, y, zq � A0
w0

wpzqe
�x2�y2

wpzq2 e
�ipk�z�k x

2�y2

2Rpzq
�ζpzq{kq

, (3.144)

with Gouy phase

ζpzq � arctan

�
z

z0



. (3.145)

The intensity can be rewritten in normalized form as [Saleh & Teich, 1991, eq.3.1-15]

Ipx, y, zq � |Epx, y, zq|2 � P
2

πωpzq2 e
�2

�
x2�y2

ωpzq2



. (3.146)

The transverse distance

s � sinpαTXq � L � αTX � L (3.147)

to the evaluation point ~P3 in fig. 3.25 is equal to x2 � y2 in eq. (3.144). Thus, one
can write the received intensity IRX as

IRXpαTXq � PTX
2

πω2
RX

e
�2

�
αTX�L

ωRX

	2
, (3.148)

where ωRX is the approximately 30 m spot size radius at the receiver spacecraft and
L the satellite separation. The spot size ωRX depends on the initial waist size w0

and on the spacecraft separation. The transmitter power PTX is assumed to be
15 mW and αTX is the misalignment angle of the transmitter w.r.t. the LOS. Since
Gaussian beams are circularly symmetric around their propagation axis, the pitch
and yaw rotation of the spacecraft have the same effect, while roll has no influence
in the far field in this derivation. The power collected by the aperture and hence
the power of the flat top beam on the optical bench is then given approximately by
the product of intensity and effective area of the aperture:

PRXpαTX, αRXq �
»

Aperture
IRX da � IRXpαTXq � πr2

AP � cospαRXq, (3.149)
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although an integration would be more precise, but disproportionately expensive in
terms of computation time, considering that for the 200 km spacecraft separation
the intensity is almost constant over the small receive aperture area.
The received beam power as a function of transmitter misalignment for different
spacecraft separations is shown in fig. 3.26. The sharp drop starting at approx-
imately 100µrad underlines the necessity for a steering mirror to compensate for
spacecraft attitude jitter, which is assumed to be larger than 100µrad, and for
static misalignments between the LRI and spacecraft, which might be caused by the
vibration during the S/C launch.

Figure 3.26: Light power received at an apperture with radius rAP � 4 mm,
transmitted power of PTX � 15 mW and waist size of w0 � 2.5 mm for three different
spacecraft separations.

Top hat beam direction

The (local) propagation direction ~kloc of the light, e.g. at the receive apertures, is
not parallel to the ~k1,2 vectors, because Gaussian beams have spherical wavefronts
in the far field. This effect was indicated with the small blue vector in fig. 3.25. We
assume the propagation direction to be normal to the wavefront of the light, which
holds for isotropic loss-free media [Mayer, 1993, p. 33]. Under this assumption, the
normalized (local) propagation direction at the aperture center can be computed by
the normalized gradient of the phase:

~kloc,normpx, y, zq �
pBϕBx , BϕBy , BϕBz qT���pBϕBx , BϕBy , BϕBz qT��� , (3.150)

where ϕ � ϕpx, y, zq is the phase of the Gaussian beam and the derivatives are
evaluated at the aperture center.
Instead of the phase one can also use a phase-derived optical pathlength ρ, which is
proportional to the phase:

ρ :� ϕ
λ

2π
. (3.151)

For a Gaussian beam with propagation direction along z and with an offset zoff in
the waist position, eq. (3.144) yields

ρpx, y, zq � z � x2 � y2

2 �Rpz � zoffq � λ
arctanppz � zoffq{zrq

2π
, (3.152)
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where a refractive index of 1.0 is assumed. According to fig. 3.24 and 3.25, an
expression for an arbitrary beam direction ~k is preferred, where the beam originates
at ~o and the evaluation point is ~x. A straight forward derivation leads to

ρp~o,~k, ~x, w0, zoffq � p~x� ~oq � ~k � |~x� ~o|2 � |p~x� ~oq � ~k|2
2 �Rpp~x� ~oq � ~k � zoffq

� λ

2π
arctan

�
p~x� ~oq � ~k � zoff

zr

�
,

(3.153)

where the phase front radius of curvature Rpzq and the Rayleigh range zr depend
on the waist size w0. The equation

~klocpx, y, zq �
�Bρ
Bx,

Bρ
By ,

Bρ
Bz

T

(3.154)

is the non-normalized version of eq. (3.150) and needs to be evaluated. Therefore
we assume the configuration shown in fig. 3.25:

~P2 �
��0

0
0

�
, ~P3 �
��L0

0

�
. (3.155)

The inter-satellite separation is set to L � 200 km and a waist size of w0 � 2.5 mm
is used. The nominal beam direction ~k1 � p1, 0, 0qT is rotated by an angle u around
x (roll), y (pitch) and z (yaw), respectively, with center of rotation at ~P2. The
resulting non-normalized local direction of the wavefront at the aperture ~P3 is then

~kloc,yaw �

��� 1.0� 4.26�10�9

rad2 u2

8.5�10�9

rad u� 5�10�6

m�rad u � zoff

0.0

��
, (3.156)

~kloc,pitch �

��� 1.0� 4.26�10�9

rad2 u2

0.0

�8.5�10�9

rad u� 5�10�6

m�rad u � zoff

��
, (3.157)

~kloc,roll �
��1.0

0.0
0.0

�
, (3.158)

where zoff is the waist distance from the origin given in meters, while u has units of
radians. The results show that in the inertial frame the local wavefront direction on
the optical bench is almost parallel to the LOS ( p1, 0, 0qT ) even for 1 mrad beam
deflection. This means that the direction of the top hat beam is parallel to the LOS
and independent of the transmitter and receiver misalignment18, in contrast to the
top hat beam power, which drops rapidly with transmitter misalignment.

Pointing induced phase changes

One should note that the phase and the radius of curvature of the phase fronts at the
receive aperture are slightly different in the tilted transmitter compared to the non-
tilted transmitter case, because the center of phase front curvature is not co-located
with the center of rotation. This introduces a phase change on the receive aperture,
if the transmitter steering mirror is rotated. This error shall be investigated.

18In a satellite fixed coordinate system the direction of the top hat beam and the LOS is apparently
dependent on the satellite rotation.
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As before we assume the beam origin at the center of the coordinate system and an
aperture in L � 200 km distance. The rotation of the beam is described with the
rotation matrix R̂u. The phase-derived pathlength error is computed with

δρ � ρp~P2, R̂u � ~k1, ~P3, w0, zoffq � ρp~P2,~k1, ~P3, w0, zoffq. (3.159)

For the different rotation axes one obtains

δρyaw � δρpitch � �8.5 � 10�4m

rad2
� u2 � 0.5

rad2
� u2 � zoff, (3.160)

δρroll � 0. (3.161)

Due to the circular symmetry of the Gaussian beam, the yaw and pitch direction
have the same result, while the roll contribution is zero. In the far-field a Gaussian
beam approximates (only) asymptotically a spherical phase front [Saleh & Teich,
1991, fig.3.1-6]. This means that the center of phase front curvature is not exactly
at the waist position. Thus, a small phase change at the aperture is obtained, even
if the Gaussian beam waist is co-located with the center of rotation (zoff � 0). With
a waist position zoff � �z2

r{L � �14 mm the center of rotation and center of phase
front curvature coincide and the coupling vanishes.
A waist distance zoff � 2 m from the center of rotation and a beam misalignment
of u � 50µrad yields a phase-derived pathlength change of 2.5 nm. The u value
corresponds to the residual error in the beam pointing, for example, if the DWS loop
and steering mirror do not compensate the spacecraft attitude jitter completely or
the TMA introduces a deflection. Because the coupling is quadratic, we assume a
working point at 50µrad. This means that there is a constant misalignment between
LOS and the beam direction by 50µrad. In this case, the coupling factor can be
linearized around the working point to

δρyaw � δρpitch � �8.5 � 10�11m

mrad
� u� 0.5 � 10�7

mrad
� u � zoff

�� 85nm � u

1 rad
� 5 � 10�5 � zoff � u

1 rad
. (3.162)

Finally, a jitter δũ � 10µrad{?Hz causes a phase error equivalent to 1 nm{?Hz,
where zoff � 2 m was assumed again. This jitter might be introduced by steering
mirror motion. Current stability measurements of the steering mirror (using DWS)
in the laboratory experiment showed a residual noise below 10µrad{?Hz in the
interesting frequency band.

Racetrack phase-derived pathlength

The phase variations at an aperture in the previous subsection were derived for an
on-axis Gaussian beam with origin at the coordinate system center. In this section
a model for the phase-derived racetrack pathlength ρRT is established, which can be
computed by the sum of the pathlengths of each section (see fig. 3.24):

ρRT �ρp~P1, ~P2q � ρp~P2,~k1, ~P3, w0, zoffq
� ρp~P3, ~P4q � ρp~P4,~k2, ~P1, w0, zoffq. (3.163)

If the waist offset zoff is zero, the waists of the emitted Gaussian beams are at the
origin points ~P2 or ~P4, respectively.
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Figure 3.27: Ray propagation through S/C 1 in the case of a deflected beam at
the aperture.

The points ~P2 and ~P4 have not been defined yet. To simplify the computation of the
pathlength through the TMA, it is advisable to choose ~P2 (and ~P4) such that the
points are located in the virtual plane on each S/C as depicted in fig. 3.27 for one
S/C. The plane is normal to the ray �~k1, which starts at the receive aperture and
propagates through the TMA. The virtual plane has already been discussed in the
section 3.3 about the TMA. It is assumed that the initial ray �~k1 is not parallel to
the LOS, which would be caused in a full scale model, considering the optical bench,
by a rotation of the steering mirror. The TMA is assumed here to act as perfect
retro-reflector, such that the emitted light from the S/C 1 has a direction �~k1.
The deflection of the ray direction �~k1 from the LOS is denoted with the angles h
and v. Therefore, the ray direction is a function of these angles

~k1 � ~k1ph, vq � ~kh,v1 � R̂ph, vq � ~kLOS , (3.164)

where R̂ is a rotation matrix. The deflection may incorporate undesired deflections
due to TMA imperfections, the Optical Bench and the DWS control loop, The point
~P2 (and analogously ~P4) can be computed easily with

~P2p~kh,v1 , ~P1q � 2 � p~kh,v1 � ~P1q � ~kh,v1 � ~P1. (3.165)

With this definition, the pathlength from ~P1 to ~P2 (and analogously from ~P3 to ~P4)
can be obtained easily (see property list of corner-cubes, item 3, in sec. 3.3.2):

ρp~P1, ~P2q � 2 � ~kh,v1 � ~P1. (3.166)

For simplicity we assume that only S/C 1 can rotate by angles α, β, γ, which cor-
respond to roll, pitch and yaw, respectively. A rotation of the satellite changes the
position of ~P1 according to

~Pα,β,γ1 � R̂pα, β, γq � ~P1, (3.167)

and the position of ~P2, because ~P2 depends on ~P1. R̂ is a rotation matrix.
A problem arises due to the definition of the waist position of the emitted Gaussian
beam. The waist position is measured from the beam origin ~P2, which is dependent
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on the angles h and v. Thus, the waist position varies in LOS direction with angles
h and v. We redefine the waist origin to be referred to the receive aperture by
changing

zoff Ñ zoff � ρp~P1, ~P2q. (3.168)

This results in the following round-trip phase-derived pathlength:

ρRTph, v, α, β, γq � ρp~Pα,β,γ1 , ~P2p~kh,v1 , ~Pα,β,γ1 qq
� ρp~P2p~kh,v1 , ~Pα,β,γ1 q,~kh,v1 , ~P3, w0, zoff � ρp~Pα,β,γ1 , ~P2p~kh,v1 , ~Pα,β,γ1 qqq
� ρp~P3, ~P4q
� ρp~P4,~k2, ~P

α,β,γ
1 , w0, zoff � ρp~P3, ~P4qq, (3.169)

accounting for spacecraft rotations (α, β, γ) and beam deflections (h, v) on S/C 1. In
this derivation the phase at the receive apertures is assumed to be constant over the
whole aperture area. Upon spacecraft rotation the aperture center will sweep over
the phase front of the large Gaussian beam coming from S/C 2. While varying the
beam deflection angles h and v results in a change of the phase and of the intensity
at the receive aperture of the distant S/C 2.
The previous equation can be evaluated using an algebraic and symbolic math pro-
gram (like Mathematica). Solving the equations completely numerically or using a
raytacing approach potentially introduces numerical errors, because the magnitude
of the phase-derived pathlength is in the order of 400 km, while nanometer changes
shall be observered19. In the following, again a spacecraft separation of L � 200 km
is assumed, while the receive apertures are placed at

~P1 �
�� 1 m
�0.3 m

0

�
, ~P3 �
��L� 1 m
�0.3 m

0

�
. (3.170)

The CoM and TMA vertex of S/C 1 is at the coordinate system origin. This results
in a lateral distance between incoming and outgoing beam of 60 cm. The waist size
is again w0 � 2.5 mm and a wavelength of λ � 1064 nm is used.
For rotations α, β, γ (roll, pitch and yaw) of S/C 1 the following series expansion of
the round-trip optical pathlength can be obtained:

ρRTph � 0, v � 0, α, β, γq � 400 km� 532.0 nm

� 4.5 � 10�7 m

rad2
α2 � 5.0 � 10�6 m

rad2
� β2 � 5.0 � 10�6 m

rad2
� γ2

� 3.0 � 10�6 m

rad2
� α � β

� zoff � p0.225α2 � 2.5β2 � 2.5γ2q � 10�11

rad2
. (3.171)

The first line of eq. (3.171) has a constant term of twice the S/C separation and a
term almost equal to λ{2, which is due to the accumulated Gouy phase. The Gouy
phase is a function of the spacecraft separation, which approaches asymptotically
π{2 and changes only very slowly in the far-field. The absolute values in the first line
of eq. (3.171) are not accessible, because the LRI can only measure phase changes.
The further lines reveal that spacecraft rotations do not introduce significant phase
changes at the receive apertures, even if the waist position has an offset of zoff � 2 m.

19covering 14 magnitudes of order, while machine epsilon (for double precision floating point) is
in the order of 10�16
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In case of a fixed spacecraft (α � β � γ � 0), the following dependency on pointing
error v and h is obtained:

ρRTph, v, α � 0, β � 0, γ � 0q � 400 km� 532.0 nm

� 8.5 � 10�4 m

rad2
pv2 � h2q � zoff

2
� 1

rad2
pv2 � h2q.

(3.172)

The first two terms of eq. (3.172) are the same as in the previous equation, while
the last two terms have been observed already in eq. (3.160).
The results (3.171) and (3.172) verify that the phase error introduced by spacecraft
rotations or beam deflections are small, which was already obtained in the separated
analysis in the previous subsections. However, the model in this subsection accounts
for the fact that the beams are laterally displaced w.r.t. LOS. Thus, the effect of
S/C roll (angle α) is visible in eq. (3.171), but not in eq. (3.161).
All the analysis in this subsection referred to the simplified four point model depicted
in fig. 3.24, which neglects potential optical bench and TMA construction errors.
Also refractive index fluctuations between the spacecrafts have not been considered,
but they should be small and their contribution negligible.

3.5.2 Round-Trip Optical Bench Model

Here the computation of round-trip pathlength changes in a model consisting of
TMA and optical bench is described, where the distant spacecraft is neglected. This
model is also used to compute the effect of optical bench construction errors, in other
words, the effect of misadjustment and misalignment of components on the round-
trip measurements. Various simulation results and the detailed input parameters
can be found in the next section 3.6.
A simplified sketch of the setup is depicted in fig. 3.28. The laser light emitted by
the master spacecraft laser with initial phase Φ travels along path a and x to the
virtual plane. The phase at that point is

ε � kpa� xq � Φ (3.173)

with k � 2π{λ. The slave spacecraft acts as a transponder, which sends the light
back with the same phase, but different frequency20. Therefore, the phase σ can be
written as

σ � ε� offset, (3.174)

where the offset is some phase delay due to the propagation behind the virtual plane.
This offset is assumed to be constant and therefore negligible, because the virtual
plane is co-moving with the transponder. The measured phase difference at the
photodiode is therefore

ϕ �σ � kpy � b1q � kpa� b1q � Φ � ka1 � kx� Φ1 � ky � kb1 � ka� kb2 � Φ

�kpa1 � aq � pΦ1 � Φq � kpx� yq � kpb1 � b2q � kpx� yq � kpb1 � b2q, (3.175)

where the prime (1) denotes values that are delayed by the round-trip time. The
first two terms are neglected in the last approximation, because they account for
the laser phase or laser frequency noise (see section 3.2.2) and for a pathlength noise
between beamsplitter and fiber coupler (see section 3.2.3). The contribution of these
noise sources has been computed in the corresponding sections.

20this may sound contradictory, because the phase is the time integral of frequency. In the context
of PLLs the phase is understood as the integrated frequency without the frequency offset, which is
introduced in a mixer and desired from the spacecraft master oscillator.
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Figure 3.28: Pathlengths used in the round-trip simulation with the optical bench
and TMA. The beam compressor is neglected for simplicity in this figure.

A round trip in figure 3.28 has the length x� y� δs, where δs is the length between
the intersection points at the beamsplitter projected onto the beam direction coming
from the aperture (see right side on the figure). The lateral offset of the ray segment
y, which causes the separation between the dashed and the non-dashed path, has
no influence under a plane wave approximation.
It turns out that b1 � b2 � δb � δs. This can be seen easily, if an auxiliary ray is
used (fig. 3.28, right). The distances δs and δb describe the lateral displacement of
two rays before and after reflection at a flat surface. It is well known that reflections
at a flat surface do not change the lateral displacement of parallel beams regardless
of the incidence angle21.
Therefore, the measured phase (eq. (3.175)) is proportional to the round-trip length,
which is twice the distance between center of mass or corner-cube vertex and virtual
plane (property of corner-cube, cf. 3.3.2).
The shifted intersections on the beamsplitter and thus these discontinuities in the
racetrack have no effect in case of flat phase fronts. The effect of curved phase
fronts was not analyzed. It is therefore recommended to keep the distance between
both intersection points small, e.g., by keeping the distances from aperture/steering
mirror to the beamsplitter small. This minimizes the effects caused by curved phase
fronts, because on small scales the phase fronts are flat (locally flat).

3.6 Simulation Results Optical Bench

3.6.1 Beam Compressor

An IfoCad simulation was written to verify the equations presented in section 3.4.1
about the beam compressor. The parameters of the simulation are given in table 3.1.
The values match with those of optical components used in laboratory experiments
for the GFO LRI.

21equivalent is the statement that the virtual image formed by a flat mirror has the same size as
the object [Galen C. Duree, 2011, p.70]
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Parameter Lens 1 value Lens 2 value

focal length f1, f2 81.460 mm 10.200 mm
center thickness c1, c2 4.000 mm 5.000 mm
substrate radius 12.700 mm 5.000 mm
type plano-convex plano-convex
substrate material BK7 BK7
substrate refractive index n 1.50663 1.50663

radius of curvature r1, r2 41.27047 mm -5.16767 mm
front focal distance FFD 81.460 mm 6.881 mm
back focal distance BFD 78.805 mm 10.200 mm

Table 3.1: Initial and derived parameters of the beam compressor setup.

The distance between object and image plane dOI is computed by the analytical
expression (eq. (3.86) to (3.90)) and is compared to the ray-tracing result. The
latter approach uses several rays, which originate at the object plane (see fig. 3.15
in sec. 3.4.2). The image points and image plane are determined by finding a point
location that minimizes the distance to all rays (at the back side of lens 2). Using
on-axis and off-axis rays allows also the determination of the magnification factor
of the beam compressor. The results for a particular value of d1 � 120 mm are
tabulated in table 3.2, while the functional dependency d3pd1q is (eq. (3.89))

d3pd1q � �0.0157 � d1 � 11.4472 mm. (3.176)

The image plane is in the best case about 1 cm behind the second lens. Positioning
of cameras, e.g. for wavefront analysis, is therefore complicated for this lens system.
The ray-tracing results and analytical results coincide quite well.

Parameter Symbol Analytical Ray-tracing

distance object to lens 1 d1 120.000 mm 120.000 mm

magnification factor m -0.125215 -0.125212
distance lens 2 to image plane d3 9.595741 mm 9.595520 mm
distance object to image plane dOI 224.282163 mm 224.281950 mm

Table 3.2: Ray-tracing results and analytical results.

In a next step, a beamsplitter with thickness cBS, tilt-angle α0, and refractive index
nBS is placed in the setup. This causes a shift of the image plane in the direction of
the ray propagation and a separation into a s- and p-direction. The new image planes
are shifted by ∆ds3 � m2∆ds and ∆dp3 � m2∆dp, respectively. To compensate for
this effect, the distance between object and first lens has to be increased in the s-case
by ∆ds and in the p-case by ∆dp. These values have been determined analytically
(eq. (3.95) and (3.103)) and by ray-tracing. For the determination of ∆d1 values in
the ray-tracing procedure, the object plane is shifted around, until the image points
matched the value without a beamsplitter. The results for some configurations are
shown in table 3.3. Additionally, the lateral shift ∆y due to the beamsplitter is
given there.
The last line indicates the configuration currently used in the laboratory experi-
ments. Here, the beamsplitter causes a shift by 26µm and 47µm of the image
plane. Assuming the average between the s- and p-case, the steering mirror should
have an offset w.r.t. the nominal object plane of p1.656 � 3.005q{2 mm � 2.3 mm
along the optical axis away from the lenses. Furthermore, the optical axis is shifted
laterally by ∆y � 1.656 mm at the beamsplitter.
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Parameter Analytic [mm] Analytic�Ray-tracing [nm]
nBS α0 cBS* ∆ds ∆dp ∆ds3 ∆dp3 ∆y** δ∆ds δ∆dp δ∆ds3 δ∆dp3
1.2 45� 1.0 0.191 0.433 0.003 0.007 0.191 0.000 0.000 0.184 0.405
1.2 45� 6.0 1.148 2.597 0.018 0.041 1.148 0.000 0.000 1.080 2.439
2.0 45� 1.0 0.440 0.669 0.007 0.010 0.440 0.000 0.000 0.417 0.635
2.0 45� 6.0 2.639 4.014 0.041 0.063 2.639 0.000 0.000 2.486 3.775
2.0 30� 6.0 3.872 3.492 0.045 0.055 1.658 0.000 0.000 2.704 3.290

1.507 45� 5.0 1.656 3.005 0.026 0.047 1.656 0.00 0.000 1.561 2.827

Table 3.3: Verification of the analytical model by computing the difference between
the analytical solution and the ray-tracing result; *units of mm; **lateral shift ∆y
due to beamsplitter matched ray-tracing results up to sub-nm

The analytical expression (eq. (3.95) and (3.103)) models the ray-tracing result up
to nanometer for the image plane. The deviation is assumed to be due to the ray-
tracing image-point fitting procedure, but was not investigated deeper.
A further comparison can be done to the Gaussian beam tracing of IfoCad. The
beam parameters are transformed at each surface according to the ABCD matrix
formalism. For an initial beam with waist ω0 � 2.5 mm at the object plane and
wavelength λ � 1064 nm, the q-parameter is q � 18, 45 m � i. The waist position
of the exiting beam leaving the second lens is compared to the analytical result in
table 3.4.
There is only a small constant deviation in sub-nanometer level between the analyt-
ical and q-tracing procedure. Comparing the evolution of the IfoCad q-parameter
with analytical transformation leads to the conclusion that the deviations are caused
by the numerical machine precision. The deviation of 0.215 nm is even present with-
out beamsplitter, thus the analytic equations did not introduce any errors in this
comparison.

Parameter Analytic* Difference: Analytic � q-tracing [nm]

nBS α0 cBS* ds3 �∆ds3 dp3 �∆dp3 δs δp
No BS 9.596 9.596 0.215 0.215

1.2 45� 1.0 9.599 9.603 0.215 0.215
1.2 45� 6.0 9.614 9.636 0.215 0.215
2.0 45� 1.0 9.603 9.606 0.215 0.215
2.0 45� 6.0 9.937 9.659 0.215 0.215
2.0 30� 6.0 9.641 9.650 0.215 0.215

1.507 45� 5.0 9.622 9.643 0.215 0.215

Table 3.4: Verification of the analytical model by comparing waist positions ob-
tained by analytic model and by IfoCad Gaussian beam tracing; *units of mm for
the column(s).

According to the simulation results the analytic model of the shifts ∆ds and ∆dp

seems to be correct.

3.6.2 Beam Compressor: Phase Fronts and Spot Size

Interesting for interferometry, especially for the longitudinal and DWS signal com-
putation, is the phase front of the beams propagating through the beam compressor.
Taking into account the last line from table 3.4, the difference between the waists
in the s- and p-direction is

p∆dp3 �∆ds3q � m2p∆dp �∆dsq � 20µm. (3.177)
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If we assume a photodetector at the waist of the p-direction, the radius of curvature
of the phase front for the s-direction at that point is (eq. (3.113)):

Rspzq � m2p∆ds �∆dpq
�

1� m4 � z2
r,initial

m4p∆ds �∆dpq2
�
� 4.1 km. (3.178)

On a photodetector with radius r � 1 mm this results in a phase deviation of

δρ � Rsp1� cosparcsinp1 mm{Rsqq q � 0.12 nm, (3.179)

where the phase is expressed as equivalent optical pathlength. This is sufficiently
small considering that the radius of curvature of a Gaussian beam, which travels
200 km, is transformed by the beam compressor to a beam with 3.1 km radius of
curvature (eq. (3.110)). The phase front at two different positions is depicted in
fig. 3.29. This plot indicates that the effect of phase front distortion due to astig-
matism is small compared to other effects like a misplaced detector plane or offsets
in the waist position.
The intensity ellipse due to the astigmatism is given by the two spot sizes (eq. (3.114)):

ωppzq � m � 2.5 mm,

ωspzq �
d
λzr
π

�
1� z2

z2
r



� m � ω0 �

d
1� p∆ds �∆dpq2

z2
r,initial

� m � 2.5 mm � p1� 2.4 � 10�9 q,

(3.180)

where m is the beam compressor magnification factor. The spot sizes are almost
equal, such that the intensity ellipse can be considered to be circular.
This very basic analysis of astigmatism is more of academic purpose. It shall provide
the order of magnitude of astigmatic effects. For later simulations the Gaussian
beams are propagated considering effects of general astigmatism. However, also
there the effect of astigmatism did not introduce significant deviations from the
expected behavior or from expected results.

3.6.3 Beam Compressor: Tolerances

So far the results presumed an accuracy of nanometer or even computer machine
precision for the parameters of the beam compressor. In reality the parameters like
focal length or distances are known in the best case up to micrometers. The effect of
misadjustments in the system can be evaluated using eq. (3.116f.), which are given
for simplicity for the thin lens derivation and for distances between principal points.
With the lenses given in table 3.1 and the following parameters (see fig. 3.13):

d1 � 120 mm,

d2 � f1 � f2 � 91.66 mm,

d3pd1q � 9.59574 mm (eq. (3.85)),

m � �f2{f1 � �0.125215, (3.181)

the effect of parameter deviations on an initial ray ~r � py, θqT can be derived:

yfinal � m � y�y � p�0.72 � δd2 � 2.26 � δf1 � 11.55 � δf2q � 1

m
� θ � p�0.12 � δd1 � 0.028 � δd2 � 7.98 � δd3 � 0.27 � δf1 � 7.07 � δf2q,

(3.182)
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Figure 3.29: Top: Phase front at the waist in p-direction; Bottom: Phase front
at 1 mm distance to the p-waist.

θfinal � 1{m � θ�θ � p46.38 � δd2 � 144.42 � δf1 � 736.58 � δf2q � 1

m

� y � 1203.53 � pδd2 � δf1 � δf2q � 1

m2
. (3.183)

The length units are meters and the angle θ has units of radian. From the first
equation one can see that deviations in the focal length of lens 2 (δf2) are causing ray
offsets or equivalent beamwalk on the photodiode upon beam deflections θ. An initial
lateral ray offset is suppressed by the magnification |m| � 1{8. Assuming an error
of 10µm for all parameters and a tilt angle θ � 1 mrad, the offset on the photodiode
due to the deflection would be roughly p7.98�7.07q �10µm �1 mrad � 150 nm, which
is already hardly detectable. If the errors are higher, d1 or d3 could be tuned to
minimize the coupling. However, this minimizes only the B-matrix element of the
ABCD matrix. All other elements might have changed.
The same analysis can be done for a Gaussian beam with initial q-parameter

qinitial � z0 � i
π

λ
p2.5 mm�∆xq2

by using equation (3.117). The formula can be expanded in Taylor series to first
order for small δ-values. When products of δ are neglected, the final beam waist
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position, which is the real part of the q-parameter, can be written as

z0,final � 1.00 � δd3 � 0.016 � δd1 � pδd2 � δf1 � δf2q � 804.0

� z0 � 0.016� z0 � p0.18 � δd2 � 0.57 � δf1 � 2.89 � δf2q � 1

m

� z2
0 � pδd2 � δf1 � δf2q � 2.36 � 1

m2

�∆x � pδd2 � δf1 � δf2q � 1.28 � 106 � 1

m

�∆x2 � pδd2 � δf1 � δf2q � 7.72 � 108 � 1

m2
. (3.184)

The term δd2 � δf1 � δf2 is important. As one can see in the first line, a good
knowledge of the focal lengths and a positioning of the lenses providing δd2 � δf1 �
δf2 � 10µm would still lead to a shift in the waist of 8 mm. In this case an
uncertainty of 10µm in the initial waist size would contribute additionally 0.12 mm.
The initial waist position has only a small influence.
For completeness the final Rayleigh range, which is the imaginary part of the q-
parameter, is given by:

zr,final � � 0.28 m� 3.36 � δd2 � 10.46 � δf1 � 53.37 � δf2

�∆x � 231.47�∆x � p2.69 � δd2 � 8.37 � δf1 � 42.70 � δf2q � 103

m

�∆x2 � p0.46� 1.67 � δf1 � 8.54 � δf2q � 106

m2
, (3.185)

where only leading terms have been considered.
The simulation results show that it is difficult to position the beam waist to better
than a few millimeter with the beam compressor. Measurements of the waist position
are complicated. The spot size of the local beam is only approximately 312.5µm at
the photodiode and it is not changing rapidly. A wavefront analysis might be an
option to determine the waist position if required.
The subsequent sections will show that these parameter deviations have only a minor
effect on the overall LRI performance.

3.6.4 DWS Coupling Factors

The Differential Wavefront Sensing signal changes upon rotation of the steering mir-
ror by angles vSM, hSM and upon change of the incidence angles vRX, hRX of the beam
at the receive aperture. The angles vRX and hRX can be changed in an laboratory
experiment by rotating the optical bench for example with a hexapod, which is a
six degree of freedom rotation and translation platform. The DWS coupling factors
are the derivatives of the DWS signal w.r.t. the rotation angles. They have been
measured (by my colleague Daniel Schütze, AEI) in a laboratory experiment for a
particular optical bench setup and are tabulated in table 3.5. Assuming an effective
DWS amplification22 of

mDWS

m
� 9900 rad{rad, (3.186)

yields with the beam compressor magnification |m| � 1{8 a DWS magnification of

mDWS � 9900 rad{rad �m � 1237.5 rad{rad, (3.187)

where this is the ratio of phase of electric photodiode signal to the wavefront tilt
directly before the photodiode. The DWS factors are in general dependent on the

22ratio of the phase of electric photodiode signal to the wavefront tilt before the beam compressor
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Coupling Measured in rad{rad Theory Fit* in rad{rad

BDWSv{BvRX � 9900 mDWS{m 9900*
BDWSh{BhRX � 9900 mDWS{m 9900*

BDWSv{BvSM � 13500
?

2 �mDWS{m 14000
BDWSh{BhSM � 18000 2 �mDWS{m 19800

BDWSPM
v {BvSM - 2 � ?2 �mDWS{m 28000

BDWSPM
h {BhSM - 4 �mDWS{m 39600

Table 3.5: Measured DWS coupling factors and theoretical equations. The last two
lines indicate the values, which should be used for the DWS loop gain computation.
*: Fit means here, that mDWS{m � 9900 rad{rad was used to compute the remaining
rows using the formula given in the Theory-column.

beam parameters (see eq. (3.129)). To achieve such a magnification, the local beam
radius should be roughly 1.5 mm before the beam compressor. Unfortunately, the
local beam size was not measured at that time, but the table 3.5 should clarify the
different pre-factors. The cross terms like BDWSh{Bv are usually kept small, because
the steering mirror or photodiode is aligned by minimizing this terms. This yields
parallel v-axes for the photodiode and steering mirror.
The current phasemeter implementation in the laboratory experiments uses inter-
nally non-averaged DWS values, meaning that the factor 1{2 is missing in eq. (3.127).
For the computation of the DWS control loop gain in the setup, the coupling factors
BDWSPM

v {BvSM and BDWSPM
h {BhSM from table 3.5 should be used.

3.6.5 Nominal Optical Bench Configuration

A receiver tilt with angle h corresponds to a S/C yaw rotation, while receiver tip
with angle v is equivalent to a S/C pitch motion.
A simulation of the GFO LRI instrument was written in the IfoCad framework and
is depticed in fig. 3.30. The parameters of the beam compressor and beamsplitter
are given in section 3.6.1. The simulated photodiode has a radius of rPD � 0.5 mm
and a slit (gap) width of dg � 30µm.
The local beam is a Gaussian beam with waist size w0 � 2.5 mm and 15 mW power.
The beam transformations are performed similar to the rules for normal Gaussian
beams (eq. (3.107)), but are extended to account even for general astigmatism,
although effects due to non-orthogonal astigmatism were not derived or analyzed in
detail in this thesis 23.
The simulation of the received flat top beam is complicated. An accurate simula-
tion could be done by the decomposition of the electric field at the aperture into
high-order Gaussian modes and propagation of these. This feature has not been
implemented in IfoCad yet. Therefore, the top hat beam is simulated with a
modified Gaussian beam, which has a waist size equal to the 4 mm aperture radius.
The waist position is shifted by 11.16 mm from the aperture to provide a phase
front radius of curvature equal to the inter-satellite distance of � 220 km. All beam
transformations are performed according to a proper general astigmatic Gaussian
beam.
Only the beam intensity, when computed at the photodiode, is changed to

Ipx, y, zq � P0

πwpzq2 e
�2

�
x2�y2

pwpzq�1.06q2


20

, (3.188)

23implementation of general astigmatism in IfoCad is ongoing by Evgenia Kochkina, Albert-
Einstein-Institute, Hannover
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Figure 3.30: IfoCad 3d model of the setup: a virtual plane on the right side
(not shown) serves as initial surface for the red beam and as the end surface for the
green beam, as described in section 3.5.2.

which approximates a top hat shape due to the additional 20th power (see received
beam amplitude, fig. 3.31 top-right plot). The factor 1.06 is an empirical small
correction to obtain a total power of P0 for the intensity function24. An ordinary
rectangular intensity function would introduce difficulties for the adaptive numerical
integrator in IfoCad, because the function is discontinuous.
Usage of the modified Gaussian beam neglects the fact that diffraction rings distort
the intensity and phase front, which is a major drawback of the method. Fur-
thermore, this beam does not satisfy the wave equation and its propagation is not
described correctly therefore. However, it models the desired phase and intensity
distribution at the photodiode in the theoretical undisturbed case.
The location of the steering mirror on the optical bench in this model is corrected
for the transverse shift and for the shift in the image plane due the beamsplitter.
As first step, the performance of the nominal beam compressor is analyzed.
The resulting values for 8 simulation scenarios are given in table 3.6, whereas in each
scenario rotations of the transmitter S/C (TX), receiver S/C (RX) and steering
mirror (SM) along one direction are performed. The rows (a)-(g) contain input
parameters. Simulation #1 has perfectly aligned beams along the optical axis of the
beam compressor. The rows (0)-(9) show results for pure ray-tracing and provide
the angles and position of the rays, when they impinging on the photodiode.
The beamwalk on the detector has a magnitude of a few nanometer and the DPS
signal (not shown in table) is therefore almost zero. The receiver tip and tilt (Sce-
nario #2 and #3) influences only the power of the top hat beam and the contrast
of interference. The heterodyne efficiency (row 29ff.) is independent of the power
levels and stays constant. It is therefore appropriate to evaluate the power, which
mainly depends on the transmitter orientation, and the heterodyne efficiency, which
mainly depends on receiver misalignment and is given by the overlap integral of
both beams, separately. This can be exploited to divide the parameter space for the
heterodyne signal amplitude into separate subsets, because it can be obtained from

24The area of the top hat deviates by the factor from πwpzq2. The analytical solution for the
area was quite long, therefore the empirical correction was used.
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Figure 3.31: Electric field amplitude and phase at the photodetector in the nominal
setup.

the power and heterodyne efficiency (eq. (3.122)).
The ray incidence angles (TB-h, TB-v, LB-h, LB-v) are basically magnified by the
beam compressor magnification m, whereas in case of the steering mirror rotations,
the geometric factors (eq. (3.138)) are applied additionally. The DWS signal (rows
13, 14) is obtained by multiplication with mDWS � 1888 (eq. (3.131)). In simulation
#7 phase wrapping occurred, meaning that the DWS signal became larger than π
and was wrapped back into the interval r�π,�πq.
All results are determined at the photodiode, except for the angle between incoming
top hat and outgoing Gaussian beam (row 19). In case of a closed DWS control
loop, this value should be close to zero.
The electric fields at the photodiode in the nominal case (scenario #1) are shown
in fig. 3.31. The received beam has a phase front curvature radius of 3.1 km, while
the local Gaussian beam phase front is distorted due to astigmatism.
The results from table 3.6 can also be evaluated on a grid, e.g., for tip and tilt of
the receiver. In fig. 3.32 the normalized25 contrast, which is equal to the square root
of the heterodyne efficiency η, is shown for the coherent sum of all quadrants. The
cross-like pattern is due to the photodiode gap and vanishes for a single element
diode. This fact is non-trivial, because the heterodyne efficiency for each single
quadrant has a cross-like pattern.

25equal beam power for local and top hat beam
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Row Parameter Sim #1 Sim #2 Sim #3 Sim #4 Sim #5 Sim #6 Sim #7 Sim #8
a TX-v [mrad] 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
b TX-h [mrad] 0.0000 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000
c RX-r [mrad] 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000
d RX-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000 0.0000
e RX-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000
f SM-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000
g SM-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000

0 LB-x [µm] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0115 0.0000
1 LB-y [µm] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0157
2 LB-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5973 0.0000
3 LB-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1294
6 TB-x [µm] 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0006 0.0000 0.0000
7 TB-y [µm] 0.0000 0.0000 0.0000 0.0000 -0.0006 0.0000 0.0000 0.0000
8 TB-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.7986 0.0000 0.0000
9 TB-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.7986 0.0000 0.0000 0.0000
13 DWS-v [mrad] 0.0000 0.0000 0.0000 0.0000 1560.0593 0.0000 0.0000 908.5919
14 DWS-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 1560.0596 124.5294* -0.1487
19 Angle-InOut [µrad] 0.0000 0.0000 0.0000 0.0000 100.0000 100.0000 200.0000 141.4214
21 TB-RoC-s [km] 3.4660 3.4660 3.4660 3.4660 7.9400 7.9400 3.4660 3.4660
22 TB-RoC-t [km] 3.4660 3.4660 3.4660 3.4660 -6.5574 -6.5574 3.4660 3.4660
23 LB-RoC-s [km] 6.0410 6.0410 6.0410 6.0410 6.0410 6.0410 -2.0677 -6.2763
24 LB-RoC-t [km] -11.4960 -11.4960 -11.4960 -11.4960 -11.4960 -11.4960 -0.5412 -1.0328
25 DC-Power-4q [mW] 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316
26 Contrast [%] 0.1410 0.0818 0.0818 0.1410 0.0878 0.0878 0.0059 0.0519
27 DC-Power-TB [pW] 469.6228 157.9346 157.9346 469.6228 469.6243 469.6243 469.6228 469.6228
28 DC-Power-LB [mW] 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316
29

?
HetEff-4q [%] 82.9816 82.9816 82.9816 82.9816 51.6787 51.6787 6.2077 30.0729

30
?

HetEff-A [%] 82.9816 82.9816 82.9816 82.9816 72.5963 72.5958 48.3406 63.3956
31

?
HetEff-B [%] 82.9816 82.9816 82.9816 82.9816 72.5963 72.5934 48.3650 63.3960

Table 3.6: Input parameters (row a-g) and some resulting values of the modeled optical bench to validate beam compressor performance; TB: flat top
beam; LB: local beam; RoC: phase front radius of curvature; HetEff: heterodyne efficiency; *phase wrapping
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If the steering mirror angles vSM and hSM are used instead of receiver tilt hRX and
tip vRX, the axes of fig. 3.32 are scaled by a factor of 2 in h direction and by

?
2 in

the v direction due to the geometrical factors for the steering mirror (eq. (3.138)).

Figure 3.32: Square root of heterodyne efficiency for the coherent sum of all
quadrants with 30µm slit (left) and without slit (right) for rotations of the receiver
along v (pitch) and h (yaw) direction and for nominal steering mirror position.

3.6.6 Closed-Loop DWS

The DWS control loop is emulated using a numerical equation solver (Scaled Trust-
Region Solver for Constrained Nonlinear Equations, [Bellavia et al. , 2004]) to find
a solution for �

DWSh phSM, vSMq
DWSv phSM, vSMq



�
�

0
0



(3.189)

by rotating the steering mirror in v and h direction around a pivot point, which
is 10 mm behind the steering mirror center. Because evaluation of the DWS is
computationally expensive and the DWS is subject to phase wrapping, at first, the
ray-tracing results are used to solve�

LBh phSM, vSMq � TBh phSM, vSMq
LBv phSM, vSMq � TBv phSM, vSMq



�
�

0
0



, (3.190)

meaning that the incidence angles at the photodetector of the top hat ray and local
beam ray are equalized. The result is used as initial guess for the DWS zeroing. A
working DWS control loop yields valid round-trip pathlength measurements. In the
simulation a simplified GFO LRI model with one spacecraft was used, as described
in section 3.5.2.
The results of the closed DWS loop simulation are shown in table 3.8. The simulation
scenario #1 is again the nominal result. In scenario #2 one can see that transmitter
misalignment or translation of the receiver spacecraft perpendicular to the LOS does
not change the round-trip pathlength measurement (denoted as ROUND-LONG). The
third scenario shows the results for a translation of 10 nm along the LOS, which
produces a round-trip change of 20 nm. The transmitter tilt has no influence. The
independence of receiver roll (rotation along the LOS) on the round-trip is visible
in scenario #4. In #5 and #6 the zero-finder rotates the mirrors by the values
given in row (0) and (1) yielding zero DWS signal (rows 15,16). A small residual
round-trip signal is still present, which is investigated subsequently. In all cases the
angle between input and output beam (row 23) is very close to zero.
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The nominal working performance of the simulated setup can be considered as suf-
ficient, because the residual round-trip pathlength has only a magnitude of a few
nanometer. The absolute numbers given in tables 3.6 and 3.8 provide a first overview
and validate the expected behavior. However, such tables are unhandy, because some
results change only slightly, whereas other results do not change at all. To condense
the information, the functional dependency of the data is computed up to quadratic
order using three evaluation points (see table 3.7). Most of the result values depend
linearly or quadratically on the input parameters, which are given by the rows (a)-
(h) in table 3.8. The linear and quadratic terms are called coupling factors within
this thesis, because they correspond to the first and second derivatives.

Row Parameter Offset Linear Quadratic
1 DC-Power-TB/TX-v 469.623 pW 0.000 pW{mrad -31168.8 pW{mrad2

2 DC-Power-TB/TX-h 469.623 pW 0.000 pW{mrad -31168.8 pW{mrad2

3 DWS-Loop-SM-v/RX-v 0.000 mrad 0.7071 mrad{mrad 0.000 mrad{mrad2

4 ROUND-LONG/RX-v 0 nm -0.7071nm{mrad 3.96342 nm{mrad2

5 DC-Power-TB/RX-v 469.623 pW 1.025e-07 pW{mrad 0.149132 pW{mrad2

6 DWS-Loop-SM-h/RX-h 0.000 mrad 0.5 mrad{mrad 0.000 mrad{mrad2

7 ROUND-LONG/RX-h 0 nm 0.3744 nm{mrad 5.31206 nm{mrad2

8 ROUND-LONG/Move-X 0 nm -2 µm{µm -2.273e-05 nm{um2

9 HetEff-A/RX-v 68.8594 % 0.01143 %{mrad -0.01206 %{mrad2

10 HetEff-B/RX-v 68.8594 % 0.01140 %{mrad -0.01216 %{mrad2

11 HetEff-C/RX-v 68.8594 % -0.01143 %{mrad -0.01206 %{mrad2

12 HetEff-D/RX-v 68.8594 % -0.01140 %{mrad -0.01216 %{mrad2

Table 3.7: Excerpt of the coupling factors for the nominal setup. A linear coupling
of rotations of 1 nm{mrad � 1µm{rad into the optical pathlength corresponds to an
offset in the TMA vertex position of 1µm.

The residual pathlength change (ROUND-LONG) is approximately 5 nm{mrad2 for ro-
tations of the receiver (row 4 and 7, table 3.7). This residual coupling is explained
partially in the next subsection with angle-dependent pathlength changes in the
beamsplitter. The rows (1) and (2) in table 3.7 indicate the rapid drop of intensity
for transmitter misalignment, while the heterodyne efficiency (row (9)-(14)) does
not change much upon receiver misalignment, because the steering mirror and DWS
control loop compensates the receiver attitude jitter.

117



Row Parameter Sim #1 Sim #2 Sim #3 Sim #4 Sim #5 Sim #6 Sim #7 Sim #8
a TX-v [mrad] 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000
b TX-h [mrad] 0.0000 0.1000 0.1000 0.0000 0.0000 0.0000 0.0000 0.1000
c RX-r [mrad] 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000 0.1000 0.1000
d RX-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000 0.1000 0.1000
e RX-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.1000 0.1000
f Move-X [µm] 0.0000 0.0000 0.0100 0.0000 0.0000 0.0000 0.1000 0.0000
g Move-Y [µm] 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000
h Move-Z [µm] 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000

0 DWS-Loop-SM-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0500 0.0500 0.0500
1 DWS-Loop-SM-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.0707 0.0000 0.0707 0.0707
2 LB-x [µm] 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0058 -0.0058 -0.0058
3 LB-y [µm] 0.0000 0.0000 0.0000 0.0000 0.0111 0.0000 0.0111 0.0111
4 LB-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.7986 0.7986 0.7986
5 LB-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.7986 0.0000 0.7986 0.7986
8 TB-x [µm] 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0006 -0.0006 -0.0006
9 TB-y [µm] 0.0000 0.0000 0.0000 0.0000 -0.0006 0.0000 -0.0006 -0.0006
10 TB-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.7986 0.7986 0.7986
11 TB-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.7986 0.0000 0.7986 0.7986
15 DWS-v [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
16 DWS-h [mrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
22 ROUND-LONG [nm] 0.0000 0.0000 -20.0000 0.0000 -0.0311 0.0906 -199.9405 0.0595
23 Angle-InOut [µrad] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 TB-RoC-s [km] 3.4660 3.4660 3.4660 3.4660 14.0326 7.9964 -11.9477 -11.8588
33 TB-RoC-t [km] 3.4660 3.4660 3.4660 3.4660 -10.2233 -6.5958 -1.8300 -1.8321
34 LB-RoC-s [km] 6.0549 6.0549 6.0549 6.0270 -19.5123 -3.8172 -3.3416 -3.3419
35 LB-RoC-t [km] -11.5463 -11.5463 -11.5463 -11.4452 -2.1129 -3.8172 -1.2079 -1.2079
36 DC-Power-4q [mW] 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316
37 Contrast [%] 0.1410 0.0474 0.0818 0.1410 0.1410 0.1410 0.1410 0.0474
38 DC-Power-TB [pW] 469.6228 53.1135 157.9346 469.6228 469.6243 469.6243 469.6258 53.1139
39 DC-Power-LB [mW] 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316

Table 3.8: Input parameter (row a-h) and some result values of the modeled optical bench to validate DWS closed-loop simulation and round-trip
measurements; ROUND-LONG: round-trip pathlength; DWS-Loop-SM: steering mirror rotation angles determined by DWS control loop
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3.6.7 Compensation Beamsplitter

In section 3.4.7 the optical pathlength changes due to a beamsplitter and the depen-
dency on the angle of incidence are discussed. Omitting the compensation beam-
splitter on the optical bench results in the following optical pathlength changes
(eq. (3.142)):

∆OPL � 3.116 mm� 1656.39 nm/mrad � α� 1.50 nm{mrad2 � α�Orα3s
� 0.83 nm{mrad2 � β2 �Orβ4s,

where α is the horizontal (tilt) angle and β is the vertical (tip) angle. A compensation
plate cancels the linear term in the first line, but all other contributions are doubled.
In row 7 in table 3.7 a quadratic coupling of 5.31206 nm{mrad2 was observed in
h-direction, whereas 2 �1.50 nm{mrad2 is predicted. For the tip direction (row 4) the
observed value is 3.96342 nm{mrad2 and the predicted value is 2 � 0.83 nm{mrad2. A
small linear coupling term is present in both cases.
To understand the deviations, at first, the contribution of the compensation beam-
splitter is removed by changing the substrate refractive index to 1.0 (row 1-4 in table
3.9). Then also the effect of the beamsplitter is ommited, again by changing the
refractive index to 1.0 (row 5-8 in table 3.9). A comparison with results in table ta-
ble 3.7 reveals, that the quadratic coupling factors is reduced by the expected values
in each step. The linear term for tilt (row 4 in table 3.9) is in good accordance with
the theoretical value of 1656.39 nm{mrad.

Row Parameter Offset Linear Quadratic
1 DWS-Loop-SM-v/RX-v 0.000 mrad 0.707107 mrad/mrad 0.000 mrad{mrad2

2 ROUND-LONG/RX-v 0.000 nm -0.707107 nm/mrad 3.13528 nm{mrad2

3 DWS-Loop-SM-h/RX-h 0.000 mrad 0.5 mrad/mrad 0.000 nm{mrad2

4 ROUND-LONG/RX-h 0.000 nm 1656.77 nm/mrad 3.80971 nm{mrad2

5 DWS-Loop-SM-v/RX-v 0.000 mrad 0.707107 mrad/mrad 0.000 mrad{mrad2

6 ROUND-LONG/RX-v 0.000 nm -0.707107 nm/mrad 2.30696 nm{mrad2

7 DWS-Loop-SM-h/RX-h 0.000 mrad 0.5 mrad/mrad 0.000 nm{mrad2

8 ROUND-LONG/RX-h 0.000 nm 0.374496 nm/mrad 2.30700 nm{mrad2

9 DWS-Loop-SM-v/RX-v 0.000 mrad 0.707107 mrad/mrad 0.000 mrad{mrad2

10 ROUND-LONG/RX-v 0.000 nm -0.707107 nm/mrad 0.000 nm{mrad2

11 DWS-Loop-SM-h/RX-h 0.000 mrad 0.5 mrad/mrad 0.000 nm{mrad2

12 ROUND-LONG/RX-h 0.000 nm 0.374480 nm/mrad 0.000 nm{mrad2

Table 3.9: Coupling factors when compensation plate is neglected (top, row 1-4),
when both beamsplitter contributions are omitted (middle, row 5-8) and if addition-
ally the beam parameters of local and received beam are equal (bottom, row 9-12);
parameter DWS-Loop-SM-v/h denote the rotation angles of the steering mirror de-
termined by the DWS control loop

However, there seems to be still another contribution causing the residual quadratic
couping of 2.3 nm{mrad2, even if the beamsplitter substrate has a refractive index
of 1.0 (vacuum). Therefore, the effect of different beam wavefront shapes at the
photodiode is investigated by setting both beams to the same parameter. This
removes the quadratic contribution (row 10 and 12 in table 3.9). The remaining
linear coupling was assumed to be due to the position of the steering mirror pivot
point, which was 10 mm behind the steering mirror center. Unfortunately, this was
not the case, such that the contribution remains unexplained. Also the lateral beam
shift caused by the intersection point mismatch on the beamsplitter (see section
3.5.2) can be excluded as reason for the linear term, because when the refractive
index of the beamsplitter is set to 1.0, the intersection points coincide and the beams
overlap perfectly.
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3.6.8 Sensitivity on Misalignment and Misplacement

The nominal optical bench configuration has been modeled so far. It was attempted
to understand and minimize the residual coupling of � 5 nm{mrad2 in the round trip
length measurement. In a next step the influence of misalignment and misplacement
of components on the different coupling factors is analyzed. Therefore, the coupling
factors cj , e.g., for receiver tilt on the round trip pathlength (ROUND-LONG/RX-h),
are computed for the nominal component position (qk) and for the misplaced case
(q1k). Then the Jacobian coefficients (second derivatives) are approximated using
this formula:

cjpq1kq � cjpqkq
q1k � qk

. (3.191)

With this procedure one can not only analyze the dependency on position and
orientation of components, but also on other parameters like component thickness.
The varied parameters and the step sizes q1k � qk are shown in table 3.10. The
coordinate system is defined as follows: the x-axis is anti-parallel to the incoming
top hat beam (normal to the receive aperture), while the z-axis is perpendicular
to the optical bench platform (see figure 3.30). The y-axis supplements the triad.
The steering mirror pivot point (row 18 in tabl. 3.10) is defined in a local beam
coordinate frame (see figure 3.20). The spacecraft separation (row 26) changes only
the power of the top hat beam in this simulation, but not the optical pathlength,
because the model from section 3.5.2 is used.

Row Parameter Stepsize Row Parameter Stepsize
1 L1/L2-thick 10 um 2 L1/L2-focal 10 um
3 CBS/BS-x,y,z 0.01 mm 4 BS-v 0.001 mrad
5 BS-h 0.01 mrad 6 CBS/BS-wedge 0.1 mrad
7 CBS/BS-thick 1 um 8 CBS/BS-n 1 � 1e-3
9 SM-x,y,z 0.01 mm 10 SM-v,h 0.1 mrad
11 L1-x,y,z 0.3 mm 12 L1-v,h 0.5 mrad
13 L1/L2-n 1 � 1e-3 14 L2-x,y,z 0.01 mm
15 L2-v,h 0.5 mrad 16 PD-x,y,z 0.01 mm
17 PD-v,h 1 mrad 18 SMpiv-x,y,z 1 mm
19 LB-waist 0.1 mm 20 LB-z0 10 mm
21 LB-Power 0.1 mW 22 PD-active-radius 1 um
23 PD-slit 1 um 24 Vertex-x,y,z 0.1 mm
25 AP-y, AP-z 0.01 mm 26 SC-sep 1 km
27 TB-initial-z0 0.01 mm

Table 3.10: Setup parameter names, which have been varied for the Jacobian
coefficients and the corresponding step sizes and units; L1: lens 1, L2: lens 2, CBS:
compensation beamsplitter, BS: beamsplitter, SM: steering mirror, PD: quadrant
photodiode, LB: local beam, TB: received top hat beam, AP: receive aperture

For simplicity and data volume reduction only the influence on the round trip
pathlength (ROUND-LONG), beamwalk on the photodiode (TB-x, TB-y, LB-x, LB-y,
given in a photodiode coordinate system26) and angle between received and outgo-
ing beam (Angle-InOut) is discussed here, although the dependency for all other
results has been computed as well.
The linear coupling terms are shown table 3.12. A misplacement of the TMA vertex
(row 1 and 2) in lateral direction y or z by 1 mm results in a coupling 2000 nm{mrad
for rotations of the receiver into the round-trip length measurement. This is in accor-
dance with the results from the linearized coupling theory (section 3.3.4, eq. (3.82))
and underlines the importance of accurate positioning of the TMA vertex. The

26photodiode x-direction is in nominal case in the horizontal direction, while y-direction is per-
pendicular to the optical bench (vertical)
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wedge angle of the beamsplitter can also introduce a coupling between receiver ro-
tations and length measurement (row 3 and 4). In this simulation the wedge of
the beamsplitter was defined at the surface facing to the compensation plate. The
contribution for the beamsplitter has a different sign than for the compensation
plate (cf. row 3 and 4 in table 3.12). Also the magnitude is different, because a
wedge of the beamsplitter changes the incidence angle on the compensation plate,
but not vice versa. The effect of a common wedge angle can be minimized by proper
positioning the beamsplitter.
Also the effect of common refractive index fluctuations (row 17 and 18) cancels in
the length measurement as well as in the angle difference between received beam
and outgoing beam (row 29 and 29). The differential wedge angle is assumed to be
in the order of 10µrad, thus the combined effect of row (3) and (4) is small enough.
The transverse position of the lenses and the receive aperture introduce also a lin-
ear coupling between S/C rotations and pathlength measurement. However, the
positioning and stability of components like lenses, beamsplitter and photodiode is
assumed to be in the order of 10µm. In this context the coupling factors seem
uncritical.
Furthermore, a longitudinal displacement of lens 2 or of the photodiode introduces
a small beamwalk at the photodiode (row 19-26 in table 3.12), as expected from the
beam compressor tolerances analysis in section 3.6.3.
According to the assumed positioning accuracy of the components, the quadratic
terms in table 3.13 seem also uncritical. The TMA vertex misplacement along
the beam direction (row 11 and 12 in table 3.13), which is the insensitive axis for
TMA positioning, has only a contribution of �1.000 nm{mrad2{mm, while the other
directions couple with 2000 nm{mrad{mm (row 1 and 2 in table 3.12).
The values for the offset changes in table 3.11 seem on the first appearance very
large. However, some values like in row 11 and 12 merely state the trivial fact
that a transverse shift of the photodiode by 1 mm results in a beamwalk by 1 mm.
The pathlength variations shown in row 1 and 4 for a beamsplitter wedge is not
measurable, because it is a static offset and the wedge is supposed not to change
significantly during operation. Fluctuations of the temperature will influence the
refractive index and the thickness of the beamsplitter, such that rows 2,3,8,9 are of
interest for further analysis. In this thesis the dependency of refractive index or of
the thickness variation on temperature was not investigated.
Noteworthy are row 7 and 10 in table 3.11, because they state a change of the
measured pathlength when the longitudinal position of the lens 1 or 2 changes.
Although this distance is a common path for the local and top hat beam, a shift in
the lens position modifies the wavefronts for each beam in a different way due to the
different beam parameter. These terms vanish if identical beam parameter for the
local and top hat are used. Further investigation with proper top hat beams (using
higher-order Gaussian modes) should reveal, if this effect is to be expected in real
measurements.
One can conclude that the largest influence on the length measurement is given by
the TMA vertex positioning and that most of the other parameter seem uncritical.
The positioning of the lenses w.r.t. to the photodiode is important to suppress the
beamwalk on the photodiode.
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Row Parameter Value
1 ROUND-LONG/CBS-wedge �5984.025 nm{mrad
2 ROUND-LONG/CBS-n 5661.832 nm{1e-3
3 ROUND-LONG/BS-n 5661.832 nm{1e-3
4 ROUND-LONG/BS-wedge 1731.369 nm{mrad
5 ROUND-LONG/CBS-h 1657.894 nm{mrad
6 ROUND-LONG/BS-h 1656.498 nm{mrad
7 ROUND-LONG/L2-y 732.861 nm{mm
8 ROUND-LONG/CBS-thick 623.287 nm{um
9 ROUND-LONG/BS-thick 623.287 nm{um
10 ROUND-LONG/L1-y �247.021 nm{mm
11 LB-x/PD-x �1000.000 um{mm
12 TB-y/PD-z �1000.000 um{mm
13 LB-x/L2-x 940.690 um{mm
14 LB-y/L2-z 940.690 um{mm
15 LB-x/L1-x 179.862 um{mm
16 TB-y/L1-z 179.862 um{mm
17 TB-x/AP-y 125.215 um{mm
18 TB-y/AP-z �125.215 um{mm
19 TB-x/BS-y �125.215 um{mm
20 TB-x/BS-x �125.215 um{mm
21 LB-x/SM-x �125.215 um{mm
22 LB-x/SM-y �125.215 um{mm
23 TB-y/BS-v �12.404 um{mrad

Table 3.11: Offset coupling factors for the optical bench setup parameters sorted
in descending order of the absolute value
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Row Parameter Value
1 ROUND-LONG/RX-h/Vertex-y �2000.000 nm{mrad{mm
2 ROUND-LONG/RX-v/Vertex-z 2000.000 nm{mrad{mm
3 ROUND-LONG/RX-h/CBS-wedge �81.761 nm{mrad{mrad
4 ROUND-LONG/RX-h/BS-wedge 64.585 nm{mrad{mrad
5 ROUND-LONG/RX-v/L2-z 47.831 nm{mrad{mm
6 ROUND-LONG/RX-h/L2-x 47.808 nm{mrad{mm
7 ROUND-LONG/RX-h/L1-x �36.011 nm{mrad{mm
8 ROUND-LONG/RX-v/L1-z �35.907 nm{mrad{mm
9 ROUND-LONG/RX-h/BS-h 11.959 nm{mrad{mrad
10 ROUND-LONG/RX-v/BS-v 8.679 nm{mrad{mrad
11 ROUND-LONG/RX-h/CBS-h �3.006 nm{mrad{mrad
12 ROUND-LONG/RX-v/CBS-v �2.342 nm{mrad{mrad
13 ROUND-LONG/RX-h/BS-x �1.954 nm{mrad{mm
14 ROUND-LONG/RX-h/BS-y �1.953 nm{mrad{mm
15 ROUND-LONG/RX-v/AP-z �1.952 nm{mrad{mm
16 ROUND-LONG/RX-h/AP-y 1.952 nm{mrad{mm
17 ROUND-LONG/RX-h/BS-n 1.598 nm{mrad{1e-3
18 ROUND-LONG/RX-h/CBS-n �1.598 nm{mrad{1e-3
19 TB-y/RX-v/PD-y 7.986 um{mrad{mm
20 TB-x/RX-h/PD-y 7.986 um{mrad{mm
21 LB-x/RX-h/PD-y 7.986 um{mrad{mm
22 LB-y/RX-v/PD-y 7.986 um{mrad{mm
23 LB-x/RX-h/L2-y �7.958 um{mrad{mm
24 TB-x/RX-h/L2-y �7.958 um{mrad{mm
25 TB-y/RX-v/L2-y �7.958 um{mrad{mm
26 LB-y/RX-v/L2-y �7.957 um{mrad{mm
27 LB-x,y/RX-h/L1-x 3.387 um{mrad{mm
28 Angle-InOut/RX-h/BS-wedge 1.350 urad{mrad{mrad
29 Angle-InOut/RX-h/CBS-wedge �1.350 urad{mrad{mrad

Table 3.12: Linear Jacobian coupling factors sorted in descending
order of the absolute value.

Row Parameter Value
1 ROUND-LONG/RX-h/L1-y �8.325 nm{mrad2{mm
2 ROUND-LONG/RX-v/L1-y �8.323 nm{mrad2{mm
3 ROUND-LONG/RX-v/L1-z �5.521 nm{mrad2{mm
4 ROUND-LONG/RX-h/L1-x �4.980 nm{mrad2{mm
5 ROUND-LONG/RX-v/L1-x �4.406 nm{mrad2{mm
6 ROUND-LONG/RX-h/L1-z �2.205 nm{mrad2{mm
7 ROUND-LONG/RX-h/L2-y �1.785 nm{mrad2{mm
8 ROUND-LONG/RX-v/L2-y �1.774 nm{mrad2{mm
9 ROUND-LONG/RX-v/LB-waist �1.209 nm{mrad2{mm
10 ROUND-LONG/RX-h/LB-waist �1.208 nm{mrad2{mm
11 ROUND-LONG/RX-h/Vertex-x �1.000 nm{mrad2{mm
12 ROUND-LONG/RX-v/Vertex-x �1.000 nm{mrad2{mm
13 LB-x/RX-h/L1-x �0.821 um{mrad2{mm
14 TB-y/RX-v/L1-z �0.818 um{mrad2{mm
15 TB-x/RX-h/L1-x �0.818 um{mrad2{mm
16 LB-y/RX-v/L1-z �0.816 um{mrad2{mm
17 TB-y/RX-v/L2-z 0.745 um{mrad2{mm
18 TB-x/RX-h/L2-x 0.745 um{mrad2{mm
19 LB-y/RX-v/L2-z 0.743 um{mrad2{mm
20 LB-x/RX-h/L2-x 0.691 um{mrad2{mm
21 Angle-InOut/RX-v/PD-z �2.783 urad{mrad2{mm
22 Angle-InOut/RX-v/L2-z 2.571 urad{mrad2{mm
23 Angle-InOut/RX-h/L1-z 2.385 urad{mrad2{mm
24 Angle-InOut/RX-h/PD-z �2.114 urad{mrad2{mm
25 Angle-InOut/RX-h/L2-x �2.041 urad{mrad2{mm
26 Angle-InOut/RX-v/L1-x 1.592 urad{mrad2{mm
27 Angle-InOut/RX-v/L2-x �1.506 urad{mrad2{mm
28 Angle-InOut/RX-r/L2-x �1.386 urad{mrad2{mm
29 Angle-InOut/RX-v/PD-x 1.141 urad{mrad2{mm

Table 3.13: Quadratic Jacobian coupling factors sorted in descending
order of the absolute value.
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3.6.9 Steering Mirror induced Pathlength Changes

In section 3.2.3 off-racetrack pathlength fluctuations are discussed. The pathlength
a1 in fig. 3.4, from the steering mirror to the beamsplitter, is present in the final
measurement of the phase (eq. (3.51)) and changes upon steering mirror rotation.
We estimate here the coupling of steering mirror rotations into the pathlength.
Assuming just a tilted flat plate in a distance snom (see fig. 3.33), the pathlength
dependency on tip v and tilt h is

spvq � snom

cospvq � snom � snom
v2

2
(3.192)

sphq � s1 � z � snom

cosphq �
sinphq � sinpα0q � snom

sinpπ{2� h� α0q
� snom �

�
1� h � tanpα0q � h2

2
p1� 2 � tanpα0qq



. (3.193)

The angles v and h are not the steering mirror rotation angles, but the ray deflection
angles and therefore equal to S/C rotation yaw and pitch, when the DWS loop is
closed.

Figure 3.33: Simplified model for optical pathlength changes between beamsplitter
and steering mirror.

For a distance of snom � 7 cm between steering mirror and beamsplitter, which is
tilted by α0 � 45�, the evaluation yields

spvq � 70 mm� 35 nm{mrad2 � v2 (3.194)

sphq � 70 mm� 70µm{mrad � h� 105 nm{mrad2 � h2. (3.195)

These results approximate the IfoCad results given in table 3.14. The deviations
can be explained with the refractive index of the beamsplitter substrate, which was
neglected in this derivation. The refractive index of the substrate introduces an
offset as well as an angle-dependent coupling, as described in section 3.4.7.
With these coupling factors and data on the spacecraft jitter in yaw and pitch, one
can estimate the contribution of spacecraft rotations on the final length measurement
precision, as it is done in section 3.2.3.

Row Parameter Offset Linear Quadratic
1 OptPath-a1/RX-v 75.529 mm 0 nm/mrad 27.633 nm{mrad2

2 OptPath-a1/RX-h 75.529 mm 69408.10 nm/mrad 97.983 nm{mrad2

Table 3.14: Coupling factors for optical pathlength a1 upon spacecraft rotation.
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3.6.10 Monte Carlo Simulation

In the previous subsection 3.6.8 the Jacobian coefficients are derived, which describe
the dependency of the measured signals on changes of individual optical bench pa-
rameters. In each step a single parameter is varied, while all other parameters have
their nominal value. In a Monte Carlo simulation all parameters are chosen ran-
domly at the same time. With this approach one can simulate the tolerances of each
component and errors in the positioning on the OB.
In total 2200 optical benches with different parameter sets are simulated. The input
parameters are shown in table 3.15. The center and mean value µ corresponds
to the nominal parameter. The probability distribution is a truncated Gaussian
distribution ([Wanner, 2010, clipped normal distribution, p. 172]), where σ is the
interval size. The parameters are chosen randomly from the interval µ� σ... µ� σ,
whereas values close to µ are more likely than values close to the interval limits
(Gaussian distribution).
The parameter 1 (db) is the distance between the receive aperture and the beam-
splitter. The offset between TMA vertex and center of rotation is 4 mm along the
insensitive axis (parameter 55), whereas a large uncertainty of 10 mm is assumed.
The tolerances in the sensitive axes are set to 250µm (parameter 56 and 57). Accord-
ing to the linearized coupling theory (sec. 3.3.4), the expected round-trip pathlength
change upon rotation is 2 � 250 nm{mrad.

No Parameter Value: µ� σ No Parameter Value: µ� σ
1 db 70 � 1 mm 2 L1-thick 4000 � 10 um
3 L1-focal 81460 � 10 um 4 L2-thick 5000 � 10 um
5 L2-focal 10200 � 10 um 6 BS-x 0 � 0.01 mm
7 BS-y 0 � 0.01 mm 8 BS-z 0 � 0.01 mm
9 BS-v 0 � 0.1 mrad 10 BS-h 0 � 0.1 mrad
11 BS-wedge 0 � 10 urad 12 BS-thick 5000 � 10 um
13 BS-n p150663 � 1q �10�5 14 SM-x 0 � 0.01 mm
15 SM-y 0 � 0.01 mm 16 SM-z 0 � 0.01 mm
17 SM-v 0 � 0.1 mrad 18 SM-h 0 � 0.1 mrad
19 L1-x 0 � 0.05 mm 20 L1-y 0 � 0.05 mm
21 L1-z 0 � 0.05 mm 22 L1-v 0 � 1 mrad
23 L1-h 0 � 1 mrad 24 L1-n p150663 � 1q �10�5

25 L2-x 0 � 0.05 mm 26 L2-y 0 � 0.05 mm
27 L2-z 0 � 0.05 mm 28 L2-v 0 � 1 mrad
29 L2-h 0 � 1 mrad 30 L2-n p150663 � 1q �10�5

31 PD-x 0 � 0.01 mm 32 PD-y 0 � 0.01 mm
33 PD-z 0 � 0.01 mm 34 PD-v 0 � 1 mrad
35 PD-h 0 � 1 mrad 36 SMpiv-x �10 � 1 mm
37 SMpiv-y 0 � 1 mm 38 SMpiv-z 0 � 1 mm
39 LB-waist 2.5 � 0.1 mm 40 LB-z0 0 � 100 mm
41 LB-Power 15 � 0.1 mW 42 PD-active-radius 500 � 10 um
43 PD-slit 30 � 2 um 44 CBS-x 0 � 0.1 mm
45 CBS-y 0 � 0.1 mm 46 CBS-z 0 � 0.1 mm
47 CBS-v 0 � 0.1 mrad 48 CBS-h 0 � 0.1 mrad
49 CBS-wedge 0 � 10 urad 50 CBS-thick 5000 � 10 um
51 CBS-n p150663 � 1q �10�5 52 AP-y 0 � 0.01 mm
53 AP-z 0 � 0.01 mm 54 SC-sep 220 � 30 km
55 Vertex-x 4 � 10 mm 56 Vertex-y 0 � 0.25 mm
57 Vertex-z 0 � 0.25 mm 58 BIAS-ROLL 0 � 10 mrad
59 BIAS-YAW 0 � 3 mrad 60 BIAS-PITCH 0 � 3 mrad

Table 3.15: Input parameters with center value and interval size for the truncated
Gaussian distribution; L1: lens 1, L2: lens 2, CBS: compensation beamsplitter, BS:
beamsplitter, SM: steering mirror, SPpiv: SM pivot point, PD: quadrant photodi-
ode, LB: local beam, TB: received top hat beam, AP: receive aperture.

In addition to previous simulations, an initial misalignment between LRI and S/C
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frame (parameter 58-60) is introduced. This permanent rotation in yaw, pitch and
roll direction might be caused by the vibrations during the S/C launch.
The linear coupling factors for the round-trip length measurement are shown in
fig. 3.34. The maximum value is approximately 520 nm{nrad, whereas 500 nm{nrad
is expected from the linearized coupling theory. Thus, approximately 20 nm{nrad
are caused by effects like the initial LRI frame misalignment or by a combination
of different misalignments and misplacements. The quadratic terms are depicted in
fig. 3.35.

Figure 3.34: Linear coupling factors of rotations for roll (RX-r), pitch (RX-v) and
yaw (RX-h).

Figure 3.35: Quadratic coupling factors of rotations for roll (RX-r), pitch (RX-v)
and yaw (RX-h).

The offset angle between received and outgoing beam is shown in fig. 3.36. The corre-
sponding linear and quadratic terms are below 1.0µrad{mrad and below 1.2µrad{mrad2.
Further analysis showed, that the offset angle (up to 18µrad) is highly correlated
with the wedge angles of the beamsplitter and compensation plate. In this simula-
tion an uncorrelated wedge of 10µrad for both components is assumed, such that
the differential wedge is up to 20µrad. This tolerance could be tightened by a factor
of two, so that the final angle is below 9µrad.
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This Monte Carlo simulation revealed the importance of the differential wedge of
CBS and BS for the (anti-)parallelism of outgoing and incoming beam. The TMA
vertex offset in the insensitive axis seems to be uncritical for the final performance.
The contribution of TMA vertex offsets in the sensitive axes are the dominating
effects for the coupling between rotations and length measurement. Other contri-
butions, e.g., due to a combination of different misplacements and misadjustments,
produce a coupling of about 20 nm{mrad.

Figure 3.36: Offset angle between received light and outgoing beam direction on
the OB.

3.7 Summary, Conclusion and Outlook

In the second part of this thesis an overview about the optical bench simulations for
the GRACE Follow-On Laser Ranging Interferometer was given. In the beginning
the overall LRI working principle was presented, whereas some noise sources like
laser frequency noise and off-racetrack pathlength noise were discussed in more de-
tail. The basic properties of corner-cubes, and in particular the application for the
Triple Mirror Assembly of the LRI, were explained. The Optical Bench and single
components were introduced. Effects due to the astigmatism of the beamsplitter
were derived analytically and were compared to numerical IfoCad simulations in
later sections. This analysis provided also the correction for the position of the
steering mirror, which is required when light propagates through the beamsplitter.
This information is of interest for the construction of the optical bench.
Then phase errors, caused by spacecraft rotations or steering mirror motion, in a full
racetrack configuration were treated. The results showed only a small and uncritical
coupling into the length measurement. Also the power drop on the receiver upon
transmitter misalignment and the propagation direction of the received beam were
explained. In the end various simulation results concerning the beam compressor and
the whole optical bench verified the expected behavior. Small residual coupling fac-
tors were investigated and could be explained with the (quadratic) angle-dependent
optical pathlength changes in the beamsplitter or with the wavefront overlap.
The overall setup seems to be robust, such that small misalignment and misplace-
ment of components have only a minor effect on the final length measurement.
However, one should always keep in mind that these simulations use idealized models.
The light fields are treated as Gaussian beams without any wavefront distortion,
which might be caused by flatness imperfections of the optical components. The
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coatings of the components were neglected as well. In laboratory experiments various
other factors (e.g. temperature, air fluctuations, electric noise) play a role. Various
discussed effects and couplings are probably too small to be observed in laboratory
experiments, but they deepen the understanding of the optical LRI system.
In the future the simulations could be modified to use high-order Gaussian beams
to simulate the top hat beam more accurately. Also consideration of coatings and
polarization effects might be envisaged.
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Appendix A

Lissajous Orbit Coefficients for
N � 3

The non-zero coefficients are:

ω20 �
3
�
c4
��3k4 � 8k2 � 8

�� 4c3k
2
�
k2px2020 � 2x2000 � 4x2000 � 2x2020 � 2y2020k

��

8k2pp3c2 � 4qk � 4λq ,

(A.1)
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�
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��
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with additional abbreviations:

s1 � 4c3k
2
�
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Appendix B

Halo Orbit Coefficients for N � 3

The non-zero coefficients are:
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where the following additional abbreviations were used:
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Appendix C
In  this Mathem atica  notebook the DWS amplification  factor for two beams with flat  phase front  and Gaussian  in tensity profile is

derived. The result is dependend on  the photodiode radius and on  the two widths of the two beams (which does not need to be equal).

It is assumed that the beams are centered on  the photodiode and the slit of the quadrant photodiode is neglected.

General Phasefront and Intensity

We start with a very general defin ition  of a rotation  matrix:

RMUVW@u_, v_, w_D:=

RotationMatrix@w, 80, 0, 1<D.RotationMatrix@v, 80, 1, 0<D.RotationMatrix@u, 81, 0, 0<D

Then  we define a  spherical phasefront  with radii of curvature Rx and Ry, and with tilt  Α and tip Β. The evaluation  poin t  is  given  in

cartesian  coordinates x,y on  the photodiode, whereby x=0,y=0 is the photodiode center.

SphericalWavefront@x_, y_, Α_, Β_, Rx_, Ry_D:=

HRMUVW@Β, Α, 0D.8x, y, -HSqrt@1 - x ^ 2� Rx ^ 2 - y ^ 2� Ry ^ 2D- 1L* Rx<L.H80, 0, 1<L

We plot the phasefront: The x,y axes denote the position  on  the photodiode, while the z−direction  is the phase (in  units of millimeter)

Plot3D@SphericalWavefront@x, y, 0.0, 0.003, 200, 200D, 8x, -10, 10<,

8y, -10, 10<, PlotRange ® 88-10, 10<, 8-10, 10<, 8-1, 1<<, AxesLabel ® 8x, y, z<D

Generate a  Gaussian  amplitude with tip Α and tilt  Β and with width w0, evaluation  poin t  on  the photodiode is  given  in  cartesian

coordinates x,y

AmplGaussian@x_, y_, Α_, Β_, w0_D:=

HRMUVW@Β, Α, 0D.8x, y, Exp@-Hx ^ 2 + y ^ 2L� w0 ^ 2D<L.H80, 0, 1<L

Plot the Gaussian  amplitude: the x,y is the position  on  the photodiode, z−direction  denots the amplitude in  arbitrary units

Plot3D@AmplGaussian@x, y, 0, 0.03, 0.3D, 8x, -0.5, 0.5<,

8y, -0.5, 0.5<, PlotRange ® Full, AxesLabel ® 8x, y, z<D



� Simplified Phasefront and Amplitude

Now we simplify the spherical phasefront to a flat phasefront (the radii of curvature go to infin ity) and we linearize the tilt  Α and tip Β.

In  addition  we switch the evaluation  poin t to polar coordinates r, Θ instead of cartesian  x,y and we convert the phase to units of radian

SimplPhaseFront@r_, Θ_, Α_, Β_D:= 2 * Pi� Λ *

Evaluate@Limit@FullSimplify@Normal@Series@SphericalWavefront@x, y, Αx, Βx, Rx, RyD�.

8x ® r * Sin@ΘD, y ® r * Cos@ΘD<, 8Αx, 0, 1<, 8Βx, 0, 1<DDD�.

8Rx ® Ry<, 8Ry ® Infinity<D@@1DD�.8Βx ® Β, Αx ® Α<D

SimplPhaseFront@r, Θ, Α, ΒD

2 Π r HΒ Cos@ΘD- Α Sin@ΘDL
Λ

The same for the amplitude:

SimplAmplitude@r_, Θ_, Α_, Β_, w0_D:=

Evaluate@Simplify@Normal@Series@AmplGaussian@x, y, a, b, w0D�.

8x -> r * Sin@ΘD, y -> r * Cos@ΘD<, 8a, 0, 1<, 8b, 0, 1<DDD�.8a ® Α, b ® Β<D

SimplAmplitude@r, Θ, Α, Β, w0D

ã
-

r
2

w0
2 + r Β Cos@ΘD- r Α Sin@ΘD

Complex Amplitudes of the Photodiode

We further simplify the problem. We assume that  the tip and tilt  directions  are independent  and (due to the symmetry) the DWS

amplification  factors  are equal for both directions. Thus, we consider only the tilt. To get  the DWS amplification  factor we compute

the complex amplitude for the top and for the bottom half of the photodiode.

The real part  of the complex amplitude  is the spatial in tegral of  úAmpl1*Ampl2*Cos[PhaseDifference]ú, while the imaginary part  is

úAmpl1*Ampl2*Sin[PhaseDifference]ø.  In  addition  we assume that  the PhaseDifference is small, such that  Cos[PhaseDifference] ==

1,  and  Sin[PhaseDifference]  = PhaseDifference.  The in tegration  is  performed  in  polar  coordinates,  therefore a  factor  r  is  in  the

in tegrand. The domain  of in tegration  is the top or bottom half of the photodiode.

PDr is the photodiode radius.

CoeffRealTop :=

Evaluate@Integrate@r * SimplAmplitude@r, Θ, Α1, 0, w1D* SimplAmplitude@r, Θ, Α2, 0, w2D,

8r, 0, PDr<, 8Θ, 0, Pi<DD

CoeffRealBottom :=

Evaluate@Integrate@r * SimplAmplitude@r, Θ, Α1, 0, w1D* SimplAmplitude@r, Θ, Α2, 0, w2D,

8r, 0, PDr<, 8Θ, Pi, 2 * Pi<DD

CoeffImagTop :=

Evaluate@Integrate@r * SimplAmplitude@r, Θ, Α1, 0, w1D* SimplAmplitude@r, Θ, Α2, 0, w2D*

HSimplPhaseFront@r, Θ, Α1, 0D- SimplPhaseFront@r, Θ, Α2, 0DL, 8r, 0, PDr<, 8Θ, 0, Pi<DD

CoeffImagBottom :=

Evaluate@Integrate@r * SimplAmplitude@r, Θ, Α1, 0, w1D* SimplAmplitude@r, Θ, Α2, 0, w2D*

HSimplPhaseFront@r, Θ, Α1, 0D- SimplPhaseFront@r, Θ, Α2, 0DL, 8r, 0, PDr<, 8Θ, Pi, 2 * Pi<DD

2 | final−DWSformula.nb



DWS amplifcation factor

The DWS amplification  (or signal) is the the phase difference between  the top and bottom complex amplitude coefficient, in  complex

notation  simply:  ArcTan[c_top  /  c_bottom].  If we use  a  small  angle  approximation ,  ArcTan  is  the  identity and  we can  write

úArcTan[c_top  /  c_bottom]  =Ampl[c_top]/ Ampl[c_bottom]*Phase[c_top]−Phase[c_bottom]ú.  In  the  IfoCAD code a  factor  1/ 2  is

apparent, since IfoCAD computes the phase for each segment. If the top & bottom half has two segments and the phases are added,

the difference needs to be divided by 2.

We assume that  the amplitudes on  the top and bottom  half of the photodiode are almost  equal, therefore we can  compute the DWS

amplification  factor  approximately as  úPhase[c_top]−Phase[c_bottom]  = Imag[c_top]/ Real[c_top]  − Imag[c_bottom]/ Real[c_bot-

tom]ø:

Res := Simplify@Normal@Series@

HCoeffImagBottom � CoeffRealBottom - CoeffImagTop� CoeffRealTopL, 8Α1, 0, 1<, 8Α2, 0, 1<DDD

Res

- 4 HΑ1 - Α2L 2 PDr w1
2
+ w2

2
- ã

PDr
2 J 1

w1
2

+
1

w2
2

N
Π w1 w2 ErfBPDr w1

2 + w22

w1 w2

F �

-1 + ã
PDr

2 J 1

w1
2

+
1

w2
2

N
w1

2
+ w2

2
Λ

Validation

Check the result for two large flat top beams, this should yield the well−known DWS formula: 16/ 3*(a1−a2)*PDr/  Λ

Limit@Limit@Res, 8w1 ® Infinity<D, 8w2 ® Infinity<D

:16 PDr HΑ1 - Α2L
3 Λ

>

The overlap of one flat top with a Gaussian  beam yields:

Limit@Res, 8w1 ® Infinity<D

:
4 HΑ1 - Α2L -2 PDr + ã

PDr
2

w2
2 Π w2 ErfA PDr

w2
E

-1 + ã

PDr
2

w2
2 Λ

>

The result for the GRACE−Follow On Laser Ranging In terferometer should be roughly 1880

Res �.8Λ ® 1.064*^−3, w1 ® 500, w2 ® 2.5�8, PDr ® 0.5<

1888.41 HΑ1 - Α2L

final−DWSformula.nb | 3



Appendix D:

Analysis of polarization effects in corner-cubes for

GRACE-FO interferometry

1 Introduction

In this appendix, first published as Technical Note in January 2012, we analyze polarization ef-
fects of three mirrors aligned in a corner-cube configuration considering different mirror materials.
Various paper exist on polarization effects of corner-cube retroreflectors ([1], [2], [3] or [4]). Unfor-
tunately the authors usually use local beam coordinate frames, which are aligned with corner-cube
faces, while we are interested in space-fixed polarization states. This complicates the comparison
of results.

For this analysis an IfoCad version was extended to allow polarization raytracing. We use an
extended Jones-Matrix formalism as described in [4] to compute the output polarization vector for
different mirror materials. The complex reflectivity and transmittance coefficients for each mirror
are computed from well-known Fresnel equations.

2 Setup

We assume an optical bench with normal vector in +x direction. The initial beam direction is +z.
After three reflections at the mirror surfaces of the corner-cube, the outgoing beam is anti-parallel
to the incoming beam. This property is independent of corner-cube attitude. Also the geometrical
pathlength of a beam is invariant under rotations of the corner-cube around the intersection point
of all three mirror planes (called ’vertex’). Further information on properties of corner-cubes can
be found in [5].

In the GRACE-FO mission a Triple Mirror Assembly (TMA) will be used, which is mainly a
corner-cube, where unused mirror surface areas are removed. With other words, the TMA consists
of three separated mirrors, where all mirror planes are mutually perpendicular. The position of
the mirror center and the normal vectors of the mirror planes define the vertex position.

In [6] the following mirror configuration is given, which we used in our simulations1.

~c1 =




24.000
−300.000
−333.941


mm, ~c2 =



−24.000
−266.058
−300.000


mm, ~c3 =



−24.000
300.000
−300.000


mm

~n1 =



−1/
√

2
0.5
−0.5


 , ~n2 =




1/
√

2
0.5
−0.5


 , ~n3 =




0

−1/
√

2

−1/
√

2




The body-diagonal of the corner-cube given by ~nd = (~n1 + ~n2 + ~n2)/3, which is here not parallel
to the input beam direction. This case is referred as non-normal incidence in the literature. In
nominal case the beam is reflected at the centers of each mirror. The separation between in- and
outgoing beam is 600 mm. The origin of the coordinate system coincides with the vertex of the
TMA. The setup is illustrated in figure 1.

The angle of incidence (AOI) at each mirrors is dependent on the orientation of the corner-
cube. In nominal case, the AOIs at M1, M2 and M3 are 60.0◦, 60.0◦, 45.0◦, respectively. The linear

1reversed normal vectors were used, because normal vectors point outwards in ifocad

1



Figure 1: Setup

polarization types p (parallel) and s (perpendicular, german “senkrecht“) are defined with respect

to the optical bench and for an input beam with wave vector2 ~k =




0
0

+1


 given by ~Ps =




1
0
0


 and

~Pp =




0
1
0


. The first two components of the polarization vector correspond to the Jones vector, if

the propagation direction is along the z-direction.

3 Material constants

At each mirror we assume direct reflection at a single thick layer of metal. The (real) refractive
index and the extinction coefficient for considered metals are shown in figure 2.

The laser wavelength is assumed to be 1064 nm. The following configurations were simulated:

Material real refractive index extinction coefficient
Gold (Au) 0.28519 7.3536
Silver (Ag) 0.23424 7.2143
Aluminum (Al) 1.37628 10.245
Non-Absorbing (NA) 1.4000 0.000

4 Polarization Matrices

The polarization matrix P̂ describes the change of a polarization vector ~Pin upon reflection (or
transmission), furthermore it transforms the wave vector:

P̂~Pin = ~Pout , P̂~kin = ~kout.

The polarization matrix of an optical system like a corner-cube is the product of single polarization
matrices P̂ = P̂3 · P̂2 · P̂1 ([4]). A polarization matrix is only valid for one particular wave vector ~k,
but it is independent of the input polarization vector.

The polarization matrices for each scenario are:

P̂Au =




0.96368 · e56.49310◦i 0.02344 · e53.24253◦i 0.00000

0.02328 · e−115.98516◦i 0.96556 · e52.52696◦i 0.00000

0.00000 0.00000 1.00000 · e−180.00000◦i




2wave vectors are always normalized in this document
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Figure 2: real and imaginary part of refractive index for different materials, source:
http://refractiveindex.info

P̂Ag =




0.96892 · e57.56275◦i 0.02441 · e53.50263◦i 0.00000

0.02427 · e−115.52158◦i 0.97050 · e53.54087◦i 0.00000

0.00000 0.00000 1.00000 · e−180.00000◦i




P̂Al =




0.91920 · e36.34309◦i 0.00441 · e47.96650◦i 0.00000

0.00437 · e−127.79751◦i 0.92397 · e34.00669◦i 0.00000

0.00000 0.00000 1.00000 · e−180.00000◦i




P̂NA =




0.00973 · e180.00000◦i 0.00872 · e180.00000◦i 0.00000

0.00243 · e0.00000◦i 0.00125 · e0.00000◦i 0.00000

0.00000 0.00000 1.00000 · e180.00000◦i




The first column of the polarization matrices corresponds to the outgoing polarization for a
s-polarized input. The second column for the p-polarized case. The electric field amplitude of the
outgoing beam for s-polarized input light can be plotted easily, as shown in fig. 3 for aluminum.
The polarization vector (0.91920 · e36.34309◦i, 0.00437 · e−127.79751◦i, 0)T depicted on the figure is
elliptical left-circulating3. Please note, that the x-y-amplitude scale is unequal and hence the
ellipticity is exaggerated on this plot.

5 Polarization change

In fig. 4 the outgoing polarization ellipses for p- and s-polarized inputs are illustrated. The
numerical values can be found in table 1 and 2. The amount of depolarization (transfer of power
from one linear polarization into the orthogonal polarization) is for both kinds of input similar.
However, the retardation is for the p-input almost 0◦ leading to linear polarization. Also the overall
reflectivity is higher for p-light.

3two different conventions exist on definition of direction of rotation
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An interesting result is obtained for the Non-Absorbing scenario. For p-input the outgoing
beam is s-polarized. For s-polarized input the outgoing beam is also s-polarized, but with a phase
shift of 180◦ as stated in [5]. Due to the low reflectivity in this case, this scenario is more of
academic nature and for validation of the method.

Figure 3: Electric field amplitude of outgoing beam for s-polarized input. The outgoing beam is
left-circulating. The axes scaling is unequal.

6 Polarization induced phase changes

The geometrical pathlength of a beam passing through a corner-cube is independent of rotations
around the corner cube vertex. However, the phase of the light will change due to attitude depen-
dent polarization effects. If the corner cube or TMA is rotated, the phase and amplitude terms
in the polarization matrices will change, resulting in an overall change of phase and amplitude.
Assuming an interferometric length measurement, the phase change can be expressed as equivalent
optical pathlength change.

In this section we estimate coupling factors of rotations into the optical pathlength due to
polarization effects. Therefore the TMA is rotated around the vertex and around the X, Y and
Z axis independently from −1 mrad to +1 mrad. The time series of rotation angles and changes
in AOIs are depicted in fig. 5. The w-rotation corresponds to a roll-rotation of the spacecraft
and does not change the incidence angles (the wave vector of in- and outgoing beam is parallel to
z-axis).

The phase change of silver is shown in fig. 6 for different input and detection (output) polariza-
tion states. One should notice that the phase for crossed polarizations (s-input and p-detection or
vice versa) is more sensitive on rotations, but the outgoing beam power is very low in these cases,
as stated in the previous section. All coupling factors are summarized in table 3. The amplitude
is almost constant during rotations and hence not further investigated here.
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Figure 4: Outgoing beam amplitudes for s- and p-polarized input beams.
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Aluminum Silver Gold Non-Absorbing
In-Power 1.000 1.000000 1.000000 1.000000
Power-Out-s 0.844923 0.938803 0.928690 0.000095
Power-Out-p 0.000019 0.000589 0.000542 0.000006
Ellipse Major Axis Power 0.844941 0.939384 0.929223 0.000101
Ellipse Minor Axis Power 0.000001 0.000009 0.000009 0.000000
|Ellipticity Angle| 0.06◦ 0.18◦ 0.18◦ 0.00◦

Phase Difference s-p −164.18 ◦ −173.09 ◦ −172.47 ◦ −180.00 ◦

Rotation Angle of Ellipse −0.26 ◦ −1.42 ◦ −1.37 ◦ −14.02 ◦

Polarization Type weakly elliptical linear
left-circulating

Table 1: Polarization parameter of outgoing beam for s-input.
Aluminum Silver Gold Non-Absorbing

In-Power 1.000000 1.000000 1.000000 1.000000
Power-Out-s 0.000019 0.000596 0.000550 0.000076
Power-Out-p 0.853715 0.941864 0.932305 0.000002
Ellipse Major Axis Power 0.853734 0.942460 0.932854 0.000078
Ellipse Minor Axis Power 0.000001 0.000000 0.000000 0.000000
|Ellipticity Angle| 0.06◦ 0.00◦ 0.00◦ 0.00◦

Phase Difference s-p −13.94 ◦ 0.04 ◦ −0.71 ◦ −180.00 ◦

Rotation Angle of Ellipse −0.27 ◦ −1.44 ◦ −1.39 ◦ −98.16 ◦

Polarization Type weakly elliptical almost linear linear
right-circulating

Table 2: Polarization parameter of outgoing beam for p-input.

Figure 5: Rotation angles of TMA (top) and change in angle of incidence on each mirror.
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Figure 6: Phase change expressed as pathlength variation for silver.

Aluminum Silver
In-Out U V W U V W
s-s 0.00316 < 0.0001 < 0.0001 0.0714 -0.0008 0.0008
p-p 0.0053 < 0.0001 < 0.0001 0.0251 0.0008 -0.0008
s-p -0.0038 11.3736 -1.4478 -0.0014 3.9921 -0.4709
p-s 0.0382 -11.3739 1.4481 0.0953 -3.9927 0.4714

Gold Non-Absorbing
In-Out U V W U V W
s-s 0.0703 -0.0008 0.0008 0.0000 0.0000 0.0000
p-p 0.0247 0.0008 -0.0008 0.0000 0.0000 0.0000
s-p -0.0015 4.0679 -0.4812 0.0000 0.0000 0.0000
p-s 0.0935 -4.0685 0.4818 0.0000 0.0000 0.0000

Table 3: coupling factors in units of nm/mrad due to attitude dependent polarization effects
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Appendix E

Time-dependent offset
frequency

In this section we evaluate the effect of a time-dependent offset frequency on the
phase-derived range measurement. The current plan for GRACE Follow-On LRI
foresees a constant offset frequency, however future missions might require a variable
offset frequency to keep the beatnote within a certain band, e.g. when pendulum
orbits with higher Doppler rates are used. We assume a relative velocity vrptq
between the spacecrafts given by

vrptq � vmax � sin
�

2π

T
t



, (E.1)

where vmax � 8 m{s is the maximal relative velocity and T � 5666 s is the orbital
period. Thus the biased inter-satellite distance can be written as

ρrealptq �
» t

0
vrpt1q dt1. (E.2)

The phase provided by the phasemeter was defined as (eq. (3.9))

Ψptq � 2π

» t
0
fmaster

PD pt1q � f 1off dt
1 � 2π

» t
0
foff � 2vrpt1q

�
1

λ
� foff

2c



� f 1off dt

1. (E.3)

As in section 3.1.2, we assume that the offset frequency subtracted on the master
spacecraft f 1off is equal to the offset frequency used in the PLL on the slave spacecraft
foff, but time dependent according to

foffptq � f 1offptq � fa � sin
�

2π

T
t� ϕ



� f0, (E.4)

where f0 � 7.5 MHz is an offset frequency and fa � 10 MHz is the amplitude of the
frequency modulation. Choosing the phase offset ϕ � 0 rad provides a beatnote on
the master spacecraft within 2...15 MHz.
Furthermore, we account for a time offset δt, such that the measured phase can be
written as:

Ψptq � 2π

» t
0
foffptq � 2vrpt1q

�
1

λ
� foffptq

2c



� foffpt� δtq dt1. (E.5)

The difference between phase-derived and real range is then

δρptq :� �1

2 � kΨptq � ρrealptq, (E.6)
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where the approximated wave number k � 2π{λ is used to relate the phase to a
length measurement. With straight forward algebraic manipulation one obtains for
δt � 0:

δρptq � offset� f0 � T � vmax � λ
4 � c � π cos

�
2π

T
t



� fa � T � vmax � λ

16 � c � π sin

�
4π

T
t� ϕ



(E.7)

� offset� 96µm � cos

�
2π

T
t



� 32µm � sin

�
4π

T
t



(E.8)

Two sinusoidal signals, so-called tones, with orbital and twice the orbital frequency
are present in the phase-derived range. If the Doppler shift velocity is expanded to
higher orders (in eq. (3.7)) also higher harmonics would appear. The tones are caused
by the fact that the wave number is assumed to be constant in the computation of
the range. However, the phase-derived length measurement can be corrected for
these tones in post-processing.
Another difficulty might be caused by time-jitter, which is assumed here to be the
delay between real offset frequency of the PLL on the slave S/C and the subtracted
offset frequency on the master S/C. The first order series expansion yields:

Bδρptq
Bδt � offsetptq � fa � λ �

sin
�

2π
T t� ϕ

�� sinpϕq
4π

δt�Opδt2q (E.9)

� offsetptq � 0.84 m{s � psin p2 � π � t{T � ϕq � sinpϕqq � δt�Opδt2q. (E.10)

As one can see, the coupling into the phase-derived length is 0.84 m{s and might
require a time-jitter at ns{?Hz level to produce a length fluctuation at nm{?Hz
level. However, current plans suggest a constant offset frequency, such that these
difficulties are obsolete.
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Appendix F:

A note on TMA mirror misalignments for the GRACE

Follow-On Laser Ranging Interferometer (GFO LRI)

1 Introduction

In this document we analyze the effect of TMA mirror misalignments in the GFO LRI on the beam
parallelism and on the coupling coefficients of rotations into (optical) pathlength. The analysis is
based on analytical raytracing, omitting any polarization effects of corner-cubes, refractive index
changes or spatial extension of laser light.

The analysis was realized in Mathematica.

2 Analytical Raytracing

Here we derive some basic ideas of analytical raytracing, which are applied in the next subsections.
Throughout this document computations are performed in the Euclidean space R3, meaning that
vectors have three components and matrices, which are denoted with a hat M̂ , have the dimension
3× 3.

We define a laser beam as a straight line, parameterized by some parameter l, a beam direction
~d and a beam origin at position ~p:

~b(l) := ~p+ l · ~d. (1)

A mirror is defined in this document as a plane, given by a mirror center ~c and a mirror normal
vector ~n. We note that a plane can be parameterized with M(~c, ~n, ~x) = 0 (Hesse normal form of
a plane), where the function M is given by

M(~c, ~n, ~x) := ~n · ~x− ~c · ~x, (2)

with ~x = (x, y, z)T. When a light ray is reflected at a mirror it changes the direction according to

~dout = D̂(~n) · ~din, (3)

with

D̂(~n) := −R̂(180◦, ~n), (4)

where R̂(180◦, ~n) is a rotation matrix for a rotation around the axis ~n by 180◦. The intersection
(reflection) point of a ray at a mirror can be computed by solving

M(~c, ~n,~b(l)) = M(~c, ~n, ~p+ l · ~d) = 0 (5)

for the parameter l:

ls = L(~c, ~n, ~p, ~d) :=
(~c− ~p) · ~n
~n · ~d

. (6)

The intersection point is then ~b(ls). All these functions can be easily implemented in an algebraic
manipulation program.
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3 The Nominal Setup

We analyze the propagation of a light ray through a hollow corner-cube retro-reflector consisting
of three mirrors M1,M2 and M3 given by the following mirror centers ~ci and the mirror normal
vector ~ni [4]:

~c1 :=




300.0
300.0
−24.0


mm, ~c2 :=




300.0
−266.0588745
−24.0


mm, ~c3 :=




333.9411255
−300.0

24


mm, (7)

~n1 :=




1/
√

2

−1/
√

2
0


 , ~n2 :=




0.5
0.5

1/
√

2


 , ~n3 :=




0.5
0.5

−1/
√

2


 . (8)

The setup is depicted in fig. 1. The nominal vertex ~Vnom of the TMA, in other words the intersection
point of all three mirror planes, can be computed by the well-known formula

~Vnom(~c1, ~n1,~c2, ~n2,~c3, ~n3) :=
(~c1 · ~n1) · (~n1 × ~n3) + (~c2 · ~n2) · (~n3 × ~n1) + (~c3 · ~n3) · (~n1 × ~n2)

|~n1~n2~n3|
, (9)

where |~n1~n2~n3| is the determinant of a matrix created by writing ~ni side-by-side [1]. We note that
the nominal vertex for this particular setup is at the origin (0, 0, 0)Tmm.

Figure 1: Ray propagation through a hollow corner-cube.

We define the initial ray at a position ~b0 as

~b0(l) := ~p0 + l · ~d0 =




x0
300.0 + y0
−24.0 + z0


mm + l ·



−1
0
0


 , (10)

where x0 > 300.0 mm is a variable for the distance between the corner-cube and the origin of
the ray. The paramters y0, z0 describe a lateral displacement of the initial ray w.r.t. the nominal
optical axis. The initial ray ~b0 is reflected at M1 into a ray called ~b1, which is reflected at M2 into
a ray ~b2, which is again reflected at M3 into the final ray ~b3. The angle of incidence on M1 is 45◦

and at M2 and M3 it is 60◦.
In addition we assume a virtual plane, which is normal to the direction of the initial ray ~b0 and

intersects with the origin of the initial ray. The final ray ~b3 intersects with the virtual plane and
is terminated at that point. In total we obtain four ray segments. The first ray length l0 can be
computed using eq. (6):

l0 = L(~c1, ~n1, ~p0, ~d0). (11)
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Then one can write ray ~b1 as

~b1(l) = ~p1 + l~d1 = ~b0(l0) + l · D̂(~n1) · ~d0. (12)

The ray segment length l1 can be computed again using eq. (6). Iteratively, one can derive all

beams until ~b3. The final beam ~b3 is a function of all mirrors. Its direction can be written as

~d3 = D̂(~n3) · D̂(~n2) · D̂(~n1) · ~d0, (13)

where ~d0 is simply (−1, 0, 0)T. Since the nominal setup assumes a perfect retro-reflector, the final
direction is anti-parallel to the incoming beam:

~d3 =




1
0
0


 , (14)

which follows directly from the fact that

D̂(~n3) · D̂(~n2) · D̂(~n1) = −1̂ (15)

for three mutually orthogonal (and normalized) vectors ~n1, ~n2, ~n3, when computed using eq. (4).
The final beam intersects with the virtual plane at

~b3(l3) =




x0
−300.0− y0

24.0− z0


 , (16)

showing that the corner-cube produces a lateral displacement of 620 mm (when y0 = z0 = 0). The
(optical) pathlength ρ through the setup is the sum of all segments,

ρ(~c1, ~n1,~c2, ~n2,~c3, ~n3) = l0(~c1, ~n1) + l1(l0,~c2, ~n2) + l2(l1,~c3, ~n3) + l3, (17)

and simplifies in the nominal setup to 2 ·x0 (twice the distance virtual plane-vertex). With eq. (17)
a lengthy analytical expression for the pathlength can be computed in finite time.

4 TMA Rotations

We now introduce the rotation angles u for roll, v for pitch and w for yaw and the rotation matrix

R̂(u, v, w) = R̂
(
u, (1, 0, 0)T

)
· R̂
(
v, (0, 1, 0)T

)
· R̂
(
w, (0, 0, 1)T

)
, (18)

which is composed of elementary rotation matrices for rotations around the x, y and z direction.
Since the angles u, v, w are small, the rotation matrices commute and the order of rotations does
not matter. The TMA mirrors shall rotate around a point ~δ = (δx, δy, δz)T and not around the
origin (or nominal TMA vertex). The transformation of each mirror can be written as

~ni(u, v, w) = R̂(u, v, w) · ~ni, (19)

~ci(u, v, w) = R̂(u, v, w) · (~ci − ~δ) + ~δ. (20)

Since rotations of all three normal vectors maintain the orthogonality of the vectors, the final beam
direction is invariant under TMA rotations:

~d3 = D̂(~n3(u, v, w) ) · D̂(~n2(u, v, w) ) · D̂(~n1(u, v, w) ) · ~d0 =




1
0
0


 . (21)

The optical pathlength ρ is a lengthy expression, therefore we expand it in a series up to second
order in u, v, w and obtain (see also [3])

ρ ( ~c1(u, v, w), ~n1(u, v, w), ~c2(u, v, w), ~n2(u, v, w), ~c3(u, v, w), ~n3(u, v, w) )

≈ 2 · x0 +




0
2 · δz
−2 · δy


 ·



u
v
w


+




0
−δx
−δx


 ·



u2

v2

w2


 . (22)

The first term is again twice the distance between virtual plane and vertex. We should note
that interferometrically one can only measure changes of x0. The second term contains the linear
coupling and the third term the quadratic coupling of rotations into the pathlength. The offset
between point of rotation and vertex (δx, δy, δz) should be kept small to minimize coupling of
spacecraft rotations into optical pathlength.
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5 TMA mirror misalignments

To incorporate TMA mirror misalignments we transform eq. (7) and (8) to a local TMA frame,

which has the same origin as the spacecraft frame (the nominal TMA vertex ~Vnom = (0, 0, 0)T),
but is aligned with the normal vectors of the TMA. The mirror centers become

~c1,loc := R̂−1TMA→SC · (~c1 − ~Vnom) + ~Vnom =




0
316.970563
283.029437


mm,

~c2,loc := R̂−1TMA→SC · (~c2 − ~Vnom) + ~Vnom =




400.264069
33.941125

0


mm,

~c3,loc := R̂−1TMA→SC · (~c3 − ~Vnom) + ~Vnom =




448.264069
0

33.941125


mm, (23)

(24)

and the normal vectors transform to

~n1,loc := R̂−1TMA→SC · ~n1 =




1
0
0


 ,

~n2,loc := R̂−1TMA→SC · ~n2 =




0
0
1


 ,

~n3,loc := R̂−1TMA→SC · ~n3 =




0
1
0


 . (25)

The rotation matrix is given by

R̂−1TMA→SC :=



← ~n1 →
← ~n3 →
← ~n2 →


 = R̂(−α, ~q), (26)

where the order of vectors was swapped to obtain a right-handed system and a matrix determinant
of +1. The rotation axis ~q is the eigenvector of R̂−1TMA→SC to the eigenvalue 1, while the angle of
rotation can be computed using the trace of the matrix:

tr
(
R̂−1TMA→SC

)
= 1 + 2 · cos(−α). (27)

We introduce for each mirror a small tip and tilt misalignment denoted by angles αi and βi, such
that

~ne1,loc :=




1
α1

β1


 ,

~ne2,loc :=



α2

β2
1


 ,

~ne3,loc :=



α3

1
β3


 . (28)

Finally, we transform the error-prone normal vectors back to the spacecraft frame according to

~nei := R̂TMA→SC · ~nei,loc = R̂(+α, ~q) · ~nei,loc. (29)
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We should note that there exists now a true vertex (see eq. (9))

~Vtrue(~c1, ~n
e
1,~c2, ~n

e
2,~c3, ~n

e
3)

linearized≈







224.132
200.132
224.132


 · ~α+




200.132
16.9706
16.9706


 ~β



−224.132
200.132
200.132


 · ~α+



−200.132
16.9706
16.9706


 ~β




0.
283.029
−316.971


 · ~α+




0.
24.0
−24.0


 ~β




mm, (30)

with ~α = (α1, α2, α3)T and ~β = (β1, β2, β3)T being the mirror misalignments in radian. The true
vertex is accessible, e.g. by measuring the mirror planes physically with a coordinate measurement
machine, while the nominal vertex ~Vnom is purely virtual and not a good reference point anymore.

As we will see subsequently the relative angles γ1, γ2 and γ3 between the mirror planes are a
helpful quantity:

~γ =



γ1
γ2
γ3


 =



α1 + α3

α2 + β1
β2 + β3


 =



](~ne1, ~n

e
3)

](~ne1, ~n
e
2)

](~ne2, ~n
e
3)


 . (31)

5.1 Beam Parallelism

We combine eq. (29) and eq. (20) to obtain the error-prone mirror normal vectors upon spacecraft
rotations

~nei (u, v, w) = R̂(u, v, w) · ~nei (32)

and evaluate the final beam direction

~d3 = D̂(~ne3(u, v, w) ) · D̂(~ne2(u, v, w) ) · D̂(~ne1(u, v, w) ) · ~d0
linearized≈




1
0
0


+




0 0 0
−1.414 −1.414 0

1.0 −1.0 1.414


~γ (33)

+




0 0 0
−1.0 · u+ 1.0 · v 1.0 · u− 1.0 · v −1.414 · u− 1.414 · v
−1.414 · u+ 1.0 · w −1.414 · u− 1.0 · w −1.414 · w


~γ, (34)

where one can see that in case of no misalignments (~γ = 0) the outgoing beamdirection is (1, 0, 0)T.
This equation provides the dependency of the outgoing beam direction w.r.t. the misalignment
angles. The last term shows, that the beam direction can depend on the spacecraft orientation
u, v, w, although the effect is very small, since γi has a magnitude of µrad and u, v, w of mrad.
The static misalignment (second term) has coefficients of the order ≈ 1, meaning that a mirror
misalignment of 1µrad causes a beam deflection of approximately 1µrad.

The static misalignment matrix was verified by raytracing.

5.1.1 Application to TMA requirements

We assume a requirement of δ = 15µrad total beam deflection due to a TMA. In addition we
assume that the two close-by mirrors M2 and M3 are aligned with an error below γ3 = 5µrad.
The total static beam deflection δ is approximately given by

δ =
√

(−1.141 · γ1 − 1.141 · γ2)2 + (1.0 · γ1 − 1.0 · γ2 + 1.414 · γ3)2, (35)

which parameterizes an ellipse when our assumptions are plugged in (see fig. 2). The errors for γ1
and γ2 should be within this ellipse to obtain a total beam deflection with less than 15µrad.
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Figure 2: Error ellipse for TMA misalignment angles γ1 and γ2 in µrad for the particular assump-
tions given in the text.

5.1.2 Results by Yoder

In a paper by Yoder [2] the beam deflections due to corner-cube errors are analyzed. One result
is that if the misalignment angles |γi| are below θ, the final beam deflection is below 3.26 · θ. In
the derivation given in this document, one can show that the total error is maximal 3.41 · θ, when
γ1 = −γ2 = γ3 = θ is used. The cause of this discrepancy was not investigated.

5.2 Pathlength

For rotations around the true vertex we compute the following pathlength coupling

ρ ( ~c1(u, v, w), ~ne1(u, v, w), ~c2(u, v, w), ~ne2(u, v, w), ~c3(u, v, w), ~ne3(u, v, w) ) (36)

≈ 2 · x0 +




1.414 · y0 + 1.0 · z0
1.414 · y0 − 1.0 · z0

1.414 · z0


 · ~γ (37)

+ u ·




266.1 mm + (y0 − δy) + 1.414(z0 − δz)
−333.9 mm− (y0 − δy) + 1.414(z0 − δz)

424.3 mm + 1.414(y0 − δy)


 · ~γ (38)

+ v ·


2 · δz +




−300.0 mm− y0 + δx
300.0 mm + y0 − δx

424.3 mm + 1.414(y0 + δx)


 · ~γ


 (39)

+ w ·


−2 · δy +



−24.0 mm− z0 + 1.414δx
−24.0 mm + z0 + 1.414δx

33.94 mm + 1.414z0


 · ~γ


 , (40)

where ρ, x0, y0, z0, δx, δy, δz are in millimeter and the angles ~γ, u, v, w are in radian.

6 Point of Minimal Coupling

The point of minimal coupling (POMC) is the point, where the partial derivatives of the optical
pathlength ρ w.r.t. the spacecraft rotation angles u, v, w are minimal. We derive the coupling
coefficients for a rotation around the true vertex:


∂ρ/∂u
∂ρ/∂v
∂ρ/∂w


 =




266.059 −333.941 424.264
−300.0 +300.0 424.264

24 −24 −33.9411


 · 1 mm · ~γ

+




0 −γ1 + γ2 − 1.414γ3 −1.414γ1 − 1.414γ2
γ1 − γ2 + 1.414γ3 0 2
1.414γ1 + 1.414γ2 −2 0


 ·



δx
δy
δz


 , (41)
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where we assumed no lateral beam offset (y0 = z0 = 0) and where δx, δy, δz is an offset in the point
of rotation from the true vertex. As one can see, the coupling is very small for mirror misalignments
in the range of µrad. Therefore one can say that for the assumed TMA mirror misalignments the
POMC is at the true vertex (which was computed w.r.t. the nominal vertex in eq. (30)).

If higher accuracy is required, one can use the Moore-Penrose pseudo-inverse to solve eq. (41)
for δx, δy, δz. The pseudo inverse is required, since the system is singular (one has a line of zero
coupling for the uv rotations and another line for uw rotations). The pseudo-inverse provides a
solution, which minimizes

∣∣∣∣∣∣



∂ρ/∂u
∂ρ/∂v
∂ρ/∂w



∣∣∣∣∣∣

2

(42)

w.r.t. δx, δy and δz. The solution can be linearized to



δx
δy
δz


 ≈




0 mm
12 mm · (−γ1 + γ2) + 16.97 mm · γ3

150 mm · (−γ1 + γ2) + 212.132 mm · γ3


 . (43)
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