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Abstract 

For four years now, the concept of the Matrix Fusion Factory MFF has been developed and studied. The 
MFF dissolves the separation between digital and real entities and focuses on value creation in production. 
The MFF is based on two prerequisites: first, an organizational structure for assessing value creation in 
factories whose modular hardware and software structures are constantly reconfigured; and second, the 
fragmentation logic presupposes increasing complexity, which in turn requires methods for evaluating and 
reducing complexity. This paper focuses on the reduction and management of informational complexity 
since different ways of information management (i.e. capturing, selecting, compressing, and providing 
information) lead to different effects on the production system, especially if the information is processed by 
humans. Therefore, the central assessment approach for information management must be value creation. 
Thus, this paper discusses the impact of information management on value creation and how information 
management can support value creation. In particular, it is clarified how informational complexity in 
production can be reduced without distorting the underlying information and the implications for technology 
and organization are discussed. 
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1. Introduction and Motivation 

Ultra-flexible, mobile, and highly modularized manufacturing systems consisting of constantly reconfigured 
hardware and software module networks offer numerous additional degrees of freedom due to their 
modularity and mobility. To enable optimal value creation, these degrees of freedom require methods and 
approaches to deal with the enormous increase in complexity. [1–9]  

The basic requirement for creating value in production is to complete customer orders with assured quality. 
Especially in ultra-flexible factories, where the entire manufacturing system is in a constant state of change, 
the order becomes the only constant that cannot be changed by the manufacturing system [2, 10–13]. 
Therefore, the MFF considers the factory as a service provider for the respective order. The goal is to 
optimally adapt the manufacturing system to the order.  

The completion of the customer’s order is the basis of value creation, with the fundamental objective being 
maximum added value through a minimum use of resources. The MFF therefore aims at minimizing the use 
of parts and factory resources to complete an order. Prerequisites for the minimum use of production 
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resources are scalability of the resources themselves and sufficient degrees of freedom to adapt to the order. 
The MFF considers machines as context-related, temporary networks of scalable hardware and software 
modules, thus generating additional degrees of freedom [2]. 

According to Milling, a system is complex if the number of possible links within a system is no longer 
manageable and the causalities among them cannot be recognised anymore [14]. According to Kluth et al. 
complexity involves the four complexity dimensions variety, heterogeneity, dynamics, and non-transparency 
[3]. According to Siegert et al., complexity in modular and flexible production systems depends on the 
number of degrees of freedom of its subsystems and components [1]. These degrees of freedom include, 
above all, the spatial, time and informational forms, interconnections and changes of all entities of a system. 
However, even if complexity may not be quantified, the varying states of complexity of a production system 
can be described and differentiated from each other [1]. According to Weaver complexity can be -classified 
as organised and unorganised complexity [15]. Ferretti defines a system’s complexity as ontological 
complexity, the existing lack of order, or as epistemological complexity, i.e. the overstraining of human 
perceptual capacities because of a wide variety and diversity of existing interdependencies [16].  

Both extreme ontological and (perceived) epistemological complexity lead to an overload of information. 
Therefore, the concept of minimizing the use of resources is also applicable to information. In line with the 
other production resources, it must be decided how much and which information is required to fulfil a task. 
The effect of distorted information must therefore be considered. 

Each decision and each process in a manufacturing system is based on information [17–19]. In particular, 
the above-mentioned degrees of freedom can only be used to add value by modelling information [20]. Value 
creation is therefore dependent on the right information in the right place at the right time [21, 22]. For this 
reason, information, its provision, and its processing require special consideration in the MFF.  

The underlying research questions are therefore: 

• What is the role of information and information distortion concerning value creation in production? 
Especially considering the concept of a minimum use of production resources? 

• How to determine the admissible value/degree of information  
• distortion? 
• What requirements does this place on organizational and technical structures? How can these 

requirements be addressed?  

This paper uses the paradigm of the Matrix Fusion Factory to show how value creation can be optimized by 
incorporating relevant production aspects. In the following, the role of information and information 
distortion in the concept of a minimum use of resources is described and how to determine the permissible 
degree of information distortion. Then, the role of the decision maker is considered from a human and 
machine perspective before explaining the organizational structures of the MFF.  

2. Determining permissible information distortion  

Distorting information means selecting, presenting, or weighting information in such a way that the 
underlying facts described by the information are framed in a certain way. This usually results from omitting 
or not considering some additional information by oneself or others. That does not necessarily mean reducing 
the content of truth of the various pieces of information per se or creating false information. Thus, it is not 
necessarily the information itself that is distorted, but the picture that is gained from the information [23–
28]. Information distortion is therefore a cognitive bias [25–28] which in extreme cases may also lead to 
false knowledge.  
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Any way of aggregating information therefore leads to a distortion of the underlying facts [27]. However, 
since humans [29] or computers are unable to solve tasks unless information is aggregated, this is an essential 
step [30]. Therefore, it is not necessary to clarify whether information may be distorted but rather to which 
extent this is permissible.  

This poses the problem of how to identify potentially distorted information. Checking the content of truth of 
individual pieces of information is certainly not the sole solution because the truth of individual pieces of 
information may be unchanged. It is only possible to detect the absence or incorrect weighting of individual 
pieces of information causing a distortion, if the overall picture generated can be matched some other way. 
This can be achieved by comparing it either with the real facts or with other images with validated truth 
content.  

The relevant production target variable is quality-assured added value. In production, information is usually 
condensed to aid decision making. For this purpose, complex facts are simplified, or important 
interrelationships are highlighted. Whether the impression of a fact has been “mapped correctly” can 
therefore be determined by the impact of the decision made. If the decision or the resulting action adds value, 
the distortion of information was permissible or at least not detrimental. However, if the decision has a 
negative effect on value creation, the distortion was not permissible. The basis for assessing permissible 
information distortion is therefore its effect on value creation. 

This leads to a further examination of the decision-making process, its influences and the resulting actions 
within the production system. 

Understanding mental processes, such as perception, memory, reasoning, and motor response, as they affect 
interactions among humans and other elements of a system in general, is an independent discipline called 
cognitive ergonomics [31].  

According to Endsley, in cognitive ergonomics decision making and the subsequent performance of the 
decided course of action can be traced down to the situation awareness of the decision-maker [29, 31, 32]. 
Endsley [33] defines situation awareness as “the perception of the elements in the environment within a 
volume of time and space, the comprehension of their meaning, and the projection of their status in the near 
future”. Dominguez defines situation awareness as the “continuous extraction of environmental information, 
integration of this information with previous knowledge to form a coherent mental picture, and the use of 
that picture in directing further perception and anticipating future events” [34]. 

Consequently Endsley’s model 
[29, 32] (see Figure 1) is set into 
three levels of situation 
assessment, each level being a 
necessary precursor to the next 
higher level. This model follows 
a chain of information 
processing, from perception, 
through interpretation, to 
prediction. The three levels of 
situation awareness are as 
follows: Perception of the 
elements in the environment: this 
stage is the first step to achieve 
the situation awareness which is 
related to the human’s perception of information in a given time and space. Comprehension of the current 
situation: comprehension is essential to understand the significance of the elements perceived and to gain a 

Figure 1 Model of situation awareness levels [29] 
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picture of their relationships. Projection of future status: this level of situation awareness is associated with 
the ability to project the future of the elements in the environment. Accuracy of the projection is highly 
dependent upon the accuracy of perception and comprehension.  

In the context of decision making, information distortion can therefore be understood as the wrong 
perception of information or the wrong supply of information, or the wrong comprehension of the current 
situation and therefore a wrong picture of the relationships of the perceived elements. This will lead to a 
wrong projection of a future status and subsequently to a poor decision and taking a suboptimal decision. 

According to Endsley's model, the parameters influencing the situation awareness and therefore inducing 
information distortion can be divided into individual factors and task/system factors.  

Individual factors can be influenced by training and experience. This is underlined by the conclusion of 
Carley and Lin that information distortion can at least to some extent be combated by training [27] and ties 
in with IFF’s definition of competence [17]: “Competencies represent the entirety of abilities, skills and 
existing knowledge to adequately apprehend, analyse, evaluate, make decisions, and act correctly in 
complex, dynamic and sometimes chaotic situations, taking into account relevant goals.” This definition 
strongly emphasises the evaluation of the situation to take the correct action. Therefore, systematically 
correct action calls for the analysis and evaluation of the situation and for decision-making. Unsystematically 
correct action, i.e., action that is not in line with the decision but nevertheless adds value, makes the system 
unpredictable in the long term if it occurs frequently and should therefore be avoided. If unsystematically 
correct action is taken frequently, decision making processes or decisive entities should be checked for their 
suitability.  

Task/System factors are largely influenced by complexity and the resulting stress and mental workload. 
Mental workload reflects the amount of mental resources required to perform a set of concurrent tasks [35]. 
Manufacturing systems are therefore prone to diminishing the situation awareness and to inducing 
information distortion of the individuals since they typically have a high level of complexity, many different 
capabilities, are highly automated, and are usually operating under cost and time pressure, therefore creating 
a high stress and high workload environment for their employees to work in. This impedes the situation 
awareness of the decision makers and leads to information distortion. This is underlined by the findings of 
Chaxel, Wiggins et al., that the mere belief of having limited time to make a decision is influencing and 
aggregating information distortion [23]. In addition, according to Carley and Lin, technology based 
distortion is typically more debilitating than personnel induced information distortion [27]. Especially as far 
as big data approaches are concerned, this leads to the consideration of how to reduce the content of the 
various dimensions of the 5V model [36] without unduly distorting it. 

In short, to ensure correct actions and 
therefore value creation, the 
individual factors and the task/system 
factors must thus be brought into 
balance (see Figure 2). This paper 
focuses on the organizational and 
technical requirements for adjusting 
the task and system factors to the 
individual factors to avoid information 
distortion. 

  

Figure 2 Value adding and balancing factors 
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3. Determining optimal degrees of freedom  

In manufacturing systems, decisions are made by different actors or entities. Decisions can therefore be 
divided into decisions made by machines and decisions made by humans, depending on the type of entity 
making the decision. On a higher level, the process leading to the making of a complex decision is similar 
both for humans and machines, regardless of their different data processing capacities and speeds. Both need 
to consider the facts of the matter on the basis of information, weigh this information, determine possible 
courses of action, prioritize these courses according to the anticipated effects, and then decide on one of the 
courses of action [37, 38]. The fundamental difference between decisions made by machines and by humans 
apart from the suitability for different situations and areas of application is therefore from the industrial 
management point of view the assumption of responsibility [17].  

Greater degrees of freedom in the manufacturing system mean more possible courses of action and more 
scopes for action. In general, this means that the number of suboptimal courses and scopes for action 
increases disproportionately as the degrees of freedom increase. This is problematic because the possibility 
of making wrong or suboptimal decisions may not only have a negative effect on value creation but may 
also unnecessarily increase epistemological complexity. The decision maker (whether human or machine) is 
confronted with a multitude of decision options, from which the few relevant options must first be 
laboriously filtered out before the most suitable one can be determined [28, 39, 40]. 

Especially in the context of the dynamics of the production environment, this preceding step significantly 
increases epistemological complexity [1] which creates a much greater risk of making a wrong decision and 
ultimately taking an incorrect course of action. Polman suggests that this is even more the case if a decision 
is made for a third party [28]. This leads to the question of how to restrict the degrees of freedom in order to 
reduce the risk of making wrong decisions. 

Basically, it can be said that too much complexity must always be avoided, otherwise the chain of action 
consisting of analysis and evaluation cannot be run through systematically [17, 29, 32, 33]. In addition, 
evaluating possible courses of action calls for an assessment of the consequences of the decision made. 
Therefore, only those degrees of freedom should be implemented whose benefits and consequences can be 
estimated by the decision-maker with a certain amount of confidence.  

This leads to the following insight:  

1. Additional degrees of freedom make a positive contribution to value creation if the type and number of 
resulting decision options do not disproportionately raise the risk of wrong decisions. 

2. The question of the degrees of freedom required, or of the manageability by the decisive entity, always 
depends on the entity’s competence. 

3. The degree of overload can be strongly influenced by the way in which information is provided. 

It has become apparent that, particularly for point 3, a large proportion of the fundamental logistical 
principles and main objectives can be transferred to handling information: the 5Rs of information logistics 
are therefore structured as follows: the right information (right choice), in the right quantity (right 
aggregation), at the right place, at the right time for the right decision-making entity [41, 42]. 

4. Organizational requirements for socio-technical systems 

The requirements described above necessitate a socio-technical organizational structure that makes it 
possible to integrate people in terms of information and behavior so that they are cognitively addressed 
optimally and socially integrated. Only then they are able to make the right decisions at the right time and 
possess the necessary freedom and motivation to translate their decisions into correct action. This is 
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confirmed by different studies in the field of cognitive ergonomics which state that mental workload can 
vary between low (i.e., underload) and very high levels (i.e., overload) [43, 44].  

These two extremes are classified as inappropriate and can lead to imperfect or inaccurate perceptions, as 
well as to low levels of attention and capacity, and to insufficient time for a proper information processing 
[43–51]. High levels of mental workload occur when task demands exceed performer capacity [52]. [53] 

Therefore, a location- and time-dependent resource allocation of data, knowledge, competencies, and 
performed actions is necessary. Additionally, requirements increase with the scope of the decision to be 
made. In the factory context, the smaller the quality control loop the better [54]. This also applies to decision-
making control loops. Consequently, decisions affecting the direct creation of value should also be made 
close to the point where the value is added, since the information picture at this point is largely original and 
undistorted. This is underlined by the findings of Carley and Lin who state that regardless of information 
distortion performance is enhanced if there is a match between the complexity of organizational design an 
task environment [27]. 

In addition, the ability of the decision-making entity to recognize when it is overstretched, needs help, or can 
no longer assume responsibility should be considered. In the latter case, escalation management within a 
hierarchy chain is required. At the same time, the reverse case should also be taken into account. If the 
production-related person is capable of assuming responsibility for the right decision, he or she should be 
able and allowed to make it. This, in turn, requires the right of access to further information if the employee 
considers it useful for the decision. This increases the effectiveness and efficiency of value creation and is 
in line with the concept of minimizing the use of resources, since the information control loops should be 
kept as small as possible in the respective context. This also increases the employee's self-efficacy and 
enhances motivation and willingness to perform. 

This context-related shifting of decision points along organizational structures is modelled in the MFF by 
means of flexible, heterarchical quality control loops. 

In the MFF, information is provided in such a way that people can grasp the relevant facts quickly and 
correctly. It must therefore represent the facts correctly and, if possible, coherently. This particularly applies 
to the quality of the information. Contradicting information, or information that appears to contradict each 
other, leads to cognitive dissonance and leads to suboptimal decisions. Information must either be aligned, 
for example on different levels of aggregation, or must point these levels out. To avoid cognitive dissonance, 
it is important to ensure that information is not excessively distorted. The MFF embeds the information and 
the human being into the information supply by using the Standardized Coordinate System [20]. The 
manufacturing system is recorded by cameras and other sensors, merged with information from planning 
and control and the resulting information is then fed back into the real factory via projectors mounted on the 
hall ceiling (see Figure 3). This superposition of the digital and real world enables context-related 
information to be provided on the shopfloor in real time, thus supporting prompt decision-making adapted 
to the situation at hand. In addition, by overlapping the real factory 
with the digital image, cognitive dissonance is avoided because 
differing information is recognized immediately, enabling its cause 
to be ascertained. Furthermore, by interacting with the cameras on 
the hall ceiling, (e.g., via gestures), additional information can also 
be requested at any time, even when the system is in operation. The 
degree to which information is aggregated can be altered or the 
consequences of decisions can be simulated (e.g., when planning 
AGV routes).The MFF is increasingly using game engines which 
can quickly visualize even complex facts, simulate the 
consequences of actions and thus reduce the complexity of Figure 3 Matrix Fusion Factory 
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decision-making [55–58]. The integration of information into the physical shopfloor means that effects can 
be viewed directly in the real system, thus enabling, for example, collisions to be predicted and avoided. In 
addition, the display of information via projectors also fits in with the concept of a minimum use of resources, 
since information and light are only coupled and projected where they are needed. 

In the standardized coordinate system, all recorded data is classified according to time, place and position. 
It is then processed and, if it makes sense, merged or placed in relation to each other [20]. This also includes 
the information generated by the standardized coordinate system and projected into the shopfloor. The 
information provided by the projectors is simultaneously recorded again by the cameras in the context of, 
and together with, the real production. The MFF thus consists of a physical and a digital part of the 
manufacturing system, which together form the real manufacturing system on the shopfloor. This real-time 
fusion of real and digital facts, which also gives the MFF its name and enables correct action to be taken, 
can be used to identify distorted information or unmethodical actions before they lead to impairment of the 
entities or of value creation. This is true, whether the individual distorts the supplied information, the 
supplied information is distorted, or both. The state of the real manufacturing system can be retrieved in the 
standardized coordinate system for any point in time. Therefore, causes can be inferred by identifying the 
respective time and place. In an ideal case, the triggering action can be corrected in good time and the cause 
of the error eliminated before a negative effect can occur. 

5. Technological requirements 

The MFF strives to minimize the use of resources in value creation. To this end, only the number of resources 
deemed necessary to complete an order and optimize value creation are provided. Oversizing modular 
production resources is regarded as waste. For example, it makes no sense to use a six-axis robot if only 
three axes are required; the three remaining modules can be used to add value elsewhere.  

In particular, the transformation enablers according to Nyhuis (scalability, modularity, mobility, 
compatibility and universality) [59] are prerequisites for the adaptability of a manufacturing system made 
up of groups of hardware and software modules. Classical production systems often consider transformation 
enablers primarily in a hardware context. A distinctive feature of the MFF is that the transformation enablers 
are also considered in the context of groups of software modules. Especially game engines have been able 
to demonstrate their capabilities in this regard [57].  

However, transformation enablers are not sufficiently capable of determining how and to which extent an 
adjustment must be made to optimize value creation. This is in part due to the fact, that the effect of 
adjustments on the workload and capability of the individual decision-making entity is not considered. 

To determine how the manufacturing system of ultra-flexible factories must be adapted to orders in a way 
that adds value, the information contained within the production system must be mapped in an up-to-date 
and accurate manner. Due to the system’s dynamics and complexity, a map of this information can only be 
accurately generated if the system is able to describe itself in sufficient detail, at least in part. This 
presupposes the system’s basic ability to describe itself.  

For this the system must possess executable processes to describe itself and its parts which is especially 
important when new module groups with new process capabilities are assembled. The self-descriptive 
capability of the manufacturing system, including its process capabilities, is a prerequisite for achieving an 
optimal match between the order and the manufacturing system [1, 10, 11]. 

This technical self-description capability forms the basis of the socio-technical organizational structure. 
Since degrees of freedom always contribute effectively to value creation if the type and number of resulting 
decision options do not disproportionately increase the risk of wrong decisions, the complexity of the 
information map of the manufacturing system restricts the degrees of freedom that can be used to create 
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value. This calls for a situation-specific representation of information depending on the deciding entity and 
the decision space available. The representation must be focused and sufficiently up to date to enable correct 
decisions to be made. These target variables conflict with each other, as shown in Figure 4 based on the 
target cross of production logistic variables. 

The challenge in using computer-based information processing, also to support decisions made by humans, 
is the high degree of modeling effort required to represent complex systems. In recent years, the capabilities 
of machines and algorithms in terms of data processing, aggregation, and analysis have greatly improved. 
Especially the rapid development of artificial intelligence leads to a steady increase in performance [38, 60–
62]. Nevertheless, complex simulation tasks often require costly or elaborate hardware equipment and 
extensive computation times, which conflicts with the requirements of near-real-time decision making. To 
enable the right decisions to be made at the right time, a balance between both objectives that is adapted to 
the situation must be achieved. Therefore, the accuracy of the model must be adjustable so that the decision 
maker is presented with a sufficiently complex picture of the facts within a sufficient period of time, thus 
allowing him or her to use the relevant information to make the right decision. 

To this end, the MFF also uses computational 
decision-making processes such as machine-
learning algorithms. These are mainly used to 
support human decision making by providing and 
preprocessing information, such as person-neutral 
detection of the viewing direction for optimal 
positioning and orientation of information 
projected onto the hall floor. Especially in 
dynamic and complex situations, the decision-
making competence of humans is required. To 
avoid cognitive dissonance and improve the 
quality of decisions, in the MFF machine-
processed information is integrated into the 
context of the real factory. 

This is in line with the position taken by the German Ethics Council, which points out the dubious quality 
of algorithm-based decision support systems and is concerned about effects on human self-efficacy [63]. In 
the MFF, therefore, the focus is on the ability of the person to adapt the representation of information to his 
or her needs and to understand and verify it. This improves the receptivity and quality of decisions and 
enables the person to be more involved in decision-making processes. The standardized coordinate system 
also makes it possible to document and assign decisions. 

6.  Conclusion and Future Works 

The paper has demonstrated the role of information and information distortion in ultra-flexible factories, 
particularly with regard to the concept of minimizing the use of resources. It has also explained how 
permissible information distortion can be determined. Based on this, the role of human and machine decision 
making was considered, the requirements of complex information management were ascertained and 
presented, and the effects on the organizational structure and technology were derived. The target cross of 
production information was developed and introduced.  

In the future, approaches will be investigated that improve model quality and reaction times in the context 
of the provision of information by machines. In addition, further cameras and sensors on different levels of 
the MFF will be included in the Standardized Coordinate System. The integration of additional data 
processing capabilities into a holistic information logistics approach will be examined. As part of this, the 

Figure 4 Target cross of information processing in 
production 
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5R approach is to be validated. Also, greater emphasis will be placed on the interaction between humans and 
technology. Exoskeletons also will be integrated into the MFF and the concepts presented in this paper will 
be transferred to human-exoskeleton interaction.  
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