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Abstract 

The planning of factories and production processes is subject to constantly changing requirements and has 
always been challenged by uncertain future forecasts. Factory planning projects initiated for the production 
of innovative products are particularly affected. For these products, there is almost no historical or empirical 
data available, so the forecasts can only be based on estimated influencing variables and data from similar 
products. Accordingly, the risk that the selected capacity does not match the actual market demand is higher. 
While the capacity of a factory represents a long-term investment decision, the spread of innovations can 
fail within a short timeframe or occur far below the expected level. For this reason, it can be assumed that 
insights from innovation research offer a planning advantage in forecasting the production potential. 
Regarding an increasing number of global product innovations, the evaluation of empirical data by means 
of suitable models and methods is becoming more and more accurate in order to reflect typical market 
patterns based on recurring customer behaviour. This paper takes up these trends and proposes an approach 
how innovation metrics can be included in the capacity dimensioning process of factory projects. For this 
purpose, the BASS diffusion model is used to realistically map different market scenarios for the required 
capacity curves.  
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1. Introduction 

The market for fuel cell systems for vehicles in Germany and Europe is currently still relatively small, 
especially in comparison with North America and Asia [1]. It is generally assumed that this will change in 
the near future [2]. Indications of this, are the ambitious German national hydrogen strategy [3] and the EU 
Hydrogen Strategy [4]. Trencher and Edianto show that there is consensus in industry and research that those 
policy signals are drivers in market development [5]. In order to drive forward the transformation of energy 
supply towards fewer emissions, fuel cell technology is well suited, especially in areas where it is otherwise 
difficult to electrify applications. One of these applications are utility vehicles where fuel cell systems are 
generally better suited than battery electric systems [6]. Hence, within this article, the focus will be on utility 
vehicles like trucks and buses. 

The future market size, and therefore the sales potential of a company, in a timeframe of five to ten years 
and beyond is subject to great uncertainty. This influences companies' factory planning. In the worst case, 
factory planning is based on very optimistic estimates, while the technology remains a niche application or 
is substituted by other technologies. When focusing on the mobility sector one competing technology is the 
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battery electric vehicle (BEV). In comparison to fuel cell electric vehicles (FCEVs) BEVs are some years 
ahead in terms of technological maturity and cost reductions [5]. It is expected, that this gap in economic 
competitiveness will close in the coming decade, even for light-duty vehicles [7]. These forecasts are not 
certain and rely on continuous technical improvement, which, however, cannot be guaranteed.  

In 1998, a miscalculation of future demand and corresponding capacity cost Siemens about $150m [8]. When 
the decision to invest in a chip plant in Tyneside (UK) was made in 1995, Siemens predicted high demand 
for 16Mb chips and constant prices. Due to a sharp drop in prices (95% between 1995 and 1998); Siemens 
was forced to close its plant in Tyneside. This misjudgement was due to an incorrect assessment of the cycles 
of the traditionally fluctuating demand in the semiconductor industry [9]. Such errors are financially very 
difficult or even impossible to bear, especially for small and medium-sized companies. 

Especially factory and production process planning for innovative products, such as fuel cell components, 
face the challenge of accurate forecasts because historical or empirical market data do not exist. This leads 
to a higher risk that capacity and demand do not match, which can lead to expensive adjustment measures.  

To mitigate the risk of a capacity and demand mismatch, we suggest incorporating insights from innovation 
research into traditional factory planning methods with particular focus on capacity dimensioning. For this 
purpose, this paper presents a short introduction to capacity dimensioning methods and diffusion models. 
Chapter 4 presents a linkage of both domains concerning the factory planning for the assembly of fuel cell 
stacks. Chapter 5 compares the advantages and disadvantages of the proposed method. The paper concludes 
with a summary of the previous points and suggests future research activities on the topic.  

2. Capacity Dimensioning  

Several authors have developed structured overviews on standardized stages and steps of the factory 
planning process [10,11]. Moreover, the specific planning requirements and contents are formalized and 
described in the norm VDI 5200 [12] by the German Society of Engineers which also refers to the official 
scale of fees for services by architects and engineers (HOAI [13]). Based on these documents, the planning 
and estimation of required capacity can generally be seen as a base for subsequent structure planning. When 
investigating these aspects in more detail it seems useful to distinguish between the terms capacity 
dimensioning and capacity planning to avoid confusion. While the main objective of the latter is the optimal 
allocation of a fixed capacity according to cost criteria, delivery reliability or flexibility [14], the capacity to 
be dimensioned refers to the strategic orientation of serving a forecast customer demand without gaps and 
also in compliance with overall corporate objectives [15]. Accordingly, capacity dimensioning can be 
interpreted as a discipline of factory planning, the subject of which is the balancing between an order quantity 
(capacity requirement) and the output quantity achievable through production factors (available capacity).  

Major disadvantages of these sequential procedures are information losses on the interface between different 
planning partners who are, for instance, responsible for production infrastructure, HVAC and plumbing. 
Furthermore, it leads to an additional effort caused by iterative decision processes. As an answer to this, 
several concepts for integrated factory planning were developed and refined. An exemplary methodological 
framework is presented by Wiendahl et al. [11] with the so called synergetic approach to factory planning 
which comprises a two-dimensional project planning concept that relies on early cooperation between 
construction planning and production planning. Consequentially, the aspired cooperation necessitates a 
consolidated base for the planning and construction operations. With regard to this, the methodological and 
software-related framework of Building Information Modeling (BIM) serves as a basis for collaboration. 
The associated XML-based and openBIM-oriented scheme, named Industry Foundation Classes (IFC), is 
currently oriented to the development of buildings and their infrastructure. Thus, this may provide the 
starting point for the conjoint modelling of the production facilities infrastructure as well as logistic elements. 
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In any case, a flexible and precise forecast of product demands for infrastructure dimensioning is necessary 
in order to design and build a flexible and future-oriented production facility. 

The basis for planning is a quantification of future demand, which can be carried out using various 
forecasting methods. Depending on the application, Schönsleben [14] suggests a past- or future-oriented 
approach. The former is used if valid consumption data for the specific product can be accessed. These are 
transferred into time series and evaluated by means of mathematical or graphical procedures. If, on the other 
hand, such values are not available with the necessary validity, a forward-looking method can be used. A 
characteristic feature of these procedures is that available information on future demand trends is recorded 
and modelled as extensively as possible. In terms of methodology, both mathematical models and intuitive 
approaches, such as estimation based on empirical values, have become established. It should be emphasized 
that the resulting forecast data is subject to the limitations of the method used and therefore only partially 
addresses the complexity and interdisciplinarity of the influences on market demand.  

The forecast results are then transferred into a formal production program which, in addition to the quantity 
data, also contains product-specific, value-based and time-relevant specifications [10]. At the same time, 
data for determining the available capacity must be prepared. This is limited by the technical performance 
of the available resources, and if necessary, personnel organization specifications and budget restrictions can 
also influence the available capacity [16]. With regard to this, it must also be taken into account which 
manufacturing processes can be considered for individual production steps and whether this will be 
accompanied by future replacement investments. The collected data constitutes the basis for the concept-
planning phase of factory planning. The data is used for dimensioning the capacity and derived space 
requirements. More concretely, this phase consists of the sub-steps of the technological, temporal and 
organizational comparison between capacity requirements and available capacity [11]. First, the information 
recorded in the available capacity is concretized in terms of the production processes that are used and the 
required operating resources (machines, robots, tools). The choice of technology creates the necessary 
conditions to harmonize the temporal premises of the production system in the next step. In conjunction with 
the personnel requirements of the individual workstations, different shift system variants are created and 
compared based on qualitative as well as quantitative criteria. Taking into account production-reducing 
factors such as rework or failures, the existing net-working time 𝑇𝑇𝑀𝑀𝑀𝑀 is calculated by multiplying the gross 
operating time 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 and the time utilization factor 𝜂𝜂𝑅𝑅𝑅𝑅 [17]: 

𝑇𝑇𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝜂𝜂𝑅𝑅𝑅𝑅          (1) 

At the same time, the required occupation time on the individual work stations is to be determined in terms 
of planned volumes linked to product-specific parts lists [11]. As formula 2 shows, this results from the sum 
of the set-up time 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 and the total production time 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 of a period, which depends from the forecasted 
production volume 𝑥𝑥𝑗𝑗𝑗𝑗 and the processing time per unit 𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢. 

𝑇𝑇𝑅𝑅𝑅𝑅 = ∑ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶
𝐽𝐽
𝑗𝑗=1 + 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶

𝐽𝐽
𝑗𝑗=1 + ∑ (𝑥𝑥𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢)

𝐽𝐽
𝑗𝑗=1        (2) 

The quotient of occupancy time 𝑇𝑇𝑅𝑅𝑅𝑅 and net-working time 𝑇𝑇𝑀𝑀𝑀𝑀 ultimately leads to the number of operating 
resources or personnel required (𝑛𝑛𝑖𝑖). 

𝑛𝑛𝑖𝑖 = 𝑇𝑇𝑅𝑅𝑅𝑅
𝑇𝑇𝑀𝑀𝑀𝑀

           (3) 

Since the demand forecast on the market does not usually follow an ideal, uniform course, the extent to 
which capacity should be adaptable in the future must also be taken into account. On the one hand, this 
concerns the provision of resource-bound flexibility (e.g. short-term changes in the shift model) [18], on the 
other hand, the strategic positioning in competition is decisive for the capacity expansion of the company. 
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General alternative strategies for this are lead (keeping excess capacity), match (demand-synchronous 
adjustment) and lag (delayed, risk-averse adjustment) [19]. The choice of strategy opens up the scope of 
action to shape the capacity decision depending on the product, the market environment and the company's 
goals.  

The proven planning process shows that the demand forecasts collected at the beginning of the process 
consistently have a significant influence on the results of the individual steps. Accordingly, the demands for 
validity and realism are justified. This requirement is particularly challenging for innovative products and 
young markets. In these cases, it is typically uncertain whether the product will be able to successfully 
establish in the market and thus achieve market penetration. At the same time, typical competitive situations 
occur more frequently in young markets, which can strongly change the market distribution in the short term 
[20]. Since the typical forecasting methods reach the limits of their ability to depict these situations, 
innovation research has been dealing with the modelling of market developments for a long time. In 
combination with the capacity dimensioning process described above, these models can also help to consider 
product-typical demand trends in terms of capacity and to include changes in trends, for example due to 
specific innovation drivers, in planning at an early stage. 

3. Overview of Innovation Diffusion Models 

Innovation diffusion can be defined as “[…]  the  process  by  which  an  innovation  is  communicated 
through  certain  channels  over time  among  the  members  of a  social system” [21]. First popularized by 
Rogers in his 1962 published book Diffusion of Innovations, the theory became a staple in economics, social 
and communication sciences. The concept of innovation diffusion can be used on a micro level to describe 
the behaviour of individuals, but also on a macro level to describe how an innovation spreads across an entire 
social group or market. Rogers coined terms for five individual groups of innovation adopters and assumed 
that their distribution pattern corresponds to a normal distribution. Since then different authors suggested 
mathematical models to describe those patterns in detail. Figure 1 shows the general components of all 
diffusion models.  

 
Figure 1: General components of diffusion models, based on [22] 

Diffusion models are used to predict the sales of new technologies. Other methods, such as trend 
extrapolation, cannot be used because empirical values are not available. The use of diffusion models is thus 
classified as a future-oriented method for forecasting. 
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The project was intended to provide an initial proof of work of integrating diffusion models into capacity 
dimensioning. Therefore, to facilitate the validation of the results, only simple diffusion models were 
considered. These are usually based on the logistic distribution or derivatives thereof. Three of these models 
and their advantages and disadvantages will be briefly presented here. 

− Bass 
Based on the work of Rogers, Bass extended the general model of different innovation stages with 
a mathematical foundation [23]. The Bass diffusion model turned out to be highly influential and is 
used in various industries to forecast future sales. This model replicates empirically proven 
progressions of the innovation course of products sufficiently accurately. Bass tested this himself 
using sales figures for 11 consumer products [23]. This model needs three different input parameters. 
Those are the coefficient of innovation (p), the coefficient of imitation (q) and the population of 
adopters (m). With sufficient data for the values p and q (e.g. from adoption processes of similar 
products), the model is generally very accurate. The model is less well tested for industrial goods 
[24]. However, see point 4 for an overview of comparable publications in which the Bass model was 
used to forecast similar technologies.   

− Fisher-Pry 
The Fisher-Pry model makes three assumptions. First, it assumes that one technology is substituted 
by another to satisfy the same need. Second, if the substitution process reaches a certain threshold, 
then the process continues until full substitution occurs. Third, the substitution rate is proportional 
to the remaining quantity of the old product compared to the new one [25]. The model is 
characterized by its ease of use. To utilize it, only two input parameters need to be determined. One 
is the growth rate at the beginning of the diffusion process and the other is an estimate of the year in 
which the market penetration will be half [24]. However, compared to the Bass or Blackman-
Mansfield models, the model yields less meaningful results [24]. 

− Blackman-Mansfield 
In itself, Blackman's model does not represent a diffusion model. In contrast to the models mentioned 
so far, it does not examine the substitution or adoption of a product, but the development of the 
performance of a technology, expressed in a figure of merit [26]. However, Blackman, who bases 
his model on the work of Mansfield [27], himself shows the connection between technical progress 
and market substitution [26]. Compared to the Bass model, the factor of cost between different 
technology options is considered, which can be an advantage [24]. However, the model produces 
overly optimistic values at the beginning of the prediction and overly pessimistic values at the end 
[22]. 

As indicated earlier, the models shown here represent fundamental work in the field of product diffusion. 
These models have the crucial disadvantage that they are based on a fixed mathematical form. Various 
authors have tried to compensate for these disadvantages by modifying individual models, by combining 
different models or by creating completely new models. For an overview, see e.g.  [22]. For this paper, these 
models were not considered.   

For the prototypical application, the Bass model was chosen. This is because there are a number of 
publications that model comparable technologies with its help (listed in table 2). 

The values determined with the help of these methods are of course already used in production program 
planning and thus influence capacity dimensioning. However, normally only the static data determined once 
is used. For the factory planner, this results in a rigid numerical framework, although changes in market 
adoption can occur very quickly, especially with new technologies. By integrating diffusion models into the 
planning process, more differentiated statements can be made, especially with regard to strategies for 
capacity flexibilization, since this makes it possible to include different adoption processes during planning. 
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The following section describes the integration of the bass diffusion model in the capacity planning for an 
assembly line of fuel cell stacks. 

4. Application in the assembly of fuel cell stacks  

Although the fuel cell was invented as early as 1839 by William Grove [28] and has since been tested many 
times in various fields of application, its use for a broad market has only recently been pushed. The driving 
force behind this development can be identified primarily in a growing social awareness of the environment, 
which is leading to an increasingly critical questioning of conventional drive technologies. At the same time, 
today's technologies and findings enhance the performance of the fuel cell and can limit application-related 
dangers and disadvantages. For these reasons, many indicators argue for a disruptive innovation character 
[29], which exhibits promising future potential in mobile, portable and stationary applications.  

At the same time, the technology has disadvantages that could impair rapid diffusion from today's 
perspective. On the one hand, the production of fuel cell drives is very cost-intensive compared to other 
drive concepts. Cost drivers are the raw materials needed to manufacture the multi-electron unit [30], the 
pressure-resistant tank system [31] and the environmentally friendly production of the hydrogen [32]. On 
the other hand, historical market data show that gaseous fuels tend to be avoided because of the hazards 
associated with them [33]. Factors such as these endanger adoption in the passenger car market. However, 
the implications of these factors are much less significant for the operation of fuel cells in trucks or buses. 
According to a study, which was commissioned by the German state of Baden-Württemberg, this market is 
growing faster than the passenger car market [34]. Based on the study, two scenarios were defined, which 
show the course of demand for a pessimistic and optimistic development. Since the characteristics of these 
scenarios are relatively static and innovation-typical influences are largely neglected, the values were 
inserted into the model equation according to BASS to determine the model parameters for innovation (p), 
imitation (q) and potential market size (m). A geometric average was taken over all ten generated value 
triplets. As a result, the following values can be determined: 

Table 1: Diffusion parameters derived through regression analysis 

Scenario p q m 
Minimum 
Maximum 

0,016164 
0,025612 

0,522596 
0,547746 

100.000 
250.000 

 

As the plausibility of the values can only be derived from the numerical amount to a limited extent, 
publications with similar applications were used as a basis for comparison. Table 2 gives an overview of the 
authors with the corresponding reference product. Although there is a high degree of scattering among the 
publications, it can be stated that the values determined fit the model applications typical for the industry.      

Table 2: Diffusion parameters for similar products  

Authors  Product p q m 
Lukas et al. [35] Electric vehicle batteries 0,022 0,413 2.150.00 
Massiani & Gosh [36] LPG-vehicles in Germany 0,0779 0,3718 75,566 
McManus & Senter [37] Plug-in hybrid electric vehicle 0,00262 0,70935 1.922.806 
Li, Chen & Zhang [38] BEVs in China 0,0013 0,0839 5.000.000 
Becker et al. [39]  BEVs 0,025 0,4 2 scenarios  
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Using the determined model variables, sales figures can be forecasted according to the expected diffusion 
course and included in the production program. In this specific example, the production program will focus 
in particular on the manufacturing of the fuel cell stack (FCS). As one of the main components of the fuel 
cell drive, an FCS represents a combination of single fuel cells and is therefore composed of a defined 
number of membrane electrode assemblies (MEA), bi-polar plates, seals and end plates [40]. The various 
components are pressed together in a multi-stage process and then subjected to a leakage test [41]. As an 
example, the stacking system will now be used to show how the change of diffusion parameters influences 
the capacity of the production system to be planned. Assuming a 2-shift system and a process time of 30 min 
per FCS, this can be determined by the number of systems required (Figure 2). 

 

Figure 2: Correlation between diffusion parameters and needed capacity of FCS stacking systems 

5.  Discussion 

Figure 2 shows five different scenarios with their parameters (p, q, and m), the number of required stacking 
systems and the progression curve for a better visualization of the development of the required capacity. 
Scenario 1 corresponds with the minimum scenario in table 1. In the first ten years, the required capacity is 
slowly increasing only in the seventh year an additional system is required. In this scenario, it is not advisable 
to invest in a second system from the beginning. Especially considering that the price for one system is about 
700.000 € [42] leading to high and unnecessary capital commitment costs. Scenario 2 is in line with the 
maximum scenario from table 1. Here, compared to scenario one, a significantly faster increase in the number 
of systems required can be seen, with one system still being sufficient in the first three years. Scenarios 3 to 
5 show different variations of scenario 2. The parameters of p, q and m are successively increased by 50%. 
The change of the innovation parameter p leads to the smallest impact on capacity dimensioning. Increasing 
parameter q in scenario 4 results in a similar outcome compared to scenario 3. Scenario 5 shows the fastest 
increase in required systems, showing that the market size is the most important factor. Therefore, special 
attention should be paid here to the determination of this parameter. 

The advantage of the presented method compared to conventional capacity dimensioning is that by varying 
the parameters, more differentiated statements on the capacity requirements of operating resources become 
possible. This represents a considerable improvement over statements based only on static sales forecasts. 
The method is a relatively simple procedure that can be applied in small and medium-sized companies. 
Typically, such companies do not have a large market research department, which means that they rely on 
freely available or paid studies when planning the sales of innovative products. With the help of the presented 
method, the data from these studies can be processed and used to compare different possible diffusion 
patterns and thus capacity curves.  

Despite the fact that the capacity dimensioning has been made more flexible by the method presented above, 
the consideration is still very static. The influence of other variables, such as politically desired expansion 

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
p 0,016164 0,025612 0,038418 (+50%) 0,025612 0,025612
q 0,522596 0,547746 0,547746 0,821619 (+50%) 0,547746
m 100.000 250.000 250.000 250.000 375.000 (+50%)

1 1 1 1 1 1
1 1 1 1 1 2
1 1 2 2 2 3
1 2 3 3 3 4
1 3 4 4 4 5
1 4 5 6 6 6
2 5 6 7 7 7
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targets for fuel cell fleets, can or even must be considered. Despite the relative simplicity, expert knowledge 
is rather necessary compared to the use of ready-made studies, which leads to a greater effort. More complex 
statements and progressions can only be achieved by using other diffusion models. However, these require 
a more in-depth knowledge of diffusion research methods. 

6. Conclusion 

The importance of alternative drive technologies is increasing. Currently battery-electric vehicles are in the 
spotlight of companies, research and buyers. Fuel cell technology is another contender to make mobility 
more sustainable. Companies that want to invest in this market are faced with the challenge of assessing how 
the market will develop. Market developments also determine how much production capacity is needed. 
Working with static figures alone for dimensioning can lead to misjudgements and thus to malinvestments. 
To avoid this, a general method was presented in the paper that integrates insights from innovation 
management into factory planning. For that purpose, the paper presented the traditional approach for capacity 
dimensioning in factory planning projects. A short overview was given on the subject of innovation diffusion 
models, as a group of models suitable for forecasting future demand of innovative technologies. Various 
scenarios were set up using the Bass Diffusion model to size the demand for stacking systems in the assembly 
of fuel cell stacks. The values for this were determined using a regression analysis from a public study. The 
plausibility of the regression analysis was checked by comparing the values with those of other similar 
technologies. The method results in different curves for the need for stacking systems over time. Based on 
the curves, factory planners can make a better estimate of the flexibility strategy to be selected. 

Future research and application of this method should concentrate on following aspects. Currently, only 
variations of the parameters of the Bass diffusion model are considered. They can be seen as a summary of 
different factors and influences, but a further differentiation of the influencing factors can be made. For 
further modelling, a system dynamics approach can be used to investigate the influencing factors, which 
may also result from legal and political conditions. Currently, the described method exists only as an 
application in Excel. However, in order to enable the dissemination in practice and to improve the usability, 
it is advantageous to implement the method in existing software solutions. The extent to which the method 
can be integrated into already established factory planning processes requires further investigation. For this 
purpose, the use in a real application scenario is desirable. 
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