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Abstract 

The seamless fusion of the virtual world of information with the real physical world of things is considered 
the key for mastering the increasing complexity of production networks in the context of Industry 4.0. This 
fusion, widely referred to as the Internet of Things (IoT), is primarily enabled through the use of automatic 
identification (Auto-ID) technologies as an interface between the two worlds. Existing Auto-ID technologies 
almost exclusively rely on artificial features or identifiers that are attached to an object for the sole purpose 
of identification. In fact, using artificial features for the purpose of identification causes additional efforts 
and is not even always applicable. This paper, therefore, follows an approach of using multiple natural object 
features defined by the technical product information from computer-aided design (CAD) models for direct 
identification. By extending optical instance-level 3D-Object recognition by means of additional non-optical 
sensors, a multi-sensor automatic identification system (AIS) is realised, capable of identifying unpackaged 
piece goods without the need for artificial identifiers. While the implementation of a prototype confirms the 
feasibility of the approach, first experiments show improved accuracy and distinctiveness in identification 
compared to optical instance-level 3D-Object recognition. This paper aims to introduce the concept of multi-
sensor identification and to present the prototype multi-sensor AIS. 
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1. Introduction 

Digitalisation and Industry 4.0 are far-reaching fields of action with great relevance for society, education 
and economy in all areas of life worldwide. The core of the ideas behind Industry 4.0 results from research 
and development activities in engineering or natural sciences which are closely linked to information and 
communication technology as well as automation technology [1]. One promising concept behind Industry 
4.0 is the seamless integration of the real world of things with the virtual world of information, widely 
referred to as the ‘Internet of Things’ (IoT) [2]. Tracing back the origins of this term, it can be found that it 
was already coined around the year 2000 by the founders of the original Massachusetts Institute of 
Technology (MIT) Auto-ID Center, which is nowadays part of the Auto-ID Labs research network [3]. The 
latter institutions conducted research on automatic identification (Auto-ID) technologies for industry aiming 
to establish the foundation for the IoT [2], and they identified Auto-ID technologies as an important 
technology for the future advancement of the IoT and therefore Industry 4.0. 
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2. Motivation 

In the context of industry, the term ‘automatic identification technology’ refers to a variety of techniques for 
the purpose of logistical goods identification within material flow systems, aiming to synchronise the 
information flow with the material flow by collecting identity information [4, 5]. Besides less known 
techniques, visual code identification (approx. 70%) and radio-frequency identification (RFID) dominate 
today’s applications [5]. Common to both techniques is the use of artificial features for the purpose of 
identification. Visual codes are applied to objects either by labelling (e.g., thermal transfer labels, etc.) or by 
direct marking (e.g., laser engraving, printing, etc.) [5-7]. For identification using RFID, active or passive 
electronic transponders are attached to objects, which are available in various designs (e.g., adhesive labels, 
press-in cartridges, etc.). Active RFID transponders differ from passive ones by an integrated power supply 
in form of a battery [7]. 

It is obvious that the utilisation of the above-mentioned artificial identifiers requires additional process steps 
for their attachment to objects. If an object itself is to bear such an artificial identification feature, its 
geometry must also be appropriate in size and shape, which must already be considered in its design phase 
and offers difficulties in application if the geometry cannot be adapted as is the case with functional surfaces 
for example. When going through different production steps, it may be necessary to remove previously 
applied artificial identifiers and afterwards reapply them to objects as they would be destroyed (e.g., painting, 
thermal treatment, etc.), also offering drawbacks in application. Active RFID transponders furthermore 
require maintenance in case their batteries have to be replaced. In conclusion, the use of artificial identifiers 
generates costly additional efforts and is not always applicable. 

Identification based on features that characterise objects by nature is referred to as ‘direct identification’ in 
the literature [5-8]. Natural identification features of objects are mass properties, geometry, surface 
structure/texture, colour/appearance and material [5-10]. Using these features instead of artificial identifiers 
eliminates the issues discussed in the previous paragraph. 

Modern machine vision (MV) systems can recognise three-dimensional objects from image data based on 
their appearance or geometry, known as ‘3D-Object recognition’ [11]. As a basis for the recognition, 
computer-aided design (CAD) models can be used, which serve to define known objects within a knowledge 
base [12]. However, these MV systems are only capable of interpreting visually perceptible characteristics, 
which limits their suitability for direct identification as they cannot distinguish based on the remaining 
natural identification features. As a consequence, the distinctiveness and accuracy of identification using 
3D-Object recognition are limited, which also limits possible application tasks. 

In industry, CAD models are widely used as virtual product models containing related product information 
[13]. In particular, the technical information, as a subset of the product information, provide details on the 
natural characteristics that can be used for identification purposes mentioned above [14]. CAD models are 
thus an ideal source for direct identification, defining industrial objects throughout the entire life cycle 
following the paradigm of product data management (PDM). 

This leads to the core idea behind multi-sensor identification, which consists of extending the perceptual 
capacity of MV systems for 3D-Object recognition by using further sensors to detect the natural identifiers 
not considered so far. The resulting multi-sensor automatic identification system (AIS) is thus no longer 
dependent on the use of artificial identification features, while at the same time offering higher potential use 
for identification tasks than MV systems.  

3. State of the art 

This section briefly summarises the state of the art in related fields and provides insight into the theoretical 
foundations of multi-sensor identification. 
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3.1 Existing approaches for direct identification 

While there are many approaches or technologies for indirect identification by means of artificial 
identification features, there are only a few approaches for direct identification by exploiting the natural 
features of objects, often referred to as ‘fingerprints’ [9]. 

Laser surface authentication (LSA) takes advantage of naturally and randomly occurring imperfections on 
the surfaces of objects to be identified. These imperfections cause diffuse scattering when exposed to a 
focused laser beam. This diffuse scattering, also known as laser granulation or laser speckle, captured by 
photodetectors arranged at different angles generates a pattern of the reflected intensity unique to the object. 
Applying statistical methods, a binary descriptor can be generated from this intensity pattern, which can then 
be used for identification similar to a human fingerprint [9, 15]. 

The characterization of grinding imprints by means of their roughness profile offers another possibility for 
direct identification. Due to the grain structure of grinding wheels and the wear occurring during grinding 
processes, random grinding patterns are created on the surfaces of workpieces. After recording such a ground 
surface with a high-resolution camera, descriptors can be generated by means of various algorithms. These 
descriptors can be used for identification and are also robust to perturbations like corrosion [10]. 

3.2 Instance level 3D-Object recognition based on CAD models. 

The recognition of three-dimensional objects from image data is commonly referred to as ‘3D-Object 
recognition’. In the literature, a basic distinction is made in terms of the level of recognition and the type of 
input image data used. Instance level recognition describes the identification of distinct object instances [11]. 
In contrast to category-level recognition, this means that an object to be recognized can be explicitly assigned 
to a known object within the recognition knowledge base. For the generation of this recognition knowledge 
base, which describes the objects known to the recognition system, CAD models can be used [12]. Numerous 
feature descriptors are available for both 2D and 3D image data. Due to the fact that the depth information 
in 3D image data provides higher quality, 3D feature descriptors are preferably used for recognition based 
on CAD models [11, 12, 16]. Most modern 3D feature descriptors encode surface normal information, that 
is obtained from point clouds [16, 17]. The development of such descriptors has been stimulated by the 
increasing availability and affordability of 3D sensors, that directly capture point clouds of objects. 

CAD models primarily describe the geometric shape of objects and appear in three different basic forms of 
representation: wireframe models, surface models and solid models [18]. By means of virtual rendering or 
sampling methods, these representations can be transformed into point clouds. 

For describing complete point clouds of objects or CAD models, global descriptors are particularly suitable. 
One very accurate and performant global descriptor is the clustered viewpoint feature histogram (CVFH) 
descriptor [16]. Global descriptors are the basis of global processing pipelines for 3D-Object recognition.  
The basic global recognition pipeline consists of the steps ‘description’ and ‘matching’, optionally six 
degrees of freedom (6DoF) pose estimation can be performed. In a preceding offline process, descriptors are 
generated for all point clouds of CAD models and saved as a recognition knowledgebase. The actual 
recognition takes place in an online process, which commences with describing the sensor point cloud of an 
object to be identified in order to generate a so-called scene descriptor. The latter is then matched against all 
descriptors of known objects within the recognition knowledgebase, where the quality of each match is 
assessed by means of a distance metric. If there is a sufficient degree of agreement between the scene and 
the knowledge base descriptors, an object is recognised. By performing the 6DoF pose estimation step, the 
three-dimensional geometric transformation that transfers the CAD point cloud to the sensor point cloud can 
be determined [19]. 
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3.3 Technical information within product models 

Product models in the industry comprise defining information for products. One subcategory of this product 
information is technical information, typically originating from product development. In particular, the 
geometrical and technological information within the technical information contain details regarding the 
physical features of products or objects [14]. 

CAD models are product models which are used in particular to store and distribute technical information 
[18]. There are many different data formats for CAD models, which differ greatly regarding their information 
content. Typically, CAD models contain the following technical information: geometries, mass properties, 
material properties. Some CAD models can serve as a basis for photorealistic rendering, which generates 
detailed information on their appearance or texture. 

4. Concept for multi-sensor AIS 

This section presents the generic process for identification based on natural identification features, a software 
processing chain based on it as well as a hardware concept for a multi-sensor AIS.  

4.1 Generic process of identification 

In the literature, there are only a few formulations regarding the process of identification (e.g. [20]). These 
formulations mainly focus on the superficial phases that are passed through to identify an object in a practical 
environment while neglecting the process of identification itself. For this reason, the formulation of a generic 
process of identification is necessary. 

Identification essentially consists of the assignment of identification features of an object to be identified to 
the identification features of a known object to retrieve associated identity information. The fundamental 
prerequisite for performing an identification is, therefore, an identification knowledge base (e.g., register of 
citizens) that defines individual identities by linking identification features (e.g., appearance from passport 
photo, height, eye colour, etc.) with identity information (e.g., name, address, etc.). Identity is therefore only 
valid within the framework of an identification knowledge base and can have different levels of uniqueness. 
The level of uniqueness of identity depends on the uniqueness of the identification features used. If several 
objects possess identical identification features (e.g., article number), they share the same identity (e.g., 
master data record) within the scope of the identification knowledge base. The identification features must 
therefore always be chosen with regard to the desired identification task and the required level of uniqueness. 

An identification knowledge base 𝐾𝐾 consists of 𝑗𝑗 pairs �𝑆𝑆𝐹𝐹𝑗𝑗 , 𝑆𝑆𝐼𝐼𝑗𝑗� which define identities (see Equation 1).  

𝑆𝑆𝐹𝐹 and 𝑆𝑆𝐼𝐼 describe sets of identification features and identity information with arbitrary length (see Equation 
2 and Equation 3). 

𝐾𝐾 = ��𝑆𝑆𝐹𝐹1 , 𝑆𝑆𝐼𝐼1�1, �𝑆𝑆𝐹𝐹2 , 𝑆𝑆𝐼𝐼2�2, . . . , �𝑆𝑆𝐹𝐹𝑗𝑗 , 𝑆𝑆𝐼𝐼𝑗𝑗�𝑗𝑗
�   (1) 

𝑆𝑆𝐹𝐹 = {𝐹𝐹1,𝐹𝐹2, . . . ,𝐹𝐹𝑘𝑘 }     (2) 

𝑆𝑆𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2, . . . , 𝐼𝐼𝑙𝑙 }     (3) 

The actual process of identification now describes the search for the pair (𝑆𝑆𝐹𝐹 ,𝑆𝑆𝐼𝐼) within 𝐾𝐾, where 𝑆𝑆𝐹𝐹 matches 
the feature set 𝑆𝑆𝑓𝑓 of an object to be identified (see Equation 4). 

𝑆𝑆𝑓𝑓 = {𝑓𝑓1,𝑓𝑓2, . . . ,𝑓𝑓𝑚𝑚 }     (4) 
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The above formulation of the generic process of identification is the basis for the multi-sensor identification 
procedure as several features are evaluated. This is not the case with state-of-the-art identification systems 
that rely on only one identification feature (e.g., label with identification number). In addition to the 
uniqueness of each individual identifier, a higher degree of uniqueness is created through the way several 
identification features are combined.  

4.2 Processing chain for multi-sensor AIS based on CAD-Models. 

The processing chain consists of an offline and an online process. The offline process generates the 
identification knowledge base from the CAD models, while the online process performs the actual 
identification. 

4.2.1 Offline process for identification knowledge base generation 

The inputs for the offline process (see Figure 1) are the CAD models of objects to be identified. For each 
CAD model, a descriptor for 3D-Object recognition is created after transformation into a point cloud. 
Together with the identity information (identification number and description), as well as the information on 
weight, colour/appearance and centre of mass location, these descriptors are stored in the identification 
knowledge base. The identification knowledge base is the result of the offline process and is subsequently 
provided to the online process. 

 

 
Figure 1: Offline process for identification knowledge base generation from CAD models; input (blue) output (green) 

 

4.2.2 Online process for multi-sensor identification 

The inputs for the online process (see Figure 2) are sensor inputs acquired from a scene containing an object 
to be identified as well as the identification knowledge base from the offline process. The inputs “Sensor 
point cloud” and “Sensor colour/appearance” can be obtained from 3D-Scanners. Regarding the inputs 
“Sensor weight”, “Sensor material” and “Sensor centre of mass location” a sensor platform can be used 
which is presented at a later stage. 

From the sensor point cloud, a descriptor for 3D-Object recognition is generated. Based on weight, material, 
and colour/appearance information the identification knowledgebase is prefiltered in order to only pass 
matching candidate objects to the “3D-Object recognition and 6DoF pose estimation” step. The descriptors 
of these candidate objects point clouds from the prefiltered identification knowledge base are then matched 
against the descriptor of the sensor point cloud in the sense of 3D-Object recognition. For the recognised 
object, an estimation of the 6DoF pose is carried out, which yields the geometric transformation in order to 
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transform the CAD point cloud into the sensor point cloud. By means of this transformation, a “Centre of 
mass validation” step can be performed. This step serves to compare the centre of mass location from the 
CAD model with the centre of mass location detected by sensors, aiming to further improve the accuracy of 
identification. After successfully performing all steps of the online process, the identity information 
originating from the identification knowledge base are available. 

 

 
Figure 2: Online process for multi-sensor identification; inputs (blue) outputs (green) 

 

4.3 Hardware concept for multi-sensor identification 

The concept for the acquisition of sensor inputs for the offline process consists of a structured-light 3D-
Scanner in combination with a sensor platform (see Figure 3). The 3D-Scanner captures the point cloud and 
colour/appearance of the identification object, which is settled on the rotary device of the sensor platform. 
The rotary device rotates the object to be identified during scanning in order to obtain a complete scan. An 
inductive sensor is used to detect the object’s material, which makes it possible to distinguish between metals 
and non-metals. Furthermore, the sensor platform consists of a weighing plate, which uses four force sensors 
to determine the weight and centre of mass location of the object. 

As Figure 3 indicates, three coordinate systems occur in this arrangement: The coordinate system of the 3D-
Scanner (indexed “S”), the coordinate system of the sensor platform (indexed “SP”) and the coordinate 
system of the object (indexed “O”). These coordinate systems are important for the “Centre of mass 
validation” step of the online identification process as geometric transformations have to be applied in order 
to compare the centre of mass location between the CAD model and the physical identification object. 
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Figure 3: Sensor hardware concept for multi-sensor identification 

5. Prototype implementation of multi-sensor AIS 

Based on the above concept, the prototype for multi-sensor identification was implemented (see Figure 4). 
An ‘HP 3D Structured Light Scanner Pro S3’ in combination with an ‘HP Turntable Pro’ were used for the 
structure light sensor and the rotary device. The sensor platform is a custom implementation based on four 
load cells with HX711 amplifiers and an inductive proximity switch connected to an Arduino Nano. The 
weighing plate with the force sensors attached to it is made of steel so that a 3D-printed mount for the 
inductive proximity switch can be slid onto it by means of magnets. 

Since 3D-Object recognition is computationally intensive, the above hardware was connected to a computer, 
serving as the main processing device. The software for the multi-sensor identification processing chain (see 
Section 4.2) was implemented using the programming languages Python and C++. In particular, the module 
performing 3D-Object recognition was implemented using the Point Cloud Library (PCL) written in C++ 
and then integrated into Python via the Pybind11 library. 

 

 
Figure 4: Prototype multi-sensor AIS with an identification object settled on the rotary device 

6. Experimental verification of prototype multi-sensor AIS 

For the experimental verification of the multi-sensor AIS, a set of 21 objects was compiled. Attention was 
paid to the fact that the objects vary in geometry, colour/appearance, weight, centre of mass location and 
material. From the set 16 objects were soda cans, differing in geometry (Ø67mm*115mm, Ø53mm*135mm, 
Ø67mm*115mm), colour/appearance (manufacturer specific design) and weight (full/empty). These soda 
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cans were selected to be difficult to distinguish, as sometimes only one identifying feature differs from 
another object. 

Using the prototype, 63 multi-sensor identifications were carried out, all of which were successful. The 
identification features were recorded reliably in all cases, leading to the appropriate identity information 
each time. On average, it took 3:08 minutes to identify one object by means of the online process. The main 
limiting factor here is the time needed for scanning, which is approximately 80% of the time span. 

As a result of the investigation, it can be stated that the implemented prototype and algorithm for multi-
sensor identification works well with the selected objects. The distinct identification of optically (geometry, 
colour/appearance) indistinguishable objects was always successful, which represents a clear advantage over 
conventional instance-level 3D-Object recognition systems in terms of accuracy and distinctiveness. There 
is still a lot of potential for more efficient software implementation and better hardware setup in order to 
drastically reduce the time needed for the identification process. 

7. Summary and outlook 

This paper introduces the concept of multi-sensor identification. Based on a newly introduced generic 
process of identification (see Section 4.1), a processing chain for multi-sensor identification using CAD 
models (see Section 4.2) is presented. A hardware concept for collecting multi-sensor information as inputs 
for the processing chain is described and implemented as the multi-sensor AIS prototype. Results of 
experimental verification proof the feasibility and effectiveness of multi-sensor identification. 

Further research is needed in order to improve the hardware concept and the processing chain. The use of a 
robotic arm with integrated sensors in the gripper for collecting multi-sensor information and the 
manipulation of objects to be identified in front of a 3D-Scanner is worth investigating. Furthermore, the 
presented approach could be combined with the existing methods for direct identification (see Section 3.1) 
to utilize these distinct identification features. Here, CAD models would be useful for defining the location 
of ‘fingerprints’ (see Section 3.1) on objects. Since some types of 3D scanners already have integrated high-
resolution cameras, using these identification features would not need any additional hardware. 
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