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Abstract: The detection of exceedingly small masses still presents a large challenge, and even though
very high sensitivities have been archived, the fabrication of those setups is still difficult. In this
paper, a novel approach for a co-resonant mass detector is theoretically presented, where simple
fabrication is addressed in this early concept phase. To simplify the setup, longitudinal and bending
vibrations were combined for the first time. The direct integration of an aluminum nitride (AIN)
piezoelectric element for simultaneous excitation and sensing further simplified the setup. The
feasibility of this concept is shown by a model-based approach, and the underlying parameter
dependencies are presented with an equivalent model. To include the geometrical and material
aspects, a finite element model that supports the concept as a very promising approach for future
nano-mass detectors is established.

Keywords: piezoelectric sensors; nano-mass detection; inertial balance; resonance systems; nano/micro-
electro-mechanical-system; N/MEMS; co-resonance

1. Introduction

The detection of weight is an important measurement task that has been performed
for thousands of years. Over time, precision and repeatability has dramatically improved.
However, the measurement of exceedingly small masses—of the order of the atomic mass
unit Dalton—is still a great challenge, even today. An important method for the detection
of the smallest masses is the use of resonance modes, wherein the resonance frequency is
detuned by the mass to be detected. This method was first described in [1] in 1959 and has
been since then cited more than 9000 times. At that time, an accuracy of 10~1° g was already
archived with eigenfrequencies in the order of 10 MHz. Such an inertial balance utilizes
the piezoelectric effect of the vibrating element, which is exited at a fundamental resonance
via a closed loop control (e.g., [2]). This can be realized by either a phase-locked-loop or a
self-oscillating circuitry. The frequency dependence of the resonance on the analyte mass is
due to the ratio of analyte mass to the effective mass of the resonator; the highest sensitivity
is obtained when both masses are similar in weight. Consequently, research in this field
has focused on even smaller and lighter resonator structures while aiming for better mass
resolutions. The smallest known resonators are carbon nanotubes, with flexural mode
resonances in the GHz range that allow for yoctogram mass resolutions [3]. However, the
constantly decreasing sizes bring two major challenges: first, the fabrication gets more
complicated and therefore more expensive, making reproducibility difficult; second, the
vibration measurement increases in complexity with decreasing structure size.
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In recent years, many research groups have worked on improving inertial balances,
as listed in Table 1. Various concepts of actuation and mass sensing have been evaluated
including inductive, electrostatic, piezoelectric, and piezoresistive methods [4]. The max-
imum obtained resolution was 10~2* g [5,6] at temperature levels from 5 to 300 K and
ambient pressures of 10719 to 10~° Torr.

Selected excitation and measurement methods are described below as examples. In
the inductive method, a nano-resonator is placed in a magnetic field and a broadband alter-
nating current is passed through the resonator so that the Lorentz force excites oscillation.
The oscillation, in turn, induces a voltage that is amplified and measured to record the
oscillation. A disadvantage, however, is the superposition of the measurement signal and
the excitation. With the aid of special circuit variants, the feedback effect of the exciting
signal on the measurement signal can be reduced [7,8].

Table 1. Selected publications on resonant nano-mass detection systems.

Material Beam Resolution [g] wo [MHZz] Co-Resonant Excitation Mea.s ur.ement
Support Principle
[9] Silicon single-sided 55 x 10715 1...10 - photothermal  interferometer
[10] Silicon double-sided n.a. 1000 - capacitive capacitive
P p
[11] SiC double-sided 2.53 x 10718 32.8 - capacitive capacitive
[12] CNT single-sided 1.3 x 1072 328.5 - capacitive capacitive
[13] CNT double-sided 25 % 10720 125 - capacitive reflection
[14] SiC double-sided n.a. 428 - capacitive capacitive
P p
[5] CNT double-sided 1.7 x 10~ 2000 - capacitive reflection
[6] CNT single-sided 1.7 x 1072 12 x 10* - capacitive reflection
[15] Graphene double-sided 1.41 x 10~2L 1.1 + iezoelectric iezoresistive
P p p
[16] Silicon double-sided 1.7 x 10721 20...120 + capacitive piezoresistive
[17] Nano-crystalline  single-sided 10~ 18 12 x 103 + capacitive reflection
y & P
[18] Silicon single-sided 10~ 12 1.1 + iezoelectric iezoelectric
& p p

In the electrostatic method, a nano-resonator is excited by an electrostatic field. A
voltage between the nanostructure and electrodes, which are arranged in parallel, usually
generates the field. In the case, either a broadband source or a source with an adjustable
frequency can serve as the voltage source, whereby the frequency must be monitored for
the latter, e.g., via a phase-locked loop. The resonant frequency is detected by measuring
the change in capacitance between the nano-resonator and the counter electrode. The
capacitance change can be measured by measuring the frequency of the displacement
current at the capacitor with a transimpedance amplifier [4,7,19]. Self-oscillating active
electrical circuits that integrate the nano-resonator circuitry are also used.

Another method for determining the resonant frequency is based on the reflection
measurement at an integrated transistor, which consists of a semiconducting nano-resonator
that is mechanically clamped and electrically contacted on both sides with a counter
electrode as gate. The reflection of an alternating signal at the electrical RLC resonant
circuit with the integrated nano-transducer is then measured. Particle adsorption at the
nano-resonator leads to a change in resistance and capacitance at a constant voltage between
the gate and the oscillator and thus to a change in the reflection. However, this method
requires a complex design of the nano-resonator as a transistor [20,21].

Other methods for measuring oscillations are based on optical interferometers in
which an incident light beam is reflected by the nano-oscillator and superimposed with
a reference beam. Based on the time-varying interference pattern, the vibration can be
analyzed. The excitation of the nano-resonator can also be done photothermally with a
laser by heating and expanding the nanostructure [9,22].

Piezoelectric methods, e.g., see [18], are based on the mechanical excitation of the
nano-resonator via the deformation of piezoelectric nanostructures when a voltage is
applied. Similar to electrostatic methods, the electrical voltage for vibration excitation can
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be generated via a self-oscillating active electrical circuit, e.g., see [23]. The piezoelectric
approach of vibration excitation and measuring the resonant frequency was applied in
this study.

A fundamental remaining challenge is designing and, in particular, fabricating a highly
accurate and reproducible mass detection systems that would allow for the detection of the
smallest masses in a simple way with minimal effort, so that, for example, large arrays or
single sensors for process or environmental monitoring become possible.

In this preliminary concept study, we focused on co-resonance systems, utilizing the
advantage that the frequency detection can be relocated from the tiny nano-resonator to a
second somewhat-large resonator, which is the host platform for the nano-resonator. This
concept is extended using a piezoelectric element for the larger resonator. If well-designed,
this would allow for the use of the piezoelectric effect for both the actuation of the nano-
beam and the detection of its resonance frequency. The fabrication of nano-beams that are
attached to the tips of larger beams—which is the usual setup of co-resonant systems—is
rather complicated. We therefore propose a different approach. Here, the larger resonator
was designed in a longitudinal fashion. In addition to the ease of fabrication, this leads
to an even vibration distribution. On a respective surface, the sensitivity to additional
masses is approximately equal across the entire surface. Since the surface is the free end,
the vibration amplitude is the maximum (anti-nodal-plane) of the longitudinal vibration.
This gives a certain degree of freedom for the setup of the nano-resonator. A schematic
sketch of the novel concept is given in Figure 1.

Analyte-Mass

Nano-Beam (Au)

Support Structure (Si0,)

/ Lower Contact Electrode (Au)
///’/ Piezoelectric Element (AIN)

h‘ Upper Contact Electrode (Au)

Figure 1. Novel setup for a piezoelectric co-resonant mass-detector. The piezoelectric element was
designed as a longitudinal resonator, and the nano-beam was operated in a bending mode.

In this study, we investigated the feasibility of this novel concept. This included study-
ing relevant design parameters. For this purpose, three model approaches are presented
in the Materials and Method section and discussed in the Results section. The goal was
to reveal parameter ranges that allow for a practical realization of the proposed concept.
Therefore, the sensitivity of the vibration modes, their coupling, dependence on mass, and
stiffness properties were investigated by utilizing an equivalent model. The piezoelectric
effect also needed to be considered in order to evaluate the sensing performance. Using
a finite element (FE) model, the geometry of the proposed structure was designed and
specified. The resulting model-based findings were used to evaluate the characteristic of
the novel setup.

2. Materials and Methods

The first step was the selection of useful eigenmodes. For this purpose, we investigated
their frequency sensitivity of the bending and longitudinal modes. Those studies used
a point mass representing the analyte mass, located in the anti-node of the vibration.
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Furthermore, an equivalent model for the investigation of co-resonant vibrations was
developed. This was used to compute the major parameter affecting the vibration. Finally,
the parameter of the later finite element model was presented, and this model was then
utilized to show the feasibility of the novel concept.

2.1. Sensitivity of Relevant Mode Shapes

To investigate the influence of the analyte mass on the resonance frequency for the
interesting mode shapes, we used the well-known, analytically-derived formulas given in
many text-books; here, we used the reference book [24]. For the beam, three configurations
were investigated: clamped-free (cf), with the extra mass at the free end, and clamped-
clamped (cc) and pinned-pinned (pp), both with the extra mass at the center position.
The resonance frequencies f, where the index Bxx indicates the bending vibration and the
respective boundary conditions, are as follows.

1 3EI

foet = 27'(\/13(mn+0.24 m)’ @
4 3EI

foce = n\/l3(mn +037m)’ @
4 3EI

fopp = n\/l3(mn +0.49m)’ ®)

where E is the modulus of elasticity, / is the free length of the beam, I is the area moment
of inertia, m is the mass of the uniform beam, and 1, is the analyte mass. In addition to
the bending, we also considered the longitudinal vibration. The boundary conditions of
interest were: clamped-free (cf) and free—free (ff), both with an extra mass at one free side.
The resonance frequencies were mathematically determined as follows:

A /E . m

fLCf = > ;fl E with COt()‘cf) = Wn)\cf/ (4)
A E . m

fue = T;f”/ o with tan(Ag) = *ﬁftff/ 5)

where ¢ is the density and A and Ag are the dimensionless frequency parameters that
can be found by solving the given transcendental equation, where we are interested in the
first solution for the fundamental eigenfrequency. In case of m, = 0, the parameters are:
/\Cf = mr/2 and )\ff = TT.

For the investigation of the frequency shift dependent on the analyte mass, we com-
puted the ratio of the loaded and unloaded resonance frequencies (marked with the index
0) and subtracted 1 to obtain the relative frequency change. Additionally, we introduced
the mass ratio v = myn/m and obtained the relative frequency shift § for the five cases:

fBcf 1
f = —-1= -1 (6)
e fBef0 o5z +1

chc 1

= —1= —1 7

'BBCC fBCC,O 07’5)7 +1 ( )
; 1

Bo— 22 1 [ L )
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2 A
Bret = fiet _ 1 =224 1 with cot(Ag) = YA )
f Lcf,0
A
freeo Uy

In the special case that the mass ratios were much smaller than one, all frequency
ratios were very similar and 8 was in the same order of magnitude as the mass ratio. The
results for the bending frequencies are summarized in Figure 2. For small mass ratios, the
function was linear, and for larger mass ratios (=~ y > 0.05), the approximation of the point
mass was insufficient.

-p

0.100¢
0.001} — Bending clamped—free
107°) Bending clamped—clamed
12: I Bending pinned—pinned
-1
10 y

107° 107° 0.1
Figure 2. Relative frequency changes (— ) of bending modes over mass ratio (y).

As an example, the following approximation could be made using the formulas. If an
analyte mass is a billion-times smaller than the mass of a resonator, the frequency resolution
of the measurement electronics has to be better than a billionth of the resonance frequency.

Thus, the mass of the nano-resonator is crucial for the mass resolution, especially
when considering the required frequency resolution of the measurement electronics. If, at a
resonance frequency of 1 GHz, 1 mHz (the resolution of a good impedance analyzer) is
detectable, the detection of a mass 10'? times smaller than the resonator is theoretically
possible. In other words, to detect a yoctogram, the mass of the nano-resonator must be
smaller than a picogram. However, many disturbing influences (temperature, pressure,
etc.) can negatively affect the resolution.

2.2. Equivalent Model for A Piezoelectric Co-Resonant Vibration System

The direct excitation and measurement of a nano-resonator is challenging; therefore,
we used and extended the co-resonance concept. The main idea was to couple a smaller
and a larger resonator in such a way that a change of the vibration properties of the smaller
resonator could be measured by the vibration properties of the larger resonator. For this
purpose, two vibrational structures were selected (typically two bending beams) and
independently tuned to the same resonance frequency. Then, the smaller beam was placed
on the larger beam at a position where the selected eigenmode of the larger beam had the
highest amplitude (anti-node). At this position, the impact of the smaller beam on the larger
beam was maximized. Due to the physical combination of the two structures, a new system
was created with new properties, with respect to eigenfrequencies and mode shapes.

For analytical purposes, we applied a simplified model based on a system with
ideal lumped parameters; two degrees of freedom; and discrete stiffnesses, damper, and
masses. The piezoelectric effect—which is used for actuation and sensing—can be included
through the second electro-mechanical analogy, e.g., see [25]. By utilizing a parameter
comparison of the equations for electrical and mechanical discrete components, the analogy
was traditionally derived. In the herein-used second analogy, displacement is equivalent to
electric charge and force is equivalent to current. An ideal transmission element such as
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a lever can transfer energy from one domain to the other. However, the lever parameter
consequently has a unit. The model is depicted in Figure 3.

Q. 1

<

£l e W
Hsenmonkd s

Figure 3. Simplified equivalent model for the co-resonant mass detector.

ANNN\N

The model has three coordinates: the absolute position y of the lager mass M, the
position x of the smaller mass m with respect to y, and the electric charge Q. The larger
mass M is inertially connected though the stiffness ky; and the damper dy. The stiffness k
and the damper d connects M and m. The analyte mass is m, adding to m. The lever with
the unitized factor « couples the mechanic and the electric domain. The capacity of the
piezoelectric element is Cp, and the system is driven by the voltage U. Utilizing complex
amplitudes x(t) = Re(fel?el?) = Re(2el”) and the imaginary unitj and Q) as angular
excitation frequency, for the equations of motion follows for the harmonic excitation:

(—(m+mn)Q?+jQd + k)2 = (m+ mn)sz,
(—=MOQ? +Qdyt + km) ) — (jQd + k)£ = al, and (11)
1A .

GeGI=t

Additionally, we defined the two decoupled eigenfrequencies with m, = 0:

k
=4/= 12
w1 m ( )
k
Wy = T\IZI (13)

For further analysis, transfer-functions were also needed; here, we used the current
amplitude 1 = jOQ:

jQo?(—mO*+jQd + k)

i
O i0C, (14
U= 1 = ey & j(dnak & dlon 1O — (ddg & (K + g 1 + o) O — j e + d(m + M) + mdicd )2 (14)
9 o(—mO? +j0d + k )
CYU= 0 = Kt Atk + Ak — (g + (k) + e JO2 — (A & d(m + M))OP - mMaF )
G = = = an’ (16)
U0 ke + j(daik + din)Q — (dedyg + (k + kng)m + kng) Q2 — j(dpgm + d(m + M))QP + mMQF)

2.3. Finite Element Simulation

To confirm that the novel idea of combining a longitudinal resonator with a bending
resonator was promising approach for future nano-mass detectors, a 3D-FE model was
built in ANSYS for first investigations. In this step, the substrate was included as an
elastic foundation. The material parameters used for aluminum nitride (including the
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piezoelectricity) and silicone dioxide stemmed from [26] and are given in Table 2. For the
analysis, we used modal and harmonic simulations.

Table 2. Used material parameters. AIN: aluminum nitride, Au: gold, SiO;: silicon dioxide.

Property Unit AIN Au SiO,
Density kg/m?3 3512 19,320 2200
Poisson ratio - 0.3 0.42 0.17
Stiffness coefficient cqq GPa 345
Stiffness coefficient ¢ GPa 125
Stiffness coefficient c13 GPa 120
Stiffness coefficient c33 /Elastic modulus GPa 395 79 70
Stiffness coefficient cyq GPa 118
Stiffness coefficient cgg GPa 110
Piezoelectric constant e3q C/m? —0.58
Piezoelectric constant e33 C/m? 1.55
Piezoelectric constant e C/m? —0.48
Relative permittivity £/ ¢ - 11

3. Results and Discussion

This section is divided in two subsections. First, the equivalent model is used to
investigate the parameter impacts on the effective coupling between the two resonators.
These results are then discussed in conjunction with theoretical sensitivity. Second, the
feasibility of the concept, as presented in Figure 1, is studied.

3.1. Evaluation of Equivalent Model

For the investigation of the equivalent model, we concentrated on the interaction of
the two modes, the frequency responses, and the sensitivity to the analyte mass.

3.1.1. Coupling of the Co-Resonant Masses

It is clear that w; = wy leads to the best interaction between the modes; this is well-
known for a mechanically-tuned mass damper. For our purposes, the coupling had to be
sufficiently large so that a resonance frequency shift of the nano-resonator changed the
resonance frequency of the larger resonator.

In our case, the mass M was always larger than m, and the coupling decreased with a
smaller mass ratio x = m /M. This was clear for a very large M, where any motion of m
was negligible for the behavior of M. In the case that m and M were similar in weight, an
interaction existed. One possibility to show this interaction was to investigate the system'’s
eigenfrequencies.

For this, we focused on the undamped system. The mass ratio x = m/M was used
to scale the stiffness ky; to ensure that both uncoupled eigenfrequencies remained equal
w1 = wy in the first place. For the investigation of a mistuning of the two eigenfrequencies,
the factor A was introduced so that w/, = Aw;. For simplicity, we used the coordinate x5
for the mass m with respect to the reference frame. With Q # 0 and U = 0 as the boundary
condition for the electric port and m, = 0 the mass and stiffness matrix, the following
equation applies:

_(m 0 [k —k _ xa
M= (8w ) = (e )= () o
The coupled system has the two eigenfrequencies with w? = %:

2
w? = %w% (1 + A% =4+ (A2 -1) > (18)
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WY = %w% (1 + A2y d (A2 - 1)2> (19)

The results are given in Figure 4. As expected, for very small x, the lower (L) and
higher (H) system eigenfrequencies (wr, and wy, respectively) crossed when A = 1. For
this x, both frequencies behaved as uncoupled. The larger x got, the more the coupling
affected the results, and only for large mismatching, the resulting frequencies were close to
those of the uncoupled case.

— x=10"— k=102 — «=10°% — x=10"* k=10"° k=10°

o/o,
2.0

0.5

o/, o/o,
1.20

1.156

Figure 4. Parameter dependence of the system eigenfrequencies wy, and wy for a variation of the frequency-mistuning

parameter A. The zoom-level is increased from the left to the right in the plot. The used parameters were: m = 1 kg,
k=1N/m,andx =107°¢...107".

0.98

Interestingly, the more we zoomed in (figures from left to right), especially for smaller
x, a coupled region appeared in approximately 0.99< A >1.01, which showed that, even
then, the co-resonance concept might be useful. However, the matching required extreme
precision: for x = 107#, w; and w, should have deviated less than +1%. Consequently, the
larger resonator should be as small as possible.

3.1.2. Frequency Response

The harmonic frequency response was easily computed with Equations (14)—(16).
Figure 5 shows an exemplary result. This case was for x = 10~%, where the two system
resonances wi, and wy were clearly visible in all three curves, and in Gjy and Gyy, an
additional anti-resonance wp appeared at wq, which is the optimal vibration migration
frequency for the application of a tuned mass damper. Remarkably, there was no further
antiresonance frequency in Gjy that could be expected, possibly due to the already high
transmission factor « = 0.1. This is promising because the corresponding phase zero
crossing can potentially be used to track wu with a phase feedback control. This is also
the case for the two phase zero crossings at wy, and wyy. For these two frequencies, self-
oscillation circuits can be also applied to operate the system at resonance.

—] — By
—1 M B

— L G

Phase
o

: T[ v ————————.
099 100  1.01 1.02 0.98 0.99 1.00 1.01 1.02
Q/(m !2/(01

Figure 5. Frequency response for Gjy, Gyy, and Gyy in magnitude (left) and phase (right). The used parameters were
m =1kg mp =0,k =10N/m, M =10* kg, kyy = 10° N/m, D =dp =5 x 10~* Ns/m, Cp = 10 nF, and o = 0.1 N/V.
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A closer look at the impact of the mass ratio x in Figure 6 shows that the difference
between wy, and wy decreased for decreasing x values. The main issue with a small
frequency difference is that the coupling range becomes smaller and the system is more
affected by production tolerances. Furthermore, the magnitude of Gjy increased with
decreasing x values, which led to an elimination of the phase zero crossing in Gjy at wa.
If k. became smaller than 1078, the two peaks of wi and wy joined, and both resonators
decoupled. This is shown in Figure 6 on the right side. For a « value so small, the frequency
response resembled the response of a single piezoelectric element. However, the result was
very promising for the co-resonance concept, since even for extremely small mass ratios
x (but still above x = 1077), coupling is possible. Nevertheless, for smaller x values, the
initial tuning of wj and wy must be more accurate.

0100

0010

A 0.001;

n/w] | / -4 K :g: _/\ k

0%

Abs [Giv]

107
1078}
-9 5 i
0996 0.998 1.000 1.002 1.004
Qlw,
— x=10>— x=10%— k=107 — x=10"*

Figure 6. Magnitude of the admittance (Gjy) for varying « values, (left) 3D representation for a large range of «, (right) 2D
plot for very small mass ratios, and ¥ = 1078...1075. The used parameters were m = 1 kg; mp = 0; k = 10 N/m; M = m/x;
kvm=k/x;D=dp =5 x 1074 Ns/m; Cp=10nF;and = 0.1 N/V.

It is desirable for the operation of a nano-mass detector to have a phase zero crossing
of Gjy at wp. The transmission factor & was found being the main parameter in this study.
Figure 7 shows its impact on the magnitude of Gy for a constant x = 10~. For a large a.
value, the antiresonance was clearly at wy; with a decreasing value of «, the wp moved
toward wr,. The piezoelectric coupling was not sufficient anymore to track the mechanical
antiresonance. The transmission factor, however, was not the only reason for the shifting
wa. When the term jQIC,, in Equation (14) became dominant, the other summand with the
quadratic factor a significantly decreased. Eventually, jQ0Cp, limited this decrease. For our
application, we consequently looked for a large « while keeping C}, within limits.
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0985
1.000 ™

Ofw, 1005 T~
1.010
Figure 7. Magnitude of the admittance (G;y) for varying a values. The used parameters were
m=1kg; my=0k=10N/m; M =m/x; ky =k/x;x=10"% D =dy =5 x 10~* Ns/m; Cp = 10 nF;
and x =0.1N/V.

3.1.3. Sensitivity on Analyte Mass

The most important factor of a system is the frequency sensitivity to the analyte
mass. First, the corresponding frequency response can be observed in Figure 8. Here, «y
denotes m, /m and an increasing < corresponds to an increasing analyte mass. There was
no obvious change in the response for small y. This was in agreement with the findings in

Figure 2.

0.100
0.010
Abs|Giulo.001

Figure 8. Magnitude of the admittance (Gjy) for varying <y values. The used parameters were
m =1kg my =ym;k=10N/m;M=m/x; ky =k/x;k=10"% D =dy =5 x 1074 Ns/m; Cp = 10 nF;
and « =0.1N/V.

Second, in order to visualize the frequency shift, we tracked three frequencies—both
resonance frequencies and the antiresonance. Mass detection is based on finding the zero
crossings in the phase of Gjy. These frequencies could be tracked by a PLL (phase-locked-
loop) control in a future device. With this data, we computed the relative frequency shift
again (Figure 9). Interestingly, the shift of the antiresonance frequency was twice as large as
the shift of the resonance frequencies, where x was again 10~%. Computations showed that
this was independent of x in the range of 107> < x < 1072 (data not shown). Compared
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to the results in Figure 2, the sensitivity was about one order of magnitude lower due
to the co-resonance structure, but detection and sensing were easier compared to a sole
nano-resonator. Moreover, the piezoelectric approach further simplified the system. In the
future, the dimensions of the nano-resonator could be further reduced. This is not possible
for a sole nano-resonator due to issues related to the actuation and measurement of the
vibration. Therefore, for co-resonant systems, a higher sensitivity seems to be within reach.

102 100 10 10° 10

Figure 9. Relative frequency changes (—pf) due to the mass ratio () for the equivalent model.
The used parameters were m = 1 kg; mpu= v m; k = 10 N/m; M = m/x; ky = k/x; « = 1074
D=dy =5 x 107* Ns/m; Cp =10 nF; and o = 0.1 N/V.

3.2. Device Design

With the knowledge from the equivalent model, an important step towards a specific
geometry could now be made. Here, we also considered the fabrication process to ensure
that the design is suited for efficient batch production. In contrast to previous investiga-
tions on co-resonant systems, we propose a combination of a longitudinal and a bending
resonator. This concept offers several advantages. In particular, the fabrication of the
electrodes for the piezoelectric longitudinal transducer is less complicated. However, there
is a drawback: the vibration coupling of the longitudinal resonator to the substrate has to be
considered in the design process. Our fundamental setup is shown in Figure 1. We selected
AIN as a piezoelectric material due to its good acoustic properties and its well-established
fabrication process. The nano-beam was made of gold (Au) and was supported by two
silicon dioxide elements. The piezoelectric element was 1 X 1 X 1.4 um in size. The Au
bottom electrode was buried by the AIN. The top electrode was arranged perpendicular
to the bottom electrode and covered the top and the two sides of the AIN element. The
nano-beam had a cross-section of 320 x 210 nm and a free length of 250 nm. The SiO,
support elements had a height of 300 nm and a footprint of 750 x 200 nm.

The whole system was modeled in ANSYS Workbench, where the piezoelectric effect
was considered by using the element solid226. The mode shapes were computed using
modal analysis. An independent design of the resonator dimensions could not be done
since the effective mass of both resonators should not have extremely differed. Further-
more, the boundary conditions of the nano-beam significantly depended on the elastic
properties of the longitudinal resonator. For the design of the longitudinal resonator, all
relevant components needed to be considered in the model, including the ground plane
and the supporting elements of the nano-beam. Consequently, the components had to be
simultaneously designed to obtain a suited setup. The selected dimensions were a result of
an empirical parameter study. For example, Figure 10 depicts the resonance frequencies
as a function of the length (direction of vibration) of the piezoelectric AIN longitudinal
resonator. Each marker indicates an eigenfrequency of the system. The result of the modal
analysis of the 3D FE Model did included not only the two coupled eigenmodes wy, and wy
but also all other modes in the investigated frequency range. Due to the geometry change,
the order of the eigenmodes varied. The coupled modes were identified in the results
and are connected by the blue solid lines. Again, the mode coupling was clearly visible,
especially when compared to Figure 4. To check if the other modes (markers without line)
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in the interesting frequency range were also interacting with the two coupled eigenmodes,
harmonic simulations (where the piezo was driven electrically) will be carried out next to
the modal analysis. Those results in Figure 12 show that only the two coupled longitudinal-
bending modes were excitable. In the same way, additional geometrical parameters were
simulated. To obtain the best configuration, a multi parameter optimization is needed in
the future.
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Figure 10. Parameter dependence of all eigenfrequencies on the different length of the piezoelectric
element in the frequency range from 450 to 900 MHz, as indicated by makers. The lines show the
change of the two utilized eigenmodes wy, and wy.

The frequency shift, due to the analyte mass, of the two coupled modes have been
computed by modal analysis. The results are shown in Figure 11 with unloaded frequen-
cies of 666 and 697 MHz. The frequency shift is determined by (wp — wr )/ (27) and
(wy — wrp)/ (27), respectively, where the index “0” indicates the unloaded case. The
uncoupled frequencies could not be determined since the boundary conditions were too
complex. To estimate the sensitivity to the analyte mass, a small element (25 x 25 x 25 nm)
was attached to the top center of the nano-beam. The weight was adapted by changing
its density.

|
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Frequency shift in Hz
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&
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Figure 11. Absolute frequency change of (wy, — wy )/ (277) and (wy — wip)/ (277) due to an analyte
mass attached to the top center of the nano-beam and corresponding coupled eigenmodes.

The sensitivity was approximately 250 Hz/ag. Due to the more complex geometry
compared to the equivalent model, the sensitivity of both modes was different. Con-
sequently, we expected a detectable mass of 400 yg (4 x 10722 g) if the measurement
electronics had a 100 mHz resolution. According to Table 1, this was in the range of the
carbon-nanotube based detectors, especially the detector of [12] showing an approximately
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three times better resolution. The advantage of the novel design is its simplicity in setup,
that allows for a rather easy fabrication compared to the already known devices. For
the detection of a single digit yoctogram, we aim for both further miniaturization and
an improvement in the frequency resolution of the measurement electronics towards a
few mHz. The hitherto theoretical concept therefore has the potential to achieve a res-
olution in the range of the atomic mass unit (1.66 x 10-2* g) if both measures can be
successfully implemented.

However, according to the 3¢ definition of the limit of detection (LOD), detecting
1.66 x 10724, g does not only require a frequency resolution of the measurement electronics
of a few mHz for improved sensitivity but also a frequency noise of the zero signal of
0 =166 x 107%* x 1000 x 1085 = 1.66mHz at a given sensitivity, e.g., of 1000 1Z, which
seems quite challenging.

Electrical behavior is crucial for the sensing process; therefore, a harmonic simulation
was computed. The system was driven with a 1 V amplitude, and the corresponding
frequency response Gjy is shown in Figure 12. It was evident that the capacity dominated
(compare Figure 7), hence two clear resonance—anti-resonance combinations appeared.
Both had a phase zero crossing, and the minimum phase was about —60°, which was
sufficient for both PLL tracking and a self-oscillation approach. The dominant capacity
did not allow for the tracing of the w; = wp frequency by a PLL circuitry for this param-
eter combination. However, the simulated results underlined that the novel concept of
combining a longitudinal and a bending resonator is feasible and very promising.

10!
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Figure 12. Current amplitude in the magnitude and phase of the co-resonant vibration system.

4. Conclusions

With the presented theoretical investigation, the feasibility of the novel combina-
tion of longitudinal and bending modes for co-resonant nano-mass detectors has been
demonstrated. The new design simplifies significantly fabrication compared to many
state-of-the-art structures used in other approaches. The sensitivity was, at first sight, about
just one order of magnitude smaller that in non-co-resonant systems. Nevertheless, due
to the simple design of the nano-beam, it has potential for its size to be further reduced.
The direct application of the piezoelectric element for actuation and sensing appears very
promising and also simplifies the system. The detection of the mechanical anti-resonance
in Gyy through the phase zero crossing of Gjy seems to be possible but very challenging.
This has the potential of an additional factor of 2 in the resolution.

These results motivate the next steps: to prove the model-based findings in the
laboratory. Here, we will work on the presented device with an expected resolution of
400 yg. For this, the design will be further improved hand-in-hand with the technology
development of the fabrication process. The novel device will then be experimentally
characterized and evaluated.
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