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Abstract

Water movements through the fruit skin play critical roles in many disorders of strawberry

(Fragaria × ananassa Duch.) such as water soaking, cracking and shriveling. The objective

was to identify the mechanisms of fruit water loss (dry skin, transpiration) and water uptake

(wet skin, osmosis). Fruits were held above dried silica gel or incubated in deionized water.

Water movements were quantified gravimetrically. Transpiration and osmotic uptake

increased linearly with time. Abrading the thin cuticle (0.62 g m-2) increased rates of transpi-

ration 2.6–fold, the rates of osmotic uptake 7.9-fold. The osmotic potential of the expressed

juice was nearly the same for green and for white fruit but decreased in red fruit stages. Fruit

turgor was low throughout development, except for green fruit. There was no relationship

between the rates of water movement and fruit osmotic potential. The skin permeance for

transpiration and for osmotic uptake were both high (relative to other fruit species) but were

two orders of magnitude greater for osmotic uptake than for transpiration. Incubating fruit in

isotonic solutions of osmolytes of different sizes resulted in increases in fruit mass that

depended on the osmolyte. The rate of osmotic uptake decreased asymptotically as molec-

ular size of the osmolyte increased. When transpiration and osmotic uptake experiments

were conducted sequentially on the same fruit, the rates of transpiration were higher for fruit

previously incubated in water. Fluorescence microscopy revealed considerable microcrack-

ing in a fruit previously incubated in water. Our findings indicate that the high permeance for

osmotic uptake is accounted for by an extremely thin cuticle and by viscous water flow

through microcracks and along polar pathways.

Introduction

Strawberry is a highly perishable commodity. The quality of strawberries at retail is often com-

promised by pre- and postharvest factors. Preharvest factors include the exposure of fruit to

rain in the course of growth and development. Classical disorders related to rain exposure are

fruit cracking and water soaking [1]. Both disorders are often followed by fruit rot, such as
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grey mold. During the harvesting and subsequent postharvest storage, transport and handling,

fruit water loss due to transpiration is critical. Ultimately it results in shrivel and in compro-

mised appearance. In addition, the mass loss that occurs along the marketing chain requires

fruit containers to be ‘over-packed’ so as to ensure a pre-specified weight for the consumer.

Compromised fruit quality and overpacking of fruit containers both cause significant financial

loss.

Water movement through the fruit surface is likely to be a critical factor in all the above dis-

orders. Although the mechanistic bases of strawberry fruit cracking and water soaking have

not been investigated in great detail, research on similar disorders in other fruitcrop species

indicates the involvement of water uptake directly through the fruit surface and, possibly also

of water uptake through the fruit vascular system [2]. Such research includes the rain cracking

of soft, fleshy fruits such as apples (Malus × domestica Borkh.) [2,3], blueberries (Vaccinium
corymbosum L.) [4], plums (Prunus domestica L.) [5], tomatoes (Solanum lycopersicum L.) [6],

citrus lemon (Citrus ×limon (L.) Burm. f.) [7], grape berries (Vitis vinifera L.) [8], sweet cher-

ries (Prunus avium L.) [9], jostaberry (Ribes nidigrolaria B.), gooseberry (Ribes uva-crispa L.),

and black currant (Ribes nigrum L.) [10]. For strawberry fruit, water loss through the fruit skin

is likely to be a critical factor in shriveling and compromised appearance. For sweet cherry,

shrivel-type phenomena such as ‘orange peel’ disorder are caused by skin dehydration, with

the latter exacerbated if fruit are allowed to transpire excessively [11–13].

The above arguments indicate that water loss through the strawberry fruit surface by tran-

spiration (in dry air) and water uptake by osmosis (when the fruit surface is wetted) are likely

to be the major determinants in the shriveling, cracking and water soaking of strawberries. Lit-

tle is known about water movement through the strawberry fruit skin. It is worth noting that a

strawberry ‘fruit’ has an unusual morphology. It is primarily comprised of receptacle tissue—a

strawberry is a pseudocarp or false fruit, not a true fruit comprised of mostly pericarp tissue.

The actual fruits of a strawberry are the tiny achenes embedded in the surface of an expanded

receptacle. The strawberry is also unusual in that it develops over quite a short period of time,

suggesting that the fruit skin is subjected to particularly high rates of strain. A better under-

standing of these underlying factors should be helpful in developing improved strategies for

strawberry breeding, cultivation and handling so as to reduce or eliminate fruit quality

impairments.

The objective of this study is to identify the mechanism(s) of water movement in transpira-

tion (loss in dry air) and osmosis (uptake when wetted) through the surface of detached straw-

berry fruit.

Materials and methods

Plant material

Strawberry fruit were harvested from commercial plantings at Gleidingen, Bad Nenndorf,

research plots of the Horticultural Research Center in Cologne-Auweiler and from the green

house and growth chamber facility at the Campus Herrenhausen of Leibniz University, Han-

nover, Germany. Temperature and relative humidity (RH) of the growth chamber were set at

20/16˚C and 60/80% RH during a 16 h day/night photoperiod.

Unless specified otherwise, fruit were harvested randomly and at commercial ripeness

(>80% of the fruit surface red). Fruit of the same size, shape and color and free of visible

defects were selected. Fruit was processed fresh on the day of sampling or held at 2˚C and 80%

RH for no longer than 2 d. Previous studies showed that holding fruit for up to 2 d under these

conditions had no effect on rates of water uptake or transpiration. Unless otherwise specified,

the calyx was removed from the fruit by carefully pulling and the resulting hole sealed using a
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fast-curing silicone rubber (Silicone rubber, SE 9186 Clear; Dow Corning Corp., Midland,

USA). The number of individual fruit replicates was 15 unless otherwise specified.

General procedure

For transpiration experiments, fruits were incubated for 1.5 h in a polyethylene (PE) box, usu-

ally above dry silica gel (RH~0%; [14]) and weighed individually at 30-min intervals. The rate

of transpiration (Ft; mg h-1) was calculated on an individual fruit basis as the slope of a linear

regression line fitted through a plot of fruit mass versus time.

For osmotic uptake experiments, fruits were incubated individually in deionized water for

1.5 h. Osmotic uptake was determined gravimetrically. Fruits were carefully blotted using soft

tissue paper and then weighed at 30-min intervals. The rate of osmotic uptake was calculated

(Ff; mg h−1) on an individual fruit basis from the slope of a linear regression line fitted through

a plot of fruit mass versus time.

All experiments were carried out in a temperature controlled laboratory at 22˚C.

Experiments

The time courses of osmotic uptake and transpiration were established in ‘Clery’ fruits. To

ensure the repeated handling and blotting of fruit in the osmotic uptake experiment did not

damage the fruit surface, rates of osmotic uptake of fruit blotted and weighed multiple times

(at 0, 0.5, 1, 1.5 and 3 h) and of fruit blotted and weighed just once (at 3 h) were compared.

The effect of the cuticle on water movement was studied by abrading the cuticle from the

fruit surface of ‘Florentina’ using sand paper (grain 400). Non-treated fruit served as control.

Weighing intervals were modified in water uptake assays to avoid bursting of cells and leakage

of osmolytes (osmotic water uptake) and excessive dessication (transpiration). Osmotic uptake

was determined at 1 min intervals for up to 3 min for fruit with an abraded cuticle. Control

fruit was measured at intervals of 5 min for up to 15 min.

The effects of fruit size were investigated by selecting ‘Clery’ fruit of differing mass. Fruit

surface area was calculated from fruit dimensions determined from calibrated photographs

(Lumix DMC-G80; Panasonic Corporation, Osaka, Japan) by image analysis (cellSens Dimen-

sion 1.7.1; Olympus Soft Imaging Solutions, Münster, Germany). Briefly, the fruit was

assumed to represent a truncated cone capped by two halves of rotational prolate ellipsoids.

Using this approximation fruit surface area (A) was calculated from the upper and lower diam-

eters of the cone, cone height and the heights of the two rotational prolate ellipsoids, one on

either end. The flow rates of transpiration (Ft) and osmotic uptake (Ff) were quantified as

described above. The flux densities (kg m-2 s-1) of water in transpiration (Jt) and in osmotic

uptake (Jf) were calculated by dividing the transpiration flux and osmotic uptake flux by the

corresponding fruit surface area.

The effects of juice osmotic potential on osmotic water uptake and transpiration were stud-

ied using ‘Florentina’ fruit of similar mass (mean 11.7 ± 0.1 g, range: 10.3–13.5 g) harvested at

commercial ripeness, as indexed by color. Rates of osmotic uptake and transpiration were

measured as described above. The osmotic potential of the expressed juice was determined by

water vapor pressure osmometry (VAPRO 5600; Wescor, Utah, USA) on an individual fruit

basis. The flow per unit osmotic potential was calculated by dividing Ft and Ff by the osmotic

potential. This procedure normalizes for differences in driving force.

The effect of fruit development stage on transpiration and on osmotic uptake was studied

in ‘Clery’ strawberry. Fruit growth was followed gravimetrically. Digital photographs were

taken and the fruit surface area quantified from fruit dimensions using the model described

above. The changes in color (CM-2600 d, orifice 3 mm diameter; Konica Minolta, Tokyo,
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Japan) and in osmotic potential of the expressed juice (VAPRO 5600; Wescor, Utah, USA)

were monitored at 5-d intervals until fully ripe, beginning at 8 d after full bloom (DAFB).

Rates of transpiration and osmotic uptake were determined. The skin permeances in transpira-

tion and in osmotic uptake were calculated as described below.

The fruit water potential (Cfruit) was also determined using water-uptake experiments.

‘Florentina’ fruit were incubated in mixed solutions of increasing concentrations of fructose

and glucose in equal molar ratios. These two monosaccharides represent the most abundant

osmolytes in strawberry juice and together account for 63.5% of the osmolytes present [15].

Osmolarities of the incubation solutions were 0, 250, 500, 750 and 1000 mmol kg-1. The time

courses for the osmotic uptake experiment were established at 0, 0.5, 1, 1.5 and 30 h for all

hypertonic solutions (�500 mmol kg-1). For the hypotonic solutions, i.e. the water control and

the solution of 250 mmol kg-1, incubation was terminated after 1.5 h–longer incubations led to

extensive fruit cracking. Rates of osmotic uptake were calculated for each incubation interval

(0 to 0.5 h, 0.5 to 1 h, 1 to 1.5 h and 1.5 h to 30 h). A linear regression was fitted through a plot

of the rate of uptake during each interval versus the osmotic potential of the incubation solu-

tion. From the regression parameters obtained, the hypothetical osmotic potential of a solution

that would result in zero change in fruit mass was calculated. At this null point the CP of the

incubation solution would exactly equal the fruit water potential (Cfruit) and a driving force

for net water uptake is absent [16].

The effect of the molecular size of the osmolytes on net osmotic uptake into ‘Florentina’

strawberry was established by preparing incubation solutions at osmolarities that were isotonic

to theCP of juice expressed from the same batch of fruit. The osmolytes and their molecular

masses were glycerol (92 g mol-1), glucose (198.2 g mol-1), sucrose (342.3 g mol-1), polyethyl-

ene glycol (PEG) 1500 (1500 g mol-1) and PEG 6000 (6000 g mol-1).

The relationship between osmotic uptake and transpiration was studied by sequentially

incubating ‘Laetitia’ fruit, first in water and then above silica gel and vice-versa. Thereafter,

fruit were incubated in acridine orange (0.1%) (Carl Roth, Karlsruhe, Germany) for 5 min,

then rinsed with deionized water and carefully blotted. The fruit surface was then inspected

under incident white light and incident fluorescent light using a binocular microscope (Leica

MZ10F with filter GFP plus 480–440 nm excitation,�510 nm emission; Leica Microsystems

GmbH, Wetzlar, Germany).

Water potential, osmotic potential and turgor

To quantify fruit water potential (C), the osmotic potential (CP) and turgor (Cp) were estab-

lished in developing ‘Clery’ fruit grown in a growth chamber. The developmental stage of a fruit

was indexed by the change in fruit color (CM-2600 d; Konica Minolta, Tokyo, Japan). Fruit was

held at 4˚C for a maximum of 1 h before turgor measurement. TheCP was determined by water

vapor pressure osmometry (VAPRO 5600; Wescor, Utah, USA) from the juice expressed using a

garlic press. TheCp of the cells of the outer flesh were determined using a cell pressure probe

(CPP; [17,18]). The capillary was carefully inserted into the cells (< 0.5 mm below the fruit sur-

face) under a horizontal microscope. Following volume correction, the peak pressure of the sys-

tem was recorded. This pressure was taken as an estimate ofCp. For a detailed description of the

protocol the reader is referred to [18]. The water potential of a cell was calculated as the algebraic

sum of the osmotic potential (negative) and the turgor (positive).

Calculating the permeances for osmotic water uptake and transpiration

The skin permeance for transpiration (Pt; m s-1) was calculated as described earlier using flow

rates determined in ‘Clery’, ‘Florentina’ and ‘Laetitia’ strawberry [19]. The Pt was calculated
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from the rate of transpiration (Ft; kg s-1) divided by the product of the fruit surface area (A;

m2), the density of water (ρw; kg m-3) and the driving force for transpiration. In analogy to

[20], the gradient in water activity (Δαw;dimensionless) across the fruit skin was used as the

driving force (Eq 1). Because the humidity above dry silica is practically zero, Δαw equals the

water activity of the strawberry juice, which is approximately one.

Pt ¼
Ft

Afruit � rw � Daw
ð1Þ

The permeance for the opposite process of osmotic water uptake (Pf, m s-1) was determined

on the same cultivars using Eq 2. An alternate expression for the permeance in osmotic water

uptake is the filtration permeability [21]. In Eq 2, Ff represents the rate of osmotic uptake, A

the fruit surface area, and ΔC (MPa) the difference in water potential between the water poten-

tial of the fruit (Cfruit) and that of the incubation solution(CP). For fruit incubated in water

(CP = 0) the driving force for osmotic uptake is essentially equal toCfruit. For mature fruit,

Cfruit was approximately equal to the osmotic potential of the expressed juice of the fruit (CP).

The value of CP was determined by water vapor pressure osmometry (VAPRO 5600; Wescor,

Utah, USA) following expression of the juice using a garlic press. The parameters R, T, Vw and

ρw are all constants where R (m3 MPa mol-1 K-1) represented the universal gas constant, T (K)

the absolute temperature, Vw (m3 mol-1) the molar volume of water and ρw (kg m-3) the den-

sity of water. The permeance estimates Pt and Pf so obtained are directly comparable [19,22].

Pf ¼
Ff

Afruit � DC
�

RT
r � �Vw

ð2Þ

Mass of cuticle, cutin and wax

Mass of cuticle, cutin and wax was determined in ‘Florentina’ strawberries. Epidermal seg-

ments comprising cuticle, epidermis, and some adhering flesh were excised using a biopsy

punch (6 mm diameter; Kai Europe, Solingen, Germany). The cuticular membrane (CM) was

enzymatically insolated [23] by incubating in 50 mM citric acid buffer containing pectinase

(90 ml l-1; Panzym Super E flüssig, Novozymes A/S, Krogshoejvej, Bagsvaerd, Denmark) and

cellulase (5 ml l-1; Cellubrix L; Novozymes A/S) at room temperature. To prevent microbial

growth, NaN3 was added at a final concentration of 30 mM. The isolated CMs were carefully

cleaned from adhering cellular debris using a soft, camel-hair brush and desorbed in deionized

water. Achenes were manually removed. Samples of CMs (n = 10) were dried above silica gel

for 48 h and weighed. Subsequently, CMs were extracted by incubation in CHCl3/MeOH (1:1,

v/v) for 24 h at room temperature. The dewaxed CMs (DCMs) were dried above silica gel for

48 h and their mass determined. CM mass per unit fruit surface area were calculated. The wax

mass per unit area was calculated by subtracting the cutin mass per unit area from the cuticle

mass per unit area. The experiment was carried out using 12 replicates.

Data analyses

All experiments were conducted and analyzed using completely randomized designs. Data

were analyzed by analysis of variance and linear regression. Means were compared using

Tukey’s studentized range tests (p< 0.05) using R (version 3.5.1; R Foundation for Statistical

Computing, Vienna, Austria). Unless individual observations are shown, i.e. Figs 2–4, 5C and

9A, data are presented as means ± standard errors. All data shown in figures and tables are

available in the S1 Dataset.
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Fig 1. Effect of abrading the cuticle on water movement. (A) Transpiration and (B) osmotic water uptake. Significance of

coefficients of determination (r2) at P< 0.001 indicated by ���.

https://doi.org/10.1371/journal.pone.0251351.g001
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Results

Osmotic water uptake rate and transpiration rate through the surface of mature strawberries

increased linearly with time (Fig 1). There were no significant differences between the rates of

osmotic uptake of fruit that were repeatedly weighed and blotted (91.8 ± 13.6 mg h-1) and fruit

that were weighed and blotted only once (124.8 ± 13.9 mg h-1; P < 0.115). Abrading the cuticle

increased the amount of water transpired or taken up osmotically compared to the control

(Fig 1). The strawberry cuticle was extremely thin as indicated by a low mass per unit area of

cutin and wax (Table 1). The wax content averaged 19.2%.

Not surprisingly, the flow rates (mass of water, per hour, per fruit) for transpiration and for

osmotic uptake were positively and significantly related to fruit surface area. But this surface-

area relationship was closer for transpiration than for osmotic uptake, as indexed by a higher

coefficient of determination for transpiration (Fig 2A and 2C). Also, not surprisingly, dividing

these water flow rates by the corresponding fruit surface areas revealed that the water flux den-

sities (mass of water, per hour, per unit area of fruit surface) for transpiration and for osmotic

uptake were markedly less dependent on fruit surface area (Fig 2B and 2D). For a representa-

tive dataset, there was no significant correlation between fruit size and fruit osmotic potential

(r = 0.01ns). This indicates the absence of a confounding interaction between size and osmotic

potential for fruit of the same color maturity.

Fig 2. Relationship between fruit surface area and water movement. (A) Flow rates and (B) flux densities of transpiration from strawberry fruit. (C) Flow

rates and (D) flux densities of osmotic uptake into strawberry fruit. Significance of coefficients of determination (r2) at P< 0.001 and indicated by ���.

https://doi.org/10.1371/journal.pone.0251351.g002
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The osmotic potential of the expressed fruit juice was nearly constant for unripe fruit rang-

ing from green (hue angle>90˚) to white (hue angle� 60˚), but decreased and became more

negative as the fruit turned red (hue angle<60˚) (Fig 3A). Fruit turgor (CP) was very low

throughout most of the fruit-development period, compared to the negative values of fruit

osmotic potential. Only during the early stages of development, when the fruit were still green,

was cell turgor pressure significantly higher, when average values were about 200 kPa, with

occasional peak values of up to 600 kPa being recorded (Fig 3B).

There was no relationship between the rate of transpiration or the rate of uptake and the

osmotic potential of expressed juice for fruit on commercial ripeness (Fig 4A and 4B).

Skin permeances for transpiration (Pt) and for osmotic uptake (Pf) follow a log normal dis-

tribution as indexed by approximately symmetrical frequency distributions when plotted on a

log scale and by linear normal probability plots (Fig 5A–5C). The permeance for osmotic

uptake was 226-times larger than that for transpiration (Table 2). This huge dissimilarity is not

unique to ‘Clery’ strawberry, but was of similar magnitude in ‘Florentina’ and ‘Laetitia’

(Table 1).

Fig 3. Water potentials in developing strawberries. (A) Calculated fruit water potential (C), osmotic potential (CP)

and cell turgor (CP) of developing strawberry fruit; (B)CP in A but redrawn on a different scale. The value ofC was

calculated as C =CP +CP. (Bars represent SE). The arrow indicates theCP at maturity.

https://doi.org/10.1371/journal.pone.0251351.g003
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The increase in strawberry fruit mass and, hence, in surface area during development fol-

lowed a sigmoidal pattern with time (Fig 6A- main graph). Color change as indexed by the

decrease in hue angle from green (>90˚) to white (�60˚) and finally to fully red (<44˚)

occurred at about 27 days after full bloom (DAFB) (Fig 6A—Inset). This corresponds to the

phase of maximum mass growth rate and of maximum decrease (more negative) in osmotic

potential (Fig 6B). Rates of transpiration and of osmotic uptake both increased markedly dur-

ing development (Fig 6C- main graph). Meanwhile, rates of transpiration (per fruit) decreased

during development, while rates of osmotic uptake (per fruit) increased markedly after the

fruit turned red (Fig 6C- inset). The permeances (related to flux densities) for transpiration

and osmotic uptake decreased as development progressed (Fig 6D). The permeance for

osmotic uptake was markedly and consistently higher than that for transpiration—by about

two orders of magnitude.

Rates of osmotic uptake depended on the osmotic potential of the incubation solution (Fig

7). Decreasing the incubation osmotic potential decreased the rate of osmotic uptake (Fig 7B).

Interestingly, positive rates of osmotic water uptake were recorded from isotonic, and even

from hypertonic solutions (Fig 7A). The rates of osmotic uptake were consistently higher dur-

ing the first experimental interval (0.25 h), before decreasing towards an asymptote and then

Fig 4. Relationship between osmotic potential (CP) of a strawberry fruit’s expressed juice and water movement.

(A) Rates of transpiration and (B) Rate of osmotic water uptake. Coefficients of determination (r2) not significant at

P< 0.05.

https://doi.org/10.1371/journal.pone.0251351.g004
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Fig 5. Frequency distributions of skin permeances of strawberries. (A) Log-transformed permeance for

transpiration (Pt) (main graph) and un-transformed Pt (inset). (B) Log-transformed permeance for osmotic uptake (Pf)

(main graph) and un-transformed Pf (inset). (C) Normal probability plot of the log-transformed permeance of Pt and

Pf.

https://doi.org/10.1371/journal.pone.0251351.g005
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remaining about constant for up to 30 h (Fig 7B). Fitting a linear regression through a plot of

osmotic uptake rate vs. the osmotic potential of the incubation solution, allowed fruit water

potential to be estimated from the x-axis intercept. At this point, the driving force for osmotic

water uptake is zero because fruit water potential (unknown) equals the osmotic potential of

the incubation solution (known). This calculation revealed very negative values for fruit water

potential during the first incubation interval. Fruit water potential then gradually increased

(became less negative) as it approached the osmotic potential of the expressed fruit juice. The

values found for Cfruit were consistently more negative than those measured for the osmotic

potential of the expressed fruit juice (CP) (Fig 7D). This difference amounted to about -0.6

MPa.

Incubating fruit in isotonic solutions composed of osmolytes of different molar mass,

resulted in osmotic water uptake at rates that depended on the molar masses of the osmolytes

(Fig 8A). Osmolytes having molar masses of 1500 g mol-1 or lower resulted in rates of osmotic

uptake of> 0 mg h-1. The rate of osmotic uptake decreased asymptotically as molecular size

increased (Fig 8B).

When conducting transpiration and osmotic-uptake experiments sequentially on the same

fruit, the rates of water movement recorded depended on the order in which the experiments

were conducted (Fig 9A). That is, the rate of transpiration was consistently higher when

recorded after first recording the osmotic uptake rate, and lower if recorded before. Incubating

fruit in the fluorescence tracer acridine orange revealed considerable microcracking after fruit

were incubated in water (i.e. as per an osmotic-uptake experiment). The microcracks were in

the areas of epidermis lying between the achenes and were ring-shaped and centered on the

achenes (Fig 9D and 9E) and in the depressions of the achenes (Fig 9F and 9G). In contrast,

fruit that had not been incubated in deionized water (i.e. as per a transpiration experiment)

had markedly fewer or no microcracks (Fig 9B and 9C).

Discussion

Mature strawberries have very low turgor

Low fruit turgor pressure is not unique for mature strawberries but has been reported also in

the mature fleshy fruit of many species including of grape berries [26–30], sweet cherry, plum,

currents and tomato [18,31]. For strawberries, low turgor pressures are also in agreement with

calculations made by [32], who estimated turgor pressures of 0.2 (unripe fruit) to 0.05 MPa

(ripening fruit) by subtracting measured fruit osmotic potential from measured fruit water

potential.

Low turgor pressures occur in many species of ripe fruit, despite the usually very negative

osmotic potential of their expressed juices. As a consequence, in mature fruit, the water poten-

tial is essentially equal to the osmotic potential. However, in the unripe fruit of many fruit spe-

cies, the turgor is usually markedly higher. Our findings for strawberries (pseudocarps) follow

this general pattern found for true fruit. Thus, for grape berries, a transient peak in turgor

coincides with veraison [33]. In sweet cherry, peak turgors occur at the onset of color change,

when rates of fruit growth and rates of accumulation of carbohydrates are at maximum [31].

Accumulation of apoplastic solutes in the cell wall space of grape berries is responsible for

the lack of turgor at maturity [33,34]. This is also the case in strawberries. The apoplast of ripe

Fig 6. Time course of strawberry development. Change in fruit mass (A), surface area (main graph) and color as

indexed by the Hue angle (inset), (B) water potential (C), and (C) flow rates of osmotic uptake and transpiration (main

graph) and flux densities of transpiration and osmotic uptake (inset) and permeances of the skin for osmotic uptake

(Pf) and for transpiration (Pt) (D) (Bars represent SE).

https://doi.org/10.1371/journal.pone.0251351.g006
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strawberries contains high levels of solutes, but not that of unripe ones [32]. The consequences

of this are two-fold: 1) High concentrations of apoplastic solutes generate a negative water

potential in the apoplast and the decreased turgor, in turn, facilitates phloem transport and

thus phloem water inflow into the fruit. 2) The resulting lack of turgor implies that fruit water

potential and osmotic potential are essentially equal and very low (negative) in mature fruit. In

Fig 7. Effect of osmotic potentials (CP) of the incubation solution on osmotic uptake. (A) Time course of

cumulative uptake (B) and of change in rate of uptake. (C) Relation between rate of uptake and the osmotic potential of

the incubation solution. The arrows indicate the osmotic potential at zero water uptake. At this point the osmotic

potential of the incubation solution equals the calculated fruit water potential. The vertical dotted line indicates the

osmotic potential of the expressed juice. (D) Time course of change in the calculated fruit water potential. Water

potential was estimated from the osmotic potential of the incubation solutions for zero water uptake. (Bars represent

SE). Glucose and fructose at a molar ratio of 1:1 were used as osmolytes in the incubation solution because these two

carbohydrates represent the most abundant osmolytes in strawberries.

https://doi.org/10.1371/journal.pone.0251351.g007

Fig 8. Effect of different molecular mass of isotonic solutions on osmotic uptake. (A) Cumulative uptake. (B) Rates

of uptake. (Bars represent SE).

https://doi.org/10.1371/journal.pone.0251351.g008
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Fig 9. Effect of sequence when determining both water uptake and transpiration on water movement and on

formation of microcracks. (A) Relationship between rate of osmotic uptake (Ff,) and rate of transpiration (Ft) for fruit

subjected to the osmotic uptake determination first, followed by transpiration (‘uptake!transpiration’) and vice-versa
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sweet cherry, the negative fruit water potential results in water being pulled into the fruit

osmotically even in the absence of transpiration [35]. Whether this is also the case in straw-

berry is currently unknown.

Strawberry skins are highly permeable to water and their permeance for

osmotic uptake very greatly exceeds that for transpiration

When compared with other fruitcrop species, the permeances of strawberry fruit skin recorded

here for transpiration and also for osmotic uptake are the highest ever recorded (see compila-

tion in Table 1). Thus, the strawberry skin is not a very effective barrier to the movement of

water.

To the best of our knowledge, the surface of a mature strawberry fruit is covered by the

thinnest fruit cuticle ever reported (Table 1). There was no significant relationship between

cuticle thickness and cuticle permeance. The extremely thin cuticle implies an extreme likeli-

hood that surface defects will result if the fruit skin is subjected to high rates of strain during

growth. The intracuticular waxes rather than the epicuticular waxes are considered to form the

primary barrier to water movement across plant surfaces [36].

So, an extremely thin cuticle indicates an extreme dearth of intracuticular waxes and thus

an extremely water-permeable skin. Moreover, our results reveal numerous cracks in the cuti-

cle, particularly after the strawberry fruit skin has been in contact with surface water. Thus, an

extremely thin cuticle along with a predisposition to microcracks indicates the barrier proper-

ties of a strawberry fruit’s skin will be very limited in the dry and still further impaired by any

exposure to surface wetness.

(‘transpiration!uptake’). The regression equations were: Ft = 1.10 (±0.03) x Ff, r2 = 0.92��� (uptake before

transpiration); Ft = 0.47 (±0.02) x Ff, r2 = 0.71��� (transpiration before uptake). The intercepts were not significant, so

regression lines were forced through the origin. Significance of slope parameter at P< 0.001 indicated by ���.

Microscopic view of a strawberry fruit surface under incident bright (B, D, F) and fluorescent light (C, E, G) following

incubation in acridine orange solution (0.1%) for 5 min. Fruit was subjected to 1.5 h of transpiration (B and C) or to

1.5 h of osmotic uptake (D to G). Following water uptake, ring microcracking was plainly evident in the epidermis

around the achenes (E) and in the achene depressions themselves (G). Scale bar 500 μm.

https://doi.org/10.1371/journal.pone.0251351.g009

Table 1. Mass of the cuticular membrane (CM), dewaxed CM (DCM) and permeances for transpiration (Pt) and for osmotic uptake (Pf) of a range of ripe fruitcrop

species.

Species Cultivar Mass per unit area (g m-2) Pt (x 10−9 m s-1) Pf (x 10−9 m s-1) Ratio Pf/Pt

CM DCM Wax

Strawberry Clery - - - 4.9±0.1 1108.0±86.1 226

Florentina 0.62±0.02 0.50±0.01 0.12±0.01 4.4±0.2 863.4±37.7 196

Laetitia - - - 6.4±0.3 860.1±68.1 134

Grape [19,24] Chardonnay 3.90±0.07 - - 2.2±0.1 7.7±0.9 4

Müller-Thurgau 3.30±0.03 - - 2.5±0.1 8.9±1.5 4

Riesling 4.56±0.04 3.21±0.09 1.35±0.08 1.6±0.1 4.1±1.2 3

Cherry [22,25] Sam 1.31±0.04 0.94±0.04 0.37±0.01 1.8±0.2 44.5±19.1 25

Hedelfinger 1.20±0.04 0.92±0.0 0.28±0.02 3.1±1.1 135.3±3.0 44

Adriana 1.09±0.02 0.73±0.02 0.36±0.02 2.2±0.6 30.7±2.8 14

Tomato [22] Sun Rise 8.08±0.30 - - 1.0±0.2 15.2±3.2 15

Black currant [10] Zema 5.04±0.04 4.09±0.03 0.95±0.01 - 77.0±4.0 -

Gooseberry [10] Rote Triumph 5.62±0.08 5.03±0.08 0.59±0.00 - 52.0±1.0 -

Jostaberry [10] Jostine 4.85±0.05 3.81±0.04 1.04±0.01 - 33.0±3.0 -

https://doi.org/10.1371/journal.pone.0251351.t001
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It is interesting to note that the permeance to osmotic uptake exceeded that to transpiration

by more than two orders of magnitude. The average ratio Pf/Pt is about 190 for strawberry.

This ratio is much larger than for other fruitcrop species (Table 1) where Pf generally exceeds

Pt but where the ratio is much less extreme (i.e. Pf/Pt is about 4 for skins of grape berries and

about 27 for skins of sweet cherries) [19,22]. This observation can be adduced as evidence for

the involvement of a viscous flow, syn. mass flow, component in osmotic uptake–i.e. along a

pathway with a liquid water continuum [21]. Viscous water flow along a liquid continuum

across the lipophilic cuticle is very rapid compared with diffusion of individual water mole-

cules across the cuticle. The latter occurs by sorption to the cuticle, diffusion across the cuticle

and desorption of individual water molecules at the innerside of the cuticle. For polar pene-

trants such as the water dipol, the affinity for the lipophilic cuticle is low [37].

The involvement of viscous flow in osmotic uptake is consistent with the following

observations:

1. Microcracks occur on the strawberry surface as indexed by penetration of the fluorescence

tracer acridine orange (Fig 9). Simulating microcracking by abrading the cuticle increased

the rate of transpiration 2.6-fold and the rate of osmotic uptake 7.9 fold. That microcracks

are important in osmotic uptake is also inferred from the ‘sequence effect’ when osmotic

uptake and transpiration were determined sequentially—i.e. osmotic uptake before transpi-

ration vs. transpiration before osmotic uptake. Transpiration was markedly increased when

osmotic uptake was measured before transpiration. Incubation in water induces cuticular

microcracking and so impairs the cuticle’s barrier function and increases transpiration. In

grape berries, simulated microcracking increased the rates of water uptake 47-fold com-

pared with non-treated control fruit [38]. Similar data were reported by [39] for sweet

cherry where water uptake rates were almost double than those of control fruit.

2. Polar pathways occur in cuticles of some fruit crops [16]. These provide an aqueous contin-

uum across the lipophilic cuticle that allows penetration of polar substances by viscous flow

[40,41]. These pathways are not physical holes in the cuticle but polar domains that accom-

modate polar penetrants [42]. They result from the orientation of polar functional groups

in the cuticle [43]. Evidence for the presence of polar pathways in strawberry skin comes

from the effect of osmolyte molecular size on the rate of osmotic uptake from isotonic solu-

tion. The experiment provides evidence for an increase in osmotic uptake that depends on

the molecular size of the bathing osmolyte. Because the osmolytes we chose are polar (and

polar osmolytes are excluded from lipophilic pathways) their penetration must have

occurred via a polar pathway. And this penetration was size-selective. The smallest non-

penetrating osmolyte was PEG 1500 (1500 g mol-1) and the largest penetrating osmolyte

was sucrose (342 g mol-1). The size selectivity of the polar pathways of a strawberry fruit

skin is in close agreement with that reported previously [16, 17].

From the above observations we infer that viscous flow through microcracks and polar

pathways across the extremely thin cuticle accounts for the high permeability in osmotic

uptake as compared to transpiration. This interpretation is consistent with a lower coefficient

Table 2. Permeance for transpiration (Pt) and permeance for osmotic uptake (Pf) of the skins of ripe strawberry fruit cv. Clery.

Permeance x 10−9 (m s-1) Mean Median SE Range CV (%) Number of observations (n)

Min Max

Transpiration (Pt) 4.9 5.1 0.1 2.1 9.1 30.9 104

Osmotic uptake (Pf) 1108.0 793.3 86.1 209.1 5104.1 89.0 131

https://doi.org/10.1371/journal.pone.0251351.t002
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of determination for the relationship between flow rate and fruit surface area in osmotic

uptake as compared to transpiration. Apparently, the occurrence of microcracks and the fre-

quency of polar pathways–both involved in osmotic water uptake–is independent of area. In

contrast, transpiration occurs primarily by diffusion across the cuticle and hence, bears a closer

relationship with surface area.

Conclusions

The high permeability of strawberry fruit skins to water is of significant commercial impor-

tance. The very high permeability for transpiration (water loss) accounts for the special suscep-

tibility of strawberries to postharvest water loss during handling, transport and shelf life. The

initial water loss results in loss of shine which makes the fruit less appealing to the consumer.

Further water loss causes visible shriveling. The high permeability for osmotic uptake contrib-

utes to the very limited ‘rainfastness’ of strawberries in the field, where unprotected strawberry

fruit are highly susceptible to skin cracking and water soaking [1]. It is likely that rapid water

uptake and the bursting of cells also contribute to these problems. Further research is needed

to identify causal relationships and mechanisms. The findings reported in this paper are an

important prerequisite.
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Meyer for the gift of fruit, Hana Weiß, Marcel Pasta and Peter Grimm-Wetzel for technical

support and Drs. Sandy Lang and Andreas Winkler for helpful comments on an earlier version

of this manuscript.

Author Contributions

Conceptualization: Martin Brüggenwirth, Moritz Knoche.
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35. Winkler A, Brüggenwirth M, Ngo NS, Knoche M. Fruit apoplast tension draws xylem water into mature

sweet cherries. Sci Hortic. 2016; 209:270–8. https://doi.org/10.1016/j.scienta.2016.06.041

36. Reynhardt EC, Riederer M. Structure and molecular dynamics of the cuticular wax from leaves of Citrus

aurantium L. J Phys D Appl Phys. 1991; 24:478–86. https://doi.org/10.1088/0022-3727/24/3/036

37. Schreiber L, Schonherr J. Water and solute permeability of plant cuticles. Berlin Heidelberg: Springer;

2009.

38. Grimm E, Peschel S, Becker T, Knoche M. Stress and strain in the sweet cherry skin. J Am Soc Hortic

Sci. 2012; 137:383–90. https://doi.org/10.21273/JASHS.137.6.383

39. Peschel S, Knoche M. Characterization of microcracks in the cuticle of developing sweet cherry fruit. J

Am Soc Hortic Sci. 2005; 130:487–95. https://doi.org/10.21273/JASHS.130.4.487

40. Franke W. Role of guard cells in foliar absorption. Nat. 1964; 202:1236–7. https://doi.org/10.1038/

2021236a0

41. Schreiber L. Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot.

2005; 95:1069–73. https://doi.org/10.1093/aob/mci122 PMID: 15797897

42. Schönherr J. Calcium chloride penetrates plant cuticles via aqueous pores. Planta. 2000; 212:112–8.

https://doi.org/10.1007/s004250000373 PMID: 11219575

43. Schönherr J, Bukovac MJ. Preferential polar pathways in the cuticle and their relationship to ectodes-

mata. Planta. 1970; 92:189–201. https://doi.org/10.1007/BF00388553 PMID: 24500250

44. Schönherr J. Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffu-

sion of water. Planta. 1976; 131:159–64. https://doi.org/10.1007/BF00389989 PMID: 24424766

PLOS ONE Water permeability of strawberry fruit skins

PLOS ONE | https://doi.org/10.1371/journal.pone.0251351 May 13, 2021 20 / 20

https://doi.org/10.21273/JASHS.137.6.367
https://doi.org/10.21273/JASHS.137.6.367
https://doi.org/10.1016/0304-4238%2885%2990084-6
https://doi.org/10.5073/vitis.1981.20.15%26%23x2013%3B21
https://doi.org/10.5073/vitis.1990.29.61%26%23x2013%3B70
https://doi.org/10.1111/j.1365-3040.2006.01496.x
http://www.ncbi.nlm.nih.gov/pubmed/17087481
https://doi.org/10.1007/s00425-008-0808-z
http://www.ncbi.nlm.nih.gov/pubmed/18797922
https://doi.org/10.21273/JASHS.139.4.349
https://doi.org/10.21273/JASHS.139.4.349
https://doi.org/10.1093/jxb/46.7.743
https://doi.org/10.1093/jxb/erp050
http://www.ncbi.nlm.nih.gov/pubmed/19386616
https://doi.org/10.1007/s00425-008-0707-3
https://doi.org/10.1007/s00425-008-0707-3
http://www.ncbi.nlm.nih.gov/pubmed/18317799
https://doi.org/10.1016/j.scienta.2016.06.041
https://doi.org/10.1088/0022-3727/24/3/036
https://doi.org/10.21273/JASHS.137.6.383
https://doi.org/10.21273/JASHS.130.4.487
https://doi.org/10.1038/2021236a0
https://doi.org/10.1038/2021236a0
https://doi.org/10.1093/aob/mci122
http://www.ncbi.nlm.nih.gov/pubmed/15797897
https://doi.org/10.1007/s004250000373
http://www.ncbi.nlm.nih.gov/pubmed/11219575
https://doi.org/10.1007/BF00388553
http://www.ncbi.nlm.nih.gov/pubmed/24500250
https://doi.org/10.1007/BF00389989
http://www.ncbi.nlm.nih.gov/pubmed/24424766
https://doi.org/10.1371/journal.pone.0251351

