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Abstract 

Terrestrial laser scanners (TLS) record a large number of points within a short time. Correlations 
between observations are unavoidable but often neglected in stochastic modelling. The main 
consequences are an overestimated precision of the point clouds and potential wrong test decisions 
when used for deformation analysis with rigorous statistical procedures. Regarding physical 
considerations, a fractional Gaussian noise, defined by a so-called Hurst exponent, or a combination 
of fractional Gaussian noises could be used to model the noise of range measurements: temporal 
correlations are expected to have a long range dependency due to the high recording rate. 
Alternatively, a Matérn process can be used, where the power spectral density is damped at low 
frequencies. The corresponding parameters of both noise models can be estimated from the residuals 
of a least-squares approximation of the TLS point cloud: these residuals yield precious information 
about the correlation structure of the raw polar observations. Unfortunately, the correlation structure 
of the residuals may be affected by the scanning configuration and settings. In this contribution, we 
propose to quantify the impact of these effects on the estimation of a global Hurst exponent. Based 
on the results from simulations of a plane, real data analysis from indoor and outdoor experiments can 
be better understood, which allows one to identify the dominant noise structure and its parameters. 
Our methodology makes use of a combination of two estimators: the Whittle maximum likelihood and 
the generalised Hurst estimator; both of them provide information on the noise, paving the way for a 
simple and global model for TLS range correlations, usable in point clouds analysis independently of 
the object under consideration.  
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1. Introduction 

The latest generation of terrestrial laser scanners (TLS) is able to record millions of points during a 
short time period with a measurement accuracy of a few millimetres or less. Loaded in dedicated 
software, these point clouds can be used to compute, for example, a cloud to cloud or cloud to mesh 
distance (Holst et al. 2016; Lague et al. 2013). Promising applications include the monitoring of bridges, 
dams, tunnels and towers (Idrees and Pradhan 2018; Laefer and Truong-Hong 2017; Mukupa et al. 
2016; Neuner et al. 2016; Suchocki 2020 and the references within). Statistical tests for deformation, 
such as the congruence test, can only be performed based on a parametric representation of the point 
cloud (Niemeier 2002); B-spline surfaces are a promising way to compute such an approximation 
(Kermarrec et al. 2020; Koch 2010). Unfortunately, tests based on surface approximation are the most 
powerful only if a reliable stochastic model is specified (Pelzer 1971): this requisite includes both the 
description of the variance and the correlation structure of the observations. Whereas the variance of 



the TLS angles can be taken from the manufacturer’s specifications, the variance of the range was 
shown to follow a power law function regarding the intensity values (Wujanz et al. 2017). This empiric 
all-embracing stochastic model depends on the TLS under consideration and can be determined from 
calibration. This proposal is physically justified by the radar range equation and accounts for different 
influencing factors, such as the property of the object scanned or the distance to the TLS 
(Soudarissanane et al. 2011). Using this model, a diagonal variance covariance matrix (VCM) of the raw 
observations can be set up. The latter, unfortunately, does not account for correlations between the 
measurements:  

• Statistical tests may be biased (Kermarrec et al. 2020) so that an incorrect rejection of 
the null hypothesis that a deformation occurred can happen or 

• the precision of the parameters adjusted may be underestimated (cf. Jäger et al. 2005, 
Ch. 5.5). 

The detection of correlations is nearly impossible by visual inspection from a time series, such as the 
residuals of a mathematical approximation from a TLS point cloud, as illustrated in Figure 1 (top). 
Fortunately, the non-null slope of their power spectral densities (psds) provides some indication of the 
presence of correlations and their structure: the challenge of modelling range correlation can be 
addressed, with the aim of deriving a practically usable correlation function. In this contribution – and 
our work in general – we follow the goal that the latter should be usable by a TLS practitioner and 
implemented in free software to judge the point cloud quality with a higher trustworthiness.  

 

Fig 1: left: the residuals of a simulated point cloud approximation (top) and their psd in the case of 
correlated (bottom, red line) and non-correlated (bottom, blue line) observations. Right: Including 
information about the correlation structure leads to a trustworthy detection of deformation 

Kauker and Schwieger (2017) and Schmitz et al. (2020) started investigating the correlations of TLS 
range measurements using an elementary model and the resolution capability of the scanner, 
respectively. They both based their modelling on spatial correlations, concluding that correlations 
should not be undertaken. They used, for example, the concept of the effective number of 
observations. Kermarrec et al. (2018) started alternatively from the raw observations of the sensors, 
making a parallel between TLS and the Global Navigation Satellite System (GNSS) phase observations: 
they proposed to model their correlation structures as temporal, i.e. time-dependent. Consequently, 
they chose the Matérn covariance model, a popular and widely used function in geostatistics (Gelfand 
et al. 2010) and GNSS co-ordinate time series analysis unter the namegeneralised Gauss-Markov noise 
model (Bos et al. 2013).  

Load due to traffic 

Deformation 



This contribution aims to validate the proposed temporal model for TLS range correlations. We 
developed a new methodology to estimate the corresponding correlation parameters from the 
residuals of a least-squares (LS) adjustment, starting from the raw point clouds. Both the simulations 
and real data of a plane will be used to show the potential of our proposal. Indoor and outdoor 
experiments should highlight that the correlation structure of single-mode laser light as a combination 
of a white and a flicker part can be found in the residuals (the so-called Voigt profile, see Di Domenico 
et al. 2010; Stéphan et al. 2005). Moreover, the expected dependency of the correlation regarding the 
distance to the object, the data quality and the data rate will be analysed. 

More specifically:  

• We will investigate how and when the residuals of a plane adjustment can be used to derive 
trustworthy correlation parameters. We will introduce two dedicated correlation estimators 
and simulate different scanning scenarios to reach that goal. 

• We will apply the methodology and knowledge gained from the simulations to estimate the 
global correlation parameters of TLS range measurements using real data sets from a plane 
scanned with a Z+F IMAGER 5016. Both indoor and outdoor observations will be used for the 
sake of comparison. 

• We will show the extent to which the correlation structure varies depending on the scanning 
settings and the distance from the TLS to the scanned object. We aim to provide physically 
plausible explanations of the results by additionally analysing their spectral content. 

These investigations are performed using recent developments from time series analysis to estimate 
trustworthy correlation parameters (Sykulski et al. 2019). They pave the way: 

• for the analysis of the noise structure of TLS range observations, 
• and, thus, for the determination of a global model for TLS range correlations without using any 

iterative approaches, such as variance covariance estimation methods (Teunissen and Amiri-
Simkooei 2008).  

The methodology developed is independent of the scanner under consideration and can be used with 
freely available functions. It can be easily implemented and extended to more challenging surface 
modelling using, for example, B-spline surfaces, without any limitation of the shape of the object 
scanned.  

2. Material and Methods 

A plane is a simple object widely used to calibrate and estimate the uncertainties of sensors. For that 
reason, we will make use of both simulated and real data corresponding to a plane in this contribution. 
This section gives a brief mathematical background about the estimation of its parameters using a non-
linear Gauss-Helmert model (Lenzmann and Lenzmann 2004). We will put the stress on how to obtain 
the range residuals of the approximation, from which we will estimate the correlation parameter of 
the original observations. We also introduce the noise model chosen by briefly defining the fractional 
Gaussian noise (fGn) and the way to estimate its parameter: the Hurst exponent (Koutsoyiannis 2002 
and the references within). 

2.1 Plane fitting with non-linear LS from TLS observations 

A plane is an infinitively extended surface defined by a normal vector ( )T
x y zn n n=n  and a 

surface parameter d , i.e.,  

 T ,    i d=n P  (1) 



where iP  is an arbitrary Cartesian point lying on the plane (Bronshtein et al. 2007, p. 214f). The normal 

vector n  and the surface parameter d  depend on each other. A change in the vector length of n  
yields a corresponding change in d  but represents the identical plane. An additional restriction is 
needed to overcome the ambiguity of the plane parameters. A common approach is to normalize the 
normal vector, i.e., 

 T 1.    =n n  (2) 

In this case, Eq. (1) becomes the so-called Hesse normal form and the surface parameter d  represents 
the shortest distance between the origin of the co-ordinate system and the plane. 

The parameters of the plane can be estimated for a given set of points not lying on a straight line using 
LS techniques. By treating the points as observations and introducing corresponding residuals 

( )T
i x y zv v v=v , which we considered as being distributed as ( )~ 0,Nv Σ , the functional model 

of the plane reads: 

 ( ) ( )T, 0.i i d= + − =f x v n P v  (3) 

Here, ( )T
x y zn n n d=x  is the vector of parameters to be estimated.  

The well-known objective function of the LS adjustment is given by 

 ( ) T 1Σ min−= =Ω v v v  (4) 

and minimises the weighted sum of squared residuals. The objective function, the condition equations 
and the side condition are combined by the Lagrangian function to estimate the parameters. By 

introducing appropriate approximation values 0x  and 0v , the linearized normal equation of the 

Lagrangian function yields (Kupferer 2005, p. 39) 
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Here, the vectors of Lagrangian multipliers are denoted by 1k  and 2k . The matrices A  and B  

contain the partial derivatives of the linearized functional model f  of the plane regarding the 
unknown parameters and the residuals, respectively. The linearized restriction of the side condition, 

cf. Eq. (2), is given by ˆ + =Rdx r 0  and ( )0 0 0,= − +w Bv f x v  is the vector of misclosures. The iterates 

0ˆ ˆ= +x x dx  and = T
1v ΣB k  are introduced as new approximations to the next iteration step until 

the system of equations converges. Eq. (5) describes a general LS method, which is known as the Gauss-
Helmert model. For the detailed derivation of the Gauss-Helmert model, the interested reader is 
referred to the contributions by Koch (2014) and Neitzel (2010). 

The vector P  in Eq. (1) represents Cartesian co-ordinates: TLS raw observations are recorded as polar 
co-ordinates so that a co-ordinate transformation is needed (see Fig. 2). Even though Lösler (2020, to 
be published) showed that the LS results are independent of the choice of the co-ordinate 
representation if (i) the functional model, (ii) the stochastic model and (iii) the objective function are 
rigorously transformed, the condition number of the normal equation system depends on the co-



ordinate representation. Numerically stable equation systems are more likely for models using 
Cartesian co-ordinates. For that reason, the raw observations and the related dispersion matrix are 
transformed into their Cartesian representations by 
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 T , =cart polΣ FΣ F  (6b) 

where F  denotes the matrix of the linear transformation between polar and Cartesian co-ordinates.  

 

 

Fig 2: Schematic representation of the transformation between polar and Cartesian co-ordinates 

 
2.1. Backward transformation of the residuals 

In this contribution, we aim to estimate the correlation parameter of the TLS range measurements 

from the residuals of the adjustment, i.e. ( )~ 0,Nv Σ . Consequently, the residuals of the plane 

adjustment (Eq. (3)) have to be backwards transformed to polar co-ordinates.  

According to Lösler (2020), the pointwise polar residuals are expressed by means of the co-ordinates 
and the cartesian residuals (see Fig, 2), as: 

 ( ) ( ) ( )2 2 2 2 2 2
i i ii i x i y i z i i iv x v y v z v x y zλ = + + + + + − + +  (7a) 
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Henceforth, we call the range residuals the vector [ ]1,...,r r r nv v=v . This vector is assumed to be 

temporally sorted:  ( )r i r iv t= v , it  being the epoch at which the corresponding observation was 

made. We call 
r

Cv the covariance between two range measurements taken at it  and it τ+ , τ  being 

the time increment: 

 ( ) ( ) ( )( ) ( ) ( )( )( ), ,
r i i r i i r r i rC t t E t t E t Eτ τ+ = + − −v v v v v  (8) 

( )E   is the expectation operator. 

In a first approach, we assume that the noise angles are uncorrelated. In this contribution, only the TLS 
range measurements are considered to be temporally correlated.  

2.2. Noise model 

Rather than estimating the covariance function from the residuals empirically using, for example, LS 
variance covariance estimation (Teunissen and Amiri-Simkooei 2007), we propose to model the 
correlated noise as a fGn (Granger and Joyeux 1980; Mandelbrot and Ness 1968). This choice is based 
on strong physical assumptions: it combines sensor knowledge with the propagation of 
electromagnetic waves in random medium and follows the previous work of Kermarrec and Schön 
(2014) for GPS (see also Wheelon 2001).  

Modelling of the noise as a fGn has the advantage that only one correlation parameter has to be 
estimated: the Hurst parameter. Many estimators for this parameter are available either in the time 
or frequency domain, allowing a great flexibility in case of potential additional effects due to a 
functional mismodeling, outliers, a small number of observations or additional white noise (WN). 
Interested readers can refer exemplarily to Bardet et al. (2003).  

Prior to introducing this noise, we propose to briefly explain the reason why a temporal modelling was 
chosen.  

Why temporal correlations?  

We model the correlation of the TLS range observations as temporal, i.e. time-dependent. This is 
justified by the fact that range measurements – whether from phase or pulse lasers – are a measure 
of time (Rueger 1996). Figure 3 shows exemplarily the laser signal, emitted at time t  and received after 
reflection and a double atmospheric propagation at t dt+  (Andrew and Phillips 2005). The range is 
computed from the time difference dt : it is, thus, indirectly a measure of time (Pfeifer and Briese 
2007). Consequently, the signal emitted will have some affinity with the signals received at different 
epochs: 

• They travelled the same random medium, which acts to correlating them (atmospheric noise), 
and 

• they were emitted by the same instrument and still carry some information about the noise 
of the original signal. The noise structure of a laser was shown, both empirically and 
theoretically, to be a combination of WN at high frequencies and flicker noise (FN) at low 



frequencies (see, e.g., Di Domenico et al. 2010). We expect, thus, to find this structure in the 
residuals of the adjustment, which reflects the laser measurement noise.  

Due to the large number of observations recorded by the TLS in a short amount of time, the degree of 
affinity between the reference signal and all other ones recorded with an increasing time interval will 
stay high: the temporal correlation is expected to be long-range dependant. Any spatial effects 
stemming from the reflected surface affect the intensity of the signal received and are modelled by 
the variance factor, following, for example, Wujanz et al. (2017). By means of this modelling, the 
correlation function is said to be “separated” (Gelfand et al. 2010). The intensity factor for objects with 
strong intensity variations could take a similar form to the elevation dependency for GNSS (see 
Kermarrec and Schön 2014, Eq. 10). The analysis of the variance is beyond the scope of this paper, 
which concentrates on the correlation structure of range measurements. 

 

Fig. 3: Motivation of modelling correlations as temporal 

2.2.1. Fractional Gaussian noise (fGn) 

We postulate that the high rate of measurements induces a long dependency between the 
observations. The temporal correlations between the first observations may decay quickly but will stay 
much higher than zero (Koutsoyiannis 2002). Processes with a long-range dependence possess this 

property, which is linked with the slow decay of their autocorrelation LRDC  to zero, so that their sum 
does not converge (Beran 2013). More precisely,  

 ( )LRDC c δτ τ −≈  (9) 

where τ  is the time lag, c  a positive constant and 0 1δ< < . As τ  increases, the dependence 
between the observations stays strong, which implies a fat-tailed autocorrelation function.  
The long-range dependence of the fGn for a stationary process is contained in the Hurst exponent. This 
exponent is related to the self-similarity of the process: the latter appears statistically identical under 
rescaling the time axis. The fGn is fully characterized by the Hurst exponent fGnH  and the variance 

2
fGnHσ , which has the nice property to be bounded; this property is more likely to happen in a real case 

scenario. Its autocorrelation ( )HC τ  of a fGn is given by  

 ( ) ( )2 2 21 1 2 1
2

H H H
HC τ τ τ τ= + − + − . (10) 

The fGn has a power law spectrum, i.e. ( ) 1W f f β∝ , with ,f β  being the frequency and the power 

law of the process, respectively. This model is popular for many kinds of physical processes, particularly 
atmospheric ones (Vyushin and Kushner 2009). The psd appears on a log-log plot as a simple straight 
line.  



Regarding an fGn, we have the relationship 
1

2fGnH β +
=  with 1 1β− < < . A noise with 1

2fGnH =  is 

called WN, whereas 1fGnH =  is FN.  
 
Generation of an fGn 
In this contribution, we generate the fGn noise with the Matlab function called ffG, freely available in 
the Matlab file exchange section (Stoev 2020). It is based on the circulant embedding method for 
persistent noise, resulting in a reproduction of its exact autocovariance. This noise is simulated: ee will 
never get the exact value of the Hurst parameter. Monte Carlo (MC) simulations are unavoidable when 
studying the performance of the parameter estimation for the residuals of the plane fitting. 
 

2.2.2. Matérn model 
 
The fractional Brownian motion (fBm) is a generalisation of a Brownian motion (Lilly et al. 2017). It is 
a non-stationary process with stationary increments and possesses the long-term memory, also called 

persistency or positive correlations when 1
2fGmH > .  

A Matérn process is an extension of the fBm. The power spectrum of a Matérn process is still fractional 
but includes an additional damping parameter α , i.e.  

 ( )
( )

22 1

2 2

matern

matern

W
c

ν

ν

σαω
ω α

−

=
+

 (11) 

where ω  is the frequency. Moreover, 2
maternσ  is the variance of the process, maternc  a normalizing 

constant and ν  the smoothness parameter. ν  is linked with the slope of the psd at high frequencies 

and is defined as half 2
β  (Voss 1991). Through the damping of ( )W ω  at low frequencies, an unlimited 

growth of the process is avoided: this property may be considered as hardly explainable for residuals 
of a plane adjustment, making the Matérn process an alternative to the modelling of the range 
correlation with an fBm. 
 
When the damping factor is close to zero, the Matérn process becomes a fGn (Stein 1999), which 
reduces the number of parameters to estimate. The smoothness is linked with the Hurst parameter by 

the relationship 1
2fGnH ν= − . A prior knowledge of the expected noise is mandatory for a correct 

use of the estimators, i.e. one should always ensure that the process used to estimate the smoothness 
is a fBm, using, for example, the cumulative sum of the original process when this latter is a fGn. 
 

2.2.3. Noise modelling for range measurements 
 

In the following, we adopt the notation rN WN fGn= + , where rN  is the TLS range noise, expressed 

as a combination of two fGn: the WN and a correlated noise for which 1
2fGnH > . In the following 

Sections 2.2.1. and 2.2.2, fGn  can be a pure fGn, a combination of fGn with different Hurst 
parameters (see Paschotta 2008 for the specific case of laser noise) or a damped fBm, i.e. a Matérn 
process. We do not combine the Matérn noise with a fGn for the sake of simplification and due to the 
challenging parameter estimation. 



We define the fraction of WN as 
2

2
fGn

WN
WN

H

R σ
σ

= , where 2
WNσ  is the variance of the WN. We note that 

when 0WNR = , the estimation of the Hurst parameter 
rNH  from rN  corresponds to fGnH  .  

When 0WNR ≠ , two modelling strategies of the range correlation can be proposed: 

• We filter the range residuals from their WN component, using, for example, maximum 
likelihood, as in the Hector software (Bos et al. 2003). However, from the experience of the 
authors with simulated fGn time series, no WN could be detected in more than 50 % of the 
cases, although one was added to the fGn. Similar experiences were made by using the EM 
algorithm (using an autoregressive noise model; see Kargoll et al. 2018). Such untrustworthy 
estimation biases the Hurst exponent estimation accordingly, making a separation fGn/WN 
challenging. 

• We estimate a biased and underestimated Hurst 
rNH  (or, alternatively, a smoothness 

parameter 
rNν  for a Matérn model). Using this strategy, we consider indirectly that 0WNR =

. The amount of WN is, thus, included in 
rNH  without having to estimate any ratio. The price 

to pay with this approximation is a loss of physical meaning for the Hurst parameter, although 

variations of 
rNH give precious information about the dominant noise sources, as shown in 

Section 4. 

In this contribution, we will make use of the latter strategy. We justify our choice by the challenging 
extraction of multiple fGn from a time series, which necessitates previous knowledge about the 
parameters expected. Consequently, we propose a global model and estimate only one Hurst 
parameter. Random walk ( 2β = ) is present at low frequencies and mostly associated with functional 
misspecifications which are not considered in this contribution. We will simulate, measure and 
estimate planes, eliminating the risk of such challenging situations. However, an indication of the 
presence of random walk is given by the strong increase of 

rNH , which can even become higher than 
1 with some estimators, as shown in Section 2.2.5. 
The accurate and physically meaningful estimation of fGnH  only necessitates specific filtering 

procedures: they are beyond the scope of this paper and lead to the next contribution where specific 
methods from time series analysis will be used. We here, thus, focus on a global estimation of the 
noise parameters. 

 
2.2.4. Estimation of the Hurst parameter 

A power law noise can be considered as a Matérn process with α  close to zero, provided that the noise 
is transformed into a fBm: it is, thus, possible to use the same estimator for both noise models 
mentioned previously. We will compare two estimators for the sake of completeness: (i) the Whittle 
likelihood estimator (WhiE), which is specifically designed for the Matérn process, and (ii) the 
generalised Hurst estimator (GHE) used here in the time domain for the estimation of the Hurst 
parameter.  

Debiased WhiE method 
The maximum likelihood estimator is a purely numerical method which is often considered to be the 
best estimator obtainable, provided that the process is consistent with the model. Although the 
estimates are asymptotically unbiased, the estimator is asymptotically efficient and fast to compute. 
It may perform poorly if the assumption is incorrect or for short samples: the use of information criteria 



(Section 2.3.5) is, thus, unavoidable to check the model assumption. We can evaluate the log-likelihood 
for Gaussian data as 
 ( ) ( )logl H = − − T -1

H H H HΣ X Σ X  (12) 

where HX  denotes the column vector of length obsn  and HΣ  is a fully populated VCM, whose 

components are given using the covariance function derived from Eq. (10).   states for the 
determinant of the matrix. Matrix inversions can be avoided using the WhiE, which aims to provide 
faster estimation with only a slight inaccuracy. In that case, the Whittle likelihood in its discretized 
form is given by  

 ( ) ( )( ) ( )
( )

log ,
,W

I
l H f H

f Hω

ω
ω

ω∈Ω

= − +
 
 
 

∑ 



 (13) 

with Ω  as the set of discrete Fourier frequencies, ( ),f Hω the continuous-time process spectral 

density and ( )I ω  the periodogram ( ) 2

,
1

N
ij

H j
j

I X e ωω −

=

∞∑ .  

In this contribution, we use the WhiE as implemented in Matlab by Lilly (2020). The cut-off or the 
smoothness parameter can be fixed to optimise their determination (see Kaufman and Shaby 2013). 
Exemplarily, if the noise of the process corresponds to a power law noise, we can fix 41eα −=  and 

estimate fGnH .  

An alternative to the WhiE is provided by the GHE. This estimator could be shown to be optimal in 
estimating the Hurst exponent in the case of additional low frequencies due to a suboptimal functional 
model (Kermarrec 2020). We propose to introduce this estimator shortly.  

The generalised Hurst estimator  

The GHE was introduced by Barabasi and Vicsek (1991). It is used in medical or financial domains 
(Di Matteo et al. 2003). We make use of the GHE in the time domain, which we define by using the 

first-order moments of the distribution of increments: 1

( ) ( )
( )

( )
H H

H

X t X t
K t

X t
τ+ −

= . τ  is varied 

between 1 and maxτ , which is usually taken to 20. It can be shown that 1H  is linked to 1( )K t  by the 
relationship 

 
( )( )

( )
1

1

log
logfGn

K
HH

τ

τ
=  . (14) 

  
We use the Matlab function genhurst to estimate the Hurst exponent, for which the residuals are to 
be forced to be fBm by computing their cumulative sum. 
From now on, we will call ˆ

fGnH  the estimated fGnH , using either the WhiE or GHE. Similarly, we define 

ˆ
rNH , the estimated 

rNH  as well as ˆ
resH  the global Hurst parameter estimated from the residuals. 

 
2.2.5. Choice of the noise model using information criteria 

The noise model of the range measurements in a simulated framework is fixed in advance. The 
situation is slightly more complicated with real data. We mentioned for the specific case of TLS 
observations that the noise could be an fGn or a damped fBm, eventually overlapped with WN: these 
assumptions need to be validated prior to general conclusions about the correlation structure.  



Although improvable in the case of correlations, we perform the validation of the noise model using 
both the Akaike information criterion (AIC) and Bayesian information criterion (BIC), following He et 
al. (2019). Such criteria provide a first indication about the best noise structure. We chose to test two 
competitive noise models: the power law/WN model and the Matérn model.  

2.3. Summary of the methodology 

The following five steps are performed to extract the correlation structure of the TLS range residuals: 

• Using simulated or real observations from a plane 
• Estimation of the parameters of a plane using the GHM framework 
• Computation of the residuals in Cartesian co-ordinates 
• Backwards transformation to obtain the range residuals 
• Estimation of the Hurst or smoothness parameter with WhiE and/or GHE using a global model 

In the case of simulated observations, a validation of the Hurst parameter estimation can be added by 
computing the root mean squared error regarding the true value of the parameter; the validation for 
real data is performed using the information criterion approaches. The methodology applied is 
summarised in Fig 4. 

 

Fig 4: Summary of the methodology proposed to estimate the correlation parameter from the range 
residuals of a non-linear GHM plane parameter estimation. 

 

3. Calculations: simulations 

In this section, we apply the methodology proposed. We aim: 

• to determine the extent to which a trustworthy estimation of the correlation parameter can 
be performed, depending on the scanning configuration or scanner settings, and  

• to translate this knowledge to real data analysis in Section 4 so that a deeper understanding 
of the results is possible.  

We recall that the results of the plane fitting, as defined in Eq. (1), are not the topic of this contribution. 
We focus on the determination of the correlation structure of the raw observations from the residuals 
of the fitting, i.e. the Hurst parameter or the smoothness.  

We will describe the simulated observations in the first subsection. A second part is devoted to the 
ratio used to interpret the results, which are presented in the third part. We will provide some 
indications about which configuration should be chosen for optimal results from real data analysis. 

3.1. Simulation of the observations 

We simulate TLS raw observations from a plane of size 1 x 1 m. We further consider that the simulated 
plane is aligned centrically at the height of the tilting axis of the TLS.  This ensures a so-called reference 
configuration. The arrangement of the plane can be changed freely to simulate different set-ups. In 



such cases, the points may no longer lie on a rectangular grid, similar to what would happen in a real 
case. As in Eq. (1), we call d  the distance between the origin of the TLS and the centre of the panel. 

We check that the number of observations obsn  is at least 400 for each point cloud simulated to ensure 
a trustworthy estimation of the Hurst parameter. 

The scanning rate, t∆ , is defined as the temporal spacing between two consecutively emitted signals. 
It is linked with the maximum number of pixel/360° regarding the scanning time. 

The polar co-ordinates simulated are noised component wise. The standard deviations for range and 
angle are chosen to correspond to the TLS used in Section 4. 

• We add a Gaussian noise with a standard deviation of 7e-5 rad – generated with the 
Matlab function randn – to the vertical and horizontal angles, respectively.  

• We add an fGn or a combination of fGn and WN to the range, as mentioned in Section 2. 

We choose a standard deviation for rN  equal to 0.25e-3 m: according to the 
manufacturer’s specifications, this value is specified as a 1 sigma noise corresponding to 
a distance to the object of d = 10 m, a white percentage of the object of 37 % and a data 
rate of 136.719 pixel/s by the TLS. These parameters are suitable for a lot of applications 
in TLS and close to the choice of the practical measurements in Section 4. We note that 
increasing the standard deviation (i.e. increasing the distance or changing the colour to 
black) will have a favourable effect on the Hurst estimation: the higher the standard 
deviation of the range noise, the less WN coming from the angles and functional 
misspecification will be present in the range residuals.  

We put the stress on the fact that the simulations should validate the extent to which the noise 
structure of the residuals of the adjustment corresponds to the one of the raw observations in a global 
model: we do not aim to estimate the exact value of fGnH .  

3.2. Settings 

Range noise vector 

We generated noise vectors with three different Hurst exponents: 0.7, 0.8 and 0.9, the latter 
corresponding nearly to FN. A WN with [0,0.2,0.5]WNR =  is added to the fGn: 

• 0WNR =  corresponds only to an fGn. This case allows us to identify the extent to which WN 
can be found in the residuals without correspondence to any WN in the observations. This may 
occur, for example, for a suboptimal scanning configuration and is detected by an 
underestimation of the ˆ

rNH  regarding 
rNH .  

• We recall that if 0WNR ≠ , 
rN fGnH H< . In this contribution, we only estimate 

rNH . 

For the sake of simplicity and without a lack of generality due to the self-similarity property of the fGn, 

we generate one noise vector of size obsn  for the all the observations simulated. We use a MC 
approach because the Hurst parameter may not correspond exactly to the true value and simulate 
2000 different noise vectors for each scenario.  
 



Scanning configuration 

The TLS point clouds corresponding to different configurations are generated to analyse the impact of 
the scanning configuration on the estimation of the correlation parameter. The orientation of the 
plane is changed by acting on its elevation El  and azimuth Az . Because of the symmetry of the 
problem, we only vary the azimuth in steps of 5° between 0° (the so-called “reference configuration”) 
and 30°.  

Data rate 

The data rate is varied to mimic a real data point cloud. Two values are considered: 
5 61.5 ,1.8t e e− − ∆ =   , which corresponds approximately to a setting “premium, high” or “preview, 

normal” for the first value, and “superhigh, normal” or “premium, extremely high” for the second one 
(see Appendix 1 for more details on the settings). The first value is chosen as the “worthiest” case.  

Distance 

The distance from the TLS to the plane affects the number of points per scanning line, i.e. the temporal 
distance between the emitted and the received signal. Increasing the distance for a given scanning rate 
leads to a more challenging LS estimation, which may affect the residuals by introducing additional 
WN. However, in a real case, this is linked with an increase of the standard deviation of the range, so 
that this effect should be damped. We consider two distances: 10 and 20 m.  

Table 1 summarised the settings chosen for the simulations. 

Table 1: Simulation settings 

El [°] Az [°] 
fGnH  WNR  t∆  [s] d [m] 

[0] [0 – 50°] 0.7, 0.8, 0.9 0, 0.2, 0.5 5 6 11.5 ,1.8e e s− − −  10, 20  

 

3.3. Evaluation of the results 

We estimate the parameters for each simulated plane using a non-linear GHM, following Section 2.1. 
The range residuals of the approximation are transformed into polar co-ordinates and the Hurst 
parameter is estimated using a WhiE or a GHE. The AIC and BIC are computed to ensure that the power 
law assumption is valid. We fix the range parameter α  to 0.001 for the WhiE and following Stein (1999) 
in order to force the estimator to estimate the slope of the psd at a high frequency. We compare the 

results with the one given with the GHE with max 20τ = . The Hurst parameter of the simulated noise 

may be a combination of WN and fGn.  

We make use of MC simulations to assess the trustworthiness with which the global Hurst parameter 

is estimated. We compute ˆ
resH  from the residuals for each run and define the following ratio, which 

we express in %: 
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We compute this ratio from the residuals of a plane estimation using a GHM without prior stochastic 
information. This approximation is intentional: integrating VCM of the raw polar observations in a LS 
adjustment necessitates the use of the propagation law for the transformation in Cartesian co-



ordinates. These mathematical correlations lead to a fully populated VCM, which increase the 
computational effort significantly: this is not our aim here as the estimation should be performable by 
a TLS practitioner. 

This ratio allows one to draw conclusions about the trustworthiness of the estimator without being 
affected by the slight discrepancy between the Hurst exponent simulated regarding the true value. We 
compute 

rNR for each MC run and, finally, its mean over all runs called ,rN MCR .  

We consider a ratio below 2 % as an acceptable estimation of the Hurst parameter. For 0.8
rNH = , 

this corresponds to ˆ 0.81
rNH ≈ .  

3.4. Results 

The results are divided into two parts: the influence of the scanning configuration by means of the tilt 
angle, followed by the influence of the scanning settings and the distance. We focus on the 
performance of both estimators. 

3.4.1. Varying the tilt angle of the plane 

 

Fig. 5:  ,rN MCR  computed with the GHE and the WhiE by varying the azimuth from 0 to 30°. The distance 

simulated is 10 m and the scanning rate 6 11.8  e s− − . The noise parameters were 0.7fGnH =  and 

0WNR = . 

We see from Figure 5 that the optimal configuration is – as intuitively expected – [ ] [ ], 0,0El Az = °. 

In that case, both estimators perform ideally and ,rN MCR is close to zero. When the azimuth angle 

increases, the WhiE is less trustworthy than the GHE, for which ,rN MCR  does not exceed -1 %, even for 

[ ] [ ], 0,15El Az = °, which should be compared to the 2 % obtained with WhiE for the same 

configuration. Interestingly, increasing the azimuth further from 20° is not synonymous with an 
increase of ,rN MCR . We can conclude that the scanning configuration does not greatly impact the Hurst 

parameter estimation; the maximum difference reaches only 3 %. Other settings were tested without 
changing this conclusion. They are not presented for the sake of brevity. 

 
3.4.2. Varying the distance and the scanning rate 

The optimal setting [ ] [ ], 0,0El Az = ° in a real scenario is often linked with an optimal angle of 

incidence of the TLS laser beam to the object. Since we want to be able to interpret the results of a 
real experiment in the light of the simulations, we will only consider cases where [ ] [ ], 0,5El Az = °. 



Following Figure 5, this slight discrepancy regarding the optimal configuration does not lead to a 
significant increase of ,rN MCR . 

Table 2: ,rN MCR  for the scanning configuration [ ] [ ], 0,5El Az = ° by varying ,fGn WNH R   , as 

described in Table 1. The results are given for both WhiE and GHE. The simulated distances TLS-
plane are 10 and 20m. A total of 2000 MC simulations were performed to compute the mean 
values of the ratio.  

 
fGnH /WN 0 0.2 0.5 

d=10 / 20 m     
6 11.8t e s− −∆ =      

WhiE 0.6 -1.40/-1.71 -2.46/2.82 1.73/-2.77 
GHE  -2.11/-1.95 -2.88/-0.95 7.57/-2.26 
WhiE 0.7 0.41/-0.01 0.99/-0.66 -0.52/-2.45 
GHE  -0.00/-1.81 0.29/1.72 1.39/-0.29 
WhiE 0.8 -3.04/-0.06 0.31/-1.77 -6.17/-5.10 
GHE  2.52/0.95 1.22/-0.29 -1.95/-1.07 

53.5t e−∆ =  Identical 
results 

   

 

The ratios ,rN MCR  obtained by varying the scanning rate and the distance are presented in Table 2. The 

adequation of the 2000 MC values with the Gaussian distribution was checked by plotting the 
corresponding histogram and performing a one-sample Kolmogorov-Smirnov test.  

We, firstly, note that the increase of the scanning rate only changed the results in a sub-decimal range: 
these differences can be considered insignificant; they are not presented for the sake of brevity. We, 
therefore, do not expect the scanning rate chosen for a real case to affect the estimation of the Hurst 
parameter greatly. Please note that this result does not mean that the correlation structure will be 
independent of the scanning setting, as shown in Section 4. 

The two estimators do not perform similarly when the true Hurst exponent and the amount of WN is 
varied. The GHE has a better performance for estimating the global Hurst parameter than the WhiE as 

fGnH  increases, provided that 0.7WNR < . For 0WNR = , we note that a Hurst exponent of 0.7 is 

favourable to the GHE, as , 0
rN MCR ≈ . Globally, the GHE is trustworthy: ,rN MCR  does not exceed 3 %, 

except for 0.5WNR =  and 0.6fGnH = . In those cases, the GHE performs poorly, although increasing 

the distance to 20 m decreased the ,rN MCR  from 7 to 2 %. This effect is linked with the fact that the 

GHE acts on the time domain: when the Hurst exponent is close to 0.5, the GHE is not able to 
distinguish WN and fGn successfully. In that particular case, the WhiE – a frequency-based estimator – 
has an opposite performance: for  0.5WNR = , ,rN MCR  increases with the Hurst exponent from 1.7 to 

6 %. Increasing the distance decreases the ,rN MCR  to 5 % for the less optimal configuration 0.8fGnH =  

and 0.5WNR = . Consequently, the WhiE has a better performance than the GHE for low 0.6fGnH =  

and 0.5WNR = . As the Hurst parameter increases, ,rN MCR  stays under 2 % for both estimator and 

0.2WNR ≤ , although we note a slightly better performance with the GHE for 0.8fGnH = .  

We notice further that increasing the distance does not affect the global Hurst parameter estimation 
unfavourably, provided that enough MC samples are generated as the standard deviation of the ratio 



increased from 3 % to approximately 6 % with the distance. This necessary increase of samples may, 
however, not be given in a real case. 

3.5. Summary of the simulations 

We summarised the results of the simulations as follows: 

• The optimal scanning configuration corresponds to [ ] [ ], 0,0 5El Az = − °, independent of the 

estimator chosen.  
• Neither the distance nor the scanning rate affects the trustworthiness of the global Hurst 

parameter determination. This result depends, however, on the number of samples 
generated: it may not be transferable in a real case analysis. 

• The GHE has a better performance than the WhiE for a low level of WN contamination and a 
true 0.7fGnH ≥ . The contrary holds true for a high level of WN and 0.7fGnH ≤ , where the 

WhiE should be preferred.  

Globally, the two estimators perform similarly and the ratio of difference stays below 2 %, except for 
the challenging cases mentioned previously. We recall that 2 % implies a difference of less than 0.015 
for a Hurst parameter of 0.7. Considering that one never knows the true correlation parameter in a 
real case, the estimation can be considered trustworthy. The difference is even below 1 % for some 
Hurst parameters. It is, thus, possible to extract the global Hurst parameter from the residuals of an LS 
adjustment. 

 
4. Results of real case analysis 

Having determined the optimal settings, we are able to interpret the results of a real data analysis with 
higher confidence. After a short description of the indoor and outdoor experiments, we extract the 
correlation parameter for the different settings using the methodology described previously.  

4.1. Description of the experiments 

A planar ALUCORE® panel with the dimension of 1 x 1m was used in the measurements performed. 
The colour of the panel is 43 % white. The planarity of the panel was determined to be ≤ 0.5 mm. The 
measurements were carried out by a laser tracker (Leica AT960) and a corner cube reflector. The 
accuracy is specified with Ux,y,z = +/-15 µm + 6 µm/m as a maximum permissible error (Hexagon 2015). 
The 3D object capturing was performed by the Z+F IMAGER 5016 (Zoller & Fröhlich GmbH, Wangen im 
Allgäu, Germany). Outliers were eliminated using the methodology presented in Appendix 2. 

4.1.1. Indoor experiment 

The measurements took place at the measuring laboratory of the Geodetic Institute in Hannover.  

The panel was observed from a total of five standpoints with distances between 2 and 50 m. We 
ensured that the incidence angles for the reference configuration were nearly parallel to the face 
normal of a panel. It should be noted that over-radiation occurs when using ALUCORE® panels and the 
Z+F IMAGER 5016 at an optimal angle of incidence. A visualisation of a point cloud clearly shows this 
unwanted effect in Figure 6. These artefacts in the distance measurement lead to outliers and strongly 
affect the adjustment of the plane: similar to a snowball effect, the residuals – from which we wish to 
determine the correlation parameters – show suspicious variance increases that are likely to mislead 
the WhiE or GHE. We turned the plane slightly from 5° in azimuth to avoid that drawback. Simulations 
have highlighted that this setting did not impact the estimation of the Hurst parameter more than 2 % 
at a distance of 10 m. Thus, no additional sensors were used to control the alignment. 



 
 
Fig 6: Left: example of strong reflection occurring in the middle of the panel (57 %) at a distance of 20 
m leading to a variance increase in the residuals. Right: outliers due to edge effects have to be 
eliminated prior to the correlation analysis (Jüngerink 2019) 
 
The measurements were made indoor in a laboratory. We do not expect a turbulent variation of 
refractive index due, for example, to temperature fluctuations that affects the results. The data 
acquisition was performed under fixed settings with the resolution setting “superhigh” and “high” and 
the quality setting “high”.  

The ratio of the standard deviation of the angle to the range is below 100, according to the 
manufacturer’s datasheet, so that the WN of the range residuals cannot be assessed to the angle noise. 
The adjustments were computed without stochastic information, i.e. the VCM of the raw observations 
was the identity matrix, following the simulations.  

4.1.2. Outdoor data set 

 
Fig 7: Outdoor experiment, Herrenhäuser Allee, Hannover, Germany. The panel is 43 % white. The 
ranges were varied between 75 and 200 m (Jüngerink 2019). 
 
 
The measurements from the panel (Fig. 7, left) were carried out on 16 May 2019 at EDM calibration 
base in Hannover, Germany. The laser scanner was set up at the distances of 75, 125 and 200 m 
towards the ALUCORE® panel (see Fig. 7). Although shorter distances were measured during this 
experiment (20 and 50 m), they are not considered in this contribution for the sake of conciseness: 
such distances have already been investigated with indoor measurements, leading to similar results. 
A Leica TS30 was used to set up the reference constellation of the panel regarding the TLS. The distance 
of both sides of the panel was measured here to correct the arrangement of the panel. The weather 
was dry but cloudy. The temperature rose steadily from 16.5 to 21 °C within the five-hour 
measurement period with smaller fluctuations in the range of 0.5 °C. The slow rise in temperature 
should not have any negative effects on the distance measurement, as the temperature has been 
updated for each standpoint of the laser scanner. The temperature-related correction was performed 
by the laser scanner. This does not mean that turbulent variations of the air’s refractive index will not 



affect the correlation structure (Wheelon 2001), as an atmospheric noise is more likely to be present 
as the distance between the scanner and the object increases. 
  
Only the part of the panel selected was scanned to reduce the measurement duration and the amount 
of data. The laser scanning was performed with the resolutions middle, high und superhigh, and the 
quality was chosen as normal. The resolution middle is not considered in this contribution as not 
enough points were available for a trustworthy Hurst estimation. 

The correct Hurst parameter is unknown in real cases and without further physical investigations can 
only be estimated. We apply our methodology and adjust the point cloud with a non-linear Gauss-
Helmert model. In a second step, we estimate the correlation parameters and choose the correlation 
model by means of information criteria. We adopt and compare two approaches, GHE and WhiE, 
because of the property of these estimators; any difference provides additional information about the 
correlation structure or dominant noise sources. We do not investigate the fraction of WN explicitly as 
we search for a global model. We take for granted that the physically related Hurst parameter 
(exemplarily FN or atmospheric noise or a combination of both) may be slightly underestimated in the 
presence of WN. Physical noise investigations necessitate an adequate filtering and are left to further 
dedicated contributions. 

We chose to estimate the Hurst parameter “batch-wise”, i.e. we cut the residuals into batches of 1000 
observations and compute the mean of the Hurst parameter over all batches. Following Sykulski et al. 
(2019), we, thus, ensure a trustworthy estimation of the mean global correlation parameter.  

4.2. Results 

The results for the indoor and outdoor measurements are presented in Table 3 and 4, respectively. We 
highlight with cases when the Matérn model was the most optimal model from the AIC/BIC in red, 
otherwise a power law model, i.e. a fGn, was considered. We adopted the 3σ threshold for the outlier 
elimination.  

4.2.1. Indoor experiment 

Table 3 gives the mean values for all batches of 1000 observations over the whole residual vector. We 
decreased the batch size to 500 observations for the setting “high” from 20 m to ensure that at least 
three batches could be made: the estimation of the parameter may be slightly less reliable for these 
cases (see Section 3). The same approach was used for indoor and outdoor measurements.  

Table 3: Results of the indoor experiment. The setting is varied from ultrahigh to high for distances 
from 2 to 50 m. The WhiE and GHE are compared. The values in red correspond to a Matérn model 
being considered as optimal. 

2m Ultrahigh Superhigh high 
WhiE 0.83 (0.04) 0.81 (0.04) 0.72 (0.02) 
GHE 0.68 (0.05) 0.78 (0.08) 0.74 (0.02) 
5m    
WhiE 0.92 (0.03) 

Cut-off 0.3 
0.87 (0.16) 
Cut-off 0.5 

0.59 (0.04) 

GHE 0.63 (0.11) 0.63 (0.08) 0.56 (0.04) 
10m    
  

0.92 (0.02) 
 
0.85 (0.15) 

 
0.66 (0.06) 

 0.72 (0.02) 0.57 (0.03) 0.58 (0.03) 
20m  500 obs 500 obs 



 0.80 (0.03) 0.71 (0.03) 0.61 (0.02) 
 0.71 (0.04) 0.68 (0.03) 0.61 (0.02) 
50m  500 obs 300 obs 
 0.78 (0.1) 0.62 (0.06) 0.60 (0.04) 
 0.62 (0.04) 0.58 (0.08) 0.55 (0.05) 

 

  

Fig. 8: psd of the residuals, indoor experiment. Left: by varying the distance between the TLS and the 
panel for a distance from 2 m (blue line) to 50 m (black line) for the setting ultrahigh. Right: for the 
setting high. The x-axis represents the log10 for the normalized frequency. The psd is obtained from 
the Matlab function pwelch and is given in dB/rad/samples. 

Varying the distance for a given setting 

The distance between the TLS and the panels for the indoor experiment was varied from 2, 5, 10 and 
20 up to 50 m. The settings ultrahigh and high lead to similar behaviours of the Hurst parameter versus 
distance: the parameter slightly increases up to the range of 10 m and decreases by remaining at a 
high level over 0.6 for the range 50 m. At that range, the standard deviation of the Hurst parameter 
reaches nearly 0.08 due to the low number of observations per batch combined with the decrease of 
the number of batches.   

Settings ultrahigh and superhigh 

The noise at short range is a combination of WN and FN, which can be seen in Figure 8 (left, blue line). 
The FN comes typically from the laser (Van der Ziel 1970) and is particularly visible in the low frequency 
domain of the spectrum. The discrepancy between the estimation from WhiE and GHE (0.83 versus 
0.68, respectively) comes from that particularity since the GHE focuses on the estimation in the middle 
of the spectrum, where WN predominates.  

The noise model switches clearly at distance 5 and 10 m from a fGn, i.e. a combination of power law 
noises, to a Matérn noise. Both the AIC and BIC confirm what the psd highlights (magenta line): a 
damping of the power law noise at low frequencies. In such cases, the GHE is not adequate as the 
damping at low frequency affects the slope and, thus, decreases the Hurst parameter estimated. In 
the point of view of the authors, this model change is due to the increase of observations, leading to a 
flattening of the spectrum: a pressure to grow combined with some drag or resistance on that growth. 
This effect is known in GNSS co-ordinates time series analysis (see He et al. 2019). Without the high 
increase of FN at low frequencies, the psd at the range of 2 m would also have flattened similarly. The 
Hurst parameter found for the ranges 5 and 10 m is a further indication of the presence of FN combined 
with WN and potentially an increasing atmospheric noise.  

The psd at a distance of 20 m has a linear slope: the noise is an fGn with a Hurst parameter of 
approximately 0.7 – 0.75, the value of the superhigh setting having been computed for a lower number 



of batches than for ultrahigh. The decrease of the FN can be interpreted as a simultaneous increase of 
the atmospheric noise, which is expected to have a Hurst parameter of approximately 0.8 (Wheelon 
2001, Ch. 6): the slightly smaller values come from the WN component, which biased the Hurst 
parameter from the atmospheric noise towards 0.5. At the distance of 50 m, we still clearly identify a 
similar slope between an angular frequency of 0.3 and 1.7 rad/samples to lower distances. However, 
a decrease of the power of the low frequency component decreases the Hurst parameter artificially, 
particularly with the GHE: a value close to 0.6 is obtained for the ultrahigh setting compared to 0.65 
and 0.75 with the WhiE. This lower power from the simulations, shown in Figure 8 (black line), could 
come from the challenging approximation due to a lower data quality.   

Setting high 

No Matérn model can be identified as optimal for the setting high. This is a strong confirmation that 
this model is best fitted to the residuals as the temporal distance between emitted and received signal 
is short. We identify a combination of WN and FN for the distance of 2 m (in Fig. 8, right), leading to a 
Hurst parameter of 0.72.  

Summary 

More generally, the amount of WN is higher for the setting high than for ultrahigh and superhigh: this 
effect can be linked to the data rate, i.e. the correlation between the measurements is smaller than 
for higher number of observations. If the WN leads to a flattening of the spectrum at high frequencies, 
at low frequencies, we clearly identify a power law noise with a slope close to the one found for the 
other setting. As this slope is becoming more pronounced as the distance increases (green and red 
line, Fig 8 right), we interpret it as an atmospheric noise: the power of the latter increases as the 
distance increases. However, one should not underestimate that the determination of the Hurst 
parameter is made challenging due to the additional sinus-like pattern of the psd, which needs further 
investigation which is beyond the scope of this present paper.  

Varying the data rate for a given distance 

If we consider the results of Table 3 for a given distance (one line), by varying the resolution from 
ultrahigh to high, we observe a decrease of the correlation parameter between 0.2 for the 20 m case 
and 0.1 for the 2 m case for an estimation with the WhiE. These variations are less pronounced with 
GHE and stay within a range of 0.1, except for the 10 m case. We interpret this effect as coming from 
the amount of WN, which leads to an underestimation of the slope, following the results of 
simulations. This holds particularly true in the presence of higher low frequencies because the GHE is 
less sensible to that part of the spectrum than the WhiE. There is, thus, a decrease of the correlation 
with the decrease of the scanning rate for a given quality (here high). This effect is expected when 
dealing with temporal correlations. However, it does not mean that the observations become fully 
uncorrelated: long-range correlations corresponding to an fGn with a Hurst parameter of 0.6 are still 
detected for the setting “high” at a distance of 50 m, which is far from negligible. This leads to a VCM 
that stays fully populated, and, therefore, its inverse impacts the test statistics for detection 
deformation and their probability distribution (Kermarrec et al. 2020) 

4.2.2.  Outdoor experiment 

The results for the outdoor experiment are presented in Table 4. 

Table 4: Results of the outdoor experiment. The resolution is varied from superhigh to high for 
distances from 75 to 200 m. The WhiE and GHE are compared.  



75m Superhigh 400 
obs 

High  
300 obs  
1 batch only 

 0.68 (0.007) 0.62 
 0.66 (0.02) 0.63 
125m   

400 obs 
125 obs  
1 batch only 

 0.72  0.72 
 0.71  0.66 
200m 300 obs 100 obs  

1 batch only 
 0.79  0.68 
 0.73  0.63 

 

 

Fig. 9: psd of the residuals, outdoor experiment. The distance is varied from 75 m (green line) to 200 
m (red line) for the setting superhigh. The x-axis represents the log10 for the normalized frequency. 
The psd is obtained from the Matlab function pwelch and is given in dB/rad/samples. 

The outdoor observations confirmed the fact that the atmospheric noise predominates with increasing 
distance: although the time between emitted and receiver signal increases with the distance, the Hurst 
parameter for the resolution high remains constant or even increases, reaching 0.68 with the WhiE for 
the range of 200 m. It remains similar for all three distances, independent of the setting used. This 
finding is coherent with the constant slopes found in the psd (see Fig. 9). The same behaviour is 
observed for the resolution superhigh. We justify this finding by the correlations due to turbulent 
variations of the refractivity index, which may have been strong due to the atmospheric conditions 
(dry). These correlations are more pronounced regarding the other noise (FN, WN) as the distance 
increases. Clearly, more investigations are needed to validate this phenomenon, combined with a 
strategy to extract that noise from the WN and FN of the laser. One should, furthermore, keep in mind 
that the estimation is made challenging due to the presence of outliers and the small number of 
observations per batch. Thus, the importance of using an unbiased estimator, such as the WhiE, for 
small samples is confirmed.  

The high correspondence between the values obtained with GHE and WhiE is a strong indication that 
the noise corresponds to an fGn and that no additional WN at high frequencies or higher order power 
law noise at low frequencies are present. The sinus pattern visible in the psd (Fig. 9) does not affect 
the determination of the Hurst parameter with the WhiE in the frequency domain: the results obtained 
with GHE, which operates in the time domain, are similar, which should be expected from the 
simulations.  

4.3. Summary of the real experiments 



The following conclusions can be drawn from the real data analysis both indoor and outdoor: 

• The combination of two estimators for the Hurst parameter gives a strong indication about the 
dominant noise sources. 

• The noise is a combination of WN and FN at short distance. 
• We note an increase of WN with a decrease of the data rate. 
• The Matérn model is more adequate than the fGn as time between the emitted and received 

signal decreases, i.e. at short distance and for a high data rate. In such cases, the slope of the 
psd at high frequency highlights the presence of a strong FN. 

• We could identify an increase of the atmospheric noise with the distance, particularly visible 
in the outdoor experiment. This noise balances the increase of WN for the resolution high and 
additional noise due to the potential functional misspecification coming from a lower data 
quality.  

Based on these conclusions, we propose either  

(i) to estimate the global Hurst parameter from the residuals of an approximation for an 
accurate correlation structure (Matérn model or fGn) or  

(ii) to fix the Hurst parameter following the previous results to a mean value of 0.7. Such a 
simplification does not account for slight variations occurring with the distance or the 
atmospheric condition and should remain a first approximation. The variance model can 
be taken from the intensity model of Wujanz et al. (2017) or from the manufacturer’s 
datasheet. 

 
5. Conclusions 

This study proposes and validates a strategy to estimate the correlation parameter of the TLS distance 
measurement. Consequently, we used a parametric modelling of the point clouds and analysed the 
residuals of the LS approximation. We also chose to model the correlation structure of the range as an 
fGn: this noise has the properties of being 

• physically plausible due to the power law dependency of its psd, 
• simple, as only one parameter, called the Hurst exponent, must be estimated from the 

residuals, and 
• linked, to some extent, to the Matérn process, as a damped version of an fBm at low 

frequencies. 

We proposed two estimators for the Hurst exponent in this contribution: one acting in the time domain 
and the other called the debiased WhiE, recently developed and known to be trustworthy for small 
samples. Although the latter was developed for the parameter of the Matérn model, we showed that 
it can be used to estimate the parameters of the fGn, provided that a small cut-off frequency is chosen.  

In a simulated framework, we generated TLS point clouds from a plane of size 1 x 1 m, (i) scanned at a 
given distance (ii) with different data rates, and (iii) under different scanning configurations. We noised 
the range observations by adding an fGn generated with a known Hurst parameter and additionally 
combined with WN. We estimated the parameters of the plane from the simulated point clouds with 
a non-linear LS approximation known as the Gauss-Helmert model. Rather than concentrating on the 
parameters of the plane, we focused on the correct estimation of the Hurst exponent from the 
residuals of the fitting. For the sake of simplicity of our proposal and its wider use in the community, 
we modelled the noise as global, i.e. we did not separate the WN from the correlated noise specifically. 
The simulations highlighted that, depending on the level of WN and the distance from the TLS to the 
plane, the GHE or WhiE have a different performance. This finding was particularly true for suboptimal 



scanning configurations and allowed us to define optimal configurations and settings: the difference 
between a true and estimated Hurst exponent was beyond 2 %. The difference in the behaviour of the 
two estimators gave some indication concerning the dominant noise source (WN of fGn). 

The valuable conclusions of the simulations were used to analyse results obtained with real data from 
indoor and outdoor experiments, recorded with different resolution from high to ultrahigh. We 
estimated the noise parameters – modelled as a fGn or Matérn model – and analysed the psd of the 
residuals of the plane approximation. Combining these results, we showed that the correlated noise 
at very short distances can be described as a combination of FN and WN. As the distance increases, 
the noise structure evolved from a combination of two noises to a Matérn model with a Hurst 
parameter close to the FN for the resolutions ultrahigh and high. We interpreted this finding by the 
high number of observations or as a transition regime. As the distance was further increased to 20 m, 
the noise became an fGn once more, with a lower Hurst exponent than at a short range. This 
highlighted the shift in the predominant noise, driven by the atmospheric correlation as the distance 
increases. The outdoor experiment confirmed this result, although the estimation of the Hurst 
parameter was made challenging because of the distance and the data quality. Using the resolution 
high, a high level of long-range dependency could be found. This finding goes, to some extent, against 
the sometimes assumed lack of correlations for lower data rate and high distance object TLS.  

Our results pave the way for the determination of a correlation model for TLS range observations based 
on the simple fGn without having to estimate the corresponding parameters empirically. In this 
contribution, we proposed a global model for estimating the correlation parameter: we did not 
estimate the variance of the WN or fGn separately. The accurate and physically based modelling of the 
atmospheric correlations and their quantification regarding other noise sources, such as FN or WN, 
remain the topic of a specific contribution. Although tested for the specific case of a Z+F IMAGER 
2016F, our method is easily transferable to all kinds of laser scanners, including time of flight laser. It 
is, moreover, general enough to be applied for the study of the correlation structure of TLS angles. 

 

Appendix 1: Settings 

In this appendix, we shortly summarise the settings of a Z+F IMAGER 2016F, taken from the 
manufacturer’s datasheet. 

Table 4: resolution settings for a Z+F IMAGER 2016F. The green cells correspond to typical settings for 
a 360° scan 

 

 
 Quality  

      

 Time between measurements (s) 
Resolution Pixel/360° less normal high premium 

preview 1250 - 1.5E-05 - - 

low 2500 7.3E-06 1.5E-05 2.9E-05 - 

middle 5000 3.7E-06 7.3E-06 1.5E-05 2.9E-05 

high 10000 1.8E-06 3.7E-06 7.3E-06 1.5E-05 

super high 20000 9.1E-07 1.8E-06 3.7E-06 7.3E-06 

ultra-high 40000 - 9.1E-07 1.8E-06 3.7E-06 



extremely high 80000 - 9.1E-07 9.1E-07 1.8E-06 

 
 

    

max. number of 
pixels per profile 200000 

    
    

    
 

Appendix 2: Treatment of outliers 

In this contribution, outliers were eliminated using the concept of the least median of squared (LMS) 
residuals, introduced by Rousseeuw (1984). In this appendix, we propose to briefly explain the 
corresponding procedure. The advantage of the LMS is the high breakdown point of up to 50 %, i.e., 
the largest possible value. The objective function of the LMS reads 

 2minmedian .  ii
v  (16) 

To derive the robust solution, m  u -tuples or subsamples are drawn from the set of all n  observations. 
Each subsample contains the minimal number of observations required u  to get an exact solution. In 
the case of the plane, 3u =  is the number of points required. Referring to these m  subsample 
solutions, the residuals of the whole set of observations are derived. The solution, which fulfils the 
LMS objective function in Eq. (16), is the robust solution of the LMS. Outliers are identified by

MADˆiv kσ> , where k  is a sensibly selected threshold value and 2
MAD 1.483 ˆ median ii

vσ =  is a 

robust estimation of 0σ  (Rousseeuw 1984), the a priori standard deviation of the observations. 

Since the results are derived by combinatorial analysis, the disadvantage of the LMS is the 
computational effort if the sample size n  becomes large regarding u . The total number of subsamples 

is (e.g. Lösler 2011) 
( )max

! .
! !

nm
u n u

=
−

  

To reduce the computational effort, the minimal number of subsamples required can be obtained by 

 
( )
( )( )min

ln 1
,

ln 1 1 u

P
m

ε

−
=

− −
 (17) 

where P  is the probability of drawing at least one outlier-free subsample, ε  is the fraction of 
expected outliers and m  is the number of subsamples drawn (Rousseeuw and Leroy 1987, p. 198).  
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