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Abstract

Psychoacoustic studies show that the level of perceived annoyance with respect to noise
emitted by aircrafts engine positively depends on the sound pressure level of the tonal
components in the frequency spectrum. Acoustic modes generated by the rotation
of the rotor and the periodic interaction of the stationary and rotating blades in the
turbomachinery parts of the aircraft engine are the main contributors to the emitted
tonal noise. In order to develop mitigation measures for these modal sound �elds,
experimental investigations are carried out on turbomachinery test rigs. For high quality
research data, similarity between measurements has to be accomplished, as even minor
changes to reference conditions might impair the signi�cance of measurements. For time-
harmonic sound propagation in an inviscid and ideal �ow, the Helmholtz number and
the Mach number establish similarity conditions.

This work addresses the establishment of similarity of modal sound propagation on
test rigs where equality of the Mach number and / or the Helmholtz number cannot be
met reliably between measurements. The investigation focuses on individual acoustic
modes propagating in a circular duct carrying an axial uniform �ow.
Experimental investigations are carried out on a low-pressure air turbine test rig.

The test rig is equipped with a so-called sound generator for the controlled excitation
of acoustic modes of arbitrary order and at speci�c frequencies. Similarity of the
propagation of excited modes is evaluated by analyzing the modal response function.
Based on an analytical analysis of the collected measurement data and a post-hoc scaling
approach, it is shown that the axial angle of the group velocity vector is a suitable
parameter to establish partial similarity with respect to modal sound propagation in
cases where similarity of the Helmholtz number and / or the Mach number cannot be
achieved. A similarity relation between the three parameters is derived. A sensitivity
analysis shows that the impact of variations in the Helmholtz number and the Mach
number can di�er considerably depending on the operating point. For the two operating
points investigated here, it is found accordingly that the variations in the modal response
strongly correlate with the axial angle of the group velocity vector and the Helmholtz
number, but only moderately or even negligible with the Mach number.
A reduced frequency is introduced which, similar to the reduced rotational speed and

reduced mass �ow rate, can be used as an acoustic operating parameter to establish
similarity of modal sound propagation. For test rigs equipped with a sound generator,
partial similarity can thus be established between measurements even though equality
of the parameters, Helmholtz number and Mach number, is not met.





Zusammenfassung

Psychoakustische Studien zeigen, dass die empfundene Belästigung durch Fluglärm von
dem Anteil der tonalen Komponenten im emittierten Frequenzspektrum des Triebw-
erks abhängig ist. Durch den Rotor und die Interaktion von rotierenden und stehen-
den Schaufeln im Triebwerk werden modale Schallfelder, so genannte akustisch Moden,
generiert, welche als diskrete Frequenzen im abgestrahlten Spektrum auftreten. Experi-
mentelle Versuche an Triebwerkskomponenten dienen der Entwicklung von Maÿnahmen
zur Reduzierung dieser modalen Anteile. Die Qualität der Messdaten ist dabei maÿge-
blich von der Einhaltung der Ähnlichkeit zwischen den einzelnen Messungen abhängig,
da bereits minimale Änderungen in den Messbedingungen zu unterschiedlichen Ergebnis-
sen führen können. Für die in dieser Arbeit betrachtete harmonische Schallausbreitung
in einem angenommenen idealen nicht-viskosen Fluid, sind die Helmholtz-Zahl und die
Mach-Zahl die bestimmenden Ähnlichkeitsparameter.

In dieser Arbeit wird eine Methode zur Einhaltung von Ähnlichkeit in Bezug auf die
modale Schallausbreitung vorgestellt. Die Methode konzentriert sich auf Prüfstande,
bei denen bei veränderten Eintrittsbedingungen die Helmholtz-Zahl und die Mach-Zahl
zwischen zwei Messungen nicht zuverlässig konstant gehalten werden können. Der Fokus
liegt dabei auf der Ausbreitung einzelner Moden in einem axial durchströmten Rohr.
Experimentelle Untersuchungen werden auf einem Niederdruck-Luftturbinenprüfstand

durchgeführt. Im Eintritt ist ein Schallgenerator eingebaut, der die Anregung spezi�scher
akustischer Moden bei ausgewählten Frequenzen ermöglicht. Die Ähnlichkeit zwis-
chen Messungen wird anhand der modalen Antwortfunktion bestimmt. Analytische
Betrachtungen und eine nachträglich durchgeführte Skalierung der Messergebnisse zeigen,
dass der Winkel zwischen dem modalen Gruppengeschwindigkeitsvektor und der Rohr-
achse geeignet ist, partielle Ähnlichkeit in Bezug auf die modale Schallausbreitung
herzustellen. Eine Analyse der Ähnlichkeitsbeziehung zwischen diesem Winkel und der
Helmholtz-Zahl und der Mach-Zahl ergibt, dass der Ein�uss von Schwankungen der
beiden zuletzt genannten Parameter auf den Winkel stark vom gewählten Betriebs-
punkt abhängig ist. Für die hier betrachteten Betriebspunkte ist eine starke lineare
Korrelation zwischen der modalen Antwort und dem Gruppenausbreitungswinkel sowie
der Helmholtz-Zahl zu beobachten. Gleichzeitig aber nur eine moderate oder vernach-
lässigbare Korrelation mit der Mach-Zahl.
Für die Einhaltung von Ähnlichkeit der modalen Schallausbreitung im Versuchsbe-

trieb wird, in Anlehnung an die Betriebsgröÿen reduzierte Drehzahl und reduzierter
Massenstrom, eine reduzierte Frequenz eingeführt. Mittels dieser Frequenz kann bei
Nicht-Einhaltung einer konstanten Helmholtz-Zahl und / oder Mach-Zahl partielle Ähn-
lichkeit hergestellt werden.
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1 Introduction

This work is concerned with the establishment of similarity of modal sound propagation
in turbomachinery test rigs. In the �rst section of this chapter, the social responsibility
and general motivation to carry out research on the propagation of acoustic modes is
outlined (cf. Sec. 1.1). Furthermore, the challenges of experimental investigations with
respect to the achievement of similarity between individual measurements are described.
Based on this introduction to the topic, the objectives of this work and the procedures
selected to achieve these objectives are presented in Sec. 1.2.

1.1 Motivation

In a free space, sound propagates as a simple plane wave. However, in enclosed or partly
enclosed spaces, as in the di�erent sections of a turbomachine, sound propagates in
complex forms of higher order called acoustic modes. These sound �elds are characterized
by speci�c patterns which are formed by multiple re�ections at the boundaries of the
con�ned area. Such patterns depend, among other factors, on the acoustic impedance at
the boundaries and the geometry of the con�ned area, the propagation medium, ambient
conditions, the acoustic oscillation frequency, and, of course, on the sound source itself.
The major sources of acoustic modes in the turbomachinery components of an aircraft

engine, such as the compressor or the turbine, are the rotor, on the one hand, and the
periodic interaction of the stationary blades and the rotating blades, on the other hand.
In their classic work on sound generation and propagation in the early 1960's, Tyler and
Sofrin (1962) showed that the acoustic modes appear as distinct peaks in the sound pres-
sure spectrum of the turbomachines at frequencies matching the blade-passing frequency
or its harmonics. Acoustic modes radiate from the inlet and exhaust nozzle of an aircraft
engine to the environment and are a strong contributor to the emitted sound pressure
level, and thus to the perceived noise exposure of the population a�ected. As the modes
appear at speci�c frequencies, they are referred to as the tonal noise components.

Long-term and short-term exposure to unwelcome sound as transportation noise or
aircraft noise may result in various health impairments both physical as well as psy-
chological. Possible health consequences of exposure to elevated noise levels include
hearing damage, cardiovascular disease, insomnia, cognitive impairment, stress, and an-
noyance response, to name but a few (cf. Kaltenbach et al. (2016), WHO Regional O�ce
for Europe (2011), or WHO Regional O�ce for Europe (2018)). Results of empirical
studies carried out, for example, by Hellman (1982), Angerer et al. (1991), Landström
et al. (1995), and Berckmans et al. (2008) demonstrate that the presence of one or more
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tonal components in a frequency spectrum increases annoyance perception and has a
negative impact on cognitive performance. Thus, the perceived level of exposure not
only depends on the overall sound pressure level but on speci�c characteristics of the
tone-noise-complex, as for example the tone-to-noise ratio, the frequency of the tone(s),
the relative location of the tone(s) in the spectrum, the spectral shape of the noise, and
the number of tonal components. Fundamental works on these characteristics have been
carried out by R. P. Hellmann in the 1980's (cf. Hellman (1982), Hellman (1984), and
Hellman (1985)). But Hellmann concentrated - in line with most studies - not on speci�c
noise sources but on community noise in general. Tonal components in aircraft noise in
particular, have been only scarcely addressed, but for example by Angerer et al. (1991)
and Berckmans et al. (2008). Recently, White et al. (2017) and White (2018) investi-
gated the relationship between the tonal components in the radiated noise spectrum of
an aircraft and the level of perceived annoyance. For this purpose, the researchers played
di�erent sound samples to participants of an empirical study while they were working on
mentally demanding tasks. Subsequently, the participants were asked to quantify their
annoyance by each sample. Among other things, an original recording of a �yover of a
descending A320 aircraft as well as a processed version of the same recording were used.
In the processed version, the tonal components of the original sample were �ltered out,
but the overall sound pressure level was maintained. For di�erent overall noise levels, the
original sample with speci�c tonal components was always rated as being more annoying
than the sample from which the major tonal components had been removed. This ob-
servation con�rms that the relation between perceived annoyance and tonal components
also applies to the noise emitted by an aircraft engine.

The World Health Organization (WHO) reviewed available scienti�c work and identi-
�ed noise pollution as a "threat to public health". The organization derived guidelines
and recommendations to support community institutions and political bodies in their
decision-making on noise control legislation (cf. WHO (1999), WHO Regional O�ce
for Europe (2009), and WHO Regional O�ce for Europe (2018)). Nowadays, the noise
emissions of an aircraft are strictly regulated and limited. Continuous tightening of the
statutory noise certi�cation requirements puts pressure on aircraft and engine design-
ers and facilitates further development of sound abatement technologies to reduce the
overall noise level of an aircraft engine. The study of White et al. (2017) demonstrates
the importance of concentrating on the reduction of speci�c tonal noise components as
part of the reduction of the overall noise level in accordance with psychoacoustic results.
Thus, it is necessary to develop e�ective measures to attenuate the tonal acoustic modes
which are generated in the turbomachinery components and propagate throughout the
engine. In order to determine the dominant frequencies and modes and accordingly
develop highly e�cient noise reduction technologies, it is mandatory to fully under-
stand the modal sound �eld propagation throughout the turbomachinery components
and ducts of an aircraft engine.

Turbomachinery research in general and research on modal sound propagation in turbo-
machines in particular are carried out either analytically, numerically, or experimentally.
Since analytical studies are restricted to simple conditions and numerical analyses are
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limited by calculation capacities and the simpli�cations of the implemented models,
experimental investigations are an essential tool in scienti�c research. For economic
reasons, experiments are mostly carried out on scale models rather than on the actual
machines (cf. Murphy (1950)). Thus, turbomachinery test rigs often di�er from the ma-
chines eventually in use in terms of geometric size, material, and operating conditions
such as temperature, pressure, or working medium. In order to observe similar physical
e�ects in both systems, the theory of similarity is considered in the design and oper-
ation of test rigs. Similarity conditions are established when certain non-dimensional
parameters, which control the behavior of the system, are numerically equal (cf. Bridg-
man (1922)). These quantities are also referred to as similarity parameters. Depending
on the research objectives, measurement setups might be designed either to satisfy the
requirements for complete similarity or for partial similarity. For complete similarity, all
known similarity parameters have to be adhered to. On the contrary, partial similarity
refers to the establishment of similarity with respect to one speci�c physical e�ect or
discipline while accepting non-compliance with similarity with respect to other aspects
as pointed out by e.g. Spurk (1992) or Schlichting (2016).

For high-quality research data, the values of the similarity parameters have to be
accurately met during the time of measurements. For this purpose, the operating pa-
rameters of the test rigs have to be continuously evaluated and, if necessary, adjusted,
to compensate for changes in the inlet conditions of the respective measurement vol-
ume. Especially for turbomachinery test rigs with an open cycle con�guration, where
the medium is continuously collected at ambient conditions, compliance with the exact
values of de�ned similarity parameters in two consecutive measurements is challenging.
In open cycle test rigs, variations in the inlet conditions like, for example, inlet tempera-
ture, inlet pressure, or humidity of the �uid frequently occur. Eventually, these changes
might impair similarity conditions if not compensated by an adjustment of the operating
parameters.

This work now focuses on the establishment of aeroacoustic similarity during turbo-
machinery test rig operation. For aeroacoustic similarity, both aerodynamic similarity
and (aero)acoustic similarity have to be accounted for. By non-dimensionalization of
the convective wave equation, the Helmholtz number and the Mach number can be iden-
ti�ed to establish similarity conditions for time-harmonic sound propagation in an ideal
and inviscid �ow (cf. Sec. 2.3). Hence, similar operating conditions for sound prop-
agation investigations require that these similarity parameters are numerically equal.
In the last years, the application of so-called sound generators has become more and
more established. Installed in the setup of a test rig, these sound generators can be
used to synthetically excite rotor-synchronous as well as non-rotor synchronous sound
�elds of an arbitrary modal order. Enghardt et al. (2002) for example analyzed the
application of loudspeakers for active noise control in turbomachinery. Bartelt (2015)
extensively made use of this methodological tool to investigate the propagation proper-
ties of acoustic modes through a low-pressure turbine con�guration. The application of
such a sound generator presumed, the Helmholtz number can then be accurately con-
trolled by adjusting the frequency of the excited modal sound �eld. The Mach number
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can be controlled by adjusting the mass �ow rate and the rotor speed of the turboma-
chinery test rig (Braeunling (2015)). However, control of these operating parameters
is restricted by the resolution and constancy of the controls of the test rig's periphery.
As a result, similarity of the Mach number is not always met and similarity conditions
often cannot be achieved. When observing narrow frequency-band sensitive phenomena
like, for example, acoustic resonances as reported by Hellmich and Seume (2008), even
small variations in the similarity parameters might change modal propagation charac-
teristics and consequently impair the comparability of measurements, and in the end
research results. Despite the possibly severe impact of non-compliance with similarity,
reported research on this topic in general and on methods for the establishment of (par-
tial) similarity in particular are not published in open sources to the knowledge of the
author.

1.2 Objectives

This work addresses similar operating conditions for research on modal sound propaga-
tion in turbomachinery test rigs equipped with a sound generator for synthetic sound
�eld excitation. The investigation focuses on individual acoustic modes with a speci�c
mode order propagating in a circular duct carrying an axial uniform �ow. Furthermore,
the investigation focuses on test rig operations where equality of the Helmholtz number
and / or the Mach number between measurements is not met. The objective of this
work is to de�ne the requirement for similarity, on the one hand, and to develop an
approach for establishing similarity conditions of modal sound propagation under the
aforementioned conditions, on the other hand. Impact of non-compliance with similarity
on measurement results is investigated with the objective to assess possible impairment
of research results. Essential fundamentals of the approach developed have already been
published by the author of this work (cf. Hurfar et al. (2015)).

To achieve the work's objectives, the �rst part of this work is concerned with an analyt-
ical investigation of modal sound propagation properties. Based on this analysis and in
consideration of the theory of similarity, the hypothesis is developed that with respect
to the propagation of one speci�c acoustic mode, the modal axial angle of the group

velocity vector can be used to establish partial similarity conditions in case of varying
Helmholtz number and / or the Mach number (cf. Sec. 3.2). The second part of this
work concentrates on the experimental validation of the hypothesis introduced. For this
purpose, measurements are carried out on the low-pressure air turbine test rig (LPT)
of the Institute of Turbomachinery and Fluid Dynamics (TFD). A sound generator is
installed in the inlet duct of the test rig upstream of the �rst turbine stage for controlled
excitation of speci�c acoustic modes. Similarity is evaluated by considering the modal
response function measured in the circular inlet duct for a speci�ed frequency range for
two di�erent test cases and under varying aerodynamic boundary conditions.
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In this chapter, an overview of the theory of similarity and of the similarity parameters
used for turbomachinery research is given. Furthermore, the similarity conditions for
the propagation of sound �elds in the inlet duct upstream of the �rst stage of the LPT
are derived for an approximate �ow model.
In Sec. 2.1, general de�nitions are introduced and common procedures for the deriva-

tion of similarity parameters are described. Section 2.2 then focuses on the establishment
of similarity conditions in turbomachines. Chosen similarity parameters are presented.
Subsequently, in Sec. 2.3, the requirements for similarity of sound propagation in the
LPT are determined for simpli�ed assumptions of the �ow. For this purpose, the convec-
tive wave equation and the corresponding boundary conditions are non-dimensionalized.
The chapter closes with a discussion of the achievement of complete similarity conditions
and the possibilities and limits of concentrating on the achievement of partial similarity
conditions (cf. Sec. 2.4).

2.1 Establishment of Similarity

"In modern engineering practice, scarcely any new type of structure or machine, whether

it be a long-span bridge, a canal, a jet engine, or a supersonic speed airplane, is con-

structed until a model of it has been built, tested, redesigned, and retested, often several

times. Frequently, for reasons of economy, the models are smaller than the �nal struc-

ture or machine. Those principles which underlie the proper design and construction,

operation, and interpretation of the test results of these models comprise the theory of

similitude. That is, the theory of similitude includes a consideration of the conditions

under which the behavior of two separate entities or systems will be similar ...".

The citation above is quoted from Murphy (1950) and captures the reasons but also
the restricting conditions for carrying out conclusive research on scaled models well. For
predicting the performance of the full-scale machine eventually in use from observations
on a model, it is mandatory that similar physical e�ects develop in both machines. In
literature, the full-scale machine is thereby often referred to as the prototype. Now,
the theory of similarity or theory of similitude is concerned with the establishment of
similarity conditions between the prototype or scale model and the full-scale machine1.
Generally, two systems are understood to be physical similar, if certain non-dimensional
parameters, which describe the governing physical relations of the considered problem,

1In literature, both the term similitude as well as the term similarity are common. In most contexts,
both expressions are interchangeable. In this work, the latter is favored.
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are numerically equal (cf. Bridgman (1922)). These non-dimensional parameters thus
characterize similarity and are referred to as similarity parameters. Furthermore, as
similarity parameters often present a combination of the di�erent physical quantities
involved, the number of variables of a problem in question decreases. This has the ad-
vantage that the complexity of experimental investigations or analytical studies can be
signi�cantly reduced as pointed out, for example, by Spurk (1992)).
Due to their practical usefulness, a large number of similarity parameters have been

derived either experimentally or analytically in all �elds of scienti�c and technical re-
search. Generally, two widely applied procedures exist for the derivation of similarity
parameters for a particular problem. Generally, the requirements for similarity condi-
tions can either be determined by

(1) Dimensional analysis or by

(2) Non-dimensionalization of the governing equations,

where the latter also includes the non-dimensionalization of the governing boundary
conditions. The �rst procedure is of great practical use as it is solely based on theoret-
ical consideration of the identi�ed quantities involved. However, dimensional analysis
is also susceptible to application errors and depends on the expertise of the researcher.
Veri�cation of the results is either carried out by critical evaluation by others or by
experimental veri�cation. In contrast, the second approach provides reliable results, but
it requires exact knowledge of the governing system's equations, which are mostly of
complex di�erential type and therefore di�cult to analyze or to determine if not known.
Below, both procedures are brie�y introduced. For an extensive evaluation of the ad-
vantages and disadvantages of the di�erent methods it is referred to Kline (1986).

Reported applications of dimensional analysis, nowadays often equated with and conse-
quently referred to as the Π theorem, the Buckingham Method or the Bridgman Method,
go back to studies carried out at the end of the 19th century. Initial applications of
dimensional analysis mainly concentrated on aerodynamics-related problems and results
were presented by e.g. Strouhal (1878), Reynolds (1883), and Prandtl (1910). The
�rst in-depth treatise of this topic was published by Bridgman (1922). However, it was
Lord Rayleigh (1915) who strongly advocated the use of dimensional analysis referred
to by himself and others as the principle of similitude. Lord Rayleigh (1915) extensively
applied this method and analyzed, for example, Boussinesq's problem of heat transfer.
The latter considers the problem of a solid body immersed in a moving incompressible
and inviscid �uid.
Dimensional analysis is a theoretical tool generally applied to deduce the functional

physical relations between the quantities associated with a particular problem by ana-
lyzing the fundamental dimensions of these quantities. For this purpose, the quantities
involved are identi�ed and grouped in dependent and independent fundamental quanti-
ties2. The dimensions of the latter are the fundamental dimensions of the problem and

2These are also referred to as primary and secondary quantities, respectively. A detailed de�nition and
a discussion of their identi�cation of those is given by Bridgman (1922).
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often include the dimensions of mass, length, and time. In �uid dynamics, the mass
dimension, however, is often substituted by the dimension of force (cf. Murphy (1950)).
The dimensions of the dependent quantities can then be expressed as a sum of products
of powers of the chosen fundamental dimensions. Knowing these dimensional formu-

las, the desired functional relations can then be deduced by combining the quantities
involved in such a way that the numerical magnitude of the quantity considered only
depends on the size of the fundamental units used in the respective dimensional formula
(cf. Bridgman (1922)).
Following the basics of dimensional analysis as described above, Buckingham (1914)

developed the famous Π theorem. Denoting the total number of quantities involved by n
and the number of independent fundamental quantities by k, Buckingham (1914) found
that i = n−k non-dimensional products of the n quantities involved can be theoretically
deduced. In formal terms, any function

F(Q1, Q2, ...Qn) = 0, (2.1)

which describes the physical relation between the quantities of a problem correctly, can
be reduced to the form

ψ(Π1,Π2, ...Πi) = 0, (2.2)

where Q1, Q2, ... Qn represent the n involved quantities and Π1, Π2, ... Πi represent
the i dimensionless products. For the dimension of the latter, the condition

[Π1] = [Π2] = . . . [Πi] = [1] (2.3)

applies. With Q1, Q2, ... Qk representing the fundamental quantities, and P1, P2, ...
Pi representing the i dependent quantities Qk+1, Qk+2, ... Qn, then the dimensionless
products are obtained by the set of equations

[Π1] = [Q1
a1,1 Q2

a1,2 . . . Qk
a1,kP1]

[Π2] = [Q1
a2,1 Q2

a2,2 . . . Qk
a2,kP2]

. . .

[Πi] = [Q1
ak,1 Q2

ak,2 . . . Qk
ak,kPi],

(2.4)

where the exponents a1,1, a1,2, ... ak,k must be such that Eq. (2.3) is satis�ed (cf. Buck-
ingham (1914)). The non-dimensional products respective similarity parameters on the
left side of the equations then fully describe the physical relations, and thus determine
similarity conditions.

Dimensional analysis is a powerful and comparatively simple tool to apply in cases where
the governing di�erential equations of a problem are not known. However, misapplica-
tion easily occurs. The major challenges of this method lie in the accurate identi�cation
of the parameters involved and the grouping of these parameters. Both choices are cru-
cial as di�erent results are obtained if di�erent parameters or groups are used. The
uncertainties of the dimensional analysis became prominently evident already a century
ago in the analysis of Boussinesq's problem of heat transfer. Here, the treatment of
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temperature as an independent parameter or as a dependent parameter was intensely
and publicly discussed (cf. Lord Rayleigh (1915) and Riabouchinsky (1915))3. In the
end, a certain expertise is mandatory for the right classi�cation of the parameters, as
also stressed by Bridgman (1922). As mentioned earlier, the most accurate way of
determining the requirements for similarity conditions for a particular problem is by
non-dimensionalization of the governing equations. Precondition for this approach is
that the complete set of the governing equations and boundary conditions are known
and that these equations are dimensional homogeneous. In dimensional theory equations
are classi�ed in dimensional homogeneous and dimensional non-homogeneous equations.
An equation with more than one term is said to be dimensionally homogeneous if all
terms have or can be reduced to the same dimension (cf. Murphy (1950) or Spurk
(1992))4. If the governing equations and the boundary conditions of a problem are
known and dimensional homogeneity is met, the similarity parameters can be identi�ed
by non-dimensionalization of the given relations. Interestingly and conveniently, this
approach can be pursued even in cases in which the equations cannot be analytically
solved. A prominent example in �uid mechanics is the non-dimensionalization of the
Navier-Stokes equations, which yields among others the Reynolds number, the Froude

number, and theMach number for an ideal gas (cf. Traupel (2001) or Schlichting (2016)).

For the problem of modal sound propagation analyzed here, the situation is more con-
venient as the governing equation is known. The latter is given by the convective wave
equation (as de�ned in Eq. (2.15)) and the requirements for similarity can be deduced
by non-dimensionalization of the respective relations as shown in Sec. 2.3. However,
before turning to this analysis in detail, similarity of �ow in turbomachines in general is
brie�y addressed in the section below.

2.2 Similarity Conditions for Fluid Flows and

Turbomachinery

Similarity of �ow between two di�erent machines (e.g. model and prototype) is estab-
lished if geometric similarity, kinematic similarity, and dynamic similarity are satis�ed
(cf. Kline (1986) or Dick (2015)). Generally, dynamic and kinematic similarity cannot
be achieved if geometric similarity is not maintained5. Geometric similarity exists when
the model is a scaled geometric version of the prototype. In practice, reduced scale

3Where in the end it has been found that the temperature indeed represents an independent quantity
of this problem of heat transfer (cf. Buckingham (1915)).

4Buckingham (1914) refers to these kind of equations as complete equations and the theorem according
to Eq. (2.1) to Eq. (2.4) holds.

5Geometric similarity is also assumed in the application of the Π theorem, although not explicitly
mentioned in the previous discussion. In fact, Buckingham (1914) also expresses the Π theorem in
the more general form where F (Q1, Q2, . . . Qn, r

′, r′′, . . .) = 0 is reduced to an equation of the form
ψ(Π1,Π2, ...Πi, r

′, r′′, . . .) = 0, with r′, r′′, . . . denoting to speci�c ratios of the observed system as for
example the ratios of di�erent basic lengths. In Eq. (2.1) similar geometries are understood to be
provided.
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models are usually employed. Thus, the model di�ers from the full-scale machine in
size but not in shape. For kinematic similarity, motion of the �uid has to be similar.
The ratio of velocity at two points in the machines must be equal while the respective
velocity vectors at each point must be parallel. Regarding, for example, a turbine stage,
the velocity triangles at the leading edge of the stator blades and at the trailing edge of
the rotor blades of the model and the prototype must be similar in shape and direction,
while the ratios of the magnitudes have to be proportional. Dynamic similarity refers
to the forces acting on the machines or, more speci�cally, the forces acting on each �uid
element. In line with the requirement for kinematic similarity, the ratio of forces at two
points in the model and the prototype must be equal for dynamic similarity and the
direction of force has to be the same.
Dynamic similarity often inherently comprises kinematic similarity as the velocity

�eld results from the acting forces, for example for steady incompressible �ows (cf. Dick
(2015)). Therefore, for a good number of problems, the three described types of similar-
ity automatically exist, if the geometry as well as the forces are similar. Kline (1986),
respectively, postulated that "Two systems will exhibit similar behavior if geometric,

kinematic, and dynamic similarity are all guaranteed; furthermore these conditions will

be ful�lled if the two systems are made geometrically similar and if the ratios of all the

pertinent forces are made the same in the two problems". As described in the previous
section, the governing similarity parameters for turbomachinery �ow can be determined
by dimensional analysis or non-dimensionalization of the governing equations and bound-
ary conditions. Kline (1986) suggested an alternative fast-forward way to determine the
requirements for similarity conditions. According to Kline (1986), the similarity param-
eters can be obtained from the ratio of forces acting on the �uid elements in a moving
medium. Eventually, this approach can be understood to be a special form of the di-
mensional analysis6. Also pointed out by Kline (1986), this approach does not cover all
phenomena (like, for example, heat transfer or electromagnetic e�ects) but still presents
a smart approach for problems which are (predominantly) governed by mechanical forces.
Therefore, this approach shall be used below to introduce a selection of important sim-
ilarity parameters for �uid �ows. The de�nitions in Eq. (2.5) to Eq. (2.11) are taken
from Kline (1986), if not speci�ed otherwise.
The approach of similarity of forces results in the deduction of a considerable number

of important similarity parameters when applied to �uid mechanics7. According to Kline
(1986), inertia forces, viscous forces, pressure forces, compressive or elastic forces, surface
tension forces, and gravity forces can be determined as the governing common forces for
�uid �ows. These forces may be expressed in terms of pressure p, velocity V , length L,
density ρ, dynamic viscosity µ, bulk modulus e, surface tension γ, and acceleration of
gravity g. From the ratio of the listed forces, �fteen dimensionless parameters can be
derived where especially the Reynolds number, the Froude number, the Euler number, the

Weber number, and the Cauchy number or Mach number, respectively, are of particular

6Kline (1986) himself referred to this approach as theMethod of Similitude and introduced the procedure
as an alternative to the dimensional analysis and the approach of non-dimensionalization.

7The whole set of parameters needed to establish similarity is eventually given by the Pi theorem or by
the number of parameters deduced from the governing relations.
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interest for most physical problems. The Reynolds number denotes the ratio of the
inertia forces to viscous forces and was introduced in 1883 by O. Reynolds (Reynolds
(1883)). This parameter is therefore relevant for problems where viscous forces are
dominant and is de�ned as

Re =
ρV L

µ
. (2.5)

Commonly, the Reynolds number is used to characterize the �ow condition and to assess
the conditions when the �ow changes from laminar to turbulent. The Froude number is
de�ned as the ratio of inertia forces to gravitational forces and is an important parameter
for characterizing open channel �ows (free-surface �ows) and hydraulic machines, namely
where gravity develops forces of signi�cant in�uence. The Froude number is expressed
by the relation

Fr =
V 2

gL
. (2.6)

The pressure coe�cient and eventually the Euler number can be derived from the ratio
of pressure forces to inertia forces yielding

E =
∆p

ρV 2
. (2.7)

Alternative to the de�nition above, the Euler number is also found to be de�ned with
the factor 1/2 in the denominator to emphasize the link to dynamic pressure. The
Euler number thus quanti�es the importance of pressure forces in the �ow. However, as
pointed out for example by White (2011), the Euler number only becomes signi�cant in
liquid �uids when pressure drops, causing local cavitation.
The fourth dimensionless parameter deducible from the identi�ed forces, the Weber

number, is associated with surface tension e�ects and is de�ned as

We =
ρV 2L

γ
. (2.8)

The Weber number denotes the ratio of inertia forces to surface tension forces and be-
comes an important parameter when investigating problems involving two �uid interfaces
or free-surface �ows. Finally, the Cauchy number expressed by

C =
V 2ρ

e
. (2.9)

is equivalent to the ratio of inertia forces to compressibility forces. Thus, this parameter
is of minor importance when considering incompressible �uids but becomes relevant
when compressible �ows are considered. Implementing the relation e = κp in Eq. 2.9,
where κ is the ratio of speci�c heats, it can be shown that, for an ideal gas, the Cauchy
number is simply the square of the Mach number

C = M2 =
V 2

c2
, (2.10)
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where c denotes the speed of sound (cf. Murphy (1950)). Both parameters can be used
when compressibility e�ects have to be taken into account. The Mach number, how-
ever, is normally used and appears in most equations rather than the Cauchy number
(cf. Kline (1986)). In the interest of completeness, it is noted that in case of relevant
compressibility e�ects, in addition to the equality of the Mach number, the equality of
the ratio of speci�c heats of the �uid has to be considered to meet similar conditions
(cf. Kline (1986)).

Beside the force-based similarity parameters introduced here, multiple others exist and
are frequently used in turbomachinery applications. Explicitly, the Strouhal number

St =
fL

V
, (2.11)

shall be mentioned here. This dimensionless parameter becomes important when char-
acterizing �ows which are unsteady but oscillating at a speci�c frequency f (cf. Landau
and Lifshitz (1959)). A prominent example is the periodic vortex shedding of a body
emerged in a moving �uid. The occurrence of the so-called Karman vortex street also
depends on the Reynolds number, and thus similar motion can be only observed when
both parameters have the same value (cf. Landau and Lifshitz (1959)).

2.3 Approximation of Aeroacoustic Similarity

Conditions in the LPT

In this section, the requirements for similarity conditions in the considered measurement
volume of the turbine test rig, namely the inlet duct, are analyzed. For the particular
case of a test rig equipped with a sound generator as given here, the sound propagation
mechanisms can be investigated completely separate from the physical mechanisms of
sound generation. Therefore, the scope of similarity investigation in this work focuses
on the requirements for similarity of sound propagation only.

For the experimental validation, aerodynamic and acoustic data collected in the cir-
cular inlet duct of the LPT test rig are used. In order to analyze sound propagation
analytically, approximations for the �ow have to be made. The validity of these are dis-
cussed in Sec. 4.1.2. First of all, viscous e�ects and thus, boundary layers, are neglected.
Furthermore, it is assumed that there are neither internal or external sources nor any
internal or external forces acting on the �uid particles. Considering these conditions,
the motion of the inviscid �uid is then determined by Euler's equation

ρ
Dui
Dt

= − ∂p

∂xi
, (2.12)

the continuity equation

ρ
Dρ

Dt
= −ρ∂ui

∂xi
, (2.13)
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and the energy or entropy equation

ρ
Ds

Dt
= 0, (2.14)

where s denotes the entropy (cf. Landau and Lifshitz (1959) or Schlichting (2016)). In
Eq. (2.12), Eq. (2.13), and Eq. (2.14), the �ow variables are thereby a function of time t
and space xi. The �ow velocity pro�le in the chosen measurement volume is assumed to
be steady and uniform over the cross-section with only one �ow component aligned with
the duct axis. Assuming further an isentropic and ideal �ow with the mean velocity U0

in the direction of the x-coordinate, a constant mean density ρ0, and a constant mean
pressure p0, the homogeneous convective wave equation according to

1

c2

( D0)
2
p′

Dt2
− ∂2p′

∂x2
i

= 0 (2.15)

governs the propagation of small time-varying pressure perturbations p′ of the constant
(steady-state) pressure p0. The derivation of the wave equation is given in detail, for
example, in the work by Goldstein (1976).
The perturbations p′ in Eq. (2.15) are a function of time and space, thus p′ := p′(xi, t).

Linear e�ects are provided and only those perturbations which satisfy the inequality
p̂′ << p0 are considered. If the amplitude exceeds a magnitude of approx. 20 · 10−6 Pa,
the pressure perturbations can be perceived by the human ear as sound. Then, p′

represents the sound pressure. The variable c in Eq. (2.15) gives the speed of sound in
an ideal gas, namely the propagation velocity of the acoustic perturbations. The speed
of sound is de�ned in quadratic terms by c2 = κRsT

0, where κ denotes the ratio of
speci�c heats, Rs the speci�c gas constant, and T 0 the steady-state temperature (cf. for
example Goldstein (1976)).
The convective aerodynamic e�ect due to the motion of the �uid is captured in the

total derivative of second order (cf. the �rst term of Eq. (2.15)), which is given for
U0 = f(x) by

( D0)
2
p′

Dt2
=

∂2p′

∂t2
+ 2U0 ∂

2p′

∂t∂x
+ (U0)2∂

2p′

∂x2
, (2.16)

with
D0

Dt
:=

∂

∂t
+ U0 ∂

∂x
. (2.17)

According to Eq. (2.17), the total derivative combines the derivative of the pressure
perturbation with respect to time and the derivative with respect to space (cf. Schlichting
(2016)). Inserting the expanded form of the total derivative (cf. Eq. (2.16)) in the wave
equation yields

1

c2

∂2p′

∂t2
+ 2

Mx

c

∂2p′

∂t∂x
+ Mx

2∂
2p′

∂x2
− ∂2p′

∂x2
i

= 0, (2.18)

where the Mach number

Mx =
U0

c
(2.19)
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for the �ow in axial direction has been introduced (cf. Fig 3.1).

Hence, the governing equation for the considered problem is known, and similarity of
sound propagation can be investigated by non-dimensionalization of the wave equation.
A precondition is that the equation is dimensionally homogeneous as described in Sec.
2.1. For this to be veri�ed, the dimensions of each term of the convective wave equation
according to Eq. (2.18) are expressed in the dimensions of mass (kg), time (s), and
length (m) so that

[
1

c2

∂2p′

∂t2
] = [

s2

m2

kg

ms2

1

s2
] = [

kg

m3s2
],

[
Mx

c

∂2p′

∂t∂x
] = [

s

m

kg

ms2

1

s

1

m
] = [

kg

m3s2
],

[Mx
2∂

2p′

∂x2
] = [

kg

ms2

1

m2
] = [

kg

m3s2
],

[
∂2p′

∂x2
i

] = [
kg

ms2

1

m2
] = [

kg

m3s2
].

(2.20)

It is found that each term has the same dimension, where mass enters with the power of
one, while length and time are reciprocal with the power of three and two, respectively.
This check of dimensions con�rms that the wave equation satis�es the requirement of
homogeneity and can be reduced to a dimensionless form.
In the formulation of the convected wave equation according to Eq. (2.18), the �ow

velocity has already been scaled by the speed of sound introducing the dimensionless
Mach number in the equation. Now, to further analyze the equation, it is convenient to
scale the spatial dimensions with a characteristic length. With respect to the geometry
of the turbine test rig, the spatial coordinates are non-dimensionalized with the duct
radius R according to

x∗i :=
xi
R
⇒ ∂

∂xi
:=

∂

R ∂x∗i
, (2.21)

where x∗i is then a dimensionless numerical value. Furthermore, as suggested by Rienstra
and Hirschberg (2017), the time scale

t∗ := tω ⇒ ∂

∂t
:= ω

∂

∂t∗
(2.22)

with the angular frequency ω is introduced. Inserting x∗i and t
∗ in the convected wave

equation yields

ω2

c2

∂2p′

∂(t∗)2
+ 2

Mx

c

ω

R

∂2p′

∂t∗∂x∗
+ Mx

2 1

R2

∂2p′

∂(x∗)2 −
1

R2

∂2p′

∂(x∗i )
2 = 0. (2.23)

Subsequently, multiplying all terms with the square of the radius and introducing a
second non-dimensional parameter, namely the Helmholtz number

He =
ω

c
R =

2πf

c
R, (2.24)
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then Eq. (2.23) becomes

He2 ∂2p′

∂(t∗)2
+ 2HeMx

∂p′

∂t∗∂x∗
+ Mx

2 ∂2p′

∂(x∗)2
− ∂2p′

∂(x∗i )
2

= 0, (2.25)

where only the dimension of pressure remains in each term. The complete dimensionless
equation can be found by scaling the pressure p′ with an arbitrary reference pressure pref

so that

p∗ :=
p′

pref

with
p′

pref

≤ 1. (2.26)

With this non-dimensionalization, the complete dimensionless form of the convective
wave equation is given by

He2 ∂
2p∗

∂(t∗)2
+ 2HeMx

∂p∗

∂t∗∂x∗
+ Mx

2 ∂2p∗

∂(x∗)2
− ∂2p∗

∂(x∗i )
2

= 0. (2.27)

According to Kline (1986), for example, a dimensionless equation is generally de�ned
as an equation which contains only dimensionless variables (dependent or independent)
and dimensionless parameters. The dimensionless variables are identi�ed by the super-
script star (.)∗ in the equations above. In the �nal deduced form of Eq. (2.27), p∗ is the
dimensionless dependent variable and the coordinates x∗i and the time variable t∗ are
the dimensionless independent variables de�ning the system's boundaries. The dimen-
sionless parameters He and Mx evidently present the searched for similarity parameters.

As outlined in Sec. 2.1, the requirements for similarity are fully de�ned by analyz-
ing the governing equations as well as the boundary conditions of the problem under
consideration. Here, acoustically hard-walled ducts are assumed. For an annular duct,
this condition requires that the pressure gradient in radial direction is zero at the hub
and at the outer duct wall8. Formally, it can be written

∂p′

∂r
|
r=Rh

= 0 and
∂p′

∂r
|
r=R

= 0. (2.28)

As pointed out in Sec. 2.2, geometric similarity is mandatory for establishing similarity
conditions between two turbomachines. Following the de�nition of geometric similarity,
all ratios of characteristic length of the system considered have to be identical. With
respect to the geometry of the circular- or annular-shaped duct at hand, a respective
dimensionless parameter or ratio can be found by non-dimensionalization of the hard-
walled boundary conditions with the outer duct radius R. Equation (2.28) is then
expressed by

∂p′

∂r∗
|
r∗=

Rh
R

=σ
= 0 and

∂p′

∂r∗
|
r∗=1

= 0, (2.29)

where the radial coordinate is scaled. Through the surface condition at the hub, the
hub-to-tip ratio

σ =
Rh

R
(2.30)

8For details of the geometry under consideration, please refer to Fig. 3.1 in Sec. 3.1.1.
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is found to determine geometric similarity.

For simpli�ed assumptions of the �ow and geometry, the requirements for similarity
of sound propagation in the inlet duct of the LPT can thus be explicitly de�ned. In
summary, it is found by non-dimensionalization of the convective wave equation that a
triad of similarity parameters, namely the Helmholtz number, the Mach number, and the
hub-to-tip ratio, determine similarity of sound propagation in an annular duct carrying
an one-dimensional inviscid and isentropic homogeneous �ow. At this point, it needs
to be emphasized that this observation refers to the propagation of the complete sound
�eld which might be decomposed in di�erent wave components, the so-called acoustic
modes. The latter are introduced in Sec. 3.1 of the following chapter.

For the sake of completeness, note that in a medium at rest, similarity is only de-
�ned by the Helmholtz number and the hub-to-tip ratio. For Mx = 0, the wave equation
according to Eq. (2.18) reduces to

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
i

= 0, (2.31)

and correspondingly the dimensionless form according to Eq. (2.27) reduces to

He2 ∂
2p∗

∂(t∗)2
− ∂2p∗

∂(x∗i )
2

= 0. (2.32)

The boundary conditions de�ned in Eq. (2.29) remain una�ected.

2.4 Partial Similarity

In many cases, it is not possible or economical to completely meet all requirements for
establishing similarity conditions between model and prototype (cf. Murphy (1950),
Spurk (1992), or Traupel (2001)). Technical and economical reasons may simply impose
limitations on the design of models and test rigs.
Geometric similarity, for example, is often not met with respect to the surface rough-

ness or tip clearance, as pointed out by both Spurk (1992) and Dick (2015). Whereas
the quantitative reproduction of surface roughness is often easily achieved when consid-
ering models of the same scale (since similar machines or techniques are normally used
for the production), for geometrically reduced models the achievement of similarity of
roughness is technically often limited to a certain degree. The same holds true for the
achievement of similarity with respect to the clearance between blade tip and shroud in
reduced models. To avoid these problems of geometric scale altogether, it is convenient
to simply use turbomachinery models that are of the same size and have the same ma-
terial properties as the prototypes. In fact, turbomachinery test rigs more often di�er
from the prototype regarding the working medium rather than the geometry. The tur-
bine test rig used for research in this work, for example, is operated by air instead of the
air-gas mixture used in the combustion chambers of an aircraft engine. This not only
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2 Theory of Similarity

permits a substantial reduction in the test rig periphery and fewer design requirements
e.g. for instrumentation and material in general, but also has considerable advantages
regarding safety, health, and environmental aspects.

For cases in which not all similarity requirements can be met, so-called partial similarity

can still be achieved (Schlichting (2016))9. While all similarity parameters governing
the system's behaviour have to be met for complete similarity, partial similarity focuses
on equality of the parameters describing a speci�c e�ect. Partial similarity can be es-
tablished, for example, with respect to geometry, material properties, acting forces and
energies, or with respect to a combination of those.
Studies with models satisfying partial similarity still allow reliable prediction of the

behaviour of the prototype. One possible solution is the implementation of an estimate
of error if the impact of non-ful�llment of the respective similarity requirements is quan-
ti�able and predictable, as suggested by Schlichting (2016) and discussed by Murphy
(1950)10. Dick (2015) followed this approach and suggested the application of certain
model laws to take the variations in the geometric features mentioned in the examples
above into account. In other cases, the non-ful�lment of a certain similarity parameter
(or requirement) simply has no or only a negligibly minor in�uence on the e�ect consid-
ered. Deviations in the surface roughness or the tip clearance can be accepted in cases
where the physical e�ect under consideration is not in�uenced by the boundary layer or
the secondary �ows near the tip clearance region, for example.
Furthermore, in most cases not all �uid �ow forces mentioned in Sec. 2.2 have a

signi�cant impact on the considered problem and most often it is su�cient to satisfy
similarity of the dominant forces only. Regarding viscosity e�ects, for example, Dick
(2015) and Traupel (2001) point out that in some turbomachines, the Reynolds number
will be mostly so high in magnitude that the parameter is no longer of practical impor-
tance as long as the order of magnitude is met. Vice versa, the equality of the Reynolds
number becomes important where viscous forces are a factor. This is the case, when
considering friction e�ects, for example (cf. Murphy (1950)). For the problem at hand,
an approximate �ow model is used in order to analytically investigate the requirements
for similarity of modal sound propagation. This �ow model does not consider most of
the forces described in Sec. 2.2 as these are assumed to be unimportant for the problem
considered. Accordingly, following the assumptions of the �ow and the problem at hand,
the viscous forces, the surface tension forces, and the gravity forces are neglected, and
thus the corresponding similarity parameters meaning the Reynolds number, the Froude
number, and the Weber number, are not considered. The pressure gradient and the
inertia forces enter via Euler's equation and are summarized in the Euler number. The

9Here it is convenient to point out that no common term has developed in the scienti�c community to
refer to non-complete similarity. Dick (2015), for example, uses the expression imperfect similitude,
Spurk (1992) the expression complete similarity (in german: vollstaendige Aehnlichkeit) and non-
complete similarity (in german: unvollstaendige Aehnlichkeit), and Schlichting (2016) uses the term
partial similarity (in german: partielle Aehnlichkeit). In this work, the expressions complete similarity
and partial similarity are used.

10In literature, works addressing this approach are often found under the keywords theory of models or
model laws.
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latter is also unimportant here as no signi�cant pressure drop is to be expected. Hence,
with respect to the parameters discussed in Sec. 2.2, similarity of �ow here reduces to
the consideration of the Mach number only.

In summary, the key statement is that su�cient similarity may be achieved even though
numerical equality of one or more similarity parameters is not met. In this case of par-
tial similarity, an assessment has to be made whether non-compliance with similarity of
certain parameters is acceptable, thus has negligible impact on the considered physical
e�ect, or if correction measures like, for example, introducing a correction factor, have
to be taken into account.
With respect to the objectives of this work, these �ndings can be transferred to the

establishment of similarity conditions during the operation of test rigs for research on
modal sound propagation. Non-dimensionalization of the convective wave equation, as
carried out in the previous section, has shown that the Helmholtz number and the Mach
number establish similarity of sound propagation between two measurements. This work
now focuses explicitly on operating conditions under which the Mach number and / or
the Helmholtz number cannot be kept equal between two measurements. Thus, complete
similarity as de�ned above is not achieved in these case.
In Chap. 3, the properties of the propagation of the individual components of sound

�elds, namely the acoustic modes, are investigated. This investigation aims to assess
the possible application of the approach of partial similarity when considering not the
complete sound �eld but only modal components, on the one hand, and to analytically
exploit the impact of variations in the before-mentioned similarity parameters on modal
sound propagation, on the other hand.
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3 Similarity of Modal Sound

Propagation

This chapter addresses the development of a hypothesis to de�ne the requirements for
similarity of modal sound propagation for the geometry, the �ow conditions and the
operating conditions under consideration. Based on this hypothesis, an approach for
establishing similar conditions for modal sound propagation is developed and tested in
this work.
In a �rst step, solutions to the convective wave equation for the approximate �ow

model considered in this work are introduced in Sec. 3.1 of this chapter. Relations
for the most important propagation properties are provided. A focus is on the group
velocity, which governs the propagation of sound �elds in general and the propagation
of modal sound �elds in particular. The hypothesis of this work is developed under
consideration of the theory of similarity and based on the �ndings of the analytical in-
vestigation (cf. Sec. 3.2). Following in Sec. 3.3, a functional relation between the axial
angle of the group velocity vector and the triad of similarity parameters, the Helmholtz
number, the Mach number, and the hub-to-tip ratio, is derived. This so-called similarity

relation presents the basis of the similarity approach. Furthermore, a similarity map for
analyzing and identifying similar operating conditions is developed and discussed in Sec.
3.4.

In this chapter, references are made to several publications of importance for this work.
A few of these shall be shortly addressed: In the 1960s, research on sound propagation
focused on the group velocity of sound waves and �ndings were published by Lighthill
and Whitham (1955), Landau and Lifshitz (1959), or Whitham (1960). Some years
later, Lighthill (1965) summarized these works and published an extensive and illustra-
tive treatise on the propagation properties of sound waves. In 1962, Tyler and Sofrin
(1962) pioneered research in the �eld of sound generation mechanism in turbomachines
by experimentally determining the well-known relation between the generation of acous-
tic modes and rotor-stator interaction or rotation of the rotor alone. Furthermore, Tyler
and Sofrin (1962) derived a harmonic solution to describe the propagation of these modes
in rectangular or cylindrical ducts and their radiation from the duct's end. Until that
point in time, modal sound �elds had received comparatively little attention. Follow-
ing Tyler and Sofrin (1962), however, research focused on the modal components of
sound �elds. With the objective of studying modal sound transmission through turbo-
machinery blade rows, modal sound attenuation or radiation, the propagation properties
of acoustic modes have been addressed in several analytical works. For example, Rice
et al. (1979), Rice (1979), Farassat and Myers (1996), and Farassat and Myers (1997) de-
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rived and analyzed analytical relations to describe modal sound propagation properties
in ducts for investigating modal attenuation in acoustically treated ducts and radiation
from the intake of aircraft engines. Farassat and Myers (1996) and Farassat and Myers
(1997) concentrated especially on the properties of energy propagation. The geometric
approach used for these analytical works are also followed in this work. More recently,
Bartelt (2015) presented results from sound measurements carried out on the same test
rig as used for the experimental investigations in this work. His work comprises a de-
tailed analytical study of the modal solutions of the wave equation for an equivalent
approximate model assumed here.
Beside references to the before-mentioned works, references are also made to a publica-

tion of the author of this work that also addresses similarity of modal sound propagation.
Essential parts of the analytical basis of the similarity approach developed in the scope
of the research carried out for this treatise have been presented by Hurfar et al. (2015).

3.1 Modal Sound Propagation in Circular Ducts

3.1.1 Solutions to the wave equation

Landau and Lifshitz (1959) de�ne sound waves as "... an oscillatory motion of small

amplitude in a compressible �uid...". These waves induce small variations or perturba-
tions of the steady-state quantities as the mean pressure or the mean density of the �uid.
A plane wave describes the propagation of a sound wave in which the perturbations are
only a function of one coordinate (cf. Landau and Lifshitz (1959)). In contrast, acoustic
modes are generally sound waves of higher order depending on two or more coordinates.
The research �eld of duct acoustics is concerned with the analytical description of these
modes in rectangular and circular ducts in undisturbed or moving media. As shown in
Sec. 2.3 for an one-dimensional inviscid and isentropic �ow, which is completely ho-
mogeneous over the cross section, the propagation of sound waves can be satisfactorily
approximated by the convective wave equation already introduced

1

c2

( D0)
2
p′

Dt2
− ∂2p′

∂x2
i

= 0

with
( D0)

2
p′

Dt2
=

∂2p′

∂t2
+ 2U0 ∂

2p′

∂t∂x
+ (U0)2∂

2p′

∂x2
.

Considering a continuous time- and space-harmonic propagation of the acoustic pertur-
bations, then

p′(xi, t) = Re {A ei(ωt−kixi)} (3.1)

presents a general solution to Eq. (2.15) or Eq. (2.18), respectively (cf. Goldstein
(1976) or Rienstra and Hirschberg (2017)). Here, the constant A is the amplitude of the
pressure perturbation p′, ω is the angular acoustic frequency in radians per second, and
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ki represents the spatial wave number. With

ω = 2πf (3.2)

the angular frequency is related to the frequency f , given in Hertz (Hz), with which
the steady-state quantities oscillate around their mean due to the propagation of the
acoustic perturbations.

With respect to the geometry of the LPT it is convenient to analyze the sound propa-
gation in a cylindrical coordinate system with x, r, and θ being the axial, radial, and
circumferential coordinate, respectively. Equation (2.15) then speci�es to

1

c2

( D0)
2
p′

Dt2
− 1

r

∂p′

∂r

(
r
∂p′

∂r

)
− 1

r2

∂2p′

∂θ2
− ∂2p′

∂x2
= 0 (3.3)

as shown by Bartelt (2015). The total derivative as given in Eq. (2.17) remains un-
changed. Considering the harmonic description introduced in Eq. (3.1), a particular
solution to the wave equation of the form

p′±x(m,n)(r, x, θ, t) = Re
{
A±x(m,n) · e

i(ωt−k±xx x−mθ+ϕ0) · g(r)
}

for m ∈ Z and n ∈ N,
(3.4)

can be found by using, for example, the method of separation of variables (cf. Bartelt
(2015)). This type of solution is referred to as a mode (cf. Goldstein (1976)), and
describes the propagation of higher order sound �elds speci�ed by the integer circum-
ferential mode order m and the integer radial mode order n in a circular duct. The
circumferential order thereby corresponds to the number of wavelengths in circumfer-
ential direction, whereas the value of the radial mode order corresponds to the number
of lines of zero pressure in radial direction. For the experimental validation, however,
only pure circumferential modes with n = 0 as the mode (2,0) shown in Fig. 3.1 are
considered. Di�erent modal solutions exist for the propagation in the direction of the
�ow and the propagation opposite to the �ow direction. This is taken into account by
the superscripts (.)+x and (.)−x, respectively.
According to Eq. (3.4), each acoustic mode (m,n) is characterized by a complex

amplitude represented by the absolute modal amplitude A±x(m,n), and the modal phase
ϕ±x(m,n) speci�ed by the complex exponent (ωt−k±xx x−mθ+ϕ0). The exponent depends on
the time variable t and on the spatial coordinates x and θ, thus expressing the harmonic
character of the propagation. In the axial direction, the mode propagation is determined
by the (axial) wave number k±xx, . In the circumferential direction, the pressure pattern
of the propagating mode is determined by the mode order m. The angle ϕ0 denotes the
initial phase. The radial propagation is expressed by the function g(r). Both, the axial
wave number and the radial function are associated with the mode orders and have to
be de�ned with respect to the boundary conditions of the regarded problem.
Tyler and Sofrin (1962) referred to the acoustic modes observed in the di�erent sec-

tions of a turbomachine as spinning modes. Thereby, the authors made reference to the
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spiral or helical type of propagation of these pressure patterns. Below, the propagation
properties of acoustic modes in the di�erent directions (x, r, θ) are further speci�ed and
respective relations are detailed regarding the geometry and the �ow conditions of the
problem at hand.

The problem at hand can be speci�ed making the assumption of an in�nite annu-
lar axis-symmetric duct with a constant outer radius R and a constant hub-to-tip ratio
σ = Rh/R as illustrated in Fig. 3.1. The duct surface is assumed to be acoustically
hard-walled requesting a local maximum of the sound pressure at the hub and at the
outer duct radius. According to the assumption for the �ow used for the derivation of
the wave equation, the duct carries a unidirectional steady �ow U0 in x-direction ex-
pressed in the axial Mach number Mx = U0/c, where Mx < 1. By chossing to analyze
an annular geometry, both the cylindrical inlet duct as well as the annular duct sections
of the turbine stage are taken into account. The solutions can subsequently be easily be
reduced to the case of σ = 0.
Having de�ned the geometry with respect to the sections of the LPT, the radial

solution g(r) can be determined. Tyler and Sofrin (1962) describe the radial propagation
by a sum of Bessel function of the form

g(r) = Jm

(
β

(σ)
(m,n)r

)
+Q

(σ)
(m,n)Ym

(
β

(σ)
(m,n)r

)
. (3.5)

Here, the functions Jm and Ym denote the m-th order Bessel function of the �rst and
second kind, respectively. The latter is also known as the Neumann function and is
multiplied with the weighting factor Q(σ)

(m,n). The argument of the Bessel functions is
de�ned as

β
(σ)
(m,n) :=

u
(σ)
(m,n)

R
, (3.6)

where u(σ)
(m,n) is the characteristic eigenvalue of the problem of radial sound propagation

x

θR

rRh

Mx

Figure 3.1: Left: Geometry of the observed problem and de�nition of the �ow direc-
tion. Right: Exemplary pressure pattern of the acoustic mode (2, 0). The
illustration is based on Fig. 1 in the publication of Hurfar et al. (2015).
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speci�ed by the acoustically hard-walled boundary condition. The superscript (.)(σ)

thereby indicates a dependency on the hub-to-tip ratio. Hence, u(σ)
(m,n) is the (m,n)th-

solution to the surface conditions

∂g

∂r
|
r=Rh

= 0 and
∂g

∂r
|
r=R

= 0. (3.7)

and depends on the hub-to-tip ratio. The eigenvalue depends on the radial as well as
on the circumferential mode order, and thus connects the propagation in the respective
directions as pointed out by Tyler and Sofrin (1962) and Rice et al. (1979). In fact, Rice
et al. (1979) interpreted β(σ)

(m,n) as the combined radial-circumferential wave number krθ.
Now, for the cylindrical inlet of the LPT, only the surface condition at the outer duct
radius holds, and Eq. (3.5) reduces to g(r) = Jm

(
β(m,n)r

)
as also given by Tyler and

Sofrin (1962).
In the axial direction, the propagation of acoustic modes is determined by the modal

axial wave number given by

k±xx =
−k0Mx ±

√
(k0)2 − (1−Mx

2)
(
β

(σ)
(m,n)

)2

(1−Mx
2)

, (3.8)

where
k0 =

ω

c
(3.9)

denotes the free-�eld wave number (cf. Rice et al. (1979)). Equation (3.8) shows that
the axial propagation depends on the mode order through the scaled eigenvalue β(σ)

(m,n).
Furthermore, it follows that the axial wave number can become complex (Im(k±xx ) 6= 0).
In that case, the amplitude of the mode attenuates exponentially along the duct axis.
This mathematical special case de�nes the cut-o� condition of the mode, and arises
when the radicand in Eq. (3.8) becomes negative as also observed by Tyler and Sofrin
(1962). From the condition Im(k±xx ) = 0, the cut-o�-frequency

f(m,n),cut =
c
√

(1−Mx
2)β

(σ)
(m,n)

2π
(3.10)

is obtained. This frequency de�nes the limit of propagation, where f > f(m,n),cut is the
condition for propagation. Cut-o� condition depends on the �ow velocity, the speed
of sound, the duct radius, and - through the characteristic eigenvalue - on the radial
and circumferential mode order as well as on the hub-to-tip ratio. Consequently, each
mode has its own characteristic cut-o�-frequency subject to the boundary conditions.
Hence, fcut can be understood to be the natural (characteristic) frequency of the duct.
The fundamental zeroth-order mode (0, 0), which corresponds to a plane wave, presents
an exception. With u(m,n) = 0, the plane wave has no limiting frequency, and is thus
not bound by the boundary conditions. Modes satisfying the propagation condition are
referred to as cut-on modes, and, vice versa, modes not meeting the condition are cut-o�.

23



3 Similarity of Modal Sound Propagation

Here, it is convenient to introduce the dimensionless cut-o� ratio

ξ(m,n) =
f

f(m,n),cut

=
k0

β
(σ)
(m,n)

√
(1−Mx

2)
, (3.11)

which gives the ratio of the mode's oscillation frequency to the respective cut-o� fre-
quency. A cut-o�-ratio with the value of one (ξ = 1) thus indicates cut-o�-condition,
whereas a high value indicates that the mode is well cut-on. The cut-o� ratio is fre-
quently used to describe modal sound propagation, e.g. by Rice et al. (1979).
Having speci�ed the pressure distribution of an acoustic mode for the axial and radial

directions, the propagation in the circumferential direction still has to be de�ned. In
θ-direction, the pressure distribution has to satisfy the demand for periodicity p′(θ1) =
p′(θ1 + 2π). A simple harmonic solution found to ful�l this condition is expressed in the
complex notation e−imθ (cf. Eq. (3.4)). The latter constrains the circumferential mode
order m to be an integer. As the circumferential mode order is chosen to adopt positive
as well as negative values, the direction of spin depends on the sign of m. Here, positive
values of m correspond to modes spinning in the direction of the rotor, and, vice versa,
negative values to modes spinning in the direction opposite to the rotation of the rotor.
It follows that the circumferential wave number at an arbitrary radius r of the duct is
given by

kθ =
2π

λθ
=

m

r
, (3.12)

where λθ = 2πr/m denotes the circumferential wavelength.

With Eq. (3.4), Eq. (3.5), and Eq. (3.8), the up- and downstream propagation of
an arbitrary modal sound �eld (m,n) throughout the inlet duct of the LPT and the
annular �ow path upstream of the �rst stage for a unidirectional and uniform �ow can
be uniquely described.

For the sake of completeness, note that modes are orthogonal solutions of the wave
equation. The linearity of the wave equation implies that any linear combination of the
modal solutions is a solution to Eq. (2.15) as well. With

p′(r, x, θ, t) =
∞∑

m=−∞,n=0

p′±x(m,n)(r, x, θ, t) (3.13)

the sound �eld is described as a superposition of an arbitrary number of acoustic modes.
This formulation takes into account that practical applications often demand the con-
sidering of not only one but multiple acoustic modes, which may di�er in the mode
order as well as in the oscillation frequency. A good example for this is the generation of
acoustic modes by rotor-rotation or rotor-stator interaction as postulated by Tyler and
Sofrin (1962).
A special case to be addressed brie�y, is the superposition of two acoustic modes

which have the same order and frequency but are traveling in opposite directions. If the
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3.1 Modal Sound Propagation in Circular Ducts

modal amplitudes are numerically equal, this superposition results in a sound �eld with
standing character in the respective spatial direction. This applies to a standing circum-
ferential mode, a standing axial mode, or a combination of both. Di�erent amplitudes
of the superposed modes yield to sound �elds with partial spinning or partial standing
character, respectively, as demonstrated by Bartelt (2015). With

ε =
A1

A2

(3.14)

denoting the relative modal amplitude of two superposed modes with opposite propa-
gation directions, ε = 1 holds true for the case of a standing mode. Vice versa, ε = 0
describes a pure spinning mode.

3.1.2 Velocities of modal propagation

This section is concerned with the propagation velocities of modal sound �elds. Beside
the well-known speed of sound, group velocity and phase velocity are commonly used
to describe sound propagation. This section therefore starts with a short analysis of
the di�erences between group velocity and phase velocity. Subsequently, relations for
determining the di�erent velocities are presented.

Group velocity is the velocity with which an acoustic wave carries energy in space (cf.
Whitham (1960) or Lighthill (1965)). Hence, group velocity governs sound propagation
in general and modal sound propagation in particular. Contrary to this key physical
fact, phase velocity is often considered instead of group velocity, as also pointed out by
Lighthill (1965). Phase velocity is the velocity with which the fronts of constant phase
of a sound wave travel in space. In comparison to group velocity, phase velocity can be
comparatively easily be determined experimentally by the rise and fall of the pressure
amplitude of the wave. Physically, a di�erentiation between both velocities becomes
mandatory if considering sound propagation in a moving medium. While the magnitude
of group velocity and the magnitude of phase velocity are the same and equal to the
speed of sound if the medium is at rest (cf. Landau and Lifshitz (1959)), the convective
e�ect by �ow yields a change of the propagation properties in the presence of a �ow.
The two velocities no longer match, neither in magnitude nor in direction. This e�ect
accompanies the e�ect of dispersion. The latter describes the situation where sound
waves do not travel at the same speed in space (cf. Lighthill (1965)). In that case, it is
mandatory to di�erentiate between phase velocity and group velocity.

The review above considers sound propagation in general. With respect to the propaga-
tion of sound within the ducted parts of turbomachinery, it is found that group velocity
also governs the characteristic of sound transmission through blade cascade as well as
radiation characteristics. In a detailed analytical study of the transmission of sound
waves through non-rotating blade cascades, Kaji and Okazaki (1970) showed that the
amplitudes of the transmitted and re�ected waves depend on the angle with which the
sound waves impinge upon the blade row. This incident angle depends on the convection
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3 Similarity of Modal Sound Propagation

of the sound wave by �ow as pointed out by Kaji and Okazaki (1970). Thus, although
not explicitly stated by the authors, it is the angle of group velocity which determines
the sound transmission and re�ection characteristics. Considering radiation characteris-
tics of a sound wave from the open end of a duct, Rice (1979) showed analytically that
the angle which the group velocity vector forms with the axial direction corresponds to
the maximum noise peak of the far-�eld radiation pattern.
Based on the analysis outlined above, it can be concluded that group velocity governs

the propagation of (modal) sound �elds. Therefore, the following analysis concentrates
on this propagation velocity.

The derivations of the propagation velocities of sound �elds of modal character given
below are mainly based on the works of Rice et al. (1979) and Rice (1979) that were
published in the late 1970s. The authors derived equations for the propagation velocities
of acoustic modes by following a geometric approach approximating the modal phase
fronts locally by plane waves. This procedure is common in geometrical acoustics, and,
according to Landau and Lifshitz (1959), applies to sound waves where the amplitude
and direction of propagation vary only slightly as a function of the wavelength. In addi-
tion, the works of Farassat and Myers (1996) and Farassat and Myers (1997) are referred
to here. The authors also followed the suggested geometric approach.
The geometric relations have been recently analyzed by Hurfar et al. (2015) with respect
to similarity conditions of modal sound propagation. The equations and geometrical re-
lations presented here can be understood to be taken from Rice et al. (1979) or from
Hurfar et al. (2015), if not stated otherwise. For the sake of ease of notation, the super-
scripts (.)(±x) and (.)(σ) used in the previous expressions and indicating the dependence
on the axial direction of propagation and the dependence on the hub-to-tip ratio, re-
spectively, are omitted. In line with the focus of this work, the description concentrates
on the analysis of the propagation of individual modes. A detailed study of the sound
�eld properties for multiple-mode propagation has been carried out by Bartelt (2015).
Furthermore, as the experimental investigation sound �eld excitation is carried out up-
stream of the LPT, the following analysis concentrates on waves or modes propagating
in the direction of �ow. Results can, however, be easily adapted to an upstream propa-
gation.

Starting point of the following analysis is the sketch of a propagating sound wave shown
on the top left side of Fig. 3.2. Here, the wave vector k := kn points in the direction
of the unit space vector n, which is perpendicular to the assumed locally planar phase
fronts of the mode. For the magnitude k of the wave vector the geometric relation

k2 = k2
x + k2

r + k2
θ (3.15)

holds. With the approximation k2
rθ ≈ k2

r + k2
θ = β2

(m,n) as stated by Rice et al. (1979),
the root of each side of the so-called dispersion relation de�ned by

(k0 −Mx kx)
2 = (kx)

2 + β2
(m,n) (3.16)
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3.1 Modal Sound Propagation in Circular Ducts

gives the magnitude k of the wave vector. Equation (3.16) shows that k only corresponds
to the free-�eld number k0 for modal propagation in a medium at rest. With k0 = ω

c
, the

wave number then depends linearly on the frequency. In the presence of a mean �ow,
however, this non-linear relation no longer holds and the e�ect of dispersion occurs. Ac-
cordingly, the relation above is often addressed as the dispersive relation. Generally, this
relation can be either obtained by inserting the modal solution of Eq. (3.4) in the wave
equation according to Eq. (3.3) as suggested by Rice et al. (1979), or by rearranging the
equation for the axial wave number (cf. Eq. (3.8)) as proposed by Farassat and Myers
(1996) and Farassat and Myers (1997) and described in the appendix in Sec. A.1.

The phase fronts propagate through the duct at an angle φx with the duct axis as
illustrated in Fig. 3.2. With the axial component of the wave vector given by Eq. (3.8),
this propagation angle between the wave vector and the coordinate vector ex parallel to
the duct axis can be calculated from

cos(φx) =
k · ex
|k| |ex|

=
kx

(k0 −Mx kx)

=
kx√

(kx)
2 + β2

(m,n)

.

(3.17)

As the problem is axis-symmetric, the angle holds for any circumferential position θ and
the direction of propagation is completely determined. It shall be noted, that φx can
exceed 90° as the axial wave number kx can also take on negative values, cf. Eq. (3.8).
In that case, the wave vector depicted in Fig. 3.2 no longer points in positive direction
- which is, according to the de�nition chosen here, equivalent to the direction of �ow -
but in the direction opposite to the �ow. The same then holds true for the unit space
vector. This case will be addressed in detail later in this section.

The respective angles for the radial and circumferential direction can be obtained in
accordance with the calculation of the axial propagation angle. As these are of no rele-
vance for this work, the respective relations are not shown here and the reader is referred
to the work of Rice et al. (1979).

Locally, the phase fronts can be assumed to travel in space with a propagation speed
matching the speed of sound c. The velocity vector of propagation c := cn points in
the direction of the unit space vector or rather in the direction of the wave vector (cf.
drawing on the top right corner of Fig. 3.2 ). The angle between the vector of propaga-
tion and the duct axis thus corresponds to the angle de�ned by Eq. (3.17), and value of
the axial component of c can be determined by

cx = c cos(φx). (3.18)

Now, as already has been worked out at the beginning of the section, it is group
velocity which truly determines the propagation of sound waves. The group velocity
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Figure 3.2: Left: Wave vector normal to the wave front. Right: Geometrical construction
of the group velocity vector in the presence of �ow. Both illustrations are
based on Fig. 2 in the publication of Hurfar et al. (2015).

vector gives the direction of the energy propagation, and the magnitude of the vector
gives the speed with which the wave transports energy in space (cf. Lighthill (1965)).
The group velocity vector of an acoustic mode can be geometrically constructed by
adding the �ow vector to the velocity vector of propagation

cgr = c+U = c(n+ Mx) (3.19)

(cf. Landau and Lifshitz (1959)). Thus, Eq. 3.19 fully re�ects the convective e�ect of
�ow. As shown in Fig. 3.2, the resulting group velocity vector is then no longer parallel
to the wave vector, and thus not perpendicular to the phase fronts. The sound energy
propagates in a di�erent direction than the phase fronts and with a di�erent velocity
than the speed of sound. This observation concurs with the statement of Lighthill (1965).
Calculated by trigonometry, the magnitude of the modal group velocity vector and the
axial component of the vector can be determined according to

cgr = c

√
1 + 2Mxcos(φx) + Mx

2 (3.20)

and
cgr,x = c (cos(φx) + Mx), (3.21)

respectively (cf. Hurfar et al. (2015))1. In line with the determination of the axial angle
φx, the angle of the group velocity vector relative to the duct axis φgr,x is given by

cos(φgr,x) =
cgr,x

cgr

. (3.22)

This angle now di�ers from the angle of the velocity vector of propagation φx due to the
convective e�ect. The relation between both angles is given by

cos(φgr,x) = cos(φx) + Mx. (3.23)

1Equation (3.20) can be deduced by application of Pythagoras' theorem:
cgr

2 = (cx + cMx)2 + (c sin(φx))2 with cx = c cos(φx).
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3.1 Modal Sound Propagation in Circular Ducts

Considering the algebraic di�erence between the velocity vector c and the group velocity
vector cgr in Fig. 3.2, it becomes obvious that the group velocity vector approximates
the velocity vector in direction as well as in magnitude with decreasing �ow Mach num-
ber. In a medium at rest, the group velocity vector cgr eventually points in the direction
normal to the phase fronts and equals the propagation velocity vector (cgr = c). This
is con�rmed by Eq. (3.20), if inserting Mx = 0.

In the interest of completeness, phase velocity shall be brie�y addressed as follows.
As already described, phase velocity cph gives the speed with which the phase fronts of a
sound wave travel in space. The phase fronts thereby represent the surfaces of constant
phase ϕ de�ned by the exponent in Eq. (3.4). Pursuing the geometric approach followed
here, the phase velocity of a propagating mode with respect to the direction of the wave
vector, thus the direction of the unit space vector, is obtained by

cph = |c(1 + Mn)| (3.24)

as shown by Farassat and Myers (1996) and illustrated here in Fig. 3.2. With a super-
imposed �ow, phase velocity increases or decreases with respect to the speed of sound
depending on the propagation direction relative to the �ow direction. Furthermore, it
can be observed that with cph = λf , the wavelength also depends on the magnitude and
direction of �ow. In case of no �ow, the velocity of phase propagation in the direction
normal to the phase fronts equals the propagation velocity c. As already outlined, in
the presence of a mean �ow the phase velocity deviates from the propagation speed c
and from the group velocity cgr.

The equations (3.20) to (3.22) give the general trigonometric relations for determining
the considered quantities. Rice et al. (1979) give the fully developed relations depending
on the cut-o�-ratio ξ (cf. Eq. (3.11)), yielding

cgr = c

√√√√√(1−Mx
2)
[
1 + Mx

√
1− 1

ξ2

]
1−Mx

√
1− 1

ξ2

, (3.25)

cgr,x = c
(1−Mx

2)
√

1− 1
ξ2

1−Mx

√
1− 1

ξ2

, (3.26)

and

cos(φgr,x) =
√

1−Mx
2

√√√√ 1− 1
ξ2

1−Mx
2(1− 1

ξ2
)

(3.27)

for the magnitude, the axial component, and the axial angle of the group velocity vector,
respectively. Presented in this form, the equations provide a good basis for analyzing
the relation between the group velocity vector and the cut-o� ratio.
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Figure 3.3: Properties of the group velocity vector relative to cut-o� ratio. Top left:
Magnitude and axial component of the vector normalized to the speed of
sound represented by the solid and dashed lines, respectively. Top right:
Axial angle of the group velocity vector. Bottom left: Geometric relations at
cut-o� condition. Bottom right: Geometric relations at high cut-o� ratios.

In Fig. 3.3, the components of the group velocity vector are depicted versus the cut-o�
ratio for an exemplary Mach number of Mx = 0.4 and the case of no �ow (Mx = 0).
In the diagram on the left, the solid and the dashed lines represent the magnitude and
the axial component of the vector, respectively. Both values are normalized with the
speed of sound. In the right diagram, the corresponding axial angles of the vectors are
depicted. The vertical lines indicate cut-o� condition. At that point, the frequency
of the mode just equals the cut-o� frequency and the cut-o� ratio has the value one
(ξ = 1). Beneath the two diagrams, the geometric relations between the velocity vectors
are schematically illustrated for the limiting cases ξ = 1 and ξ → ∞. These drawings
are in line with Fig. 3.2.
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3.1 Modal Sound Propagation in Circular Ducts

Approximating cut-o� condition, both the axial component and the magnitude of
the group velocity vector decrease in value. Correspondingly, the axial angle becomes
steeper with increasing cut-o� ratio. Eventually, if meeting cut-o� condition ξ = 1, the
axial angle equals 90° and the vector is perpendicular to the duct axis as also pointed
out by Rice et al. (1979) or Farassat and Myers (1996). In this case no sound energy is
transported along the duct axis and, according to Eq. (3.4), the amplitude of the mode
decreases exponentially in axial direction. It shall be stressed, that this observation is
independent of the magnitude of �ow velocity, and also holds true for propagation in a
medium at rest. At cut-o� condition the velocity in axial direction takes on a value of
zero. However, from Eq. (3.25)

lim
ξ→1

cgr = c

√
(1−Mx

2). (3.28)

it follows that the group velocity takes on a value smaller than the speed of sound, but
other than zero if Mx > 0. Consequently, this velocity represents the rotation of the
mode in circumferential direction. Interestingly, with Mx > 0, the phase fronts of the
mode are not parallel to the duct-axis, as can be seen from the geometric construction
at the bottom left of Fig. 3.3. The velocity vector c is thus on the contrary to the group
velocity vector not perpendicular to the duct axis at cut-o� condition. Also with respect
to this observation, Rice et al. (1979) concluded that group velocity governs modal sound
propagation. Furthermore, for a mode propagating in downstream direction as observed
here, it is evident from the geometric construction that the velocity vector can point
in the upstream direction, and thus in the direction opposite to the direction of energy
transport. This is in line with the previously described observation that φx can exceed
90°. For ξ = 1, this angle depends on the Mach number only and can be calculated
by cos(φx,cut) = −Mx (cf. Rice et al. (1979)). This relation can be obtained from Eq.
(3.21), if setting cgr,x = 0, as is the case for cut-o� condition. Thus, in the presence of
�ow and at cut-o� condition, φx,cut is always greater than 90° and the vector points in
the direction opposite to the propagation direction. The previously described properties
are driven by the presence of �ow. It should be kept in mind that in the absence of �ow,
cgr = c and the magnitude of the group velocity vector equals speed of sound for all
cut-o� ratios, cf. diagram on the top left of Fig. 3.3.

For ξ →∞, the axial component and the magnitude of the group velocity vector increase
and gradually approximate the same value. In case of no �ow, this would be speed of
sound. From the illustration on the bottom right, it can be seen that both the axial
angle of the group velocity vector as well as the angle of the propagation vector become
small. The vectors approach the duct-axis.

In summary, with respect to the axial angle of the group velocity vector, it is found
that a mode which is well cut-on has a small angle with φgr,x → 0. Contrary, approx-
imating cut-o� condition, the angle becomes steeper until the group velocity vector is
eventually perpendicular to the duct axis and points to the duct wall.
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3 Similarity of Modal Sound Propagation

Besides the geometric construction of the group velocity vector outlined previously,
which, from the author's point of view, allows a very physical interpretation of the
modal propagation properties, the relations according to Eq. (3.25) and Eq. (3.26) can
be also derived following an analytical approach2. Then the group velocity is given by

cgr =
∂ω

∂k
=

(
∂k

∂ω

)−1

(3.29)

(cf. Landau and Lifshitz (1959), Lighthill (1965), and Rienstra and Hirschberg (2017)).
For the axial direction Bartelt (2015), for example, deduces the group velocity cgr,x by
applying Eq. (3.29) to the axial wave number de�ned in Eq. (3.8).

Excursus: As already stated, the geometric approach followed is based on an approxima-
tion of the three-dimensional mode by a planar one-dimensional wave. In the appendix
in Sec. A.2, an excursus on the radial dependency of the group velocity vector is given.
It is found that the aforementioned relations are valid at the caustic radius, which is
given by

r∗ =
m

u
(σ)
(m,n)

R. (3.30)

This is contrary to the common understanding that the relations hold true near or at
the duct radius. This is discussed in detail in the excursus. Furthermore, an approach
is presented that allows the calculation of the propagation velocity vector c and group
velocity vector cgr at any radial position over the cross-section of the duct.

3.2 Hypothesis of this Work

Following the theory of similarity, similar conditions between two measurements sepa-
rated in time but carried out on the same test rig are established by certain dimensionless
parameters, called similarity parameters, that govern the physical behavior of the sys-
tem. Hence, in order to carry out conclusive research on test rigs by being able to
compare test data obtained several hours or days apart, equality of the numerical values
of the similarity parameters has to be achieved between the di�erent measurements. For
this purpose, constant conditions in the measurement plane or measurement volume of
a research test rig are mandatory. However, even in a laboratory environment, the inlet
conditions of the measurement volume may change due to variations in external factors.
For open-circuit turbomachinery test rigs where the working medium is collected at am-
bient conditions - as is the case for the turbine test rig used in this work - changing
inlet conditions frequently occur. Therefore, to satisfy similar operating conditions, the
operating point of the machine has to be continuously adjusted so that the similarity
parameters considered are numerically equal between two measurements.

2Note, that this approach is also based on the assumption of a locally plane wave.
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3.2 Hypothesis of this Work

Non-dimensionalization of the convected wave equation shows that in an ideal and in-
viscid �ow with one spatial component, the Mach number and the Helmholtz number
establish similarity conditions of sound propagation. Specifying the problem for sound
propagation in a circular or annular hard-walled duct, approximate to the �ow path in
the components of a jet engine or in the di�erent sections of the LPT test rig consid-
ered here, the hub-to-tip ratio is found to establish geometric similarity. This triad of
dimensionless parameters (Mach number, Helmholtz number, and hub-to-tip ratio) then
de�nes complete similarity conditions for sound propagation in a duct carrying a uni-
form one-dimensional �ow. Geometric similarity provided, similar operating conditions
with respect to sound propagation on a test rig are then achieved if Mach number and
Helmholtz number are kept identical.

For test rigs equipped with a sound generator - as is the case here - the Helmholtz
number can be controlled via the excitation frequency. With control of the frequency,
equality of the Helmholtz number can thus be exactly maintained between two measure-
ments. To maintain the identical numerical value of the Mach number, the operating
conditions of the considered test rig have to be constantly controlled and the operating
parameters have to to be adapted if changes in the inlet conditions occur. To ensure
equality of the Mach number, the operating points of turbomachines are determined
with respect to a reduced mass �ow rate and a reduced rotor speed (cf. Braeunling
(2015)). However, control of these two operating parameters depends on the constancy
of the controls of the test rig's periphery. Therefore, small changes in the Mach number
can be expected for some turbomachines. That is also the case for the low-pressure
turbine test rig focused on in this work.

One objective of this work is to de�ne the requirements for similarity of modal sound
propagation focusing on test rig operations, where constant conditions in the measure-
ment section, and thus complete similarity, meaning equality of both the Mach number
and the Helmholtz number, cannot be achieved. Based on a review of the state-of-
the-art, it is found that group velocity governs propagation of sound waves in general.
Following a geometric approach and approximating the phase fronts of a propagating
mode by plane waves, it can be shown that the axial angle of the vector of the group
velocity governs propagation of acoustic modes, in particular.

Based on these �ndings, the hypothesis is developed that the modal axial angle of the
group velocity vector can be used to establish partial similarity with respect to the
propagation of one speci�c mode in cases where equality of the Mach number and / or
Helmholtz number cannot be achieved. In the section below, an approach for establish-
ing similarity conditions is presented. The approach focuses on test rigs equipped with
a sound generator for the controlled excitation of acoustic modes and is applied here
for the experimental validation of the suitability of the group velocity angle to establish
similarity of modal sound propagation (cf. Chap. 6).
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3 Similarity of Modal Sound Propagation

3.3 Similarity Approach

It has been shown in Sec. 2.3 by non-dimensionalization of the wave equation that the
Mach number and Helmholtz number establish similarity conditions for sound propaga-
tion in an inviscid and ideal �ow with one �ow component uniform over the cross section
of the considered duct. The hub-to-tip ratio complements this duo when referring to
sound �eld propagation in an annular duct. Considering the sound �eld as a superposi-
tion of modal components as described in Eq. (3.13), the triad of similarity parameters
(Mx,He, σ) also governs the propagation of each individual mode of the sound �eld.
Following the hypothesis of this work, the axial angle of the group velocity vector is an-
alyzed for dependencies on the aforementioned parameters with the objective to develop
an approach for establishing partial similarity conditions.
Essential parts of the �ndings presented in this section have been already published

by Hurfar et al. (2015).

To begin with, it is found - without major e�ort - that the cut-o�-ratio ξ can be ex-
pressed in terms of the Helmholtz number, the Mach number, and the hub-to-tip ratio.
The latter thereby enters through the characteristic eigenvalue u(σ)

(m,n). Combining the
quantities in Eq. (3.11) yields

ξ =
He

u
(σ)
(m,n)

√
(1−Mx

2)
. (3.31)

From Eq. (3.25) and Eq. (3.26) it then follows that the group velocity and the axial
group velocity depend on the triad of parameters (Mx,He, σ) as well, and additionally
on the speed of sound. In general form it can be written

cgr = c · Ψ(Mx,He, u
(σ)
(m,n)) (3.32)

and
cgr,x = c ·Ψx(Mx,He, u

(σ)
(m,n)). (3.33)

It follows that, without prejudging results, the respective angle to the duct axis depends
solely on the Mach number, Helmholtz number, and the characteristic eigenvalue. In
general form, this reads

cos(φgr,x) =
cgr,x

cgr

= Ψgr,x(Mx,He, u
(σ)
(m,n)). (3.34)

The challenge now is to �nd an equivalent form of Eq. (3.27) in terms of the Helmholtz
number, the Mach number, and the characteristic eigenvalue that is convenient to an-
alyze. Hurfar et al. (2015) investigated this problem and presented a rather long and
complex equation. It is found that a signi�cantly simpler form can be deduced which
is more convenient to analyze. A detailed description of the derivation is given in the
appendix in Sec. A.3. Following a shortened description is given.
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3.3 Similarity Approach

In a �rst step, the cut-o� ratio according to Eq. (3.31) is substituted in Eq. (3.27).
Rearranging gives

cos(φgr,x) =
√

1−Mx
2

√√√√√ He2 − (u
(σ)
(m,n))

2
(1−Mx

2)

He2 −Mx
2
[
He2 − (u

(σ)
(m,n))

2
(1−Mx

2)
] . (3.35)

Combining the expression
√

1−Mx
2 with the main root of the equation and further

rearranging yields

cos(φgr,x) =

√√√√√He2 − (u
(σ)
(m,n))

2
(1−Mx

2)

He2 + (u
(σ)
(m,n))

2
Mx

2
. (3.36)

Finally, Eq. (3.36) can be transformed so that

cos(φgr,x) =

√√√√√√1−

 1
He2

(u
(σ)
(m,n)

)
2 + Mx

2

, (3.37)

or

cos(φgr,x) =

√√√√√1−

 He2

(u
(σ)
(m,n))

2 + Mx
2

−1

, (3.38)

respectively. The relation presented above is an equivalent form to Eq. (3.27), but
expressed in terms of the Mach number, the Helmholtz number, and the characteristic
eigenvalue u(σ)

(m,n), where the latter depends on the mode order (m,n) and the hub-to-tip
ratio σ. It follows that for a speci�c mode, an in�nite number of combinations of the
triad of parameters exist which yield the same axial angle of the group velocity vector.
This observation has also been stated by Hurfar et al. (2015). In other words, for a
speci�c mode, equality of the numerical value of the axial angle of the group velocity
vector can be achieved by an in�nite number of combinations of the Mach number,
the Helmholtz number, and the hub-to-tip ratio σ. Geometric similarity provided, the
previous statement results in an in�nite number of combinations of the Mach number
and the Helmholtz number. The functional relation according to Eq. (3.37) is described
by the general description

φgr,x = Ψφ(Mx,He,m), (3.39)

which is is referred to as the similarity relation, hereinafter.

For the sake of completeness, the case for a medium at rest shall be considered. For
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Mx = 0, Eq. (3.37) reduces to

cos(φgr,x) =

√√√√1−

(
u

(σ)
(m,n)

He

)2

. (3.40)

The axial angle is then determined by a combination of the Helmholtz number and the
hub-to-tip ratio, only.

Based on the similarity relation derived, it follows that for a speci�c test rig with a
speci�c geometry the axial angle of the group velocity vector can be experimentally con-
trolled by the Mach number and the Helmholtz number. That means, any variation in
the numerical value of one of the two parameters can be compensated by a respective
adaptation of the other parameter in order to meet equality of the group velocity an-
gle, and thus, according to the hypothesis of this work, to establish partial similarity of
modal sound propagation between two measurements. As outlined previously, control
of the Mach number is limited, but the Helmholtz number can be accurately controlled
via the frequency in case of sound propagation research supported by a modal sound
generator.
Based on Eq. (3.36), the relation

He2 =
[M2

x (cos(φgr,x)
2 − 1) + 1]u2

mn

(1− cos(φgr,x)2)
(3.41)

for the Helmholtz number can be determined. From Eq. (3.41), a relation for the
frequency, henceforth called reduced frequency, given by

(fred)2 =
c2
[
M2
x

(
cos(φ∗gr,x)

2 − 1
)

+ 1
]
u2
mn

(2πR)2
(
1− cos(φ∗gr,x)

2
) (3.42)

can then be derived. The reduced frequency provides the excitation frequency, which
yields the exact same value for the angle of the group velocity vector as the reference an-
gle φ∗gr,x under any aerodynamic condition characterized here by the axial Mach number
Mx and speed of sound c. The reduced frequency is determined for a de�ned reference
data set with the arbitrary reference conditions He∗ and M∗x. As the reduced frequency
is dependent on the mode order via the eigenvalue umn, the calculated frequency only
holds for one speci�c mode. A generalized description of this procedure may be written
as

φ∗gr,x = Ψφ(M∗x,He∗,m) = Ψφ(Mx,Hered,m), (3.43)

with the reduced Helmholtz number given by

Hered =
2πfredR

c
. (3.44)
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3.4 Modal similarity map

For sound propagation measurements carried out on a test rig with a sound generator
for synthetic sound �eld excitation, the reduced frequency introduced may serve as an
(acoustic) operating parameter comparative to the reduced mass �ow rate or the reduced
rotor speed.

This work focuses on the establishment of similarity conditions for varying Mach num-
bers and / or Helmholtz numbers. For completeness, the case of a variation of the
Helmholtz number without any changes of the Mach number shall be addressed. In this
case, the reduced frequency can be determined on the basis of the Helmholtz number
instead of the group velocity angle. With respect to the reference similarity condition
He∗, the reduced frequency is then given by

fred =
cHe∗

2πR
. (3.45)

In this case, complete similarity is achieved, as both similarity parameter, Mach number
and Helmholtz number, are equal.

3.4 Modal similarity map

The similarity relation between the axial angle of the group velocity vector and the triad
of similarity parameters (He,Mx, σ) as de�ned in Eq. (3.37) is analyzed in this section.
With respect to the motivation for this work, the analysis strives to assess the impact of
changing similarity conditions on the modal sound propagation governing group velocity
angle in dependence of the test rig's operating point. For this purpose, the similarity
relation derived is displayed for selected values of the Mach number and the Helmholtz
number in the form of a contour map. The latter is based on the map presented in Fig.
3 and Fig. 4 in the publication of Hurfar et al. (2015). Considering its intended applica-
tion to analyze and eventually support the establishment of similarity in the LPT test
rig, the map is hereafter referred to as the similarity map for modal sound propagation.

Below, the similarity maps are discussed by way of example. With respect to the setup
of the validation measurement carried out in the inlet duct of the LPT, the analysis
focuses on the geometry of a circular shaped duct with σ = 0. Furthermore, the analysis
concentrates on modes of order (m,n) = (1,0) and (m,n) = (2,0). Generally, the simi-
larity maps can also be derived for σ 6= 0 and for modes of higher radial order n > 0 as
shown by Hurfar et al. (2015).

In the similarity maps developed the solid contour lines give constant values of the
axial angle of the group velocity vector (φgr,x = constant). The contour lines thereby
represent all possible combinations of the Mach number and the Helmholtz number
which yield the same numerical value of this angle. For a speci�c value of the angle of
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3 Similarity of Modal Sound Propagation

the group velocity vector, the contour lines can be either determined from

M2
x =

(
He

u
(σ)
(m,n)

)2

(1− cos(φgr,x)
2)− 1

(cos(φgr,x)2 − 1)
(3.46)

or

He2 =
[M2

x (cos(φgr,x)
2 − 1) + 1] (u

(σ)
(m,n))

2

(1− cos(φgr,x)2)
. (3.47)

Both equations are derived by solving Eq. (3.37) for M2
x and He2, respectively. The

similarity maps presented here are all based on the �rst equation. In the diagrams the
Mach number gives the ordinate and the Helmholtz number the abscissa.

Sensitivity of the group velocity angle with respect to changes in the Mach number
and the Helmholtz number is determined here by

Ξf(x)|x =
∂f(x)

∂x

x

f(x)
. (3.48)

Hence, for an arbitrary functional relation y = f(x), the sensitivity Ξf(x)|x gives the
relative change of y with respect to a fractional change in x. For

∣∣Ξf(x)|x
∣∣ > 1 the change

in y is relatively higher than the change in x, and vice versa for
∣∣Ξf(x)|x

∣∣ < 1 . From Eq.
(3.48) it follows that for a given value of the Helmholtz number, sensitivity with respect
to the Mach number is given by

Ξφgr,x|Mx =
−1

cos(φgr,x)

M2
x[(

He

u
(σ)
(m,n)

)2

+ M2
x

]√(
He

u
(σ)
(m,n)

)2

+ M2
x − 1

. (3.49)

Analogously, for a given value of the Mach number, the following equation

Ξφgr,x|He =
−1

cos(φgr,x)

He2

(u
(σ)
(m,n))

2

[(
He

u
(σ)
(m,n)

)2

+ M2
x

]√(
He

u
(σ)
(m,n)

)2

+ M2
x − 1

(3.50)

gives the sensitivity with respect to the Helmholtz number.

In Fig. 3.4 and Fig. 3.5, the similarity maps for the acoustic mode of order (1,0)
for a hub-to-tip ratio of σ = 0 are shown3. Thus, the maps are applicable in case of
a respective mode propagating through a circular duct, as, for example, the inlet duct
of the LPT test rig. The two maps di�er in the sensitivity displayed. The �rst map

3In the appendix in Sec. A.4, the respective similarity maps of the mode (2,0) are given. The charac-
teristics of these maps con�rm the �ndings described here.
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3.4 Modal similarity map

shows the sensitivity with respect to changes in the Mach number (Ξφgr,x|Mx), whereas
the second map displays the sensitivity with respect to changes in the Helmholtz num-
ber (Ξφgr,x|He). The Mach number and the Helmholtz number are given for values up to
Mx = 0.8 and He = 5.0, respectively. For these conditions, the values of the depicted
group velocity angle are between φgr,x = 22◦ and φgr,x = 90◦. For the sake of brevity,
only selected contour lines are depicted here where a contour interval of 2◦ is chosen4.
The di�erence between the bold lines is 10◦. Furthermore, for increasing values of the
group velocity angle, the tagging of the contour lines is restricted to the bold lines,
again for the sake of brevity. In view of the objective of easily assessing the impact of
variations in the similarity conditions on the axial angle of the group velocity vector by
means of the similarity map, areas of di�erent levels of sensitivity are colored in di�erent
shades of grey. Light colors suggest low values of sensitivity and areas of dark-shaded
grey represent higher values of sensitivity. The dashed lines represent the boundaries
of selected values of sensitivity. That means that in the area between two dashed lines,
sensitivity is within the range of the two values tagged to the respective lines.

The similarity maps visually show the inverse relation between the axial angle of the
group velocity vector and the Mach number as well as the Helmholtz number as stated
by Eq. (3.37). This inverse relation results in negative values of sensitivity for both
similarity parameters. That means that for decreasing values of the Mach number and
/ or Helmholtz number, the angle of the group velocity vector relative to the duct axis
increases and the respective mode approaches cut-o� condition. Analyzing the two maps
regarding sensitivity of the axial angle of the group velocity vector with respect to the
Mach number and the Helmholtz number, it is found that

(1) the numerical value of sensitivity with respect to the Mach number and the numeri-
cal value of sensitivity with respect to the Helmholtz number can di�er considerably
for the same operating point.

(2) sensitivity with respect to either Mach number or Helmholtz number is highest
when the respective mode approximates cut-o� condition, thus φgr,x → 90◦.

With respect to �nding (1), it is found that especially for high values of the axial angle of
the group velocity vector in combination with low values of the Mach number, the level of
sensitivity di�ers most signi�cantly. Considering an angle of φgr,x = 60◦ for m =1 by way
of example, it can be seen that for the same operating point sensitivity with respect to
the Mach number is much smaller compared with the numerical value of sensitivity with
respect to the Helmholtz number (e.g. Ξφgr,x|Mx < −0.1 but −2.0 < Ξφgr,x|He < −1.0).
Furthermore it can be observed, that sensitivity with respect to Mach number in-

creases with increasing velocity of �ow. Physically, it can be concluded that with higher
�ow velocity and approximation of cut-o� condition the convective e�ect becomes more
signi�cant for the establishment of similarity on a test rig. For the sensitivity with re-
spect to the Helmholtz number an opposing dependency is observed. Here sensitivity
decreases with increasing values of the Helmholtz number as the mode leaves the area

4The contour interval gives the di�erence in degree between two adjacent contour lines.
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3 Similarity of Modal Sound Propagation

of cut-o� condition.

Generally, it is found that sensitivity is highest if the operating point of the test rig
is chosen so that the mode is close to cut-o� or meeting cut-o� condition (cf. �nding
(2)). At cut-o� condition the physical properties of sound propagation change from an
axial transport of sound energy to an exponential decay of the sound pressure ampli-
tudes along the duct axis (cf. Sec. 3.1), so that even minor changes in the similarity
parameters Mach number and Helmholtz number will signi�cantly change the physical
properties of the propagation of the respective mode. Conversely, for operating condi-
tions where the axial angle of the group velocity vector is well below φgr,x = 90◦, the
latter is nearly insensitive to changes in the Mach number, and thus propagation prop-
erties at that point are not a�ected if similarity is not achieved during test rig operation.
The similarity maps for mode (2,0) are given in the appendix in Sec. A.4. These con�rm
the �ndings summarized here.

The sensitivity analysis here is based on an analytical investigation of the numerical
equations and on the derived modal sound propagation properties. In order to detect
the impact of non-compliance of similarity conditions on measurement results, the modal
response function can be taken into account. The response function gives the sound pres-
sure amplitude relative to a chosen acoustic quantity. While in most cases the modal
response is given with respect to the acoustic frequency, the response function will be
analyzed here also as a function of the axial angle of the group velocity vector. In do-
ing so, the relation between variations in the Mach number and Helmholtz, respective
changes in the group velocity angle and the sound pressure amplitude is given. Chapter
6 is concerned with this analysis.
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4 Acoustic Measurements in a

Low-Pressure Turbine

To validate the suitability of the axial angle of the group velocity vector for the estab-
lishment of similarity for modal sound propagation investigations, aerodynamic as well
as acoustic measurements carried out on the axial air-turbine test rig of the TFD are
analyzed. To show generality of results, two operating points are considered for the
experimental validation: a part-load operating point and the design operating point of
the turbine con�guration. The �rst one mentioned is speci�ed by approximately half
the mass �ow rate and rotor speed compared to operation at design point.
In Sec. 4.1 of this chapter, a general description on the test rig and the low-pressure

turbine con�guration used is given. Acoustic as well as aerodynamic measurement planes
are de�ned, and the data acquisition chain including the instrumentation employed in
the de�ned measurement planes are described. For controlled variation of the di�erent
parameters of the modal sound �eld (e.g. mode order, direction of spinning, and the
oscillation frequency), a sound generator consisting of multiple loudspeakers has been
implemented in the inlet of the turbine test rig. The synthetic excitation of modal sound
�elds is a major methodical tool in this work. The applied excitation method is therefore
described in detail, and results of test measurements in the Aeroacoustic Wind Tunnel
(AWT) of the TFD are presented in Sec. 4.2. This chapter closes with a discussion of
the results of a cut-o� analysis of the modal propagation carried out for the operating
points considered (cf. Sec 4.3).

4.1 Measurement Setup

4.1.1 Test rig

The air-turbine test rig of the TFD is a research multistage axial-turbine which can be
equipped with di�erent turbine con�gurations of up to seven stages depending on the ro-
tor design. Several con�gurations and bladings for high-, medium-, and low-pressure gas
and steam turbines have been tested since the test rig was �rst put into operation in the
1960s. The turbine was initially dedicated mostly to aerodynamic studies, research ob-
jectives in recent years increasingly include aeroelastic and aeroacoustic studies. Works
on the aforementioned �elds include the investigations carried out by Meinzer et al.
(2015), J. Aschenbruck et al. (2015), Bartelt (2015), Laguna (2016), and Hauptmann
et al. (2017).
The air-turbine test rig is operated in an open circuit mode. Compressed air is pro-

vided by up to three screw compressors. The air is collected at ambient conditions and
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4 Acoustic Measurements in a Low-Pressure Turbine

Figure 4.1: Panoramic view of the instrumented turbine test rig with a sound generator
installed in the inlet. (Source: TFD)

exits the test rig to ambient pressure. In the current setup, the turbine shaft is coupled
to a direct-current pendulum-type machine (DC machine) through a gearbox, which
serves either as a generator or motor, depending on the operating conditions. The test
rig is equipped with an extensive monitoring system which includes a data acquisition
system permitting among other things, an on-time recording of the rotor speed and of
the mass �ow rate. To ensure (aerodynamic) similarity conditions between two points in
time, the operating point is controlled via a reduced mass �ow rate and a reduced rotor
speed as proposed by Braeunling (2015). A calibrated venturi nozzle is used to measure
the mass �ow rate of the compressed air according to ISO 5167-4. The inlet duct to
the venturi nozzle is straight, ensuring a homogeneous axial �ow. The nozzle itself is
located approx. 9m upstream of the turbine's inlet so that the �ow enters the turbine
fully-developed and undisturbed. Control of the mass �ow is achieved by switching the
number of the screw compressors in operation and by operating the valve of the bypass,
respectively. Control of the rotational speed of the turbine is independent of the mass
�ow control. The rotor speed is triggered by a capacitive sensor and is adjusted contin-
uously by the DC motor. For further detailed information on the test rig speci�cations
and infrastructure refer to Binner (2011), Henke et al. (2012), or Binner and Seume
(2014).

4.1.2 Turbine con�guration and test conditions

The experimental study presented here considers acoustic measurements taken within
an extensive measurement campaign investigating aerodynamic e�ects on a 1.5-stage
subsonic low-pressure gas-turbine con�guration. The turbine stage was designed in
cooperation with MTU Aero Engines for unsteady aerodynamic investigations on the
in�uence of blade row interaction on work transfer and loss-e�ects in the core �ow
of turbines. To minimize side-wall and secondary �ow-�eld e�ects in the core �ow, the
aero-design includes a high aspect ratio blading, tip-shrouded rotor blades, and labyrinth
seals. The design process was numerically supported and the results are published in
Biester et al. (2011) and Biester et al. (2013a). Experimental results presented by
Henke et al. (2016) con�rm the numerically-predicted quasi two-dimensional �ow in the
core �ow region. The nominal stage parameters for the design point, as well as the
geometric blade characteristics are summarized in Tab. A.1 in the appendix in Sec.
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A.5. Biester (2016) characterizes the design as similar to state-of-the-art low-pressure
jet engine turbines.
To meet the objectives of the aerodynamic study, three di�erent axial gap con�gura-

tions were designed. This approach was chosen to clearly di�erentiate between blade-
wake e�ects and potential �eld e�ects. In order to compensate aerodynamic clocking
e�ects due to the axial gap variation, both the �rst and the second stator vane carrier
are speci�cally designed to allow movement in the circumferential direction. Consid-
ering the periodicity of the turbine stage, circumferential rotation over one pitch (20◦)
with respect to the �rst vane row can be realized. Details on this design concept are
given in Henke et al. (2012) The aerodynamic and acoustic data used in this work are
all collected from measurements at the con�guration with the largest axial spacing of
80% of the rotor blade's axial chord length. This axial gap con�guration is chosen as
probe traversing is possible in all inter-row sections and unsteady potential as well as
viscous wake e�ects are smallest within the axial gap and the blade passage, as shown
by Biester et al. (2013b). Even though this is not of particular relevance to this work, it
still might be of interest to future e�orts as a quasi-steady two-dimensional core �ow fa-
vors the application of simpli�ed analytical sound propagation and transmission models.

The turbine con�guration consists of a stator-rotor-stator combination as mentioned
above. The blade count of the �rst stator vane row is V1 = 18. The second stator
vane row carries twice the number, so that V2 = 36. The rotor consists of thirty blades
(B = 30). According to the relation

m = hB + sV for h = 0, 1, 2, . . . and s = . . .− 1, 0, 1, . . . (4.1)

derived by Tyler and Sofrin (1962), acoustic modes of the order m = ± 6 or multiples
of this order can be expected to be generated by the interaction of the �rst stator with
the rotor, the interaction of the rotor with the second stator, or by the rotation of the
rotor alone. Depending on the operating point, these modes then propagate with the
blade-passing frequency (BPF) or its harmonics throughout the turbine (cf. Sec. 4.3).

For the acoustic measurements, a sound generator has been installed in the inlet of
the turbine. Figure 4.1 shows a panoramic view of the test rig with the sound generator
located on the left, the instrumented outer casing of the turbine with thermal insulation
in the middle, and the gear box and DC machine on the far right. The general setup
of the test rig is identical to the one used for the acoustic measurements on a one-stage
and two-stage turbine con�guration, as carried out by Bartelt (2015) and Laguna (2016).
A schematic sectional view of the current con�guration with an expanded view of the
sound generator is depicted in Fig. 4.2. The sound generator's main part is a circular
duct with an inner diameter of D = 0.496 m, which exactly matches the casing diameter
of the turbine's inlet. Figure 4.2 shows that, the inner diameter of the inlet duct of the
turbine narrows down in the region of the star-shaped head bearing. The latter consists
of six radial struts distributed at regular intervals over the circumference of the rotor
shaft. Downstream of the struts the annular �ow path of the turbine con�guration has
a constant hub-to-tip ratio of σ = 0.61 (with DRotor = 0.270 m).
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Figure 4.2: Schematic sectional view of the turbine test rig with the 1.5-stage LPT con-
�guration and installed sound generator. Acoustic measurement planes are
marked red. Aerodynamic measurements planes are marked green.

The acoustic measurement campaign was planned after the �nal design. Therefore,
the instrumentation is not acoustically optimized, and the acoustic measurement planes
di�er from the main aerodynamic measurement planes. In Fig. 4.2, the acoustic mea-
surement planes and the aerodynamic measurement planes are marked in red and green,
respectively. Acoustic instrumentation is employed in two sections of the test rig: In the
cylindrical duct of the sound generator, and in the di�user part of the turbine behind
the second vane row. Hereinafter, these measurement planes are also referred to as Sec
A and Sec B, respectively. Measurement plane Sec A is located directly in front of the
turbine, thus, in the inlet of the turbine. For the detection and modal decomposition of
the sound �eld, 20 microphones are equidistantly distributed around the circumference
in each section at one axial position. The microphones are mounted �ush with the wall
in order to be non-intrusive. According to the sampling theorem, the number of sensors
employed allows the detection of ten wavelengths around the circumference. However,
decomposition with respect to both directions of circumferential propagation is only
possible up to modes of the circumferential order |m| = 9, as shown in Sec. 5.1.2. Ra-
dial mode decomposition as well as a di�erentiation between upstream and downstream
propagating modes is not feasible with this setup (cf. Sec. 5.1.1).

Steady measurement data of the �ow pressure and the �ow temperature are collected,
both for the control of the operating point and for the application of analytical models of
modal sound propagation. The aerodynamic instrumentation is extensively distributed
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throughout all parts of the turbine. The corresponding measurement planes (MP) are
speci�ed in Fig. 4.2: MP 00 is thus located at the axial position of the struts, MP 10 in
front of the �rst stator vane row, MP 11 between the �rst stator and the rotor, MP 12
respectively behind the rotor and in front of the second stator vane row, MP 31 behind
the second stator, and MP 32 in front of the di�user but behind MP 31. The labeling
of the aerodynamic measurement planes is in accordance with Henke et al. (2016).
Intrusive radial investigations have been carried out in all measurement planes in the

annular �ow path of the LPT. In MP 00 and MP 32 built-in rakes are installed. In the
other four measurement planes ( MP 10, MP 11, MP 12, and MP 31), radial probes are
traversed. However, in this work only the data collected at the Euler radius are used, e.g.
to determine the modal cut-o� conditions as discussed in Sec. 4.3. Therefore, the radial
aerodynamic characteristics of the turbine con�guration in the di�erent measurement
planes are not speci�cally addressed here. A detailed description and interpretation on
the aerodynamics of the considered 80 % axial-gap con�guration at design-point opera-
tion is given by Henke et al. (2016).

In the inlet duct of the turbine in Sec A, the section of main interest as the validation
is carried out with respect to this measurement plane, aerodynamic instrumentation is
mounted next to the microphone ring in upstream direction. Using a permanently in-
stalled probe, total temperature and total pressure are captured near the center of the
duct. The probe is not traversed, thus information on the �ow �eld is gathered at one ra-
dial and circumferential position only. For operation at design point, Henke et al. (2016)
showed that the �ow �eld in MP 00 is fully developed and circumferentially uniform, as
can be expected due to the long undisturbed inlet duct to the test rig. The boundary
layer at the shroud and at the hub covers approx. 10% and 15% of the height of the
�ow path, respectively. The radial variation within the core �ow is negligible. It can
be convincingly assumed that these �ow conditions also re�ect the �ow �eld upstream
of MP 00, namely in the cylindrical duct in front of the turbine stage in Sec A. This
assumption is con�rmed by the results of radial probe traverses carried out in the inlet
duct by Bartelt (2015). For the investigated two-stage turbine con�guration in his work
and a mass �ow rate of ṁ = 6.4 kg/s and a rotational speed of N = 6400 min−1 the �ow
�eld is indeed characterized by a homogeneous distribution of the total pressure and only
small variations in the total temperature in radial direction. In summary, data collec-
tion at one radial position is su�cient here. Furthermore, a uniform homogeneous �ow
pro�le, as required by the used �ow model introduced in Sec. 2.3 can be satisfactorily
assumed.

4.1.3 Instrumentation and Data Acquisition

Aerodynamic instrumentation and data acquisition

The inlet and outlet conditions of the turbine stage are monitored with built-in rake-
type probes. Total temperature and total pressure Kiel-head probes are installed on the
leading edge of each one of the six struts in measurement plane MP 00 at di�erent radial
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positions. At the turbine exit (MP 32), six circumferentially equally distributed rakes of
combined Kiel-head and three-hole probes are used to capture the radial �ow �eld char-
acteristics. These two measurement planes are used to evaluate the boundary conditions
of the aerodynamic measurement volume and to determine the global parameters of the
test rig such as the total pressure ratio.
To characterize the three-dimensional �ow �eld of the turbine con�guration, probes

are radially traversed in between the blade rows, as well as upstream and downstream of
the 1.5-stage con�guration (MP 10 to MP 31). For the measurements, steady �ve-hole
pneumatic probes with a head diameter of 2.5 mm or 5.0 mm are used. Each of these
probes is additionally equipped with a thermocouple to capture the total temperature
of the �ow �eld. The probes are calibrated in the high-speed calibration channel of the
TFD for di�erent yaw angles and pitch angles in the Mach number range from M = 0.1 to
M = 0.9. With the combined information of the measurement data and calibration data,
the static and total values of the aerodynamic quantities as well as three components
of the �ow velocity vector can be calculated iteratively. For further description of the
calibration method and the calculation of the �ow vector's components see Evers (1985),
Herbst et al. (2011), and Aschenbruck and Seume (2015). Further information on the
aerodynamic measurement techniques employed can be found in Henke et al. (2016).
The probe used in Sec A is a one-hole pneumatic probe equipped with a high-precision

PT100 temperature sensor to acquire the �ow's temperature. The probe is installed near
the center of the inlet duct with the head aligned with the duct axis. Thus, the total
values of the temperature and pressure can be measured.

For the aforementioned steady measurements, the pressure data is sampled using a
di�erential pressure transducer of the type PSI 9816 mounted in the respective 98RK-1
rack. The pressure range is set corresponding to the sensor location along the turbine.
The thermocouples of Type K of the probes and rakes are connected to an analogue input
controller by Invensys/Eurotherm (2500MF-A) in combination with a TruRac Reference
Unit Model 847 for reference. The temperature in Sec A is digitized using a PXIe-4357
module by National Instruments.

Acoustic instrumentation and data acquisition

To capture the unsteady pressure �uctuations of the sound �eld in the de�ned measure-
ment planes, high-precision pressure sensors by G.R.A.S. are used. These sensors of the
type G.R.A.S. 46BD are pressure standard microphone sets consisting of a microphone
cartridge and a preampli�er. The chosen set combines the 1/4� pre-polarized conden-
sor microphone G.R.A.S 40BD-S9 with rear-venting and the CCP (constant current
powered) high-temperature preampli�er G.R.A.S. 26CB-HT. According to the manufac-
turer's speci�cation, this microphone set allows measurements from 38 dBA to sound
pressure levels of 168 dB for frequencies up to 70 kHz, which by far exceeds the intended
operating range. The turbine is driven by air and the inlet pressure and temperature
are low in comparison with the conditions found in real engines; still, the sensors are
placed in an environment demanding special properties for long-term high performance.
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By request the microphones were subjected to an arti�cial aging process, which enables
their application in conditions up to temperatures of 140 ◦C. The microphones are
state-of-the-art at the TFD, and their application in the turbine test rig is well proven
(cf. Bartelt (2015) and Laguna (2016)).

Each microphone set is calibrated at the factory as a unit. The sensitivity given in
mV/Pa is measured at 250 Hz with a pistophone, and the frequency response curve is
recorded by the electrostatic actuator method. Regarding frequency response, it can be
safely assumed that the values have not signi�cantly changed since the initial factory
calibration. However, sensitivity may change with time and additionally depends on the
measurement equipment employed such as cable length, cable material, measurement
cards, etc. Taking this into account, the microphone sets are calibrated internally at the
TFD at 1000 Hz using a certi�ed sound calibrator (Brüel and Kjaer, Type 4231). To
ensure highly reliable measurements, special care is taken that the measurement equip-
ment used for the calibration is identical with the equipment used for the campaign.
The calibrator has an accuracy of ± 0.2 dB with an unsteadiness of the emitted sound
pressure level within ± 0.02 dB, where both values state the expanded uncertainty with
a coverage factor of 2. The sets are characterized by low noise and a very �at frequency
response throughout the entire frequency range. In the frequency range of interest, the
average response deviation with respect to the internal calibration carried out at 1000 Hz
is less than ± 0.07 dB. The accuracy of the acoustic pressure measurements is found to
be su�cient.

In turbomachines, high-quality microphone measurements have to be performed un-
der challenging conditions. Besides the thermodynamic restrictions mentioned above,
other factors have to be considered. In the TFD turbine, the sensors are mounted �ush
with the inner casing wall in a way that the microphones are oriented parallel to the
axial �ow direction. The diaphragms are therefore not directly exposed to the �ow as
the �ow radial component of the velocity is negligible. However, risk of damage to the
sensitive surface by small particles in the �ow is still present, and thus has to be consid-
ered. This holds especially true for the microphones placed in the di�user. Contrary to
the homogeneous axial �ow at low Mach numbers in the inlet, the �ow in Sec B has a
strong circumferential component which drives the �ow's particles outward to the casing
wall. After the assembly and the alignment of the test rig, accessibility of the sensors
in the di�user is limited, and replacement in case of a failure is not possible. Consider-
ing this, symmetric protection grids are used for the microphones placed in Sec B. The
use of protection grids is quite common for free-�eld as well as in-�ow measurements.
Besides facing the risk of damage during operation, material damage during assembly is
avoided. While common, possible impacts of protection grids on the accuracy of in-�ow
measurements have to be considered as increased �ow-induced noise and frequency-
dependent resonances, or peaks may occur (cf. Hamid and Horne (1997) or Allen et al.
(2002)). Positive e�ects due the spatial separation between the turbulent �ow in the
boundary layer and the microphones' diaphragms, however, are also discussed by e.g.
Jaeger et al. (2000). Hurfar and Seume (2015) recently con�rmed the results presented
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by Shin et al. (2007), showing that above a Mach number dependent frequency-band,
the noise level measured is indeed higher for microphones with a protection grid than
for sensors without a grid. The author expanded these �ndings for �ow velocities of
Mx > 0.5. Below this frequency band, the sensors with a protection grid detect fewer
pressure oscillations. This could be explained by the aforementioned spatial separation
having an e�ect similar to recessing wall-mounted microphones. Beside the stated de-
pendency on the Mach number, the authors suggested a dependency on the Reynolds
number. Resonances or distinct peaks were not detected in the considered frequency
range from 300 Hz to 25 kHz. Since Hurfar and Seume (2015) used the same sensors
as employed in the LPT for their study, distorting in�uences of the protection grids on
the results of the acoustic measurements are not to be expected. Moreover, statistical
post-processing techniques are carried out to reduce the in�uence of noise (cf. Sec. 5.2).
Nevertheless, as mentioned at the beginning of this section, the use of a protection grid
is omitted for the microphones employed in Sec A.

The acoustic data acquisition system is optimized for unsteady pressure measurements
and is also well proven at the TFD. The core of the PXI Modular System by National
Instrument are three PXIe-4496/4497 modules mounted in a PXIe-1062Q chassis. Each
module accepts 16 analogue inputs. This con�guration allows highly accurate and si-
multaneous data sampling of the 40 microphone signals. The maximum sampling rate
possible with this setup is 200 kHz. However, due to limitations of the memory capac-
ity, data are sampled at a frequency of fS = 216 Hz. A detailed overview and further
speci�cation of the NI PXI data acquisition system are provided by Laguna (2016).
For all measurements, the acoustic data are recorded for one second, which might be

considered short. However, analysis has shown that this measurement time in combi-
nation with the statistical post-processing method applied, results in data with modal
amplitudes of su�cient small con�dence intervals to permit conclusive results.

4.2 Synthetic Sound Field Excitation

4.2.1 Sound generator design and excitation method

Experimental investigations of the propagation of modal sound �elds often concentrate
on acoustic modes produced by rotor-stator interaction, and thus on modes oscillating
at the blade-passing frequency or its harmonics. Hurfar et al. (2016) pointed out that
non-rotor synchronous acoustic modes are also found in the turbomachinery components
of a jet engine and may signi�cantly contribute to the internally measured or radiated
sound �eld. The authors summarized the following possible sources:

(1) rotor-stator interaction in multiple-shaft engines and modern geared turbofans

(2) low-frequency pressure patterns generated by the combustion chambers, and

(3) acoustic resonances e.g. as reported by Hellmich and Seume (2008).
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To investigate acoustic modes of arbitrary frequency as well as of arbitrary mode order,
rather than be restricted to rotor-synchronous modes, an acoustic excitation system has
been used for the acoustic measurements considered in this work. Installed in the inlet
of the LPT, (modal) acoustic sources, as listed above, can be modeled.

In open literature, these excitation systems are often referred to as sound generators

or mode generators. The sound generator applied here has been speci�cally designed
for turbomachinery applications (cf. Bartelt et al. (2013)) and has been successfully
applied by Bartelt (2015) for acoustic measurements in the turbine test rig. Figure 4.1
and Fig. 4.2 show that, the sound generator consists of one ring of sixteen acoustic
excitation units equidistantly mounted on the outer wall of a circular duct segment in
the circumferential direction. Each one of the 16 excitation units consists of one 2� mid-
range compression driver by BMS (Type 4591) supplied with an 8 Ohm audio ampli�er
(RAM Audio RX600), a loading unit in front of the speaker's membrane, a guiding tube,
and an acoustic horn for an improved impedance matching between the guiding tube
and the opening to the duct. The compression drivers employed are characterized by a
maximum sound pressure level of 136 dB, and a �at frequency response in the frequency
range of interest. The loudspeakers can be operated in the frequency range between 200
Hz to 9 kHz. However, below 400 Hz the sound pressure levels achieved are very low.
This frequency therefore marks the lower boundary of acoustic excitation. The design
process of the excitation units has been supported by numerical methods focusing on
achievable sound pressure levels and directivity patterns of the excited sound �eld. De-
tailed information on the design are provided by Bartelt et al. (2013).

For the synthetic excitation of modal sound �elds, a harmonic signal with a speci�c
frequency, phase, and amplitude is assigned to each unit. The generation of the signals
is controlled by two �eld-programmable gate array chips (FPGA). A trigger impulse
is sent to both FPGAs at the same time. The respective wires are of identical length
for simultaneous signals. The control system is carefully designed to ensure only the
smallest deviations from the assigned amplitudes and phases. Hurfar et al. (2016) show
that phase shifts between the generated signals and relative deviation in the amplitudes
are indeed minor.

One major requirement of sound generators for turbomachinery applications is the exci-
tation of sound �elds with a high signal-to-noise ratio as stressed by Bartelt et al. (2013).
The amplitude of the signal can be positively in�uenced by the design of the sound gen-
erator (such as the design of the excitation units, the choice of the loudspeakers, and
by the number of excitation units provided, of course). Furthermore, the signal-to-noise
ratio depends on the excitation method chosen. The latter aims at a dominant excita-
tion of speci�c modal sound �eld patterns to achieve high modal sound pressure levels
in general and speci�cally in comparison to unintentionally excited modes. Bartelt et al.
(2013) veri�ed the possibility of synthetically generating acoustic modes by exciting the
sound �eld near the respective cut-o� frequencies. The assigned amplitudes and phases
were the same for each excitation unit. To control the excitation in terms of the direction
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of the modal rotation, Bartelt (2015) proposes the use of four units with an assigned
phase di�erence of 90° relative to each other. Here, a di�erent excitation method is ap-
plied. The approach chosen, allows control of both mode order and spinning direction,
not only at the cut-o� frequency but also over a wide frequency range. For this purpose,
a speci�c phase is assigned to each loudspeaker. According to Eq. (3.4)

p′±x(m,n)(r, x, θ, t) = Re
{
A±x(m,n) · e

i(ωt−k±xx x−mθ+φ0) · g(r)
}

for m ∈ Z and n ∈ N,

the (complex) circumferential pressure distribution for a spinning mode of circumferen-
tial order m is determined by the expression e−imθ. Thus, for the excitation of a speci�c
mode, the speci�c phase to be assigned to each excitation unit can be calculated based
on the circumferential position θ. To re�ect the spinning nature of the mode, the as-
signed amplitudes of the signals have to be kept identical. Application of this excitation
method allows the excitation of speci�c modes, which are dominant not only at their
cut-o�-frequency but over a wide frequency range as also shown by Mumcu et al. (2016)
and Hurfar et al. (2016).

Besides rotating modes, circumferential standing modes can be intentionally excited
as well. Contrary to the case of a spinning mode, here identical phases are assigned to
each loudspeaker signal whereas the amplitudes vary. Considering a superposition of
two modes with the same amplitude Am spinning in opposite direction (ε = 1), it then
follows from Eq. (3.13) that the amplitude A at the position θ can be obtained by

A(θ) = Am(e−imθ + e+imθ) =
Am
2

(cos (mθ) ). (4.2)

With the excitation methods described above, control of the circumferential mode
order is possible. Control of both the circumferential mode order as well as the radial
mode order can be achieved by using multiple-ring excitation systems. Such a setup has
been tested �rst by Smith et al. (1996) for active noise control systems and has been
subsequently applied by e.g. Enghardt et al. (2002). Recently, Mumcu et al. (2016) and
Hurfar et al. (2016) developed a two-ring sound generator for investigations of modal
sound propagation properties.
Here, however, the speci�c excitation is restricted to the circumferential mode order

due to the one-ring design of the sound generator.

4.2.2 Preliminary investigations in an aeroacoustic wind tunnel

Prior to the application in the turbine, the synthetic mode excitation is tested in the
Aeroacoustic Wind Tunnel (AWT) of the TFD to validate the chosen excitation method
and to verify the functionality of the control system in general. In contrast to the tur-
bine, simple geometric conditions are found in this test rig. In fact, the AWT has been
speci�cally designed to validate numerical simulations and analytical models (cf. Bartelt
et al. (2012)). For the test measurements, the sound generator is installed in the inlet
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of the circular test-section of the AWT. The setup of the test rig is identical with the
setup described by Bartelt et al. (2013) and Bartelt (2015). The test measurements are
carried out without �ow in order to minimize �ow-induced background noise. An illus-
tration of the AWT test rig, as well as information on the relevant parameters for the
signal post-processing are given in the appendix in Sec. A.6. The signal post-processing
method itself is described in the next chapter.

For the measurements, ten microphones are equidistantly employed at one axial po-
sition in the duct segment of the sound generator. The number of sensors allows the
decomposition of modes up to the order |m = 4|. To avoid aliasing e�ects, the sound
�eld excitation is carried out well below the cut-o� frequency of the mode (5,0) of about
f(5,0),cut ≈ 1425 Hz. Beginning at fexc = 400 Hz, the frequency is steadily increased in
intervals of 5 Hz up to fexc = 1200 Hz. Within this frequency range, six modes are found
to be cut-on. The respective cut-o� frequencies are summarized in Tab. 4.1.

The results of the speci�c excitation of the acoustic modes of circumferential order
m = 1 and m = 2 are presented in Fig. 4.3 and Fig. 4.4, respectively. Both modes
are later used to experimentally test the hypothesis that the axial angle of the group
velocity vector can be used to establish similarity of modal sound propagation. In order
to compare the achieved pressure amplitudes of the intended modes with the amplitudes
of the unintentionally excited modes, the respective values of the modes up to the order
m = 4 are given. For the di�erent modes, di�erent colors are used. Here and also below,
the colors purple and orange are used to mark the mode of order m = 1 and m = 2,
respectively. The excitation targets a spin of the sound �eld in (mathematical) negative
direction. The solid and dotted lines of the same color represent modes of the same
order but spinning in a mathematically negative and positive direction, respectively.
The e�ciency of the excitation is evaluated by analyzing the dominance and stability
of the sound pressure level of the intended mode. In the diagrams, the modal pressure
amplitude is depicted in dB over the excitation frequency.Note that the sound pressure
levels achieved work by way of example. Among other things, the overall pressure level
depends on the inlet voltage of the excitation units, which is set here lower than for
the measurements in the LPT. Tests with varying input voltages (not given here) have

Table 4.1: Calculated cut-o� frequencies fcut for the test measurements in the AWT. The
given frequencies are restricted to the modes which are cut-on in the given
range of excited frequencies from fexc = 400 Hz to fexc = 1200 Hz.

m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 0 Hz ≈ 407 Hz ≈ 675 Hz ≈ 930 Hz ≈ 1177 Hz

n = 1 ≈ 850 Hz ≈ 1175 Hz n.a. n.a. n.a.
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Figure 4.3: Synthetic sound �eld excitation of the mode m = 1 in the AWT. The solid
and dashed lines represent a spin in (mathematical) positive and negative
direction, respectively.
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Figure 4.4: Synthetic sound �eld excitation of the mode m = 2 in the AWT. The solid
and dashed lines represent a spin in (mathematical) positive and negative
direction, respectively.
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shown no other results than expected.
To begin with, both test cases show that within the frequency range considered, the

intended mode is indeed, with few exceptions, dominant in the spinning direction as well
as in the mode order. It is found that the dominance is in some instances lost around
the cut-o� frequencies of the other modes. At these frequencies, the amplitude of the
respective modes partly exceeds the amplitude of the intended mode. The absolute
amplitude of the excited mode, however, seems una�ected by the change in the cut-o�
condition of the other modes since an impact on the sound pressure level, such as a
sharp decrease or increase of the amplitude, is not observed.
Generally, it can be observed that the amplitude of the intended mode is highest at its

cut-o�-condition. For the excitation of modem = 1 peaks are found at f(1,0),cut ≈ 407 Hz
and around f(1,1),cut ≈ 1175 Hz. In line with this observation, the maximum sound pres-
sure level for the mode m = 2 is measured around f(2,0),cut ≈ 675 Hz.

In summary, the test measurements in the AWT con�rm that the excitation meth-
ods chosen permit (dominant) excitation of sound �elds of speci�c circumferential mode
order, as well as control of the direction of spinning. Furthermore, the results show that
at cut-o� condition, distinct peaks in the amplitude of the respective modes are to be
expected. Due to the extreme rise of the sound pressure level and the high pressure
gradients detected, it is concluded that measurement data collected at cut-o� conditions
should not be used for the experimental validation.

4.3 Cut-o� Analysis

Acoustic modes which are cut-on in the measurement planes, but cannot be resolved
with the given microphone array, might impair measurement results. Therefore, a cut-
o� analysis is carried out to identify a frequency range for the experimental validation
where an accurate resolution of the full sound �eld is possible. For this purpose, the
modal cut-o� frequencies and the radial as well as the circumferential mode order are
determined for the operating points under consideration .

Generally, with respect to the given microphone arrays consisting of 20 sensors em-
ployed at one axial position, two limitations with respect to the resolvable mode order
apply:

(1) m ≤ |9|
Acoustic modes with a circumferential mode order exceeding the maximum resolv-
able mode order of m = |9| will inevitably cause an inaccurate decomposition of
the sound �eld as aliasing e�ects distort the spatial DFT (cf. Sec. 5.1.3). Acoustic
modes of an order higher than m = 9 thus might impair measurement results and
are therefore limiting the range of advisable excitation frequencies.

(2) n = 0 for m ≥ 1
The sensor distribution does not support a radial decomposition of the sound �eld.
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Hence, the amplitudes of modes with n > 0 will interfere with the amplitude of the
respective mode with a radial order n = 0 as a distinction between the di�erent
radial mode orders is not possible. One exception is the mode of order m = 0:
As the validation concentrates on modes with m ≥ 1, radial components of the
circumferential mode m = 0 are not limiting.

The �rst limitation speci�es the maximum resolvable circumferential mode orderm. The
second limitation refers to the resolvable radial mode order n. These two limitations set
the general boundaries for the excitation frequencies advisable to be used for the valida-
tion measurements. Besides being speci�cally excited, modes violating these limitations
may also be unintentionally excited by the synthetic excitation (cf. Fig. 4.3 or Fig. 4.4)
or might be naturally excited in the other sections of the LPT and traveling upstream
to the acoustic measurement plane Sec A (cf. Fig 4.2). To get as complete a picture as
possible and to accurately determine a suitable frequency range for experimental valida-
tion, the cut-o� analysis is therefore carried out for all sections where major di�erences
in the cut-o� conditions are to be expected.

The cut-o� analysis is based on the approximate geometric and �ow model outlined
in Sec. 3.1.1. For the inlet duct (Sec A) and the measurement plane directly upstream
of the �rst stator (MP 10), the cut-o� frequency is given by Eq. (3.10). In between the
blade rows and downstream of the turbine stage, a strong circumferential �ow component
Mθ has to be considered. The cut-o� frequency for these �ow conditions is calculated
according to

f(m,n)cut =
c

2π

(
β

(σ)
(m,n)

√
1−Mx

2 + Mθ
m

R

)
, (4.3)

which is derived from the axial wave number

k±xx =
−Mx(k −Mθ

m
R

)±
√

(k −Mθ
m
R

)2 − (1−Mx
2)
(
β

(σ)
(m,n)

)2

(1−Mx
2)

. (4.4)

This formulation of the axial wave number is taken from Kousen (1996) and is based
on the approximation of a solid body swirl (cf. Bartelt (2015)). When interpreting the
results of the cut-o� analysis, it has to be kept in mind that the analytical models only
approximate the conditions in the LPT and therefore deviations between the cut-o� fre-
quencies measured and the calculated values are to be expected. The cut-o� conditions
in the measurement planes Sec A to MP 31 are calculated using the aerodynamic data
collected near the center of the test section or at the Euler radius as explained in the
previous section. In Sec B, only acoustic instrumentation is employed. Therefore, the
results of the probe measurements in MP 31 are used for the analysis in the di�user1.
Thus, deviations in the calculated cut-o� conditions from real conditions are to be ex-
pected, particularly in this section.

1The cut-o� conditions in MP 31 and Sec A then di�er due to the di�erent geometry only.
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The calculated cut-o� frequencies are depicted in the diagrams in Fig. 4.5 and Fig. 4.6
for part-load operation and design-point operation, respectively. The frequencies are
plotted on the abscissa and the circumferential mode order on the ordinate. The radial
mode orders are represented by di�erent markers. For example, modes with n = 0 are
represented by circles and modes of order n = 1 by squares. The BPF and its harmonics
are represented by the dashed vertical lines. The solid horizontal red lines show the
boundaries of the spatial circumferential resolution. The ranges of suitable excitation
frequencies ultimately identi�ed are marked grey in the diagrams.

First, it can be observed that the cut-o� frequencies in Sec A and in MP 10 are the
same for both directions of spinning. In contrast, for Mθ > 0, the cut-o� frequencies of
the modes rotating in the direction of the rotor are higher than for the counter-rotating
modes (MP 11, MP 31, and Sec B). Vice versa, downstream of the rotor in the measure-
ment plane MP 12 where Mθ < 0 applies, the cut-o� frequencies of the modes rotating in
the direction opposite to the rotor are higher than the respective counter-rotating modes.
These relations result in a characteristic horizontal symmetry of the cut-o� frequencies
with respect to the mode of order m = 0 for a purely axial �ow, and in a characteristic
asymmetry in the presence of a circumferential �ow component, as also pointed out by
Bartelt (2015). Excluding the inlet duct, modes with non-zero radial order are cut-on
only well above or around 2 kHz for both operating points. In Sec A however, the circu-
lar duct without a hub favors the propagation of radial sound �eld components, and the
respective cut-o� frequencies are considerably lower than in the other sections. In fact,
it is found that the cut-o� frequency of the mode (1,1) in this section limits the range
of the excitation frequency suitable for validation2. The upper boundary is then set
by f(1,1)cut ≈ 1288 Hz and f(1,1)cut ≈ 1320 Hz for part-load operation and design-point
operation, respectively3.

In summary, the cut-o� frequencies limiting an accurate resolution of the modal sound
�eld in the LPT are determined based on an analytical study of the modal cut-o� frequen-
cies. Possible shifts of these calculated cut-o� frequencies during test rig operation are to
be expected since a �ow model is used for the analysis which only approximates the real
�ow conditions in the LPT. Hence, a safety margin should be applied. The maximum
excitation frequency for both operating points is therefore reduced to fexc = 1200 Hz
compared to the calculated values given above. As a consequence of this restriction on
the maximum frequency of propagating modes, the synthetic sound �eld excitation for
the validation measurements is restricted to modes of the circumferential order m = |3|.

2Note that the mode of order (0,1) does not limit the range of suitable excitation frequencies as described
at the beginning of this section (second limitation).

3For completeness, it shall be added that for design-point operation, the acoustic modes of order m =
|6| produced by rotor-stator-interaction at the BPF are cut-on throughout all sections of the LPT.
However, this is not relevant here, as the blade-passing-frequency is excluded by the suitable frequency
range identi�ed.
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Figure 4.5: Cut-o� conditions for di�erent acoustic modes (m,n) in the measurement
planes of the LPT for part-load operation. The areas marked grey give the
range of suitable excitation frequencies for the validation measurements with
respect to the resolvable modes.
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Figure 4.6: Cut-o� conditions for di�erent acoustic modes (m,n) in the measurement
planes of the LPT for design-point operation. The areas marked grey give
the range of suitable excitation frequencies for the validation measurements
with respect to the resolvable modes.
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5 Signal Processing Methods

In this work, the propagation properties of speci�c acoustic modes at discrete frequencies
are examined. Hence, the analysis of the obtained measurement data is carried out in
the frequency domain. This chapter addresses the method chosen to decompose the
sound �eld in its modal components, and the statistical methods selected to evaluate
the processed data.
In section 5.1, the modal decomposition method applied is presented and discussed.

First a short introduction on di�erent modal decomposition methods and the accompa-
nying challenges in practical applications are given (cf. Sec. 5.1.1). Subsequently, the
applied two-dimensional discrete Fourier Transform (2D-DFT) for modal decomposition
is described in detail in Sec. 5.1.2. The mathematical description is based on the work
of Oppenheim and Schafer (2014), if not stated otherwise. Numerical approximation er-
rors of the Fourier Transform inherently generated by the discretization of the collected
signal are discussed in 5.1.3. The method applied is validated by means of numerically
generated data sets (cf. Sec. 5.1.4).
In section 5.2 statistical methods to account for the impact of stochastic noise on

the results of the measurements are discussed. The application of statistical measures
necessitates a sample size exceeding one. For this purpose, the collected pressure data is
segmented in individual intervals. The concept chosen for segmenting is described and
the statistical measures employed are de�ned (cf. Sec. 5.2.1 and Sec. 5.2.2, respectively).
In the third and last section of this chapter, in Sec. 5.3, undesired background noise of
the measurements, mainly produced by the LPT itself, is analyzed and the impact on
the results of the modal decompositions, and thus on the results of the validations, is
discussed.

5.1 Spectral Analysis and Modal Decomposition

5.1.1 Decomposition methods

A modal sound �eld propagating in a circular duct is characterized by its circumferential
and radial mode order, m and n, respectively. A sound �eld composed of several super-
posed modes (m,n) is then fully described by the modal amplitude, the modal initial
phase and the axial as well as circumferential direction of propagation of each mode. To
obtain these quantities, the sound pressure �eld has to be decomposed in its circumferen-
tial and radial components. The circumferential modal quantities can be determined by
unsteady pressure sensors placed around the circumference of the speci�ed test section.
The radial decomposition of the sound �eld poses a greater challenge. For the determi-
nation of radial pressure distribution, the collected data are most commonly evaluated
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by performing a so-called Radial Mode Analysis (RMA). This technique is based on an
analytical or numerical solution of the linear set of equations according to Eq. (3.13),
which describe in-duct sound propagation. Two setups for data collection for the RMA
are state-of-the-art: (1) implementation of �xed or traversable radial microphone rakes
in the respective duct section ( as applied e.g. by Holste et al. (1997) and Enghardt et al.
(2001) as two of the �rst ones), or (2) implementation of a speci�cally designed array of
axially and circumferentially distributed sensors mounted �ush with the casing wall as
proposed by Enghardt et al. (1999) and applied for example by Tapken et al. (2009) and
Enghardt et al. (2009). The �rst setup permits the direct measurement of radial pres-
sure distribution. However, as pointed out by Enghardt et al. (1999), the application of
radial rakes inherently alters the aerodynamic and acoustic �eld in the test section due
to wake e�ects introduced by the probes. On the other hand, the second approach is
based on a theoretical model of the propagating sound �eld and the achievable accuracy
is therefore limited by the actual �ow conditions in the machine respective the applied
acoustic model. In the end, both methods have advantages and disadvantages and the
application has to be decided on case by case. For the low pressure turbine test rig con-
sidered here, Laguna (2016) applied the RMA using microphones wall-�ushed mounted
on a circumferentially traversable measurement unit integrated in the annular �ow path
of the test rig.

Here, with the given measurement setup of only one circumferential microphone ring
in Sec A and Sec B, the investigation concentrates on the analysis of the circumferential
components of the propagating sound �eld1. A di�erentiation between the modes trav-
eling upstream and downstream is excluded by the setup. The sound pressure �eld is
resolved in its spectral circumferential components by applying a two-dimensional dis-

crete Fourier Transform to the collected data. This two-step spectral analysis involves a
discrete Fourier Transform with respect to time and space, taking advantage of the time
and space harmonic propagation of the acoustic modes. This procedure, which requires
a equidistant circumferentially distribution of the sensors, is commonly also applied in
the before mentioned radial decomposition.

Completeness demands that it should be mentioned that several approaches using
cross-correlation methods to resolve the modal �eld exist. Sijtsma and Zillmann (2007)
give an overview of correlation methods and compare the di�erent techniques with re-
spect to their performance in the presence of background noise for far-�eld and near-�eld
measurements. Furthermore, Bartelt (2015) proposed a modal decomposition method,
which is based on a spatial Fourier Transform of the bandpass-�ltered sensor signals.
Performing the Fourier Transform in the circumferential direction for each discrete time-
step, Bartelt (2015) subsequently used the Hilbert Transform and the Single Value De-
composition to determine the modal spinning directions, the modal amplitudes, and the
modal phases.

1Note, if not stated otherwise, hereinafter the terms modal decomposition, modal amplitudes, and modal
phases always refer to the evaluation of the circumferential modal components of the considered sound
pressure �eld.
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5.1.2 Two-dimensional discrete Fourier Transform

The Fourier Transform is a powerful and established mathematical tool to decompose
an arbitrary periodic or aperiodic continuous signal into its (spectral) harmonic compo-
nents. Handling measurement data, the signal is not continuous but discrete and �nite
in length. The corresponding Fourier Transform is referred to as the discrete Fourier
Transform. Considering now a continuous and N-periodic signal x = f(η) being sampled
at regular intervals for a speci�c period of time, then xn := (x0, x1, . . . , xN−1) repre-
sents the respective sequence of N data points. Assuming the sequence is N-periodic
(xn = xn+N), the corresponding DFT of the sequence xn is generally written as

Xk =
N−1∑
n=0

xne−i2π kn
N for k = 0, 1, 2, . . . N − 1. (5.1)

The transformation according to Eq. (5.1) is referred to as the forward DFT, whereas

xn =
1

N

N−1∑
k=0

Xke
i2π kn

N for n = 0, 1, 2, . . . N − 1 (5.2)

gives the inverse DFT (cf. Oppenheim and Schafer (2014)).
The output (sequence) Xk, the forward DFT, represents the complex-valued, evenly

spaced spectrum of the sequence xn. In accordance with the input sequence, the DFT
itself is �nite and of the length N . The integer k corresponds to the kth-spectral com-
ponent. The (normalized) angular DFT frequencies are de�ned over an interval of the
length 2π with an equal spacing of 2π/N . In most cases, the signal x is a function
of time or space and Xk gives the frequencies in s−1 = Hz or m−1, respectively. The
underline (.) indicates the complex nature of the output sequence. With Xk = Xke

i]Xk ,
the magnitude and phase are given for each spectral component.

In the inlet and the di�user of the LPT, the unsteady (sound) pressure p′ is measured
simultaneously by J microphones equally distributed around the circumference of the
test rig's casing. The data is thereby collected with the sampling frequency fS. Thus, the
pressure signal detected by each microphone is sampled at regular intervals of time and
space resulting in J discrete-time signals p′n,j for each measurement plane. The integer
j speci�es both the considered microphone and the respective circumferential position
of the equidistantly-spaced sensors. The integer n denotes the discretized measurement
time respective time step. Hence, the discrete signal p′n,j is a two-dimensional sequence
of time and space. To determine the properties of the propagating sound �eld, two
discrete Fourier Transforms are subsequently performed with respect to these variables.
At �rst, a temporal DFT and afterwards a spatial DFT is performed. Both Fourier
Transforms are consecutively described below. An overview on the di�erent steps of the
modal decomposition method applied here is given in Fig. 5.1. In the illustration the
input and output sequences of the Fourier Transforms are expressed as matrices.
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Temporal DFT

Spatial DFT

p′ =


p′0,0 p′0,1 . . . p′0,J−1

p′1,0 p′1,1 . . . p′1,J−1
...

...
. . .

...
p′N−1,0 p′N−1,1 . . . p′N−1,J−1



Discrete-time pressure data
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F0,0 F0,1 . . . F0,J−1
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...
...

. . .
...

...
AN/2,−(J/2−1) . . . AN/2,0 . . . AN/2,J/2−1



Mode order m

Fr
eq
ue
nc
y
f

Complex amplitudes of the time-frequency spectrum

Fr
eq
ue
nc
y
f

Microphone j

T
im
e
st
ep

n

Complex amplitudes of the space-frequency spectrum

Microphone j

sp
ec
i�
ed

by
k

sp
ec
i�
ed

by
k

T
em

po
ra
l
D
F
T

Spatial DFT

Figure 5.1: Concept of the 2D-DFT modal decomposition method for J equally-spaced
circumferential measurement positions / microphones and N data points /
time steps.
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Temporal DFT

First, the temporal DFT Fk,j of the pressure data sampled by each microphone j is
determined. Applying Eq. (5.1) to the discrete-time signal p′n,j of length N , where N is
assumed to be an even number2, the DFT

Fk,j =
N−1∑
n=0

p′n,je
−i2πf∗kn for k = 0,±1,±2, . . . ,±N/2− 1,−N/2 (5.3)

provides the complex temporal-frequency spectra of the sampled real-valued pressure
data p′. The DFT Fk,j thus represents the complex-valued amplitude in the time fre-
quency domain. This procedure is illustrated in the �rst half of Fig. 5.1. In Eq. (5.3)
the parameter f ∗k denotes the discrete time-domain frequency of the spectral component
k given by the relation

f ∗k =
k

N
. (5.4)

The frequency is normalized by the number of data points N . The continuous-time
frequency fk and the discrete frequency f ∗k are related by

fk = f ∗kfS, (5.5)

where fS is the sampling frequency in data points per second (cf. Oppenheim and
Schafer (2014)). The continuous data are sampled over a �nite period of time T , where T
corresponds to the time of measurement. Thus, fk can be interpreted as the kth-harmonic
of the fundamental frequency 1/T with a frequency resolution of

∆f =
1

T
. (5.6)

With |N/2| being the maximum value for k, the highest resolvable continuous-time fre-
quency equals half the sampling frequency and therefore just the frequency given by the
Nyquist-Shannon sampling theorem. According to Oppenheim and Schafer (2014), this
frequency is commonly referred to as the Nyquist frequency.

In Eq. (5.3), the integer k is chosen to take on positive as well as negative values.
This is contrary to the general formulation according to Eq. (5.1), where the integer k is
limited to real values. As a result of the de�nition of k in Eq. (5.3), the frequencies f ∗k
and fk are positive-valued as well as negative-valued. As far as the mathematical side
is concerned, changing the de�nition of k is valid as it does not alter the result of the
transformation. As mentioned before, the normalized angular frequencies range over an
(arbitrary) interval of the length 2π. With the input sequence being periodic (or assumed
to be periodic), the DFT is also periodic (Xk = Xk+N), and the analysis of the interval
[0, 2π[ therefore yields the same result as analyzing the interval [−π,+π[ (cf. Oppen-
heim and Schafer (2014)). Based on this observation, a second important property of the
Fourier Transform becomes relevant for the current application, namely the symmetry

2In case of an odd number of N , k runs from zero to ±(N − 1)/2.
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property of the DFT. For a real-valued input sequence, the DFT is conjugate-symmetric
and XN−k = X∗k holds true, where (.)∗ denotes the complex conjugation. Thus, the
frequency spectrum is paired and the temporal DFT for [0, π] also speci�es the interval
[−π, 0] (cf. Oppenheim and Schafer (2014)).
The discrete time-signal p′n,j is real-valued. Hence, for the temporal DFT Fk,j of

the pressure data p′n,j, non-redundant information are therefore only obtained for half
of the spectrum. Considering this symmetry, the integer k in Eq. (5.3) is reduced to
k = 0, 1, 2, . . . , N/2 − 1, N/2 for the subsequent processing. This results in N/2 + 1
complex amplitudes of the time-frequency spectra Fk,j, which are determined for each
microphone j (cf. second matrix of Fig. 5.1).

Spatial DFT

So far, for each circumferential position j = 0, 1, . . . J−1, the unsteady pressure data has
been analyzed with respect to the spectral components in the time-frequency domain.
To obtain information on the modal quantities of the pressure �eld (mode order, modal
amplitudes, and modal phases), the complex temporal DFT Fk,j are used as the input
sequence for a spatial Fourier Transform:

Ak,m =
J−1∑
j=0

Fk,je
−ik∗mj for m = 0,±1,±2, . . . ,±J/2− 1,−J/2 (5.7)

with
k∗m = m

2π

J
. (5.8)

The DFT Ak,m gives the spatial frequency spectrum, where the integer k speci�es the
frequency f ∗k . The integerm is de�ned here - with respect to the given microphone arrays
- according to an even number of inputs J . The latter thereby denotes the implemented
number of sensors. The normalized discrete spatial frequency k∗m in the exponent of Eq.
(5.7) is then equivalent to the (normalized) circumferential wave number of the searched
for circumferential mode order. Interpreting J/(2πR) as the spatial sampling frequency
in measurement positions per meter, the continuous circumferential wave number is
given by

km =
k∗mJ

2πR
, (5.9)

where R is the radius of the circumferential microphone array, here equivalent to the
outer duct radius of the respective test section (turbine inlet or di�usor). Inserting Eq.
(5.8) in Eq. (5.9) yields

km = m
2π

J

J

2πR
=

m

R
. (5.10)

Comparing the equation above with the familiar relation between the circumferential
modal wave number and the mode order according to Eq. (3.12), it becomes apparent
that the integer m of the output sequence of the spatial DFT corresponds to the cir-
cumferential mode order and km indeed to the circumferential modal wave number kθ
as stated before.
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The input sequence Fk,j to the spatial Fourier Transform is complex-valued, and thus
the spectrum of the spatial DFT Ak,m is no longer paired as is the case for the temporal
DFT. As a result, the symmetry-property does not hold and the spectrum contains only
non-redundant information (cf. lower part of Fig. 5.1). Analogous to the integer k, the
integer m is chosen to take positive and negative values. Thus, not only the mode order
but also the spinning direction are given directly. One half of the spectrum represents the
acoustic modes spinning against the direction of the circumferential sensor placement,
the other half represents the modes spinning in the direction of the sensor placement.3

Eventually, the amplitude Am and the phase ϕm for each modal component of the
pressure �eld can be obtained from the complex spatial DFT Ak,m at every (temporal)
frequency f ∗k .
The highest mode order which can be resolved, the Nyquist mode, depends on the

number of microphones J instrumented in the test section. Both, the circumferential
microphone array in the inlet and the array in the di�user of the LPT consist of 20
microphones each. Thus, the maximum mode order resolvable is m = ±9 which cor-
responds to J/2 − 1. Accordingly J − 1 complex amplitudes of the spatial frequency
spectra are determined (cf. third matrix in Fig. 5.1)4.

Note: During the measurement campaign, two sensors in the di�usor were found to
be defective. Because of restricted access to this section of the test rig, exchanging the
microphones was not possible. Furthermore, at two positions in Sec A, located next to
the welding seam of the circular duct, the sound pressure measurements are altered by
this geometric feature. The incorrect time measurement data may falsify the results of
the 2D-DFT modal decomposition method, and therefore need to be corrected. This is
done by interpolating the respective data in the time-frequency domain using the data
collected at the non-a�ected sensor positions in the respective measurement plane. The
interpolation is thus carried out subsequent to the �rst step of the 2D-DFT.

5.1.3 Approximation errors

The input signal to the temporal as well as the spatial Fourier Transform is discrete and
�nite in length. Consequently, the same holds true for the sets of the respective DFT-
frequencies, which are �nite and limited to plus/minus the Nyquist frequency/mode.
Thus, the DFT only approximates the sampled continuous signal. Commonly known,
the main types of errors which occur due to the discretization are aliasing and spectral

leakage. To what extent these errors are accounted for in the implemented algorithm
used for the modal decomposition, is discussed below.

3The proper assignment of the mode order to the respective circumferential spinning direction depends
on the chronological order of the input sequence.

4If the number of inputs is odd, the (temporal or spatial) frequency vector is symmetric relative to
zero. Thus, a corresponding negative frequency exists for every positive frequency and vice versa. In
case of real-valued inputs, this property is trivial as one half of the spectrum is redundant, anyway.
However, in case of complex-valued inputs, an even number of inputs, as is the case here, results in a
non-symmetric frequency vector, and the highest frequency possible to resolve for both signs is reduced
by one compared with the absolute value of the overall highest resolvable frequency.
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Aliasing

The e�ect of aliasing occurs if frequencies in the continuous-time signal that are higher
than the Nyquist frequency exist. These non-resolvable frequencies will then alter the
lower frequencies in the spectrum in amplitude and phase. Generally, to minimize the
e�ect of aliasing, the temporal-sampling frequency should be at least twice the highest
frequency in the signal- As the synthetic sound �eld generation is carried out at low
frequencies to avoid modes with a radial order of n > 0 propagating in the measure-
ment section (cf. Sec. 4.3), the highest frequencies with signi�cant amplitudes can
be expected at the BPF or multiples of the BPF. The chosen sampling frequency of
fS = 216 Hz is about 18 times the blade-passing-frequency at design-point operation,
and thus adequately high to avoid distortions in the time-frequency domain.
Aliasing may also occur in the space-frequency domain and alter the amplitudes and

phases of the determined modes. Analogous to the time domain, the e�ect can be mini-
mized by sampling at spatial intervals smaller than half the (circumferential) wavelength
of the mode of highest circumferential order that is able to propagate in the test section.
In other words, with the given measurement setup of 20 sensors distributed around the
circumference, the existence of circumferential modes of an order higher than m = |9| in
the test section will distort the spatial DFT. Based on an analytical approach, a cut-o�
analysis has been carried out for the di�erent operating points con�rming the absence of
naturally excited modes of higher order than the given Nyquist mode at the frequencies
regarded. Furthermore, the order of the intentionally excited modes is limited tom = |4|
so that distortion e�ects in the spatial DFT are not be expected. The results of this
cut-o� analysis are presented in Sec. 4.3.

Spectral leakage

In practical applications, signals are often sampled over a non-integer number of periods.
This is unavoidable, for example, if several frequencies exist in the signal that are not
multiples of one another, if the frequencies and thus the periodicities in the signal are
unknown, and if the signal contains stochastic components. Sampling at non-integer
numbers of the harmonic period generally might lead to that

(1) continuous-frequency components in the signal are not represented by a respective
DFT-frequency.

(2) a discontinuity between the �rst and the last data point of the input sequence
arises.

Both consequences result in spectral leakage. If there are frequencies in the original
signal that do not match a DFT-frequency as outlined in (1), components of the non-
represented frequencies spread over (or leak into) adjacent frequencies, resulting in a
smeared spectrum. This e�ect cannot be completely avoided and has to be taken into
account when analyzing frequencies which are in the immediate vicinity of dominant
non-DFT frequencies.
The discontinuity in the input sequence addressed in (2) leads to high frequencies in the

DFT-spectrum that were originally not present in the continuous signal. Furthermore,
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these frequencies might induce aliasing if they exceed the Nyquist frequency, or induce
spectral leakage if they do not match the DFT-frequencies. To mitigate the e�ect of
these arti�cial frequencies, the Hanning-function given by

wn = 0.5

(
1− cos

(
2π

n

N − 1

))
for n = 0, 2, 3, . . . N − 1 (5.11)

is used here as a window function with the objective of smoothing the discontinuity
in the sequence (cf. Oppenheim and Schafer (2014)). The function is applied to the
discrete-time signal p′n,j prior to the computation of the temporal DFT.
Due to the periodic pressure pattern of modal sound �elds, a circumferential periodic

pressure distribution at the deliberately excited frequencies is assumed. Therefore, ap-
plying a window function to the input sequence Fk,j of the spatial Fourier Transform is
not necessary.

In summary, the impact of aliasing on the temporal as well as spatial DFT can be
assumed to be negligible due to the high sampling frequency in the time domain and
su�cient spatial distribution of sensors, respectively. Spectral leakage is avoided by
applying a window function. In conclusion, high quality data may be expected.

5.1.4 Validation of the 2D-DFT

The previously described two-dimensional DFT modal decomposition method is vali-
dated using numerically generated data sets. Using Eq. (3.4), which describes sound
propagation in a hard-walled duct, the time-pressure data of di�erent speci�c modal
sound �elds are calculated at 20 equally-spaced circumferential positions in accordance
with the measurement setup in the LPT (J = 20). The data sets are generated at a
time step of ∆t = 1/216 s, thus re�ecting the sampling frequency of the measurements of
fS = 216 Hz. The radius R in Eq. (3.4) is set equal to the respective circular inlet duct of
R = 0.248 m. No �ow is assumed (Mx = Mθ = 0). The data sets generated are analyzed
in the time-frequency and space-frequency domain, and the quantities determined are
compared with the results of a theoretical analysis and with the exact solutions given
by Eq. (3.4).
Three di�erent test cases are considered:

(1) a mode of order one spinning in clockwise direction (m = +1) with the modal
amplitude A1 and modal phase ϕ1,

(2) a corresponding mode spinning in counter-clockwise direction (m = −1) with the
modal amplitude A2 and modal phase ϕ2, and

(3) a circumferential standing mode composed of both modes according to (1) and (2)
with a modal amplitude relation of ε = A1

A2
= 1 as de�ned in Sec. 3.1.1.

For all test cases, the radial mode order is set to zero (n = 0). To study the accuracy
of the determination of the modal phases, di�erent phase shifts ∆ϕ with respect to the
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phase calculated for test case (1) are considered. The modal amplitude of each mode is
set to match

A1 = A2 = Jm(u(m,n)). (5.12)

The expected amplitude of the spatial DFT Ak,m is thus given by Eq. (5.12) for all test
cases. For the test cases m = ±1, Eq. (5.12) yields Ak,(1) = Ak,(−1) = Fk,j = 0.5819.

In the polar graphs on the left side of Fig. 5.2, the vectors of the calculated tempo-
ral DFT Fk=kexc,j are depicted in the complex plane. In line with the given number of
circumferential positions, 20 vectors are shown. The gradual change in color of the vec-
tors allows a visual identi�cation of the di�erent direction of spinning between test case
(1) and test case (2). The vectors of the spatial DFT Ak=kexc,m=mexc are displayed in the
polar graphs in the middle of the �gure. As mentioned previously, the modal phase of
the spinning mode considered in test case (1) serves as reference for the other test cases.
The respective vector (marked in grey) is therefore also depicted in the spatial polar
graphs of test case (2) and (3). The analysis is completed by the absolute amplitude
and phase characteristic of the temporal DFT shown in the diagrams on the right side
of the �gure. In these diagrams, the modal amplitudes and the modal phases for each
vector of the temporal DFT are given. The sensors are equally distributed in circum-
ferential direction. In the diagrams, the correct sequence with respect to the spatial
position is considered, which is indicated by the connection of the points. The diagrams
thus show the characteristic of the quantities considered in circumferential direction. In
order to stress the periodicity of the circumferential mode propagation, the last sensor
(here j = 20) corresponds to the �rst sensor (here j = 0).

First a theoretical investigation of the expected results is carried out in order to verify
the results of the 2D-DFT for the test cases depicted in Fig. 5.2. For the phase and am-
plitude characteristic of a pure spinning mode (ε = 0) in the time domain, the following
relations can be derived:

(1) The temporal phase di�erence between two signals detected at adjacent circumfer-
ential positions has to follow 2π

mJ
, with J denoting the considered number of equally

distributed measurement positions. The sign of the phase di�erence thereby de-
termines the direction of spinning.

(2) Due to the rotation of the sound �eld, the temporal amplitude is identical between
all signals and for all positions and corresponds to the modal amplitude. Hence, in
case of a spinning mode, Eq. (5.12) also gives the maximum temporal amplitude
(Fk,j = Ak,m) at any arbitrary circumferential position.

The respective quantities for a standing modal sound �eld can be studied in the form
of two superposed sinusoidal waves of the same frequency and amplitude, propagating
in opposite directions. As is well known, the latter results in a standing wave. The
maximum temporal amplitude is no longer independent of the position, but a function
of space, and the phase di�erence between two arbitrary positions is either zero or ±180◦.
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(1) Spinning mode of order m = 1 (A1 = 0.58, A2 = 0,∆ϕ1 = 0, ε = 0):
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(2) Counter-spinning mode of order m = −1 (A1 = 0, A2 = 0.58,∆ϕ2 = 70◦, ε = 0):
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(3) Standing mode of order m = |1| (A1 = A2 = 0.58,∆ϕ1 = 45◦,∆ϕ2 = 100◦, ε = 1):
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Figure 5.2: Validation of the 2D-DFT using numerically generated test cases considering
the mode m = |1| and 20 sensors equally distributed in circumferential di-
rection. Left: Complex vectors of the temporal DFT Fk,j. Center: Complex
vector(s) of the spatial DFT Ak,m. Right: Temporal amplitude and phase
characteristic.
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Figure 5.2 shows that, both the clockwise-spinning mode and the counter-clockwise
spinning mode are characterized by an even distribution of the vectors of the temporal
DFT. The phase di�erence between two adjacent circumferential positions is constant
and equals 18◦, thus following the relation 2π

mJ
. For the mode with the order m =

1, the phase gradient is negative, describing a clockwise rotation of the sound �eld.
Correspondingly, the sound �eld of the second test case (m = −1) is characterized by a
positive phase gradient that identi�es the counter-clockwise direction of spinning. For
both test cases, the vectors of the temporal DFT are all of identical length. Thus,
the temporal amplitude is the same for every position. Furthermore, the temporal
amplitude matches the calculated spatial amplitude as stated above. Comparing the
amplitudes with the exact solution given by Eq. (5.12), it is found that the amplitudes
are determined correctly up to the fourth decimal place by the modal decomposition
method. The small variations are due to the time step chosen and the considered number
of circumferential positions, as these de�ne the spatial resolution. In addition, the
assumed phase shift of ∆ϕ2 = 70◦ between the modes considered in test case (1) and
(2) is found to be accurately reproduced.
According to the theoretical consideration of standing modes carried out beforehand,

the vectors of the temporal DFTs calculated for test case (3) vary in length; correspond-
ingly, the amplitude varies relative to the circumferential position. The phase di�erence
between two positions is either zero or ±180◦ as claimed. Furthermore, the modal am-
plitudes match the calculated results according to Eq. (5.12), and the modal phase
di�erences match the preset values of ∆ϕ1 = 45◦ and ∆ϕ2 = 100◦.

Thus, for all three test cases, analysis of the temporal and spatial DFTs yields the
expected results. Similar investigations for the mode of order m = |2| are given in the
appendix in Sec. A.7 for con�rmation. The analysis here concentrates on the valida-
tion of the method for the special case of a pure spinning acoustic mode with ε = 0,
and for the case of a pure circumferential standing mode with ε = 1. Validation of the
algorithm has also been systematically performed for sound �elds composed of multiple
modes of di�erent order. For this purpose, the number of superposed modes, the modal
amplitudes, and the modal phases have been varied. The respective values determined
from the spatial DFT were always found to match the exact solution highly precisely.
In conclusion, the 2D-DFT reliably evaluates the modal quantities and is therefore

found suitable for signal processing in this work.

5.2 Statistical Analysis

5.2.1 Overlapped-segmented DFT

In the �rst step of post-processing, prior to the calculation of the DFTs, each sampled
pressure signal is divided into data segments (time intervals) of equal length as illustrated
in Fig. 5.3. This procedure of segmenting in the time domain is carried out in order to
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Figure 5.3: Concept of segmenting of the discrete-time signal p′n,j of length N sampled
at the circumferential position j.

statistically evaluate the calculated modal quantities5.. The following description of the
overlapped-segmented DFT carried out here is based on the work of Oppenheim and
Schafer (2014)

Di�erent concepts for segmenting exist. In the simplest form, the original sequence
of length N is divided into S segments as shown in Fig. 5.3. With L denoting the length
of each segment, then S = N/L gives the number of segments obtained. In this case,
each data point is uniquely assigned to one segment, and there is no overlap between
segments. Alternatively, segments can be allowed to overlap in such a way that the same
data points are assigned to two adjacent segments. The reason for this is as follows: As
explained in Sec. 5.1.2, a Hanning-window is applied to the time data sequence prior to
the calculation of the DFT. According to Eq. (5.11) the Hanning-window tapers o� the
amplitudes of the collected data to zero towards each end of the data sequence. Now,
as the window is applied to each segment, a large part of the data would not be used
if the segments do not overlap as also pointed out by Oppenheim and Schafer (2014).
Overlapping thus helps maximizing the information extracted from the data sequence.
The concept of overlapping is carried out here as illustrated in Fig. 5.4.
The original pressure sequence p′n,j collected by the microphone j is divided into S

segments according to

p
′[s]
l,j = p′(s−1)R+l,j for l = 0, 1, 2, . . . , L− 1 and s = 1, 2, . . . , S, (5.13)

where the integer s, written as a superscript (.)[s], denotes the respective segment. The
equation above gives a general description where the parameter R denotes the number
5Literature on this topic can be found under the search terms Time-dependent Fourier Transform or
Short-time Fourier Transform.
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of data points between the starting points of two adjacent segments. For the parameter
R, the length L of each segment, and the length N of the original data sequence, gen-
erally the condition R ≤ L ≤ N holds. In this work speci�cally, the segments are set
to overlap by one half of their length, here, R = L/2, as suggested by Oppenheim and
Schafer (2014). In this case, all data points are assigned to two segments, so that no
information is lost by windowing6.

The drawback of segmenting is a drop in frequency resolution, which inevitably goes
along with spectral leakage (cf. Sec. 5.1.3). As a consequence, the choice of the segment
length L becomes a trade-o� between the achievable frequency resolution ∆f [s] and the
number of segments S available for statistical processing.
In this work, the length of each segment is set to L = 6552, which corresponds to

a measurement time of approximating 0.1 seconds with respect to the the sampling
frequency fS = 216 Hz speci�ed. Thus, the frequency resolution takes on the value of
∆f [s] = fS/L = 10.0024 Hz, and only approximates an integer value. The modal sound
�elds are excited at integer frequencies. Thus, the (temporal) DFT frequencies of the

6Excluding the �rst data points in the interval [0, R] and the last data points in the interval [N −R,N ]
of the original sequence.
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segmented data sequences do not match exactly the excitation frequencies investigated.
Even though the di�erence between the two frequencies is minor, and the impact on
the spectrum is expected to be small, each segmented data sequence is augmented with
values of zero so that the DFT length of each segment is arti�cially increased to N = 216

data points according to

p
′[s]
l,j =

{
p′(s−1)R+l,j for l = 0, 1, 2, . . . , L− 1

0 for l = L, . . . , N − 1.
(5.14)

By these means, spacing between two DFT frequencies is altered to ∆f = fS/N = 1 Hz,
and the DFT frequencies are thereby shifted to integer values. Thus, the excitation
frequencies are accurately represented in the spectrum. This procedure is commonly
known as zero-padding and described an an example by Oppenheim and Schafer (2014).
The Nyquist frequency is not in�uenced by the segmenting and remains at fNyquist =
0.5 · 1016 Hz = 32, 768 Hz.

With the chosen number of data points per segment, each data sequence is divided
into S segments. The modal decomposition method as described in Sec. 5.1.2 is then
carried out for each one of the segments (cf. Fig. 5.5). For this purpose, the temporal
DFT F

[s]
k,j is calculated for each segment separately. Subsequently, the spatial DFT A

[s]
m,k

is determined for each time interval using the results of the temporal DFT of the respec-
tive segments. Eventually S-values of the spectral quantities are available for statistical
analysis. The statistical measures applied are described in the section below.
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5.2.2 Statistical measures

In this work, average, standard deviation, and relative standard deviation (RSD) are
the three statistical measures used to evaluate the results of the measurements. The
application of statistical methods is essential since stochastic e�ects such as electrical
noise from the instrumentation and most importantly, random noise produced by the
turbine itself, interfere with the measurement of the intentionally excited signal. The
size of the sample available for statistical analysis corresponds to the number of segments
S into which the original data sequence is divided into. The data sets of the segments
are understood to be independent of one another, insofar as information on the spectral
phases and amplitudes of noise in one segment give no indication of the respective
quantities in another segment.
The mean of the investigated quantities is estimated by averaging over the number of

segments (sample size) according to

q =

∑S
s=1 q

[s]

S
, (5.15)

where q[s] denotes the value of the quantity q determined for the segment s. The variation
of the quantity is assessed using standard deviation σ given by

σq =

(
1

S − 1

S∑
s=1

(
q[s] − q

)2

)1/2

. (5.16)

As the average q is not known, but rather estimated according to Eq. (5.15), the
standard deviation itself is only an estimate of the standard deviation of the sample.
Assuming that the distribution of the quantity investigated follows a standard normal
distribution, the con�dence interval for the unknown mean for a con�dence level of 95 %
is given according to

CI95% = q ± 1.96
σq√
S
, (5.17)

where 1.96 is the critical value for the con�dence level chosen.

Average and standard deviation are convenient statistical measures to quantify the
spread of q in the unit of the quantity. They do not, however, permit a relative evalua-
tion in terms of the extent of dispersion. For this, the relative standard deviation (RSD)
is used. The RSD gives the standard deviation in relation to average

RSDq =
σq
q
, (5.18)

and is thus a dimensionless measure of variation.

Hereinafter in the plots displaying the aerodynamic and acoustic measurement data
for validation, the solid lines represent average, and the error bars indicate the 95%
con�dence interval according to Eq. (5.17), thus assuming a Gaussian distribution of
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the respective quantity (cf. Chap. 6). For the aerodynamic data, the error bars describe
the measurement uncertainty with respect to calibration, to instrumentation (sensor ac-
curacy) as well as with respect to stochastic �uctuations. The error bars for the aeroa-
coustic pressure amplitude Am represent the stochastic �uctuations, which are mainly
due to stochastic background noise from the turbine. The possible impact of noise is
investigated in Sec. 5.3.

Furthermore, in order to quantify linear dependence between two quantities x and y
with sample size N, Pearson correlation coe�cient is used. With the covariance

Cov(X, Y ) =

(
1

N − 1

N∑
i=1

(xi − y)(yi − y)

)
, (5.19)

the correlation coe�cient is given by

r =

∑N
i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2(yi − y)2

. (5.20)

The value of the coe�cient ranges from r = −1 to r = 1 , where a value of one indicates
a total linear correlation and a value of zero indicates an absence of a linear dependence
between the two quantities. Generally, one can state the greater the absolute value,
the stronger the correlation between the quantities. In addition, Pearson correlation
coe�cient also gives the direction of the correlation. A value of r > 0 thereby represents
a positive relationship, and vice verse a value of r < 0 a negative relationship.

5.3 Background Noise

The term noise or background noise refers here to any stochastic and non-stochastic
frequency components in the frequency spectra which are not associated to the syn-
thetic sound �eld excitation. This includes mainly noise inherently produced by the
LPT test rig itself (including the acoustic modes produced by rotor-stator interaction),
�ow-induced noise additionally introduced by instrumentation like probes and sensors,
and noise from electrical devices used for signal collection. The latter all superpose the
intentionally excited spectral components, and thus might alter the amplitudes mea-
sured for the mode investigated.

In this work, similarity of modal sound propagation is evaluated by considering vari-
ations in the modal sound pressure amplitude determined between di�erent measure-
ments. For conclusive results of the experimental validation, it is mandatory that the
variation between two samples (amplitudes), if detected, is statistically signi�cant. Vari-
ations are considered to be statistically signi�cant if the respective con�dence intervals of
the samples do not overlap. Now, stochastic noise, superposing the intentionally excited
signal, results in a spread of the quantity considered. According to Eq. (5.17), the size
of the con�dence interval is proportional to the standard deviation of the quantity, on
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the one hand, and inversely proportional to the square root of the inverse of the sample
size, on the other hand. The sample size can easily be modi�ed, but is still restricted
by memory capacities and available measurement time. On the contrary, the standard
deviation can hardly be in�uenced as it is governed by noise inherently produced by the
LPT itself. For a low standard deviation, measurement data with low stochastic noise
are therefore required. In contrast to stochastic noise, non-stochastic noise components
which superpose the excited signal result in a time-constant increase or decrease of the
value of the amplitude a�ected7. Depending on the spatial characteristic, this might
eventually alter modal amplitude characteristics. This alteration cannot be expressed
by statistical measures, and therefore non-stochastic components should be identi�ed
prior to measurements, if possible.
Based on these considerations, the (noise) frequency spectrum of the turbine is char-

acterized in the paragraphs below with respect to dominant (high amplitude) stochastic
and non-stochastic components for both operating points investigated. The objective
is to identify frequency (ranges) where the amplitudes of the modes excited might be
altered by stochastic or non-stochastic components which are not related to the sound
�eld excitation.

For this purpose, the temporal frequency spectrum of the LPT is determined for every
microphone position in both measurement planes, Sec A and Sec B, for measurements
without synthetic sound �eld excitation8. The resulting circumferential spectra are vi-
sualized as colored shaded surface plots for part-load and design-point operation in the
upper part of Fig. 5.6 and Fig. 5.7, respectively. The frequency, ranging from 400 Hz to
4000 Hz, and the circumferential position of the microphones, ranging from 0◦ to 360◦,
are displayed on the abscissa and ordinate, respectively9. For better visualization, the
last circumferential position thereby corresponds to the �rst position. The frequency
resolution is ∆f = 10 Hz (x-axis). In circumferential direction (y-axis), the spatial res-
olution is 18◦, corresponding to the number of microphones installed. The amplitudes
of the frequency spectra are normalized with the maximum amplitude determined for
both measurement planes. In all diagrams, the values are represented by colors ranging
from blue (zero) to red (one). A summary of the parameters used for the signal post-
processing is given in Tab 5.1. The Nyquist mode is not listed here, as the spatial noise
spectra are not analyzed.
In the surface plots at the bottom of Fig. 5.6 and Fig. 5.7, the values of the rela-

tive standard deviation calculated according to Eq. (5.18) are shown as a measure of
variation of the spectral amplitudes. Low values of the RSD (colored blue) indicate
a small deviation of the spectral amplitude from the mean, while high values (colored

7This might also hold true for noise components at frequencies close to the frequency investigated, if
spectral leakage as described in Sec. 5.1.3 occurs.

8The experimental validation is carried out with respect to acoustic data collected in measurement plane
Sec A. Nevertheless, the results of the noise analysis are also shown for Sec B in order to compare and
verify �ndings identi�ed for Sec A.

9The maximum excitation frequency is set to fexc = 1200 Hz as a result of the cut-o� analysis. However,
in order to capture the BPF for design-point operation, a larger frequency range up to 4000 Hz is
considered here for noise analysis.

78



5.3 Background Noise

Table 5.1: Analysis of the (noise) frequency spectra of the LPT test rig. 2D-DFT pro-
cessing parameters and properties.

Parameter Value

Measurement time T 1 s

(Temporal) sampling frequency fS 65536 Hz

Nyquist frequency fNyquist 32768 Hz

Number of microphones J per array 20

Number of segments S 19

Segment length L 6552
Overlap R L/2

Frequency resolution ∆f [s] ≈ 10 Hz

red) indicate a large spread. A value of zero or close to zero implies the particular case
of nearly no variation of the amplitude, and thus characterizes non-stochastic spectral
components.

Comparison of the spectral temporal amplitudes and the RSD shows that the frequency
spectra have similar characteristics for both operating points. First, it can be observed
that the amplitude level in Sec A is considerably lower than in Sec B, which especially
holds true for the frequency range up to approx. 700 Hz for part-load operation and
up to approx. 1000 Hz for design-point operation. The respective regions in the dia-
grams are marked ( AO). Increased low-frequency hydrodynamic pressure �uctuations
downstream of the turbine stage and increased �ow-induced noise can most likely be
assumed to be responsible for this. Analysis of the respective values of the calculated
RSD depicted in the surface plots at the bottom of each �gure shows that the spectral
components in the lower frequency range are stochastic, as expected.
The �rst harmonic of BPF can be clearly identi�ed for both operating points in both

measurement planes, the respective regions are marked ( BO). In addition, for part-load
operation, the second harmonic of BPF lies within the displayed frequency range as
well ( CO). In all cases, the amplitude of BPF is always higher in Sec B than in Sec A.
Low values of the RSD, which indicate non-stochastic components, are mainly found in
these frequency ranges. Assuming constant rotor speed and thus constant rotor-stator-
interaction, non-stochastic components are to be expected.

For part-load operation, three frequency ranges with uncharacteristic peaks in the spec-
tral amplitude are found in Sec A at lower frequencies. These peaks occur in a narrow
frequency range around 500 Hz ( DO), 770 Hz ( EO), and around 950 Hz and 1010 Hz
( FO). The values of the RSD identify the amplitude peaks at 770 Hz to be related to
stochastic noise components, and the peaks around 500 Hz, 950 Hz, and 1010 Hz related
to non-stochastic noise components. Remarkably, the peaks at 500 Hz and 770 Hz are
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characterized by a very even distribution around the circumference, whereas the peaks
in region ( FO) are dependent on the circumferential position. Bartelt (2015) also de-
tected an uncharacteristic peak in the frequency spectra for the circular duct segment
of the sound generator around 750 Hz, however, at a slightly higher mass �ow rate of
≈ 5 kg/s in comparison to ≈ 4.1 kg/s for the measurements here. The peak did not
appear in the pre-tests in the AWT, therefore the author excluded duct-speci�c, �ow-
induced resonance e�ects. Furthermore, the peak was found to be independent of the
rotor speed so that Bartelt (2015) concluded that �ow separations at the pressure probes
installed in the duct are the causes. Probes of similar dimensions are also used in the
measurements for this work. Thus, the same explanation probably holds true for the
spectral component with low RSD at 950 Hz and 1010 Hz ( FO). An explanation for the
uncharacteristically high non-stochastic and stochastic noise amplitudes in region ( DO)
and ( EO), respectively, cannot be given here. For design-point operation the latter can
also be observed.

By resuming the observations above and relating them to the experimental validations,
the following three conclusions can be drawn with respect to the measurement plane
Sec A focused on:

(1) Stochastic variations of the temporal and spectral amplitudes determined can be
expected to be small for both operating points since the spectral noise amplitudes
and the RDS are low.

(2) Non-stochastic components around 500 Hz, 950 Hz, and 1010 Hz might alter the
amplitudes, and thus the modal response function determined for the excited sound
�elds in these frequency ranges for part-load operation.

(3) Impact from non-stochastic components are not to be expected for design-point
operation.

(4) In section 4.3, the excitation frequency range suitable for the validation mea-
surements has been limited up to the maximum frequencies of around 1200 Hz.
Therefore, interferences with BPF and its harmonics are excluded.

For the sake of completeness, it shall be noted that for Sec B the situation is slightly dif-
ferent. Non-stochastic components beside the one observed at the BPF are not observed.
However, in contrast to Sec A, a large spread of the temporal and modal amplitudes can
be anticipated at low frequencies for both operating points due to the combination of
high amplitudes and high values of the RSD.
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Figure 5.6: Noise analysis of the LPT test rig for part-load operation in Sec A and
Sec B. Top: Frequency spectrum. Bottom: Relative standard deviation of
the spectral amplitudes (RSD).
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Figure 5.7: Noise analysis of the LPT test rig for design-point operation in Sec A and
Sec B. Top: Frequency spectrum. Bottom: Relative standard deviation of
the spectral amplitudes (RSD).
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6 Experimental validation

In this chapter, the results of the experimental validation of the suitability of the modal
group velocity angle relative to the duct axis for establishing (partial) similarity con-
ditions for modal sound propagation in ducts are presented. The validation is carried
out for the conditions in the cylindrical intake duct of the LPT. Similarity is evaluated
with regard to the modal response function of the measurement section determined for
the synthetically excited sound �elds. The data sets used to test the hypothesis of this
work have been obtained from acoustic measurements where aeroacoustic similarity has
not been considered in advance. Thus, the hypothesis is tested using the results of a
post-hoc scaling.
In section 6.1 of this chapter, the measurements conducted are speci�ed and the chosen

test cases are introduced. The consequences of non-compliance with similarity of modal
sound propagation are illustrated. Observations are explained by means of the similarity
relation and the similarity map, respectively. Subsequently, in Sec. 6.2, the procedure
of post-hoc scaling is described. The results of the post-hoc scaling with respect to the
achievement of similarity are discussed in Sec. 6.3 and the limits of this approach are
addressed in Sec. 6.4. The chapter closes with a summary of the �ndings in Sec. 6.5 .

6.1 Non-compliance with Similarity

The experimental data used here are obtained from acoustic measurements taken on the
turbine test rig of the TFD using the 1.5-stage low-pressure turbine con�guration and the
measurement setup as described in Chap. 4. Speci�c acoustic modes were excited in the
inlet of the LPT by means of the sound generator and the excitation method presented in
Sec. 4.2. Selected data collected in measurement section Sec A (cf. Fig. 4.2) are used for
validation. To verify and con�rm generality of the �ndings, validation is carried out at
two operating points, namely at part-load operation and design-point operation. The re-
spective operating parameters, rotational speed and mass �ow rate are given in Tab. 6.1.

Table 6.1: Mean aerodynamic operating parameters for part-load operation and design-
point operation.

Rotational speed N in 1/min Mass �ow rate ṁ in kg/s

Part-load 3100 4.135
Design-point 6950 7.94
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6 Experimental validation

Table 6.2: 2D-DFT processing parameters and properties. The Nyquist mode mNyquist

refers to the highest mode resolvable with respect to both directions of spin-
ning. The frequency resolution ∆f [s] is valid for the segmented data se-
quences.

Parameter Value

Measurement time T 3 s

(Temporal) sampling frequency fS 65.536 Hz

Number of microphones J per array 20

Nyquist frequency fNyquist 32.768 Hz

Nyquist mode mNyquist |9|
Number of segments S 59

Segment length L 6.552
Overlap R L/2

Frequency resolution ∆f [s] ≈ 10 Hz

For each of the two test cases, a speci�c mode is synthetically excited in a de�ned
frequency range which covers 21 frequencies in steps of one Hertz. The modes and the
exact frequency ranges considered for the validation are chosen with respect to a stable
excitation of the mode on the one hand and low stochastic background noise on the other
hand (cf. Sec. 5.3). The sound �eld is resolved for each excitation frequency in its modal
components, applying the 2D-DFT modal decomposition method presented in detail in
Sec. 5.1 to the collected measurement data. For statistical evaluation, the original data
sequence is subdivided into data segments prior to the modal decomposition as described
in Sec. 5.2. In Tab. 6.2, the most important properties of the signal post-processing are
summarized. In addition to the listed parameters regarding the acoustic measurements,
the following parameters for the aerodynamic measurements were used:

(1) Aerodynamic measurement time: T = 40 s

(2) Aerodynamic sampling frequency: fS = 5 Hz.

To analyze the impact of changing boundary conditions, the measurements are repeated
30 times extending over several hours. Thus, 30 data sets with identical excitation are
available in total for analysis and validation. With regard to future works on possible
e�ects of clocking on acoustic transmission, the clocking position of the second stator
has been evenly varied over the 30 measurements, while the clocking position of the �rst
stator vane carrier has been kept constant. With respect to the investigation carried
out for this work, the assumption holds that clocking of the second stator carrier has no
impact on the results of validation (cf. discussion in Sec. 6.4). The following procedure
was applied to sound �eld excitation and data collection: For each of the 30 data sets
collected, the acoustic mode considered was excited over the frequency range speci�ed
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Figure 6.1: Acoustic characterization of the measurement section Sec A. Left: Measured
modal response subject to the excitation frequency. Right: Measured modal
response function to the calculated axial angle of the group velocity vector.
[Test case 1 | part-load operation | m = −1 | Data set No. 1]

in frequency steps of ∆fexc = 1 Hz. The acoustic pressure data were collected according
to the settings listed in Tab. 6.2. Steady aerodynamic data are collected in parallel with
the acoustic measurements. In summary, 30 data sets consisting of 21 excited frequen-
cies each as well as the corresponding aerodynamic data sets are available for validation.

Similarity is evaluated here on the basis of the modal response function measured in
the LPT. In the following, the measured modal amplitudes (also referred to as the
modal responses) are either described by

Am = A(fexc), (6.1)

or by the following description
Am = A(φgr,x). (6.2)

In the �rst description, A is the modal frequency-response function, and thus corresponds
to the spatial DFT Ak,m for a speci�ed mode m. However, in this work the description
according to Eq. (6.2) is also used. Then A denotes the response function subject to
the axial angle of the group velocity vector.

6.1.1 Test case 1: Part-load operation

The test case evaluated in this section considers the mode of order m = −1 synthetically
excited at part-load operation. The respective mode was excited in the frequency range
from fexc = 505 Hz to fexc = 525 Hz in steps of one Hertz. First, the modal response
function is depicted to characterize the acoustic behavior of modes that travel in the
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6 Experimental validation

measurement section considered. Subsequently, selected aerodynamic and aeracoustic
data are presented and dependencies between the di�erent quantities are discussed. A
correlation analysis is carried out to determine the statistical dependency between the
observed variations in the modal response and the three considered similarity parameters.

Modal frequency-response function

In the diagram on the left side of Fig. 6.1, the modal response function according to the
description in Eq. (6.1) is displayed for the excited frequencies for data set No. 1. Over
the small range of excited frequencies, the function shows an uneven distribution with
pronounced local extrema. A maximum is located around a frequency of fexc = 509 Hz
with a steep gradient towards lower frequencies. A second maximum, also with steep
gradient towards lower frequencies, can be identi�ed around fexc = 523 Hz. A further
extremum in the form of a distinct local minimum can be identi�ed at fexc = 519 Hz.
Again, steep gradients relative to the amplitudes measured can be observed. Here, the
amplitude increases about ∆Am ≈ 300 Pa within four Hertz from fexc = 519 Hz to
fexc = 523 Hz. Overall, the measurement data themselves are nearly constant over the
sample size with negligible stochastic �uctuations. On the right side of the �gure, the
modal response function is given subject to the analytically calculated angles of the
group velocity vector relative to the duct axis (cf. description according to Eq. (6.2)).
Due to the inverse relation between the frequency and the angle, the two pro�les are
reversed. At the operating point regarded and for the frequency range considered, the
group velocity angle varies between φgr,x = 58.65◦ and φgr,x = 62.59◦ for the mode
m = −1, thus well below cut-o�.

For the following analysis, the modal response function of data set No. 1 as shown in
the diagrams in Fig. 6.1 is used as reference for evaluating similarity.

Variations in the aerodynamic conditions in Sec A

In Fig. 6.2 selected aerodynamic and aeroacoustic quantities are depicted for all 30
data sets collected. Here, as well as in the diagrams below, the abscissa is the data set
number. The data sets are presented in the correct sequence with respect to the time of
measurement, which is indicated by the connection of the points. The error bars in all
diagrams indicate the 95 % con�dence interval. The statistical methods employed are
described in detail in Sec. 5.2.2.

In the diagrams in Fig. 6.2, ambient temperature, total �ow temperature, total �ow
pressure, reduced mass �ow rate as well as both similarity parameter, Mach number and
Helmholtz number are depicted. The total temperature and pressure values are used
for the calculation of the mass �ow rate and are obtained from measurements with a
pressure probe steadily located in the center of the inlet duct as described in Sec. 4.1.3.
The �rst diagram on the top left side shows the ambient temperature collected outside
the test hall. Over the period of measurement, the temperature steadily changed with
a maximum temperature di�erence of ∆Tamb ≈ 2.3 K. In accordance with the ambient
temperature, the conditions in the measurement plane Sec A changed as the turbine test
rig is operated in an open-circuit mode.
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Figure 6.2: Variations in the aerodynamic data and in the similarity parameters for
measurement Sec A. Top left: Ambient temperature. Top right: Total �ow
temperature. Center left: Total �ow pressure. Center right: Reduced mass
�ow rate. Bottom left: Helmholtz number. Bottom right: Mach number.
[Test case 1 | part-load operation | m = −1 | fexc = 520 Hz]
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The impact of the variation in ambient temperature becomes most apparent in the
total �ow temperature, where a similar temperature distribution with a maximum tem-
perature di�erence of ∆Ttot ≈ 1.0 K can be observed. The impact on the total pressure
is less pronounced since the operating conditions of the turbine test rig are constantly
adapted to compensate for the changes in the inlet conditions as described in Sec. 4.1.1.
The same applies for the reduced mass �ow rate which characterizes the operating point1.

The distribution of the Helmholtz number follows the characteristics of the distribu-
tion of the total �ow temperature as implied by the relation

He =
2πfR√
κRsT 0

,

which is introduced in Eq. (2.24)2. Contrary to the Helmholtz number, a clear relation-
ship between the �ow temperature and the axial Mach number is not observed, which
is due to the constant adaptation of the test rig's operating point.

Correlation Analysis

In the diagrams in Fig. 6.3, the modal response detected for m = −1, the group velocity
angle, and the correlation between these two quantities are plotted for the di�erent mea-
surements. The quantities depend on the excitation frequency and are given here by way
of example for the frequency fexc = 520 Hz. The group velocity angle is calculated from
the averaged value of the similarity parameters Helmholtz number and Mach number
(see also Fig. 6.4).
The modal response for the frequency regarded shows large variations across the data

sets, and thus over time. A variation of up to ∆Am ≈ 115 Pa between the maximum
and the minimum detected amplitude can be identi�ed. This corresponds to a relative
di�erence of approx. 43 %. Following the hypothesis of this work, the assumption is
that these variations in the modal frequency response are due to changes in the modal
propagation properties, namely due to changes in the angle of the group velocity vector of
the propagating sound �eld. The latter is depicted in the diagram on the top right of the
�gure showing clear variations over the time of measurement with a maximum variation
of ∆φgr,x ≈ 0.12◦. The biggest absolute changes with respect to reference data set No.
1, can be observed for the measurements of data set No. 8 to data set No. 24. An inverse
dependency between the variation in the angle and the variation in the modal response
can be observed visually. This dependency is con�rmed by a correlation analysis which
shows a very strong relationship between the two parameters. A Pearson correlation
coe�cient of r = −0.9422 is determined indicating an approximately complete linear
dependency. In this case, the coe�cient is negative. Hence, an increase in the modal
response is related to a decrease in the angle considered. Here, it should be emphasized
that the direction of correlation is not analytically given but determined by the acoustic
characteristic of the measurement section.
1Note that the group velocity angle and the similarity parameters are calculated from the averaged
values of the respective aerodynamic quantities.

2Here κ denotes the ratio of speci�c heats, Rs the gas constant, and T
0 the steady-state temperature.
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Figure 6.3: Correlation Analysis for test case 1. Top left: Variations in the modal re-
sponse. Top right: Variations in the angle of the group velocity vector.
Bottom: Correlation of the modal response with the angle of the group ve-
locity vector.
[Test case 1 | part-load operation | m = −1 | fexc = 520 Hz]

Plausibility check of the similarity relation

From the similarity relation derived, it follows that the variation in the axial angle of
the group velocity vector observed in Fig. 6.3 is related to the variation in the similarity
parameters, Mach number and Helmholtz number. The latter are depicted in Fig. 6.2.
According to the similarity relation between the group velocity angle and the similarity
parameters in Eq. (3.38), a decrease in either the Helmholtz number or the Mach
number leads to an increase in the angle under consideration, and vice versa. Visually,
it can be observed that the pro�le of the angle corresponds to the characteristic of the
variations in the Helmholtz number, whereas the characteristic of the Mach number is
not clearly re�ected. Referring to the modal similarity map in Sec. 3.4, it is observed
that for the frequency range and operating point investigated, small variations in the
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Figure 6.4: Relation between linear dependencies and the similarity relation. Top left:
Relative change of the Helmholtz number. Top right: Relative change of
the Mach number. Center left: Correlation of the modal response with the
Helmholtz number. Center right: Correlation of the modal response with the
axial Mach number. Bottom left: Extract of the similarity map (Ξφgr,x|He).
Bottom right: Extract of the similarity map (Ξφgr,x|Mx). The square marks
the operating point.
[Test case 1 | part-load operation | m = −1 | fexc = 520 Hz] 90



6.1 Non-compliance with Similarity

Mach number have nearly no impact on the angle whereas variations of the same order in
the Helmholtz number lead to considerable changes in the quantity considered. Extracts
of the relevant region of the similarity maps are given at the bottom of Fig. 6.4. For the
operating point considered, sensitivity of the angle with respect to the Helmholtz number
is −2.0 < Ξφgr,x|He < −1.0, whereas sensitivity with respect to the Mach number is below
Ξφgr,x|Mx < −0.1 3 In other words, sensitivity with respect to the Helmholtz number is
approx. eight times higher than with respect to the Mach number. This explains why in
this case, the pro�le of the angle of the group velocity vector follows the characteristic
of the Helmholtz number and not of the Mach number, although the changes in both
parameters are of the same order (cf. relative change of the two parameters with respect
to reference data set No. 1 depicted in the diagrams at the top of Fig. 6.4). With
respect to the variations in the modal response, it can be concluded that for test case 1
these are predominantly caused by variations in the Helmholtz number. This statement
is supported by the correlation depicted in the diagrams in the center of Fig. 6.4. It is
found that the variation in the amplitude also correlate strongly with the variation in
the Helmholtz number with exactly the same correlation coe�cient of |r| = 0.9422. The
reversed direction of the coe�cient for the Helmholtz number results from the inverse
relation between the axial angle of the group velocity vector and the Helmholtz number
pointed out before. On the same time, dependency on the Mach number is negligible
(r = 0.015).
In fact, it is found that for all excited frequencies, the absolute correlation coe�cient

for the angle of the group velocity vector exactly matches the respective coe�cient for
the Helmholtz number. This observation is independent of the value of the correlation
coe�cient for the Mach number and supports the validity of the calculated sensitivities
and thus the similarity relation. In the appendix in Sec. A.8, the correlation coe�cients
are analyzed for all excitation frequencies.

Relation between �ow temperature and angle of the group velocity vector

According to the diagram in Fig. 6.2 and Fig. 6.3, the axial angle of the group velocity
vector and the �ow temperature are positively related. This observation is supported
by analysing the similarity relation. The �ow temperature enters Eq. (3.38) given by

cos(φgr,x) =

√√√√√1−

 He2

(u
(σ)
(m,n))

2 + Mx
2

−1

,

via the Helmholtz number as well as the Mach number. For the Helmholtz number, the
relation is inverse. With respect to Mach number, a general statement is more di�cult
as the �ow temperature impacts �ow velocity on the one hand, and speed of sound on
the other hand. Anyhow, with the determined sensitivities for the angle of the group
velocity vector for the operating point considered, it follows here, that an increase in the

3The sensitivity is calculated here with respect to fexc = 520 Hz. For lower frequencies, with an angle
φgr,x > 62◦ an even higher sensitivity of Ξφgr,x|He < −0.9 holds.
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Figure 6.5: Acoustic characterization of the measurement section Sec A. Left: Measured
modal response subject to the excitation frequency. Right: Measured modal
response subject to the calculated axial angle of the group velocity vector.
[Test case 2 | design-point operation | m = 2 | Data set No. 1]

temperature will lead to an increase in the angle due to the much more higher sensitivity
with respect to the Helmholtz number than with respect to the Mach number.

6.1.2 Test case 2: Design-point operation

For the second test case, measurement data collected for design-point operation are in-
vestigated. Here, the mode of order m = 2 was synthetically excited in steps of one
Hertz in a frequency range from fexc = 797 Hz to fexc = 817 Hz. The excitation was
repeated 30 times. Thus, in line with the �rst test case, 30 data sets with 21 excited
frequencies each are investigated.

Modal frequency-response function

The modal response functions for test case 2 are depicted in Fig. 6.5. The response
functions for the mode m = 2 are characterized by two local minima and one local
maximum. The values of the pressure amplitude measured lie between Amin ≈ 155 Pa
and Amax ≈ 343 Pa. The minima are quite distinct and are located at the frequencies
fexc = 802 Hz and fexc = 814 Hz. The maximum between the two minima is not as dis-
tinct, but has a broad peak with the highest pressure amplitude around fexc = 808 Hz.
The calculated angle of the group velocity vector equals φgr,x = 74.30◦ and φgr,x = 69.93◦

for the lowest frequency and for the highest frequency, respectively. Thus, the angles
are higher than for the mode considered in test case 1, but still below cut-o� condition.

Variations in the aerodynamic conditions in Sec A

In line with the analysis of test case 1, the variations of the aerodynamic quantities and
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6.1 Non-compliance with Similarity

both similarity parameters, Helmholtz number and Mach number, are depicted in Fig.
6.6. Again, a test case is chosen in which a steady change in the ambient temperature,
and thus in the �ow temperature can be observed. In this case, the ambient temperature
constantly rises over the period of the measurement, except for a slow decline at the end
of the measurement. The total temperature of the �ow in the inlet duct follows the
temporal change of the ambient temperature and rises about ∆Ttot ≈ 0.95 K between
the measurement of data set No. 1 and data set No. 29. An impact on the total pressure
cannot be identi�ed as the mass �ow rate is adapted to the changing boundary condi-
tions. Following the previous observations and explanations for the relation between the
�ow temperature and the Helmholtz number, the latter constantly decreases over the
time of measurements except for an increase observed for the last data sets. The axial
Mach number is not as clearly correlated as the Helmholtz number with the changes in
the aerodynamic boundary conditions. However, a decline in the Mach number can be
identi�ed over the time of measurement.

Correlation Analysis

In Fig. 6.7, the modal response, the angle of the group velocity vector and the cor-
relation between both are shown for an excitation frequency of fexc = 813 Hz. The
distribution of the modal response plotted in the diagram on the top left again shows
signi�cant discrepancies in the amplitudes between the di�erent measurements. Here, a
maximum absolute di�erence of ∆Am ≈ 59 Pa is detected between data set No. 1 and
data set No. 28 (Am = 208.84 Pa and Am = 267.87 Pa). This corresponds to a relative
di�erence of approx. 22%. Variations of the same characteristics are observed for the
angle considered. In total, the angle varies most ∆φgr,x ≈ 0.17◦ between data set No.
1 of an angle of φgr,x = 70.713◦ and data set No. 25 of an angle of φgr,x = 70.883◦. In
this case, an increase in the modal response is correlated with an increase in the angle.
Correlation analysis con�rms the linear dependency as well as the direction of relation
with a Pearson correlation coe�cient of r = 0.9584.

Plausibility check of the similarity relation

The extracts of the relevant region of the similarity maps given at the bottom of Fig.
6.8 show again that sensitivity with respect to the Mach number is negligible with
Ξφgr,x|Mx < −0.1 for the frequency range and operating point investigated for test case
2, whereas variations of the same order in the Helmholtz number lead to considerable
changes in the axial angle of the group velocity vector with Ξφgr,x|He < −2.0. Also in line
with test case 1, relative changes of the same order can be observed for the Helmholtz
number and the Mach number as depicted in the diagrams at the top of the �gure.
In contrast to part-load operation, however, the variation of the parameters has the
same direction. Thus, the variations in the modal response correlates with both the
Helmholtz number and the Mach number, respectively (cf. diagrams in the center of
Fig. 6.8). However, in line with test case 1, the coe�cient of the correlation with the
Helmholtz number matches nearly exactly the coe�cient of the correlation with axial
angle of the group velocity vector. Taking the calculated sensitivities into account, it
can be again concluded again that in this case the variation in the modal response is
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Figure 6.6: Variations in the aerodynamic data and in the similarity parameters for
measurement Sec A. Top left: Ambient temperature. Top right: Total �ow
temperature. Center left: Total �ow pressure. Center right: Reduced mass
�ow rate. Bottom left: Helmholtz number. Bottom right: Mach number.
[Test case 2 | design-point operation | m = 2 | fexc = 813 Hz]
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caused by the variation in the Helmholtz number.

6.1.3 Findings

The major �ndings of this section for both test cases are as follows:

(1) For an identical synthetic excitation of a speci�c acoustic mode, partial substantial
variations in the modal frequency response are detected between di�erent measure-
ments.

(2) Over the period of measurements, variations in the angle of the group velocity
vector as well as variations in both similarity parameters, the Mach number and
the Helmholtz number, are observed. These are related to changes in the the
aerodynamic conditions; here changes in the �ow temperature, in particular.

(3) The variation in the modal response correlate strongly with the variation in the
angle of the group velocity vector for both test cases.

(4) For both test cases, it is found that the variation in the modal response also
strongly correlate with the variation in the Helmholtz number, where the absolute
value of Pearson's correlation coe�cient matches nearly exactly the respective
value for correlation with the variations in the axial angle of the group velocity
vector. Linear correlation with the Mach number, is however negligible (test case
1) or only moderately (test case 2). This is in so far interesting, as the relative
change of the values of the Helmholtz number and Mach number are of the same
order.

(5) Finding (4), can be explained by considering the similarity maps respective simi-
larity relation. It is found that for both test cases the angle of the group velocity
vector is signi�cantly more sensitive to changes in the Helmholtz number than to
changes in the Mach number.

(6) Based on (4) and (5), it can be concluded that for the operating points considered,
the impact of changes in the Mach number on the compliance of similarity is
negligible. Furthermore, the derived similarity relation and respective sensitivities
provide explanations for the physically relationship between the non-compliance
of similarity and Helmholtz number and Mach number.

Regarding the acoustic quantities, the excitation frequencies of fexc = 520 Hz and
fexc = 813 Hz are analyzed here by the way of example, for test case 1 and test case 2 re-
spectively. The �ndings are con�rmed for the other excitation frequencies (cf. Sec. A.9
and Sec. A.10 in the appendix). Variation in the modal frequency response can be
observed for all excitations frequencies. The order of the variation in terms of the rel-
ative or absolute di�erence of the modal response relative to reference, however, varies
for di�erent data set in accordance with the modal response function depicted in Fig.
6.1 and Fig. 6.5. Results of the correlation analysis for all excitation frequencies are
summarized in the appendix in Sec. A.8.
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Figure 6.7: Correlation analysis for test case 2. Top left: Variations in the modal
response. Top right: Variations in the angle of the group velocity vector.
Bottom: Correlation of the modal response with the angle of the group ve-
locity vector.
[Test case 2 | design-point operation | m = 2 | fexc = 813 Hz]
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Figure 6.8: Relation between linear dependencies and the similarity relation. Top left:
Relative change of the Helmholtz number. Top right: Relative change of
the Mach number. Center left: Correlation of the modal response with the
Helmholtz number. Center right: Correlation of the modal response with the
axial Mach number. Bottom left: Extract of the similarity map (Ξφgr,x|He).
Bottom right: Extract of the similarity map (Ξφgr,x|Mx). The square marks
the operating point.
[Test case 2 | design-point operation | m = 2 | fexc = 813 Hz]97
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6.2 Procedure of Post-hoc Scaling

For the test cases, similarity conditions for sound propagation are not satis�ed since
equality of the similarity parameters, the Mach number and the Helmholtz number,
is not achieved between the individual measurements. Non-compliance with similarity
becomes readily apparent in the substantial di�erences in the modal responses measured
in the inlet duct of the LPT for the di�erent measurements.
As outlined in Sec. 2.3, complete similarity of sound �eld propagation can only be

achieved if the exact values of both parameters are met. For this, full control of the
parameters is necessary. Practically, the Helmholtz number can be controlled compara-
tively easily by adapting the excitation frequency of the synthetic sound �eld generation.
While the Helmholtz number can thus be fully controlled, control of the Mach number
is limited. For an open circuit test rig, especially, at least small variations in the Mach
number are nearly always to be expected, as is the case here.

The hypothesis of this work implies that even though the Mach number and / or the
Helmholtz number are not equal, partial similarity in terms of the propagation proper-
ties for one speci�c mode can still be achieved if the axial angle of the group velocity
vector is kept equal between the measurements.

Similarity of modal sound propagation has not been considered in particular in ad-
vance of the current measurements. Therefore, the validation of the angle of the group
velocity vector relative to the duct axis as a possible parameter for partial similarity has
to be carried out by means of a post-hoc scaling approach. For this purpose, the data
sets already collected are post-processed with the objective to identify measurements for
which similarity holds. Similarity is evaluated here on the basis of the modal response
function. If the determined pressure amplitudes of the reconstructed modal sound �elds
are equal for the same axial angle of the group velocity vector φgr,x, the latter thus
presents a suitable parameter for establishing partial similarity with respect to modal
sound propagation.

With the reduced frequency de�ned in Eq. (3.42), given by

(fred)2 =
c2
[
M2
x

(
cos(φ∗gr,x)

2 − 1
)

+ 1
]
u2
mn

(2πR)2
(
1− cos(φ∗gr,x)

2
)

the exact frequency can be determined which will, according to the hypothesis, establish
modal propagation similarity between the 30 measurements for each of the two test
cases presented in the previous section. In other words, the reduced frequency is the
excitation frequency which yields the reference angle φ∗gr,x even though Mach number
and / or Helmholtz number changed with respect to reference. The post-hoc scaling
approach developed here is based on this frequency and can be described for a reference
set of similarity parameters M∗x and He∗ by the following relation
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6.2 Procedure of Post-hoc Scaling

φ∗gr,x = Ψφ(M∗x,He∗,m) = Ψφ(Mx,Hered,m),

where the reduced Helmholtz number depends on the reduced frequency (cf. Sec. 3.3).

The process of the post-hoc scaling carried out for each data set is schematically
illustrated in Fig. 6.9. The general procedure involves the following main steps:

(1) Stipulation of reference conditions and calculation of the reference angle φ∗gr,x.

(2) Determination of the reduced frequency by using the aerodynamic data collected
at the time of the acoustic measurements.

(3) Reconstruction of the modal response function A by determining the pressure
amplitudes Am at the reduced frequency for each data set.

First, a reference condition has to be de�ned. The second activity involves the calcula-
tion of the reduced frequency with respect to reference condition. The modal pressure
amplitude at the reduced frequency is then determined post-hoc based on the modal
frequency-response function measured for the data set considered. As the reduced fre-
quency has not been explicitly considered for sound �eld excitation, the set of excited
frequencies does not necessarily include the reduced frequency calculated. Post-hoc
scaling is thus restricted by the excited frequency range. If the reduced frequency is
not within the frequency range speci�ed, but smaller than the lowest frequency excited
(fred < fexc,min), or larger than the highest frequency excited(fred > fexc,max), post-hoc
scaling cannot be performed. In this case, the modal response measured for the lowest
or highest excitation frequency is used, respectively. If the reduced frequency lies within
the frequency range, but does not exactly match one of the excitation frequencies, linear
interpolation is used to reconstruct the modal pressure response. The acoustic modes
have been excited in uniform frequency steps of one Hertz in the frequency range speci-
�ed. Hence, a �nite but large set of frequencies is available for post-hoc scaling. If the
reduced frequency lies within the frequency range, the modal pressure amplitude is in-
terpolated to that frequency using the values of the adjacent frequencies. The described
process is repeated for all frequencies or angles of the group velocity vector, respectively,
under consideration.

99



6 Experimental validation

Calculate fred

Check if
fred < fexc,min

fred > fexc,max

fred = fexc,min

fred = fexc,max

Check if
fred = fexc

exist?

Carry out linear
interpolation

Am = A(fexc,m)

Am = A(fexc,min,m)

Am = A(fexc,max,m)

Am = Ainterp(fred,m)

or

or

or

if yes

if yes if no

if no

φ∗gr,x = Ψφ(He∗,M∗x,m)

Figure 6.9: Schematic illustration of the process of applied post-hoc scaling for approx-
imation of modal sound propagation similarity.
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6.3 Discussion of the Results

In this section, the results of the post-hoc scaling performed are presented and analyzed
with respect to the achievement of modal similarity. The results of post-hoc scaling
are shown for test case 1 at part-load operation and for test case 2 at design-point
operation in Fig. 6.10 and Fig. 6.12, respectively. For both test cases the conditions
during the measurement of data set No. 1 are taken as reference, thus He∗ = He[1],
M∗x = M

[1]
x , and φ∗gr,x = φ

[1]
gr,x. The results of post-hoc scaling are evaluated with respect

to the modal frequency-response function as displayed in the left diagram of Fig. 6.1 and
Fig. 6.5. The corresponding modal group velocity angles depicted in the right diagram
of the respective �gures therefore represent the reference angle φ∗gr,x for the frequency
considered.
In the diagrams on top of Fig. 6.10 and Fig. 6.12, the modal response functions

of the di�erent data sets are displayed as colored shaded surface plots. This form of
presentation has the advantage that the variations in the pressure amplitudes between
the measurements are very well displayed visually. The surface plot on the left side shows
the values of the pressure amplitude measured for the original sound �eld, whereas in
the plot on the right side, the determined amplitudes of the reconstructed sound �eld are
shown4. In both diagrams the abscissa is the data set number. The ordinate, however,
di�ers between the two plots. In the surface plot showing the original modal response,
the excitation frequencies are displayed on the ordinate. For the post-hoc version, the
angle of the group velocity vector is used to de�ne the range on the ordinate. The
pressure amplitudes in the two diagrams at the top of the �gure are normalized with the
maximum value of the respective response function. Low values are thereby indicated
by the color blue and high values by the color red, where the maximum value is one
due to normalization. The color legend is the same for the original values and for the
post-hoc values. Please note the di�erent ranges of values for test case 1 and test case 2.
For the part-load operation displayed in Fig. 6.10, the normalized pressure amplitude
is evaluated in the range from approx. 0.17 to a value of 1. For design-point operation,
the values range from approx. 0.44 to 1.
The hypothesis of this work is tested by evaluating similarity of modal sound propaga-

tion in terms of variations in the measured modal response. To quantify the di�erences
and the improvements due to post-hoc scaling, the relative change between two re-
sponses is determined. For the original sound �eld, the relative change between the
modal response for a speci�c excitation frequency fexc with respect to the modal re-
sponse measured for that frequency at reference condition is calculated. For analysis
of the results of post-hoc scaling, the relative change is calculated with respect to the
modal response determined for the respective reference angle φ∗gr,x; thus the angle deter-
mined for data set No. 1 for the respective frequency. The absolute values of the relative
change are shown in the surface plots at the bottom of Fig. 6.10 and Fig. 6.12. Low
values of the relative di�erence are indicated by the color blue and high values by the
color red. Please note again the di�erent range of values for test case 1 and test case 2.

4Here, the term original refers to the sound �eld actually measured in comparison to the reconstructed
�eld from post-hoc scaling.
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Figure 6.10: Surface plots of results of post-hoc scaling. Top: Normalized modal ampli-
tudes before and after post-hoc scaling. Bottom: Absolute relative di�er-
ence of the modal amplitudes relative to reference before and after post-hoc
scaling.
[ Test case 1 | part-load operation | m = −1 ]
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Figure 6.11: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordinate,
respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 520 Hz]
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For the part-load operation displayed in Fig. 6.10, the relative change is evaluated in
the range from zero to a value of 0.6. For design-point operation, the relative change
ranges from zero to 0.35. The surface plots are analyzed for both test cases in detail
below. and test case 2. For the part-load operation displayed in Fig. 6.10, the relative
change is evaluated in the range from zero to a value of 0.6. For design-point operation,
the relative change ranges from zero to 0.35. The surface plots are analyzed for both
test cases in detail below.

6.3.1 Test case 1: Results of post-hoc scaling

Analysis of the surface plots

The color-shaded visualisation of the modal frequency response in the left diagram of
Fig. 6.10 shows that the general characteristic of the response function is comparable
for all data sets. In the surface plots, high pressure gradients are re�ected by large
shade di�erences in the direction of the ordinate. Regions of only slowly changing color
characterize a gentle decrease or increase in the pressure amplitude. The distinct local
extrema as already described in Sec. 6.1.1 when analyzing the modal response function
of the reference data set No. 1, can also be identi�ed from the surface plots in this
manner.
Although the general characteristic of the modal response function is similar for all

data sets, two regions with signi�cant discrepancies in the modal pressure amplitude with
respect to reference data set No. 1 can be identi�ed. These regions are restricted in their
spatial distribution with respect to the data sets on the one hand and with respect to
the range of frequencies on the other hand. With respect to the colored visualization, a
kind of blur-type e�ect can be observed, as the contours of the color shades are no longer
unambiguously identi�able. The direction of the streaks are towards higher frequencies.
For the sake of conciseness, these regions are highlighted by a number-letter combination
in a circle. The �rst region marked 1AO stretches approximately from data set No. 10 to
set No. 20 and from fexc = 517 Hz to fexc = 522 Hz. The second region marked 1BO, also
stretches approximately from data set No. 10 to set No. 20. The concerned frequencies
range from approximately fexc = 505 Hz to fexc = 507 Hz. Comparison with the modal
frequency-response function depicted in Fig. 6.1, shows that these frequencies are within
an area where large gradients of the pressure amplitude occur. Furthermore, according
to the analysis of the variations in the angle of the group velocity vector (cf. Fig. 6.3),
it is found that the variations detected here are highest for the same data sets for which
the highest variation in the angle considered are detected. Comparison with the calcu-
lated relative changes displayed in the diagram at the bottom left shows that the highest
di�erences in the modal response with respect to reference are indeed detectable in the
areas 1AO and 1BO described above. The maximum value of a relative change of 0.549
refers to a frequency of fexc = 518 Hz for data set No. 11 in the region 1AO. The second
highest value of 0.416 is located in the region 1BO and is detected for fexc = 505 Hz and
data set No. 10. For the other measurements, similarity is approximately achieved as
can be seen from the very low relative changes visualized by the blue coloring. The still
existing di�erence, might be attributed to di�erent causes which are discussed below in
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Sec. 6.4 of this chapter. This section is concerned with the limits of post-hoc scaling
with respect to the given measurement data and measurement setup.

The surface plot on the right side of Fig. 6.10 show the pressure amplitudes after post-
hoc scaling. A signi�cant decline of the variations in the modal pressure amplitudes
in the previously identi�ed areas can be observed. This is con�rmed by the calculated
relative changes. Here, the maximum value of the regions 1AO and 1BO declines from
0.5493 (at fexc = 518 Hz for set No. 11) to 0.284 (at fexc = 519 Hz for set No. 14), and
from 0.416 (at fexc = 505 Hz for set No. 10) to 0.105 (at fexc = 506 Hz for set No. 5).
Overall, the surface plots are smoothed out as the di�erences in the modal responses are
reduced due to post-hoc scaling.

It can be summarized that most signi�cant variations in the modal response occur in
areas of high pressure gradients. This observation is focused on in more detail in the
subsequent section (cf. Sec. 6.3.3). Furthermore, post-hoc scaling with respect to the
axial angle of the group velocity vector results in considerable improvements in modal
similarity. This supports the hypothesis of this work.

Results for fexc = 520 Hz
The diagrams in Fig. A.22 show the results of post-hoc scaling by way of example for
the previously analyzed excitation frequency of fexc = 520 Hz. The respective values for
the other frequencies are depicted in the diagram in the appendix in Sec. A.9. The black
lines with the circle markers present the original values also depicted in the diagrams
in Fig. 6.3. The purple lines with the square markers present the quantities resulting
from post-hoc scaling. The distribution of the modal response and the relative change
in the diagram on the top left side and right side, respectively, show in detail the major
improvement in modal similarity as a result of post-hoc scaling. In the diagram at the
center left the values of the axial angle of the group velocity vector are shown. Both,
the angles of the measured sound �eld as well as the angles calculated with respect to
the reduced frequency, are depicted. In the diagram at the center right, the excitation
frequencies and the calculated reduced frequencies are depicted for each data set. The
latter is the frequency with which the acoustic mode should be excited to establish sim-
ilarity relative to the reference. The respective Helmholtz numbers are displayed in the
diagram at the bottom. For better clarity, two ordinates are used in these diagrams
where the left ordinate serves as a measure for the original values and the left ordinate
for the scaled values.

The angle of the group velocity vector calculated after post-hoc scaling has exactly
the same value for each data set, which con�rms the accurate calculation of the reduced
frequency. In contrast to the axial Mach number, the Helmholtz number is directly
a�ected by the establishment of partial similarity. In the previous section, it has been
shown, that the variations in the group velocity angle are predominantly caused by
variations in the Helmholtz number. Therefore, the reduced Helmholtz number is nearly
constant after post-hoc scaling for all data sets. Minor variations still exist, however.
The reduced frequency of data set No. 1 corresponds to the excitation frequencies as
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this data set is taken as reference. Generally, the reduced frequency approximates the
excitation frequency if the group velocity angle approximates the reference angle φ∗gr,x.
Finally, it should be emphasized that even though the absolute di�erence between the
excitation frequency and the reduced frequency is in an order smaller than one Hertz
for all data sets5, the impact on the modal response is profound and highly impairs
the comparability of the measurements. The reason for this lies in the high pressure
gradients characterizing the modal response function of the mode considered.

6.3.2 Test case 2: Results of post-hoc scaling

Analysis of the surface plots

The surface plots for test case 2 are shown in Fig. 6.12. Here, two regions with a dis-
tinct color blurring in the direction of higher frequencies can be identi�ed for the original
measurement data. The regions are marked 2AO and 2BO. The corresponding excitation
frequencies are fexc = 802 Hz and fexc = 814 Hz. At these frequencies, the local extrema
of the modal frequency-response function are located (cf. Fig. 6.1). For test case 2, the
regions are not restricted to speci�c measurements as for test case 1, but stretch from
reference data set No. 1 to the last data set. Thereby, the blurring slowly increases in
intensity and, correspondingly the relative change with respect to reference condition
illustrated in the diagram on the bottom increases. This correlates with the slowly rising
�ow temperature and the resulting change in the similarity parameters as explained in
Sec. 6.3.1. The maximum values for the relative change are determined for data set No.
28 and No. 30 with a maximum value of 0.336 and 0.311, respectively. For frequencies
where the pressure gradient is comparatively low, the modal response again shows little
variation across the di�erent data sets, e.g. around a frequency of fexc = 807 Hz. Over-
all, it can be observed, that the absolute values for the relative changes between the
modal responses are lower than for test case 1, where a maximum relative deviation of
0.549 is determined. This can be explained by the smaller pressure gradients detected
for the modal frequency-response function of test case 2 in comparison to test case 1.

The results of post-hoc scaling are visualized in the surface plots on the right side
of Fig. 6.12. Blurring is still apparent but reduced. Analysis of the relative change
of the modal response displayed in the plot at the bottom right shows that similarity
of modal propagation is approximated. The maximum deviations in the two charac-
teristic regions decrease from 0.336 to 0.191 (at fexc = 802 Hz for set No. 28 and at
fexc = 802 Hz for set No. 28, respectively), and from 0.311 to 0.189 (at fexc = 814 Hz for
set No. 30 and at fexc = 814 Hz for set No. 26, respectively), respectively. Furthermore,
the spatial spread of high deviations is now limited to two narrow bands around the
angles φgr,x = 73.08◦ and φgr,x = 70.51◦. These angles correspond to the frequencies
fexc = 802 Hz and fexc = 814 Hz for reference condition (data set No. 1).

5In fact, the maximum di�erence is 4f = 0.56 Hz for data set No. 12.
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Figure 6.12: Surface plots of results of post-hoc scaling. Top: Normalized modal am-
plitudes before and after post-hoc scaling. Bottom: Absolute relative dif-
ference of the modal amplitudes relative to the reference before and after
post-hoc scaling.
[ Test case 2 | design-point operation | m = 2 ]
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Figure 6.13: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 813 Hz]
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Results for fexc = 813 Hz
In Fig. A.44, the results of post-hoc scaling for the previous analyzed frequency of
fexc = 813 Hz are shown. The respective values for the other frequencies are depicted
in the diagram in the appendix in Sec. A.9. For the major part, the same observations
as for test case 1 can be made: The angle of the group velocity vector calculated with
respect to the determined reduced frequency is the same for each data set, con�rming
the calculation procedure of the post-hoc scaling. The scaled Helmholtz number is again
nearly constant with only small variations due to strong correlation of the latter with the
group velocity angle. The di�erence between the excitation frequency and the frequency
with which the sound �eld should have been excited in order to satisfy modal similarity
under the changed aerodynamic conditions is again marginal with less than one Hertz.
The scaled values for the modal responses show fewer variations. For the major part of
the data sets (up to No. 25), the amplitudes �uctuate quite constantly around the same
value. Only for the last measurements, modal similarity is still impaired.

In summary, the analysis of the surface plots in Fig. 6.12 shows that regions with
pronounced blurring, and thus with high relative changes in the amplitudes measured,
correspond to regions of high pressure gradients of the modal response function. Com-
parison of the relative changes of the modal response for the original data and the scaled
data as well as analysis of the individual responses for a chosen frequency shows that
even though similarity is not met for all data sets and frequencies, it can be noted that
the post-hoc scaling results in signi�cant improvements in the modal similarity evalu-
ated with regard to the modal responses. Both �ndings are in line with the �ndings of
the analysis of test case 1.

6.3.3 Alteration of the modal response function

In this section, the modal response functions for two chosen data sets are compared in
detail with the response functions of reference data set No.1 for test case 1 and test
case 2. The objective is to provide physical explanations to the observed variations in
the modal response and the observed dependence of the magnitude of variation on the
pressure gradient. For this, the modal response functions are analyzed as a function of
the excitation frequency Am = A(fexc) (cf. Sec. 6.1) �rst, and further also relative to
the angle of the group velocity vector, Am = A(φgr,x).

Test Case 1

In �gure 6.14, the modal response functions determined for data set No. 5 and No.
11 of test case 1 are represented by the magenta-colored lines and markers. The re-
sponse function for reference data set No. 1 is depicted in addition and represented by
the lines and markers colored in black. In the diagrams at the top of the �gure, the
modal responses for data set No. 1 and data set No. 5 are shown for comparison. For
both forms of displays of the response function, the modal pressure amplitudes match
nearly exactly for all data points. This con�rms the previous �nding that similarity
of modal propagation is adequately satis�ed for the �rst data sets, thus He[5] ≈ He∗,
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Figure 6.14: Alteration of the modal response function. Top: Modal frequency-response
function relative to the excitation frequency and relative to the angle of
the group velocity vector for data Set No. 5. Bottom: Modal frequency-
response function relative to the excitation frequency and relative to the
angle of the group velocity vector for data Set No. 11.
[Test case 1 | part-load operation | m = −1 | di�erent data sets ]

M
[5]
x ≈ M∗x, and φ

[5]
gr,x ≈ φ∗gr,x holds. Accordingly, the modal response functions depicted

as a function of the group velocity angle in the diagrams on the right side of the �gure,
lie nearly perfectly above one another. For the second example chosen, the situation is
substantially di�erent. The modal frequency-response functions for data set No. 1 and
set No. 11 do not match and clearly deviate from each other. As outlined before, the
�ow temperature measured for data set No. 11 and as a result the angle of the group
velocity vector di�ers from the reference value, and thus similarity conditions are not
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met (He[11] 6= He∗, M
[11]
x 6= M∗x, and φ

[11]
gr,x 6= φ∗gr,x). Analyzing the divergence of the

individual modal responses of data set No. 11 with respect to the reference function, it
becomes evident that the individual points are shifted along the abscissa in the direction
of higher frequencies. Taking the frequency fexc = 520 Hz as an example, it is found that
in order to excite the same modal response as for data set No. 1, the sound �eld has to
propagate with a higher frequency. In fact, the exact value is known from the analysis
of post-hoc scaling results and is fred = 520.55 Hz (cf. calculated reduced frequencies
in the diagram on the top right of Fig. A.22). This example shows that the di�erences
detected in the modal amplitudes at the same frequency can be explained by a shift of
the modal frequency-response function. Although the shift is only minor, it noticeably
alters the modal response and results in high relative deviations of the modal pressure
amplitude with respect to reference. Visually, this result in the formerly identi�ed blur-
type e�ect in the surface plots. In the diagrams on the right side of Fig. 6.14, the modal
response functions are depicted as a function of the group velocity angle. Again the
response functions lie nearly perfectly above one another. Howerver, while the markers
overlap for the pair of data set No. 1 and set No. 5, the markers of data set No. 11 are
displaced with respect to reference for the pair of data set No. 1 and data set No. 11.
The latter is the result of non-compliance with similarity and the cause for the variation
in the measured pressure amplitudes. The angles for data set No. 11 are higher than
the angles for data set No. 1 at the same frequency. This results from the positive
correlation of �ow temperature and group velocity angle given here. Furthermore it
provides explanation why the modal responses with respect to the excitation frequency
are shifted towards higher frequencies, as the left diagrams reveal6.
For the sake of clarity regarding the observation that high deviations in the amplitude

are not detected across the complete frequency range but mainly for frequencies located
in areas with a high pressure gradient, a second example shall be considered. For this
purpose, the modal response at the excitation frequency of fexc = 509 Hz is investigated.
From the results of post-hoc scaling it is known that in order to achieve partial similarity,
the sound �eld of data set No. 11 should be excited at fred = 509.54 Hz. However, as
the modal frequency-response function is comparatively even at the speci�ed frequency,
it is found that nearly the same modal pressure amplitude is detected when exciting
the sound �eld with the original frequency of fexc = 509 Hz. The shift in the response
function therefore does not result in a change in the amplitude in this case. Accordingly,
no blurring in the area of this frequency can be detected in the surface plots (cf. Fig.
6.10). Thus, although similarity conditions are not met here, the same amplitude is
excited, simply because the modal response is not sensitive to changes in the frequency
range investigated. In the diagrams on the right side of Fig. 6.14, the modal response
functions are depicted as a function of the group velocity angle. Again the response
functions lie nearly perfectly above one another. However, while the markers overlap
for the pair of data set No. 1 and set No. 5, the markers of data set No. 11 are
displaced to data set No. 1. The latter is the result of non-compliance with similarity
and the cause for the variation in the measured pressure amplitudes. The angles for

6Note that the �ow temperature measured for data set No. 11 is increased compared to data set No. 1
(cf. Fig. 6.2).
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data set No. 11 are higher than the angles for data set No. 1 at the same frequency.
This results from the positive correlation of �ow temperature and group velocity angle
given here. This also provides explanation why the modal responses with respect to the
excitation frequency are shifted towards higher frequencies, as the left diagrams reveal.7.

Test Case 2

For test case 2, corresponding observations can be made. For the measurements at
design-point operation, similarity is not met for any of the data sets. Hence, the modal
response function relative to the excitation frequency deviates from reference in all data
set. In �gure 6.15, the response functions of data set No. 15 (top) and date set No. 28
(bottom) are depicted together with the reference function. During the measurements
for test case 2, the �ow temperature constantly increased (cf. Fig. 6.6). With respect
to the modal frequency responses, the change in temperature again causes a shift of the
individual points towards higher frequencies as the angle of the group velocity vector
increases. The variations in the modal response for the example of fexc = 813 Hz, as
previously analyzed in Fig. A.44, can be explained, thereby. A higher amplitude is
measured for fexc = 813 Hz than for data set No. 1 for both data sets. Considering the
change in �ow temperature for the respective data set, the sound �eld should theoreti-
cally have been excited with fred = 813.611 Hz and fred = 813.798 Hz for data set No.
15 and No. 28, respectively, in order to achieve partial similarity and excite the same
modal response.
If the modal response is displayed relative to the group velocity angle, the two re-

sponse functions approximate each other. For the pair of data set No. 1 and No. 15,
the two functions match very well inasmuch as the con�dence intervals overlap along
the pro�le of the function. For data set No. 1 and No. 28 showed in the diagram at
the bottom of the �gure, the modal response functions only partly lie on top of each
other. For higher angles, even though the con�dence intervals still overlap, the mean
pressure amplitudes are discernibly higher than the reference amplitudes. This e�ect
seems to be frequency-dependent on the one hand, and, considering the surface plots,
also dependent on the data set number (thus, on the time of measurement), on the other
hand. A possible explanation of these phenomena can be rel�ection at turning points
when the mode propagates throughout the turbine as discussed in Sec. 6.4.

Theoretical analysis

Up to this point, the shifts in the modal responses have not been further quanti�ed.
From the non-linear relation between the angle of the group velocity vector and the fre-
quency of the propagating acoustic mode according to Eq. (3.38), where the frequency
enters via the Helmholtz number, it follows that the magnitude of the shift is frequency
dependent. Thus, the alteration of the response function might be explained by shifts
in the individual modal responses, but in total the function is compressed or stretched
compared to reference. This characteristic of alteration is not discernible in the functions
displayed because of the merely marginal shifts.

7Note that the �ow temperature measured for data set No. 11 is increased compared to data set No. 1
(cf. Fig. 6.2).
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Figure 6.15: Alteration of the modal response function. Top: Modal frequency-response
function relative to the excitation frequency and relative to the angle of
the group velocity vector for data Set No. 15. Bottom: Modal frequency-
response function relative to the excitation frequency and relative to the
angle of the group velocity vector for data Set No. 28.
[Test case 2 | design-point operation | m = 2 | di�erent data sets ]

Based on this observation, two general cases of non-compliance with similarity with
varying consequences can be identi�ed, which are schematically shown in Fig. 6.16. The
two cases di�er in the characteristic of the modal response function. In the diagrams
at the top of the �gure, two modal response functions dependent on the excitation fre-
quency are displayed for an arbitrary point in time t = 1. At this point in time, the
modal response A[1]

m is detected at the frequency f [1]. In the diagrams at the bottom, the
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Figure 6.16: Schematic illustration of the impact of varying similarity conditions on the
modal response function. Left: Modal response function with a pronounced
peak. Right: Modal response function with a �at plateau.

same modal response functions are given under the assumption of changed aerodynamic
conditions at an arbitrary point in time t = 2. For t = 2 both the amplitudes for f [1] and
for fred are marked, showing the impact of the changed conditions on the amplitudes
measured.
The �rst case (left) re�ects a situation where a narrowband e�ect with high pres-

sure gradients towards lower and higher frequencies is investigated. As a result of the
(assumed) variation of the similarity parameters, the function is stretched at t = 2 com-
pared to t = 1 and the amplitude A[2]

m detected at f [1] is considerably lower than the
amplitude A[1]

m . In the extreme case, the considered e�ect would no longer be in the
particular frequency range. The second case considers a modal response with a charac-
teristic �at plateau over a certain frequency range. Again the illustration considers a
stretching of the response function. However, in this case, the same modal response is
measured at t = 2 and t = 1 even though the modal frequency response is altered. This
is illustrated in the diagrams on the right side of the �gure.

6.3.4 Findings

Based on the results of post-hoc scaling and the analysis of the alteration of the modal
response function, it can be stated that

(1) varying similarity conditions result in an axial compression or stretching of the
modal frequency-response function, which is the cause for the observed variations
in the measured amplitudes with respect to reference, and thus non-compliance of
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similarity.

(2) the alteration of the response function can be revised by displaying the pressure
amplitudes as a function of the group velocity angle, which supports that the
latter is a suitable parameter for establishing partial similarity with respect to
modal sound propagation.

(3) post-hoc scaling by means of a reduced frequency derived from the similarity re-
lation results in signi�cant improvements in the modal similarity evaluated.

(4) the level of impact of non-compliance with similarity di�ers from one case to an-
other depending on the pressure gradient of the function in the considered area.

6.4 Limits of post-hoc scaling

The results of the post-hoc scaling with respect to the angle of the group velocity vector
have shown signi�cant improvements in the establishment of partial modal similarity
between the di�erent measurements. Nevertheless, for some frequencies and data sets,
deviations between the determined (scaled) amplitudes and the reference amplitude still
exist. Possible reasons for these deviations are discussed below.

Stability of sound �eld excitation

For sound �eld excitation, loudspeakers with a �at frequency response and a stable
sound pressure level are chosen (cf. Sec. 4.2). Nevertheless, small di�erences between
the amplitudes of two frequencies at the same power supply exist. Furthermore, long-
term monitoring of the loudspeakers shows that the frequency response is irreversibly
altered and that the sound pressure level becomes more irregular with long use of the
speakers in demanding conditions of high temperature and pressure like in the LPT.
Regular tests of the sound level of each loudspeaker between the measurement for the
data sets used for the validation, however, have shown no signi�cant variations. Thus,
if existent, �uctuations in the modal pressure amplitude due to variations in the perfor-
mance of the sound generator are to be considered negligible here.

Temporal o�set between aerodynamic and acoustic measurements

Aerodynamic data are collected only once for each data set and the averaged values
are then used to calculate the similarity parameter. As the aerodynamic measurement
time is set to 40 s and the measurement time for one data set is about 4.5 minute, a
time di�erence between the acoustic and aerodynamic measurements inherently exists.
Furthermore, the collection of the aerodynamic and acoustic data was not necessarily
performed simultaneously or with the same time di�erence as the two data collection
systems are not coupled. Thus, a varying temporal o�set between the measurements of
the acoustic data and the aerodynamic data exists, which is not considered in post-hoc
scaling. Analysis of the shift in the modal response shows that even very small varia-
tions in the aerodynamic boundary conditions result in high di�erences in the pressure
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amplitudes, especially for regions with a high pressure gradient. As the varying bound-
ary conditions within this temporal o�set are not considered and with the knowledge
gathered in this work, it can be concluded that this non-consideration impairs the result
of post-hoc scaling and might explain the variations in the scaled modal responses still
existing.

Limitations of the linear interpolation

In both test cases, it has been observed that the relative deviations between the modal
frequency responses are highest for areas with a high pressure gradient. Post-hoc scal-
ing is limited here by the given sample for the linear interpolation. With respect to
the hypothesis tested in this work, this means that the variations in modal response
after post-hoc scaling in the area of high pressure gradients do not (necessarily) indicate
that the angle of the group velocity vector is unsuitable for establishing similarity. The
variations might be simply due to the fact that the spacing of samples is too large.
Furthermore, post-hoc scaling is also limited by the frequency range regarded. If the
calculated reduced frequency is outside the considered range, the minimum or maximum
frequency is used, respectively (cf. process of post-hoc scaling as shown in Fig 6.9 in
Sec. 6.2).

Impact of clocking

With respect to the investigation carried out for this work, the assumption is made
that clocking of the second stator carrier has no impact on the aerodynamic as well
as the aeroacoustic conditions in the inlet duct of the LPT due to the large distance
between the second stator located between measurement planes MP 31 and MP 32 and
the microphone array in Sec A. In doing so, it is especially assumed that possible altered
re�ection characteristics of the turbine stage due to di�erent relative positions of the �rst
and second stator row have no signi�cant impact on the modal amplitude measurements
in Sec A. Generally, it can be expected, of course, that modal re�ections superimpose
the excited sound �eld in the inlet duct of the LPT. Among others things, re�ections at
the hub, the struts, and at the stator and rotor blades might in�uence the sound �eld
characteristic. In how far, the clocking has an impact on these acoustic re�ections and
eventually alter the modal sound pressure amplitudes upstream of the LPT cannot be
conclusively answered here. However, provided that a possible impact of clocking is pe-
riodic to the relation of stator to rotors blades, it can be stated that within the analysis
of the variation of the modal responses between the di�erent data sets before and after
the post-hoc scaling, no impact of clocking is observed. If existent and non-periodic, the
impact is of an order of magnitude smaller than the amplitude di�erences determined
for the original data sets. In summary, the impact of non-consideration of altered re�ec-
tions due to clocking e�ects cannot be de�nitively answered within this work and should
therefore be addressed in future works.

Re�ections due to turning points

Re�ections due to changing cut-o� conditions in the direction of the modal propagation
might be also causal for the variation in the modal response in Sec A over the time of

116



6.4 Limits of post-hoc scaling

Sec A MP 10 MP 11 MP 12 MP 31 Sec B
0

200

400

600

800

1000

Measurement plane

f c
u

t
in

H
z

m = −1 m = 2

Figure 6.17: Change of the cut-o� condition throughout the LPT. The line colored in
magenta and the line colored in orange give the cut-o� frequencies for part-
load operation and design-point operation, respectively. The marked areas
show the range of excited frequencies.

measurement. These re�ections might at least explain part of the variations detected
for test case 2 before and after post-hoc scaling. Due to di�erent �ow conditions and
changes in the geometry, acoustic modes excited in the inlet duct might experience
changing cut-o� conditions when propagating downstream throughout the LPT. For
hard-walled ducts with an axial mean �ow (and a slowly varying cross section), analyt-
ical and numerical solutions show that the a�ected mode is re�ected at theses so-called
turning points with a phase shift of π/2 as discussed intensively by Rienstra (1999) and
Rienstra (2003) among others. Applied to real conditions in the LPT, re�ections at
turning points in the turbine might a�ect the pressure amplitude of the respective mode
in the measurement plane of interest.

In Fig. 6.17, the calculated cut-o� frequencies for the acoustic modes considered for
the di�erent aerodynamic measurement planes are depicted. The values are taken from
the detailed cut-o� analysis described in Sec. 4.3. The lines represent the results for
part-load operation and design-point operation, respectively. The areas marked purple
and orange show the range of excited frequencies for the two test cases. First, it can
be observed that for the measurement planes upstream of the �rst stator (Sec A and
MP 10), both modes are well cut-on with respect to the respective operating point and
excitation frequencies8. Furthermore, for the counter-spinning mode m = −1, the cut-
o� frequencies are below the considered frequency range throughout the whole turbine.
For test case 2 and the respective mode m = 2 however, the cut-o� frequencies deter-

8In fact, the calculated angles of the group velocity vector in Sec A are well below φgr,x,(cut) = 90◦.
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mined for plane MP 11 upstream the �rst stator lie above the excited frequency range
(fcut > fexc). In addition, for design-point operation this also holds for MP 31 and Sec
B. Taking small shifts in the calculated cut-o� frequency due to changing aerodynamic
boundary conditions into account, it can be reasonably assumed that acoustic modes
that propagate with a frequency close to or matching the cut-o� frequency experience
re�ections in these sections. As a result, the sound �eld in the inlet duct might be
a�ected by the modal re�ections.

6.5 Summary of the Experimental Validation

Two test cases for the validation of the work's hypothesis are investigated. For both test
cases variations in the modal pressure amplitudes of the propagating acoustic mode for
identical synthetic sound �eld excitation can be detected for di�erent measurements in
time. During the period of the measurements, the boundary conditions of the open-cycle
turbine test rig changed, so that similarity with respect to reference conditions was not
accomplished. The similarity parameters Helmholtz number and Mach number are not
equal between the measurements. It is found that variations in the pressure amplitudes
of the modal response function correlate strongly with both, changes in the axial angle
of the group velocity vector and changes in the Helmholtz number. Contrary, linear
correlation with the Mach number is only moderately or even negligible. These �ndings
can be explained by the similarity approach developed in this work. The similarity
maps for the speci�c modes show that the axial angle of the group velocity vector is
not sensitive to changes in the Mach number for the test cases investigated, but highly
sensitive to changes in the Helmholtz number for the considered operating points.
In order to clarify the reasons for modal amplitude variations, the modal response

functions dependent on the excitation frequency have been analyzed for the di�erent
data sets with respect to reference. It can be concluded that the changes in aerodynamic
boundary conditions lead to a shift of the modal responses towards higher or lower
frequencies. This shift causes the variations in the pressure amplitudes. With respect
to the observed changes in �ow temperature during the time of measurement, a shift
towards higher frequencies can be observed for an increase of the latter and, conversely,
a shift towards lower frequencies for a decrease in temperature. The direction of the shift
is determined here by the relation between �ow temperature and the group velocity angle
of the propagating mode, which is positive for the operating point considered here. The
individual shifts of the modal responses result overall in a compression or stretching of
the modal frequency-response function with respect to reference. This alteration can be
revised by using the modal response dependent on the angle of the group velocity vector
instead of the excitation frequency. In other words, it can be concluded that the change
in the group velocity angle due to changing aerodynamic conditions results in a shift in
the frequency with respect to the modal response function.
Furthermore, it can be stated that the impact of non-compliance with similarity is

most pronounced for regions of high pressure gradients in the modal response function in
combination with signi�cant changes in aerodynamic boundary conditions. This e�ect
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manifests itself clearly in the color-shaded surface plots (cf. Fig. 6.10 and Fig. 6.12),
which show a blur-type e�ect of the colors for the areas 1AO and 1BO and 2AO and 2BO.
It also highlights that even marginal variations in the similarity parameters, Helmholtz
number and Mach number, might severely impair measurement results.

The hypothesis of this work is further tested quantitatively by a post-hoc scaling ap-
proach. For this purpose, the collected data are post-processed to re�ect measurements
where modal similarity has been considered. Based on a so-called reduced frequency,
the modal response at the reference angle of the group velocity vector is interpolated
to approximate similarity conditions post-hoc. The results of scaling, show signi�cant
improvements in the similarity. An analysis of possible faults and failures related to
post-hoc scaling explains the still-existing deviations. In summary, the results of post-
hoc scaling support the hypothesis that the axial angle of the group velocity vector is a
suitable parameter for the establishment of modal sound propagation similarity.
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The triad of Mach number, Helmholtz number, and hub-to-tip ratio establishes complete
similarity of sound propagation in a circular duct carrying an ideal, inviscid, and uniform
�ow in the axial direction. Based on an analytical analysis and under consideration of
the theory of similarity, the hypothesis is developed that for a given geometry, the modal
axial angle of the group velocity vector can be used to establish partial similarity with
respect to the propagation of one speci�c mode in cases where equality of the Mach
number and / or Helmholtz number cannot be achieved.
A similarity relation between this angle and the aforementioned triad of similarity

parameters is derived. Based on this relation it is found that for a given geometry and
a speci�c acoustic mode, an in�nite number of combinations of the Mach number and
the Helmholtz number can be determined that yield the same axial angle of the group
velocity vector. That means, any variation in the numerical value of one of the two
parameters can be compensated by a respective adaptation of the other parameter in
order to meet equality of the group velocity angle, and thus to establish partial similarity
of modal sound propagation between two measurements. For this, full control of either
the Mach number or the Helmholtz number is mandatory.
Based on the similarity relation, a similarity map is developed, which allows easy

identi�cation of areas of di�erent sensitivity of the group velocity angle towards changes
in the Mach number and Helmholtz. It is found that sensitivity with respect to both
similarity parameters is highest when the respective mode approximates cut-o� condi-
tion. Furthermore, sensitivity with respect to the Mach number and sensitivity with
respect to the Helmholtz number can di�er considerably for the same operating point.
This qualitative statement holds up irrespective of the mode and hub-to-tip ratio under
consideration.

The hypothesis developed is tested using aerodynamic and acoustic data from valida-
tion measurements carried out in the LPT test rig. For two operating points, similarity
conditions of modal sound �eld propagation in the inlet duct upstream of the �rst stage
are evaluated by analyzing the modal response function excited by the speci�ed acoustic
modes for di�erent measurements. It is found that for measurements where equality of
the similarity parameters, Mach number and Helmholtz number, is not achieved, par-
tially substantial variations in the modal pressure amplitudes measured are detected
with respect to reference. These variations in the pressure amplitudes can be explained
by shifts in the modal responses due to changes in the group velocity angle. Further-
more, these variations are identi�ed to have a strong linear correlation with changes in
the Helmholtz number, but only a moderate or negligible with the Mach number. The
similarity relation developed implies that the axial angle of the group velocity vector is

121



7 Conclusions and Outlook

almost insensitive to changes in the Mach number for the operating points considered.
The observation described can thus be explained by means of the similarity relation and
the similarity map derived which supports the validity of the hypothesis developed.
The suitability of the axial angle of the group velocity vector for establishing partial

similarity is further quanti�ed by means of a post-hoc scaling approach. For this pur-
pose, the collected acoustic data are post-processed in order to re�ect measurements
for which partial similarity conditions are met. It is shown that the variations in the
modal response can be signi�cantly reduced in magnitude if equality of the group veloc-
ity angle is achieved. Based on the �ndings of the experimental measurements, it can
be concluded that the axial angle of the group velocity vector is a suitable parameter
for establishing partial similarity of modal sound propagation for the geometry and �ow
conditions under consideration here. In other words, partial similarity with respect to
the propagation of one speci�c mode is achieved between two measurements if equality
of the axial angle of the group velocity vector is met.

In order to experimentally establish similarity conditions of modal sound propagation,
a so-called reduced frequency is introduced in this work, which, similar to the reduced
mass �ow rate or the reduced rotor speed, serves as an operating parameter for control-
ling the Helmholtz number and thus similarity conditions in test rigs equipped with a
sound generator. If equality of the Mach number and / or Helmholtz number is not met,
partial similarity can be achieved if the reduced frequency is determined with respect to
equality of the axial angle of the group velocity vector. If equality of the Mach number
is met, complete similarity can be achieved if the reduced frequency is determined with
respect to equality of the Helmholtz number.
The investigations for this work demonstrate that even minor changes in the similarity

conditions might result in signi�cant changes in the modal sound propagation properties,
which manifests in substantial variations in the measured pressure amplitudes. Even-
tually, the latter can severely impair research results if not considered properly. This
work highlights the necessity to consider acoustic similarity for modal sound propagation
investigation in general and in the design of the measurement setup in particular. In a
�rst step, the similarity map can be used to assess the impact of changes in the similarity
parameters, the Mach number and Helmholtz number on the modal propagation proper-
ties for any acoustic e�ect that is governed by the axial angle of the group velocity vector.

Future e�orts regarding the establishment of modal similarity for research measure-
ments should concentrate on further development of the similarity relation or similarity
map, respectively, presented in this work. Similarity conditions are determined here with
respect to the aerodynamic conditions in the inlet duct of the LPT test rig. For this
purpose, an ideal, inviscid, and uniform one-dimensional �ow is assumed. Furthermore,
a plane wave approach is used here to analytically describe modal propagation. In a
next step, it can be investigated how far the results of this work apply to velocity pro�les
with a circumferential and / or a radial �ow component in order to re�ect the conditions
in between and after the rotor and stator vanes. In addition, the plane-wave approach
used here can be further extended to consider three-dimensional modal propagation
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characteristics by using the equations developed within the investigation on the radial
dependency of the group velocity vector. Furthermore, it is recommended to extend
the study to include similarity conditions for modes propagating with a higher radial
order. Eventually, if the �ow conditions are too complex to be accurately approximated
by analytical models (like, for example, if viscosity e�ects as shear layers or thermal
conductions are no longer negligible, but have to be considered to accurately re�ect
propagation of acoustic modes in the respective turbomachine), empirical studies have
to be carried out to support the analytically derived relations for partial and complete
similarity.
In addition to the measurements carried out here, further measurements are recom-

mended, which should aim at extending the validation to operating points, where the
axial angle of the group velocity vector is not only sensitive to changes in the Helmholtz
number, but also sensitive to changes in the Mach number.
Lastly, the similarity approach presented here has the potential to be enhanced with

the objective to allow transfer of research results on acoustic propagation phenomena
governed by the axial angle of the group velocity vector from one test rig to another, or
from the test rig to the full-scale machine. For this purpose, a similarity map as pre-
sented here can serve as a basis to determine similar operating conditions with respect
to the propagation of sound. However, for signi�cant variations in the Mach number in
comparison to reference, investigations on similarity with respect to the sound pressure
level should be carried out in order to enhance the similarity approach by considering
possible amplitude modulations caused by major variations in the aerodynamic condi-
tions.

Based on the results of this work, it is recommended to further develop the operational
concept of the LPT test rig. An application of a sound generator for synthetic sound
�eld generation presumed, it is recommended to implement an on-time calculation of
the reduced frequency in the control and monitoring system of the test rig, which takes
the actual aerodynamic conditions into consideration in order to establish similarity of
modal sound propagation from the start of measurements.
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A.1 Derivation of the Dispersion Relation

The dispersion relation

(k0 −Mx kx)
2 = (kx)

2 + (β(m,n))
2 (A.1)

presented in Sec. 3.1.2 can be either deduced by inserting the modal solution of Eq. (3.4)
in the wave equation Eq. (3.3) as suggested by Rice et al. (1979), or by rearranging the
equation of the axial wave number (Eq. (3.8)) as proposed by Farassat and Myers (1996)
and Farassat and Myers (1997). The latter approach is tracked step-by-step as follows.

Taking the axial wave number for modal sound propagation in an unidirectional �ow as
given in Eq. (3.8)

kx =
−k0Mx ±

√
(k0)2 − (1−Mx

2)
(
β(m,n)

)2

(1−Mx
2)

(A.2)

and multiplying the equation with the denominator (1 − Mx
2) and adding the term

(k0Mx) on both sides of the equation yields

kx(1−Mx
2) + k0Mx = ±

√
(k0)2 − (1−Mx

2)
(
β(m,n)

)2
. (A.3)

Subsequently, squaring both sides of the equation, expanding the square, and rearranging
gives

k2
x(1−Mx

2)
2

+ 2kx(1−Mx
2)k0Mx = (k0)

2
(1−Mx

2)− (1−Mx
2)(β(m,n))

2. (A.4)

Now, multiplying the equation with (1−Mx
2)−1 so that

k2
x(1−Mx

2) + 2kxk
0Mx = (k0)

2 − (β(m,n))
2. (A.5)

Subsequently, inserting the relation

k2
x(1−Mx

2) = kx
2 − k2

xMx
2, (A.6)

in Eq. (A.5) and rearranging gives

(kx)
2 + (β(m,n))

2 = (k0)
2 − 2kxk

0Mx + k2
xMx

2. (A.7)

The equation above can be �nally written as

(kx)
2 + (β(m,n))

2 =
(

(k0)
2 −Mxkx

)2

, (A.8)

which corresponds to the dispersion relation given in Eq. (A.1).
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A.2 Radial Dependency of the Group Velocity Vector

The angle of the group velocity vector relative to the duct axis φgr,x on which this work
focuses on, can be determined from the vector's magnitude cgr and the axial component
cgr,x using trigonometric relations (cf. Eq. (3.22))

cos(φgr,x) =
cgr,x

cgr

. (A.9)

The magnitude and the axial component themselves can be derived with a geometrical
approach as proposed by Rice et al. (1979). This approach approximates the modal phase
fronts locally by plane waves and application yields the relations already introduced
according to Eq. (3.20)

cgr = c

√
1 + 2Mxcos(φx) + Mx

2 (A.10)

and to Eq. (3.21)
cgr,x = c (cos(φx) + Mx). (A.11)

The axial propagation angle φx is thereby de�ned in Eq. (3.17)

cos(φx) =
kx√

(kx)
2 +

(
u
(σ)
(m,n)

R

)2
(A.12)

with

k±xx =

−k0Mx ±

√
(k0)2 − (1−Mx

2)

(
u
(σ)
(m,n)

R

)2

(1−Mx
2)

and k0 =
ω

c
. (A.13)

The axial wave number given above is also de�ned in Eq. (3.8) in Sec. 3.4.

Inserting the relation for the propagation angle in Eq. (A.12) in Eq.(A.10) and Eq.(A.11)
shows that the group velocity vector depends on the frequency, the speed of sound, the
axial Mach number, the outer duct radius, the hub-to-tip ratio, and the mode orders. A
dependency on the spatial coordinate, i.e. the axial or radial position, is not observed.
Now, given that a three-dimensional problem is considered, it can easily be assumed
or even concluded that the derived relations for the group velocity vector then repre-
sent the overall global (spatial) behaviour of the respective acoustic mode. However,
Rice (1979) pointed out that the equations are valid near or at the outer duct radius:
"The approximate solutions are found to be su�ciently accurate near the cylindrical duct

wall ... where most of the acoustic intensity usually exists." However, beyond this, the
authors drew attention to a radial dependency of the quantities in pointing out that
"the exact solution using Henkel functions show φx to actually be a function of radius

...", where the mentioned angle φx corresponds to the axial propagation angle used here.
Consequently, this statement must hold true for the group velocity vector as well. Based
on these �ndings, the following two non-trivial questions arise:
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1. At which radial position are the relations derived for the group velocity vector (Eq.
(3.20), Eq. (3.21), and Eq. (3.22)) valid?

2. How far do the conditions at the to-be-determined radial position represent the
overall global modal propagation?

To answer these questions, a new enhanced geometric approach is developed, which is
based on the consideration of the fully three-dimensional geometrical structure of the
modal phase fronts. The proposed approach allows an investigation of the propagation
properties at any arbitrary radial position of the duct considered. The objective is to
validate the range of validity of the relations presented above, and to enhance the basic
physical understanding of local modal propagation properties. For this purpose, the
model problem outlined in Sec. 3.1 is assumed (hard-walled boundary conditions, an-
nular shaped duct, uniform steady �ow in axial direction). In line with the focus of this
work, purely circumferential modes are considered (n = 0).

The three-dimensional geometry of the phase fronts of purely circumferential modes
can be described by the class of surfaces called helicoids, as has already been pointed
out by Rienstra and Hirschberg (2017). Helicoids can be parametrized in cartesian
coordinates by the general equation

h =

r cos(θ)

r sin(θ)

p θ

 , (A.14)

where the radius r and the angle θ are the respective parameters. For a speci�c radius
r, Eq. (A.14) then represents the parametrization of the curve known as a helix. The
constant p determined by

p =
mλx
2π

=
m

kx
(A.15)

denotes the pitch of the helicoid and can be obtained from the phase in Eq. (3.4)
(cf. Rienstra and Hirschberg (2017)). As shown in Sec. 3.1, the group velocity vector
can be geometrically constructed by adding the �ow vector U to the velocity vector of
propagation c as follows:

cgr = c+U = c(n+ Mx). (A.16)

The velocity vector itself is determined by the unit space vector n and the speed of sound
c. The unit space vector is perpendicular to the phase fronts, thus to the helicoid. Now,
the local unit space vector at any arbitrary position is given by the cross product of the
helicoid's surface tangents divided by the magnitude of the respective cross product

n =

∂h

∂r
× ∂h

∂θ∣∣∣∣∂h∂r × ∂h

∂θ

∣∣∣∣ . (A.17)

136



A.2 Radial Dependency of the Group Velocity Vector

Carrying out the mathematical operations yields

n =
1√

p2 + r2

 p sin(θ)

−p cos(θ)

r

 . (A.18)

Thus, the unit space vector depends on the radial position r. Consequently, so does the
propagation vector. With c = cn the three-dimensional modal propagation vector is
fully described

c∗ =
c√

p2 + r2

 p sin(θ)

−p cos(θ)

r

 . (A.19)

The group velocity vector is eventually obtained by

c∗gr = c∗ + c

 0

0

Mx

 =
c√

p2 + r2

 p sin(θ)

−p cos(θ)

r + Mx

√
p2 + r2

 . (A.20)

The respective angles of the propagation vector and the group velocity vector relative
to the duct axis are given by the dot product

cos(φ∗x) =
c∗ · ex
|c∗| |ex|

=
r√

p2 + r2
(A.21)

and

cos(φgr,x
∗) =

c∗gr · ex∣∣c∗gr∣∣ |ex| =
cos(φ∗x) + Mx√

1 + 2Mxcos(φ∗x) + Mx
2
, (A.22)

respectively. For clear di�erentiation from the former non-radial dependent relations,
the derived radial-dependent relations are marked by an asterisk (.)∗.

The three-dimensional geometrically approach presented here veri�es that the propa-
gation properties indeed depend on the radial position as stated by Rice et al. (1979).
Furthermore, a relation is presented with Eq. (A.20) that allows the calculation of the
modal group velocity vector at any radial (and circumferential) position.

To answer the �rst of the two initial questions - At which radial position are the re-
lations according (Eq. (3.20), Eq. (3.21), and Eq. (3.22)) valid? - the equation for the
propagation angle according to Eq. (A.21) is set equal to Eq. (3.17)

cos(φ∗x) = cos(φx)

r∗√
p2 + (r∗)2

=
kx√

(kx)
2 +

(
u
(σ)
(m,n)

R

)2
. (A.23)
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Figure A.1: Dependency of the radius r∗ on the circumferential mode order m and the
hub-to-tip ratio σ for n = 0.

Solving for the radius r∗ and rearranging yields

r∗ =
m

u
(σ)
(m,n)

R. (A.24)

Thus, Equation (3.20), Eq. (3.21), and Eq. (3.22) are valid for the radius r∗ given by
Eq. (A.24). This radius solely depends on the mode orders, the hub-to-tip ratio, and
the outer duct radius.
Interestingly, Rice et al. (1979) assumed validity of the aforementioned equations near

or at the duct wall. With the geometrical approach presented here, it can be explicitly
shown that the equations are valid at the speci�c radius r∗. This radius can of course
approximate the outer radius depending on the geometry and mode order but does
not inherently have to do so. In Fig. A.1, the normalized radius is depicted over the
circumferential mode order for di�erent hub-to-tip ratios. The radial mode order is set
to zero. It is found that the ratio m/u(σ)

(m,n) grows with increasing azimuthal mode order,
on the one hand, and with increasing hub-to-tip ratio, on the other hand. Thus, the
radius indeed approaches the outer duct radius for both variables.
Now the radius found is not unfamiliar. In fact, this radius corresponds to the radius

referred to as the caustic or caustic radius in ray theory. This theory approximates
wave propagation along straight or curved lines called rays and is applied in the �eld of
geometrical acoustics (cf. Landau and Lifshitz (1959)). Considering the propagation of
a ray through a cylindrical cross section with hard-walled boundary conditions, such as
the model considered here, then a speci�c pattern of intersecting rays is formed due to
re�ections on the wall. The intersecting rays form an envelope, a so-called caustic as for
example described by Grimm and Hurst (1979). The author analyzed sound propagation
in a duct with a sheared �ow by applying the approach of geometrical acoustic. The
location of the caustic along the radius of the duct depends on the propagation angle
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of the rays in the respective (r,θ)-plane. Focusing on the modal propagation considered
here, propagation in the (r,θ)-plane can then be approximated by k2

rθ ≈ k2
r +k2

θ = β2
(m,n),

cf. Rice et al. (1979). Inserting r = r∗ in kθ = m/r, it is found that the radial wave
number is zero at the caustic radius(

u
(σ)
(m,n)

R

)2

= k2
r +

(m
r∗

)2

(
u

(σ)
(m,n)

R

)2

= k2
r +

(
u

(σ)
(m,n)

R

)2

⇒ kr|r=r∗ = 0.

(A.25)

This has also been observed by Chapman (1994). The author analyzed sound propa-
gation and radiation based on a ray theory approach and worked out that the caus-
tic radius gives the point, where the radial wave number turns from real (r > r∗) to
imaginary(r < r∗). Thus, the three-dimensional modal propagation can be described in
terms of a two-dimensional wave propagation locally at the caustic radius.

At this point, the second of the two initial questions - How far do the conditions at
the now-identi�ed caustic radius represent overall mode propagation? - remains unan-
swered and has to be discussed. This discussion, however, is not part of the work at
hand.
Here, a new geometrical approach has been presented that allows a fully three-

dimensional investigation of modal propagation properties, and thus represents a pow-
erful tool not only to answer the question posed earlier, but to enhance knowledge of
modal sound propagation in general. Furthermore, the approach can be used to extend
approximate analytical sound propagation models since the three-dimensional propaga-
tion angle can be now exactly calculated for every radial position.
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A.3 Derivation of the Similarity Relation for the

Axial Angle of the Group Velocity Vector

In section 3.3 a relation between the axial angle of the group velocity vector and the
triad, Mach number, Helmholtz number, and hub-to-tip ratio, is presented. For conve-
nience of the reader of this work, a detailed step-by-step description of the deduction of
this similarity relation is provided in this section.

Substituting the relation for the cut-o� ratio

ξ =
He

u(m,n)

√
(1−Mx

2)
(A.26)

into Eq. (3.27)

cos(φgr,x) =
√

1−Mx
2

√√√√ 1− 1
ξ2

1−Mx
2(1− 1

ξ2
)

(A.27)

taken from Rice et al. (1979), gives

cos(φgr,x) =
√

1−Mx
2

√√√√√√ 1−
u2
(m,n)(1−Mx

2)
He2

1−Mx
2

[
1−

u2
(m,n)(1−Mx

2)
He2

] . (A.28)

By rearranging the Helmholtz number in the equation above, the relation

cos(φgr,x) =
√

1−Mx
2

√√√√ 1
He2

[
He2 − u(m,n)

2(1−Mx
2)
]

1− Mx
2

He2

[
He2 − u(m,n)

2(1−Mx
2)
] . (A.29)

is determined. When expanding the fraction under the root with He2, the expression

cos(φgr,x) =
√

1−Mx
2

√√√√ He2 − u(m,n)
2(1−Mx

2)

He2 −Mx
2
[
He2 − u2

(m,n)(1−Mx
2)
] (A.30)

follows. Now, rearranging the denominator so that

cos(φgr,x) =
√

1−Mx
2

√
He2 − u(m,n)

2(1−Mx
2)

(1−Mx
2)(He2 + u(m,n)

2Mx
2)

(A.31)

can be deduced, which is an equivalent form of the preceding equation (A.30). Then,
combining then the expression

√
1−Mx

2 with the main root of the equation and further
rearranging yields

cos(φgr,x) =

√
He2 − u(m,n)

2(1−Mx
2)

He2 + u(m,n)
2Mx

2 . (A.32)
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Finally, by expanding the parenthesis of the numerator of the fraction under the root,
the relation

cos(φgr,x) =

√
He2 + u(m,n)

2Mx
2 − u(m,n)

2

He2 + u(m,n)
2Mx

2 , (A.33)

is obtained, from which the �nal form

cos(φgr,x) =

√√√√√1−

 1
He2

u(m,n)
2 + Mx

2

 (A.34)

as presented in Sec. 3.3 can be deduced.
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A.4 Similarity Map for Mode (2,0)

The similaratiy maps are shown here for the mode (2,0) for a hub-to-tip ratio of σ = 0.
The illustrations are in line with the similarity maps of mode (1,0) as displayed in Fig.
3.4 and Fig. 3.4 in Sec. (3.4). The depicted contour lines for constant values of the axial
angle of the group velocity vector φgr,x are calculated based on the similarity relation
given in Eq. (3.37). The dashed lines in Fig. A.2 and Fig. A.2 represent sensitivity of the
angle with respect to changes in the Mach number and Helmholtz number, respectively.
Calculations of sensitivities are based on Eq. (3.49) and Eq. (3.50).
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A.5 Aerodynamic Characteristics of the LPT

A.5 Aerodynamic Characteristics of the LPT

A.5.1 Design Parameter

Table A.1: Test conditions at design-point operation and blade characteristics as given
by Biester et al. (2011).

Parameter Value

Rotor speed in RPM 7000

Inlet pressure in kPa 156.7

Inlet temperature in K 370

Mass �ow rate in kg/s 8.5

Stage pressure ratio 1.43

Net Power in kW 278

Stator 1 Rotor Stator 2

Number of blades V and B 18 30 36

Blade height to axial chord length 2.15 2.15 2.15

Pitch to chord length 0.986 0.729 0.722

Stagger angle in Deg 39.08 51.21 67.98

Flow coe�cient − 0.59 −
Stage loading coe�cient 1.95 −
Stage reaction 0.55 −
Reynolds number outlet (Re · 10−5) 7.54 6.48 4.17
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A.6 Test Measurements in the AWT

Synthetic sound �eld excitation is a major methodical tool in this work. Therefore, test
measurements of the applied excitation method are carried out in the test-section of the
aeroacoustic wind tunnel (AWT) of the TFD. The setup of the test section is identical
to the setup used for the measurements carried out previously by Bartelt et al. (2013)
and Bartelt (2015). Figure A.4 gives an overview of the test rig. The sound generator
is implemented in the inlet of the test section. Important components of the test rig are
labelled. Detailed information on the design of the test-rig are given in Bartelt et al.
(2012).

In Tab. A.2 the relevant parameters of the 2D-DFT modal decomposition method
applied are summarized. The measurements are carried out without �ow so that �ow-
induced noise has not to be considered. The data signal collected is therefore not seg-
mented as described in Sec. 5.2.

Direction of �ow

1 - Inlet duct
2 - Venturi nozzle
3 - Settling chamber / mu�er
4 - Test section
5 - Sound generator
6 - Anechoic termination

Figure A.4: Test measurements of the synthetic modal sound �eld excitation method.
The �gure is taken from Bartelt (2015).
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Table A.2: Test measurements of the synthetic modal sound �eld excitation method:
2D-DFT processing parameters and properties. The Nyquist mode refers to
the highest mode resolvable with respect to both directions of spinning.

Parameter Value

Measurement time T 1 s

(Temporal) sampling frequency fS 60.000 Hz

Nyquist frequency fNyquist 30.000 Hz

Number of microphones J per array 10

Nyquist mode mNyquist |4|
Frequency resolution ∆f 1 Hz
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A.7 Validation of the 2D-DFT: Further test cases

Numerically generated data sets are used for the validation of the 2D-DFT modal decom-
position method. In accordance with the test cases regarded in Sec. 5.1.4, the temporal
DFT and spatial DFT are calculated for three test cases considering the mode m = ±2:

(1) a mode of order one spinning in clockwise direction (m = +2) with the modal
amplitude A1 and modal phase ϕ1,

(2) a corresponding mode spinning in counter-clockwise direction (m = −2) with the
modal amplitude A2 and modal phase ϕ2, and

(3) a circumferential standing mode composed of both modes according to (1) and (2)
with a modal amplitude relation of ε = A1

A2
= 1 as de�ned in Sec. 3.1.1.

The parameters for the calculation are the same as used for the generation of the test
cases in Sec. 5.1.4. According to Eq. (5.12) the modal amplitudes for m = ±2 are given
by Fk,j = Ak,(2) = Ak,(−2) = 0.4865. For test case (1) and (2), Fk,j = Ak,m holds. The
graphs and diagrams for the test cases are depicted in Fig. A.5.

The amplitude and phase characteristics on the right side of Fig. A.5 show the expected
results for all test cases. For the pure spinning modes, the temporal phase di�erence
between two adjacent circumferential positions is |36◦|, whereas the sign of the phase
di�erence depends on the direction of spinning. The latter is determined correctly. For
the standing mode, the temporal phase di�erence between two arbitrary positions is |0◦|
or |180◦|. The calculated values for the temporal amplitudes (for case (1) and (2)) and
the modal amplitudes (case (1) to (3)) match the expected values calculated according
to Eq. (5.12) up to the forth decimal place. Furthermore, the preset phase di�erences
with respect to the modal phase calculated for test case (1) are calculated accurately.
In summary, these additional test cases also con�rm the applied modal decomposition
method.
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(1) Mode of order m = 2 (A1 = 0.48, A2 = 0,∆ϕ1 = 0, ε = 0):
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(2) Counter-spinning mode of order m = −2 (A1 = 0, A2 = 0.48,∆ϕ2 = 45◦, ε = 0):
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(3) Standing mode of order m = |2| (A1 = A2 = 0.48,∆φ1 = 40◦,∆ϕ2 = 110◦, ε = 1):
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Figure A.5: Validation of the 2D-DFT using numerically generated test cases consider-
ing the mode m = |2| and 20 sensors equally distributed in circumferential
direction. Left: Complex vectors of the temporal DFT Fk,j. Center: Com-
plex vector(s) of the spatial DFT Am,k. Right: Temporal amplitude and
phase characteristic.
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A.8 Correlation Analysis

Pearson's correlation coe�cient is calculated to determine the dependency between the
variation in the modal response and the variation in the angle of the group velocity
vector, the Helmholtz number, and the Mach number, respectively. In �gure A.6 the
calculated coe�cients are given for all excitation frequencies for the respective mode
excited. The diagrams on the left and right show the values for part-load operation
and design-point operation, respectively. For both operating points, it is found that the
absolute values of the correlation coe�cient for the angle considered match exactly the
respective absolute value of the Helmholtz number. This observation holds true inde-
pendently of the correlation coe�cient determined for the Mach number. Assuming the
angle tested is a suitable parameter for establishing partial similarity, these two facts
support the analysis based on the similarity maps, which shows that for the operating
points considered, the Mach number has only a negligible impact on the angle of the
group velocity vector and thus on similarity, whereas sensitivity of the latter is high with
respect to the Helmholtz number.

For correlation with the axial angle of the group velocity vector and the Helmholtz
number, in particular, the correlation coe�cient is around or above a value of r = 0.8
indicating a very strong linear dependency. However, it can be observed that for a
small number of excitation frequencies, the correlation coe�cient with respect to all
three parameters is smaller than r = 0.5 and even approximating the value of zero
for some frequencies (in particular, for fexc = 509 Hz and fexc = 524 Hz for part-load
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Figure A.6: Correlation analysis for all excitation frequencies. Left: Test case 1, part-
load operation, and m = −1. Right: Test case 2, design-point operation,
and m = 2.
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operation, and for fexc = 803 Hz and fexc = 808 Hz for design-point operation). These
low values of the coe�cient indicate that no linear dependency between the variations
in the modal response and the variation in the similarity parameter exists. Comparison
with the modal frequency response functions in Fig. 6.1 and Fig. 6.5 for part-load op-
eration and design-point operation, respectively, shows that for these frequencies either
high stochastic �uctuations occur, or that the response function around the respective
frequency has a very even pro�le. In both cases, variations in the modal response can-
not be unambiguously related to changing boundary conditions, and are therefore not
conclusive enough to be considered for the test of the hypothesis of this work. The case
of a very even pro�le and the impact on the alteration of the modal response function
is also discussed in Sec. 6.3.3.

151



A Appendix

A.9 Results of Post-hoc Scaling for Test Case 1

In Fig. A.7 to Fig. A.27 the results of post-hoc scaling are depicted for each excitation
frequency of test case 1. The black lines with circle markers, represent the data of the
original measurement. The lines colored in magenta with the square marker, represent
the data after post-hoc scaling. The diagrams at the top of the �gures, show the modal
response respective modal pressure amplitude and the calculated relative change with
respect to reference data set No.1 according to∣∣∣∣Am − Am,ref

Am,ref

∣∣∣∣ =

∣∣∣∣∆Am
Am,ref

∣∣∣∣ , (A.35)

where Am,ref = A
[1]
m . For sake of brevity, the absolute values of the relative change is

depicted. In the center on the left side of the �gures, the original and the scaled angle
of the group velocity vector is depicted. On the right side, the excitation frequency and
the reduced frequency are given. The reduced frequency gives the frequency with which
the acoustic mode has to propagate in the duct, in order to generate the same axial
angle of the group velocity vector with respect to reference. At the bottom, the original
Helmholtz number and the Helmholtz number after post-hoc scaling are depicted. For
better clarity, two ordinates are used in these diagrams where the left ordinate serves as
a measure for the original values and the left ordinate for the scaled values.
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Figure A.7: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordinate,
respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 505 Hz]
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Figure A.8: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordinate,
respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 506 Hz]
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Figure A.9: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordinate,
respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 507 Hz]
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Figure A.10: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 508 Hz]
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Figure A.11: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 509 Hz]
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Figure A.12: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 510 Hz]
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Figure A.13: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 511 Hz]
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Figure A.14: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 512 Hz]
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Figure A.15: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 513 Hz]
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Figure A.16: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 514 Hz]

162
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Figure A.17: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 515 Hz]
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Figure A.18: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 516 Hz]
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Figure A.19: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 517 Hz]
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Figure A.20: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 518 Hz]
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Figure A.21: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 519 Hz]

167



A Appendix

0 5 10 15 20 25 30
100.0

150.0

200.0

250.0

300.0

Data set No.

A
m
in

P
a

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Data set No.

|∆
A
m
/A

m
,r
e
f
|

0 5 10 15 20 25 30
59.50

59.55

59.60

59.65

59.70

Data set No.

φ
g
r,
x
in

D
eg
.

0 5 10 15 20 25 30
519.8

520.0

520.2

520.4

520.6

Data set No.

f
in

H
z

0 5 10 15 20 25 30
2.130

2.131

2.132

2.133

2.134

2.1330

2.1331

2.1332

2.1333

2.1334

Data set No.

H
e

Original Scaled

Figure A.22: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 520 Hz]
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Figure A.23: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 521 Hz]
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Figure A.24: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 522 Hz]
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Figure A.25: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 523 Hz]
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Figure A.26: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 524 Hz]
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Figure A.27: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Rela-
tive change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and magenta refer to the left and the right ordi-
nate, respectively).
[Test case 1 | part-load operation | m = −1 | fexc = 525 Hz]
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A.10 Results of Post-hoc Scaling for Test Case 2

In Fig. A.28 to Fig. A.48 the results of post-hoc scaling are depicted for each excitation
frequency of test case 2.
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Figure A.28: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 797 Hz]
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Figure A.29: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 798 Hz]
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Figure A.30: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 799 Hz]
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Figure A.31: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 800 Hz]
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Figure A.32: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 801 Hz]
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Figure A.33: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 802 Hz]
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Figure A.34: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 803 Hz]
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Figure A.35: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 804 Hz]
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Figure A.36: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-load operation | m = 2 | fexc = 805 Hz]
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Figure A.37: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 806 Hz]
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Figure A.38: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 807 Hz]
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Figure A.39: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 808 Hz]
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Figure A.40: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 809 Hz]
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Figure A.41: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 810 Hz]
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Figure A.42: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 811 Hz]
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Figure A.43: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 812 Hz]
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Figure A.44: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 813 Hz]
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Figure A.45: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 814 Hz]
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Figure A.46: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 815 Hz]
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Figure A.47: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 816 Hz]
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Figure A.48: Results of post-hoc scaling. Top left: Modal amplitude. Top right: Relative
change of the modal amplitude with respect to reference data set No.1.
Center left: Group velocity angle. Center right: Excitation frequency and
calculated reduced frequency. Bottom: Helmholtz number (the lines and
markers colored in black and orange refer to the left and the right ordinate,
respectively).
[Test Case 2 | design-point operation | m = 2 | fexc = 817 Hz]
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