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Abstract

Trapped ion Coulomb crystals are regularly used as analogue simulators for physi-
cal systems, for which the access to the dynamics of the individual particles is
lacking or which are hard to simulate using classical computers. One area of inter-
est are solid-state friction models with two atomically flat surfaces sliding against
each other. Typically, the access to the dynamics of the individual particles is
lacking in realistic interfaces, therefore, ion crystals have been proposed in order
to test friction models. While a model system of an ion chain sliding over a rigid
optical potential has been demonstrated, a model system that implements back
action between the two sliding surfaces does not exist.

In this cumulative thesis, an atomic system with intrinsic back action and access
to individual particles that allows the study of nanofriction is presented. The
system consists of an ion Coulomb crystal in the two-dimensional zigzag phase,
into which a topological defect is introduced. The defect leads to a mismatch
between the ion chains, which allows for the observation of the pinning-to-sliding
phase transition for a finite system. The transition shows symmetry breaking and
the existence of a soft mode at zero temperature, which is a localized topological
defect mode. The influence of the defect’s position and type on the existence of
the soft mode is studied. It is found that breaking the intrinsic symmetry of the
topological defect in the sliding phase by external forces prevents the observation of
the soft mode. In the presented experiments, mode frequencies are determined with
resonant excitation of the collective motions of the ions via amplitude modulation
of a Doppler cooling laser. A non-zero soft mode frequency at the transition is
measured, which is attributed to the finite crystal temperature.

Furthermore, the linear-to-zigzag transition and the zigzag mode, i.e., the soft
mode of this transition, under thermal noise are investigated. An increase in the
mode frequency with temperature, as well as fast switching between the two pos-
sible ground states of the two-dimensional zigzag phase is found. An analytical
model is derived that explains the observed temperature dependence of the low-
frequency spectrum at the linear-to-zigzag transition. This analysis has important
consequences for the cooling of a soft mode near a symmetry-breaking transition.
In the future, this model could be adaptable to the pinning-to-sliding transition
in order to further the understanding of the thermal effects of friction and heat
transport.

Keywords: Coulomb crystals, nanofriction, phase transitions, symmetry break-
ing, topological defects



NOTE
This version of the manuscript has been compiled after the work was submitted, reviewed, and
defended. While the content remains unchanged, the following text changes were made:

� reworked the initial sentence of the introduction to emphasize that trapped ions are only
possible under ultra-high vacuum and that an ion crystal is an atomically pure system

� added new citations 8, 12-14 to the first paragraph of the introduction with respect to
optical clocks based on ion crystals

� updated hyphenation of adverbs throughout the introduction and summary, e.g. ”ultra
low temperatures” was changed to ”ultra-low temperatures”

� Figure 1: added symbols for the potential amplitude, lattice spacing, particle equilibrium
distance, spring constant and ion distances

� added a mathematical description of the Frenkel-Kontorova model to the introduction with
symbols for physical quantities. Exchanged text reference to these quantities with newly
added symbols when discussing the Frenkel-Kontorova model.

� replaced publication 3 with published version in Physical Review B

� fixed typographical errors in acknowledgments
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1 Introduction

Laser cooling multiple ions in an ion trap under ultra-high vacuum below a few tens of mK

temperature, leads to the atomically pure state of matter, known as ion Coulomb crystals (ICCs)

[1]. First found at the end of the 1980s [2, 3], these crystals are utilized nowadays in many research

areas, such as quantum computing [4–6], ion clocks [7–15], precision test of fundamental physics

[16] and analogue simulations with trapped ions [17–22]. At ultra-cold temperatures, they form a

well-isolated quantum system, with internal electronic and external vibrational states, over which

excellent control has been established [23]. This cumulative thesis is part of the ongoing effort

to utilize ICCs for simulation of solid state systems. Specifically, it investigates two structural

transitions in ICCs, that are related to friction between two atomically flat layers.

Tribology, the study of friction, covers phenomena ranging over several orders of magnitude

[24], from earthquakes on the scale of the earth, over sliding of everyday objects, such as a tea

cup on a kitchen counter, to molecules and DNA strands [25, 26]. Especially, with the emergence

of nanotechnology [27, 28], the understanding of friction on the nanoscale is of importance for

many applications, such as the design of molecular machines with lower energy dissipation [29,

30].

In everyday life, friction is encountered on the macroscopic level and is described by the

heuristic laws discovered in the 17th century by Amonton and Coulomb [24]. It exists, because

uneven surfaces at macroscopic length scales prevent sliding of two solid bodies against each other.

This can lead to the build-up of stress in a system, until a certain threshold is reached, where

for instance an earthquake occurs [24]. This is contrasted by the situation on the microscopic

level, where atomically flat surfaces can exist, e.g., two layers of graphene sliding against each

other [31]. Here, the direct interaction between the individual particles of the two surfaces

becomes important. In the first half of the 20th century, several mathematical models were

proposed for describing the sliding of atomically flat bodies. Two important models being the

Prandtl-Tomlinson model for a single particle [32, 33] and the Frenkel-Kontorova (FK) model for

a chain of particles [34, 35]. In both cases, one surface is approximated by a periodic corrugation

potential Ucorr = U sin(2πziλ
−1) preventing particles from moving laterally over it, where U is

the potential amplitude, zi is the lateral position of particle i and λ the lattice period. In the

FK model the sliding surface is given by an infinite chain of particles with mass m connected to

their neighbors by identical springs with stiffness κ, as illustrated in Fig. 1.1 (a). The potential

energy between two neighboring particles is UPP = 1
2κ (zi+1 − zi − a)

2
, where zi is the position

of particle i and a is the equilibrium distance without the corrugation potential.

Roughly 50 years after the initial publication of the FK model, Aubry found an interesting

regime, in which the friction force, needed to translate the particle chain, becomes effectively zero

[36]. If the periodicity of the corrugation potential λ and the periodicity of the sliding surface a

are incommensurate, i.e., the fraction a/λ is irrational, this frictionless regime can be reached.
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Figure 1.1: Overview friction models. (a) Frenkel-Kontorova model. An infinite chain
of particles interacting with springs with stiffness κ is placed over a rigid, periodic
corrugation potential with amplitude U and period λ that models the interaction of the
other atomic surface. Without the corrugation potential the particles exhibit an uniform
distance a between each other. (b) Schematic behavior of the soft mode. The frequency
ω of the vibrational mode that drives the pinning-to-sliding transition is plotted in
dependence of the amplitude of the corrugation potential U . For the infinite case (red
solid line) the frequency becomes zero at Uc and stays zero in the sliding phase. For
the finite case (black dashed line) the frequency is only zero at Uc and finite in both
the sliding and pinned phase. (c) Frenkel-Kontorova model implementation in trapped
ions. A finite number of ions is confined in an ion trap, and placed in an optical cavity
that generates the corrugation potential. The particle-particle interaction is given by the
Coulomb potential, indicated by the orange arrow, inversely proportional to the distance
d between neighboring ions. (d) Friction model with back action in trapped ions. An ion
Coulomb crystal in the two-dimensional zigzag phase placed in an ion trap, here shown
including a topological defect. The ions interact over the Coulomb potential indicated
by the orange arrows, which also generates the mutual corrugation of the two chains.

For amplitudes of the corrugation potential U below a certain threshold Uc, the system is in the

superlubric phase, where the interactions between the coupled particles counteract the friction

due to the corrugation potential Ucorr to allow for free sliding. For values above Uc, the system is

in the pinned phase, where sliding motion is governed by the so-called stick-slip movement [32].

In this regime the particle chain will be repeatedly pinned to one potential well before moving

to the next one.

The transition from the pinned phase to the superlubric phase is known as the pinning-to-

sliding transition (PST) or the Aubry transition. The transition point of this second-order phase

transition [36] can be identified with the help of several quantities, such as the static friction

force, the hull function and the frequency of the sliding mode. The transition does not break the

symmetry of the system in the ideal case of an infinite number of particles. It, however, breaks
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the analytic behavior of the hull function [36], which parameterizes the reachable ground states

under the presence of the corrugation potential. The hull function is continuous and therefore

analytic in the sliding phase, while being discontinuous and non-differentiable, therefore no longer

analytic, in the pinned phase. For finite-size systems, the PST still exists, but it becomes a

symmetry-breaking transition [37]. Additionally, the static friction force needed to move the

chain is non-zero above and below the transition. Only at the transition point, free sliding is

possible. The transition is associated with a sliding vibrational mode, a collective oscillation of

the chain over the potential. In order to determine the mode frequency, the equations of motion

can be linearized for small oscillations around the equilibrium positions. At the transition point

the frequency of the sliding mode ω becomes zero and its amplitude diverges. Such a mode is

often called a soft mode and its behavior is shown schematically in Fig. 1.1 (b). The frequency ω

stays zero as long as free sliding of the chain is possible [38]. In the finite system, ω goes to zero

frequency at the transition point, but it exhibits finite values above and below the transition.

The effect of reduced friction as predicted by Aubry was experimentally observed in systems

with atomic scale contact of gold and graphene surfaces [31, 39, 40]. Using graphene flakes on

the tip of an atomic force microscope sliding over a tungsten surface [31] allowed to modify

the mismatch between the atomic lattices by changing the orientation of the flakes. Thus it

was possible reach an regime of ultra-low friction for incommensurate, i.e., mismatched lattice

constants.

However, these experiments lack in-situ access to the dynamics of individual particles during

the sliding process. In order to find a controllable model system in which these degrees of freedom

can be accessed, trapped ion Coulomb crystals inside an optical lattice have been proposed

[41–43]. The optical lattice acts as the corrugation potential in this model system, while the

Coulomb potential implements the particle-particle interaction, as displayed in Fig. 1.1 (c). These

proposals were recently realized with up to five trapped ions placed in an optical resonator [44]. In

further experiments the existence of the PST in a finite system, also called Aubry-type transition,

was demonstrated [45]. This ion simulator allows to investigate the influence of velocity [46] on

friction, and to observe the multi-slip behavior [47] and topological defects in the FK model [48].

Another experimental test system for the FK model with access to the particle dynamics are

two-dimensional (2D) colloidal layers over optical periodic potentials [49]. This system consists

of µm sized, charged polystyrene spheres suspended in water. When placing this sheet of spheres

in an optical interference pattern, the spheres form triangular lattices [49]. In this 2D system, the

Aubry-type transition was also found [50], which is a first-order transition due to the additional

dimension.

Both approaches simulate the classical FK model for finite systems, in which one of the atomic

layers is replaced by the periodic corrugation potential. In this model, the potential is treated as

rigid and only the particle chain deforms. However, this is a simplification from realistic atomic

surfaces [51, 52]. An example from nature is the sliding of F-actin filaments, which normally

can be found in biological cells [53]. Both filaments are more or less identical and will therefore

influence each other during a sliding process. In other words, the sliding chain exerts a back

action on the corrugation potential, which is not captured by simulators implementing standard

the FK model.

In the first publication contained in this cumulative thesis, P1, friction is studied in a self-
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Figure 1.2: Photos of an ion Coulomb crystal with 30 172Yb+ ions in different phases.
(a) Zigzag crystal. (b) Zigzag crystal with extended topological defect of the horizontal
type. (c) Linear chain. Rightmost ion out of view.

organized ICC where the back action is intrinsically included [54]. In this model system, the

ion crystal is in the 2D zigzag phase [55, 56] under the presence of a topological defect [57–61].

Example photos of a 2D crystals with and without a defect are shown in Fig. 1.2 (a) and (b).

The 2D crystal can be interpreted as two linear ion chains on top of each other and the back

action is given by the intrinsic Coulomb interaction between the ions of the two chains, see Fig.

1.1 (d). The main result of this publication is the demonstration, that the PST exists in a 2D

Coulomb crystal with a topological defect, which enables tests of friction models that include

back action. Typical signatures that identify the PST, such as the existence of a soft mode and

symmetry-breaking [54] at the transition, are found.

Utilizing an ICC in the 2D phase as a model system circumvents technical issues, with respect

to cooling ions into the wells of an optical lattice [62, 63] or with charge build-up in the trap by

the light of the optical lattice. Even without an external corrugation potential, the amplitude

of the corrugation can be chosen by the distance between the two chains, which is controlled by

tuning the confining potential.

The topological defect in the 2D crystal introduces a mismatch between the ion-to-ion distance

of the two chains, which is needed to observe reduced friction effects. The defects are generated

with a certain probability by the Kibble-Zurek mechanism [57, 59–61, 64, 65], as the system

is changed from the linear chain, see Fig. 1.2 (c), to the 2D phase. Different kinds of defects

can be identified [66, 67], based on their local structure, and this type generally depends on the

trapping potentials and the number of ions [66]. While it is possible to choose between matched

lattice periods (zigzag crystal without topological defect) and mismatched lattice periods (zigzag

crystal with topological defect), the actual value of the lattice mismatch cannot be chosen freely

in the presented system. It is given by the Coulomb interaction, ion number and trapping ratios,
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and cannot be chosen independently from them, unlike in the simulators that implement the FK

model directly [44].

The intrinsic mirror symmetry of the topological defect along the transverse crystal center,

see Fig. 1.2 (b), is broken when the system enters the pinning regime. This can be understood

with the potential for the topological defect, known as the Peierls-Nabarro potential [35, 67].

In the symmetric regime, only a single ground state for the defect exists, while in the pinning

regime, multiple ground states are found [54, 67, 68].

In P1 the existence of a soft mode for T = 0 was demonstrated. It is a localized defect normal

mode, for which the two ion chains shear against each other in the crystal center. Experimentally,

the frequency of this mode is measured using an amplitude modulated cooling laser beam ad-

dressing the electronic 2S1/2↔ 2P1/2 dipole transition in 172Yb+ . This represents the first direct

frequency measurement of the localized low frequency mode of the topological defect. Besides

its importance for the PST, the measured mode might be of interest as a carrier of quantum

information in ring traps [69] and for transport properties in ICCs [70]. In the experiment, the

expected soft mode behavior is not observed, which is attributed to the finite temperature of the

ion Coulomb crystal, cooled near the Doppler limit of 172Yb+ , i.e. TD ≈ 0.5 mK.

In the second publication contained in this thesis, P2, the influence of the properties of the

topological defect on the PST is discussed [68]. Specifically, the effect of the symmetry, position

and type of the topological defect on the normal mode spectrum is investigated. It is shown, how

these properties are influenced by external forces, such as anharmonic trapping potentials, axial

micromotion [71–73], and differential light forces from the cooling laser. Whenever an external

force breaks the intrinsic symmetry of the crystal in the sliding phase, the frequency of the soft

mode becomes finite at the transition, even at T = 0.

The main result of P2 is the connection of the defect’s type and position to the soft mode

frequency at the expected transition point. Two possible extended defects can exist in an in-

homogenous zigzag crystal, which are named the horizontal and vertical defect in P2. These

two types show a different charge density per chain, as well as a different local structure. The

soft mode near the PST in the unperturbed crystal exists only, if a horizontal defect is present.

Interestingly, the two defect types can be locally changed into each other by applying a shear

force to the two chains, that moves the defect. Then the two defects periodically transform into

each other, and with this the existence of the soft mode periodically vanishes and reappears.

While the structural and normal mode properties of the PST in an ICC are mostly understood

for the T = 0 case, the frequency shift due to the finite temperature needs further investigation.

Due to the probabilistic nature of the defect generation process and its sensitivity to temperature

[60, 67, 68], the symmetry-breaking linear-to-zigzag transition (LZT) was chosen to investigate

the finite-temperature spectrum at first. Besides the less complex experimental realization, the

LZT in ICCs is well studied experimentally and analytically, see Refs. [56, 74–77]. Both the

PST and the LZT are symmetry-breaking transitions with a soft mode at zero temperature and

at least two ground states in the symmetry-broken regime [54, 74]. In both cases the barrier

between the ground states is on the order of mK near the respective transition [54, 78].

In the third publication P3, the frequency shift of the soft mode of the LZT for finite tempera-

tures is experimentally and theoretically investigated [78]. At this transition the symmetry along

the crystal axis of a linear chain is broken, as can be seen by comparing Fig. 1.2 (a) and (c). The
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1 Introduction

soft mode that drives the transition is the zigzag mode, for which all ions oscillate transversely to

the crystal axis, and each ion moves in the opposite direction of its neighbors, i.e., in a up-down-

up-down pattern [77]. While the structural effects due to finite temperatures were investigated

theoretically for ion crystals [79], and experimentally and numerically in macroscopic charged

spheres [80–82], the temperature dependence of the soft-mode frequency was not studied exten-

sively. In P3, a finite soft mode frequency at the transition is measured. In molecular dynamics

simulations the increase in the frequency of the soft mode and jumps between the two ground

states are observed. Both effects depend on the temperature, similar to the observations for the

PST [54, 68]. The main result of P3 is an analytical model that assumes the crystal can still be

considered in the linear, i.e., in the symmetric phase even if the trapping potentials indicate a

zigzag crystal, as long as more than one jump between the two ground states occurs during the

expected period of the soft mode. In this model the fourth-order interactions between the soft

mode and higher-frequency modes lead to an average frequency shift of the soft mode, which

reproduces the numerical and experimental results within the uncertainties.

The three publications contained in this cumulative thesis are added as individual chapters in

their published format:

� P1: Probing nanofriction and Aubry-type signatures in a finite self-organized system

� P2: Nanofriction and motion of topological defects in self-organized ion Coulomb crystals

� P3: Finite-temperature spectrum at the symmetry-breaking linear to zigzag transition

At the beginning of each chapter a short statement of the author contributions and copyright

are presented. Afterwards a summary of the combined results and an outlook on future research

is given.
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2 P1: Probing nanofriction and Aubry-type
signatures in a finite self-organized
system

Authors: J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, and T. E. Mehlstäubler

Journal: Nature Communications

DOI: 10.1038/ncomms15364

Author contributions: The experiment was initiated and led by T.E.M. R.N. developed the

numerical codes. R.N., J.K. and T.S. carried out the simulations. D.K. and J.K. designed the

experiment with input from T.E.M. D.K. and J.K. carried out the experiments and performed

the data analysis. All authors contributed to the discussion of results and participated in the

manuscript preparation.

Copyright: © The Authors 2017. Published by Springer Nature. This article is licensed under

a Creative Commons Attribution 4.0 International License.
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Probing nanofriction and Aubry-type signatures
in a finite self-organized system
J. Kiethe1, R. Nigmatullin2,3, D. Kalincev1, T. Schmirander1 & T.E. Mehlstäubler1

Friction in ordered atomistic layers plays a central role in various nanoscale systems ranging

from nanomachines to biological systems. It governs transport properties, wear and

dissipation. Defects and incommensurate lattice constants markedly change these properties.

Recently, experimental systems have become accessible to probe the dynamics of

nanofriction. Here, we present a model system consisting of laser-cooled ions in which

nanofriction and transport processes in self-organized systems with back action can be

studied with atomic resolution. We show that in a system with local defects resulting in

incommensurate layers, there is a transition from sticking to sliding with Aubry-type

signatures. We demonstrate spectroscopic measurements of the soft vibrational mode

driving this transition and a measurement of the order parameter. We show numerically

that both exhibit critical scaling near the transition point. Our studies demonstrate a simple,

well-controlled system in which friction in self-organized structures can be studied from

classical- to quantum-regimes.

DOI: 10.1038/ncomms15364 OPEN
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D
ry friction is the resistance to the relative movement of
two solid layers. It is responsible for many phenomena
such as earthquakes, wear or crack propagation and is of

enormous practical and technological impact1. According to
Amontons and Coulomb, friction between solids is proportional
to the normal force but independent of the contact areas. This
intriguing result was explained by realizing that macroscopic
objects touch at asperities that are deformed2. A different
signature occurs when atomically flat surfaces slide against each
other, as for example encountered in micro- or nanoelectro-
mechanical systems or biological molecular motors1,3,4. At this
nanoscale level the friction is no longer described by the
Amontons-Coulomb law. For this, mathematical models were
developed which are simple enough to be analysed analytically
and yet should capture the salient features of the friction
phenomena. As the sliding atomic layers are in contact with a
thermal environment, dry friction phenomena are a problem of
non-equilibrium statistical mechanics as well as nonlinear
dynamics5.

One of the most successful models describing friction
phenomena is the Frenkel–Kontorova (FK) model6. It consists
of a chain of coupled particles sliding over a static periodic
potential, which mimics a rigid undeformable substrate. The
analysis of this model has revealed highly nontrivial, nonlinear
dynamics such as the creation of kinks and anti-kinks, which
facilitate the sliding. For an infinite system with incommensurate
lattice periodicities, this model displays the celebrated Aubry
transition7, where the sliding motion becomes frictionless,
due to the competition of different interaction energies in the
atomic many-body system. In solid-state systems, this superlubric
regime has been demonstrated in nanocontacts of graphene and
gold surfaces8–11. In finite systems a smooth-sliding regime
with finite dissipation exists instead of the superlubric phase.
An Aubry-type transition with a symmetry breaking signature
occurs, when the system changes from the smooth-sliding to
stick-slip regime12,13.

With the advent of atomic and friction force microscopes and
microbalances it became possible to study individual sliding
junctions at the atomistic level14–17. These techniques have
identified many friction phenomena at the nanoscale, but many
key aspects of friction dynamics are not yet well understood due
to the lack of probes that characterize the contact surfaces directly
and in situ1.

Laser-cooled and trapped ions have been proposed to emulate
nanocontacts and to provide insights into the dynamics of
friction processes18–20. In this scenario, the FK model is emulated
by a chain of ions trapped in the harmonic potential of an
ion trap, which is overlapped with an optical standing wave
mimicking the corrugation potential. Signatures of an Aubry-type
transition, that is, fragmentation and symmetry breaking of the
periodic configuration of the ion chain, have been predicted,
when the optical lattice depth increases above a critical value19.
Another signature of the Aubry transition is the existence of a soft
mode, that is, a vibrational mode whose frequency approaches
zero at the critical point and drives the transition from pinned to
sliding motion12. Such behaviour is also predicted for finite
chains of ions in an external optical corrugation potential21.

Recently, Bylinskii et al.22 succeeded in cooling up to five ions
into an optical lattice and demonstrated the onset of reduced
friction and dissipation in a coupled atomic many-body system.
In this experiment, the symmetry breaking Aubry-type transition
has been observed for the first time with microscopic resolution23,
together with velocity effects in the stick-slip motion24. Another
synthetic system, in which the microscopic processes of friction
have become accessible, are colloidal monolayers driven across
external optical potentials25. All these systems aim to emulate the

classical FK model, where a layer of interacting particles slides
over a fixed rigid corrugation potential.

Here we report on the microscopic and spectroscopic control
of a system without an externally imposed corrugation potential
but consisting of two deformable back acting atomic layers, whose
relative motion exhibits the phenomena of nanoscale friction.
This system has similarities to a refined microscopic model of
friction, which replaces the rigid substrate by a deformable
substrate monolayer pinned to a solid body26. In particular, we
investigate static friction under the influence of a structural defect
and demonstrate physical properties of the system, which are
common to finite incommensurate systems. We use a structural
defect (kink) in an ion Coulomb crystal27 to create a local
disturbance in the ion spacing in the upper and lower chain, and
demonstrate an Aubry-type transition when the interatomic
spacing of the layers is varied. We show, using numerical
calculations, that the soft mode frequency exhibits a power law
scaling behaviour in the vicinity of the critical point, where the
system becomes superlubric. The experimental spectroscopic
measurements show a small reduction in the frequency of the soft
mode. The non-vanishing frequency of the sliding mode is due to
the finite temperature exciting nonlinear dynamics. In addition,
the experimentally measured order parameter agrees with
numerical results, which also exhibit a power law scaling in the
vicinity of the critical point. Our system relates to solid-state
phenomena such as charge density waves28 and dislocations
in crystals6. In particular, the scenario of two interacting,
deformable atomic chains with back action is analogous to
friction in fibrous composite materials29, sliding of DNA
strands30 and propagation of protein loops31. The manuscript
is structured as follows: in the first section we introduce our
experiment and model system. In the next section, we investigate
the structural features of an Aubry-type transition—the
symmetry breaking, the order parameter and the hull function.
We then study the properties of the soft mode using spectroscopic
measurements and numerical calculations. Finally, we discuss our
results and prospects of our model system.

Results
Experimental system. Our system consists of a two-dimensional
ion Coulomb crystal in a linear rf trap32,33. Several tens of
172Ybþ ions are laser-cooled to temperatures around TE1 mK,
so that they crystallize and self-organize into two ordered chains
with interatomic distances of ca. 15 to 20 mm, see Methods. The
ions are fluoresced by near-resonant laser light and imaged onto
an electron multiplying charged coupled device (CCD) camera
providing single atom and photon detection, as graphically
depicted in Fig. 1a. The axial harmonic confinement of the ion
trap leads to an inhomogeneous ion spacing, in particular at the
edges of the crystal, while the central part of large-enough crystals
exhibits a slowly varying lattice spacing with interatomic
distances a and b within one layer and in between the layers,
respectively, see Fig. 1b.

In the following, we consider the one-dimensional axial motion
of the two chains along the z axis in opposite directions. The
friction dynamics depends on the relative interaction energies
within each crystal row, Uintra, and between the rows, Uinter.
To estimate the energy scales of these competing interaction
strengths in our system, we relate them to the characteristic
length and frequency scales in the Coulomb crystal. For this, it is
convenient to view the system as two linear chains of identical
particles of mass m which are joined by interatomic springs of
stiffness k, depending on the inter-ion distance a. The masses are
attached to a rigid support by external springs of stiffness
D¼mo2

ax due to the elastic confinement in the ion trap along the
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axial direction. Here oax=2p is the frequency of the centre of mass
mode along the z axis. In this setting, the two chains of ions can
be moved and distorted by optical forces or light pressure as
indicated with FA and FB in Fig. 1b,c.

For the case of periodically ordered chains as shown in Fig. 1b,
stick-slip motion of the two layers of ions with respect to
each other is expected to be approximated by the classical
Prandtl–Tomlinson model34, where a single particle has to
overcome the potential energy barriers created by the periodic
atomic lattice below. However, when a structural defect is present,
the local disturbance in the periodicity of upper and lower chain
leads to the nonlinear many-body phenomenon of reduced
friction6,7. The underlying reason is that atoms in one layer will
now locally sense different corrugation potential energies, which
then can be stored by the internal springs described by k.
To investigate friction in soft chains of atomically flat layers
under the presence of a defect, we create a stable structural defect
in the centre of the Coulomb crystal, see Methods. This causes
slightly different interatomic distances a1 and a2 in the central
part of the Coulomb crystal, see Fig. 1c.

A rough estimate of the interaction energy between two ions
inside one layer is Uintra¼ 1

2kz2. The corrugation potential
pinning ions of one chain with respect to the other chain
can be locally approximated as Uinter¼ 1

2 U0 cos 2p
a z
� �

þ 1
� �

,
as indicated in Fig. 1d. Depending on whether the interaction
inside an atomic layer or between the layers is larger, a transition
from the sliding to the pinned regime at a critical depth of the
corrugation potential U0,c is expected. The interaction dynamics
between the two atomic layers is thus governed by two competing
energies. In harmonic approximation, they can be expressed in

terms of frequencies opinning¼
ffiffiffiffiffiffiffiffiffiffi
U0
m

2p2

a2

q
and onatural¼

ffiffiffik
m

p
,

defining the corrugation parameter Z¼ o2
pinning

o2
natural

.

To estimate the ratio of the competing energy scales, we have
numerically calculated opinning and onatural for the central ions
in the zigzag configuration, see Supplementary Note 1 and
Supplementary Fig. 1. While opinning depends on both intera-
tomic distances a and b, the natural frequency of an ion inside a

layer can be expressed as onatural �
ffiffiffiffiffiffiffiffiffiffiffiffi
e2

pE0

1
ma3

q
, when considering

only next-neighbour interaction. As we vary the relative
interatomic distances a and b, and with this the strength of the
interaction potentials, we expect to observe a pinned to sliding
transition. Experimentally this can be achieved by varying the
ratio a¼orad/oax of radial and axial trapping frequencies, that is,
the aspect ratio of radial and axial confinement in the ion trap.
a is used as the control parameter in our experiment to cross the
transition at the critical point ac. For the numerical calculations
we also plot Z, which scales linearly with a close to the transition,
see Supplementary Fig. 2.

Symmetry breaking transition. A general signature of Aubry and
Aubry-type transitions, in both infinite and finite systems, is the
breaking of analyticity7. This refers to the description of the
sliding system in terms of a hull function, which parameterizes all
possible configurations of the ground state under the presence of
a sliding force. This function becomes non-analytic when the
Aubry transition is crossed. In our system, as the two ion chains
are brought closer together the corrugation depth increases and
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Figure 1 | Experimental set-up and model system. (a) Schematic of the experimental set-up. Several tens of ions are trapped inside a linear rf trap. An rf

amplitude of around 1,000 V at the four quadrupole electrodes creates a time averaged confining potential in radial direction. The harmonic axial

confinement is created via different dc voltages on the segmented electrodes, indicated by the orange dashed line. Typical radial and axial trapping

frequencies are orad � 2p 140 kHz and oax � 2p 25 kHz, leading to inter-ion distances of aE20mm and bE15 mm. The ions are illuminated with laser 1.

Vibrational mode spectroscopy is performed with laser 2. The fluorescence of the ions is imaged onto an electron multiplying CCD camera. (b) The central

part of the Coulomb crystal can be pictured as a self-organized interface between two solids. For the axial movement of the two atomic layers we consider

the following model. Each chain is connected to the substrate via springs. The next-neighbour interaction between particles in the same row is modelled as

spring forces. The deformability leads to identical intra chain spacing a in upper and low layer. The chains can move relative against each other, using

differential laser light forces. (c) A structural defect inside the Coulomb crystal locally breaks the periodicity of the two chains, resulting in different particle

distances a1 and a2 in the chains. (d) The Coulomb potential of one row of ions acts as the corrugation potential for the other row. The depth of the

corrugation U0 determines the dynamics of the system. Below a critical corrugation depth U0oU0;c the system displays horizontal mirror symmetry. Above

the critical value U04U0;c the symmetry is broken.
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eventually reaches a critical point. Above this point the
corrugation prevents the ions from assuming all positions
during sliding and their trajectories, and thus the hull function,
become discontinuous. This is the point where Peierls–Nabarro
(PN) barriers are formed6.

To study the analyticity breaking in our system, we first
conduct numerical simulations of a 30-ion crystal under the
presence of differential forces applied to upper and lower ion
chain. In the classical FK model, the hull function zj(zj,0) is
defined as the coordinate of a particle j under the influence
of a static corrugation potential in relation to its unperturbed
coordinate zj,0 without the underlying lattice. For the
self-organized system of two interacting atomic chains, the
corrugation potential is given by the Coulomb potential of

the 2nd row of ions and thus cannot be switched off. To calculate
the hull function in such a system, we first apply opposite forces
±F/2 to each row of the crystal to obtain zj. Then we apply the
force F to both rows in the same direction, moving the lattice
along with the ion to obtain zj,0, that is, the equilibrium position
of the ions in the harmonic trapping potential without any
influence of the underlying lattice. We implement this principle
in our numerical simulations and show the result in Fig. 2a.
A more detailed evolution of the hull function can be found in the
Supplementary Movie 1. For the same control parameter a, where
a primary gap opens up in the hull function at zj,0¼ 0, we observe
a structural symmetry break in the equilibrium positions
of the crystal configuration. This is visible in Fig. 2b, which
shows photos of experimental realizations of 30-ion crystals at
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Figure 2 | Symmetry breaking of the crystal and restoring force. (a) Numerically calculated hull functions in units of the lattice constant a for the two

central ions, left (red points) and right (black points) to the crystal centre. Below ac¼6.41 the hull functions are continuous. After the pinning transition is

crossed they exhibit a central gap. Slightly below ac secondary gaps are observed. The inhomogeneity of the crystal leads to a lower charge density, and

thus lower onatural, further away from the crystal centre. If the defect is not at the centre, the pinning transition occurs for aoac. The secondary gaps of the

central ions are the response to the analyticity breaking of the outer ions’ hull functions. (b) Photos of experimentally observed 30-ion crystal

configurations at different aspect ratios a¼ orad
oax

from 5.29 to 7.21, as indicated in the grey bar. Relative errors are less than 1%. The exposure time is 700 ms.

Laser 1 continuously cools the ions. No force is applied. The blurring of the ion positions near the sliding transition and the appearance of multiple

configurations above it are due to thermal excitations. The scale bar is 16.5mm. (c) Numerically simulated 30-ion crystal configurations at T¼ 1 mK

integrated over 10 ms of time evolution. (d) The absolute value of the order parameter |Fred| for 30 ions plotted against a and Z. Experimental data

(red circles) are shown in comparison to numerically obtained values for T¼0 K (black dashed line). Experimental values represent a weighted average

over 5–26 measurements, with exception of a¼ 7.21, where only 2 configurations were observed. Error bars are one standard deviation weighted by

fit errors. (e) Numerically calculated restoring force FR plotted against Z� Zcð Þ=Zc for an inhomogeneous crystal (blue squares), a homogeneous crystal

(grey triangles) and an ideal zigzag without defect (black diamonds). Z refers to the inhomogeneous case. The parameters for the homogeneous and

commensurate crystals were chosen to have an identical ratio of inner inter-ion distances a,b. The friction force needed in the ideal crystal slightly above

the pinning transition is roughly an order of magnitude bigger.
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different a. They are compared to images obtained from
numerical simulations at T¼ 1 mK, shown in Fig. 2c. In both
the experiment and the simulations no driving force is applied to
the crystals. The motional excitation of the ions is due to the finite
temperature.

The collective dynamics in a discrete nonlinear system is
typically described by the PN potential6. It corresponds to the
energy needed to move the charge density. For temperatures close
to T¼ 0 K the system would choose one stable configuration in
one of the minima of the PN potential, shown in Fig. 3b. For
finite temperatures close to the height of the PN barriers, the
different choices of the system become visible. In Fig. 2b,c for
aoac the crystal shows horizontal mirror symmetry around its
centre. As a approaches ac the thermal oscillation amplitude of
the inner ions becomes larger, indicating that the ions are less
pinned close to criticality. At ac¼ 6.41 the pinning transition is
crossed. At this point the PN potential develops multiple minima,
as can be seen in Fig. 3b at a46.4, causing the symmetry
breaking of the crystal. A high-resolution video of the emergence
of PN barriers is provided in the Supplementary Movie 2. Slightly
above ac we do not resolve the symmetry broken configuration, as
thermal fluctuations mask the local minima. However, a larger
spread in the central ion positions is observed. As a is increased
over 7.00, multiple stable crystal configurations become visible,
indicating the existence of multiple minima in the PN potentials.

From the crystal configurations we can extract a structural
order parameter that quantifies the symmetry breaking at the
transition from pinned to sliding. For our scenario, that is,
the sliding of two deformable chains, we choose to define an order
parameter F as the relative axial distance between ions of
different layers, in the following labelled Chain A and B.
It characterizes the horizontal mirror symmetry of the system,

F ¼
X

i2Chain A

sgn zið Þ � min
j2Chain B

zi� zj

�� ��; ð1Þ

where zi is the axial coordinate of the ion i and z¼ 0 is the axial
symmetry axis below the transition point. In the sliding
regime F¼ 0. Crystal configurations obtained from numerical
simulations at T¼ 0 K, show that at the critical point around
acE6.41, the order parameter shows a cusp where the system
chooses a state of broken symmetry, a typical signature of a
second-order phase transition, see dashed line in Fig. 2d. When
evaluating the experimental data, to reduce the accumulated error
of fitted ion positions and to avoid errors due to aberrations of
our imaging system at large distances from the optical axis, we
measure and plot a reduced version Fred¼ Fi¼N=2þFi¼N=2þ 1;
which includes only the central terms with the largest contribu-
tion to the overall sum. The experimental data in Fig. 2d
(red circles) are extracted from CCD images, some of which are
shown in Fig. 2b. The experimentally and numerically observed
critical corrugation parameter ZcE0.16 is smaller than 1, because
for simplicity the interaction energies were calculated only for the
zigzag. The difference between the interatomic distances a and
a1,2 explain the smaller critical corrugation parameter.

At last, following Benassi et al.19 and using the data from
numerical simulations, we calculate the restoring force FR, which
is needed to restore symmetry in our system, above the transition
point. FR can be identified with the static friction force FS in an
infinite and thus homogeneous chain. FS is needed to overcome
the PN barriers and translate the localized defect by one
lattice site. In Fig. 2e, FR is shown for a homogeneous and
inhomogeneous crystal with defect, as well as an ideal zigzag. The
restoring forces are similar, indicating that our model system,
consisting of finite and inhomogeneous Coulomb crystals, is a
good approximation to large scale systems, with homogeneous
particle spacing. Comparing the axial inter-ion distances near the
defect, we find that distances between the innermost ions differ by
less than 1%. For next-neighbour ions the difference increases to
a few per cent. Compared to the force FSE5� 10� 20 N needed
to move two perfectly matched chains (a zigzag configuration
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Figure 3 | Vibrational soft mode and PN barriers. (a) Frequency of the soft mode in a 30-ion crystal. The experimental data is shown in red circles and the

error bars are given by uncertainties of the measured soft mode and common mode frequencies. The solid line displays the numerically calculated

dispersion relation at T¼0 K. Frequencies extracted via a Fourier transformation from molecular dynamics simulation are given by black triangles at

T¼ 5 mK, grey squares at T¼ 50mK and blue circles at T¼ 1 mK. The dashed blue line acts as a guide for the eye. All frequencies are plotted in units of the

axial secular frequency oax¼2pð25:6�0:2Þ kHz. The pinning transition is marked with a vertical line. (b) Numerically calculated PN potentials showing the

onset of barriers above ac. At temperatures of T¼ 1 mK the thermal fluctuations sample the multiple minima of the PN potential and consequently no

harmonic motion with a single distinct frequency can exist for a4ac. (c) A CCD image of an ion Coulomb crystal in our experiment in which the localized

vibrational mode is resonantly excited by a focused laser beam. It is taken at a¼ 5.77 with an exposure time of 100 ms and 300mW of power in the cooling

laser. The focused laser beam is modulated between 0 and 35 mW with a frequency of 12.1±0.3 kHz. Scale bar, 20.5mm.
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without defect) against each other, the static friction force is
reduced by more than an order of magnitude slightly above the
pinning transition. The derivation of FS for the scenario of
unperturbed crystals, analogous to the Prandtl–Tomlinson model,
is detailed in the Supplementary Note 2.

Soft mode and critical scaling. The sliding of two atomic chains
is driven by the vibrational axial shear mode of the crystal, where
the two rows move in opposite directions. Its frequency being
zero signifies it costs no energy to translate the layers relative to
one another. For finite systems, the frequency of the lowest
vibrational mode approaches zero but remains finite both above
and below the pinning transition and thus the system is only
superlubric at the critical point12. In an ideal zigzag however no
such soft mode exists, as the system is commensurate. Only when
a structural defect is present in the lattice disturbing the regular
ordering of particles a soft mode is present. It is localized at the
position of the defect35 and kink dynamics governs the sliding of
the two atomic layers.

We first calculate the dispersion relation of the vibrational
modes in our two-dimensional ion Coulomb crystal for different
interatomic distances b between the layers, see Methods. The
solid grey line in Fig. 3a shows the dependence of the localized
soft mode on the control parameter a and the corrugation
parameter Z. For ao6.8 this mode is the lowest frequency mode
in the crystal. Its frequency reaches zero at the transition point,
indicated by a vertical dashed line, and assumes finite values in
the sliding regime. In the experiment we use differential laser
light forces to resonantly excite the vibrational modes of the
ion Coulomb crystal by sinusoidal intensity modulation. An
experimental photo in which the soft mode is excited is shown
in Fig. 3c. Further details are found in the Methods. The
measurement results are depicted as red circles in Fig. 3a. Below
the sliding-to-pinning transition, our measurements agree with
the calculated frequencies of the dispersion relation. Close to the
transition the experimental measurements deviate from theory.
Above the critical point no excitation of the soft mode was
possible. To understand this behaviour, we conducted molecular
dynamics simulations of the unperturbed crystal, that is without
laser excitation, at finite temperatures (for details see Methods).
From the ion trajectories the vibrational spectrum of the crystal
was extracted using a Fourier transformation. To benchmark our
analysis, we first perform simulations at T¼ 5mK and find the
results to be in good agreement with our calculations. At an
increased temperature of T¼ 50 mK the Fourier spectrum of the
ion vibrations deviates from the dispersion relation. For T¼ 1 mK
and a4ac we observe a broad range of frequencies in the Fourier

transform with no clear resonance. For aoac the soft mode
frequencies extracted from these simulations agree with the
experimentally observed resonances. We attribute the deviation
of the observed frequencies near the transition point to the
increasing contribution of the nonlinearities of the PN potential,
which is shown in Fig. 3b. Above the symmetry breaking
transition the thermal amplitude of the kink motion overcomes
the barriers between potential minima, and no single distinct
mode frequency exists. For consistency, we compare the
experimentally observed thermal amplitudes of the central ions
to numerical simulations similar to Fig. 2b. From this we obtain
an estimate for the temperature of the crystal, which is found to
be T¼ 0.5±0.4 mK.

The finite size of ion Coulomb crystals in a harmonic trap and
thus the inhomogeneous charge density results in a global
curvature of the PN potential, as can be seen in Fig. 3b. This is in
stark contrast to the vanishing PN potential for infinite systems
below criticality. Not only is the crystal finite, but we expect the
sliding dynamics to be governed by the local distortion of the
structural defect. To discern whether critical scaling exists in this
system, we numerically calculate the soft mode frequency and
the order parameter in the vicinity of the sliding-to-pinning
transition with high resolution. Results for different crystal sizes
are shown in Fig. 4. We fit the order parameter as Fp(Z� Zc)s

and the soft mode frequencies above and below critical point
as o� / Z� Zcð Þw

�
. We find that independent of the ion

number and the crystal size sEw±E0.5, similar to what has
been observed for an Aubry-type transition in finite systems12. In
the Supplementary Fig. 3 we show a linear presentation of the soft
mode for 30 and 60 ions.

Discussion
In this work, we use an ion Coulomb crystal with a structural
defect to experimentally and numerically study static friction in a
self-organized system. In the scenario emulated by our model
system two deformable chains slide on top of each other.
Such situations frequently arise in nature, in particular in
biomolecules30,31. We experimentally observe the symmetry
breaking at the sliding-to-pinning transition and we spectro-
scopically resolve the frequency of the localized vibrational mode,
which is responsible for charge transport in our system. The
strength of trapped and laser-cooled ions is that they are a readily
accessible model system, in which many-body physics can be
observed with single atom resolution. With high quality imaging
optics, a spatial resolution of a few nm can be achieved36. Single
atom resolution also allows studies of kinetic friction20,37 and the
spectroscopic access to internal degrees of freedom enables
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investigations of non-equilibrium dynamics and
transport processes with ns and ms time resolution38. Typically,
trapped ions are confined in harmonic potentials which lead
to an inhomogeneous ion spacing. Our results show that the
inhomogeneity due to the boundary conditions and the system
size influence our model system only slightly. This is due to the
fact, that we focus on the phenomena of the onset of sliding,
which is dictated by the localized lattice defect. However, given
the controllability of Coulomb crystals it is possible to extend our
model to versatile geometries, e.g., equally spaced crystals in
anharmonic potentials or ring traps39. Moreover, the ideas
presented in this work may be used to investigate the currently
poorly understood Aubry transition in two-dimensional
systems40, since ion traps can trap large three-dimensional
Coulomb crystals composed of regular two-dimensional layers41.
Furthermore, by investigating the soft mode of the sticking to
sliding transition, we demonstrate the spectroscopic observation
of the highly nonlinear vibrational mode of the structural defect.
These localized modes have also been proposed for the
implementation of quantum information protocols35. Recently,
the high energy gap mode and its coupling to the low frequency
mode of the localized defect were observed (T. Schaetz, personal
communication).

In the future, the experiments can be improved by further
cooling to the mK regime using narrow transitions32 or dark
resonances42,43, making quantum effects of friction accessible.
This can provide a new platform for studying the physics of
Wigner crystals18,44.

Methods
Coulomb crystals and structural defect creation. Coulomb crystals form, when
ions are cooled to kinetic energies lower than the potential energy of the Coulomb
system. This is achieved by laser cooling the 172Ybþ ions on the broad, dipole
allowed atomic transition 2S1/2 to 2P1/2 at 370 nm with a natural linewidth of
g¼ 20 MHz. The frequency of the cooling laser is detuned from resonance by
d¼ � g/2 resulting in a crystal temperature close to the Doppler cooling limit of
T¼ 0.5 mK. The cooling laser illuminates the ions with a power between 200 and
300mW. The waist is 2.56 mm in axial direction and 80 mm in radial direction. One
to three-dimensional crystal configurations can be chosen, depending on the
relative strength of the harmonic trapping potentials U(r)¼ 1

2o
2
radmr2 in radial

direction and U(z)¼ 1
2o

2
axmz2 in axial direction45,46, where m is the ion mass

and r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. When the structural transition from the linear chain to the

two-dimensional zigzag is crossed non-adiabatically, defects can be created27,47–49.
In our experiment, we create and stabilize a structural defect in the centre of the
Coulomb crystal by fast ramps of the radially confining rf potential27. Typical
radial and axial trapping frequencies are orad;x � 2p 140 kHz and
oax � 2p 25 kHz, leading to inter-ion distances of aE20mm and bE15mm. The
anisotropy of the radial confinement with orad;y

orad;x
� 1:3 creates a two-dimensional

setting for the frictional dynamics. The trap frequencies are typically determined
within 100 Hz, amounting to an error of ±0.02 in the control parameter a¼ orad

oax
.

The ions are imaged onto an electron multiplying CCD camera using a self-built
detection lens with an NA¼ 0.2 and a magnification of 24. In a regular zigzag
configuration, we can resolve the ion positions within 40 nm at exposure times of
700 ms by fitting a Gaussian profile to the images. The resolution is limited by the
magnification of our imaging system and the pixel size of the CCD chip. Fitting
multiple ion positions in the symmetry broken regime runs into a limit close to the
transition where the intensity maxima are separated by less than a pixel.

Spectroscopy. For the spectroscopy of the vibrational modes, we use a second
laser beam under an angle of 25� to the crystal axis, which is focused to a waist of
ca. 80mm. The laser is amplitude modulated with a frequency n, exerting a
periodically oscillating force F¼ F0 cos [2p � nt] onto the ions. To efficiently excite
the shear mode, we centre the laser beam axially and slightly misalign it along the
radial direction to obtain a differential light force in axial direction between the two
chains. If n is near-resonant with a vibrational mode, a broadening of the ion
positions is observed. To determine the resonance, we sweep n with a speed
between 1 and 2 kHz s� 1. The full-width at half maximum of the resonances is
about 1 kHz and its centre frequency is determined within 300–400 Hz.

Numerical simulations. For simulations with T¼ 0 K, we determine the disper-

sion relation by diagonalising the Hessian matrix Hij¼ @2V
@qi@qj

���
qð0Þ

, where V is the

potential energy; qi are the degrees of freedom with i ranging from 1 to 2N,
with N being the number of ions; q(0) represents the equilibrium configuration.
The eigenvectors Hij are the vibrational normal modes and the corresponding
eigenvalues are squares of the normal frequencies. The equilibrium positions q(0)
are found by solving the equations of motions numerically using gradient descent
methods. For the calculation of the hull function and the restoring force FR we use
the same method, but add axial differential forces between the two chains to the
equations of motion.

For simulations at non-zero temperature we are solving the Langevin equation,
which includes the harmonic motion of the ions in a ponderomotive trapping
potential under the presence of a stochastic force e(t). The fluctuation-dissipation
relation eajðtÞebi t0ð Þ

� 	
¼ 2ZkBTdabdijd t� t0ð Þ;, with a, b¼ x, y, z and Z the friction

coefficient, connects the stochastic force to the temperature T of the system27.
The PN potential is calculated by finding the adiabatic trajectory of the defect

and extracting the potential energy. Finding the trajectory is an optimization
problem, which is solved using the method of Lagrange multipliers50.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Abstract
We study nanofriction in an ionCoulomb crystal under the presence of a topological defect.We have
previously observed signatures of the pinning to sliding transition i.e. the symmetry breaking at the
critical point and the existence of a vibrational softmode.Herewe discuss how they depend on the
position of the topological defect and how external potentials, such as anharmonic trapping potentials
or differential light pressure, can be used to change the defect position. The resulting forces tend to
break the intrinsic crystal symmetry, thereby reducingmode softening near the transition.We show
that the topological defectmode is sensitive to differential forces at the 10−24 N level.We find that the
local structure and position of the topological defect is essential for the presence of the softmode and
illustrate how the defect changes its properties, when itmoves through the crystal.

1. Introduction

Friction influencesmany natural phenomena over several orders ofmagnitude of relevant length scales, from
earthquakes to biologicalmolecules [1]. Especially nanofriction processes on the atomic scale are nowadays of
technical importance, due to advancesmade in suchfields as nanofabrication [2] and biotechnology [3, 4]. To
gain insights into the in situ dynamics of nanofriction processes, an emulation via laser-cooled and trapped ions
was proposed [5–9]. Theseworks suggested emulating one of themost fundamentalmodels of nanofriction, i.e.
the Frenkel–Kontorova (FK)model [10], using ion chains in an optical lattice [11–13]. Following the proposals,
Bylinskii et alwere able to trap 5 ions in an optical lattice, demonstrating the onset of reduced friction [14], the
velocity dependence of the stick-slipmotion [15], as well as single ionmulti-slip behavior [16]. Furthermore,
they observed structural symmetry-breaking at the pinning to sliding transition [17], anAubry-type (AT)
transition.

In actual nanocontacts, two layers of atoms are interactingwith each other. The corrugation is then no
longer given by a rigid potential, but rather by a deformable layer [18]. Recently, we presented a self-organized
system, consisting of two deformable back-acting ion chains, without afixed corrugation potential [19].We
showed that two-dimensional ionCoulomb systems under the presence of a topological defect [20–23] exhibit
features of anAT transition, namely the breaking of analyticity of a hull function and a soft phononmode.We
also observed the symmetry breaking inside the crystal, which is a typical signature offinite systems [12, 13]. Our
system shows similarities to other self-organized sliding systems, such asfibrous compositematerials [4], sliding
DNA strands [24] and propagation of protein loops [25].While the investigation of nanofrictionwith the help of
discrete topological defects, also known as kink solitons, is a new approach, these defects have been extensively
studiedwith respect to theKibble–Zurekmechanism [20–23, 26–28] and to quantum information [29, 30].
Also, the directed transport of topological defects via a ratchetmechanismhas been recently reported [31].

In this paper, we takefirst steps towards the investigation of dynamic friction of the tribological system
introduced above.We numerically investigate how several external forces influence the crystal structure, which
subsequently change the position of the topological defect and the frequency of the vibrational softmode. Forces
under investigation result from effects, such as anharmonicities of the axial trapping potential, axial
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micromotion and laser light pressure.We compare the results obtained for the anharmonic potentials with
crystal positions observed in a prototype trap. All of these forces break the local crystal symmetry, which leads to
a less pronounced softmode.We show that the frequency of the kinkmode is sensitive to differential forces at
the level of 10−24 N.Wenumerically investigate themotion of extended topological defects through the crystal
induced by differential light forces, and discuss the associated periodic change in their physical properties, such
as local structure andmode frequency. It should be emphasized that the paper focuses on the quasi-static sliding
regime since it is implicitly assumed that the configuration of theCoulomb crystal immediately adjusts to the
changes in the applied external forces.

This paper is structured in the followingway. In section 2we review the tribological system and the results of
[19].We discuss, previously not described, secondary gaps in the hull functions due to the crystal inhomogeneity
and present the analysis of the Fourier spectrumobtained frommolecular dynamics simulations to determine
the temperature influence. The spectroscopicmethod to experimentallymeasure the defectmode, as well as
numerical techniques to determinemode frequencies are explained. In section 3, we discuss how external forces
influence the defect position and the vibrational softmode, startingwith anharmonic potentials, followed by
axialmicromotion and lastly differential light pressure. Building on these results, in section 4we present the
behavior of the topological defect, as it ismoved through the crystal by differential light pressure. Finally, in
section 5, we discuss our results and give an outlook to future experiments and theoretical investigations.

2. Pinning to sliding transition in a self-organized system

Our system consists of a two-dimensional ionCoulomb crystal in the zigzag phasewith an extended topological
defect in the center. The frictional process of interest is the sliding of the two chains against each other. In the
following, we focus on the axial vector components of themotion, reducing the system to a one-dimensional
problem. The interaction energies within the chains,Uintra, and between the chains,Uinter, characterize the
regime of friction. To determine the critical point, we can estimate these energies from the characteristic
distances in theCoulomb crystals. To do so, wemodel the two linear chains as classical particles ofmassm,
which interact within each chain via springs with constantκi, where i is 1 or 2, identifying the chains as illustrated
infigure 1(a). The spring constants of the chains are different, due to the topological defect introducing a small
mismatch between the inter-ion distances ai. The chains are separated by a distance b and allmasses are
connected to a rigid support by springs of stiffness D m z

2w= , which corresponds to the axial confinement of
the ion trapωz.Moving the chains against each other can be done via light forces acting on each chain
independently, whichwe name Fi. Given this simplifiedmodel we can employ a harmonic approximation to
roughly estimate the interaction energy of ionswithin the top chain asU zintra

1

2 1
2k» . The energy scale of the

corrugation by the other chain can locally be approximated asU U a zcos 2 1inter
1

2 0 2
1p» +-[ ( ) ], whereU0 is the

strength of the corrugation, which depends on b. If the chains are brought closer togetherU0 increases, changing
the relative strength of the interactions. At a certain distance a critical depth of the corrugation potentialUc is
crossed and the system changes from the sliding to pinning regime. At this point we expect a symmetry breaking
of the crystal structure as illustrated infigure 1(b). The transition should happenwhen the competing energies
are in balance. Representing these energies as angular frequencies in the harmonic approximation:

U ma2pinning
2

0 2
2 1w p= -( ) and mnatural 1

1w k= - we can define a dimensionless corrugation parameter

. 1
pinning
2

natural
2

h
w

w
= ( )

At the transition, we expect an η of order 1.
In order to estimate η, we approximate the frequenciesωpinning andωnatural, which describe amany-body

interaction, with the help of the potentials, seen by one of the central ions. In a two-dimensional Coulomb
crystal with a topological defect shown in figure 1(b), both central ions are located on the slope ofUinter. As a
harmonic approximation is not valid there, we use the interaction energiesUinter˜ andUintra˜ of a zigzagwithout
defect as a further approximation. In such a crystal, all ions of one chain are located in the potentialminimumof
Uinter˜ . The second-order Taylor expansion ofUinter˜ andUintra˜ are than proportional to the approximate
frequencies pinningw̃ and naturalw̃ , respectively. This will result in an approximate corrugation parameter h̃, which
has a critical value ch̃ different from1.

2.1. Experimental system
In this section, we detail the experimental parameters necessary for implementing the abovemodel system.We
trap an ionCoulomb crystal with 30 172Yb+ions in a high-precision linear Paul trap [32]. The ion trap chips are
laser-machinedwith low tolerances and carefully aligned to reduce symmetry breaking of the electrode
configuration. This reduces unwanted odd numbered anharmonic terms in the axial potential seen by the ions.

2
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The ions are laser-cooled on the strong S P2
1 2

2
1 2 dipole transition to temperatures in the lowmK regime.

The laser has a central wavelength of 369.5 nm and a beamdiameter of 2.56 mm in axial (z) and 80 μmin radial

( x y2 2» +( ) ) direction. Typical laser powers are 200–300 μW.Thefluorescence of the ions is imaged onto an
electronmultiplying 512×512 pixel CCD camera via a lens systemwithNA=0.2 andmagnification 24. The
crystals xz plane has an angle of roughly 40° to theCCDchip. This reduces the observed radial distance between
the ions. On the camera, we can resolve individual ions and for an exposure time of 700 ms an ion position in a
pure zigzag configuration can be resolved to 40 nmby fitting aGaussian profile to the image. If the system is close
to theAT transition, the resolution for the central ions, which are part of the topological defect, worsens.

In order to confine the crystal to the two-dimensional xz plane, we lift the degeneracy between the two radial
potentials with the help of the dc potentials [32, 33], achieving a radial anisotropy ofωx/ωy=1.3. In a two-
dimensional crystal, the observed structural phase depends only on the relativemagnitude of the transverse and
axial confinement, quantified by the ratio of the respective secular frequenciesα≡ωx/ωz. This parameter is
used in our calculations and experiments as a control to change the distance b and subsequently the corrugation
η. For 4.81<α<13.6 a crystal with 30 ionswill be in the two-dimensional zigzag phase [34].

For afixed axial secular frequencyωz≈2π×25 kHz, topological defects can be created by rapidly
quenching the rf amplitude of the radial confinement [21]. In terms of radial secular frequencies, this quench
changes the confinement fromωx≈2π×500 kHz to values ranging from2π×140 kHz to 2π×200 kHz in
58 μs. During this quench, several types of topological defects can be created in afinite ionCoulomb crystal in
the two-dimensional phase [34]. The defect type is determined by the control parameterα. For an ion number
N=30 and the trap ratio in the range of 4.81<α<7.76, extended kinks are observed. Forα>7.76, the
defects are of the odd type [34, 35] and forα<4.81 the crystal exhibits a three-dimensional helix configuration
[36]. In the extended defect regime, which is relevant to the current paper, two kinds of defects can be observed.
We refer to the these defects as horizontal (H) kink and vertical (V) kink. The two kinks are depicted in
figures 1(c) and (d). Themost prominent difference between them is the position of the two innermost ions. In
the horizontal case these ions are in the same chain and occupy the sameminimumof theCoulombpotential

Figure 1.Nanofrictionmodel system in a self-organized ionCoulomb crystal. (a)The central part of a Coulomb crystal can be seen as
a back-acting interface between two atomically flat surfaces. Connection to a rigid solid (in our system the trap) ismodeledwith
springs of strengthD. Particles in one chain interact via springs of strengthκ1/2, which depend on the intra chain spacing a1/2. The
distances are not identical, due to the topological defect. The inter chain distance b determines the corrugation. Sliding of themodel
can be emulated by pushing one chainwith force F1, and pushing the otherwith force F2. The coordinate systemdefines the axial (z)
and radial (x) direction. (b) Symmetry breaking above the critical corrugation strengthUc. Decreasing the distance b between the
chains, increases the corrugation until it crossesUc and the defectmoves away from the center (dashed line). (c)Horizontal kink.
The two innermost ions are in the same chain. The number of ions in the upper and lower chain is different. The dashed line shows
the symmetry axis. (d)Vertical Kink. The two center ions are in different chains. The number of ions per chain is identical.
(e)Experimental image of a horizontal defect. Exposure time is 700 ms. The xz plane of the crystal has an angle of approximately 40°
to theCCDchip, resulting in a reduced observed radial distance between the chains. Graphics (a) and (b) are reprinted by permission
fromMacmillan Publishers Ltd:Nature Communications [19], Copyright 2017. CC-BY-4.0.
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produced by the opposite chain. In the vertical case these ions are in different chains and the ion of the upper
chain lies on the potentialmaximum created by of the lower chain. Another difference is the number of ions in
each chain. Ignoring the first 4 ions on the left and right side of a crystal, as they are still close to the linear chain, a
crystal with aV kink displays equal ion numbers for both chains. A crystal with anHkink exhibits a two ion
difference between the chains. The kink is found in the center of the crystal, due its inhomogeneity [35]. In our
experiments, both defects are created in a rf quench and are initially of odd type. They change to the extended
typewhen the rf amplitude is lowered further [35, 37]. The overall probability to create a defect is around 30%,
but only theHdefect is used in the experiments, because only this defect shows a softmode, if it is unperturbed,
as wewill show in section 2.4. Therefore, roughly 15%of all quenches result in a crystal with the necessary
extended defect. An experimental image is shown in figure 1(e). The observed crystal configurations are highly
symmetric due to thewell controlled environment provided by the ion trap.

2.2. Structural symmetry breaking
For afinite system a symmetry breaking is expected at the AT transition [12, 13]. In the experiment, we observed
severalfluorescence spots in the symmetry broken regime, as can be seen in figure 2(a) forα=7.21, where
fluorescence spots belonging to the same configuration are indicated by circles. The symmetry breaking is a
direct result of the emerging barriers in the Peierls–Nabarro (PN) potential [10] at the critical value of the control
parameter,αc. This potential describes the collective dynamics of a discrete nonlinear system. In our case, a PN
barrier rises in the center of the crystal, see figure 2(c). As a result, the extended defect destabilizes and slips into
the adjacentminimumof the PNpotential, which alters the ion positions and breaks the axialmirror symmetry
of the crystal. Thefinite temperature of the ions results in switching between stable configurations, and hence
multiple spots per ion are observed during afinite exposure time of a few tens ofms. The barrier between the
minima in the PNpotential are on the order of 1–2 mK, comparable to the temperature of the crystal, whichwe
estimate to be in the lowmK regime [37].We quantify the symmetry breakingwith an order parameterΦ,
defined as the sumof the relative axial differences between next-neighbor ions fromdifferent chains

z z zsgn min , 2
i

i
j

i j
Chain1 Chain2
åF = -

Î Î
( ) · ∣ ∣ ( )

where zi is the axial coordinate of the ith ion and z=0 is the axis of symmetry forα<αc. Below the transition
the order parameter is 0. Fromnumerical simulations, which are described in detail in section 2.4.2, we extract
stable crystal configurations, which yield the order parameter shown in the dashed line offigure 2(b). The critical
point isαc≈6.41, at whichΦ exhibits a sudden cusp. The corresponding approximate critical corrugation
parameter ch̃ is 0.16, which is different from1, since it is only a rough estimate. Taking fluorescence images of
crystals at variousωx, we extract the ion positions viafitting thefluorescence profile of the individual ions to a

Figure 2. Symmetry breaking at the pinning to sliding transition. (a)Experimentally observed crystal configurations below theAubry-
type transition, atα=5.29, and above, atα=7.21. The images are takenwith 700 ms exposure time. The crystal is at a finite
temperature in themK regime, which leads tomultiple fluorescence spots aboveαc=6.41, as the topological defectmoves between
the different stable positions. An angle of 40° between the crystals xz plane and theCCDchip, results in apparent smaller radial
distances. (b)Absolute order parameter redF∣ ∣ against the trapping ratioα. Experimental data (orange circles) and numerically
obtained values forT=0 K (black dashed line) are shown. Experimental data represents a weighted average over 5–26measurements
per point, with exception ofα=7.21, where only 2 configurationswere observed. Error bars are given as one standard deviation
weighted by fit errors. The critical point isαc≈6.41 (approximate critical corrugation parameter 0.16ch »˜ ). (c)Peierls–Nabarro
potential for different trapping ratiosα. The increasing PNbarriers lead to the symmetry breaking of the system. Barriers forα>αc

are on the order of the temperature in the system, leading tomultiple observed ion positions as the defect canmove between different
minima. Graphic (a) is reprinted by permission fromMacmillan Publishers Ltd:Nature Communications [19], Copyright 2017.
CC-BY-4.0
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Gaussian function. To avoid errors due to optical aberrations far away from the optical axis and to reduce
accumulatedfitting errors, we do not use the full version of (2). The reduced order parameterΦred=Φi=N/2+
Φi=N/2+1 only includes the two central terms, which have the largest contribution toΦ. The value ofαc is not
influenced by the choice ofΦ. The experimental results are plotted as orange circles infigure 2(b), and they agree
well with the numerical calculations. The error bars are one standard deviationweighted by the fit errors.
MeasuringΦ forα>αc close to the critical point is limited by the resolution of the EMCCDcamera, as the
fluorescence spots of two configurations need to be at least 2 pixel apart in order to be identified as distinct
configurations.

2.3.Derivation of the hull function in a self-organized system
The symmetry breaking infinite systems is also accompanied by themore general breaking of analyticity of the
hull functions [12]. In the following paragraphs, wewill discuss the hull function and its numerical calculation in
ourmodel system inmore detail.

In the FKmodel the hull function parameterizes the reachable ground state configurations of an
incommensurate system [10, 11]. If the system is below theAubry or AT transition, i.e. free sliding, this function
is continuous and analytic. Intuitively thismeans that during a sliding process of the chain over the potential, all
individual particle positions are a realization of a ground state of the system. This changes when the Aubry
transition is crossed, and the system start to exhibit stick-slipmotion. Certain positions are unstable and not part
of the set of ground state solutions, resulting in a discontinuous hull functionwith broken analyticity [11]. This
property of incommensurate sliding systems exists in both infinite andfinite systems, though the two cases are
not identical.

In the classical FKmodel the corrugation potential is not influenced by the particle chain residing above it,
which leads to a straightforward representation of the hull function. It is defined as an implicit function zj (zj,0),
where zj is the position of jth ion in the presence of the corrugation potential and zj,0 is the position of the jth ion
in the absence of the corrugation potential [10]. The particle positions can be calculatedwith the help of a force F
that pushes the chain along the axial direction.Doing this calculationwith andwithout a corrugation potential
yields zj and zj,0, which determine the implicit relation z zj j,0( ). Such a procedure is possible, because the
corrugation strengthU0 can be set to zerowithout altering the interaction between chain particles. For a self-
organized system, like a two-dimensional ionCoulomb crystal, this approach does notwork, because the
corrugation potential is part of a back-acting system. Removing it without changing the dynamics of the
interaction between particles of the same chain is impossible.

However, in a harmonically trapped system, one can push the complete crystal with a force F, leaving the
local ion interactions unchanged, to obtain a relation between the force and the unperturbed coordinates,
z Fj,0( ). Applying an axial shear forceΔF onto the chains, slides the particles over the corrugation potential,
leading to perturbed positions z Fj ( ). The shear force is such that one chain is pushed by+F/2, while the other
chain is pushed by−F/2. Then the relative force between the chains is equal to F, whichwas used to push the
whole crystal. The unperturbed and perturbed coordinates are related via the applied force F, providing a
representation of the hull function z zj j,0( ). The hull functions for the two ions at the center of the crystal, ion 15
and 16, are shown infigure 3(c).

In the hull function, various gaps open up above the transition due to stick-slip events. These events result
from the emergence of the PNbarriers above the AT transition, which destabilize crystal configurations, as can
be seen infigure 2(c). The central gap seen infigure 3(c) forα>6.41 is a direct result of a slip event of the 15th or
16th ion, seefigure 3(a). If the slip event takes place at the position of the defect, the opening in the hull functions
is called the primary gap. The non-central gaps in the hull functions of the 15th and 16th ions are either
remnants of a slip event of other ions or the defect leaving the crystal, whichwe previously did not discuss. If the
defect leaves the crystal, a part of the crystal will reorient itself affecting the positions of the central ions. This is
observed, for instance, far below the transition atα=5.65 and zj,0≈0.15a, where a is the axial spacing between
the 14th and 17th ion, whichwe consider as a pseudo lattice constant for the crystal center. As the pure zigzag has
mostlymatched chains, no further information about the AT transition can be gained for bigger forces. Herewe
note that, even though the individual ionsmoved less than a third of a lattice period (Δz<3 μm), they have
rearranged in away such that the defect already left the crystal, whichmeans itmovedmore than 100 μm.This
illustrates why charge transport is facilitated by topological defects [38].

Forα=6.38, still belowαc, more than one gap can be seen in the hull function. One in each function is due
to the defect leaving the crystal. The others are secondary gaps due to stick-slip events, even though the system is
globally in the sliding regime. The stick-slip events occur, because of the inhomogeneity of a harmonically
trapped crystal, which reduces the charge density towards the edge of the crystal, as illustrated in figure 3(b). This
increases the corrugation depth between the ion chains, as the axial distance between ions grows, while the radial
distance between the chains decreases. Therefore, the critical point is locally already crossed, if the local ordering
is disturbed by a topological defect. The slip events from these ions are seen by the central ions 15 and 16, which
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gain gaps in their hull functions as a result. In a crystal with equidistant ions, the secondary gaps will only exist
aboveαc, as only in this regime stick-slipmotion is present.

2.4.Motionalmode frequency of the topological defect
The localized vibrationalmode of the topological defect drives the AT transition [19]. The lower its frequency,
the lower the energy required, tomove the chains against each other. This defectmode is one of the gapped
modes, previously considered for quantum information [29]. Excitation of the high energy gappedmodewas
shown in [31]. Here, we summarize our results on the spectroscopy of the low energy gappedmode in
dependence of the corrugation strength and give detailed information on experimental and numerical
techniqueswe employed. Also, the dependence of the kinkmode frequency on the ion number ismeasured and
simulated.

2.4.1. Spectroscopy
Experimentally, wemeasure the vibrationalmode frequency via amplitudemodulation P t =( )
P t2 cos 2 10 p n +[ ( · ) ]of a laser addressing the S P2

1 2
2

1 2 transition, where P0 is the powerwithout
modulation and ν is themodulation frequency. This exerts a periodic force

F
F

t
2

cos 2 1 3p
0 p n= +[ ( · ) ] ( )

on the crystal, where F0/2 is the amplitude of themodulation, which depends onP0 and the detuning from the
atomic resonance δ, which is typically−Γ/2, withΓ≈2π×19.6 MHz, the natural linewidth of the atomic
transition. Fp can excite amotionalmode k, if ν is close to amode frequency 2k kn w p= ( ). Additionally, the
intensity distribution of the laser A must overlapwith themode vector km . Thismeans that the scalar product

Akm · has to be non-zero. The laser used in our experiments has an angle of 25° to the crystal axis and an
approximate angle of 50° to the xz plane of the crystal. The beamhas aGaussian beamprofile withwaistw of
roughly 80 μmin both directions. A typical zigzag configuration in our setup has a radial separation of the ion
chains of approximately 15 μm.Together with the angle to the beamwavefront, this leads to an apparent
separation of 10.6 μm,which is notmuch smaller thanw. If the beam is centered on the crystal, the intensity
distributionwill be identical for both chains. This would result in a zero overlapwith the localized defectmode
of the crystal, as both chains are excitedwith the same force and in the same direction. If the intensitymaximum

Figure 3.Hull function of an inhomogeneous crystal. (a) Schematic explanation of a primary gap in the hull function. Forα<αca
particle (black circle) can assume all positions, when being pushed. In the hull function no gap is observed. Forα>αc the corrugation
is stronger, and several positions are unstable. A slip occurs and a gap appears in the hull function. (b) Secondary gap in the hull
function. Due to theCoulomb interaction, a slip of an outer ion (dark gray circle) changes the observed inner ion (black) position
suddenly and a gap in the hull function appears. In an inhomogeneous system this can also happen, ifα<αc, because the chains are
closer together near the crystal edge. (c)Numerically calculated hull functions. The functions are shown for the 15th (orange) and 16th
(blue) ion for different values of the control parameterα. The gaps forα=5.65 are due to the topological defect leaving the crystal.
The inner gaps forα=6.38 are due to stick-slip events away from the center. The primary gap opens up in the center of the hull
functions forα>αc=6.41. All positions are in units of the pseudo lattice constant a, the distance between the 14th and 17th ion.
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is focused radially on one of the chains, see figure 4(a), then an intensity difference between the chains exist,
which results in a non-zero scalar product, Akm · , enabling the excitation of the localized defectmode. The
intensity difference leads to a differential force F F F 01 2D = - ¹ along the axial direction, where F1,2 is the
force along z acting on chain 1 and chain 2, respectively. For the excitation of the topological defectmode, this
ΔF is the periodic force exciting themotion. To determine the resonance frequency, ν is scanned at a rate of
1–2 kHz s−1 and the spread of the fluorescence of the central ions is recordedwith the EMCCDcamera. An
example image of the excited defectmode is shown infigure 4(b). Only the central ionsmovewith a significant
amplitude, illustrating that the excitation is localized on the defect. The resonance ismeasuredwith an
uncertainty of 300–400 Hz, which can be improved by a slower frequency scan rate and recordingmore images
per scan. The applied amplitude F0/2 on the crystal needs to be big enough to actually excite observablemotion
but also has to be small enough, to limit nonlinear excitations. In our experiment we found that an amplitude
F0/2 corresponding toP0=20 μWand δ=−Γ/2 is enough to excitemotion near the phase transition.We
calculate the average force, F0/2∝P0/2, acting on the ions in the intensitymaximumof the laser to be
24.5×10−21 N. The ions of the other chain experience on average a force of 23.9×10−21 N. The differential
forceΔF, used to excite themotion of the topological defectmode, is then 0.6×10−21 N. The influence of this
force on the crystal is discussed further in section 3.3.While exciting themotionwith the focused laser beam, the
ionswere still illuminatedwith a spatially extended cooling beam. This beamdamps the dynamics introduced
via the amplitudemodulation. Typical powers of the cooling beam,while conducting spectroscopy, are
200–300 μW.

2.4.2. Numerical calculations
Firstly, we look at the expectedmode frequency in dependence on the control parameterα. For this, we analyze
the total potential energy ofNharmonically trapped ions in two-dimensions:
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where xi and zi are the coordinates of ith ion in the coordinate systems defined infigure 1(a);ωx andωz are the
harmonic trapping frequencies; and r x z,i i iº { }. The third-dimension is neglected, due to the anisotropy of the
radial secular frequencies.We obtain the frequency of the topological defectmode (and any othermode) by
numerically diagonalizing theHessianmatrix
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q q
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¶
¶
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whereV is the total potential energy given by (4), qi are the degrees of freedom and q 0( ) is a given equilibrium
configuration. The stable equilibrium configuration, q 0( ), is obtained by numerically solving the equations of
motions under high damping. There are 2N vibrational normalmodes in a two-dimensional ion crystal withN
ions. The kth eigenvector ofHij is the kth normalmode of the crystal km , and the corresponding eigenvalueλk
determines themode frequency via the relation mk kw l= . The localized defectmode has the lowest
frequency forα<7, and it drives the symmetry breaking transition.We show the crystal configuration and the
defectmode vector infigure 5(a). Figure 5(b) shows the shearmode frequency as a function ofα for different

Figure 4.Vibrationalmode spectroscopy. (a)Excitationmethod. The ion crystal is illuminated by a centered laser beam,which
continuously cools the ions. A second, axially focused laser beam is centered on one chain, in order to realize a difference in the light
forces acting on the chains. The laser is amplitudemodulated. (b)Excited shearmode. CCD imagewith an excited localized defect
mode atα=5.77. Exposure time is 100 ms and cooling laser power of 300 μW.The power of the focused laser wasmodulatedwith a
frequency of (12.1±0.3) kHz between 0 and 35 μW.Graphic (b) is reprinted by permission fromMacmillan Publishers Ltd:Nature
Communications [19], Copyright 2017. CC-BY-4.0
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numbers of ionsN. The frequency tends to zero near the critical pointαc≈6.41(6.08, 6.74) forN=30(28, 32),
while increasing both above and belowαc, because of the finite size of the system. The critical pointαc depends
on the ion numberN due to the increase in charge density withmoreN. Themore ions are present, the stronger
is the repulsive Coulomb force, and therefore themore radial confinement, and subsequently higherα, is
necessary to bring the chains close enough together to observe the AT transition. In a previously installed
prototype trap [39], we observed the dependence of the defectmode frequency onN, see figure 5(c), but typically
with lower frequencies, than the calculations predict. This disagreement comesmost likely from anharmoni-
cities in the axial potential, see section 3.1. The apparent agreement forN=28 is due to the fact that simulated
frequency decrease towards 0 aroundα≈5.75, while the experimentally observed frequencies show amuch
smaller decrease, whenα is increased towardsαc. At someα the lineswill cross, which is coincidently near theα
valuewe chose tomeasure. Near theAT transitionwe observe a difference between themeasured and calculated
frequencies in both the high-precision and the prototype trap. This discrepancy stemsmainly from themissing
temperature effects in the numerical calculations.

In order to investigate the effect of afinite crystal temperature, we conduct three-dimensionalmolecular
dynamics simulations of an unperturbed crystal (i.e. without laser excitation, butwith cooling). These
simulations solve the Langevin equations, utilizing an impulse integrator algorithm [40]. The total potential
energy of a three-dimensionalN ion system is
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where xi, yi and zi are the coordinates of ith ionωx,ωy,ωz are the harmonic trapping frequencies; and r xi iº { , yi,
zi}. The equation ofmotion for the jth ion in one-dimension is

m V t¨ , 7j j jc hc x+  + =c c˙ ( ) ( )

where tjxc ( ) is a stochastic force,χ is x, y or z, η is a damping term from laser cooling andV is the total potential
energy from (6). The stochastic force fulfills the following two conditions:

t 0, 8jxá ñ =c ( ) ( )

t t k T t t2 , 9j k Bx x h d dá ¢ ñ = - ¢c g cg( ) ( ) ( ) ( )

where γ is x, y or z, j and k are ion indices and ...á ñ indicates time averaging. Equation (9) is thefluctuation–
dissipation relation that ensures that the systemundergoing the stochastic dynamics equilibrates at temperature
T [21]. In these simulationswe look at crystals with topological defects for different temperaturesT, each time

Figure 5. (a)Numerically obtainedmode vector of the localized kink excitation. Amplitudes are in arbitrary units and values smaller
than 10%of themaximumamplitude are not shown. (b)Kinkmode frequency against the control parameterα. Experimental data
taken in the high-precision trap for a 30 ion crystal is plotted as blue triangles. Error bars are given by the uncertainties of themeasured
commonmode and defectmode frequency. Numerical calculations atT=0 K are shown forN=28 (black dotted line),N=30
(gray solid line) andN=32 (black dashed line). Frequencies obtained via the Fourier transformation ofmolecular dynamics
simulation are shown forT=5 μK (black triangles) andT=1 mK (green triangles). (c)Kinkmode frequency in dependence on the
ion numberN. Experimental datawas taken in the prototype trap, where anharmonicities were present, changing the kinkmode
frequencies, see section 3.1. Data is shown forN=28 (purple squares),N=30 (blue triangles) andN=32 (red circle), in
comparison to results of numerical simulations atT=0 K forN=28 (purple dotted line),N=30 (blue solid line) andN=32 (red
dashed line). All angular frequencies are plotted in units of the axial commonmode angular frequencyωz=2π×(25.6±0.2) kHz.
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letting the system evolve freely for 10 ms.We then analyze the resulting axial trajectory of the 15th ion, z t15( ),
because this ion has one of the highestmode amplitudes for the localized defectmode in axial direction. Taking
the Fourier transformof this trajectory

z z t 1015 15n =ˆ ( ) ( ( )) ( )

yields the spectrumof the harmonicmotions excited in the crystal dynamics. Figure 6(a) shows the spectrum for
a crystal atT=5 μK for different trapping ratiosα. The amplitude peak at a frequency of 24.6 kHz is due to the
excitation of the axial commonmode, for which all ions oscillate in phase, and the other amplitude peaks are due
to excitation of the topological defectmode at different corrugations. The dependence of themode frequency on
α at 5 μK is shownwith black triangles infigure 5(b). These results agreewith the frequencies obtained from the
diagonalization of theHessianmatrix. The observed Fourier spectrum changes, whenT is increased. At
experimentally realistic temperatures of 1 mK the Fourier spectrum close to, and above, the transition changes,
as can be seen infigure 6(b). The commonmode can still be resolved independently of the trapping ratio, but
only belowαcwe observe distinct peaks for the defectmode in the spectrum. Additionally, these peaks are visible
at different frequencies in comparison to the results forT=5 μK. Forα>αc a broad range of frequencies with
nearly identical amplitudes is seen (forα=6.6 near 10 kHz and forα=7.21 near 40 kHz), indicating that no
single harmonic oscillation is present. This can be explained by the PNpotential barriers, which are in themK
range, see figure 2(c), and small enough for the defect to overcome. During themovement between theminima,
the nonlinear parts of the PNpotential are sampled andmany frequency components are part of the dynamics,
explainingwhy themode of the defect could not be excitedwith an observable amplitude in the experiment for
α>αc. Furthermore, wefind that the frequencies extracted from the Fourier analysis forT=1 mKagreewith
the experimentally observed frequencies, see figure 5(b). This indicates that the frequencymeasurements were
limited by thefinite Doppler cooling temperature of the S P2

1 2
2

1 2 transition.

3. Symmetry breaking by external forces

In this section, we investigate several external forces on ionCoulomb crystals, how they change the crystal
structure and subsequently themode frequencies. This is of interest for directed transport of kink solitons [31]
and the frictional properties, as a change in the solitonmode frequency implies different interaction energies
between the chains. In a previously used prototype trap [39], we observed asymmetric crystal configurations and
measured lower frequencies of the localized defectmode, than the calculations predict. Therefore, we investigate
here trap related forces, such as those stemming fromhigher order terms in the axial trapping potential and axial
micromotion, as well as forces due to laser illumination of the ions.While all effects change the crystal and hence
the position of the topological defect, the latter effect offers the possibility tomove the defect at will through the
crystal.

Figure 6. Spectra obtained via Fourier transformation ofmolecular dynamics simulations. (a) Spectrum forT=5 μK for differentα.
Commonmode, independent ofα, visible at 24.6 kHz. The frequency of the defectmode depends onα. (b) Spectrum forT=1 mK.
The frequency spread of the defectmode becomes broader the closer the system is toαc. Above the transition (α=6.6 andα=7.21)
a range of several kHzwith comparable amplitude is observed. Therefore, no single harmonic oscillation has an observable amplitude.
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3.1. Anharmonicities of the trapping potential
As themanufacturing process of an ion trap is limited by its tolerances, the trap potential will contain non-
quadratic contributions [41].

Here, we investigate the influence of a third-order term in the axial trapping potential on the crystal
structure, position of the topological defect and the frequency dependence on the corrugation. This is done
numerically by changing the potential term for the zdirection:

m z m z C z ,z z
2 2 2 2 3w w +( · )

whereCdetermines the relative strength of the third-order term. The addition of the anharmonic term to the
potential perturbs the equilibriumpositions of the ions.We define the difference of the axial positions of a
modified crystal zj,mod and the axial positions of an unperturbed crystal zj,pond asΔzj=zj,anharmonic−zj,pond,
where j is the ion index.We plot the difference infigure 7(a). The order ofmagnitude for theCwas chosen such
that the resulting distortion is in theμmregime, similar to the observed distortion in the prototype trap. The
modified confining potential has a higher curvature on one side of the crystal, while the other side has a lower
curvature in comparison to the ideal case. One side of the crystal is therefore pushed closer to the center, while
the other side is shifted away from it. This change in the axial positions influences the interaction between the
ions and thusmodifies the dependence of the localized defectmode frequency onα, seefigure 7(b). In particular,
in the presence of the third-order term in the axial potential, themode softening is less pronounced or not
present at all, depending on the strength ofC.

Figure 7. Influence of anharmonic potentials on the crystal symmetry and frequency dependence of the defectmode in comparison to
experimentally observed crystal configurations and frequencies. The blue ellipsoids sketch the deformation of the axial ion positions
over a crystal. (a)Difference in axial positionΔz between themodified equationswith a third-order term in the axial trapping
potential and the unperturbed ponderomotive solution. Shown are numerical simulations forC=0 (i.e. no perturbation, gray empty
dots)C=−170 m−1 (orange empty dots),C=−300 m−1 (blue empty dots) and experimental data (green squares) taken in the
prototype trap.α=5.51. The ions on the left side are closer to the center, while the ions on right side aremoved away by this
perturbation. (b)Defectmode frequencies against control parameter for an anharmonic axial potential. Color scheme identical to
(a). Themodified crystal leads to a non-vanishing of themode frequency atαc. (c)Change in the axial coordinate for a spatial shift of
the anharmonic potential with respect to the harmonic potential. Numerical simulations for z0 of 0 (i.e. no perturbation, gray empty
dots), 30 μm (blue empty diamonds), 50 μm (orange empty circles) and 150 μm (violet empty triangles) and the same experimental
data (green squares) as in (a).α=5.51. All calculations have been carried outwithC=−300 m−1, expect for z0=0, whereCwas
also 0. (d)Defectmode frequencies against control parameter for a spatial shift between harmonic and anharmonic part of the axial
potential. Color scheme identical to (c). No vanishing of themode frequency is observed and the position of theminimal frequency is
shifted.
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Up to nowwe have assumed that theminimumof the second-order term and the saddle point of the third-
order term are at the same axial position. As far as we know, there is no reason that this is necessary. Tomatch the
experimental crystal configuration to the simulation, we include a differential shift z0 in the position of z

2 and z3

terms in regard to the crystal structure and themode frequency, with results shown infigures 7(c), (d). Shifting
the z3 termby only 30 μmrelative to the z2 term yields a significantly distorted crystal configuration, inwhich the
left side is pushed towards the center by a fewμm,while the right side is only slightly perturbed. Infigure 7(c)we
fit the simulation to the experimentally observed differenceΔzj,exp, byminimizing z zj j j,expå D - D∣ ∣.Wefind a
good overall agreement of the distortions forC=−300 m−1 and z0=30 μm. In the frequency dependencewe
observe not only a less pronounced softmode, but also a shift of theminimumof the localizedmode frequency
towards higher values of the control parameterα. As it is possible tofit the simulationswith anharmonic terms
closely to observed crystals in the prototype trap, it is plausible that the potential of the prototype trap included
significant higher order terms. This ismost likely due to themanufacturing process, as the prototype trapwas
milled, resulting in slightly asymmetric trap segments.

Both the anharmonic potential itself and the shift from the harmonic part lead to an intrinsic symmetry
breaking and a change of the defectmode frequency near the transition. It is therefore necessary to suppress
anharmonic potential terms in an ion trap, for experiments that require high symmetry of the crystal. Higher
order odd exponent terms can beminimized by the design and careful construction of the trap. Depending on
the trap geometry and the strength of the observed anharmonic contribution, itmight also possible to
compensate for higher order termswith carefully chosen axial DCpotentials. This can in principle also be used
tomove the defect through the crystal, but willmost likely result in a overall distorted crystal shape.

3.2.Micromotion
As all investigations take place in a 2D crystal, wheremost ions are situated in a non-zero rf field, the
micromotion induced by the oscillating trapping field changes the structure and the dynamics of the ion crystal
in comparisonwith the ponderomotive approximation [42]. Furthermore, due to thefinite size of the
segmented linear Paul trap there are electric field gradients from the rf fields along the axial direction. This
additional gradient induces axialmicromotion, whichmight also influence the crystal.

The dynamics of ions trapped in a rf field are described by theMathieu equations [43]. Solving these
equations for a 30 ion crystal containing a defect at a radial trapping frequencyωx=2π×132 kHz and
comparing it to the ponderomotive approximation, reveals differencesΔzj=zj,Mathieu−zj,pond of less than
200 nm in the z coordinates of the ions. If axialmicromotionwith an electric field gradient E zrf,∣ ∣of 2%of the
radial electric field gradient E 3.2 10 Vmrrf,

8 2 = ´ -∣ ∣ is also present, then the crystal is axially compressed,
see figure 8(a). The further away an ion is from the center of the trap, the further its position is changed by the
micromotion. Because the rf gradient changes sign in the center of the trapping region it acts like an additional
axial potential, as long as the crystal is in the center of the trapping region. In the prototype trap the axial
micromotion has an electric field gradient of E 1.9 10 V mzrf,

6 2 = ´ -∣ ∣ , which is roughly 0.6%of the radial
electric field gradient E rrf,∣ ∣ [39] and in the precision trapwe observe only an electric field gradient of

E E6.4 10 Vm 2 10z rrf,
4 2 4

rf, » ´ » ´ - -∣ ∣ · ∣ ∣along the axial direction [44]. For both traps, the calculated
differencesΔzj are nearly identical to the simulationswithout any axialmicromotion,making the effect
negligible. In the radial direction the effect of axialmicromotion is small in comparison. Infigure 8(b)weplot
the difference in the x coordinate. For a high axialmicromotion of E2% rrf,· ∣ ∣ the difference in radial
coordinatesΔxj due to the axialmicromotion are less than 100 nm.Using the axial electric field gradients from
both traps, we again do not observe a difference to the simulationswithout any axialmicromotion.

Themode frequencies were not calculated for this effect, as the simulation using the fullMathieu equations
does not yield a static solution needed for theHessianmatrix approach. It is possible to calculate the normal
mode spectrumusing the Floquet–Lyapunov approach [42, 45], but this is outside of the scope of this paper. The
influence ofmicromotion is only relevant for trapswith an axial rf field gradient higher than 0.6%of the radial rf
field gradient. This gradient can only be suppressed by the design and carefulmanufacturing of the trap [33].

3.3.Differential light forces
Illuminating ionswith near resonant light will lead to an average force acting on them. These light forces will in
generalmodify the crystal structure, but as long as the illumination is uniformon the crystal, theywill only shift
the center ofmass.However, a small differential forceΔFbetween the ion chains was needed to excite the
topological defectmode, see section 2.4. In this sectionwe investigate how such a force influences the topological
defect.

For this we introduce an additional forceΔF in the equations ofmotion of each ion j, which depends on the
radial ion position. The sign ofΔF is positive for xj>0 and negative for xj<0. Fromnumerical simulationswe
find that such a differential force willmove the topological defect inside the crystal, see figure 9(a), inwhichwe
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plot the change in the axial crystal structure. This effect can be actively used, to investigate charge or information
transport in ionCoulomb crystals [29], as well as further investigations into nanofriction of two sliding chains.
In section 4we investigate in detail, what such amovement entails.

When applying differential forces to the crystal, the localized kinkmode frequency near the phase transition
will change. For differentΔF, we plot the expected frequency dependence onα infigure 9(b). The frequency
change can be understood by examining the PNpotential, shown infigure 2(c). The potential is overall confining
due to the inhomogeneity of the crystal, and it contains PNbarriers above the AT transition. The overall positive
curvature of the PNpotential explains why afinite frequency below theAT transition exists. This positive
curvature is balanced by the negative curvature of the emerging PNbarrier at z=0when the system is near the
phase transition, resulting in near zero frequency of the localizedmode.However, when differential forces are
applied, the kink soliton is shifted away from the point, where a PNbarrier is formed. This leads to the observed
non-zero harmonic frequency. IncreasingΔF further, results again in a softmode behavior of the defect
frequency, see figure 9(b) forΔF=9.8×10−21 N.

In order to compare this result with our experiments, we calculate realistic differential forces for the setup.
ThemaximumΔF due to a single laser beamon a zigzag crystal is achieved, if the radial crystal center is situated
near themaximum slope i.e. at z≈±w/2 of theGaussian intensity distribution I z I z wexp 20

2 2= - -( ) ( ),
where I0 is the intensity in the center andw is the beamwaist. Using the experimental parameters of section 2.4,
wefind that with this configuration aΔF around 2.1×10−21 N can be reachedwith an effective power
Pe=P0/2 of 10 μW.From the numerical simulationswe gather that such forces result in afiniteminimumof
themode frequency. For the frequencymeasurement we needed to have a slight differential light force in the
laser beam, so that it can excite the axial shearmode. For this we adjusted the intensitymaximumof the laser
beam to one of the chains, resulting in roughly 6% intensity difference between the rows. The calculated force
difference is then approximately 0.6×10−21 N, fromwhichwe expect an increase of theminimal frequency to
0.32ωz. This is currently below themeasured frequency and is not yet limiting the experiments. Since a lower

Figure 8. Influence ofmicromotionwith andwithout axial rf gradients. (a)Axial difference of ion positions for crystals calculated
from theMathieu equations and the ponderomotive approximation. The numerical calculations for an axial rffield gradient∇Erf,z of
6.4×106 V m−2 (blue empty squares), 6.4×104 Vm−2 (orange empty circles, high precision trap) and for no axialmicromotion
(gray triangles) are shown. The result for the high-precision trap is identical to the result for no axialmicromotion. (b)Radial
difference between the ion positions. Color code identical to (a). The blue ellipsoids sketch the deformations of the axial and radial ion
positions over a crystal for∇Erf,z=6.4×106 Vm−2. For both graphs:α=5.51.
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mode frequency needs smallerΔF to excite themotion, this future limitation can be prevented by reducing laser
power or reducing the intensity difference between the chains.

For experiments that require a symmetric crystal, or a low vibrational frequency, it is therefore necessary to
symmetrically center the beamonto the ions,minimizing differential light forces.

4.Motion of the topological defect

In this section, we discuss themotion of the topological defect, when the chains are pushed deterministically by
differential forces introduced in the previous section.Wewill look at themotion for both the horizontal and
vertical kink, and compare their behavior.

Starting with the frequency of the vibrational defectmode for the vertical kinkwefind that in contrast to the
horizontal topological defect, it does not exhibit a softmode tending to zero, see figure 10(a). Also, no structural
symmetry breaking at the critical point is observed. This can be explained by examining the PNpotentials shown
infigure 10(b). Forα>αc the PNpotential of the vertical kink has aminimum in the center of the trap, whereas
the horizontal kink has amaximum.When the transition is crossed, the vertical kink does notmove
spontaneously, because the globalminimumbefore the transition is still the globalminimumafter the
transition.

By varying the force differenceΔFwepush the kink through the crystal; the higher the FD∣ ∣ the larger is the
displacement of the kink from the center.Wefind that the local structure of a stable kink configuration changes
periodically as a function ofΔF, as is shown infigures 11(a) and (b). IfΔF is around 5×10−21 N, the local
structure of a vertical defect looks like a horizontal defect. If the force is increased further to roughly
10×10−21 N, the defectmoved by roughly 17 μmand the initial local structure is reproduced, but one lattice
period away from the initial position. Shown infigure 11(c) is the softmode frequency, i.e. the lowest frequency
of the localized defectmode, against an appliedΔF. In this relation a similar periodic behavior is observed.

Figure 9. Influence of light forces. (a)Difference in axial position from the ideal crystalΔz for differential light forcesΔF of
0.9×10−21 N (blue diamonds) and 2.7×10−21 N (orange circles) fromnumerical simulations. For comparison an ideal crystal is
shown as gray circles.α=5.51. The blue ellipsoid sketches the deformation of the axial ion positions over a crystal. (b) Frequency
dependence on the interaction strength for different applied differential forces. Shown are results forΔF=0.9×10−21 N (dotted
blue line), 2.7×10−21 N (orange dashed line) and 9.8×10−21 N (red short-dash line).
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Wefind that theminimummode frequency is low (tending towards zero), whenever the local structure looks
like aHdefect. Theminimum is high (around 0.5ωz), when the defect is locally similar to theVdefect. By starting
with anHdefect we observe the opposite behavior. This explains, why a differential forceΔF ‘destroys’ the soft
mode. The local structure changes from anHdefect to aV defect, which does not exhibit a softmode.

Even though these calculations are done for static configurations, in a slow dynamic process, the ionswill
move along the same trajectory. Therefore, we conclude that themotion of the extended kink in an ionCoulomb
crystal is accompanied by a change in the nature of the defect, which can be seen both in its local structure and in
the frequency of the vibrational defectmode. Note that the vertical and horizontal defect are still distinguishable
by their number of ions per chain. Only locally they shift into each other.

5.Discussion and conclusion

In this work, we investigated atomic friction in self-organized ionCoulomb crystals with topological defects,
with special attention given to the position of the defect and how it can be changed. Thefindings are of direct
relevance to research that aims to exploit topological defects for quantum information processing [29]. The
spectroscopicmethod, introduced in [19] and explained in detail in this publication, for probing the vibrational

Figure 10.Defectmode frequency. Plotted is the relation betweenmode frequency and control parameterα for the horizontal (orange
solid line) and the vertical (blue dashed line) defect. Peierls–Nabarro potential aboveαc. The PNpotential for the horizontal defect
(orange line), shows a PNbarrier, at the center of the crystal. The PNpotential for the vertical defect (blue line) shows noPNbarrier at
the center part of the crystal.

Figure 11. Shear forcesmove and change topological defects. (a) Local topological defect structure for a horizontal (left, orange)
and a vertical defect (right, blue) forΔF=0. (b) Local defect structure for a horizontal and a vertical kink forΔF≈5×10−21 N.
(c)Numerically obtainedminimumof the solitonmode frequency in dependence of an applied force differenceΔF for the horizontal
(orange circles) and vertical (blue squares) defect. For increasingΔF themode frequency of the horizontal defect becomes finite. A
further increase leads to a reduction of the softmode frequency again. The original crystal structure is reproduced at the next lattice
site, where the defect is shifted by roughly 17 μmfrom its original position. This behavior repeats for each lattice site. The vertical kink
shows the opposite behavior.
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mode of the topological defect with the help of amplitudemodulated laser light is an alternative to typical
excitationmethods, such as parametric excitation via rfmodulation [31, 46]. It offers the advantage of being
mode sensitive as the laser intensity distribution can bematched tofit a specificmotionalmode vector,
providing a tool for investigatingmodemixing in ionCoulomb crystals.

We numerically investigated the influence of symmetry breaking forces, anharmonicities andmicromotion,
present in ion trapping experiments, on the crystal structure, which in turn changes the kink soliton position
and the kink soliton frequency. The sensitivity of the kink to these effects, can be used to characterize even small
disturbances in ion trap experiments. In the case of differential forces across theCoulomb crystal, with typical
length scale of approximately 20 μm, a frequency shiftΔνnearΔF=0 has a sensitivity ofΔF/Δν≈1.4×
10−26 N Hz−1. Evenwith the current frequencymeasurement uncertainty of around 400 Hz differential forces
of just 6×10−24 N could bemeasured, if the crystal can be cooled to sufficient temperatures. This is another
signature how sensitive ionCoulomb crystals are with respect to external forces [47].

Wewere able tofit the experimental results, obtained in a previously usedmilled prototype trap [39], closely
to simulationswhich include an additional third-order term in the axial potential. The additional nonlinear
term ismost likely due to the fabricationmethod. In the newhigh-precision, laser-cut ion trap [44], an influence
of a similar higher order termwas not observed.We also investigated the influence of axialmicromotion on the
crystal configuration and found that, for experimentally observed values ofmicromotion, the ion positions are
not changed in comparison to simulations using no axialmicromotion. It is known thatmode frequencies
obtained from the ponderomotive approximation deviate by a few percent to frequencies obtained from the full
dynamics [45]. However, as the relative experimental resolution of ourmethod is currently around 4%, it is
unlikely that we could resolve this frequency difference. In future experiments, the resolution can be improved,
inwhich case using the Floquet–Lyapunov approach to calculate themode frequenciesmight be necessary.

With the help of laser light forces the topological defect can bemoved through the crystal deterministically.
This effect is similar to force gradients due to anharmonic potentials, when probabilistic directed transport was
observed [31].We observed a periodic change in the local structure of the kink as a function of the applied
external force, demonstrating that, as the kinkmoves through the chain, it alternates between two types of stable
kinks, onewith a gapped vibrationalmode (vertical kink) and the other with a soft vibrationalmode (horizontal
kink). As themovement of the defect constitutes the sliding of both ion chains in this system, this represents a
first step towards dynamic friction investigations of the presented tribological system.

In future experiments, the crystal temperature can be lowered to theμK regime, using dark resonances
[48–50], Sisyphus cooling [51] via polarization gradients or narrow transitions [39, 44] in other ion species
implanted into the crystal. Lower temperaturesmight enable friction experiments in the quantum regime [52].
Furthermore, investigations of crystals of higher dimensions or homogeneously spaced crystals can help in
translating the results fromourmodel system to solid state sliding systems.Here the versatility of ion traps can
help, as either designed anharmonic potentials or ring traps [53] could be used to create such scenarios.
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Appendix

A.1. Offset of the primary gap in the hull function
Infigure 3(c) forα=6.6, the central gap is offset from zj,0=0 and zj=0. This is due to brokenmirror
symmetry of the system. The topological defect is already in one of the central PNpotential wells, see figure 2(c).
The defect is not situated at the position of the PNbarrier, and neither are the ions, for whichwe calculate the
hull function. Before a slip can occur, the ionsfirst need tomove in either axial direction, which is the reasonwhy
the primary gap is not at zj,0=0.Due to the inhomogeneity the localized defectmoves towards one central
minimum (towards the right in the figures), instead of the other, were the PNpotential becomes steeper. This
explains why the gap is not symmetric around zj=0.

A.2. Simulation overview
Throughout this paper we used different numerical calculations depending on the issue at hand. The following
list and table A1 gives a short description of eachmethod andwhere it was used.
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• Two-dimensional calculation using time-averaged rf potentials without temperature. This code solves the
equations ofmotion of all ions in the ponderomotive approximation of the rf field under high damping to get
the equilibriumpositions q 0( ).T=0 K. It also allows for the diagonalization ofHessianmatrix for a given
q 0( ), resulting in themode spectrumof the crystal, and the calculation of the hull functions.

• Three-dimensional calculation using time-averaged rf potentials with temperature. This code solves the
Langevin equations for all ions in the ponderomotive approximation for the rffield in three dimensions under
experimentally realistic damping. The temperature is introducedwith a stochastic force. Vibrationalmode
frequencies are obtainedwith Fourier transformation of the resulting ion trajectories.

• Three-dimensional calculation of time-dependent rf potentials without temperature. This code solves the
Mathieu equations [43] for all ions in three-dimensions under damping. The average positions of the ions are
taken as the equilibriumpositions for comparisonwith the ponderomotive approximation.
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Journal: Physical Review B

DOI: 10.1103/PhysRevB.103.104106

Author contributions: The experiment was initiated and led by T.E.M. D.K. and J.K. de-

signed the experiment with input from T.E.M. D.K. and J.K. carried out the experiments and

performed the data analysis. J.K. and L.T. carried out the simulations. H.L. devised the analyt-

ical model. J.K. carried out the calculations. All authors contributed to the discussion of results

and participated in the manuscript preparation.

Copyright: © The Authors 2021. Published by American Physical Society. This article is

licensed under a Creative Commons Attribution 4.0 International License.

37

https://doi.org/10.1103/PhysRevB.103.104106


PHYSICAL REVIEW B 103, 104106 (2021)
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We investigate the normal-mode spectrum of a trapped ion chain at the symmetry-breaking linear to zigzag
transition and at finite temperatures. For this purpose, we modulate the amplitude of the Doppler cooling laser to
excite and measure mode oscillations. The expected mode softening at the critical point, a signature of the
second-order transition, is not observed. Numerical simulations show that this is mainly due to the finite
temperature of the chain. Inspection of the trajectories suggest that the thermal shifts of the normal-mode
spectrum can be understood by the ions collectively jumping between the two ground-state configurations of
the symmetry-broken phase. We develop an effective analytical model, which allows us to reproduce the low-
frequency spectrum as a function of the temperature and close to the transition point. In this model, the frequency
shift of the soft mode is due to the anharmonic coupling with the high-frequency modes of the spectrum, acting
as an averaged effective thermal environment. Our study could prove important for implementing ground-state
laser cooling close to the critical point.

DOI: 10.1103/PhysRevB.103.104106

I. INTRODUCTION

Ion Coulomb crystals are an unusual form of condensed
matter, where crystalline order emerges from the interplay
between Coulomb repulsion and the external trapping poten-
tial, while the temperature is controlled by means of lasers
[1]. These properties make them versatile and controllable
systems [1,2], which are among the most prominent platforms
for quantum computation [3–10] and for the simulation of the
equilibrium and out-of-equilibrium dynamics of many-body
systems [11–23].

Amongst others, the Kibble-Zurek mechanism [24–26]
and creation of topological defects have been demonstrated
[27–30]. Two widely discussed transitions are the linear to
zigzag [31–34] and the pinning to sliding (Aubry) transi-
tion [35–37]. These were shown to be second-order phase
transitions [33,38] that exhibit a soft mode with vanishing
frequency at a critical point. The system, however, is criti-
cal solely at zero temperature. Therefore, the observation of
critical behavior requires one to characterize and understand
finite temperature effects at the transition, such as the size
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of the crossover region due to temperature and how thermal
excitations modify the normal mode spectrum.

The frequency spectrum at zero temperature is well de-
scribed by the harmonic crystal approximation. Deviations
to this analytical solution and, in particular, finite frequen-
cies close to the critical point have been observed for the
soft mode of the Aubry-type transition in trapped ion chains,
at a temperature of around 1 mK [12]. Here, we focus on
the experimentally more accessible linear to zigzag tran-
sition and investigate the coupling of the soft mode to
the thermal phonon environment. We develop a theoretical
model that allows one to reproduce the presented spectro-
scopic measurements by means of a harmonic chain, whose
normal-mode spectrum at low frequencies results from the
temperature-dependent coupling with vibrational modes at
high frequencies. In this sense, the high-frequency modes can
be considered a thermal phonon environment. We discuss this
result in connection to earlier works [39,40] that described
finite temperature effects in terms of an effective shift of the
transition point. Our findings deepen the understanding of the
complex dynamics of ion Coulomb crystals. They could prove
important, for instance, for laser cooling the linear ion chain
to the ground state in the vicinity of the transition.

This paper is organized as follows: In Sec. II, we briefly
review the linear to zigzag transition. In Sec. III, we present
our experimental methods and results of vibrational mode
measurements, using resonant light force modulation. Sub-
sequently, in Sec. IV we compare our findings to molecular
dynamics simulations. In Sec. V, we discuss a simplified
analytical model which allows one to gain insight into the

2469-9950/2021/103(10)/104106(15) 104106-1 Published by the American Physical Society
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(a)

(b) (c)

FIG. 1. (a) Experimental pictures of the linear chain (top) and of the zigzag configuration (bottom). The crystals are formed by 30 laser-
cooled Yb+ ions in a linear Paul trap. The images were taken under an angle of 45◦ to the crystal plane and focused on the bottom row of
the zigzag crystal. The rightmost ion for the linear chain is out of view. (b) Normal modes as a function of the aspect ratio α and in the
vicinity of the linear to zigzag transition at αc ≈ 12.0 for N = 30. The modes are evaluated in the theoretical limit T = 0. For α < αc, the ions
form a zigzag structure, for α > αc a linear chain. The vanishing of the zigzag mode frequency at αc signals the phase transition (PT) point.
The notation (n, p) indicates the number of axial and transverse nodal points of the corresponding mode vector. (c) Normal-mode vector for
the breathing and the zigzag mode below [above] the phase transition with nodal points (3,N-3) [(1,0)] and (1,N-1) [(0,N-1)], respectively.
PT indicates the phase transition. The third direction y is not shown, as it has zero amplitudes for all ions in these modes. Here, the axial
trapping frequency is in the range of ωz ≈ 2π × (20 − 35) kHz. The transverse trapping frequency is chosen such that α varies in the interval
[11.0,12.5].

temperature dependence of the spectroscopic measurements.
In Sec. VI, the conclusions are drawn. The Appendices
provide supplementary material to the studies presented in
Secs. IV and V.

II. THE LINEAR–ZIGZAG TRANSITION

We consider N ions with charge e and mass m, which
are confined by a linear Paul trap. The trap potential is de-
scribed in ponderomotive approximation by three trapping
frequencies ωz, ωx, and ωy. The total potential energy V is the
sum of the trap confinement and of the unscreened Coulomb
interaction between the ions,

V =
N∑

i=1

m

2

(
ω2

x x2
i + ω2

y y2
i + ω2

z z2
i

)

+ e2

4πε0

N∑
i=1

∑
j<i

|ri − r j |−1, (1)

where ri = (xi, yi, zi )T denotes the position of the ion i
(i = 1, . . . , N) and ε0 is the vacuum permittivity. For later
convenience, we introduce the vector u = (x1, x2, . . . , xN ,

y1, y2, . . . , yN , z1, z2, . . . , zN )T , which gives the configuration
of the crystal.

At sufficiently low temperature, the ions localize at the
equilibrium positions u(0) of the potential V , for which the

equations ∂V/∂u j = 0 ∀ j hold. In this configuration, the dy-
namics of the chain is characterized by the matrix K ′, with
elements

K ′
i j = ∂2V

∂uiu j

∣∣∣∣
u(0)

. (2)

For stable equilibrium, K ′ has finite and positive eigenvalues.
In the rest of this paper, we choose ωz < ωx < ωy, focusing
particularly on the aspect ratio α = ωx/ωz for which the ions
can either form a one-dimensional crystal along the z axis, the
linear chain, or form a two-dimensional crystal in the form of
a zigzag configuration on the x − z plane with two degenerate
ground states [41,42].

Figure 1(a) displays an experimental photo of a linear and
of a zigzag chain of 30 ions. The two structures are separated
by the critical value of the aspect ratio αc ≈ 12. A numerical
estimate of the scaling of the transition point with the num-
ber of ions gives αc(N ) ∼ 0.556N0.915, see Refs. [32,43,44],
which gives an approximate location of the transition point
[31]. The shift of the transition point due to quantum fluctua-
tions has been determined in Refs. [45,46].

The linear to zigzag instability is a continuous phase tran-
sition in the thermodynamic limit, corresponding to letting
N → ∞ and to rescaling the trap frequencies with N to keep
the critical aspect ratio αc constant [33,47]. It is associated
with breaking of reflection symmetry about the z axis (for
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ωx = ωy, the broken symmetry is rotational and the tran-
sition is characterized by a Goldstone mode) [33]. As for
ferromagnetism in one dimension, these properties are strictly
valid in the limit of T = 0, while at finite temperature the tran-
sition becomes a crossover. Let us now make our statement
more precise. In our case, where laser cooling of the chain
can be modeled by an effective thermal reservoir [48], one
can use a canonical ensemble to model the properties at the
steady state. A phase transition, like the linear-zigzag struc-
tural instability, is then identified in the thermodynamic limit
by discontinuities in the derivatives of the free energy. The
linear-zigzag instability can be mapped to the Ising model for
ferromagnetism, where the phase transition is present only at
zero temperature and is a quantum phase transition [33,49,50].
At finite but low temperatures, when kBT is smaller than
the gap between the ground and the first excited state of the
quantum model, the properties are universal [49]. At higher
temperatures, such as the ones we consider in this paper,
the transition becomes nonuniversal and abrupt changes and
power-law scaling characteristics of a phase transition are
replaced by a smooth behavior which we here denote by
crossover (and shall not be confused with the crossover due
to finite-size effects) [50].

To understand the effect of temperatures on the vibrational
spectrum across the linear to zigzag transition and in a finite
chain, we first discuss the normal-mode spectrum at T = 0.
The normal-mode spectrum is determined by assuming that
the ion displacements due to thermal noise are small in com-
parison to the equilibrium ion distances. The normal-mode
frequencies are related to the eigenvalues λ j of the matrix
K ′ by the relation ω j = √

λ j/m ( j = 1, . . . , 3N). The cor-
responding mode vectors are given by the columns of the
dynamical matrix λi j that diagonalizes K ′ and the mode am-
plitudes are denoted as � j . We use the notation (n, p) to
identify the mode vectors by the number of nodal points
(phase flips between ions) along the axial (n) and transverse
direction (p).1 For example, the three lowest axial modes in
the linear chain are denoted by (0,0), (1,0), and (2,0), while
the lowest three transverse modes are (0, N-1), (0, N-2), (0,
N-3). The lowest normal mode frequencies for N = 30 are
displayed in Fig. 1(b) as a function of the aspect ratio α across
the linear to zigzag transition.

At the transition point, the frequency of one normal mode
vanishes. In the linear chain, this mode is the zigzag mode and
has a purely transverse oscillation with (0,N-1) nodal points,
see Fig. 1(c). In the thermodynamic limit, the zigzag mode of
the linear chain is the soft mode of the phase transition [33]. It
is interesting to analyze the property of the eigenmode at low-
est frequency as a function of the aspect ratio α. While in the
linear chain (α > αc) it corresponds to the zigzag mode, in the
symmetry-broken (zigzag) phase at α < αc, the eigenmode
at lowest frequency gains an axial nodal point and becomes
the new breathing mode (1,N-1) of the zigzag configuration.
The axial breathing mode (1,0) of the linear chain, instead,

1This is not an unique identification. In fact, due to the finite
size some modes have the same number of nodal points. A unique
identification is achieved, for instance, by also specifying the mode
frequency.

gains two axial nodes, as well as a transverse zigzag pattern to
become the (3,N-3) mode.

In the following sections, we will denote the linear chain
by 1D phase and the zigzag crystal by 2D phase. We remark
that the term zigzag mode refers to the mode with (0, N-1)
nodal points in the 1D phase and (1, N-1) nodal points in the
symmetry-broken, 2D phase. Moreover, the breathing mode is
the mode with (1,0) nodal points in the 1D phase and (3, N-3)
nodal points in the 2D phase.

In the rest of this paper, we analyze how the normal mode
spectroscopy at the structural transition is modified at finite
temperatures.

III. MEASUREMENT OF VIBRATIONAL MODES

In this section, we describe our experimental method for
measuring vibrational mode frequencies that makes use of a
single laser beam with frequency near resonant to the Doppler
cooling transition. We then present and discuss our measure-
ments of the lowest axial modes near the linear to zigzag
transition. This method was originally introduced in Ref. [12].

A. Setup

To have a well-defined ordered structure, we trap N = 30
172Yb+ ions in a linear Paul trap with high control of the
electrical fields [51,52]. The axial trapping frequency is in the
range of ωz ≈ 2π × (20 − 35) kHz. The transverse trapping
frequency is in the range of ωx ≈ 2π × (220 − 440) kHz,
depending on the chosen trapping ratio α. All ions are illumi-
nated by a linearly polarized laser with a central wavelength
of 369.5 nm addressing the 2S1/2 ↔ 2P1/2 transition in Yb+

and cooling the ions close to the Doppler cooling temperature
of TD = 0.5 mK. As shown in Fig. 2, the laser beam forms
an angle of about θ = 25◦ with the axial direction of the ion
crystal and an angle of about ϕ = 45◦ with the transverse
direction. We denote its wave vector as k1, which we use in
the subsequent text to identify the laser beam itself. The beam
has an elliptic shape with waists of approximately 2.6 mm in
the horizontal and 80 μm in the vertical direction, resulting in
an almost uniform illumination of a 400 μm times 20 μm ion
crystal in the z-x plane. Typical laser powers in the subsequent
measurements are P1 = 1 mW, corresponding to a saturation
of s1 ≈ 1.75 at the beam center (saturation power of k1 is
P1,s ≈ 570 μW).

We also employ a second laser beam at the same wave-
length and with the same angles to the crystal that is focused
to a beam waist of about 80 μm in both vertical and horizontal
directions, addressing a smaller region of the crystal. Its wave
vector is denoted by k2. The beam is amplitude modulated to
excite the crystal’s normal modes. The amplitude modulation
is added by applying a sine wave with frequency ωe to the rf
amplitude of an acousto-optic modulator used as a fast shutter.
The modulation of the power is given by

P2 = Pm

2
[1 + cos(ωet )] ,

where Pm is the maximum power in the beam. The saturation
of k2 at the beam center is then

s2 = sm[1 + cos(ωet )],
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FIG. 2. Resonant light force modulation. (a) Schematic laser beam setup. The ion crystal is almost uniformly illuminated by a cooling
beam k1 (cyan). The laser beam illuminates the crystals axial extent (z) under an angle of θ ≈ 25◦ and the transverse extent (x) under an angle
of ϕ ≈ 45◦. An excitation beam k2 (orange) is focused down to only a fraction of the crystal. It hits the crystal z axis under an angle β ≈ 25◦

and the x axis under the same angle ϕ as the cooling beam. The excitation beam is amplitude modulated, resulting in a sinusoidal force. The
beam sizes are not to scale. (b) Example crystal photos with excited normal modes. Images taken with an EMCCD camera when the modulation
frequency of the excitation laser is resonant with a normal mode. Exposure time: 100 ms; Pm ≈ 20 μW. Top: Breathing mode/(1,0). Bottom:
(2,0). Red squares represent possible regions of interest to record fluorescence of single ions.

where

sm = Pm/2

P2,s
,

with saturation power P2,s ≈ 38 μW of k2. The total satura-
tion of an ion at the center of the beams is then s = s1 + sm +
sm cos(ωet ). The ion fluorescence is imaged via a lens system
of N/A = 0.2 and recorded by an electron-multiplying (EM)
CCD camera, which can resolve individual ions.

B. Method

We excite the crystal’s collective motion with the help of
the amplitude modulated cooling laser. Both cooling lasers k1

and k2 are continuously incident on the ions during the mea-
surement and both exert a constant light force on the crystal,
that shifts the minimum of the trap potential. The amplitude
modulated laser adds an oscillating force Fm with excitation
frequency ωe. This oscillating force is roughly linear, if sm

is smaller than s1. For multiple ions, the saturations s2 and s1

will depend on the ion positions with respect to the laser beam
center. Specifically, the saturation power Ps(ri ) will depend on
the position of the ith ion.

In principle, all normal modes can be excited by means
of this technique. In the measurements we present below, the
waist of laser k2 was focused to only 80 μm. It illuminates
several ions at the same time, as illustrated in Fig. 2(a). This
prevented the excitation of modes with a higher number of
nodal points due to the small overlap of their mode vector with
the laser intensity profile, such as the zigzag mode in the 1D
phase, which has N-1 nodal points. We note that the excitation
of an arbitrarily chosen mode can be realized by implementing
single ion addressing.

On resonance, the amplitude of the driven mode increases
linearly with Fm for small oscillations around the equilibrium
positions. In combination with a constant linear damping γ

due to laser cooling of k1, a steady state with a constant,
frequency-dependent mode amplitude � j (ωe) can be reached

after several oscillations. To detect an excitation, we record
the ions fluorescence with an EMCCD over an exposure time
of typically 100 ms. This is long compared to the normal-
mode oscillation periods, which are on the order of the
center-of-mass oscillation period of about 40 μs. Therefore,
light from all possible ion positions during the oscillations is
recorded, leading to an apparent increase of the ions’ size at
the resonance ωe ≈ ω j . The imaged spatial extent of each ion
i is proportional to the amplitude of the driven normal mode
and the ion vector element of the corresponding mode vec-
tor λi j . The resonance frequency is found by identifying the
frequency at the maximum amplitude of the ion oscillation.
An experimental photo of the excited (1,0) mode and (2,0)
mode in the 1D phase is shown in Fig. 2(b), for which we
used Pm ≈ 20 μW (sm ≈ 0.53 for an ion at the beam center).
Similar to the ion amplitude, the velocity of the ions increases
on resonance, leading to a drop in fluorescence due to the
Doppler shift. For a single ion, this decrease in fluorescence
can be measured with a photomultiplier tube and enables one
to identify the motional resonance. The described method
is similar to what has been employed in dusty plasmas to
measure acoustic waves [53,54].

C. Experimental results

We measured several mode frequencies near the linear to
zigzag transition in two experiment series, with two different
modulation powers: P(A)

m = 20 μW (A) and P(B)
m = 6 μW (B).

For measurement run (A), we determined the center fre-
quency ω j of any resonance by scanning the excitation
frequency ωe manually and searching for the maximum am-
plitude of the ions for the excited mode. The uncertainties
were estimated by finding a region in which the amplitude
of the excitation was still maximal. The width of this region
was taken as the error of the measurement, with typical values
of about 100 Hz to 300 Hz for each resonance. The power
of the excitation laser was set to P(A)

m = 20 μW, chosen such
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FIG. 3. Low-frequency spectrum as a function of the aspect ratio
α. The solid lines are the modes of the harmonic crystal at T = 0, the
symbols refer to the experimental measurements. Experimental data
from series (A) as empty symbols (blue circles, black diamonds, red
thin diamonds) with P(A)

m = 20 μW and series (B) as filled symbols
(light blue squares) with P(B)

m = 6 μW. For (A), the error bars rep-
resent estimated uncertainties in measured frequencies. For (B), the
error bars represent fit uncertainties. The ions are laser cooled close
to the Doppler limit. From comparison to simulations in Sec. IV C,
we find T ≈ 3.5 mK.

that a resonance of the three to four lowest modes could be
observed.

At first, the trapping ratio α is determined by measuring the
axial and transverse center-of-mass mode frequencies, i.e., the
trapping frequencies. This is followed by searching for the
low-lying modes with 1, 2, and 3 axial nodal points. In Fig. 3,
we show the measured vibrational-mode frequencies in com-
parison to the normal-mode frequencies expected from the
second-order approximation. Away from the phase transition,
the experimental results agree with the theoretical predic-
tions. However, close to the phase transition, the frequency
of the zigzag mode does not vanish. The measured frequency
of mode (1,N-1) (blue empty circles) increases when α ap-
proaches αc until it reaches the expected frequency of the
breathing mode of the 1D phase. The purely radial zigzag
mode in the 1D phase could not be excited by this mea-
surement, due to the missing overlap between the laser beam
profile and the normal-mode vector, see Sec. III B. While the
(2,0) mode frequency (black empty diamonds) was observed
over the complete phase transition, close to transition the
breathing mode in the 2D phase (red empty thin diamonds)
was not detected.

In measurement series (B), a single ions fluorescence was
recorded with a region of interest (ROI) on the EMCCD,
while sweeping the excitation frequency. Near resonance, a
decrease in fluorescence in the ROI is observed, because the
excited ion moves partially out of the ROI during exposure
and it gains a Doppler shift due to its increased velocity. We
fit the fluorescence drop to a Lorentzian line shape in order
to determine the resonance frequencies of the axial center of
mass and the normal mode with one axial nodal line.

To obtain a finer resolution in series (B), the maximum
power of the amplitude modulated laser was about P(B)

m =
6 μW, sufficient to excite the center of mass and breathing
mode. A smaller amplitude of the forced oscillation reduces
sampling of higher order terms of the Coulomb potential,
which leads to asymmetric line shapes and line broadening.
In Fig. 3, we show the results of these measurements as cyan
squares. The results agree qualitatively with the measurements
from series (A). We verify an increased vibrational mode
frequency of the zigzag mode in the 2D phase close to αc.
In the range of α = 11.5 to 11.85, a quantitative difference
of the measured frequencies is observed, up to a difference of
approximately 0.2ωz.

The quantitative difference between (A) and (B) is due to
the smaller power of the amplitude modulated laser used for
measurement run (B). A larger driving force increases the
mode amplitudes in the steady state and therefore enhances
nonlinear frequency shifts due to the Coulomb interaction.
Increased power leads to a higher observed frequency at
maximum excitation. Additionally, the line shape becomes
increasingly asymmetric with increased power. We refer the
interested reader to Appendix C, where we discuss the influ-
ence of Pm on the frequency of the (1,N-1) mode, see Fig. 10.

IV. MOLECULAR DYNAMICS SIMULATIONS

As seen in the last section, close to the phase transition
the measured excitation frequencies significantly deviate from
the vibrational spectrum in the harmonic approximation. We
identify two possible sources for this deviation, either the
damping due to laser cooling or the interaction with higher
order terms in the expansion of the Coulomb potential could
be responsible. As the damping, γ = 8.75 × 103 s−1, is or-
ders of magnitude smaller than the lowest axial frequencies,
approx. 1.6 × 105 s−1, its influence is negligible. Therefore,
the higher order terms are the most likely cause for the ob-
served deviations. In the experiment, there are two excitation
sources that lead to increased amplitudes: the thermal noise
from laser cooling and the sinusoidal driving force. To gain
deeper insight into the impact of the mode populations on
the measurable frequencies, we carry out molecular dynamics
simulations of the crystal under a stochastic force.

We simulate the dynamics of the ion crystal by numerically
solving the classical equations of motion of the ions in the
presence of damping and of the Langevin force describing
thermal noise [28]. This approach is complementary to the
Fokker-Planck equation for Doppler cooling of an ion crystal
[55]. The equation of motion for the ith degree of freedom
takes the form

müi + ∂V

∂ui
+ mγ u̇i = ξi(t ) , (3)

where γ is a damping term from laser cooling and V is the
total potential energy, see Eq. (1), and ξi(t ) is the stochastic
force, with moments

〈ξi(t )〉 = 0, (4)

〈ξi(t )ξ j (t
′)〉 = 2Dδi jδ(t − t ′) . (5)
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Here, 〈. . . 〉 indicates ensemble averaging. The diffusion coef-
ficient D of the second equation links the amplitude of the
stochastic force with temperature and damping coefficients
according to the fluctuation-dissipation theorem, D = mγ kBT
[56]. In the simulations, laser cooling is treated as isotropic
for all degrees of freedom. This is a simplification with re-
spect to the experiment. There, the damping between the
transverse and axial direction is slightly different due to the
projection of the cooling laser beams on the crystal axes, with
projections on x and y being cos(45◦) ≈ 0.71 and z being
cos(25◦) ≈ 0.91.

We first detail the simulation procedure and the spectral
analysis. The results of the molecular dynamics simulation are
then reported and discussed in Sec. IV C.

A. Simulation procedure

The ground-state configuration for each trapping ratio α

is found by simulating a crystal with N = 30 ions choos-
ing strong damping mγ = 2.5 × 10−19 kg s−1 (γ = 8.75 ×
105 s−1) and with T = 0. The resulting equilibrium positions
so obtained are the initial configuration for the simulation at fi-
nite temperature T . The simulation is run with lower damping
mγ = 2.5 × 10−21 kg s−1 (γ = 8.75 × 103 s−1), comparable
to experimental conditions [28], and over a time of 100 μs to
thermalize the system. The system is in a thermal state after
this, which we checked via the equipartition theorem.

This result is used as a starting point for the final simula-
tions, which run for 10 ms in total to achieve a fine resolution
in the Fourier frequencies. All simulations have an integration
time step of 19 ns, which is much smaller than the expected
period of the vibrational mode with the largest frequency,
which here is the transverse vibration of the center-of-mass
mode at about 3 μs. Every 100th value is saved, resulting in
time resolution of the ions evolution of 1.9 μs.

B. Spectral analysis

To extract the normal-mode spectrum of the ion crystal,
we carry out the Fourier transform (FT) of the trajectories of
the ions’ axial and transverse degrees of freedom. Due to the
simulation length and time resolution, the FT has a frequency
resolution of 100 Hz and a maximum observable frequency of
about 263 kHz, which covers the frequency range of interest.
For our analysis, the simulation procedure described above is
repeated five times, due to the stochastic nature of the thermal
noise, and the FTs are averaged over all simulations with iden-
tical parameters. Then the absolute value A(ω)χ,i = |F̄ (xχ,i )|
of the averaged FTs F̄ is calculated, where i is the ion index
and χ is either x or z. We are interested in collective motions
of the crystal, i.e., the normal modes, but we do not make any
assumptions on possible mode vectors. Therefore, the A(ωχ,i )
for all ions are added together to get a signal S(ω)χ ,

S(ω)χ =
N∑

i=1

A(ω)χ,i , (6)

where the degrees of freedom along x and z are treated sep-
arately. An example of such a signal is shown in Fig. 4. The
width of the resonances depends on the damping γ , which is

FIG. 4. Example of a FFT signal Sz, Eq. (6). The signal is ex-
tracted from the trajectory of the z coordinates of five molecular
dynamics simulations at α = 11.7 and T = 0.1mK. The blue dots
show the FFT, the dotted red line is the running mean of the signal
over 30 points, the orange lines indicate automatically estimated
center and widths of the peaks. The inset shows a zoom up of the
first five peaks. See text for further details on the simulation.

here fixed to the value mγ = 2.5 × 10−21 kg s−1 to compare
the data to our experiment.

We extract the resonances and the peaks’ widths from
S(ω). Without prior knowledge of the complete model of the
peak functions, we estimate the positions based on a peak
search algorithm. It searches for local maxima that fulfill
certain conditions with respect to their width, absolute height,
and relative height to the closest base line. This method can-
not treat noisy signals well. Therefore, S is smoothed before
starting a peak search, using a running mean over n values
Srm(k) = ∑n

i=0 Sk+i/n. For T = 0.1 mK, an average over 20
points (≈ 2 kHz) and, for the other shown temperatures, an
average over 30 points (≈ 3 kHz) is used. The running mean
of the signal is plotted as a function of the respective run-
ning mean frequency frm(k) = ∑n

i=0 fk+i/n. In Fig. 4, the
smoothed signal Srm is shown as a red dotted line. The orange
line shows the peak positions and estimated half-maximum
widths which we identified. Not all peaks are captured by
the algorithm, especially for ω > 2π × 130 kHz, due to the
choice of selection parameters, that favor the prominent peaks
at lower frequencies. However, the high-frequency peaks are
outside the frequency range that we are interested in. Due to
the noisy data, additional small peaks might be found close to
strong resonances, e.g., the axial center of mass mode. These
false positives have to be removed manually.

C. Numerical results

We evaluate the simulations for temperatures T =
[0.1, 0.5, 2.0, 3.5] mK and for several trapping ratios α.
Figure 5 displays the estimated peak positions. The ex-
pected normal-mode frequencies at T = 0 are also shown for
comparison. We observe good agreement between the numer-
ical results and the harmonic spectrum at low temperatures.
For higher temperatures, deviations appear near the phase
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FIG. 5. Spectrum of the ion crystal vibrations as a function of α and for different simulation temperatures: (a) 0.1 mK, (b) 0.5 mK,
(c) 2.0 mK, (d) 3.5 mK. Lines represent the spectrum in the absence of thermal excitations: the color code is solid orange (dark blue) for zigzag
(breathing) mode and dotted black for other modes. The symbols are results obtained from a peak search in the sum of Fourier-transform
amplitudes of the axial (gray dots) and transverse (red diamond) trajectories. The error bars indicate the estimated FWHM of the peak. Light
blue squares are experimental results for measurement series (B). The gray dashed vertical line and the gray arrow mark the range of α at
which we observe one or more jumps between the ground states per zigzag mode oscillation period Tzz.

transition for the (1,0) and (0, N-1) modes that qualitatively
agree with the experimental measurement, meaning that the
expected increase in the breathing mode frequency, when tran-
sitioning from the 1D phase into the 2D phase, is not observed,
and that the zigzag mode frequency in the 2D phase seems
to increase, when α approaches αc from lower values. The
simulations for T = 3.5 mK match best to the measurement
series (B), which are shown in Fig. 5(d) for comparison. Here,
we point out, that the frequency of the zigzag mode remains
finite at αc and increases with the temperature, which can be
seen in Figs. 5(b) to 5(d) in the radial points (red diamonds)
around α ≈ 12.0.

In the simulations, we do not observe a deviation of the
(2,0) mode from the harmonic approximation as we did in
the experiments. This is most likely due to the high excitation
power P(A)

m used in series (A), as we described in Sec. III C.
The additional increase in mode amplitude leads to nonlinear
mode coupling on top of temperature effects.

The simulations reveal that in the 2D phase, thermal effects
give rise to collective jumps of the ions between the two
degenerate zigzag configurations. In Appendix B, we discuss
how these jumps are observed in the time evolution of the
central ion, see Fig. 8. We illustrate the mechanism as thermal
switching between the two minima of the Landau free energy
in the symmetry-broken phase [33], see Fig. 6(a). We can
estimate the corresponding switching rate kest by counting the
number of sign changes of the transverse coordinate of the
central ion Px

N/2 over the simulation length �t :

kest = Px
N/2/�t . (7)

The inverse of this rate is the average dwelling time in
one crystal configuration τe = k−1

est . We identify two regimes
with the help of τe. In the first regime τe > Tzz, with Tzz

being the characteristic period of oscillations of the (1,N-1)
mode, which is the slowest oscillation contributing to the
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FIG. 6. (a) Schematic illustration of the Landau potential U in
the 1D (α > αc) and in the 2D symmetry-broken phase (α < αc).
The coordinate x indicates the transverse displacement of the cen-
tral ion from the chain axis. Thermal excitations can overcome the
barrier between the two degenerate zigzag configuration by inducing
collective jumps of the crystal configuration. (b) Average dwelling
time τe = 1/kest , Eq. (7), in units of the zigzag mode period Tzz. In
the simulations, temperatures T are 0.1 mK (blue circles), 0.5 mK
(orange squares), 2.0 mK (green diamonds), 3.5 mK (red triangles).
The lines are a guide for the eye. For T = 0.1 mK and 0.5 mK, miss-
ing points indicate no switches were observed during the simulation
time. The dotted horizontal line indicates τe = Tzz. Inset shows the
potential barrier EB for different trapping ratios α.

movement between the two minima, see Fig. 6(a). Here the
two crystalline configurations are well defined in the 2D phase
and thermal noise gives rise to approximately instantaneous
jumps, whose net effect is to broaden the linewidth of the res-
onance lines. In the second regime, where τe � Tzz, the system
switches rapidly between the minima and is on average in the
1D phase. Here, nonlinearities of the system are dominant and
expected to modify the normal-mode spectrum. Figure 6(b)
displays τe as a function of the aspect ratio and, for different
temperatures, the horizontal line indicates τe = Tzz. We have
verified that frequency deviations from the harmonic solution
are observed when τe � Tzz. This is visible, for instance, in
Fig. 5, where the vertical dashed lines indicate the the smallest
aspect ratios of the simulations at which τe � Tzz.

To gain insight into these dynamics, we analytically esti-
mate the switching rate using an effective potential U that
describes the double well structure. In the thermodynamic
limit, U becomes the Landau free energy, see Sec. V. We
interpret the switching rate as the rate of thermal activation
[57] over the barrier separating the minima. To determine U ,
we calculate the potential energy along the adiabatic path con-
necting the two equilibrium configurations [58]. Since the two
ground states stem from the breaking of the mirror symmetry,

we parameterize the path by the transverse crystal size,

g(u) = xN/2 − xN/2+1 ,

where xN/2 is the transverse position of the ion left of the
crystal center for even N . For the calculation, we minimize the
crystal energy using a Lagrange multiplier with a constraint
for the crystal transverse size g(u) = X . For this, we numeri-
cally solve the following equation using Newton’s method:

∇(V (u) + λ(g(u) − X )) = 0 ,

where V is given by Eq. (1), the gradient is given by
{∂/∂u1, . . . , ∂/∂u3N , ∂/∂λ}T and λ is the Lagrange multiplier.
Afterward, the total potential energy for this configuration
is taken as the energy U (X ) of the potential at size X . As
expected, in the 2D phase it has the shape of a double well
with two minima, symmetric about X = 0. The energy barrier
EB, separating the two ground states, is then given as the
difference between the potential energy at X = 0 and the
minimum potential energy:

EB = U (0) − min(U (X )) .

Sufficiently close to the transition the energy barrier increases
with |α − αc|2, see inset in Fig. 6(b), in agreement with
the predictions of Ref. [33] and with the numerical simula-
tions of the linear to zigzag transition in clusters of metallic
beads [59].

The trajectory of the collective coordinate of the crystal
that jumps between the minima of the bistable potential results
from the interplay of driving, damping, and noise. Quantita-
tively accounting for the prefactors in the Kramer’s escape
formula [60] is beyond the scope of the current paper. Here,
we perform an estimate using transition-state theory [57],

kTST ≈ ωa/(2π ) exp[−EB/(kBT )],

with ωa = √
U ′′(Xmin)/m, where U ′′ is the second derivative

with respect to X and Xmin is the transverse crystal size in
equilibrium. For α = 11.8 and T = 2.0 mK, the transition-
state theory predicts a rate about 16 000 s−1. Taking into
account that, in the simulations, the particles can also return
to each minima the escape rate in the simulation from one
minimum is about 14 000 s−1. In Appendix B, we compare
the rates extracted from the simulations with the predictions
of transition-state theory rates over a range of parameters. We
find agreement within a factor of 2.

The molecular dynamics simulation validate the thermal
fluctuations as the source of the observed frequency devia-
tions. Moreover, they supply a deeper insight into the exact
dynamics behind the nonlinear mechanism at hand, i.e., the
frequent crossing of the potential barrier between the two
degenerate ground states of the 2D phase.

V. EFFECTIVE MODEL FOR THE MODES DYNAMICS

In this section, we use a simplified model to determine the
temperature dependence of the mode spectrum close to the
linear to zigzag instability. For this purpose, we use a com-
plementary approach to the one based on dwelling times and
consider the normal-mode expansion around the linear chain
for aspect ratios at which the linear chain is mechanically un-
stable. We then evaluate the average effect of the higher modes
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FIG. 7. The zigzag and breathing mode frequencies as a function of the aspect ratio α. The parameters and legend are the same as Fig. 5.
Moreover, the dashed and dotted lines correspond to the predictions of the analytical model: ω̃2 (dark blue, dotted) and ω̃1 (orange, dashed).
The analytical solutions are shown until ω̃1 becomes imaginary or until less than one switch per zigzag mode oscillation period Tzz is observed,
i.e., for values of α below the range marked by the gray dashed vertical lines and the gray arrows.

on the lowest part of the spectrum using a timescale separation
ansatz and determine the resulting spectrum as a function of
the temperature. The resulting normal-mode spectrum agrees
with the numerical results close to the transition point, as we
discuss below and summarize in Fig. 7.

A. Normal modes at the instability

We first review the normal modes of the linear chain and
the equations for the structural instability in the absence of
damping and noise. Close to the linear to zigzag instability,
we expand the total potential energy V of Eq. (1) to fourth
order around the equilibrium positions of the linear chain,

V ′
4 = 1

2!

3N∑
i j=1

K ′
i jqiq j + 1

3!

3N∑
i jk=1

L′
i jkqiq jqk

+ 1

4!

3N∑
i jkl=1

M ′
i jkl qiq jqkql , (8)

where qi are the displacements around the equilibrium posi-
tions ui(0), qi = ui − ui(0), the tensors L′ and M ′ are given by
the expressions

L′
i jk = ∂3V

∂ui∂u j∂uk

∣∣∣∣
u(0)

, (9)

M ′
i jkl = ∂4V

∂ui∂u j∂uk∂ul

∣∣∣∣
u(0)

, (10)

and K ′ is given by Eq. (2). Note that V4 approximates the total
potential V , Eq. (1), in the limit in which the displacements
around the equilibrium positions are much smaller than the
interparticle distance at equilibrium.

As introduced in Sec. II,� j denote the normal modes of
the linear chain, which diagonalize the matrix K ′ and have
eigenvalues mω2

j . The linear chain is stable provided that all
eigenvalues are positive. In this regime, the ω j are real and
correspond to the normal-mode frequencies. The condition
min j ω j = 0 identifies the classical transition point of the
linear to zigzag instability. Potential Eq. (8) is cast in terms of

104106-9



JAN KIETHE et al. PHYSICAL REVIEW B 103, 104106 (2021)

the normal mode by means of the dynamical matrix λi j such
that qi = ∑

j λi j� j and takes the form

V4 = 1

2!

3N∑
i=1

mω2
i �

2
i + 1

3!

3N∑
i jk=1

Li jk�i� j�k

+ 1

4!

3N∑
i jkl=1

Mi jkl�i� j�k�l , (11)

where now the tensors L and M are related to the tensors L′
and M ′ by the relations

Li jk =
3N∑

mns=1

L′
mnsλmiλn jλsk, (12)

Mi jkl =
3N∑

mnst=1

M ′
mnstλmiλn jλskλt l . (13)

The total Lagrangian for the normal modes takes the form L =
1
2 m

∑3N
i=1 �̇2

i − V4.
In an appropriately defined thermodynamic limit, for

which the critical aspect ratio converges to a finite value as
N → ∞, the linear-zigzag transition can be cast in terms of
the Landau potential,

ULG = V�2
zz + A�4

zz , (14)

where �zz is the amplitude of the zigzag mode in the linear
chain, A > 0 and V ∝ (α2 − α2

c ). This potential is determined
from potential V4 in lowest order in a gradient expansion [33].
The one-dimensional model strictly exhibits a phase transition
at zero temperature, where a quantum description becomes
appropriate [45,46,49,61]. In what follows, instead we con-
sider a finite system and do not scale the physical parameters
with N .

B. Thermal effects

We now discuss the low-frequency spectrum of the linear
chain across the linear to zigzag instability and in the presence
of laser cooling. We consider a finite chain and, starting from
the Fokker-Planck equation [55], we model the dynamics of
laser Doppler cooling in terms of Langevin equations. We
denote the damping (cooling) rates of the normal modes by
γi and write the corresponding Langevin equations as [62]

�̈i = − 1

m

∂V4

∂�i
− γi�i + �i(t ) , (15)

where �i(t ) is the Langevin force for the normal mode
�i, with 〈�i(t )〉 = 0, 〈�i(t )� j (t ′)〉 = 2γi(kBT/m)δi jδ(t − t ′)
and we neglect here mode-mode correlations due to the dissi-
pative dynamics.

For finite chains and in the 2D phase, the lowest frequency
mode is a superposition of the zigzag mode and of the ax-
ial breathing mode of the linear chain as seen in Fig. 1(c).

The gap between the soft mode and all other normal modes
remains finite. Thus, whenever thermal excitations and the
line broadening are smaller than the gap, normal-mode spec-
troscopy of the chain shall provide in first approximation the
mode spectrum obtained by diagonalizing the quadratic term
of potential Eq. (1) about the stable equilibrium positions.

We now determine the effects of thermal excitation on
the lowest energy spectrum by considering the equations of
the lowest energy mode, here (0, N-1), which we label �1,
and the mode which is closest in frequency and to which
it couples. This mode is labeled by �2 and is according to
our notation (1,0). We then make the simplifying assumption
that ω1, ω2 � ω�, where ω� are here the frequencies of the
modes �� to which �1 and �2 appreciably couple through
the anharmonicities. In this regime, we can identify the time
scale δt for which ω1δt, ω2δt � 1 and ω�δt � 1. Moreover,
we assume that the modes �� are at thermal equilibrium. We
now perform the time average of Eq. (15) over the grid with
step δt . For convenience, we introduce the notation

1

δt

∫ t+δt

t
dτ f (τ ) ≡ 〈 f (t )〉δt , (16)

where f (t ) is a function of time. Since ω1δt, ω2δt � 1, then
〈�1,2(t )〉δt ≈ �1,2(t ). Moreover, to provide an example, the
contribution of the fourth-order term of Eq. (11), which we
denote by W4, takes the form〈

∂W4

∂�1

〉
δt

≈
∑

�

(
1

2
M11��

〈
�2

�

〉
δt�1 + 1

2
M12��

〈
�2

�

〉
δt�2

)
,

where the equation for �2 is found by replacing 1 → 2 and
we used that for � �= 1, 2 the eigenmodes are at thermal equi-
librium, thus 〈��〉δt = 0 and 〈����′ 〉δt = δ�,�′ 〈�2

�〉δt . Finally,
assuming ergodicity, we obtain 〈�2

�〉δt = kBT/(mω2
� ) from the

classical equipartition theorem. This procedure leads to the
two coupled equations:

�̈1 = −ω̃2
1�1 − 1

2ν2
12�2 + η1 − γ1�1 + �1, (17)

�̈2 = −ω̃2
2�2 − 1

2ν2
12�1 + η2 − γ2�2 + �2 , (18)

where ω̃i, ν12, and ηi are explicitly dependent on the tempera-
ture. In particular, the frequency squared ω̃2

i now reads

ω̃i(T )2 = ω2
i + νi(T )2 = ω2

i + ν2
eff,iT , (19)

and it contains a shift proportional to the temperature with
proportionality constant

ν2
eff,i = 1

2m

∑
k �=1,2

Miikk
kB

mω2
k

. (20)

The second and third terms on the right-hand side of Eqs. (17)
and (18) describe an effective coupling between the two
modes and a mean displacement force, respectively, with

ν12(T )2 = 1

m

∑
k �=1,2

M12kk
kBT

mω2
k

≡ ν2
eff,12T, (21)

ηi = −1

2

∑
k �=1,2

Likk
kBT

mω2
k

≡ −ηeff,iT . (22)
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The effective, temperature-independent constants ν2
eff,i, ν2

eff,12,
and ηeff,i for the two modes i = 1, 2 are determined by car-
rying out the summation in Eqs. (20)–(22) over all other
modes k. We remark that the shifts depend on α through the
coefficients of the expansion of V4.

Equations (17) and (18) describe mode mixing and fre-
quency shifts induced by the thermal excitation of the chain.
Within this classical model, these terms are directly propor-
tional to the temperature. We can now determine the resulting
normal-mode frequencies. For this purpose, we note that
the term ν12 = 0 for the expansion about the linear-chain
equilibrium positions, see Table I of Appendix A. This is
a consequence of the fact the breathing mode is an exact
eigenmode of the linear chain [47]. In the underdamped limit,
corresponding to γi � ωi, the characteristic frequencies are
now given by Eqs. (19) and (20). Figure 7 displays the fre-
quencies ω̃i as a function of the aspect ratio α and for four
increasing values of the temperature, ranging between 0.1 mK
and 3.5 mK. For comparison, the results of the numerical
simulation of Eq. (3) are reported, which agreed well with
the experimental measurements presented in Sec. III for T =
3.5 mK. The prediction of the analytical model and the result
of the numerical simulation agree for aspect ratios close to
the transition point αc: This is the regime where our model
is plausible since the truncation of the Taylor expansion is
justified. We note that, even though these analytical arguments
have been applied to a finite chain, the considerations of our
theoretical model are also valid in the thermodynamic limit
and show that at finite temperatures the coupling with the
high-frequency modes significantly modifies the properties at
the instability. Loosely speaking, the thermal effects stabilize
the linear chain also for aspect ratios beyond the critical point.
This behavior might be interpreted as a shift of the transition
point [39] in the sense that a measurement of the mean trans-
verse displacement will give zero in the regime where the
ion dynamics consists of thermally activated jumps between
the two zigzag configurations. Thus, a linear chain will be
effectively detected for aspect ratios α below but close to αc.
Nevertheless, in the classical regime this is the manifestation
of a nonuniversal crossover dynamics.

VI. CONCLUSION

In this paper, we investigated experimentally and theo-
retically the effect of thermal noise on the low-frequency
spectrum of an ion chain near the symmetry-breaking linear
to zigzag transition.

In the experiment, we employed resonant light force mod-
ulation with an amplitude modulated laser beam to excite
collective oscillations in a crystal. The method is simple to im-
plement and can also be used to measure trapping frequencies,
replacing established excitation methods, such as modulation
of the trapping potentials [63]. This allows for stronger filters
in the rf and dc electronics of the Paul trap [51,52], reducing
the heating by electrical noise of the trapped ion crystals.
While we used an excitation beam profile encompassing mul-
tiple ions, a more focused beam or a spatially engineered beam

profile, e.g., generated by an spatial light modulator [64,65],
would allow for arbitrary mode excitations.

The experimental measurements did not show the softening
of the zigzag mode that is predicted at the structural phase
transition. Also, the frequency of the breathing mode was
nearly constant and independent of α when sweeping into the
2D phase, instead of increasing as expected in the absence of
thermal noise.

With the help of molecular dynamics simulations, we could
reproduce the experimental observations within the uncertain-
ties, thus confirming that this behavior is primarily due to
thermal excitations. In particular, inspection of the trajectories
show that finite temperature effects induce collective jumps
of the ions between the two degenerate zigzag configura-
tions. This microscopic picture is at the basis of the expected
crossover behavior at finite temperatures.

We developed a simple analytical model that builds on
these findings and predicts the experimentally observed
frequency spectrum. This model shows that the temperature-
dependent shift of the zigzag mode at the transition point
is due to anharmonic coupling with high-frequency modes,
which act as an effective phonon environment. Separation
of timescales between the low-frequency soft mode and the
higher frequency modes allows taking the averaged higher fre-
quency modes as an effective potential that influences the soft
mode. Note that the thermally excited phonon environment
in our model could be replaced by nonthermal excitations.
Single quanta excitations with coherent interaction in third
order have been investigated in Ref. [66]. In future theoretical
works, their method could be extended to describe the effects
of finite temperatures. While we do not include the effects of
micromotion induced by the rf of the trap in our theoretical
models, it could be treated analytically following Ref. [67].
From our model it also follows that the observation of a
low-frequency zigzag mode near the linear-zigzag transition
at Doppler temperature of 172Yb+ is unlikely. However, it
might be observed in a crystal with T ≈ 100 μK. Therefore,
in future experiments, methods of (near) ground-state cooling
that can cool several modes in an ion Coulomb crystal, such
as Sisyphus cooling [68–70] or electromagnetically induced-
transparency cooling [71–75], need to be considered.

Our results suggest that a similar model can be developed
to describe the experimental measurements of the Aubry-type
transition in ion Coulomb crystals. Here the soft mode of the
pinning to sliding transition exhibited a finite frequency at the
critical point, when a finite temperature allowed the system
to switch between different minima of the Peierls-Nabarro
potential [12,76].

Our work is relevant for experiments operating close to
phase transitions in ion chains such as studies of energy
transport [77] or quantum information using the gapped
topological defect mode [78,79]. According to the results
presented, the cooling of high-frequency modes is crucial to
avoid the heating of the soft mode due to higher-order cou-
pling, showing the experimental complexity of these plans.
Similar challenges were recently discussed for laser cooling a
2D planar crystal confined in a Penning trap [80].
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APPENDIX A: EFFECTIVE ANALYTICAL CONSTANTS

In Table I, we present numerical values of the effective,
temperature-independent constants defined in Eqs. (20)–(22)
for N = 30 ions near the linear to zigzag transition.

TABLE I. Effective higher order constants for a N = 30 ion
Coulomb crystal near the linear to zigzag phase transition for the
zigzag mode and breathing mode. Crystal expanded around a lin-
ear chain. ν2

eff,i and ν2
eff,12 are given in units of the squared axial

frequency ω2
z . The constants ηeff,i are given in units of mω2

z lc,

where lc = [e2/(4πε0mω2
z )]1/3 is the length constant of a trapped ion

Coulomb crystal.

α ν2
eff,1 ν2

eff,2 ν2
eff,12 ηeff,1 ηeff,2

11.70 3767.3904 −6.4896 −0.0039 0.0003 −26.1177
11.80 1505.2251 −2.7630 −0.0021 0.0001 −11.1188
11.85 1200.0101 −2.2324 0.0020 −0.0001 −8.9835
11.90 1007.8599 −1.8871 0.0021 −0.0001 −7.5937
11.91 977.3964 −1.8312 −0.0021 0.0001 −7.3688
11.92 948.9239 −1.7786 0.0022 −0.0001 −7.1572
11.93 922.2375 −1.7290 −0.0022 0.0001 −6.9577
11.94 897.1609 −1.6821 0.0023 −0.0001 −6.7689
11.95 873.5402 −1.6377 0.0023 −0.0001 −6.5900
11.96 851.2413 −1.5955 −0.0024 0.0001 −6.4201
11.97 830.1467 −1.5553 −0.0025 0.0001 −6.2584
11.98 810.1524 −1.5169 −0.0027 0.0001 −6.1041
11.99 791.1669 −1.4803 −0.0028 0.0001 −5.9565
12.00 773.1083 −1.4453 −0.0030 −0.0001 5.8158
12.05 694.4609 −1.2899 0.0000 0.0000 5.1913
12.10 630.6453 −1.1606 0.0000 0.0000 4.6702
12.20 532.5320 −0.9539 0.0000 0.0000 3.8383

APPENDIX B: SWITCHING RATES: SIMULATION AND
TRANSITION-STATE THEORY

In Fig. 8, we show the time evolution of the transverse
coordinate of the 15th ion for two different α and for

FIG. 8. Time evolution of transverse coordinate of ion 15. The
top row is for α = 11.7 and the bottom row for α = 11.85. T = 2.0
mK closer to the transition at αc ≈ 12.0 the ion changes more often
between the two ground-state configurations, about which the crystal
oscillates.

T = 2.0 mK, to illustrate the switching of the crystal between
the two ground-state configurations. In Fig. 9, we show the
comparison between the escape rate obtained by transition-
state theory from the double-well potentials calculated in
Sec. IV C and the rates estimated from the simulation results.
The latter have been corrected by a factor of 2 for the compar-
ison to account for the possibility to come back to a potential
minimum.

FIG. 9. Escape rate from transition-state theory kTST (lines) and
estimate rates from simulations kest/2 (symbols). Colors and markers
are α = 11.7; blue circles and solid line, α = 11.8; orange crosses
and dotted line, α = 11.85; green diamonds and dash-dotted line,
α = 11.9; red left triangles and dashed line, α = 11.95; brown right
triangles and double-dash-dotted line.
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FIG. 10. Measured ROI fluorescence (blue dots) against modula-
tion frequency ωe at α ≈ 11.72. The red line is a running mean over
50 points, acting as a guide to the eye. The dashed gray vertical lines
indicate estimated maximum excitation for the breathing mode.

APPENDIX C: POWER DEPENDENCY OF
EXPERIMENTAL SIGNAL

Driving the intrinsically nonlinear Coulomb system can
lead to additional frequency shifts due to further increased
amplitudes. The excitation method employed in this paper
can lead to such shifts, depending on the laser power of the
modulated laser P0.

In Fig. 10, we show the power dependence of recorded
resonance features of measurement series (B) when sweep-
ing over the axial center of mass and the breathing mode at
α ≈ 11.72. It can be clearly seen that the position of maxi-
mum excitation of the breathing mode shifts when increasing
the driving force. Additionally, the resonances become in-
creasingly asymmetric with higher forces. The center-of-mass
mode resonance around 31 kHz increases in width with higher
forces.

Measurements presented in Sec. III C were carried out with
Pm = 20 μW for series (A) and with Pm = 6 μW for series
(B).
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5 Summary and Outlook

In this thesis two structural phase transitions in ion Coulomb crystals at finite temperatures

were investigated. The existence of the pinning-to-sliding transition for a finite system in an

ion Coulomb crystal with a topological defect was demonstrated, allowing for further research

of nanofriction between two atomic chains with intrinsic back action. The linear-to-zigzag tran-

sition was studied with respect to the temperature-dependent dynamics of the low-frequency

vibrational spectrum, yielding a simple analytical model that describes the experimentally ob-

served frequency shifts.

It was shown, that the pinning-to-sliding transition in the presented system (P1) exhibits a

soft mode, a symmetry breaking, and the breaking of analyticity of the hull function at the

transition. The symmetry-breaking was quantified by an order parameter, which exhibited a

critical exponent of approximately 0.5, independent of the ion number, agreeing with calculations

for the finite size FK model [37]. In the symmetry-broken regime, jumps between the multiple

ground states of the crystal were observed. These ground states were identified with the Peierls-

Nabarro potential [35] for the topological defects [67]. The overall potential confines the extended

defects in the crystal, and exhibits periodic ground states. The periodicity of the zigzag crystal

roughly defines the distance between neighboring ground states and is on the order of 20µm.

Near the crystal center four reachable ground states exist, while in the experiment, most of the

time only the two central ground states were occupied, see P1.

The soft mode of the pinning-to-sliding transition is the low-frequency topological defect mode

[69]. The measurement of the soft mode frequency showed a finite value at the expected transition

point, limited by the crystal’s temperature. This was the first direct measurement of the low-

frequency mode of the extended topological defect in an ICC. In numerical simulations, a direct

dependence of the observed soft mode frequency on the temperature was found. From these

simulations, it is estimated that a crystal temperature of 50 µK might allow for the observation

of the soft mode. Parallel to the above experiments, a measurement of the high-frequency defect

mode was carried out in [83] by parametric excitation of the trapping potential. The excitation

of the high-frequency mode led to nonlinear coupling to other modes that ultimately ejected the

topological defect from the crystal in a preferred direction. The defects exit was analyzed in the

context of directed transport with thermal activation, also known as a ratchet mechanism [84].

Two types of extended defects, the horizontal and vertical defect, were presented in P2. They

have a distinct local structure by which they can be identified. Additionally, a differentiation

by the ion density per chain is possible. For example, in a 30-ion crystal the horizontal defect

shows two more ions in one chain, while the vertical defect shows the same number of ions per

chain. The horizontal defect is necessary for the possible observation of the soft mode at the

pinning-to-sliding transition. In contrast, the vertical defect mode does not exhibit a soft mode
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5 Summary and Outlook

behavior. This is due to the difference of the Peierls-Nabarro potential for the two defects at the

transition. In the sliding phase, the global minimum of the Peierls-Nabarro potential for both

defects is in the crystal center, where the topological defects are located. In the pinning phase,

the Peierls-Nabarro potential for the horizontal defect has a local maximum in the crystal center,

while the vertical defect has a local minimum. Only when the defects are on a local maximum

can the soft mode be observed.

It was found, that the two defects can be locally morphed into the other type by employing

differential forces. This leads to a shear motion between two ion chains of the 2D ICC along

the axial direction, meaning one chain moving to the left, while the opposite chain moves to

the right. Incidentally, this movement is similar to the mode vector of the topological defect

mode. This shear movement can be used as a sensor for differential forces, as the frequency of

the defect mode near the pinning-to-sliding transition changes drastically under them. Based on

the measurement resolution, a differential force of just 6× 10−24 N could be detected with the

current experimental setup, if the crystal can be cooled near the vibrational ground state. This

illustrates the sensitivity ion Coulomb crystals can achieve with regards to sensing forces [85].

In order to develop an analytical model that describes the thermal influence, the soft mode

of the linear-to-zigzag transition, i.e. the transverse zigzag mode, was investigated in P3. In

the experiment, the finite temperature of the crystal lead to a non-zero mode frequency at the

transition, and jumps between the two ground-state configurations in the 2D phase, similar to

the experimental results at the pinning-to-sliding transition. The jumps are a consequence of

the stochastic process of thermal activation over the barrier separating the two ground states

[86]. The likelihood of a jump can be characterized by the average dwelling time in one ground

state, which can be compared to the characteristic period of the soft mode. This allows the

differentiation between two regimes, one with less than one jump per soft-mode period and one

regime with one or more jumps per period. In the latter regime, the average position of the

crystal is that of the linear chain.

Based on this observation an analytical model was devised that extends the harmonic normal

mode picture, by expanding the potential energy around the linear chain up to 4th order, even for

trapping frequencies for which the crystal would be in the zigzag phase. With a time separation

approach, the high frequency modes were averaged out. The resulting averaged interaction terms

lead to an effective frequency shift of the two relevant modes, which are the breathing and the

zigzag mode. These shifted frequencies agreed well with the numerical and experimental results.

The frequency shifts and the jumps between the two ground states are both manifestations of

the crossover region between the linear and zigzag phase, where the system switches continuously

between these two phases. From the model it also follows, that near ground state cooling of a

soft mode in the vicinity of symmetry-breaking transition requires the cooling of high-frequency

modes, as those strongly interact with the soft mode. If only the soft mode is cooled, the high-

frequency modes would still induce a frequency shift due to their thermal amplitude. This might

hinder experiments that want to utilize a soft mode near a phase transitions [69, 70]. While the

presented model can only make predictions for the influence of the high-frequency modes on the

soft and breathing mode, the mode interaction does generally go both ways. This might allow

cooling of high-frequency modes via cooling of the soft mode near the LZT, similar to what was

carried out in Ref. [87].
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In future theory work, this analytical model could be adapted to the pinning-to-sliding tran-

sition. Here, the challenge lies in the presence of more than two possible ground states [67, 68].

They might invalidate the assumption that the ground state configuration of the sliding regime

is the average crystal configuration for the symmetry-broken phase under thermal noise. Also

the existence of a high frequency localized defect mode, that strongly couples to the soft mode of

the transition [83], might hinder the time separation approach employed at the linear-to-zigzag

transition. The analytical model could be extended to include micromotion by using the Floquet

method [88, 89]. Currently, the model only considers non-resonant averaged interactions between

modes. Resonant mode couplings with single quanta have been described previously [90] and

extending that model to thermal states, might allow an alternative description of temperature

effects presented in P3.

In future experiments, the implementation of near ground state cooling of many ions using,

for example, electromagnetically-induced transparency cooling [91–93] or polarization-gradient

cooling [94–96] is needed. This would allow for measurement of the soft modes at both the

pinning-to-sliding and linear-to-zigzag transition. Additionally, this will open up experimental

research into the quantum effects of friction [97, 98], and heat transport under the presence of a

topological defect [70]. These novel experiments will require direct experimental determination

of the ions temperature, e.g., by thermometry using electromagnetically-induced transparency on

the Doppler cooling transition in 172Yb+ , similar to what was shown for 88Sr+ [99]. Additionally,

the frequency measurement method using resonant light force modulation, can be extended by

employing single ion addressing, which would allow the excitation of any mode. Using a shaped

beam profile for the excitation laser, such as those generated by spatial light modulators [100,

101], might lead to experiments with arbitrary mode excitation in order to study the interaction

between modes.

55





Acronyms

ICC ion Coulomb crystal

FK Frenkel-Kontorova

PST pinning to sliding transition

2D two-dimensional

LZT linear to zigzag transition
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Lars Timm, Daniel Bennet and Nishant Bhatt.

During my PhD I also had help from several students and interns. I would like to thank

Henrik Wingerath, Thorben Schmirander, Nimrod Hausser, Kai Dietze and Liza Surzhikova for

always asking the questions I could not answer, allowing me to learn through you. Thank you

to the interns Lars Timm and Michel Niklas-Senn for your help with simulations. A thanks also

goes to the FWJ students for their help with many small and large projects: Achim Byl, Leander

Thiessen, Kathrina Dudde, Ole Hennseler, Michel Wolf and Angelika Klär.

I would also like to thank the other members of the QUEST institute, with no specific order:

Piet Schmidt, Lennart Pelzer, Stephan Hannig, Kai Dietze, Fabian Wolf, Jan-Christoph Heip,

Max Zawierucha, Steven King, Tobias Leopold, Peter Micke, Christian Ospelkaus, Henning Hahn

and Giorgio Zarantonello. Special thanks to Johannes Kramer and Nils Scharnhorst for the many

hours of escapism that we shared.

Not only did you help me by supporting me with work related tasks, but also by spending

time outside of it, to cope with the stress and live life. I hope at some point we can get back

together to play games or just spent a nice evening at a bar again.

It would not have been possible without the technical support from the mechanics workshop

69



Rebecca Müller, Leeroy Paulmann and Jan Rechenberg, and electronics workshops Burghard

Lipphardt, Andreas Hoppmann, Peter Carstens, Julia Fenske, Nikolai Beev, David Weber and

Tjeerd Pinkert. Also a big thank you to the administrative staff at QUEST Sandra Ludwig, Sina

Bußmann, Katja Rosignol and Kathrin Reiff, who help with purchasing, travels and contracts,

as well as Birgit Ohlendorf in Hanover for handling the PhD related bureaucracy.

I was lucky enough to be involved in many collaborations over the years. I would like to thank

Hayasaka Kazuhiro and Nozomi Ohtsubo for their hospitality in Tokio. I especially express my

gratitude to Ramil Nigmatullin, Haggai Landa and Giovanna Morigi for their theoretical insight

and help with our joint publications.

Thanks, Henning and Nishant, for the feedback on the manuscript.

Last, but definitely not least, I would like to thank my family and friends for their support.

Without my parents that always encouraged me to go on, and that allowed and supported me to

freely choose what I want to do, I would not have gotten to the point of handing in this thesis.

If I have forgotten to mention anyone here explicitly, I apologize, and thank you.

70



Curriculum Vitae

Jan Kiethe

Personal Data

date of birth 26.10.1988, Dresden, Germany

nationality German

marital
status

unmarried

Education

University

2015–today Doctorate, Physikalisch-Technische Bundesanstalt, Braunschweig

2011–2014 Master of Science, Physics, Universität Potsdam, Potsdam

2008–2011 Bachelor of Science, Physics, Universät Potsdam, Potsdam

School

1999–2008 Abitur, Gesamtschule Bergheim, Quadrath-Ichendorf

Master thesis

title: Experimentelle Charakterisierung der zeitlichen Intensitätskorrelatio-
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