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Tobias Bode 1 INTRODUCTION

1 Introduction

The present thesis deals with the simulation of Selective Laser Melting (SLM)-processes.
It shows some main simulation approaches and gives an introduction to the recent re-
search in the continuum-based Optimal Transportation Meshfree (OTM)-Method. The
coupling with the discretized Ray-Tracing heat source is developed and compared to
the use and influence of volumetric heat sources in numerical examples. The integra-
tion of the Ray-Tracing algorithm in the OTM-Method opens up a large field of future
research areas that are finally presented.

1.1 Motivation

In the following, the basics of the SLM are presented as a basis for the subsequent sim-
ulation. Selective Laser Melting is an additive manufacturing process, in which, layer
for layer, a part is constructed out of metal powder. For each layer, the fine metal
powder is distributed in the powder bed and a high power laser is used to melt and
consolidate the powder. The SLM is a very flexible manufacturing technique that can
produce components with a low rate of imperfections. The complex physical processes
are not fully understood jet and the optimal process parameters are gained by exper-
iments. To understand more physical phenomena involved in the SLM and to further
optimize the properties of SLM produced parts, a preferably accurate simulation of
the SLM processes is desirable. For recent researches see Zohdi (2014), King et al.
(2015), Zohdi (2015a), Zohdi (2015b) and Ganeriwala and Zohdi (2016).

The following processing steps have to be considered by developing simulation models
for SLM: First, the distribution of the particles in the powder bed has to be per-
formed. For the simulation of a whole powder bed, a realistic particle distribution can
be granted with the Discrete Element Method (DEM). If dealing with a small amount
of particles, for example the melting of two particles, their positions can be set manu-
ally. As a second step, the heat input by the laser has to be modeled. Therefore, in the
literature is a variety of volumetric and discretized laser models available, from which
the most suitable for a specific simulation has to be selected while considering accuracy
and computation time. Furthermore, the model of the heat transmission, and melting
and consolidation of the particles is a very essential aspect. For investigations of a
whole powder bed, the most commonly used method is the Discrete Element Method,
due to its fast calculation of a large amount of particles. Nevertheless, a realistic and
highly accurate simulation requires a continuum model that can reproduce the fusion
of two single particles.

This is why, this thesis introduces to the continuum based OTM-Method which is able
to simulate large deformations, which allows extensions for the most physical phe-
nomena during the SLM as the melting of particles including latent heat, the surface
tension, the consolidation and resulting internal stresses. Further extensions, like the
partly evaporation of particles and the corresponding pressure, shall be made possible
by the coupling with discretized heat sources. Besides, errors and instabilities that
may occur due to inaccurate volumetric heat sources shall be reduced. Even if the
presented method is more computationally intensive than other simulation approaches
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Tobias Bode 1 INTRODUCTION

discussed in the past research, it can help to understand the most important physical
phenomena of SLM and may be used for a whole powder bed in the future, if the
progress in computing power continues.

1.2 Objectives of this Work

The present thesis has the objective to analyze the effect of different heat sources to the
Optimal Transportation Meshfree-Method. Especially, whether the above mentioned
instabilities are due to the volumetric heat sources or if their inaccuracies are not the
leading factor for the instabilities.

After an introduction to the different heat sources, the thesis presents the principle of
the DEM, as it is a commonly used method for simulating SLM and can also be used
to create a powder bed for the simulation with continuous methods. Hereinafter, the
implicit thermo mechanical OTM-Method is introduced and a coupling between Ray-
Tracing and the OTM-Method is developed. A criterion for the temporal discretization
of the Ray-Tracing algorithm is presented and quantified with parameter studies.

Furthermore, the testing of the presented methods and algorithms is visualized and the
outcome concerning the numerical instabilities is set out. Finally, there are suggestions
for further research that is enforced due to the discretized heat source in the continuum
based OTM-Method.

1.3 Theoretical Foundations

In the following, physical basics are listed which are the foundations for the derivation of
the presented methods. For one thing, this basis is the balance of the linear momentum
in the local form:

ρü = div σ + ρb , (1)

with the density ρ, the acceleration ü, the Cauchy stress tensor σ and the volume force

b. The first law of thermodynamics states

ρu̇ = σ : d− div q + ρr , (2)

where u is the specific inner energy, σ : d is the inner stress power, q is the outgoing heat
flow and r is the volume heat source. Combined with the second law of thermodynamics
for reversible materials (which is justified by elastic solids and low viscous liquids)

Dint = Θρṡ+ σ : d− ρu̇ = 0 , (3)

with the dissipation power Dint and the entropy s, the local energy balance can also
be written as

0 = −Θρṡ− div q + ρr . (4)
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This equation, together with equation 1, build the basis for the following Discrete El-
ement Method and for the Optimal Transportation Meshfree-Method, where the weak
forms are used.

Furthermore, the temperature-dependent material properties are handled in both, the
DEM and the OTM-Method, in the same way: By means of substance tables, the most
material data can be linearized conditional on their temperature. In case of a phase
transition, the latent heat needs to be considered. An easy way to implement this lies
in a manipulation of the specific heat capacity as illustrated in figure 1. In a defined
interval ∆Θ around the melting and evaporation point Θmelt and Θvap, the heat capac-
ity of the adjacent temperatures is averaged and increased by the latent heat referred
to the length of the temperature interval ∆Qmelt

∆Θ
or rather ∆Qvap

∆Θ
.

Figure 1 – Modeling of the latent heat using an increased heat capacity in an
interval around the melting- and evaporation point
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2 Heat Source Modeling

The heat source modeling is an essential issue in the simulation of selective laser melt-
ing. There are two general types to transfer the laser energy into the powder. In case
of a simulation with discrete elements, the most often used models are the volumet-
ric heat sources, where the laser power acting on a certain particle is computed from
its position in the laser beam. The second main type of laser modeling lies in the
discretization of the laser beam. A good overview of volumetric and discretized heat
sources is presented in Zohdi (2014) and Zohdi (2015a).

Volumetric heat sources have their advantages generally in the reduced computational
time, whereas discretized heat sources act on the particle’s surface, hence they are able
to display the partial heating and resulting evaporation of particles. A very accurate
but CPU-intensive model is, to discretized the beam with the Maxwell’s equations into
its electric and magnetic field components. This small-scale field information is usually
not necessary as the laser wavelength is much smaller than the particle diameter. A
good compromise between physical accuracy and computing time is the Ray-Tracing
algorithm which is presented below, as well as a volumetric heat source, based on the
Beer-Lambert equation.

2.1 Volumetric Gaussian Distributed Beer-Lambert Heat Source

The volumetric heat source used in this thesis is based on the Beer-Lambert equation,
which distributes the laser energy depending on the penetration depth. In addition, a
radial weighting is included as in Ganeriwala and Zohdi (2016). That makes the
volumetric heat source to

r = αPlaser · I (r, z) (5)

with the absorptivity coefficient α and the distribution

I (r, z) = Iz (z) · Ir (r) . (6)

The distribution along the penetration depth is calculated according to Beer-Lambert
to

Iz (z) =
e−βz

∫ D

0
e−βz dz

=
e−βz

1
β
(1− e−βD)

, (7)

where

β =
3 (1− ǫ)

2ǫD
(8)

is the optical extinction coefficient, ǫ is the powder bed porosity and D is the maximal
penetration depth. The distribution is normalized, so that the integral of the penetra-
tion depth in the heat affected zone equals one. For the radial distribution a Gaussian
distribution is used:
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Ir (r) =
e−2 r2

R2

∫ R

0

∫ 2πr

0
e−2 r2

R2 dΦ dr
=

e−2 r2

R2

πR2

2
(1− e−2)

, (9)

with the laser beam radius R. The normalization ensures, that the whole laser power
is focused inside the beam radius.

Due to the not fully filled heat affected zone there will be a lag in the total energy
balance while handling curved surfaces as in SLM. A way to get the full heat input in a
powder bed consists in the correction of the distribution depending on the discretized
volume V HAZ

h in the heat affected zone V HAZ (Chiumenti et al., 2016):

Icorr (r, z) =
V HAZ

V HAZ
h

I (r, z) . (10)

2.2 Discretized Ray-Tracing Heat Source

In the Ray-Tracing Algorithm (see also Zohdi (2013)) the laser beam is discretized
into jets of randomly placed rays, while each ray is given a direction nr, a velocity c

and an amount of energy Er, depending on its position in the circular focused beam.
The ray’s velocity does not need to be the speed of the light. It is possible to scale it
by a factor kreduce conditional on the diameter of the particles, the time increment of
the heat transfer algorithm and the scale of the processed simulation area. This speed
reduction of the rays enforces the use of larger time steps which results in a reduced
computational time.

After each time step, the ray positions xr are updated in accordance with their reduced
velocity:

xr(t+∆t) = xr(t) +
c

kreduce
∆t (11)

with the light speed c. The new time step starts with a collision check which checks, if
rays are going to be absorbed. The procedure of this absorption depends on the type
of the absorber (discrete element or a material point), hence it will be described in the
according chapters.
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3 Discrete Element Method

The Discrete Element Method was developed by P.A. Cundall in 1971. It is a very
stable explicit method which is particularly useful in simulating powders as used in
SLM. This chapter first presents the mechanical DEM based on the Gear-Algorithm
as described in Pöschel and Schwager (2005). Then, the extension to a thermo
mechanical model with a discretized heat source is presented. Finally, the effectiveness
in simulating a large number of particles is demonstrated in two examples.

The Gear-Algorithm consists of a predictor step in which the expected particle po-
sitions are computed through a Taylor expansion. Then, the forces acting on the
particles are calculated in their predicted positions. Subsequently, the positions are
adjusted in a corrector step, depending on the affecting forces. Due to the predictor-
corrector algorithm, the force computation which is particularly expensive - concerning
the processing time - is only performed once per time step.

3.1 Predictor

In the following, the prediction of the position, rotation and their time derivatives of
particle i, with 1 ≤ i ≤ np is described. Therefore, the Taylor series is built on the
particles’ current variables. Usually an expansion of fourth or fifth order is sufficient.
The position of particle i is the result of

x
pr
i (t+∆t) =

4∑

n=0

x
(n)
i (t)∆tn

n!
, (12)

where ∆t is the time increment and x
(n)
i are the time derivatives of the current po-

sition. Analogously, the velocity and higher derivatives as well as the rotation and
corresponding derivatives are computed:

ẋ
pr
i (t+∆t) =

3∑

n=0

x
(n+1)
i (t)∆tn

n!
, (13)

ϕpr

i
(t+∆t) =

4∑

n=0

ϕ(n)
i

(t)∆tn

n!
. (14)

3.2 Force Computation

The following force computation is based on the predicted particle positions. For
reasons of simplicity in this subsection the index (...)pr is omitted. Within this work,
the walls are modeled with static particles. Hence, all contact forces are based on the
collision of two spherical particles. These contacts are modeled analogously to figure 2
with nonlinear characteristic curves for spring and damping. In addition to the contact
forces F cont

i , the gravitational force F grav
i has to be added to yield the total force acting

on a particle:

F total
i = F cont

i + F
grav
i . (15)
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Figure 2 – Contact model of two spherical particles: normal spring-damper contact
and tangential friction-limited damping contact

The contact force acting on particle i is assembled of the sum of the individual forces
among the surrounding particles:

F cont
i =

np
∑

j=1,

j 6=i

F ij , with F ij =

{

F norm
ij + F

tang
ij , for δij > 0

0, for δij 6 0
, (16)

where δij is the mutual compression.

Figure 3 – Free body diagram of two colliding particles with acting normal and
tangential forces

If two particles i and j are in contact, i.e. the mutual compression

δij = rj + ri −
∣
∣xj − xi

∣
∣ > 0 , (17)
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the contact force can be separated into a normal and a tangential part (figure 3). The
tangential forces, resulting of the rough particle surface, act with a lever beam

rij =
xj − xi
∣
∣xj − xi

∣
∣

︸ ︷︷ ︸
nij

(

ri +
δij

2

)

(18)

to the center of gravity on the particle. That yields to an angular momentum acting
on the particle:

M i =
np
∑

j=1,

j 6=i

M ij , with M ij = rij × F
tang
ij . (19)

The normal force consists, as described in Ganeriwala and Zohdi (2016), of a
spring and damper term:

F norm
ij = −

(
4

3

√
reffEeffδ

3/2
ij + d ˙δij

)

· nij , (20)

with the effective radius and Young’s modulus

reff =
ri · rj
ri + rj

and Eeff =
Ei ·Ej

Ei

(
1− ν2

j

)
+ Ej (1− ν2

i )
. (21)

The damping coefficient can be modeled with the method of Wellmann and Wrig-
gers (2012):

d = 2ζeff
√

2Eeffmeff
√
reff · δ1/4ij , (22)

with the time derivative of the mutual compression

δ̇ij = | ˙δij |=
(
vnormi − vnormj

)
· nij (23)

and a damping parameter that has to be set:

ζeff =
ζi + ζj

2
, (24)

whereby a damping parameter of ζ = 0 stands for an elastic contact and a parameter
of ζ = 1 is a critically damped impact.
The tangential part of the particle contact force can be calculated as a relative-velocity
dependent and against the relative-velocity pointed force, that is limited by the maxi-
mal transferable dynamic frictional force

∣
∣F norm

ij

∣
∣µeff . That leads to

F
tang
ij =

{

−γeff · vtang, if
∣
∣γeff · vtang

∣
∣ ≤

∣
∣F norm

ij

∣
∣µeff

−
∣
∣F norm

ij

∣
∣µeff · tij, else

, (25)

with the effective sliding friction coefficient and damping constant

γeff = min(γi, γj) mit µeff = min(µi, µj) . (26)

Analogously to figure 4 the relative velocity vtang can be calculated along the normal
vector

Simulation of the Particle Distribution and Resulting Laser Processing of Selective
Laser Melting Processes
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Figure 4 – Free body diagram with particle velocities separated in a normal and
tangential component

tij =
vtang

|vtang| (27)

to

vtang = v
tang
i − v

tang
j . (28)

The particle velocity vi can again be split in a normal and tangential component as
follows:

vi = v
tang
i + vnormi (29)

with

vnormi = (vi · nij)vi and v
tang
i = vi − vnormi . (30)

3.3 Corrector

After the force computation the predicted kinematic variables can be corrected. This
correction is based on the strong form of the principle of linear and angular momentum:

Simulation of the Particle Distribution and Resulting Laser Processing of Selective
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ẍcorr
i =

F i(x
pr
i , ẋ

pr
i , ϕ̇pr

i
)

mi
and ϕ̈corr

i
=

M i(x
pr
i , ẋ

pr
i , ϕ̇pr

i
)

Ji
. (31)

With the corrected particle acceleration a correction increment can be calculated as

∆ẍi = ẍcorr
i − ẍ

pr
i . (32)

The correction of the position, rotation and their derivatives is now computed as fol-
lows:

(xcorr
i )(α)(t+∆t) = (xpr

i )
(α)

(t+∆t) + cα
α!

∆tα
∆t2

2
∆ẍi , (33)

whereby α is the time derivation order. For the rotational terms x can be replaced to
φ. The constants cα are in case of the Gear-algorithm of fifth order

c0 =
19

90
, c1 =

3

4
, c2 = 1, c3 =

1

2
and c4 =

1

12
. (34)

Finally, the update of the particle variables has finished and can be repeated with the
increased time

t := t+∆t . (35)

3.4 Thermal Extension Using the Ray Tracing Scheme

For the simulation of SLM the Discrete Element Method has to be extended by a
thermal part. Therefore, the particles get a temperature as a primary variable and a
temperature-dependent heat capacity. The heat transfer algorithm is staggered with
the before introduced mechanical DEM. In this work, the ray tracing algorithm is used
to model the laser beam. However, before the ray tracing algorithm for Discrete Ele-
ments is described, the basics of thermal transfer are presented.

In case of a Discrete Particle the strong form of the first law of thermodynamics (equa-
tion 4) can also be written as

miciΘ̇i =

np
∑

j=1

Qij +

nr
∑

r=1

Hir . (36)

Where mi is the particle’s mass, ci its heat capacity,
∑np

j=1Qij is the incoming energy

due to conduction and
∑nr

r=1Hir is the absorbed ray energy, i.e. the sum of

Hir = Einc
ir − Eref

r = (1−Rir)E
inc
r , (37)

the differences of the incoming and reflected ray energies. The conduction between two
touching particles can be modeled via Laplace’s equation of heat transfer:

Qij =

{

KijAij
Θj−Θi

|xj−xi| , for δij > 0

0, for δij ≤ 0
, (38)

whereby Kij is the thermal conductivity and

Simulation of the Particle Distribution and Resulting Laser Processing of Selective
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Aij = π
(
r2i − l2i

)
(39)

is the contact area (see figure 5), with

li =
1

2

(

∣
∣xj − xi

∣
∣−

r2j − r2i
∣
∣xj − xi

∣
∣

)

. (40)

Figure 5 – Geometry of two particles in contact: The contact area Aij is displayed in
dark gray

Using the trapezoidal rule, the particle’s temperature can be updated iteratively:

Θk+1
i (t+∆t) = Θi(t) +

Θ̇i(t)∆t + Θ̇k
i (t+∆t)

2
∆t . (41)

The detection mechanism of rays is very simple. If a ray collides with a particle, it is
partly absorbed and partly reflected depending on its angle of incidence. This yields
the absorption condition

|xr − xi| ≤ ri , (42)

where xi is the position of the Discrete Element and ri the particle radius. The reflection
of a single ray at a particle surface is visualized in figure 6 and calculated as follows:
xinc
r = xr is the predicted position of the incoming ray, while xc

r is the point of collision,
i.e. the intersection point of the ray trajectory and the particle surface.

ar = xinc
r − xc

r (43)

is the vector pointing from the collision point to the predicted ray position. To get the
position of the reflected ray, this vector needs to be mirrored by the tangential plane

R
r
= 1− 2





nc 2
r x nc

r xn
c
r y nc

r xn
c
r z

nc
r xn

c
r y nc 2

r y nc
r yn

c
r z

nc
r xn

c
r z nc

r yn
c
r z nc 2

r z



 (44)

that is defined by the normal vector of the particle surface in the point of collision
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Figure 6 – Ray reflection on a spherical particle: The ray is reflected on the normal
plane at the point of impact

nc
r =

xc
r − xi

|xc
r − xi|

. (45)

The mirrored vector

br = R
r
· ar (46)

yields the position of the reflected ray

xref
r = xc

r + br . (47)

The reflection ratio Rir can be set to a global static parameter or calculated as a
function of the incidence angle, the ratio of the refractive indexes and the ratio of the
magnetic permeability (see Zohdi (2013)), where the incidence angle comes from

αir =

∣
∣
∣
∣
arccos

(−ar · nc
r

|ar| |nc
r|

)∣
∣
∣
∣
. (48)

A possibility to reduce the computation time is to set a static absorptivity coefficient
α like in volumetric heat sources, and to absorb the collided ray’s energy multiplied
with the absorptivity, neglecting the reflected part of the ray.

3.5 Example: Generating a Realistic Powder Distribution with

DEM

For generating a realistic powder bed the commonly used method is mechanical DEM.
There are two ways to do this: First, the particles can be pushed from the side into
the powder bed, the second one is, to drop the particles with randomly assigned radii

Simulation of the Particle Distribution and Resulting Laser Processing of Selective
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using the Gaussian or probability distribution, and to run the Code until the particles
get their equilibrium positions. In the following, an example for the second version is
presented.

Using the probability distribution, particles with radii between rmin = 60 µm and
rmax = 70 µm are systematically arranged in top of a cube that has an edge length of
1 mm. For processing the real material data of iron a low time step of ∆t = 10−8 s

with a damping parameter of ζ = 0.7 has to be used due to the high Young’s modulus.

Figure 7 – Generating a natural particle distribution with the DEM, the probability
distributed radii are visualized in different colors

Without a sorting algorithm as Link-cell or the Verlet approach, the code runs about
three hours on a 24 CPU-cluster with Open Multi-processing (OpenMP) while sim-
ulating 1608 particles including wall particles. A sorting algorithm can reduce this
time significantly. As pointed out in figure 7, a realistic particle distribution can be
generated.

Simulation of the Particle Distribution and Resulting Laser Processing of Selective
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3.6 Example: Laser Processing of Discrete Particles

Once we have a realistic particle distribution in the powder bed, the subsequent laser
processing can be started. To demonstrate the principle and mechanism of the simu-
lation of laser processing of particles with the Ray-Tracing algorithm, the previously
generated cube is heated with a laser pulse of 6000 W · 0.0006 s = 3.6 J of energy.

Note that in this example the particle positions are fixed and the heating is simulated
only with a thermal code based on the first law of thermodynamics as described in
subchapter 3.4. This simplification is reasonable for a demonstration and reduces the
computing time. Nevertheless, for a more accurate simulation, the thermal and me-
chanical codes can be staggered and the material data linearized.

Figure 8 – Demonstration of the Ray-Tracing algorithm interacting with Discrete
Elements in an only thermal code: Red particles are molten and deleted when
vaporized
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Figure 8 visualizes the simulation process. A circular focused laser beam with a power
of 6000 W shoots a duration of 0.0006 s on the particle cluster. The impulse is dis-
cretized in a total number of 10000 rays. While the particles in the center of the beam
instantly heat up, melt as described in chapter 1.3, and partly even vaporise - i.e. the
Discrete Elements are deleted -, the particles that are not directly hit by rays warm up
slower through heat conduction. For this demonstration, the magnetic permeability
has been set to an arbitrary value of µ = 5 V s

Am
for reasons of a good clarity of the

reflection process of rays. With the real magnetic permeability for flat, shining iron,
the reflection ratio is significantly higher, but that this value is also appropriate for
powder is uncertain.

All in all, this only thermal example took about 80 s on four cores. The expansion
on a staggered thermo mechanical code would not increase the computation time dra-
matically, because there occur just low and slow particle movements with a decreased
Young’s modulus of the heated material and therefore the time increment does not
need to be reduced.
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4 Optimal Transportation Meshfree-Method

The Optimal Transportation Meshfree-Method was introduced in Li et al. (2010).
It is a meshfree method, based on the weak form of the Lagrangian formulation of the
balance equations, which is supposed to be suited for fluid structure simulations. In
this chapter, first the main principle of the thermo mechanical OTM-Method is pre-
sented. Then the coupling between the OTM-Method and the ray-tracing algorithm
is developed. Subsequently, the ray-tracing parameters are optimized with parameter
studies, and finally, some examples compare the ray-tracing scheme with volumetric
heat sources.

4.1 Implicit Thermo Mechanical OTM-Method

The discretization in the OTM-Method is separated in two sorts of points: First, the
nodal points, on which the primary variables (displacement u and temperature Θ) are
defined, and second, the material points - also known as integration points - that are
used to compute the stress σ, as well as the strain, heat flux, mass, density and volume.
The linking between the different points is performed by a support domain, located
around each material point, that finds surrounding nodal points (see figure 9). Hence,
the number of nodal points can change and the resulting elements can overlap.

Figure 9 – Linking of material points and nodal points using a support domain: All
contained nodal points are assigned to the material point of the support domain

Usually the Local Maximum Entropy (LME)-shape functions are used as shape func-
tions, because of their flexibility in the number of nodes. Besides, there are some other
types of shape functions, as the barycentric Mean Value shape functions.

Furthermore, the method is formulated in an incremental updating scheme, i.e. in
each time step the positions are updated with an incremental deformation tensor. In
this way, the volume fraction of each material point is updated with the determinant
of the incremental deformation tensor. A more detailed overview of the mechanical
OTM-Method can be found in Bode (2017).
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The starting point are the balance equations, i.e. more precisely the weak forms of
the linear momentum and the first law of thermodynamics. From the strong form of
the linear momentum (equation 1), the weak form can be achieved through integration
over the whole area, multiplication with a test function, partial integration and the
usage of the divergence theorem to

+

∫

v

ρü · η dv −
∫

a

t · η da+

∫

v

σ : grad η dv −
∫

v

ρb · η dv = 0 . (49)

The strong form of the first law of thermodynamics (equation 4) yields with the pro-
cedure above and the material model equation from Miehe (1988) for finite thermo
elasticity

ρΘṡ =
3αK

ρ0
ln J + (c+ LΘ) ln

Θ

Θ0
, (50)

to the weak form of the first law of thermodynamics

∫

v

3αK

J
Θ tr d δΘ dv +

∫

v

ρ (c+ LΘ) Θ̇δΘ dv +

∫

a

δΘq · n da

+

∫

v

K gradΘ grad δΘ dv −
∫

v

ρrδΘ dv = 0 .

(51)

Where the specific rate of heat flow can be gained through Fourier’s equation for
isotropic materials

q = −K gradΘ , (52)

where K is the thermal conductivity. As the stress tensor depends on the temperature,
and the heat input in the first law of thermodynamics changes with the displacement,
i.e. the weak forms are highly coupled, the balance equations can be staggered, or
more accurate, processed with the Newton-Raphson algorithm. In this work, the mul-
tidimensional Newton-Raphson algorithm is used, which states

(
u

Θ

)k+1

=

(
u

Θ

)k

− Jk(u,Θ)−1

(
f
u
(u,Θ)

fΘ(u,Θ)

)k

(53)

where k stands for the iteration step. In case of k = 0, the primary variables u and Θ
and all conditional terms are those from the old time step. Due to the dependency of
the balance equations f

u
and fΘ, the Jacobian’s tensor generally has nonzero coupling

terms:

J(u,Θ) =






∂f
u

∂u

∂f
u

∂Θ

∂fΘ
∂u

∂fΘ
∂Θ




 . (54)

4.2 Coupling between Ray-Tracing and OTM-Method

An essential point in the coupling between discretized heat sources like ray-tracing and
a continuum method lies in the detection mechanism of rays and in their absorption.
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In this thesis, the rays are detected when entering a detection sphere of a material
point (see figure 10), i.e. fulfill the condition of absorption

∣
∣xr − xp

∣
∣ ≤ rdet , (55)

with the distance between material point and ray
∣
∣xr − xp

∣
∣ and the detection sphere

radius rdet.

In this work, in each time step, the position of the rays are updated with their direction
and velocity, and the distances between each material point and every ray is checked.
A further refinement would be to check only the material points at the surface. There-
fore, a detection mechanism for the changing surface has to be found. A first approach
consists in the mass gradient, which could also be used as a normal vector of a reflec-
tive surface to partly reflect the incoming rays, similar to the reflection on Discrete
Elements in subchapter 3.4.

Figure 10 – Rays that are detected in a sphere around the material points are
absorbed and treated as a volume power acting on the material point’s volume

Here, a static reflection ratio Rir = 0.25 is used and yields the summation of the
absorbed energy at the material point in the current time step

Hp n =

nr
∑

r=1,

collision !
=true

Einc
r (1− Rir) . (56)

Referred to the time increment ∆t, the absorbed energy is treated as a volume power
in the weak form as follows:

Eabs
p n

∆tsim
= rabsp n vp n =

Hp n

∆tsim
. (57)
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4.3 Optimization of the Ray Discretization

In the following, the discretization of the laser beam is investigated through param-
eter studies and theoretical considerations. For the simulation, two particles with a
diameter of 40 µm, lying on a 40 µm deep powder bed were heated from above with a
6 W -laser. For reasons of simplification, just the thermal routine was computed. While
the spatial discretization, as well as the simulation time step ∆tsim = 10−7 s was con-
stant, the time step of ray-set creating and the number of rays in one set were varied.
To find the best ray discretization, the consolidation time, the maximal occurred tem-
perature and the CPU time are displayed along the ray discretization in figures 11 to 13.

Figure 11 – The impact of the temporal ray-set discretization on the convergence of
the consolidation time with an increasing number of created rays per second

Figure 11 shows, that the consolidation time converges independently from the ray-set
creating time step with the number of created rays per second. From a number of
5 · 108 created rays per second, the relative deviation is just 0.5 %.

Note, that the maximal temperature that occurs during the simulation, which has
an influence on the temperature distribution and the evaporation ratio, can change
with bigger ray-creating time steps. That is because the maximal amount of energy,
absorbed in one time step, increases with a rougher ray-set discretization:

max (Θ) → max
(
P abs
p n

)
=

max
(
Eabs

p n

)

∆tsim
∼ Er

∆tsim
=

PLaser ∆tray

∆tsim
=

∆tray

∆tsim
PLaser . (58)
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The maximal temperature occurring in the simulation is located where the maximum
in the heating power is located. That is the Energy absorbed by the material point p
in time step n, divided by the simulation time step ∆tsim. The maximum of absorbed
energy is proportional to the energy of each created ray set Er = PLaser ∆tray . Hence,
the relation of the ray-set creating time step and the simulation time step has an
influence on the maximal temperature. Figure 12 shows, that this relation has to be
less than ten for a reasonable accuracy:

∆tray

∆tsim
≤ 10 . (59)

Figure 12 – The convergence of the maximal occurring temperature during the
simulation depends on the temporal ray-set discretization

Further optimization of the beam discretization can be achieved in investigating the
impact of the spatial discretization of the metal particles. As a finer discretization leads
to lower mass fractions of the material points, the heating of a particular material point
that absorbs a ray in a certain time step increases with a finer discretization. Hence,
the maximal temperature during the simulation is not only proportional to the laser
power, but also depends on the discretization, expressed by a parameter κ:

max (Θ) ∼ κ PLaser , (60)

where κ is a function of the mean distance between two nearest rays in a set dr and
the mean distance between two nearest material points dp:
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κ = κ
(
dr, dp

)
. (61)

Further work is necessary to quantify this spatial discretization dependency.

By looking at the CPU time in figure 13, differences between time step of ray-set cre-
ating become evident. A number of 5 · 108 created rays per second costs an addition
of about 20 to 25 % of CPU-time.

Figure 13 – The impact of the temporal ray-set discretization on the CPU time
performance with an increasing number of created rays per second

If one uses less rays the code is faster in creating a small amount of rays in each time
step, while for larger numbers of rays the computing time finds an optimum in creating
ten times more rays in every tenth time step. In chapter 5 two approaches to lower
the required laser discretization resolution and to reduce the discretization dependency
between the Ray-Tracing algorithm and the OTM-Method are presented.
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4.4 Example: Temperature Distribution with Volumetric and

Discretized Heat Sources

The following comparison demonstrates the main advantages in using the Ray-Tracing
algorithm. A single isolated metal particle is simulated with an only-thermal code while
heating from the top with an laser pulse of 0.001 s with 0.6 W . For the reflection ratio,
a static value of 0.25 is used. The absorbed energy is detected and with it the analytic
equilibrium temperature is computed. In addition, the simulated end temperature and
the maximal occurred temperature are recorded.

While with the Ray-Tracing heat source the full amount of energy - deducting the
reflective part - gets into the particle, there is a lack of energy with the volumetric,
Gaussian distributed Beer-Lambert heat source. In realistic powder bed simulations
with a thermo-mechanical code this lack is even bigger. Nevertheless, based on equation
10, this lack can be fully adjusted (see table 1) even though this can cause problems
when the laser enters or exits the powder bed.

volumetric heat source
without correction

volumetric heat source
with correction

Ray-Tracing
heat source

absorbed energy 3.3307 · 10−4 J 4.5 · 10−4 J 4.5 · 10−4 J
analytically computed
end temperature

2247.4660 K 2931.1736 K 2931.1736 K

end temperature of
simulation

2247.4647 K 2931.1719 K 2931.1736 K

maximal temperature
during simulation

2361.2342 K 3084.8831 K 3778.6187 K

Table 1 – Heat sources in comparison: The maximal occurring temperature and the
end temperature are heat source dependent

Despite the amount of absorbed energy, there is a difference in the temperature dis-
tribution during the heating process. In figure 14 the metal particle is displayed while
warming on the left side with a volume-corrected, volumetric heat source and on the
right side with discretized rays. The white material points have a temperature that
is higher than the evaporation temperature. Apparently, the Ray-Tracing heat source
leads to a heating starting at the surface where the laser beam hits the particle and thus
can display a bigger temperature difference inside the particle. Hence, the Ray-Tracing
scheme makes it possible to simulate the partially evaporation of metal particles and
provides the basis for the inclusion of the physical phenomenon of the evaporation
induced recoil pressure.
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(a) Volumetric heat source with volume

correction

(b) Discretized Ray-Tracing heat source

Figure 14 – The discretized Ray-Tracing heat source provides a differentiated
temperature resolution at the particle scale

4.5 Example: The Laser Processing of Two Particles with

Variable Laser Power

In the following subchapter, the fusion of two metal particles, lying on a solidified
powder bed is simulated with changing laser powers. The particles are heated from
left to right with a discretized laser beam (figure 15). At the bottom of the powder
bed the nodes have Dirichlet boundary conditions of Θ = 300 K. The laser energy
is transported by the rays to the surface of the particles, where they are absorbed
when entering a detection sphere. The heat is transferred inside the particles through
conduction, causing the particles to melt (white color). The surface tension leads to a
fusion of the particles which consolidate while the heat is transfered into the powder
bed.

On the left side of figure 16, the time until the last material point reaches the solidifica-
tion temperature is plotted over the laser power. On the right side, the corresponding
enlarge factor is displayed. This enlarge factor is a numerical parameter of the OTM-
Method that controls the size of the support domain, and which is by default at 1.01
and is increased if the simulation fails.

The laser needs 0.0006 s to pass the two particles. That means, if time until consoli-
dation is equal to 0.0006 s, there are no molten material points directly after the laser
processing. With increasing laser power, the particles start to melt and they are still
liquid after the laser irradiation. The higher the laser power is the more fully and the
faster the metal particles melt. As a consequence, the contact between the particles
and the powder bed increases, as figure 15 demonstrates, and the heat dissipation into
the powder bed becomes stronger, so that the curves gradient decreases.
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Figure 15 – The fusion of two particles simulated with the OTM-Method using a
discretized laser beam

From a laser power of 9 W on, there appear instabilities in the consolidation time, that
seem to have a connection to the changing enlarge factor. Nevertheless, these instabil-
ities occur at a laser power where the two metal particles are already fully vaporized.
In comparison to prior simulations with volumetric non volume-corrected heat sources,
the simulation results are smoother and stable up to high laser powers. Though, the
numerical instabilities indicates, that the OTM-Method has problems with changing
enlarge factors. For the residual stresses the cooling to the ambient temperature is
crucial. Investigations about the time that is needed to reach this temperature showed
a significantly increased spattering in the cooling curve. This leads to the presumption
that these problems are localized, inter alia, in the simulation of the heat transfer. The
evidence for this is presented in chapter 5.
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(a) Consolidation time (b) Enlarge factor

Figure 16 – Parameter study: The laser power is increased until the particles fully
evaporate, the enlarge factor seems to have an impact on the instabilities at high
laser powers
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5 Summary and Extensions

In this last chapter, a review of the thesis and possible extensions are presented. The
Selective Laser Melting is introduced in chapter 1 as an additive manufacturing pro-
cess, in which layers of metal powder are melted together and build a 3D-part. In
simulation approaches, on the one hand the metal powder and on the other hand the
laser beam have to be modeled.

Starting with the momentum equation and the first law of thermodynamics, two gen-
eral simulation concepts can be pursued. The Discrete Element Method is based on
the strong form of these equations and is a very fast and relatively easy way to create
realistic powder beds. The subsequent laser procession is less accurate, because the
DEM can not display the realistic fusion of particles. If the simulation of melting pole
is required, one has to switch to a continuum based method like the Optimal Trans-
portation Meshfree-Method.

A further differentiation of possible simulation approaches consists in the modeling
of the laser beam. Distinction can be made between volumetric and discretized heat
sources. Whereas volumetric heat sources have their advantage in the computational
time, discretized heat sources grant small scale field information and ensure that the
temperature differences inside the metal particles can be grasped.

After the aforementioned methods were introduced, this thesis optimizes the Ray-
Tracing scheme for the use in continuum based methods. Some of the possible appli-
cations are presented in numerical examples.

The optimization of the Ray-Tracing algorithm with respect to the time discretization
in chapter 4.3 is based on parameter studies, whereas the effects of the spatial dis-
cretization are only based on theoretical considerations. In future, these proportion-
alities should be verified by profound simulations. A criterion for sufficient accuracy,
like the relation of the mean ray distance and the mean material point distance dr

dp

shall be found and quantified. In addition, there is great potential in the research
about the processing performance of the Ray-Tracing algorithm and the reduction of
the discretization dependency between the laser and the particles.

For this purpose, two conceptual approaches are presented in figure 17. On the left
side, the time time-dependent absorption of rays shall be smoothed through an after-
math of a ray detection. The energy of a detected ray has to be partitioned in the time
step of detection and the following time steps. The figure on the right side of shows the
distribution of a detected ray to surrounding material points that are located inside an
influence domain of the detected ray. This technique shall achieve an independence in
the spatial discretization of the laser and the processed particle.
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(a) Temporal Smoothing (b) Spatial Smoothing

Figure 17 – Conceptual approaches to reduce the computing time and the
discretization dependency between the laser and the irradiated material

Furthermore, on the basis of the detailed temperature distribution inside the particles
(see figure 14), which is due to the use of Ray-Tracing, the partly evaporation and the
resulting recoil pressure can be considered. Advancement in this direction requires a
stable simulation with higher laser powers and leads back to the investigation about
the influence of the enlarge factor on the heat transfer mentioned in chapter 4.5.

The instabilities at high laser powers in figure 16 can be localized with the following
example, where an isolated metal bloc is heated with a laser in an only thermal rou-
tine. The enlarge factor is varied and the maximal temperature as well as the time
until the equilibrium position is reached is plotted for a volume-corrected volumetric
heat source and the Ray-Tracing heat source in figure 18. Future examinations lead in
the direction of the LME-shape functions.
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(c) Volumetric heat source with volume correction (d) Discretized Ray-Tracing heat source

Figure 18 – The simulation of the laser processing of a metal bloc with a thermal
code shows that the enlarge factor has an influence on the heat transfer
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