
R E S E A R CH A R T I C L E

Model updating of wind turbine blade cross sections with
invertible neural networks

Pablo Noever-Castelos1 | Lynton Ardizzone2 | Claudio Balzani1

1Institute for Wind Energy Systems, Leibniz

University Hannover, Hanover, Germany

2Visual Learning Lab, Heidelberg University,

Heidelberg, Germany

Correspondence

Pablo Noever-Castelos, Leibniz University

Hannover, Institute for Wind Energy Systems,

Appelstr. 9A, Hanover 30167, Germany.

Email: research@iwes.uni-hannover.de

Funding information

Bundesministerium für Wirtschaft und Energie,

Grant/Award Numbers: 0324032C,

0324335B; Leibniz University Hannover;

Lower Saxony Ministry of Science and Culture

(MWK); German Research Foundation (DFG)

Abstract

Fabricated wind turbine blades have unavoidable deviations from their designs due

to imperfections in the manufacturing processes. Model updating is a common

approach to enhance model predictions and therefore improve the numerical blade

design accuracy compared to the built blade. An updated model can provide a basis

for a digital twin of the rotor blade including the manufacturing deviations. Classical

optimization algorithms, most often combined with reduced order or surrogate

models, represent the state of the art in structural model updating. However, these

deterministic methods suffer from high computational costs and a missing probabilis-

tic evaluation. This feasibility study approaches the model updating task by inverting

the model through the application of invertible neural networks, which allow for infer-

ring a posterior distribution of the input parameters from given output parameters,

without costly optimization or sampling algorithms. In our use case, rotor blade cross

sections are updated to match given cross-sectional parameters. To this end, a sensi-

tivity analysis of the input (material properties or layup locations) and output parame-

ters (such as stiffness and mass matrix entries) first selects relevant features in

advance to then set up and train the invertible neural network. The trained network

predicts with outstanding accuracy most of the selected cross-sectional input param-

eters for different radial positions; that is, the posterior distribution of these parame-

ters shows a narrow width. At the same time, it identifies some parameters that are

hard to recover accurately or contain intrinsic ambiguities. Hence, we demonstrate

that invertible neural networks are highly capable for structural model updating.

K E YWORD S

Bayesian optimization, blade cross section, invertible neural network, machine learning, model
updating, sensitivity analysis, wind turbine rotor blade

1 | INTRODUCTION

Wind turbine blades are huge and complex structures that are exposed to extreme load conditions. Thus, an accurate blade design is of funda-

mental importance for the turbine's safety and reliability. As for most engineering structures, primarily numerical models form the design basis for

rotor blades. However, manufacturing deviations lead to a mismatch in the structural behavior of the numerically designed rotor blades and those

produced in real life.1 These deviations may prove crucial even within the allowed tolerances and material parameter uncertainties. Consequently,
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enhancing virtual models by means of model updating is an important aspect of a modern blade design procedure. Model updating seeks to cor-

rect the inaccurate parameters of the numerical model in order to improve test result predictions.2 This method is applied either for calibrating

the model with conducted real-life tests3,4 or to detect damage in terms of structural health monitoring.5 The updated model provides a basis for

a digital twin of the rotor blade produced.6

Model updating most commonly takes the form of an optimization problem: This optimization can either directly manipulate the modeling

parameters (e.g., material properties and layup) or take corrective action in the final model itself (e.g., stiffness or mass matrix of a beam model).7

For both approaches, metaheuristic algorithms such as genetic or particle swarm algorithms are commonly used to solve the optimization prob-

lem.8 Such deterministic model updating algorithms (e.g., global pattern search9) have been applied successfully in the field of rotor blade damage

detection. However, all these algorithms yield exactly one result for the model parameters and do not cover possible result ambiguity, that is, mul-

tiple model parameter sets that lead to the same output parameters. This can emerge due to a lack of sensitive output parameters. This uncer-

tainty worsens the user's confidence in the updated model parameters, as more than one configuration may yield the given output results.10

Depending on the algorithm, it even may get stuck in local optima and depend on the randomness of the starting samples.11 Bayesian inference

algorithms solve this issue by predicting posterior distributions for the updated parameters, which lets the user estimate the prediction confi-

dence. Popular methods for this include Bayesian model updating12 and approximate Bayesian computation.13

All the aforementioned approaches for model updating suffer from the same general drawback: the prohibitively high computational cost of

repeatedly simulating the physical model. This is especially severe for the probabilistic algorithms such as Bayesian model updating, where tech-

niques like Markov Chain Monte Carlo sampling are needed. Practitioners try to avoid this problem by using surrogate models, which are faster to

compute than the full physical model, to cut down on the computational costs.14 These surrogate models can take the form of reduced order

models15 or other reduction techniques such as the response surface method.4 However, the surrogate model approach, in turn, sacrifices physi-

cal input–output linkage of the original model and may lead to a loss in accuracy depending on the abstraction level and the model complexity

itself.16

Machine learning techniques, specifically artificial neural networks (ANNs), can help address these issues of model updating in various ways.

Most importantly, they can be trained to map the relationship between input and output parameters highly accurately, without knowledge of the

physical connections.17 In this way, they can serve as surrogate models that may be substantially faster to compute or more accurate than other

types of surrogates.18–21 They have also been successfully applied as surrogates in Bayesian model updating.22,23 However, combining ANNs and

model updating algorithms in such a way requires a considerably amount of implementation effort, tuning, and software engineering. Even then,

using ANNs as surrogates may not achieve the desired speed-up, as they do not remove the fundamental limitations of having to compute the

surrogate model many times, which is part of optimization-based or sampling-based model updating. In principle, ANNs could also be trained to

predict the desired parameters directly, circumventing the need for an optimization procedure altogether. While they are orders of magnitude

faster than any traditional model updating techniques, the main problem is that they lack indications of confidence, uncertainty, or goodness of fit

and are hard to verify rigorously. Due to this, standard ANNs are rarely used in this direct way for the purpose of model updating.

Within this difficult setting, we present the main idea of this paper: We use invertible neural networks (INNs) as probabilistic models to pro-

duce a posterior distribution of the input parameters directly. During training, the network receives the model parameters as inputs, as would be

the case with a surrogate model ANN. At test time, however, the network can be inverted to produce samples from the posterior directly, without

having to carry out additional algorithms. This approach offers a significant potential speed-up over traditional model updating techniques, even

ones using ANNs as surrogate models. At the same time, we obtain a full Bayesian posterior that allows among other things the determination of

confidence intervals and revealing of ambiguities in the same way that is otherwise reserved for computationally expensive Bayesian model

updating algorithms. In contrast, this is not possible with existing direct ANN approaches or standard optimization-based model updating

procedures.

This is a feasibility study for model updating with INNs and thus relies on a reduced set of material and geometrical input parameters. It is

based on a low structural blade model level, the blade cross section. This represents a generic and not a real world application, as cross-sectional

(CS) properties—if possible at all—are not intended to be measured, and may also require destructive test/measuring methods. However, our

experiments clearly demonstrate the practical applicability and benefit of INNs in the research field of structural rotor blade model updating: The

INN predicts highly accurately selected material and layup parameters based on CS beam properties, as well as offering verifiable uncertainty esti-

mates, and identifying some ambiguous and unrecoverable parameters.

To the best of our knowledge, ANNs have not yet been applied for the structural model updating of wind turbine blades, especially not in the

form of probabilistic models such as INNs. Instead, the major application of ANNs in the context of wind turbines is the field of controls

(e.g., model predictive control,24 adaptive control,25 yaw control,26 and aerodynamic coefficient prediction for control27) and for condition or

structural health monitoring considering fault or damage prediction.28–33 INNs have been introduced relatively recently, even in the field of

machine learning itself,34–38 but have seen rapidly growing research attention in the last years. They have been successfully applied in a broad

field of applications, commonly in image processing but also in scientific studies. In this paper, we specifically adapt and apply the conditional

invertible neural network (cINN)39 implemented in the FrEIA Framework.40
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The application example evaluated in this feasibility study has some specific limitations, which are summarized in the following: (i) The

updating procedure does not account for full rotor blades but links material parameters and layup topologies with blade CS properties for exem-

plarily chosen cross sections of a real blade. (ii) The blade cross sections are simplified by omitting adhesive joints in order to keep the investiga-

tions simple. (iii) The analyzed parameter space is limited to a number of material parameters (Young's moduli, shear moduli, Poisson's ratios, and

mass densities) and the ply positions in the in-plane directions of the cross sections. It should be noted the aforementioned limitations have been

included in order to keep the application example as simple as possible but still representative for a real wind turbine rotor blade. The method

itself does not require these limitations. For instance, adhesive joints can be included by refining the underlying physical models accordingly. Also,

the application of the proposed concept to updating of full blade models (i.e., finite beam element models or full 3D finite element models) should

generally be possible and is subject of ongoing research.

Section 2 of this paper covers the overall workflow description, with explanations of the feature selection method based on a sensitivity anal-

ysis. The approach and architecture of a cINN are briefly addressed in Sections 2.2 and 2.3, respectively. Subsequently, the feature selection

results are presented in Section 3. The cINN parameter definition, training, and evaluation are reported in Section 4, followed by the conclusion in

Section 5.

2 | MODEL UPDATING METHODOLOGY WITH INNs

This section describes the methods used in this investigation to analyze the input and output parameters of the model updating procedure and

how a neural network is structured and trained for inverse problems. In this feasibility study, we will restrict the problem to rotor blade CS analy-

sis with a reduced set of input parameters and evaluate the capability of INNs for structural model updating on a first level in wind turbine blade

structural design processes. This work is intended to reveal the potential of the presented methodology in a structural wind turbine-related envi-

ronment, while still keeping the model updating problem rather simple. Figure 1 illustrates the overall workflow for this study, which the following

subsections will discuss in more detail. Briefly summarized, the approach consists of a data preprocessing step in the form of a sensitivity analysis

to identify relevant input and output features of the model. Following the sensitivity analysis, all features are individually, simultaneously, and ran-

domly sampled with the physical model, to represent all possible parameter combinations. Based on these input samples, the CS properties of the

wind turbine blade at a particular radial position are calculated. The input and output features are filtered according to the feature selection. The

workflow splits these sample sets of input and output features into training, validation, and testing subsets for the cINN (the validation set is used

to check the progress of the training and tune the network settings. The test set is only used for the final evaluation of the method, so as to avoid

biasing the results). The data generation is based on a rotor blade model within the in-house modeling tool Model Creation and Analysis Tool for

Wind Turbine Rotor Blades (MoCA)41 and its interface to BEam cross-section Analysis Software (BECAS).42

2.1 | Sensitivity analysis of blade CS properties

Data preprocessing plays an important role in building a proper dataset specially for neural networks and for machine learning problems in gen-

eral.43 This contribution focuses on a sensitivity analysis to perform feature selection.44 The feature selection technique reduces the number of

F IGURE 1 Overall workflow of this study. Based on all cross-sectional input features, a sensitivity analysis is performed to determine the
relevant input and output features. The physical model is then used to generate sample sets of input and output features, which are then filtered
by the feature selection of the sensitivity analysis. All samples are finally split into training, validation, and test sets for the conditional invertible
neural network (cINN)
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input features to a subset which has a significant impact on the output features, based on the assumption that some data contains irrelevant or

redundant information.45 Additionally, the output features are reduced by all insensitive components, as these cannot be expressed with respect

to the given input features.

In our use case example of CS model updating, we will be focusing on material and geometrical composite layup parameters. These parame-

ters include Young's modulus E11 (for anisotropy additionally: E22), shear modulus G12, Poisson's ratio ν12, and density ρ, which are varied for all

applied materials. However, the Young's modulus E33 of the anisotropic materials is excluded, as through thickness stresses are not covered in the

CS analysis. Additionally, the geometrical layup parameters are described by the layup division point locations on the cross section's circumfer-

ence. These division points subdivide the composite layup in the CS direction in our model. All selected parameters will be further addressed in a

subsequent section. Geometric blade shape parameters, such as blade chord and thickness, are neglected, as 3D laser scanning can offer an accu-

rate measurement of the blade outer shell/mold,46 and thus, the overall blade shell geometry is assumed to be known. The authors are aware that

these selected input features do not cover the full range of varying parameters (e.g., adhesive and longitudinal ply positioning) due to manufactur-

ing but should be reasonably representative for a feasibility study on CS model updating. Figure 2 illustrates the sensitivity analysis for a simplified

example of three input features x: Young's modulus E, density ρ, and one division point P, as well as three output features y: mass M, stiffness K,

and area A.

During the sensitivity analysis, all selected input features x are varied individually in a one-at-a-time manner. The CS property response of all

created parameter subsets is calculated with MoCA and BECAS for a particular blade radius. All these subsets are then concatenated to a full

database, labeled as CS results in Figure 2. Each output feature y is then standardized to y¼0 and σ¼1 across the full database and denoted as ŷ.

This simplifies the sensitivity evaluation of each feature, as ŷ describes the output feature's deviation magnitude for each sample in relation to all

other samples.

After standardization, the full database is split into the subset again, that is, variation of one input feature x. Figure 2 contains the calculation

of the standard deviation σy, x across each subset's output feature, denoted as σ, which is then collected in the sensitivity matrix. Through this, all

input features x have a single value for each output feature y showing the input feature's impact on that respective output feature. Finally, by

defining a threshold λ, the sensitivity analysis identifies irrelevant input features, in case σy, x < λ for all y. On the other hand, an insensitive output

feature y is discarded if σy, x > λ applies for all x. Additionally, the algorithm reduces all linearly dependent output features to one, as the others do

not include further information for the training process of the neural network.

2.2 | INNs for inverse problems

The general setting described in the introduction is shared across many fields in engineering and natural science: The problem is well understood

and modeled in the forward process; that is, the observed response y can be readily calculated based on some parameters x that describe a system

(from mechanics, physics, chemistry, medicine). However, scientists are commonly interested in the corresponding inverse problem, that is,

F IGURE 2 The feature selection process based on a sensitivity analysis applied to a simplified cross-sectional (CS) example with three input
features: Young's modulus E, density ρ, and division point position P. The algorithm varies all individually and calculates their corresponding CS
characteristics, here, as an example, the mass M, stiffness K, and area A. After global feature standardization, splitting into the previous sets, and
computing of the standard deviation, the process returns a reduced sensitivity matrix. This can be used for feature selection
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computing possible states x of the underlying system given observations y. Computing this inverse can be a highly challenging task, and common

approaches such as classical model updating have some intrinsic shortcomings, as was briefly laid out in the introduction. Firstly, they are often

computationally very expensive, as the forward process has to be computed or simulated many times to fit a set of system parameters x̂ that

matches a given set of observations. Secondly, especially for safety-relevant applications, obtaining a single estimate x̂ is not sufficient: Ideally,

any ambiguities in the solution as well as its uncertainty should be captured and precisely quantified. This can be fulfilled by a (Bayesian) posterior

distribution px(x j y).47 The posterior quantifies the probability that any system state x could have led to the observations y and makes it possible

to produce confidence intervals or discover ambiguous or unrecoverable system parameters.48

An approach that alleviates both of these difficulties, and has seen growing adoption in recent years, is the use of cINNs to model the full pos-

terior distribution reliably in a computationally efficient way. Such networks were first successfully applied to image processing such as

inpainting,34 colorization of grayscale images,39 and synthetic image generation.36 More recently, they have entered other scientific fields such as

astrophysics,49 particle physics,50 medical imaging,51 and most recently in epidemiology.52 In short, cINNs rely on a simple reference distribution

pz(z) called the latent distribution, most commonly a Gaussian. The cINN f then conditionally transforms and reshapes between the posterior px

(x j y) and the latent distribution pz(z) (see Figure 3). The cINN can be understood as an inverse surrogate model of the well-known physical model.

The output of the physical model can be passed as a conditional observation y to the cINN to infer the posterior distribution px(xjy). Finally, the
established inverse model, which can be evaluated again at any time, is a striking benefit over the optimization-based model updating algorithms

applied for one particular set of parameters.

From this construction, the posterior that the network represents can be exactly computed through the change-of-variables formula as fol-

lows:34

pxðxjyÞ¼ pz fðx;yÞð Þ det δf
δx

� �����
���� ð1Þ

Here, det δf
δx

� �
denotes the determinant of the model's Jacobian, det(J) for short from here on. Similarly, samples from the posterior can be

drawn by first sampling z from the latent distribution pz(z) and then using the inverted cINN to transform them to the domain of the posterior:

x¼ f�1ðz;yÞ. As with many classic probabilistic modeling techniques, the cINN can be trained through maximum likelihood training. This means

that given existing pairs of (xi, yi), the model's posterior px(x j y) will match the true posterior of the inverse problem p ∗(x j y) if the average log-

likelihood of the models posterior is maximized or, as done in practice, the negative logarithmic likelihood (NLL) is minimized. Together with the

change-of-variables formula and a Gaussian latent distribution pzðzÞ/ expðkzk2=2Þ, we arrive at the following objective:

LNLL ¼E �log pðxijyiÞð Þ½ � ¼E kfðxi;yiÞk2
2

� logjdetðJiÞj
" #

þ const: ð2Þ

For a more detailed explanation and derivation of the objective function, see, for example, Ardizzone et al.39

2.3 | Architecture and training of the conditional INN

From the previous section, we can conclude that the neural network we use to represent f must be invertible and have a way of readily computing

the Jacobian determinant. In the following, we describe the implementation of the cINN architecture that satisfies these requirements. In general,

F IGURE 3 Schematic illustration of the principle of a cINN. The cINN f conditionally transforms and reshapes between the posterior px(x j y)
and the latent distribution pz(z)
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the cINN consists of a sequence of so-called coupling blocks, specifically affine coupling blocks in our case. To this end, the (unconditional)

coupling blocks introduced in RealNVP35 can be extended to include the condition y, shown below in Figure 4.

This block first splits the input data u into [u1, u2] and applies affine transformation according to the following functions:

v1 ¼ u1
Kexpðs1ðu2,yÞÞþ t1ðu2,yÞ ð3Þ

v2 ¼ u2
K

expðs2ðv1,yÞÞþ t2ðv1,yÞ ð4Þ

The results [v1, v2] are concatenated afterwards to v. Inverting the set of equations yields these inverse operations:

u2 ¼ðv2� t2ðv1,yÞÞ�expðs2ðv1,yÞÞ ð5Þ

u1 ¼ðv1� t1ðu2,yÞÞ�expðs1ðu2,yÞÞ ð6Þ

The internal functions sj and tj always take as input the corresponding variables u2 or v1 and additionally the conditional data y. As these func-

tions must not be inverted, they can be replaced by any arbitrary mathematical expression: in our case, by shallow standard neural networks that

will be referred to as subnetworks. One big advantage of this coupling block is the simplicity to compute the logarithm of the Jacobian determi-

nant being the sum of s1 and s2 over the inputs dimension.35 The cINN architecture then consists of the aforementioned sequence of conditional

coupling blocks CC as depicted in Figure 5, each of them fed with the condition y (CS output). This cINN can than be evaluated in forward and

inverse direction between the input x (CS input) and latent space z. In addition to the plain coupling blocks, we include a number of technical

improvements common to invertible network architectures, such as fixed permutations between variables. In order to improve generalization of

F IGURE 4 Structure of a conditional affine coupling block (CC)39

F IGURE 5 The conditional invertible neural network (cINN) structure applied to cross-sectional model updating. In the forward path f, cross-
sectional (CS) input features x are processed over a sequential concatenation of conditional coupling (CC) blocks, which represents the cINN.
The CS output features y contribute as coupling block conditions, and the cINN result is a latent space z. This path can be inverted, which is
defined as f�1
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the cINN, we apply dropout layers in the subnetworks as well as L2 weight regularization.53 Gradient clipping avoids exploding gradients in back

propagation,54 and an optimizer's learning rate scheduler improves the convergence.53

3 | INPUT AND OUTPUT FEATURE SELECTION

The sensitivity analysis and feature selection as described in Section 2.1 will focus in this study particularly on the cross section at a radial position

of R = 6 m of the SmartBlades2 DemoBlade. This cross section is depicted in Figure 6 as a BECAS output with material assignment and division

point (P) location. In a cross section, division points divide the shell into different sections with a constant material layup or define subcomponent

positions such as the web location.

In addition to the CS view, Tables A1 and A2 in Appendix A contains the layup of each CS subcomponent at R = 6 m for a full insight into the

analyzed structure. This may enhance the interpretation of the following sensitivity analysis in this section. The spar cap is prefabricated with

balsa transition pieces on each side of the unidirectional glass fiber (UD) material and trimmed to the correct size, before placing it in the

blade mold.

The input feature variation is selected based on manufacturing tolerances for materials and the layup of wind turbine blades. The manufactur-

ing documentation of the SmartBlades2 DemoBlade allows tolerance thresholds of max, ±5% deviation for material parameters, such as densities

and stiffnesses. The ply positioning tolerances in CS direction, that is, division point locations, depend on the material; valid tolerances for core

material are ±5 mm, whereas spar cap and web location may vary ±5–10 mm maximum. In order to account for even higher inaccuracies, the anal-

ysis range was extended for each parameter as stated in Table 1. As the spar cap is prefabricated, all related positions varied together; that is, all

suction side division points from PSS,TE,core to PSS,LE,core are moved simultaneously; the same is true for the pressure side, respectively.

After generating the model in MoCA and processing it with BECAS, the output features in Table 2 are available. These include CS locations

of shear, elastic, area, and mass center, as well as total mass, total area, inertias, and principal axis orientation. However, the most important out-

put is probably the stiffness and mass matrices, which serve as input for finite element beam models.

Following the sensitivity algorithm described in Section 2.1, a sensitivity matrix is computed based on the parameter variation listed in

Table 1 and the CS output variables in Table 2. The full sensitivity matrix is given in Tables A3–A5 in Appendix A. The sensitivity analysis is part

F IGURE 6 This is a cross section of the SmartBlades2 DemoBlade at a radial position of R = 6 m. The division points on the circumference
divide the blade shell into sections of equal material layup as follows: PSS,TE,offset to PSS,TE,core is the suction side (SS) sandwich panel located at the
trailing edge (TE); PSS,TE,spar cap to PSS,LE,spar cap denotes the location of the spar cap; this is flanked by balsa transition pieces in-between PSS,TE,core
to PSS,LE,core; followed by the sandwich panel located to the leading edge (LE) from PSS,LE,core to PSS,LE,offset. The pressure side (PS) is constructed
accordingly. As the outer face laminates are hard to identify due to their small thickness, the layup is shown in Tables A1 and A2 in Appendix A.
Additionally, the coordinate system is defined according to blade coordinate system in DNVGL AS55
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of the overall methodology, enabling also users without in-depth knowledge of the underlying physical models to perform model updating of cross

sections.

A threshold value λ = 0.25 was chosen to identify irrelevant features, which are then excluded in the matrix of Table 3. This led to discarding

the input features E22 and the Poisson's ratio ν of each material. The Young's modulus E of both core materials is sorted out as its magnitude only

reaches a fraction <0.2% of the glass fiber laminates. As the prefabricated spar cap was moved simultaneously, the algorithm additionally rejects

4 of 5 linearly dependent division points, keeping the PXX,Mid,spar cap as representative for each shell side.

TABLE 1 Parameter variation range for sensitivity analysis and neural network training

Note: The prefabricated spar cap is varied synchronous for each shell side.

TABLE 2 BECAS cross-sectional output parameters

Variable Description

SCx, SCy Shear center (SC) coordinates

ECx, ECy Elastic center (EC) coordinates

Mtotal Total mass

CoGx, CoGy Center of gravity (CoG) coordinates

Ixx, Iyy, Ixy Mass moment of inertia

Ax, Ay Area center cordinates

Axx, Ayy, Axy Area moment of inertia

Atotal Total areas

αPC,Ref Orientation of principal axis

αPC,EC Orientation of principal axis w.r.t. EC

K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26

K33 K34 K35 K36

K44 K45 K46

K55 K56

K66

2
666666664

3
777777775

Stiffness matrix

M11 M12 M13 M14 M15 M16

M22 M23 M24 M25 M26

M33 M34 M35 M36

M44 M45 M46

M55 M56

M66

2
666666664

3
777777775

Mass matrix
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Regarding the output, the algorithm sorts out several insensitive stiffness terms (K13, K23, K14, K24, K15, K25, K36, K46, K56). As only isotropic

and orthotropic materials aligned with the CS normal axis are applied in the blade design and no additional off-axis layers to induce, for example,

bend-twist coupling effects, the respective coupling terms in the stiffness matrix are zero, and thus, the sensitivity is zero. Considering the mass

matrix, the features M12, M13, M23, M14, M24, M15, M25, M36, M46, and M56 are always zero.56 Lastly, due to linear dependencies, M11 was kept,

but Mtotal, M22, and M33 were discarded; all these features represent the total mass. Additionally Ixx, Iyy, Ixy, M34, and M35 were sorted out in favor

of M44, M55, M45, M16, and M26, as these again represent the same physical parameter, respectively. This feature selection yields the final reduced

sensitivity matrix in Table 3. However, all parameters are varied for the sample generation for training and validation of the cINN, only the

remaining selected 14 input features and 33 output features from the respective samples are passed as input and conditions to the cINN.

The physical soundness of the input–output relations is discussed in the following. The explanations are exemplarily given for the impact of

the input parameters E11, UD (axial Young's modulus of the spar caps), G12, Biax45 (in-plane shear modulus of the biax layers in the shear web), and

G12, Triax (in-plane shear modulus of the triax layers in the shell) on the output parameters. For a complete picture, the reader is referred to existing

literature on physical modeling employing generalized composite Timoshenko beam formulations.56,57

There is a strong separation of functions for the different blade subcomponents. The spar caps shall provide stiffness against flapwise bending

and carry bending-related axial normal stresses. Hence, E11, UD should have an impact on the related stiffness matrix entry K55. Additional axial

stiffness in the spar caps will also affect the stiffness matrix entry linked to axial stretching, K33, and the position of the elastic center, ECx and

ECy, respectively. The function of the shear web is to carry lateral forces (and the respective shear stresses) in flapwise direction (perpendicular to

the rotor plane). Therefore, the in-plane shear modulus of its biax layers, G12, Biax45, shall contribute to the corresponding stiffness matrix entry

K11 and the shear center location. The shell is designed to withstand the shear stresses, especially due to torsion, and due to lateral forces, primar-

ily in edgewise direction (parallel to the rotor plane) and secondarily in flapwise direction. Modification of the in-plane shear modulus in the triax

layers positioned in the shell should therefore have an impact on the related stiffness matrix entries, K11, K22, and K66, and the related coupling

entries K12, K16, and K26, respectively. The position of the shear center should also be affected. All of these considerations are confirmed by

Table 3. It can thus be concluded that the physical model that gives the outputs as a function of the inputs is physically meaningful.

4 | INN STRUCTURE, TRAINING, AND EVALUATION

After having identified the significant in- and output features of the model, in this section, we seek appropriate cINN hyperparameters for the

subsequent training and evaluation of the INN. Furthermore, the network is selected with respect to its computational training costs and applica-

bility on other related scenarios.

4.1 | Identifying network hyperparameters

While the network parameters (i.e., the network weights) are produced by the training process, the network size and structure, the length of the

training procedure, and other settings have to be set by the user beforehand. These are known as hyperparameters, and we describe our choices in

the following sections. All the programming is done within Pytorch58 including the FrEIA for INNs.40 As previously stated, the cINN is a sequence of

conditional affine coupling blocks (CC), with subnetworks acting as internal functions. The subnetworks are represented by standard feed-forward

neural networks consisting of a number of hidden layers (network depth), each with a certain number of nodes (network width). Every hidden layer is

followed by a dropout layer to improve generalization and an activation layer. To find a set of well-performing hyperparameters for the cINN, we

trained networks with various different depths and widths as depicted in Table 4. The hyperparameter tuning revealed that shallow but wide subnet-

works are favorable for this application. The AdaGrad59 optimization algorithm gave the best and fastest convergence, which is finally improved by a

learning rate scheduler. Due to huge magnitude differences between the features, all passed samples are standardized per feature (x¼0 and σx ¼1)

to equalize the contribution magnitude of each one. For further information on ANN's terminology, please refer for example to Chollet.17

In order to determine the necessary network depth of the cINN, we will evaluate the four trained models from Table 4 against their prediction

quality of the input feature's posterior. If not otherwise stated, all given results will be shown as standardized values to improve direct comparabil-

ity between the features. Considering that all input features were sampled uniformly within their respective symmetric maximum variation ±xmax

from Table 1, the standard deviation is defined as follows:

σx ¼ jxmaxj �
ffiffiffi
1
3

r
ð7Þ

Equation (7) helps to estimate the real range of the respective input feature's posterior distribution. Furthermore, to enhance the understand-

ing of the upcoming discussion, we use Figure 7 to explain the interpretation of the results for two exemplarily chosen features: E11,Triax and

ρBiax90. The left two graphs represent the posterior distribution of the respective features after evaluating the cINN inversely. Each sample is a set

NOEVER-CASTELOS ET AL. 11



of input and output features. This original input feature value is the so-called ground truth, which the cINN tries to predict as accurately as possi-

ble. Therefore, all given results are related to the ground truth value of each sample feature. This enables the comparison of different samples

with varying ground truth values, and it lets the reader recognize the accuracy of the prediction at a glance.

What is striking about the left graph is the improved prediction with increasing network depth. The mean value approximates the ground

truth with increasing depth, while the standard deviations describe narrower distributions, with the shallowest model (σE11;Triax
¼0:72) is much

higher than that of the deepest (σE11;Biax90 ¼0:16). That means the shallowest model has a poor prediction confidence for E11,Triax compared to the

deeper models. In contrast, the input feature ρBiax90 is predicted similarly by all models. Here, the width of the posteriors is generally also much

higher, indicating that ρBiax90 cannot be recovered with as great of a precision as E11,Triax, even for the deeper and more powerful cINN architec-

ture. Another interesting fact is that the posteriors are all approximately Gaussian (as opposed to having multiple peaks, skewed shape, etc.). This

TABLE 4 Final cINN hyperparameter set

Model No.

CC

Subnet

nodes

Subnet

layer

Activation

function

Dropout

rate

Optimizer Learning

rate

Batch

size

Epochs Samples Training

time

0 2 100 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 50 min

1 4 200 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 107 min

2 8 400 1 PReLu 0.05 AdaGrad 0.2 32 1000 20 000 168 min

3 16 800 1 PReLu 0.05 AdaGrad 0.1 32 1000 20 000 279 min

Note: The parameters where chosen subjectively, involving the number of epochs and the learning rate and its scheduler, although focusing more on

computationally cheaper hyperparameter sets may also achieve reasonably good accuracy with lower computational costs.

F IGURE 8 Input feature prediction showed for 10 random samples of four different models with full output as conditional features. The four
invertible neural networks increase in depths

F IGURE 7 Exemplary standardized prediction for the two input features E11,Triax and ρBiax90 of one sample computed with all four models
from Table 4. The left two graphs show the predicted distribution of the corresponding feature x. The right graph summarizes the same results as
error bars with 1 � σx width around the predicted mean value x. The results are related to the ground truth value

12 NOEVER-CASTELOS ET AL.



could help justify even simpler methods in future that may only provide Gaussian uncertainty estimates. Without producing the full nonparametric

posteriors first with the cINN, such simplifying assumptions could not be made. Both first graphs can be summarized as presented in the right

graph. There, the prediction moves to the y-axis, and for each feature, the posterior is depicted as error bars with 1 � σx width around the mean

value x, making it easy to compare several features and models at a glance.

Having explained how to interpret the inverted model results, we will now move on to define the best network depth from the given models

in Table 4. Therefore, Figure 8 shows all four models' prediction of each input feature's posterior for 10 randomly chosen samples. It is directly

apparent from this figure that most of the features are predicted extremely accurately with a high confidence by the deeper models, except for

both densities of the glass fiber plies Biax90 and Triax and the shear modulus G12 of Biax90 and Foam.

The two density features cannot be recovered accurately enough by any of the given models due to an ambiguity resulting from their rela-

tively similar mass contribution and quasi identical position in the cross section. Recovering from Figure 6 above and Tables A1 and A2 in

Appendix A, the Triax and Biax90 are placed directly upon each other in the shell sandwich laminate with a similar nominal thickness. Thus, they

counteract each other, that is, if one density increases, the other decreases to achieve the same total weight and inertia contribution together.

This behavior is clearly confirmed by Figure 9, where the mean value of the learned posterior of the samples is scattered along a thin line against

each other; that is, the features are negatively proportional and highly correlated R 2 = 0.9985. From this, we can conclude that the cINN has cor-

rectly detected the ambiguity and represents it accordingly in the posterior. However, it is able to predict a merged density of both values quite

precisely, as following results will show. Another interesting point due to a greater nominal thickness (+38%) and its existence in the prefabricated

spar cap the Triax is slightly more dominant, which is reflected in a marginally better prediction and thus narrower posterior distribution compared

to the Biax90 (cf. Figure 8).

As stated above, the overall inference performance of the models is strikingly accurate, especially from model 1 (4 CCs) on. Figure 8 shows

similar result qualities for models 1–3, with only minor improvements in the standard deviation in each step. In addition, Table 4 describes a com-

putational time increase by 57% from model 1 to 2 and approx. 66% from model 2 to 3. Thus, the authors decided to choose the model 2 (8 CCs)

hyperparameter set as the cINN design. In addition to the depth selection, the necessary training sample size and number of epochs for a fixed

learning rate of 0.2 are analyzed to cut down computational costs even further. All scenarios showed satisfying posteriors; therefore, a sample size

of 10 000 and 1000 epochs was chosen as a trade-off between computational time (112 min) and accuracy. Table 5 summarizes the final cINN

TABLE 5 Final cINN hyperparameter set

No.
CC

Subnet
nodes

Subnet
layer

Activation
function

Dropout
rate Optimizer

Learning
rate

Batch
size Epochs Samples

Training
time

8 400 1 PReLu 0.05 AdaGrad 0.2 32 1000 10 000 112 min

Note: The parameters where chosen subjectively, involving the number of epochs and the learning rate and its scheduler, although focusing more on

computationally cheaper hyperparameter sets may also achieve reasonably good accuracy with lower computational costs.

F IGURE 9 Counteraction of the mean predicted densities ρBiax90 and ρTriax. The highly correlating samples show that the cINN correctly
detects this ambiguity
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hyperparameter set. Considering the complete process to create a cINN, the sample generation has to be taken into account, which is a significant

cost driver for classical iterative model updating techniques. On a 40-node computing cluster, generating 10 000 samples with MoCA and BECAS

with the given mesh density of 500 elements per circumference takes approx. 38 min.

F IGURE 10 Final model: input feature prediction on the left graph for 30 random samples with full output as conditional features. Right
graph depicts the negative logarithmic likelihood loss curve of the cINN for training and validation samples

F IGURE 11 Input feature prediction showed for 10 random samples at four different radial positions with full output as conditional features.
The four cINNs were each trained individually for their respective radius

F IGURE 12 Input feature prediction showed for 10 random samples at four different radial positions only considering the stiffness and mass
matrix as conditional features. The four cINNs were each trained individually for their respective radius
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4.2 | Invertible network evaluation

After having defined our cINN, this section will continue with the evaluation of its performance and applicability for different scenarios. First of

all, we will recap the input feature prediction of the finally chosen model and its training process. The good prediction quality is again apparent

from the data in the left graph of Figure 10, with the exception of the two counteracting input features: G12,Biax90, GFoam, ρBiax90, and ρTriax. The

latter two features are mostly unrecoverable due to an inherent ambiguity of the problem, as discussed above. During training, the NLL loss curve

on the right graph is monotonically decreasing with little steps every 100th epoch, where the scheduler reduces the learning rate by 20% of the

actual rate. The validation loss is even lower due to the averaging effect of the dropout layers mimicking multiple trained models.54 However,

both seem to have nearly converged to their optimum.

In order to extend the analysis of the posterior distribution, the correlation of an input feature prediction (mean value x) against its ground

truth value can be investigated. Therefore, we use the coefficient of determination (R 2). Figure B1 in Appendix B compares the linear correlation

of each inferred input feature for 1000 random samples, also stating each feature's R 2 score, which in most cases is R 2 > 0.92, with the exception

previously named. The computed correlation confirms the previous outstanding predictions for a wide range of samples. Next, these predicted

mean values are used to recalculate the output features with MoCA and BECAS to evaluate its accuracy. All recalculated values match extremely

well the ground truth values as proved by the given R 2 scores, which are all approx. 1 with a roundoff error at the fifth decimal digit. Interestingly,

the inaccuracies of ρBiax90 and ρTriax seem to cancel each other out due to their counteraction. Considering the proximity of both laminates and

that both are infused together, a merged or averaged density for both materials could improve the prediction of such a parameter in future

applications.

So far, we have demonstrated an excellent model updating capability of the finally designed cINN for a cross section at R = 6 m. Hereafter,

the same cINN will be trained for cross sections at the following positions: R = 9 m, 12 m, and 15 m. Figure 11 presents the posterior predictions

for all four radial locations considering 10 random samples. Here again, the predictions are outstanding, except for ρBalsa. This rests upon the fact

that balsa is replaced by foam in the trailing edge panels after R = 6 m and only appears in the transition pieces of the spar cap, as shown exem-

plarily in Figure B2 in Appendix B. Hence, the contribution to any mass property and sensitivity is comparatively low to gain enough information

to recover this input feature. The wide posteriors produced by the cINN show that it has correctly understood and modeled this uncertainty,

instead of having the same high confidence as for the other parameters.

As a final aspect, the possible updated features for a future case of a finite element beam model updating would be the stiffness and mass

matrix. Therefore, analyzing the prediction quality trained only with these two matrices as conditional features indicates if the basic material and

layup input features can be subsequently inferred. Figure 12 shows the already familiar posterior prediction graph for the four previously analyzed

CS positions, only considering the stiffness and mass matrix features. The overall width of the posterior distributions increases slightly for all cross

sections and features but is still reasonably accurate. Only the original cINN for the cross section at R = 6 m noticeably loses accuracy at several

features (PSS,TE,offset, PSS,LE,offset, PPS,LE,offset, and PPS,TE,offset). This only presents the easiest and most straight forward way of inferring the input

posteriors, though recovering the full output parameter set from the stiffness and mass matrix before inferring the input features is also possible

with a few calculations.56,57

5 | CONCLUSION

This feasibility study set out to reveal the capability of INNs to be successfully applied in the field of wind turbine blade structural model updating.

The study was based on an example of blade cross sections, being one of the first structural model levels of rotor blades.

A feature selection was carried out using a sensitivity analysis that yielded a sensitivity matrix. This analysis covered a limited set of input

parameters, including material properties such as Young's moduli, shear moduli, Poisson's ratios, and densities of all materials and layup variations

(CS layup division points). All parameters were varied within extended manufacturing tolerances. Based on the sensitivity matrix and a chosen

threshold value, the significant input and output features were identified. Although from an engineering point of view most of the sensitivities

might be deducible, the sensitivity analysis in the overall approach is universally applicable to retrieve sensitive parameters for the feature selec-

tion without a priori knowledge of the physical model behavior. The physical soundness of the underlying physical model was discussed though

and shown by exemplary input–output relations.

Furthermore, the general architecture and principles of an cINN were explained. Subsequently, the necessary cINN structure was investigated

considering the trade-off between computational time and prediction accuracy. A cINN with shallow feedforward subnetworks was selected that

took approx. 140 min for sample generation and training on a computing cluster equipped with 40 CPUs and an NVIDIA Tesla P100 GPU. In con-

trast to optimization methods for model updating, this cINN finally establishes an inverse model of the physical model represented by MoCA and

BECAS, which can be evaluated any time without having to perform the complete process again.

A total number of 10 000 samples based on randomly varied input feature sets were generated with MoCA and BECAS for testing. The cINN

inferred remarkably accurate input feature values from the given test samples, except for two ambiguous density values of glass fiber-reinforced
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plastic materials. The results revealed that the ambiguity rests upon the two densities counteracting each other. However, a recalculation of output

parameters from the inferred values affirmed again correct predictions. The inaccuracies of the densities canceled each other out. Another advan-

tage over classical model updating techniques is that cINNs generate posterior distribution and not single values. This gives the user an instrument

to evaluate the model's confidence on the predicted value and to reveal unrecoverable parameters. These findings were further confirmed by inves-

tigating cross sections at different radial positions, showing similarly accurate results. The study found the posterior for the density of balsa was very

wide for the other radii, which is due to a significantly reduced balsa application in these cross sections and thus lower contribution to the mass-

related output features, and therefore a source of uncertainty correctly captured by the cINN. Moreover, this paper studied a reduced output

feature set, training the model only with stiffness and mass matrix as conditional feature. This scenario becomes relevant whenever a finite beam

model updating can predict these values and a further inference to the material and layup level is desired. Here, the standard deviation of the

posterior distribution increases slightly, that is, the confidence of the prediction diminishes. However, the results are still satisfactory.

In conclusion, this feasibility study was able to show that cINNs are generally applicable and provide good results. The example of wind tur-

bine blade CS model updating proved outstanding performance for cINNs in this research field. Although we have limited the parameter space

and model complexity, the cINN is flexibly scalable to cover further parameters, for example, parameters linked to geometry or adhesive joints, as

well as more complex models. This fact and the excellent results make model updating with cINN a feasible and promising approach to tackle

more complex model updating problems. In ongoing research, the authors work on the extension of the updated parameter space, the increase of

the model complexity to a full-scale blade model, and to update blade models with experimental data. A successful application of this methodol-

ogy on the global blade model and having an extensive inverse model of the blade can offer several application opportunities, for example, digital

twins and/or structural health monitoring by continuous training and updating or quality assurance after manufacturing.
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The following abbreviations are used in this manuscript:ANN artificial neural network

BECAS beam cross section analysis software

CC conditional coupling block

cINN conditional invertible neural network

CS cross section

EC elastic center

FrEIA Framework for Easily Invertible Architectures

CoG center of gravity

INN invertible neural network

K stiffness matrix

LE leading edge

MoCA Model Creation and Analysis Tool for Wind Turbine Rotor Blades

M mass matrix

NLL negative logarithmic likelihood

PS pressure side

SC shear center

SS suction side

TE trailing edge

UD unidirectional

16 NOEVER-CASTELOS ET AL.



PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/we.2687.

DATA AVAILABILITY STATEMENT

Data available are in a publicly accessible repository: https://github.com/IWES-LUH/CS-ModelUpdating-cINN.

ORCID

Pablo Noever-Castelos https://orcid.org/0000-0002-3353-6165

Lynton Ardizzone https://orcid.org/0000-0001-9777-1773

Claudio Balzani https://orcid.org/0000-0003-3432-3476

REFERENCES

1. Gundlach J, Govers Y. Experimental modal analysis of aeroelastic tailored rotor blades in different boundary conditions. J Phys Conf Ser. 2019;1356:

12023.

2. Mottershead JE, Friswell MI. Model updating in structural dynamics: A survey. J Sound Vib. 1993;167(2):347-375.

3. Knebusch J, Gundlach J, Govers Y. A systematic investigation of common gradient based model updating approaches applied to high-fidelity test-data

of a wind turbine rotor blade. In: Proceedings of the xi international conference on structural dynamics. EASDAthens; 2020:2159-2174.

4. Luczak M, Manzato S, Peeters B, Branner K, Berring P, Kahsin M. Updating finite element model of a wind turbine blade section using experimental

modal analysis results. Shock Vib. 2014;2014:1-12.

5. Schröder K, Grove S, Tsiapoki S, Gebhardt CG, Rolfes R. Structural change identification at a wind turbine blade using model updating. J Phys Conf Ser.

2018;1104:12030.

6. Sayer F, Antoniou A, Goutianos S, Gebauer I, Branner K, Balzani C. Reliablade project: a material's perspective towards the digitalization of wind tur-

bine rotor blades. IOP Conf Ser: Mater Sci Eng. 2020;942:12006.

7. Yang YB, Chen YJ. A new direct method for updating structural models based on measured modal data. Eng Struct. 2009;31(1):32-42.

8. Bruns M, Hofmeister B, Grießmann T, Rolfes R. Comparative study of parameterizations for damage localization with finite element model updating.

In: Proceedings of the 29th european safety and reliability conference (esrel) Beer M, Zio E, eds. Research Publishing Services; 2019; Singapore:1125-

1132.

9. Hofmeister B, Bruns M, Rolfes R. Finite element model updating using deterministic optimisation: a global pattern search approach. Eng Struct. 2019;

195:373-381.

10. Mojtahedi A, Lotfollahi Yaghin MA, Hassanzadeh Y, Ettefagh MM, Aminfar MH, Aghdam AB. Developing a robust shm method for offshore jacket

platform using model updating and fuzzy logic system. Appl Ocean Res. 2011;33(4):398-411.

11. Fuchs C, Spolaor S, Nobile MS, Kaymak U. A swarm intelligence approach to avoid local optima in fuzzy c-means clustering. In: 2019 ieee international

conference on fuzzy systems (fuzz-ieee). IEEE; 2019:1-6.

12. Sun H, Büyüköztürk O. Bayesian model updating using incomplete modal data without mode matching. In: Health monitoring of structural and biologi-

cal systems 2016, SPIE Proceedings. SPIE; 2016:98050D.

13. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate bayesian computation. PLoS Comput Biol. 2013;9(1):e1002803.

14. Serna A, Bucher C. Advanced surrogate models for multidisciplinary design optimization. In: 6th weimar optimization and stochastic days 2009; 2009.

15. van Damme CI, Allen MS, Hollkamp JJ. Updating geometrically nonlinear reduced-order models using nonlinear modes and harmonic balance. AIAA J.

2020;58(8):3553-3568.

16. Trehan S, Carlberg KT, Durlofsky LJ. Error modeling for surrogates of dynamical systems using machine learning. International Journal for Numerical

Methods in Engineering. 2017;112(12):1801-1827.

17. Chollet F. Deep learning with python, Safari Tech Books Online. Shelter Island, NY: Manning; 2018. http://proquest.safaribooksonline.com/

9781617294433

18. Marwala T. Finite-element-model updating using computional intelligence techniques: Applications to structural dynamics. London: Springer; 2010.

19. Sung H, Chang S, Cho M. Reduction method based structural model updating method via neural networks. In: Aiaa scitech 2020 forum. American

Institute of Aeronautics and Astronautics; 2020; Reston, Virginia.

20. Sung H, Chang S, Cho M. Efficient model updating method for system identification using a convolutional neural network. AIAA J. 2021:59(9):1-10.

21. Lu Y, Tu Z. A two-level neural network approach for dynamic fe model updating including damping. J Sound Vib. 2004;275(3-5):931-952.

22. Goller B, Broggi M, Calvi A, Schuëller GI. A stochastic model updating technique for complex aerospace structures. Finite Elem Anal Des. 2011;47(7):

739-752.

23. Yin T, Zhu H-P. An efficient algorithm for architecture design of Bayesian neural network in structural model updating. Comput-Aided Civil Infrastruct

Eng. 2020;35(4):354-372.

24. Han B, Kong X, Zhang Z, Zhou L. Neural network model predictive control optimisation for large wind turbines. IET Gener Transm Distrib. 2017;11(14):

3491-3498.

25. Jafarnejadsani H, Pieper J, Ehlers J. Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network. IEEE

Trans Control Syst Technol. 2013;21(6):2264-2272.

26. Saenz-Aguirre A, Zulueta E, Fernandez-Gamiz U, Lozano J, Lopez-Guede J. Artificial neural network based reinforcement learning for wind turbine

yaw control. Energies. 2019;12(3):436.

27. Gambier A, Behera A. Modelling the aerodynamic coefficients of wind turbines by using neural networks for control design purposes. J Phys Conf Ser.

2018;1037:32032.

28. Shihavuddin ASM, Chen X, Fedorov V, et al. Wind turbine surface damage detection by deep learning aided drone inspection analysis. Energies. 2019;

12(4):676.

NOEVER-CASTELOS ET AL. 17

https://publons.com/publon/10.1002/we.2687
https://github.com/IWES-LUH/CS-ModelUpdating-cINN
https://orcid.org/0000-0002-3353-6165
https://orcid.org/0000-0002-3353-6165
https://orcid.org/0000-0001-9777-1773
https://orcid.org/0000-0001-9777-1773
https://orcid.org/0000-0003-3432-3476
https://orcid.org/0000-0003-3432-3476
http://proquest.safaribooksonline.com/9781617294433
http://proquest.safaribooksonline.com/9781617294433


29. Bangalore P, Tjernberg LB. An approach for self evolving neural network based algorithm for fault prognosis in wind turbine. In: 2013 ieee grenoble

conference. IEEE; 2013:1-6.

30. Malik H, Mishra S. Application of probabilistic neural network in fault diagnosis of wind turbine using fast, turbsim and simulink. Procedia Comput Sci.

2015;58:186-193.

31. Malik H, Mishra S. Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using turbsim, fast and

simulink. IET Renew Power Gener. 2017;11(6):889-902.

32. Lu Y, Sun L, Zhang X, Feng F, Kang J, Fu G. Condition based maintenance optimization for offshore wind turbine considering opportunities based on

neural network approach. Appl Ocean Res. 2018;74:69-79.

33. Qiu B, Lu Y, Sun L, Qu X, Xue Y, Tong F. Research on the damage prediction method of offshore wind turbine tower structure based on improved neu-

ral network. Measurement. 2020;151:107141.

34. Dinh L, Krueger D, Bengio Y. Nice: Non-linear independent components estimation. http://arxiv.org/pdf/1410.8516v6; 2014.

35. Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using real nvp. http://arxiv.org/pdf/1605.08803v3; 2016.

36. Kingma DP, Dhariwal P. Glow: generative flow with invertible 1x1 convolutions. In: Curran Associates I, ed. Advances in neural information processing

systems; 2018.

37. Rezende D, Mohamed S. Variational inference with normalizing flows. In: Proceedings of the 32nd international conference on machine learning;

2015; Lille, France.

38. Jacobsen J-H, Smeulders A, Oyallon E. i-revnet: Deep invertible networks. ICLR 2018 - International Conference on Learning Representations, http://

arxiv.org/pdf/1802.07088v1; 2018.

39. Ardizzone L, Lüth C, Kruse J, Rother C, Köthe U. Guided image generation with conditional invertible neural networks. http://arxiv.org/pdf/1907.

02392v3; 2019.

40. Visual Learning Lab Heidelberg. Freia - framework for easily invertible architectures Edited by GitHub. https://github.com/VLL-HD/FrEIA; 2021.

41. Noever-Castelos P, Haller B, Balzani C. Validation of a modelling methodology for wind turbine rotor blades based on a full scale blade test; 2021.

42. Blasques JP. User's manual for becas: a cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry, Denmark. For-

skningscenter Risoe. Risoe-R: Risø DTU – National Laboratory for Sustainable Energy; 2012.

43. Raschka S, Mirjalili V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-learn, and Tensorflow 2. 3. Birmingham: Packt;

2019.

44. Huang J, Li Y-F, Xie M. An empirical analysis of data preprocessing for machine learning-based software cost estimation. Inf Softw Technol. 2015;67:

108-127.

45. Chen Z, Menzies T, Port D, Boehm B. Feature subset selection can improve software cost estimation accuracy. ACM SIGSOFT Softw Eng Notes. 2005;

30(4):1-6.

46. Magerramova L, Vasilyev B, Kinzburskiy V. Novel designs of turbine blades for additive manufacturing. In: Proceedings of asme turbo expo 2016: Tur-

bomachinery technical conference and exposition; 2016.

47. Radev ST, Graw F, Chen S, Mutters NT, Eichel VM, Bärnighausen T, Köthe U. Model-based bayesian inference of disease outbreak dynamics with

invertible neural networks. http://arxiv.org/pdf/2010.00300v3; 2020.

48. Ardizzone L, Mackowiak R, Rother C, Köthe U. Training normalizing flows with the information bottleneck for competitive generative classification. In:

32nd conference on neural information processing systems (neurips 2018), Vol. 33; 2018:7828-7840.

49. Ksoll VF, Ardizzone L, Klessen R, et al. Stellar parameter determination from photometry using invertible neural networks. Mon Not R Astron Soc.

2020;499(4):5447-5485.

50. Bellagente M, Butter A, Kasieczka G, et al. Invertible networks or partons to detector and back again. SciPost Physics. 2020;9(5):74.

51. Gröhl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics. 2021;22:100241.

52. Radev ST, Mertens UK, Voss A, Ardizzone L, Kothe U. Bayesflow: learning complex stochastic models with invertible neural networks. IEEE transac-

tions on neural networks and learning systems. 2020;1050:17.

53. Patterson J, Gibson A. Deep Learning: A Practitioner's Approach. 1. Beijing and Boston and Farnham and Sebastopol and Tokyo: O'Reilly; 2017.

54. Ravichandiran S. Hands-on Deep Learning Algorithms with Python: Master Deep Learning Algorithms With Extensive Math by Implementing Them Using

Tensorflow. Birmingham and Mumbai: Packt Publishing; 2019.

55. DNVGL AS. Dnvgl-st-0376 - rotor blades for wind turbines. https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2015-12/DNVGL-ST-0376.pdf; 2015.

56. Hodges DH. Nonlinear Composite Beam Theory, Progress in astronautics and aeronautics, vol. 213. Reston, Va.: American Institute of Aeronautics and

Astronautics; 2006.

57. Blasques JP, Stolpe M. Multi-material topology optimization of laminated composite beam cross sections. Compos Struct. 2012;94(11):3278-3289.

58. Paszke A, Gross S, Massa F, et al. Pytorch: an imperative style, high-performance deep learning library. http://arxiv.org/pdf/1912.01703v1; 2019.

59. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res. 2011;12:2121-2159.

How to cite this article: Noever-Castelos P, Ardizzone L, Balzani C. Model updating of wind turbine blade cross sections with invertible

neural networks.Wind Energy. 2021;1-27. doi:10.1002/we.2687

18 NOEVER-CASTELOS ET AL.

http://arxiv.org/pdf/1410.8516v6
http://arxiv.org/pdf/1605.08803v3
http://arxiv.org/pdf/1802.07088v1
http://arxiv.org/pdf/1802.07088v1
http://arxiv.org/pdf/1907.02392v3
http://arxiv.org/pdf/1907.02392v3
https://github.com/VLL-HD/FrEIA
http://arxiv.org/pdf/2010.00300v3
https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2015-12/DNVGL-ST-0376.pdf
http://arxiv.org/pdf/1912.01703v1
info:doi/10.1002/we.2687


APPENDIX A: SENSITIVITY ANALYSIS

TABLE A1 Shell layup of the DemoBlade at cross section R = 6 m

Laminate No. of plies Nom. thick.

Triax 1 0.9 mm

Biax 0�/90� 1 0.65 mm

Foam/Balsa 1 20 mm

Biax 0�/90� 1 0.65 mm

Triax 1 0.9 mm

TABLE A2 Prefabricated spar cap layup of the DemoBlade at cross section R = 6 m

Laminate No. of plies Nom. thick.

Triax 1 0.9 mm

UD 32 26.2 mm

Triax 1 0.9 mm
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APPENDIX B: EVALUATION OF CINN

F IGURE B1 Correlation between input feature prediction and ground truth measured with R2. Optimum values will are located on fðxÞ¼m �x
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F IGURE B2 Cross section of the SmartBlades2 DemoBlade at a radial position of R = 12 m
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