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Abstract

Abstract

Fabricated wind turbine blades have unavoidable deviations from their designs due to imperfections of
the manufacturing processes. Model updating is a common approach to enhance model predictions and
therefore improve the numerical blade design accuracy compared to the built blade. An updated model can
provide a basis for a digital twin of the rotor blade including the manufacturing deviations. State of the art
in structural model updating are classical optimization algorithms most often combined with reduced order
or surrogate models. However, these deterministic methods suffer from high computational costs and a
missing probabilistic evaluation.
This study approaches the model updating task by inverting the model through the application of Invertible
Neural Networks, which allow for inferring a posterior distribution of the input parameters from given
output parameters, without costly optimization or sampling algorithms. In our use case, rotor blade cross
sections are updated to match given cross sectional parameters. To this end, a sensitivity analysis of the
input and output parameters first selects relevant features in advance to then set up and train the Invertible
Neural Network.
The trained network predicts with outstanding accuracy most of the cross sectional input parameters for
different radial positions, i.e. the posterior distribution of the features show a narrow width. At the same
time, it identifies some parameters that are hard to recover accurately or contain intrinsic ambiguities. Hence,
we demonstrate that invertible neural networks are highly capable for structural model updating.
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1 Introduction

Wind turbine blades are huge and complex structures that are exposed to extreme load conditions. Thus,
an accurate blade design is of fundamental importance for the turbine’s safety and reliability. As for most
engineering structures, primarily numerical models build the design basis for rotor blades. However,
manufacturing deviations lead to a mismatch in structural behaviour of the numerically designed and
rotor blades built in real life.[16] These deviations may be crucial even within the allowed tolerances and
material parameter uncertainties. Consequently, enhancing virtual models by means of model updating
is an important aspect of a modern blade design procedure. Where model updating seeks to correct the
inaccurate parameters of the numerical model in order to improve test result predictions.[33] This method is
either applied for calibrating the model with conducted real life tests [23, 27] or to detect damages in terms
of structural health monitoring.[44] The updated model provides a basis for a digital twin of the rotor blade
built.[43]

Model updating most commonly takes the form of an optimization problem: this optimization can
either directly manipulate the modelling parameters (e.g. material properties, layup, etc.) or take corrective
actions in the final model itself (e.g. stiffness or mass matrix of a beam model) [53]. For both approaches,
metaheuristic algorithms such as genetic or particle swarm algorithms are commonly used to solve the
optimization problem.[6] Such deterministic model updating algorithms (e.g. global pattern search [18])
have been applied successfully in the field of rotor blade damage detection. But all these algorithms
yield exactly one result for the model parameters and do not cover possible result ambiguity, which can
emerge due to a lack of sensitive output parameters. This uncertainty worsens the user’s confidence about
the updated model parameters, as more than one configuration may yield the given output results.[32]
Depending on the algorithm it even may get stuck in local optima and depend on the randomness of the
starting samples.[12] Bayesian inference algorithms solve this issue by predicting posterior distributions for
the updated parameters, which lets the user estimate the prediction confidence. Popular methods for this
are Bayesian model updating [46] or Approximate Bayesian Computation [49], among others.

All the aforementioned approaches for model updating suffer from the same general drawback: the
prohibitively high computational cost of repeatedly simulating the physical model. This is especially severe
for the probabilistic algorithms such as Bayesian model updating, where techniques like Markov Chain
Monte Carlo sampling are needed. Pracitioners try to avoid this problem by using surrogate models, that
are faster to compute than the full physical model, to cut down on the computational costs.[45] These
surrogate models can take the form of reduced order models [51] or other reduction techniques such as
the response-surface method [27]. However, the surrogate model approach in turn sacrifices physical
input-output linkage of the original model, and may lead to a loss in accuracy depending on the abstraction
level and the model complexity itself.[50]

Machine learning techniques, specifically artificial neural networks (ANNs), can help address these
issues of model updating in various ways. Most importantly, they can be trained to map the relationship
between input and output parameters highly accurate, without knowledge of the physical connections.[8]
In this way, they can serve as surrogate models that may be dramatically faster to compute or more accurate
than other types of surrogates.[31, 47, 48, 26] They have also been successfully applied as surrogates in
Bayesian model updating.[14, 54] However, combining ANNs and model updating algorithms in such a
way requires a lot of implementation effort, tuning, and software engineering. Even then, using ANNs as
surrogates may not achieve the desired speed-up, as they do not remove the fundamental limitations of
having to compute the surrogate model many times, which is part of optimiziation-based or sampling-based
model updating. In principle, ANNs could also be trained to directly predict the desired parameters,
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circumventing the need for an optimization procedure all together. While they are orders of magnitude
faster than any traditional model updating techniques, the main problem is that they lack indications of
confidence, uncertainty, or goodness of fit, and are hard to rigorously verify. Due to this, standard ANNs
are rarely used in this direct way for the purpose of model updating.

Within this difficult setting, we present the main idea of this paper: we use Invertible Neural Networks
(INNs) as probabilistic models to directly produce a posterior distribution of the input parameters. During
training, the network receives the model parameters as inputs, as would be the case with a surrogate model
ANN. At test time however, the network can be inverted to directly produce samples from the posterior,
without having to perform additional algorithms. This approach offers a significant potential speed-up
over traditional model updating techniques, even ones using ANNs as surrogate models. At the same
time, we obtain a full Bayesian posterior that allows among other things determining confidence intervals
and uncovering ambiguities, in the same way that is otherwise reserved for computationally expensive
Bayesian model updating algorithms. In contrast, this is not possible with existing direct ANN approaches
or standard optimization-based model updating procedures.

Our experiments clearly demonstrate the practical applicability and benefit of these INNs in the research
field of structural rotor blade model updating: The INN predicts highly accurate material and layup
parameters based on cross sectional beam properties, as well as offering verifiable uncertainty estimates,
and identifying some ambiguous and unrecoverable parameters.

To the best of our knowledge, ANNs have not yet been applied for structural model updating of wind
turbine blades, especially not in the form of probabilistic models such as INNs. Instead, the major application
of ANNs in the topic of wind turbines is the field of controls (e.g. model predictive control [17], adaptive
control [21], yaw control [42], and aerodynamic coefficient prediction for control [13]), and for condition
or structural health monitoring considering fault or damage prediction.[3, 29, 30, 25, 36] INNs have been
introduced relatively recently, even in the field of machine learning itself [9, 10, 22, 41, 20], but have seen
rapidly growing research attention in the last years. They have been successfully applied in a broad field of
application, commonly in image processing but also in scientific studies. In this paper, we specifically adapt
and apply the conditional Invertible Neural Network (cINN) [1] implemented in the FrEIA Framework [52].

Section 2 of this paper covers the overall workflow description, with explanations on the feature selection
method based on a sensitivity analysis. The approach and architecture of a cINN is briefly addressed in the
sections 2.2 and 2.3, respectively. Subsequently the feature selection results are presented in section 3. The
cINN parameter definition, training and evaluation is reported in section 4, followed by the conclusion in
section 5.

2 Model Updating Methodology with Invertible Neural Networks

This section describes the methods used in this investigation to analyse the input and output parameters of
the model updating procedure and how a neural network is structured and trained for inverse problems. In
this publication we will restrict the problem to rotor blade cross section analysis and evaluate the capability
for structural model updating of invertible neural networks on a first level in wind turbine blade design
processes. Figure 1 illustrates the overall workflow for this study, which the following subsections will
discuss in more detail. Shortly summarized the approach consists of a data preprocessing step in form of a
sensitivity analysis to identify relevant input and output features of the model. The selected input features
are then randomly sampled. Based on these samples, cross sectional properties of the wind turbine blade at
a particular radial position is calculated and filtered according to the feature selection. The workflow splits
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these sample sets of input and output features into training, validation and testing subsets for the cINN (the
validation set is used to check progress of the training and tune the network settings. The test set is only
used for the final evaluation of the method, to avoid biasing the results). The data generation is based on a
rotor blade model within the in-house modelling tool MoCA (Model Creation and Analysis Tool for Wind
Turbine Rotor Blades) and its interface to BECAS (BEam Cross section Analysis Software) [5].

CS input
features

Sensitivity
Analysis

BECAS

MoCA

sampling

CS output
features

output
filtering

CS input
selection

CS output
selection

cINN
Training

cINN
Validation

cINN
Testing

Figure 1: Overall workflow of this study. Based on all cross sectional input features a sensitivity analysis is
performed to determine the relevant in- and output features. From these training, validation, and test sets
are sampled for the conditional invertible neural network (cINN).

2.1 Sensitivity Analysis of Blade Cross Sectional Properties

Data preprocessing plays an important role to build a proper dataset specially for neural networks, but also
for machine learning problems in general.[39] This contribution focuses on a sensitivity analysis to perform
feature selection.[19] The feature selection technique reduces the number of input features to a subset which
has a significant impact on the output features, based on the assumption that some data contains irrelevant
or redundant information.[7] Additionally the output features are reduced by all insensitive components, as
these can not be expressed with respect to the given input features.

In the example of cross sectional model updating we will be focusing on material and geometrical
composite layup parameters. The material parameters include Young’s modulus E11 (for anisotropy ad-
ditionally: E22, E33) and density ρ. The geometrical layup parameters are described by the layup division
point locations on the cross section’s circumference, that subdivide the composite layup of the cross section.
However, overall blade shell geometry is assumed to be well known, as 3D laser scanning can offer an
accurate measurement of the blade outer shell/ blade mould.[28] Figure 2 illustrates the sensitivity analysis
for a simplified example of three input features x: Young’s Modulus E, density ρ, and one division point P,
as well as three output features y: Mass M, Stiffness K, and Area A.

During the sensitivity analysis all selected input features x are varied individually. From all created
parameter subsets the cross sectional property response is calculated with MoCA and BECAS for a particular
blade radius. All these subsets are than concatenated to a full database, labelled as CS results in Figure 2.
Then each output feature y is standardized to ȳ = 0 and σ = 1 over the full database and denoted as ŷ. This
simplifies the sensitivity evaluation of each feature, as ŷ describes the output feature’s deviation magnitude
for each sample in relation to all other samples.
After standardization the full database is split again into the subset, i.e. variation of one input feature x.
In Figure 2 denoted as σ is the calculation of the standard deviation σy,x over each subset’s output feature,

P
re

pr
in

t



Model Updating Methodology with Invertible Neural Networks 4

E0 ρ0 P0
E1 ρ0 P0

.

.

.

.

.

.

.

.

.
Ek ρ0 P0

var E

E0 ρ0 P0
E0 ρ1 P0

.

.

.

.

.

.

.

.

.
E0 ρk P0

var ρ

E0 ρ0 P0
E0 ρ0 P1

.

.

.

.

.

.

.

.

.
E0 ρ0 Pk

var P

MoCA +

BECAS

MoCA +

BECAS

MoCA +

BECAS

ME0 KE0 AE0
ME1 KE1 AE1

.

.

.

.

.

.

.

.

.
MEk KEk AEk

Mρ0 Kρ0 Aρ0
Mρ1 Kρ1 Aρ1

.

.

.

.

.

.

.

.

.
Mρk Kρk Aρk

MP0 KP0 AP0
MP1 KP1 AP1

.

.

.

.

.

.

.

.

.
MPk KPk APk

CS results

st
a
n
d
a
rd

iz
e
p
er

fe
a
tu

re

M̂ρ0 K̂ρ0 Âρ0
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Figure 2: The feature selection process based on a sensitivity analysis applied to a simplified cross sectional
(CS) example with three input features Young’s modulus E, density ρ and division point position P. The
algorithm varies all individually and calculates their corresponding CS characteristics, here exemplary the
mass M, stiffness K and area A. After global feature standardization, splitting into the previous sets and
computing the standard deviation, the process returns a reduced sensitivity matrix. This can be used for
feature selection.

which is then collected in the Sensitivity Matrix. Through this, all input features x, have a single value
for each output feature y showing the input feature’s impact on that respective output feature. Finally by
defining a threshold λ the sensitivity analysis identifies irrelevant input features, in case σy,x < λ for all y.
On the other hand an insensitive output feature y is discarded, if σy,x > λ applies for all x. Additionally
the algorithm reduces all linearly dependent output features to one, as the others do not include further
information for the training process of the neural network.

2.2 Invertible Neural Networks for Inverse Problems

The general setting described in the introduction is shared across many fields in engineering and natural
science: the problem is well understood and modelled in the forward process, i.e. the observed response
y can be readily calculated based on some parameters x that describe a system (from mechanics, physics,
chemistry, medicine). However, scientists are commonly interested in the corresponding inverse problem, i.e.
computing possible states x of the underlying system given observations y. Computing this inverse can be
a highly challenging task, and common approaches such as classical model updating have some intrinsic
shortcomings, as was briefly laid out in the introduction: Firstly, they are often computationally very expen-
sive, as the forward process has to be computed or simulated many times to fit a set of system parameters x̂
that matches a given set of observations. Secondly, especially for safety-relevant applications, obtaining a
single guess x̂ is not sufficient: ideally, any ambiguities in the solution as well as its uncertainty should be
captured and precisely quantified. This can be fulfilled by a (Bayesian) posterior distribution px(x | y).[38]
The posterior quantifies the probability that any system state x could have led to the observations y, and
allows producing confidence intervals, or discovering ambiguous or unrecoverable system parameters.[2]

An approach that alleviates both of these difficulties, and has seen growing adoption in recent years, is
the use of conditional Invertible Neural Networks (cINNs) to reliably model the full posterior distribution
in a computationally efficient way. Such networks were first successfully applied to image processing such
as inpainting [9], colorization of grayscale images [1], synthetic image generation [22], but more recently in
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Model Updating Methodology with Invertible Neural Networks 5

many scientific fiels such as astro-physics [24], particle physics [4], medical imaging [15], and recently in
epidemiology [37]. In short, cINNs rely on a simple reference distribution pz(z) called the latent distribution,
most commonly a Gaussian. The cINN f then conditionally transforms and reshapes between the posterior
px(x | y) and the latent distribution pz(z). (see Fig. 3).

px(x|y) pz(z)

cINN

forward f(x; y)

inverse f−1(z; y)

Figure 3: Schematic illustration of the principle of a cINN. The cINN f conditionally transforms and
reshapes between the posterior px(x | y) and the latent distribution pz(z).

From this construction, the posterior that the network represents can be exactly computed through the
change-of-variables formula as follows [9]:

px(x | y) = pz
(

f (x; y)
) ∣∣∣∣det

(
δ f
δx

)∣∣∣∣ (1)

Here, det
(

δ f
δx

)
denotes the determinant of the models Jacobian, det(J) for short from here on. Similarly,

samples from the posterior can be drawn by first sampling z from the latent distribution pz(z), and using
the inverted cINN to transform them to the domain of the posterior: x = f−1(z; y). As with many classic
probabilistic modelling techniques, the cINN can be trained through maximum likelihood training. This
means that given existing pairs of (xi, yi), the models posterior px(x | y) will match the true posterior of the
inverse problem p∗(x | y) if the average log-likelihood of the models posterior is maximized, or as done in
practice, the negative log likelihood (NLL) is minimized. Together with the change-of-variables formula,
and a Gaussian latent distribution pz(z) ∝ exp(‖z‖2/2), we arrive at the following objective:

LNLL = E
[
− log

(
p(xi | yi)

)]
= E

[‖ f (xi; yi)‖2

2
− log |det(Ji)|

]
+ const. (2)

For a more detailed explanation and derivation of the objective function, see e.g. [1].

2.3 Conditional Invertible Neural Network’s Architecture and Training

From the previous section, we can conclude that the neural network we use to represent f must be
invertible and have a way to readily compute the Jacobian determinant. In the following, we describe the
implementation of the cINN architecture, that satisfies these requirements. In general, the cINN consists
of a sequence of so-called coupling blocks, specifically affine coupling blocks in our case. To this end, the
(unconditional) coupling blocks introduced in RealNVP [10] can be extended to include the condition y,
shown below in Figure 4.
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y

Figure 4: Structure of a conditional affine coupling block (CC).[1]

This block first splits the input data u into [u1, u2] and applies affine transformation according to the
following functions:

v1 = u1 � exp(s1(u2, y)) + t1(u2, y) (3)

v2 = u2 � exp(s2(v1, y)) + t2(v1, y) (4)

The results [v1, v2] are concatenated afterwards to v. Inverting the set of equations yields these inverse
operation:

u2 = (v2 − t2(v1, y))� exp(s2(v1, y)) (5)

u1 = (v1 − t1(u2, y))� exp(s1(u2, y)) (6)

The internal functions sj and tj always take as input the corresponding variables u2 or v1 and additionally
the conditional data y. As these functions must not be inverted they can be replaced by any arbitrary
mathematical expression, in our case by shallow standard neural networks that will be referred to as subnet-
works. A big advantage of this coupling block is the simplicity to compute the logarithm of the Jacobian
determinant being the sum of s1 and s2 over the inputs dimension.[10] In addition to the plain coupling
blocks, we include a number of technical improvements common for invertible network architectures, such
as fixed permutations between variables. In order to improve generalization of the cINN we apply drop-out
layers in the subnetworks, as well as L2 weight regularization [35]. Gradient clipping avoids exploding
gradients in back propagation [40] and an optimizer’s learning rate scheduler improves the convergence
[35].
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CS output y

cINN

forward f

inverse f−1

Figure 5: The conditional invertible neural network (cINN) structure applied to cross sectional model
updating. in the forward path f Cross sectional (CS) input features x are processed over a sequential
concatenation of conditional coupling (CC) blocks, which represents the cINN. The CS output features y
contribute as coupling block conditions. And the cINN result is a latent space z. This path can be inverted,
which is defined as f−1.

3 Input and Output Feature Selection

The sensitivity analysis and feature selection as described in section 2.1 will focus in this study particularly
on the cross section at a radial position of R = 6 m of the SmartBlades2 DemoBlade. This cross section is
depicted in Figure 6 as a BECAS output with material assignment and division point (P) location. In a cross
section, division points divide the shell into different sections with a constant material layup, or define
sub-component positions such as the web location.

Figure 6: This is a cross section of the SmartBlades2 DemoBlade at a radial position of R = 6 m. The
division points on the circumference divide the blade shell into sections of equal material layup as follows:
PSS,TE,offset to PSS,TE,core is the suction side (SS) sandwich panel located at the trailing edge (TE); PSS,TE,spar cap
to PSS,LE,spar cap denotes the location of the spar cap; this if flanked by balsa transition pieces in-between
PSS,TE,core to PSS,LE,core; followed by the sandwich panel located to the leading edge (LE) from PSS,LE,core to
PSS,LE,offset. The pressure side (PS) is build accordingly. As the outer face laminates are hard to identify due
to their small thickness, the layup is show in Table A.1 ind the appendix A

Additionally to the cross sectional view, Table A.1 in the Appendix A contains the layup of each cross
sectional sub-component at R = 6 m for a full insight to the analysed structure. This may enhance the
interpretation of the following sensitivity analysis in this section. The spar cap is prefabricated with balsa

P
re

pr
in

t



Input and Output Feature Selection 8

transition pieces on each side of the uni-directional glass fibre (UD) material and trimmed to the correct size,
before placing it in the blade mould.

The input feature variation is selected upon manufacturing tolerances for materials and layup of wind
turbine blades. In case of the SmartBlades2 DemoBlade manufacturing admits in general a tolerance of
approximately maximmum ±5 % deviation for material parameters, such as densities and Young’s moduli.
The ply positioning tolerances in cross sectional direction, i.e. division point locations, depend on the
material; valid tolerances for core material are ±5 mm, whereas spar cap and web location may vary ±5-
10 mm maximum. In order to account for even higher inaccuracies the analysis range was extended for each
parameter as stated in Table 1. Under consideration that the spar cap is prefabricated all related positions
varied together, i.e. all suction side division points from PSS,TE,core to PSS,LE,core are moved simultaneously,
same holds for the pressure side respectively.

Table 1: Parameter variation range for sensitivity analysis and neural network training. The prefabricated
spar cap is varied synchronous for each shell side.

Parameter Attribute Max. Variation

UD E11, E22, E33, ρ ± 10%
Biax 45◦ E11, E22, E33, ρ ± 10%
Biax 90◦ E11, E22, E33, ρ ± 10%
Triax E11, E22, E33, ρ ± 10%
Balsa E11, ρ ± 10%
Foam E11, ρ ± 10%

Parameter Attribute Max. Variation Note

PSS,TE,offset Location ± 10 mm
PSS,TE,core Location ± 15 mm
PSS,TE,spar cap Location ± 15 mm
PSS,Mid,spar cap Location ± 15 mm
PSS,LE,spar cap Location ± 15 mm
PSS,LE,core Location ± 15 mm

Pr
ef

ab
r.:

va
ri

ed
sy

nc
hr

.

PSS,LE,offset Location ± 10 mm
PPS,LE,offset Location ± 10 mm
PPS,LE,core Location ± 15 mm
PPS,LE,spar cap Location ± 15 mm
PPS,Mid,spar cap Location ± 15 mm
PPS,TE,spar cap Location ± 15 mm
PPS,TE,core Location ± 15 mm

Pr
ef

ab
r.:

va
ri

ed
sy

nc
hr

.

PPS,TE,offset Location ± 10 mm

After generating the model in MoCA and processing it with BECAS, the output features in Table 2 are
available. These include cross sectional locations of shear, elastic, area, and mass centre, as well as total
mass, total area, inertias and principal axis orientation. However, probably the most important output are
the stiffness and mass matrices which serve as input for finite element beam models.

Following the sensitivity algorithm described in section 2.1 a sensitivity matrix is computed based on the
parameter variation listed in Table 1 and the cross sectional output variables in Table 2. The full sensitivity
matrix is given in the Appendix A in the Tables A.2-A.4. A threshold value λ = 0.25 was chosen to identify
irrelevant features, which are than greyed out in the matrix. This led to discarding the input features E22 and
E33 of each glass fibre laminate as well as the Young’s Modulus E of both core materials. As the prefabricated
spar cap was moved simultaneously the algorithm additionally rejects 4 of 5 linearly dependent division
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Invertible Neural Network Structure, Training and Evaluation 9

Table 2: BECAS cross sectional output parameters

Variable Description Variable Description

SCx, SCy Shear centre (SC) coordinates 
K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26
K33 K34 K35 K36

K44 K45 K46
K55 K56

K66

 Stiffness Matrix
ECx, ECy Elastic centre (EC) coordinates
Mtotal Total mass
CoGx, CoGy Centre of Gravity (CoG) coordinates
Ixx, Iyy, Ixy Mass moment of inertia
Ax, Ay Area centre cordinates 

M11 M12 M13 M14 M15 M16
M22 M23 M24 M25 M26

M33 M34 M35 M36
M44 M45 M46

M55 M56
M66

 Mass Matrix
Axx, Ayy, Axy Area moment of inertia
Atotal Total areas
αPC,Ref Orientation Principal Axis
αPC,ECent Orientation Principal Axis w.r.t. EC

points, keeping the PXX,Mid,spar cap as representative for each shell sides. Regarding the output, the algorithm
sorts out several insensitive stiffness (K13, K23, K14, K24, K15, K25) and mass features (M12, M13, M23, M14,
M24, M15, M25, M36, M46, M56). Lastly, due to linear dependencies M11 was kept but Mtotal, M22, M33 was
discarded and additionally Ixx, Iyy, Ixy, M34, M35, were sorted out in favour of M44, M55, M45, M16, M26,
respectively. This feature selection yields the final reduced sensitivity matrix in Table 3. All remaining 14
input features are used to generate training and validation/test samples for the cINN, while the selected 33
output features from the respective samples are passed as conditions to the cINN.

Table 3: Reduced Sensitivity Matrix of Cross Section at R=6 m. The greyed values are below the threshold
λ = 0.25. A maximum of ±10 % variation applies for material input features, ±15 mm for the spar cap
division points PXX,Mid,spa cap and ±10 mm for the other division points.

SC
x

SC
y

EC
x

EC
y

C
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x

C
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y

A
re

a x
A

re
a y

A
xx

A
yy

A
xy

A
re
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α
PC

,R
ef

α
PC

,E
C

K
11

K
12

K
22

K
33

K
34

K
44

K
35

K
45

K
55

K
16

K
26

K
66

M
11

M
44

M
45

M
55

M
16

M
26

M
66

E11,UD 0.2 0.8 3.6 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.3 2.0 0.2 2.1 3.8 0.1 0.1 4.0 1.5 4.4 0.7 0.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρUD 0.0 0.0 0.0 0.0 3.4 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.4 3.9 0.0 2.8 0.7
E11,Biax90 0.2 0.3 1.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.9 0.7 0.1 0.8 1.4 2.2 2.5 1.2 0.5 0.8 0.3 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρBiax90 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 2.0 0.7 1.1 1.3 1.4 2.0
E11,Triax 0.0 0.4 2.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.4 1.0 0.1 1.4 2.5 3.5 4.0 1.6 0.9 1.5 0.4 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρTriax 0.0 0.0 0.0 0.0 1.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 2.9 1.2 1.9 1.9 1.7 3.0
ρBalsa 0.0 0.0 0.0 0.0 1.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 3.1 1.6 1.3 3.9 1.5 3.0
ρFoam 0.0 0.0 0.0 0.0 0.8 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.4 0.1 0.7 0.9 1.0 0.5

PSS,TE,offset 0.4 0.0 0.1 0.0 0.1 0.3 0.8 2.2 2.6 1.1 0.9 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.5 0.4 0.1 0.3 0.1 0.0 0.3 0.1 0.3
PSS,Mid,spar cap 2.8 3.3 1.6 1.8 2.4 0.9 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8 3.6 3.3 3.6 0.0 1.6 0.1 1.5 3.0 0.1 3.4 4.0 3.0 0.0 0.0 2.7 0.1 0.7 2.4 0.0
PSS,LE,offset 0.1 0.0 0.1 0.0 0.2 0.1 1.9 1.9 1.4 2.2 1.0 2.3 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.9 0.0 0.1 0.1 0.0 0.1 0.2 0.0
PPS,LE,offset 0.0 0.1 0.1 0.0 0.4 0.1 3.9 1.9 1.4 3.7 1.6 2.4 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 1.0 0.0 0.0 0.1 0.0 0.1 0.4 0.0
PPS,Mid,spar cap 3.8 3.3 0.4 1.8 0.9 1.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5 2.0 3.3 1.4 0.0 1.6 0.1 0.4 3.2 0.0 3.2 2.2 3.0 0.1 0.0 3.0 0.0 0.7 0.8 0.0
PPS,TE,offset 0.5 0.0 0.1 0.0 0.2 0.3 0.4 2.3 2.7 0.7 0.5 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.8 0.5 0.1 0.3 0.1 0.0 0.3 0.2 0.3

4 Invertible Neural Network Structure, Training and Evaluation

After having identified the significant in- and output features of the model, in this upcoming section we
seek appropriate cINN hyper-parameters to subsequently train and evaluate the invertible neural network.
Furthermore, the network is selected with respect to its computational training costs and applicability on
other related scenarios.
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Invertible Neural Network Structure, Training and Evaluation 10

4.1 Identifying Network Hyper-Parameters

While the network parameters (i.e. the network weights) are produced by the training process, the network
size and structure, length of the training procedure, and other settings, have to be set by the user beforehand.
These are known as hyper-parameters, and we describe our choices in the following. All the programming
is done within Pytorch [34] including the FrEIA Framework for INNs.[52] As previously stated, the cINN
is a sequence of conditional affine coupling blocks (CC), with subnetworks acting as internal functions.
The subnetworks are represented by standard feed-forward neural networks consisting of a number of
hidden layers (network depth), each with a certain number of nodes (network width). Every hidden
layer is followed by a drop-out layer to improve generalisation, and an activation layer. To find a set of
well-performing hyper-parameters for the cINN, we trained networks with various different depths and
widths as depicted in Table 4. The hyper-parameter tuning revealed that shallow but wide subnetworks
are favourable for this application. The AdaGrad [11] optimization algorithm gave the best and fastest
convergence, which is finally improved by a learning rate scheduler. Due to huge magnitude differences
between the features all passed samples are standardized per feature (x̄ = 0 and σx = 1) to equalize the
contribution magnitude of each one. For further information on artificial neural network’s terminology
please refer for example to [8].

Table 4: Final cINN hyper-parameter set. Note, the parameters where chosen subjectively, involving the
number of epochs and the learning rate and its scheduler, while focusing more on computationally cheaper
hyper-parameter sets may also achieve reasonably good accuracy with lower computational costs.

model No. CC
Subnet
nodes

Subnet
layer

Activation
Func-
tion

Drop-
out
rate

Optimizer
Learning

rate
Batch
size

Epochs Samples
Training

time

0 2 100

1 PReLu 0.05 AdaGrad

0.2

32 1000 20,000

65 mins

1 4 200 0.2
132

mins

2 8 400 0.2
199

mins

3 16 800 0.15
466

mins

In order to determine the necessary network depth of the cINN we will evaluate the four trained models
from Table 4 against their prediction quality of the input feature’s posterior. If not otherwise stated all
given results will be shown as standardized values to improve direct comparability between the features.
Considering that all input features were sampled uniformly within their respective symmetric maximum
variation ±xmax from Table 1, the standard deviation is defined as:

σx = |xmax| ·
√

1
3

(7)

Equation (7) helps to estimate the real range of the respective input feature’s posterior distribution.
Furthermore, to enhance the understanding of the upcoming discussion, we use Figure 7 to explain the
interpretation of the results for two exemplarily chosen features: E11,Biax90 and ρBiax90. The two left graphs
represent the posterior distribution of the respective features after evaluating the cINN inversely. Each
sample is a set of input and output feature. This original input feature value is the so called ground truth,
which the cINN tries to predict as accurately as possible. Therefore, all given results are related to the
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Invertible Neural Network Structure, Training and Evaluation 11

ground truth value of each sample feature. This enables the comparison of different samples with varying
ground truth values and it lets the reader recognize the accuracy of the prediction at a glance.
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Figure 7: Exemplary standardized prediction for the two input features E11,Biax90 and ρBiax90 of one sample
computed with all four models from Table 4. The left two graphs show the predicted distribution of the
corresponding feature x. The right graph summarizes the same results as error bars with 1 · σx width around
the predicted mean value x̄. The results are related to the ground truth value.

What is striking about the left graph is the improved prediction with increasing network depth. For all
models the mean value is relatively close to the ground truth (−0.11 ≤ Ē11,Biax90 ≤ 0.02), though the standard
deviation of the shallowest model (σE11,Biax90 = 1.59) is much higher than of the deepest (σE11,Biax90 = 0.04).
That means the shallowest model has a poor prediction confidence for E11,Biax90 compared to the deeper
models. In contrast, the input feature ρBiax90 is predicted very similarly by all models. Here, the width of
the posteriors is generally also much higher, indicating that ρBiax90 can not be recovered with as great of a
precision as E11,Biax90, even for the deeper and more powerful cINN architecture. Another interesting fact is
that the posteriors are all approximately Gaussian (as opposed to having multiple peaks, skewed shape,
etc.). This could help justify even simpler methods in future, that may only provide Gaussian uncertainty
estimates. Without producing the full non-parametric posteriors first with the cINN, such simplifying
assumptions could not be made. Both first graphs can be summarized as presented in the right graph. There,
the prediction moves to the y-axis and for each feature the posterior is depicted as error bars with 1 · σx

width around the mean value x̄, making it easy to compare several features and models at a glance.
Having explained how to interpret the inverted model results, we will now move on to define the best

network depth from the given models in Table 4. Therefore, Figure 8 shows all four model’s prediction of
each input feature’s posterior for 10 randomly chosen samples. It is directly apparent from this figure that
most of the features are predicted extremely accurate with a high confidence by the deeper models, except
for both densities of the glass fibre plies Biax90 and Triax.

These two density features can not be recovered accurately enough by none of the given models due
to an ambiguity resulting from their relatively similar mass contribution and quasi identical position in
the cross section. Recovering from Figure 6 above and Table A.1 in the Appendix A, the Triax and Biax90
are placed directly upon each other in the shell sandwich laminate with a similar nominal thickness. Thus,
they counteract each other, i.e. if one density raises the other diminishes to achieve together the same total
weight and inertia contribution. This behaviour is clearly approved by Figure 9, where the mean value
of the learned posterior of the samples is scattered along a thin line against each other, i.e. the features
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Figure 8: Input feature prediction showed for 10 random samples of four different models with full output
as conditional features. The four invertible neural networks increase in depths.

are negatively proportional and highly correlated R2=0.9989. From this, we can conclude that the cINN
has correctly detected the ambiguity and represents it accordingly in the posterior. However, it is able to
quite precisely predict a merged density of both values as following results will show. Another interesting
point, due to a greater nominal thickness (+38 %) and its existence in the prefabricated Spar Cap the Triax’
is slightly more dominant, which reflects in a marginally better prediction and thus narrower posterior
distribution compared to the Biax90 (cf. Figure 8).
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R2 = 0.9989

Figure 9: Counteraction of the mean predicted densities ρBiax90 and ρTriax. The highly correlating samples
show that the cINN correctly detects this ambiguity.

As stated above, the overall inference performance of the models is strikingly accurate, specially from
model 1 (4 CCs) on. Figure 8 shows similar result qualities for the models 1-3, with only little improvements
in the standard deviation in each step. In addition Table 4 describes a computational time increase by 50 %
from model 1 to 2 and approx. 130 % from model 2 to 3. Thus, the authors decided to choose the model
2 (8 CCs) hyper-parameter set as cINN design. In addition to the depth selection, the necessary training
sample size and number of epochs for a fixed learning rate of 0.2 is analysed to further computational cost
cut down. All scenarios showed satisfying posteriors, therefore a sample size of 8,000 and 1,000 epochs
was chosen as trade-off between computational time (108 mins) and accuracy. Table 5 summarizes the final
cINN hyper-parameter set. To considering the complete process to create a cINN, the sample generation has
to be taken into account, which is a significant cost driver for classical iterative model updating techniques.
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Invertible Neural Network Structure, Training and Evaluation 13

On a 40 node computing cluster, generating 8,000 samples with MoCA and BECAS with the given mesh
density of 500 elements per circumference takes approx. 30 mins.

Table 5: Final cINN hyper-parameter set. Note, the parameters where chosen subjectively, involving the
number of epochs and the learning rate and its scheduler, while focusing more on computationally cheaper
hyper-parameter sets may also achieve reasonably good accuracy with lower computational costs.

No. CC
Subnet
nodes

Subnet
layer

Activation
Func-
tion

Drop-
out
rate

Optimizer
Learning

rate
Batch
size

Epochs Samples
Training

time

8 400 1 PReLu 0.05 AdaGrad 0.2 32 1000 8,000
108

mins

4.2 Invertible Network Evaluation

After having defined our cINN, this section will continue with the evaluation of its performance and
applicability for different scenarios. First of all we will recap the input feature prediction of the finally
chosen model and its training process. From the data in the left graph of Figure 10, the good prediction
quality is again apparent, except for the two counteracting input features: ρBiax90 and ρTriax. The latter
two features are mostly unrecoverable due to an inherent ambiguity of the problem, as discussed above.
During training, the negative log likelihood loss curve on the right graph is monotonically decreasing with
little steps every 100th epoch, where the scheduler reduces the learning rate by 20 % of the actual rate.
The validation loss is even lower due to the averaging effect of the drop-out layers mimicking multiple
trained models.[40] However, both seem to have nearly converged to their optimum. In order to extend
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Figure 10: Final model: Input feature prediction on the left graph for 30 random samples with full output as
conditional features. Right graph depicts the negative log likelihood loss curve of the cINN for training and
validation samples.

the analysis of the posterior distribution, the correlation of an input feature prediction (mean value (̄x))
against its ground truth value can be investigated. Therefore we use the coefficient of determination (R2).
Figure B.1 in the Appendix B compares for 10,000 random samples the linear correlation of each inferred
input feature, also stating each feature’s R2-score, which in most cases is R2 > 0.998 except for the two
previously discussed densities. The computed correlation affirms the previous outstanding predictions for
a wide range of samples. Next, these predicted mean values are used to recalculate the output features
with MoCA and BECAS to evaluate its accuracy. All recalculated values match extremely accurately the
ground truth values as proved by the given R2-scores, which are all approx. 1 with a roundoff error at the
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5th decimal digit. Interestingly, the inaccuracy of ρBiax90 and ρTriax seem to cancel each other out, due to their
counteraction. Considering the proximity of both laminates and that both are infused together, a merged or
averaged density for both materials could improve the prediction of such a parameter in future applications.

So far we have demonstrated an excellent model updating capability of the finally designed cINN for a
cross section at R = 6 m. Hereafter, the same cINN will be trained for cross sections at the following positions
R = 9 m, 12 m, 15 m. Figure 11 presents the posterior predictions for all four radial locations considering 10
random samples. Here again, the predictions are outstanding, except for ρBalsa. This rests upon the fact that
balsa is replaced by Foam in the trailing edge panels after R = 6 m and only appear in the transition pieces
of the spar cap, as shown exemplarily in Figure B.2 in the Appendix B. Hence the contribution to any mass
property and sensitivity is comparatively low to gain enough information to recover this input feature. The
wide posteriors produced by the cINN show that it has correctly understood and modeled this uncertainty,
instead of having the same high confidence as for the other parameters.
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Figure 11: Input feature prediction showed for 10 random samples at four different radial positions with full
output as conditional features. The four cINNs were each trained individually for their respective radius.

As a final aspect, considering a future case of a finite element beam model updating, the possible updated
features from it are the stiffness and mass matrix. Therefore analysing the prediction quality trained only
with these two matrices as conditional features indicates if the basic material and layup input features
can be subsequently inferred. Figure 12 shows the already familiar posterior prediction graph for the four
previously analyzed cross sectional positions only considering the stiffness and mass matrix features. The
overall width of the posterior distributions increase slightly for all cross sections and features, but is still
reasonably accurate. Only the original cINN for the cross section at R = 6 m noticeably looses accuracy at
several features (E11,Biax90, E11,Triax, PSS,TE,offset, PSS,LE,offset). This only presents the easiest and most straight
forward way of inferring the input posteriors, though recovering the full output parameter set from the
stiffness and mass matrix before inferring the input features is also possible with a few calculations.[5]P
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Figure 12: Input feature prediction showed for 10 random samples at four different radial positions only
considering the stiffness and mass matrix as conditional features. The four cINNs were each trained
individually for their respective radius.

5 Conclusion

This investigation set out to reveal the capability of invertible neural networks to be successfully applied in
the field of wind turbine blade structural model updating. The study was based on an example of blade
cross sections.

The paper performs feature selection using a sensitivity analysis that yields a sensitivity matrix. This
analysis included material parameter (Young’s modulus and density) and layup variation (Cross sectional
layup division points). All parameters were varied within extended manufacturing tolerances. Based upon
the sensitivity matrix and a given threshold value, the significant in and output features were identified.
Furthermore, the general architecture and principals of a conditional invertible neural network (cINN) are
explained. Subsequently the authors investigated the necessary cINN structure considering the trade-off
between computational time and prediction accuracy. A cINN with shallow feedforward subnetworks was
selected that took approx. 140 mins for sample generation and training on a computing cluster equipped
with 40 CPUs and an NVIDIA Tesla P100 GPU.

10,000 samples based on randomly varied input feature sets were generated with MoCA and BECAS for
testing. The cINN inferred strikingly accurate input feature values from the given test samples, except for
two ambiguous glass fibre reinforced plastic density values. The results revealed that the ambiguity rests
upon the two densities counteracting each other. However, a recalculation of output parameters from the
inferred values affirmed again correct predictions. The only inaccuracies of the densities cancelled each
other out. Another advantage over classical model updating techniques is that cINNs generate posterior
distribution and not single values. This gives the user an instrument to evaluate the model’s confidence
on the predicted value and to reveal unrecoverable parameters. These findings were further confirmed by
investigating cross sections at different radial positions, showing similar accurate results. The study found
the posterior for the density of balsa was very wide for the other radii, which is due to a significant reduced
balsa application in these cross sections and thus lower contribution to the mass related output features,
and therefore a source of uncertainty correctly captured by the cINN. Additionally this paper studied a
reduced output feature set, training the model only with stiffness and mass matrix as conditional feature.
This scenario becomes relevant whenever a finite beam model updating can predict these values and a
further inference to the material and layup level is desired. Here, the standard deviation of the posterior
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distribution increases slightly, i.e. the confidence of the prediction diminishes. However, the results are still
satisfactory.

Concluding, this study was able to show that cINNs present a serious alternative to classical model up-
dating. The example of wind turbine blade cross sectional model updating proved outstanding performance
for cINNs in this research field, which the authors will extend to more complex applications such as blade
finite element beam models in their current and future studies.
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Appendix 7

A Sensitivity Matrix

The full sensitivity matrix contains the impact of each input feature on the output feature for a cross section
at R = 6 m. The values represent the standard deviation as described in section 2.1. The greyed values are
below the threshold λ = 0.25. All Gray highlighted rows and columns are rejected by the feature selection.

Table A.1: Layup of each subcomponent of the DemoBlade cross section at R = 6 m.

Shell

Laminate No. of plies nom. Thickness

Triax 1 0.9 mm
Biax 0◦ / 90◦ 1 0.65 mm
Foam / Balsa 1 20 mm
Biax 0◦ / 90◦ 1 0.65 mm
Triax 1 0.9 mm

Prefabricated Spar Cap

Laminate No. of plies nom. Thickness

Triax 1 0.9 mm
UD / Balsa 32 26.2 mm
Triax 1 0.9 mm

Web

Laminate No. of plies nom. Thickness

Biax ±45◦ 2 1.3 mm
Foam 1 20 mm
Biax ±45◦ 2 1.3 mm
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Appendix 8

Table A.2: Full Sensitivity Matrix of Cross Section at R = 6 m - Part A: Cross sectional properties.
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E11,UD 0.2 0.8 3.6 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.3
E22,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E33,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρUD 0.0 0.0 0.0 0.0 2.7 3.4 2.1 0.0 3.9 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E11,Biax90 0.2 0.3 1.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.9
E22,Biax90 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
E33,Biax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρBiax90 0.0 0.0 0.0 0.0 1.6 1.0 0.5 2.0 1.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E11,Triax 0.1 0.4 2.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.4
E22,Triax 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
E33,Triax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρTriax 0.0 0.0 0.0 0.0 2.6 1.1 0.5 2.9 1.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EBalsa 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
ρBalsa 0.0 0.0 0.0 0.0 2.2 1.1 3.4 3.1 1.3 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFoam 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρFoam 0.0 0.0 0.0 0.0 1.1 0.8 2.0 0.4 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PSS,TE,offset 0.4 0.0 0.1 0.0 0.1 0.1 0.3 0.3 0.0 0.1 0.8 2.2 2.6 1.1 0.9 2.3 0.0 0.0
PSS,TE,core 2.8 3.3 1.6 1.8 0.0 2.4 0.9 0.0 0.1 2.7 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8
PSS,TE,spar cap 2.8 3.3 1.6 1.8 0.0 2.4 0.9 0.0 0.1 2.7 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8
PSS,Mid,spar cap 2.8 3.3 1.6 1.8 0.0 2.4 0.9 0.0 0.1 2.7 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8
PSS,LE,spar cap 2.8 3.3 1.6 1.8 0.0 2.4 0.9 0.0 0.1 2.7 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8
PSS,LE,core 2.8 3.3 1.6 1.8 0.0 2.4 0.9 0.0 0.1 2.7 0.9 1.5 1.5 0.8 2.8 0.4 2.6 2.8
PSS,LE,offset 0.1 0.0 0.1 0.0 0.0 0.2 0.1 0.1 0.0 0.1 1.9 1.9 1.4 2.2 1.0 2.3 0.0 0.0
PPS,LE,offset 0.0 0.1 0.1 0.0 0.0 0.4 0.1 0.0 0.0 0.1 3.9 1.9 1.4 3.7 1.6 2.4 0.0 0.0
PPS,LE,core 3.8 3.3 0.4 1.8 0.1 0.9 1.0 0.0 0.0 3.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5
PPS,LE,spar cap 3.8 3.3 0.4 1.8 0.1 0.9 1.0 0.0 0.0 3.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5
PPS,Mid,spar cap 3.8 3.3 0.4 1.8 0.1 0.9 1.0 0.0 0.0 3.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5
PPS,TE,spar cap 3.8 3.3 0.4 1.8 0.1 0.9 1.0 0.0 0.0 3.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5
PPS,TE,core 3.8 3.3 0.4 1.8 0.1 0.9 1.0 0.0 0.0 3.0 1.2 1.6 1.5 1.2 3.2 0.2 2.8 2.5
PPS,TE,offset 0.5 0.0 0.1 0.0 0.1 0.2 0.3 0.3 0.0 0.1 0.4 2.3 2.7 0.7 0.5 2.4 0.0 0.0
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Table A.3: Full Sensitivity Matrix of Cross Section at R = 6 m - Part B: Stiffness Matrix.
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E11,UD 2.0 0.2 2.1 0.0 0.0 3.8 0.0 0.0 0.1 0.1 0.0 0.0 4.0 1.5 4.4 0.7 0.2 0.0 0.0 0.0 1.2
E22,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E33,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρUD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E11,Biax90 0.7 0.1 0.8 0.0 0.0 1.4 0.0 0.0 2.2 2.5 0.0 0.0 1.2 0.5 0.8 0.3 0.1 0.0 0.0 0.0 0.5
E22,Biax90 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
E33,Biax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρBiax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E11,Triax 1.0 0.1 1.4 0.0 0.0 2.5 0.0 0.0 3.5 4.0 0.0 0.0 1.6 0.9 1.5 0.4 0.3 0.0 0.0 0.0 0.7
E22,Triax 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
E33,Triax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρTriax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EBalsa 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
ρBalsa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFoam 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
ρFoam 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PSS,TE,offset 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.4
PSS,TE,core 3.6 3.3 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 1.5 3.0 0.1 3.4 4.0 0.0 0.0 0.0 3.0
PSS,TE,spar cap 3.6 3.3 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 1.5 3.0 0.1 3.4 4.0 0.0 0.0 0.0 3.0
PSS,Mid,spar cap 3.6 3.3 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 1.5 3.0 0.1 3.4 4.0 0.0 0.0 0.0 3.0
PSS,LE,spar cap 3.6 3.3 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 1.5 3.0 0.1 3.4 4.0 0.0 0.0 0.0 3.0
PSS,LE,core 3.6 3.3 3.6 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 1.5 3.0 0.1 3.4 4.0 0.0 0.0 0.0 3.0
PSS,LE,offset 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.9
PPS,LE,offset 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 1.0
PPS,LE,core 2.0 3.3 1.4 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.4 3.2 0.0 3.2 2.2 0.0 0.0 0.0 3.0
PPS,LE,spar cap 2.0 3.3 1.4 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.4 3.2 0.0 3.2 2.2 0.0 0.0 0.0 3.0
PPS,Mid,spar cap 2.0 3.3 1.4 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.4 3.2 0.0 3.2 2.2 0.0 0.0 0.0 3.0
PPS,TE,spar cap 2.0 3.3 1.4 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.4 3.2 0.0 3.2 2.2 0.0 0.0 0.0 3.0
PPS,TE,core 2.0 3.3 1.4 0.0 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.4 3.2 0.0 3.2 2.2 0.0 0.0 0.0 3.0
PPS,TE,offset 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.5
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Appendix 10

Table A.4: Full Sensitivity Matrix of Cross Section at R = 6 m - Part C: Mass Matrix.
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M
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34

M
44

M
15

M
25

M
35

M
45

M
55

M
16

M
26

M
36

M
46

M
56

M
66

E11,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E22,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E33,UD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρUD 2.7 0.0 2.7 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 2.8 1.4 3.9 0.0 2.8 0.0 0.0 0.0 0.7
E11,Biax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E22,Biax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E33,Biax90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρBiax90 1.6 0.0 1.6 0.0 0.0 1.6 0.0 0.0 1.3 2.0 0.0 0.0 1.4 0.7 1.1 1.3 1.4 0.0 0.0 0.0 2.0
E11,Triax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E22,Triax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E33,Triax 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρTriax 2.6 0.0 2.6 0.0 0.0 2.6 0.0 0.0 1.9 2.9 0.0 0.0 1.7 1.2 1.9 1.9 1.7 0.0 0.0 0.0 3.0
EBalsa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρBalsa 2.2 0.0 2.2 0.0 0.0 2.2 0.0 0.0 3.9 3.1 0.0 0.0 1.5 1.6 1.3 3.9 1.5 0.0 0.0 0.0 3.0
EFoam 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρFoam 1.1 0.0 1.1 0.0 0.0 1.1 0.0 0.0 0.9 0.4 0.0 0.0 1.0 0.1 0.7 0.9 1.0 0.0 0.0 0.0 0.5

PSS,TE,offset 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.3 0.3 0.0 0.0 0.1 0.1 0.0 0.3 0.1 0.0 0.0 0.0 0.3
PSS,TE,core 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 2.4 2.7 0.1 0.7 2.4 0.0 0.0 0.0 0.0
PSS,TE,spar cap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 2.4 2.7 0.1 0.7 2.4 0.0 0.0 0.0 0.0
PSS,Mid,spar cap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 2.4 2.7 0.1 0.7 2.4 0.0 0.0 0.0 0.0
PSS,LE,spar cap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 2.4 2.7 0.1 0.7 2.4 0.0 0.0 0.0 0.0
PSS,LE,core 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 2.4 2.7 0.1 0.7 2.4 0.0 0.0 0.0 0.0
PSS,LE,offset 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.0
PPS,LE,offset 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.1 0.0 0.1 0.4 0.0 0.0 0.0 0.0
PPS,LE,core 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.8 3.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0
PPS,LE,spar cap 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.8 3.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0
PPS,Mid,spar cap 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.8 3.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0
PPS,TE,spar cap 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.8 3.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0
PPS,TE,core 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.8 3.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0
PPS,TE,offset 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.3 0.3 0.0 0.0 0.2 0.1 0.0 0.3 0.2 0.0 0.0 0.0 0.3
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Appendix 11

B Evaluation of cINN

Figure B.1: Correlation between input feature prediction and ground truth measured with R2. Optimum
values are located on f (x) = m · x.P
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Appendix 12

Figure B.2: Cross Section of the SmartBlades2 DemoBlade at a radial position of R = 12 m
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