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Abstract

This thesis reports a new active power stabilization scheme which can be implemented

in high precision experiments, such as gravitational wave detectors. The novel aspect of

the scheme is sensing laser power �uctuations via the radiation pressure driven motion

they induce on a movable mirror. The mirror position and its �uctuations are determined

by means of a weak auxiliary beam and a Michelson interferometer, which form an in-loop

sensor for the proposed stabilization scheme. This sensing technique exploits the concept of

a nondemolition measurement, since the power �uctuations are inferred by measuring the

�uctuations in the phase observable of the auxiliary beam. This process results in higher

in-loop signals for power �uctuations than what would be achieved by a direct detection,

e.g. via the traditional scheme where a fraction of the laser power is picked o� and sensed

directly by a photodetector. Other advantages of this scheme are that the full beam power

is preserved and available for further use, and that it enables the generation of a strong

bright squeezed out-of-loop beam.

An extensive theoretical investigation on the concept of the new sensing scheme is pre-

sented. In this investigation, di�erent schemes in which power �uctuations are transferred

to another observable of the light �eld, e.g. phase or polarization, are compared to each

other, and the advantages of the radiation pressure scheme are highlighted. Furthermore,

a complete calculation of the fundamental limit of the proposed radiation pressure scheme,

set by the quantum noise in the interferometer and the thermal noise of the movable mir-

ror, is performed. The calculations show that a bright squeezed beam with a power of 4 W

and up to 11 dB of squeezing might be achievable in the near future. Based on the results

of the theoretical investigation, a proof-of-principle experiment was realized with micro-

oscillator mirrors with masses ranging from 25 to 250 ng, and fundamental resonance fre-

quencies from 150 to 210 Hz. Power stabilization in the frequency range from 1 Hz to 10 kHz

was demonstrated. The results for the out-of-loop power stability are presented for di�er-

ent beam powers, and a relative power noise of 3.7 × 10
−7

Hz
−1/2

was achieved at 250 Hz

for 267 mW. The stability performance was limited by the structural thermal noise of the

micro-oscillators, which was particularly high due to operation at room temperature. The

results from the investigations conducted in this thesis are a promising step towards gen-

eration of a strong bright squeezed beam, and towards an improved stabilization scheme to

be used in the future generation of gravitational wave detectors.

Keywords: laser power stabilization, bright squeezing, optomechanics, radiation pres-

sure, micro-oscillator, gravitational wave detector.
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Chapter 1

Introduction

1.1 Motivation

Highly stable continuous-wave lasers are essential tools for many modern experiments,

since laser noise is often a hindrance to their sensitivity. Examples of applications that

demand a high stability in the laser power are high precision spectroscopy [1], cold atoms

experiments [2], optomechanical experiments [3], and atom interferometry [4].

The most demanding requirement in power stability at low frequencies was set by

ground based interferometric gravitational wave detectors (GWDs), where a maximum rel-

ative power noise of 2 × 10
−9

Hz
−1/2

was required at 10 Hz. Because this value was approxi-

mately one order of magnitude below the residual relative power noise achieved in previous

stabilization experiments [5], innovative techniques had to be developed in order to over-

come prior limitations and ful�ll the requirements for the current generation of GWDs.

In the coming years, a generation of GWDs, approximately one order of magnitude more

sensitive than the current one, is planned to be built. This increase in sensitivity will most

likely demand an even higher power stability, and a relative power noise below 10
−9

Hz
−1/2

might be required, which has not yet been demonstrated in the frequency regime relevant

for GWDs. Hence, the main motivation for the work carried out in this thesis was to investi-

gate alternative schemes that could satisfy more stringent power stability requirements and

be implemented in the future generations of GWDs. The application of such new schemes

is, however, not limited to GWDs, and other high precision experiments, especially the ones

involving optomechanics, can bene�t from this work.

1.2 Gravitational waves

Gravitational waves are ripples in the curvature of spacetime which are emitted by

extremely energetic cosmological events, like colliding black holes and colliding neutron

1



stars, amongst others. They propagate through spacetime at the vacuum speed of light and

carry energy containing important information from their sources, such as mass, spin, and

orbital parameters. Unlike electromagnetic waves, they propagate with almost no absorp-

tion and scattering. In addition to that, many sources of gravitational waves will not be

sources of electromagnetic waves, which make GWDs a powerful and unique tool to study

the Universe.

The �rst proposal of gravitational waves was made by Henri Poincaré in 1906 [6]. Their

existence was subsequently predicted in 1916 by the renowned General Theory of Relativity

of Albert Einstein [7]. The theory predicts that gravitational waves are emitted by spheri-

cally asymmetric accelerated masses, more speci�cally by a time varying quadrupole mo-

ment of a mass distribution. An example of a gravitational wave source is a binary system

of two neutron stars orbiting around their common center of mass. The system dynami-

cally changes the curvature of spacetime, and consequently emits gravitational waves that

carry energy away from the system. As a result, the orbital separation of the system is con-

stantly being reduced until the stars collide with each other. In fact, the �rst experimental

proof, albeit indirect, of the existence of gravitational waves came from observations of the

binary pulsar system PSR 1913+16, discovered in 1974 [8]. Russell A. Hulse and Joseph H.

Taylor showed that the stars were getting closer to each other at precisely the rate predicted

by general relativity, due to the emission of gravitational waves. A Nobel Prize in Physics

was awarded in 1993, as a recognition of the major discovery of the pulsar system and its

�ndings.

Gravitational waves are transversal waves, with oscillations that can be decomposed

into two polarization components, called the plus+ and the cross × polarization. The e�ect

of a gravitational wave in the metric of spacetime is transversal to its propagation direction,

and is illustrated in Figure 1.1 as a function of the variation in the wave amplitude over one

oscillation cycle. A ring of freely falling
1

test masses, with initial diameter L, is squeezed

in one direction and equally stretched in the orthogonal direction, as a consequence of

a gravitational wave propagating in the perpendicular direction to the ring plane. The

strength of the e�ect of a gravitational wave is expressed by the strain ℎ, de�ned by:

ℎ = 2ΔL
L

. (1.1)

Due to the sti�ness of the spacetime
2

and to the fact that the amplitude of a gravitational

wave is inversely proportional to the distance from the source to the observer, even the

strongest waves, emitted by violent cosmological events, will produce small e�ects when

measured on Earth. Let us consider a simple example of a binary neutron star system, each

1
Object that is under in�uence of only gravitational forces.

2
Interesting fact: the corresponding Young’s modulus of spacetime is 10

20
times higher than the Young’s

modulus of steel [10]!

2 Chapter 1 Introduction



L L + ΔL L L - ΔL L

h＋

h×

h(t)

t
0 1/4 T 1/2 T 3/4 T T

Figure 1.1: E�ect of a gravitational wave propagating in the perpendicular direction of a plane

formed by a ring of freely falling test masses, during one oscillation cycle with a period T . At its

maximum amplitude, the ring is stretched and compressed by a factor ΔL in the horizontal and

vertical directions, caused by a linearly polarized wave with ℎ+ polarization (upper panel), and in

the diagonal directions by a linearly polarized wave with ℎ× polarization. Illustration adapted from

[9].

with a mass of 1.4 times the mass of the Sun, and located in the Virgo Cluster, the nearest

cluster of galaxies to the Earth. When the orbit of the stellar system has shrunk to a point

where the individual stars are almost touching, it will emit gravitational waves that have a

strain ℎ on the order of 10
−21

on Earth [11]. Such an impressively small strain is extremely

hard to detect, and Einstein himself did not believe a detection would ever be possible.

Nevertheless, on September 2015, 100 years after their prediction by general relativity, the

�rst direct detection of gravitational waves, emitted by two merging black holes, was made

by the two LIGO
3

detectors [12]. The detection was acknowledged as one of the biggest

breakthroughs of our times, and the 2017 Nobel Prize in Physics was awarded to Rainer

Weiss, Barry C. Barish, and Kip S. Thorne for their contributions to the �eld.

After the �rst detection, a new era for astronomy began, giving access to independently

observe parts of our Universe and also to knowledge that was inaccessible via electromag-

netic waves. From the �rst
4

and second
5

observing runs of the Advanced LIGO and Virgo
6

detectors, a total of 12 merger events, 11 from binary black holes and 1 from a binary neu-

3
LIGO stands for Laser Interferometer Gravitational-Wave Observatory, and it represents two large-scale

interferometeric GWDs, one located in Hanford, and the other in Livingston in the United States.

4
From the 12th of September 2015 to the 19th of January 2016.

5
From the 30th of November 2016 to the 25th of August 2017.

6
Virgo is a large-scale interferometric GWD located in Cascina, Italy.
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tron star, were detected [13]. From the binary black holes observations, tests on general

relativity theory were performed [14], and the population properties of binary black holes,

such as mass, spin, redshift, and merger rate density, could be inferred [15]. The merger of

the two neutron stars [16] not only reassured the potential of GWDs, but also settled any

doubts that the detected events had astrophysical origin. This was because the collision had

an electromagnetic counter part which was observed by telescopes in almost all frequen-

cies of the electromagnetic spectrum [17], validating the observation. This electromagnetic

follow-up was only possible due to a narrow sky localization of the merger host galaxy, pro-

vided by the GWDs. The scienti�c outputs from this detection were many: a con�rmation

that neutron star mergers are a progenitor of short gamma ray bursts [18], a veri�cation

that gravitational waves travel at the speed of light, and more knowledge about the as-

trophysics of neutron stars [19, 20]. Another important outcome from the detections was

an independent set of measurements of the Hubble constant using the luminosity distance

obtained from the gravitational wave signals from the neutron stars (standard siren [20]),

from the binary black holes (dark standard siren [21]), and from a combination of the mul-

tiple signals [22]. Recently, the third
7

observing run of Advanced LIGO and Virgo resulted

in observations of more than 53 gravitational wave candidate signals, which are currently

being analyzed. These include a candidate for a neutron star and black hole merger, a pos-

sible neutron star collision [23], and a novel signal from a merger of two black holes with

unequal masses
8
, where one black hole was approximately 3.6 times more massive than the

other [24].

All observing runs provided more understanding about our Universe and future de-

tectors, with an increased sensitivity, have a strong potential for many more �ndings. Re-

search and development on a future generation of GWDs is currently very active [26, 27].

As shown in Figure 1.2, the goal is to increase the strain sensitivity by more than one order

of magnitude in the detection bandwidth, which will make possible to observe a larger vol-

ume of the Universe. The science for the next generation of ground based detectors includes

a survey of primordial stellar mass black holes formed in the early Universe (redshifts of

z ≈ 20) [28], test of matter in extreme environments, and the study of phenomena which

radiate weaker gravitational waves than compact binary systems, such as the core-collapse

of supernovae [29] and continuous gravitational waves emitted by neutron stars [30]. Cos-

mology will also bene�t from a possible detection of primordial gravitational waves [31],

and from tests of dark energy and dark matter theories [32, 33]. Together with the launch

of a space based gravitational wave detector, the future promises exciting scienti�c ex-

plorations about our Universe, and possibly evidences for new physics, never anticipated

before!

7
From the 1st of April 2019 to the 23rd of March 2020.

8
All previous detections were comprised of black holes of nearly equal masses.
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Figure 1.2: Amplitude spectral density of the target strain sensitivity for a next generation of grav-

itational wave detectors, namely the Cosmic Explorer and the Einstein Telescope. The design sen-

sitivity of the Advanced LIGO detector (current generation) is shown, as a reference, by the blue

curve. The curves were plotted with data from [25].

1.3 Interferometric gravitational wave detectors

Currently, GWDs are based on a Michelson interferometer topology, as illustrated in

Figure 1.3a. The light coming from the laser source is divided in two orthogonal beams

by a beamsplitter. The beams are back re�ected by the interferometer end mirrors and are

recombined at the beamsplitter, where interference occurs. As a result, part of the light will

exit the interferometer at the readout port, and be detected by a photodetector
9
, and part

of the light will be back re�ected to the input of the interferometer. The detected power

at the readout port is a function of the di�erence between the optical path lengths of the

interferometer arms. Hence, by treating the interferometer end mirrors as freely falling

test masses, a di�erential arm length change induced by a gravitational wave, in a similar

manner as the squeezed mass ring in Figure 1.1, can be detected by measuring the power

change at the readout port of the interferometer, as illustrated in Figure 1.3b.

Previous table-top Michelson interferometer experiments were able to measure di�er-

ential arm length changes of ≈ 10
−14

m between 10 Hz and 10 kHz. The current genera-

tion of LIGO however, was designed to have a strain sensitivity smaller than 10
−23

Hz
−1/2

9
A photodetector is one of the most common devices to measure optical power and is comprised by a pho-

todiode, which converts the detected power into an electric current, and a transimpedance ampli�er circuit.
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Figure 1.3: Schematic of (a) a Michelson interferometer and (b) a Michelson interferometer under

in�uence of a gravitational wave. Gravitational wave image credit: LIGO/T. Pyle.

(see Figure 1.2). This means that the interferometer, which has a 4 km arm length, was re-

quired to measure di�erential arm length changes of 10
−20

m, which is more than 5 orders

of magnitude smaller than the charge diameter of a proton! To achieve this extremely high

sensitivity, several noise sources like laser noise, seismic noise, thermal noise, and even

quantum noise, had to be reduced to unprecedented levels. In the next section, the laser

power stability required for Advanced LIGO will be introduced.

1.4 Power noise in gravitational wave detectors

Figure 1.4 shows the power noise requirements at the interferometer input, and, as a

reference, the free running power noise of the 200 W laser system of Advanced LIGO. The

requirements were calculated considering the di�erent coupling paths of laser power noise

into the interferometer readout port [34], explained hereby.

The direct coupling path for power noise, which set the requirement for frequencies

between 2 kHz and 10 kHz, is via the operational point in which the interferometer is locked.

If the static di�erential arm lengths of the interferometer are adjusted such that destructive

interference occurs in the �eld at the readout port, the interferometer is said to be locked

at the dark fringe operational point. In this con�guration, ideally no power is detected

by the photodetector in the absence of a gravitational wave. Hence, the dark fringe is an

optimal operational point in order to avoid direct power noise coupling at the readout port.

However, to increase the strength of the signal caused by a gravitational wave, GWDs are

currently operated slightly o� the dark fringe, by means of a technique called DC readout

[35]. As a result, light will intentionally exit the readout port of the interferometer, even in

the absence of a gravitational wave. In this con�guration, power noise at the input of the
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Figure 1.4: Amplitude spectral density of the relative power noise (RPN) requirements at the in-

terferometer input, calculated for the Advanced LIGO detector [34]. The blue curve shows, as a

reference, the free running power noise of the 200 W laser system at LIGO.

interferometer will couple directly as power noise at the interferometer readout, and can

mask the signal of a gravitational wave.

In reality, GWDs are far more complex than a simple Michelson interferometer, and ad-

ditional coupling paths for power noise are present. To amplify the signal of a gravitational

wave, the power in each interferometer arm is increased by implementing a Fabry-Pérot

cavity, as shown in Figure 1.5. Due to technical reasons, an imbalance between the circulat-

ing power in the two cavities is unavoidable, which is assumed to be of approximately 1 %.

As a consequence, laser power noise will induce di�erent radiation pressure forces on the

cavity mirrors, which are suspended by multiple pendulums in order to reduce the e�ect

of seismic noise on the gravitational wave measurement. This di�erential motion caused

by radiation pressure will then couple to the interferometer readout port as displacement

noise. This coupling path set the relative power noise requirements for frequencies below

2 kHz, including the most stringent value of 2 × 10
−9

Hz
−1/2

at 10 Hz. For frequencies be-

tween 10 Hz and 2 kHz the requirement was calculated by imposing that the power noise

coupling via radiation pressure should be 10 times smaller than the target strain sensitivity

of the interferometer. For frequencies between 0.1 and 10 Hz, the requirement was calcu-

lated by imposing that the radiation pressure motion of the mirrors caused by the laser

power noise should be smaller than their seismically induced motion.

Other power noise couplings resulting in less stringent requirements are also present,

1.4 Power noise in gravitational wave detectors 7
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Figure 1.5: Schematic of a Michelson interferometer with Fabry-Pérot arm cavities.

such as power noise coupling at the utility frequency and its harmonics, and power noise at

the modulation/demodulation frequencies necessary to control several degrees of freedom

of the interferometer.

The power stability requirements for the future generation of GWDs has not been yet

calculated since it highly depends on their speci�c con�guration, which is currently under

discussion. However, it is expected that higher power stabilities will be demanded by the

increase in their sensitivity. For example, the radiation pressure coupling path might be

even more relevant in the future, since at 10 Hz a sensitivity increase by more than 2 orders

of magnitude is planned, together with an increase of at least one order of magnitude in

the intracavity power in the interferometer arm cavities [26, 27].

Hereafter, a brief review of the challenges and techniques to stabilize the laser power

and meet the requirements of the current, and possibly of the future generation of GWDs,

will be presented. But �rst, let us introduce laser power �uctuations and its sources.

1.5 Introduction to laser power fluctuations

Mathematical description

For simplicity, let us describe the laser light �eld by a monochromatic and linearly

polarized plane wave. The amplitude �uctuations of its complex electric �eld Ẽ can be

described, to �rst order, by a Fourier series, i.e., by a sum of sinusoidal waves with amplitude

mΩ and Fourier angular frequency Ω:

Ẽ(t) = Ee
i!0t

(

1 +
∑

Ω
mΩ cos (Ωt)

)

, (1.2)
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where !0 is the laser optical angular frequency, and 0 ≤ mΩ ≤ 1. For small amplitude �uc-

tuations (mΩ ≪ 1), the laser power P , which is proportional to
|

|

Ẽ(t)|
|

2
, can be approximated

to:

P (t) ≈ P

(

1 +
∑

Ω
2mΩ cos (Ωt)

)

≡ P + �P (t) , [P ] = W , (1.3)

where P is the mean optical power, averaged over a given time interval, and �P represents

the absolute time dependent power �uctuations. This equation shows that the �uctuations

�P are proportional to the mean laser power. One could then argue that in order to reduce

the absolute power �uctuations it is only necessary to reduce the mean power. However,

in most of the metrology experiments, the signal of the interested quantity to be measured

scales with the mean laser power. Hence, it is of interest to have a laser with high power

P and small �uctuations �P . The most common �gure of merit to describe laser power

�uctuations is the relative power noise (RPN), which is de�ned as:

RPN = �P
P
. (1.4)

In this thesis, noise will always be characterized in the frequency domain, which is a

convention often adopted since noise is usually a result of a stochastic process. The �uctu-

ations will then be represented by their amplitude spectral density (ASD), which expresses

the strength of the �uctuation at a certain Fourier frequency Ω, per Hz, and will lead to the

following units for the absolute and relative power �uctuations:

[�P (Ω)] = W ⋅ Hz−1∕2 and [RPN (Ω)] = Hz−1∕2 . (1.5)

Laser power �uctuations can be divided into two categories, according to their source:

technical �uctuations and shot noise. Usually, solid state lasers are limited by technical �uc-

tuations for Fourier frequencies up to several MHz (below the laser relaxation oscillation),

and are shot noise limited at higher frequencies.

Technical fluctuations

Technical power �uctuations can originate internally or externally to the laser source.

Fluctuations at the laser source are caused by several phenomena such as noise in the laser

pump current, thermal noise in the laser gain medium, length noise in the laser resonators,

and laser relaxation oscillation. If the laser source involves amplifying stages, which are

necessary to achieve high powers in GWDs, power noise can be introduced by these stages,

in addition to the ampli�ed power noise of the seed laser [5, 36].

Outside the source, the laser beam encounters several optical devices that can introduce

1.5 Introduction to laser power �uctuations 9



power �uctuations. Beam jitter and length changes in an optical resonator, for example,

will cause additional power �uctuations in its transmitted beam. Polarization dependent

components, such as mirrors and polarizing beamsplitters (PBSs), will couple polarization

�uctuations into power �uctuations. Additional power noise can also couple directly at

photodetectors, which are common devices to measure the output optical signal in metrol-

ogy experiments. For example, dust particles passing through the beam and scattered light

from moving surfaces will cause �uctuations in the detected photocurrent. Beam jitter at

the photodiode can also cause an apparent power noise via inhomogeneities in the respon-

sivity of the photodiode. All these technical noise sources should be reduced as much as

possible when designing an experiment in order to lower the power noise coupling and to

relax the requirements in the laser power stability.

Shot noise

Shot noise is a fundamental source of laser power �uctuations that is intrinsic to the

discrete description of light as photons. Due to their discrete nature, the arrival rate of pho-

tons during a measurement interval, which is equivalent to the laser power, is statistically

characterized by a Poisson distribution. For a large number of photons, which is usually

the case in laser beams, this characterization can be approximated by a Gaussian distribu-

tion with a standard deviation equal to the square root of the mean number of photons per

measurement interval [11]. The single sided ASD of the absolute laser shot noise (SN) is

given by
10

:

SN =
√

2ℏ!0P , [SN] = W ⋅ Hz−1∕2 , (1.6)

where ℏ = ℎ∕2� is the reduced Planck constant. As expected, the absolute shot noise

is proportional to the square root of the mean optical power, and its spectral density is

frequency independent (white noise). The ASD of the relative shot noise (RSN) is then

given by:

RSN =

√

2ℏ!0
P

≈ 2 × 10−8 Hz
−1∕2

√

1 mW

P
⋅
1064 nm

�0
. (1.7)

Shot noise sets a lower limit to the laser power �uctuations that a classical laser beam

can exhibit. Stabilization schemes employing non-classical states of light can surpass this

limit and produce light with a sub-shot noise power stability, which is also known as am-

plitude squeezed light or, equivalently, as bright squeezed beam. Throughout this thesis,

power stabilization schemes with the goal of stabilizing both technical and shot noise will

be discussed.

10
This equation will be derived in Section 3.1.1, using the two-photon formalism description of the light

�eld.
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1.6 Review of power stabilization schemes

Stabilization schemes are usually divided into passive and active schemes. Passive

schemes mostly implement �lter devices, such as optical resonators to �lter laser power

noise in transmission of the resonator, and low pass �lters to �lter electronic noise in the

laser electronics supply. Sophisticated passive schemes exploiting the Kerr e�ect are also

possible, and it will be discussed in Section 2.2.2. Active stabilization schemes, on the other

hand, implement a negative feedback control loop with a high gain to suppress power �uc-

tuations sensed by an in-loop detector. Passive and active schemes can be combined and

also cascaded in order to achieve better results not only in the noise suppression, but also

in frequency range of the stabilization. The disadvantage of passive schemes implementing

�lters is that they only suppress �uctuations by a constant factor that depends on the �lter

properties [5]. So far, no passive scheme has been able to provide su�cient noise reduction

in order to achieve a relative power noise on the order of 10
−9

Hz
−1/2

at frequencies in the

gravitational wave detection bandwidth. For this reason, this section will focus only on the

review of active stabilization schemes.

1.6.1 Traditional power stabilization scheme

The most common and simple active stabilization scheme is the traditional scheme,

illustrated in Figure 1.6. In this scheme, a fraction of the laser light is re�ected by a beam-

splitter and sensed by a photodetector, which is the in-loop sensor of this scheme. The

signal from the photodetector is compared to a stable reference and the resulting error

signal is then ampli�ed by a controller and sent to a power actuator. The actuator mod-

ulates the main laser beam power such as to bring and maintain the error signal close to

zero, thereby suppressing the power �uctuations sensed by the in-loop detector. The beam

transmitted by the beamsplitter, called out-of-loop beam, is then stabilized and available

for further use.

As in any active stabilization scheme, the achievable noise reduction in the out-of-loop

beam depends on characteristics of the actuator, controller, and sensor [37]. An important

property for the actuator, is a su�ciently large dynamic range in order to suppress the dif-

ference between the reference and the free running �uctuations in the desired stabilization

frequency bandwidth. The controller, for example, needs to provide a large signal ampli-

�cation without introducing instabilities around the required unity gain frequency. With

careful design, the actuator and controller usually do not limit the performance of active

power stabilization schemes, especially in the bandwidth below 10 kHz, which is the main

interest for GWDs. The in-loop sensor, however, currently imposes the most important

limitation in the traditional scheme. The limitation originates from sensing noise, which

1.6 Review of power stabilization schemes 11
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Figure 1.6: Schematic of the traditional active power stabilization scheme. A fraction of the the laser

light is re�ected by a beamsplitter (BS) with power re�ectivity R, and sensed by a photodetector

(PD). The signal from the photodetector is compared to a stable reference and the resulting error

signal is ampli�ed by a controller and sent to a power actuator. The actuator modulates the main

laser beam power P0 and suppresses the free running power �uctuations �P
fr

. The out-of-loop beam,

which is transmitted by the beamsplitter, has a stabilized power P
ool

and is available for further use.

accounts for all non-deterministic noise sources that couple to the sensor, and therefore

cannot be distinguished from the power �uctuations �P0 of the main laser beam. By trying

to correct for the sensing noise, the control loop will imprint an additional power mod-

ulation in the main beam, that will set a lower limit for the power stability that can be

achieved in the out-of-loop beam. Technical sensing noise can be caused, for example, by

�uctuations in the reference voltage, electronic noise in the photodetector, beam jitter at

the photodiode, and scattered light. To achieve a high power stability in the out-of-loop

beam, it is crucial to reduce the technical sensing noise to a point where the scheme is ap-

proximately limited by shot noise, which is the fundamental limitation of the traditional

scheme.

A rigorous understanding of why and how the laser shot noise imposes a limit to this

scheme can only be achieved by taking into account the quantum nature of the light �eld

and the beamsplitter, which will be further explained in Section 3.1.2. For now, let us con-

sider that, due to the attenuation in the mean re�ected and transmitted powers by the

beamsplitter, the shot noise of the in-loop and of the out-of-loop beams are uncorrelated

with the shot noise of the main beam with power P 0. Hence, in the high loop gain regime,

the free running power �uctuations �P
fr

will be completely suppressed by the control loop,

while the in-loop shot noise will be imprinted in the out-of-loop beam. In this situation, the

absolute power �uctuations of the out-of-loop beam can be calculated as an uncorrelated

sum of the in-loop shot noise SN
il
, projected to the out-of-loop beam, and the out-of-loop

shot noise SN
ool

. This leads to:

�P 2
ool
=
(

SN
il
⋅ (1 − R)
R

)2

+ SN
2
ool
. (1.8)
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By invoking Equation 1.6, the absolute and relative power noise of the out-of-loop beam,

in the high loop gain regime, can be written as:

�P
ool
=

√

2ℏ!0P 0 ⋅ (1 − R)
R

=

√

2ℏ!0P ool

R
, (1.9)

RPN
ool
=

√

2ℏ!0
P 0 ⋅ R (1 − R)

=

√

2ℏ!0
P

ool
⋅ R

. (1.10)

Since R < 1, the resulting power noise in the out-of-loop beam will always be higher than

its shot noise. For this reason, a sub-shot noise power stabilization is not possible with this

con�guration. Disregarding any other noise sources in the control loop, an arbitrarily high

power stability in the beam transmitted by the power actuator could be achieved if the in-

loop sensor would detect the full laser beam power P0, i.e., if R = 1. This con�guration is

of course not practical since the laser power is completely wasted in the detection process

and cannot be further used.

The value of RPN
ool

is minimized for a beamsplitter re�ectivity of R = 0.5, which

results in a relative power noise 2 times (or 6 dB) higher than the relative shot noise of the

main beam P0. Such re�ectivity is undesirable in many experiments since only half of the

initial power is available to the out-of-loop beam, and also due to technical di�culties in

detecting high powers with a photodetector. Hence, let us consider that the detected power

is much smaller than P 0, i.e., that R ≪ 1. In this case, the out-of-loop power noise can be

approximated to:

RPN
ool
≈

√

2ℏ!0
P

d

= 2 × 10−9Hz−1∕2
√

100mW
P

d

, (1.11)

for �0 = 1064 nm. This equation was derived assuming that the technical sensing noise is

low enough such that the stabilization scheme is limited by shot noise. This is a realistic

assumption in experiments that demand a relative power noise on the order of 10
−8

Hz
1/2

at frequencies below a few hundred Hertz. However, a further reduction of technical sens-

ing noise in experiments requiring higher power stability has proven to be much more

challenging. For example, in [38], an RPN
ool

of 5 × 10
−9

Hz
−1/2

was achieved at 10 Hz by

detecting 110 mW with a photodiode quantum e�ciency of 86 %. This result was 1.8 times

higher than what was expected from a shot noise limited performance, and this discrepancy

was attributed to technical sensing noise, whose sources were not entirely understood. In

order to tolerate technical noise, the Advanced LIGO power stabilization in-loop detector

was required to detect approximately 200 mW to achieve an RPN
ool

of 2 × 10
−9

Hz
−1/2

at

10 Hz. Since photodiodes with low noise and high e�ciency performance typically use a
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small detector area, such high power imposes signi�cant technical challenges due to the

high thermal load on the photodetector [38, 39].

The solution adopted to overcome the technical limitation of detecting a high power in

the in-loop detector was to split the in-loop beam power onto an array of 4 photodetectors,

each detecting an individual power of approximately 50 mW [39]. The total in-loop shot

noise of the array is the same as if all the power was detected by a single photodetector,

since it is calculated as an uncorrelated sum of the shot noise of each detected beam. This

scheme resulted in an RPN
ool
= 2.4 × 10−9Hz−1∕2 at 10 Hz, limited by electronic noise, and

an RPN
ool
= 1.8 × 10−9Hz−1∕2 for frequencies above 15 Hz, which was closer than 1 dB to

an in-loop shot noise limited performance. The implementation of the photodetector array

was a contributor for the successful outcomes of the second observing run of Advanced

LIGO [13], and ful�lled the given requirements for the current generation of GWDs. How-

ever, the sensitivity of this scheme can only be improved by further scaling the number of

photodetectors and, due to the square-root dependence of the shot noise on the detected

power, the technical e�ort required to achieve sensitivities close to RPN
ool
= 10−10Hz−1∕2

(P
d
> 10 W) is enormous. For this reason, alternative power stabilization schemes are de-

sired for the future generation of GWDs.

1.6.2 Alternative schemes

Optical AC Coupling

An alternative route investigated for laser power stabilization consisted on sensing

power �uctuations in re�ection of an optical cavity, like shown in Figure 1.7a. This tech-

nique exploits the frequency dependency in the power transmitted and re�ected by the

cavity [40]. When the cavity is resonant with the laser beam, the mean power of the laser

is mainly transmitted by the cavity, while the power �uctuations with Fourier frequencies

Ω higher than the cavity bandwidth are mostly re�ected by the cavity (therefore the name

of Optical AC Coupling scheme). Hence, this technique has the advantage of an increased

sensitivity for power �uctuations without the need to increase the mean power on the pho-

todiode, which is the main issue in the traditional scheme. This scheme was demonstrated

for the �rst time with an optical cavity with a bandwidth of 35.7 kHz [40]. As a result,

an RPN
ool

of 3.7 × 10
−9

Hz
−1/2

at frequencies around 200 kHz was achieved by detecting a

power of approximately 0.3 mW. This relative power noise is almost one order of magni-

tude smaller than what would be achieved with the traditional scheme if the same power

was detected by the in-loop photodetector. In a second generation of this experiment, a

high �nesse and 1 meter long optical cavity with a bandwidth of 4 kHz was implemented,

and a stability of 8 × 10
−9

Hz
−1/2

was achieved at frequencies around 20 kHz [41].

One of the disadvantages of this technique is that, in order to perform the power sens-
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ing at low frequencies, a cavity with a bandwidth smaller than 10 Hz is required, which is

extremely di�cult to achieve in table top experiments. This is not an obstacle for long-

baseline interferometers such as LIGO, which counts with a cavity bandwidth of around

0.6 Hz, formed by the power recycling resonator. However, investigations towards an im-

plementation of the optical AC coupling technique in GWDs pointed to a high amount of

additional noise in re�ection of the power recycling resonator at low frequencies [42, 43].

As the detectors are highly complex instruments, the identi�cation and reduction of these

noise sources will not be a trivial task, which could be a hindrance in the performance of

this scheme. In additional to that, the stabilization can only be tested and performed when

the power recycling resonator is locked to resonance, which might interfere with other

activities in the interferometer during commissioning time. From that perspective, a com-

pact stabilization scheme that could be independently integrated in the laser system of the

detector might be a better option. Hence, despite the successful implementations of this

technique in table top experiments, it is not guaranteed that it will satisfy the future needs

of GWDs.

laser
power

actuator

out-of-loop
beam

feedback 
controller

PD

BS

squeezed

vacuumlaser

power
actuator

feedback 
controller

PD

out-of-loop
beam

a) b)

Figure 1.7: Schematic of alternative active power stabilization schemes. a) Optical AC coupling

scheme: the in-loop photodetector is placed in re�ection of an optical cavity, which is resonant with

the laser beam. b) Traditional scheme assisted by squeezing: amplitude squeezed vacuum is injected

in the open port of the traditional scheme’s beamsplitter, to reduce the in-loop and out-of-loop shot

noise.

Traditional scheme assisted by squeezing

A technique which combines the traditional scheme with squeezed vacuum was also

demonstrated as an alternative scheme for power stabilization [44]. In this scheme, a vac-

uum �eld squeezed in the amplitude quadrature was injected in the open port of the beam-

splitter (see Figure 1.7b) in order to reduce the in-loop and out-of-loop shot noise con-

tributions. In this case, the out-of-loop relative power noise can be calculated by insert-

ing the power spectral density S
cc

of the amplitude quadrature of the vacuum �eld, into
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Equation 1.11
11

:

RPN
ool
≈

√

2ℏ!0Scc

P
d

. (1.12)

Because S
cc

is smaller than 1 s
−1 ⋅ Hz

−1
for an amplitude squeezed state, a sub-shot noise

power stabilization is in principle possible with this technique, which is not the case for

the traditional and optical AC coupling schemes [40]. However, a sub-shot noise perfor-

mance for a high power in the out-of-loop beam is di�cult to achieve. This can be seen by

calculating the following condition:

RPN
ool
< RSN

ool
⇐⇒

S
cc
⋅ P 0

P
d

< 1 ,

with P
d
> 400mW ⋅

S
cc

0.1
⋅
P 0

4W
.

(1.13)

An experimental demonstration of this scheme resulted in an RPN
ool

of 2 × 10
−8

Hz
−1/2

for frequencies between 5 kHz and 80 kHz, by injecting a vacuum �eld squeezed by ap-

proximately 11 dB, and by detecting a power of only 106 µW. The achieved stability is

3 times (or 9.4 dB) higher than what would be achieved without injecting squeezed light at

the beamsplitter.

One of the disadvantages of this technique is that it does not improve the tolerance to

technical sensing noise which, as discussed in Section 1.6.1, was an important limitation at

low frequencies in the traditional scheme.

Alternative scheme proposed in this thesis

This thesis proposes an active stabilization scheme with an alternative concept for sens-

ing laser power �uctuations. The concept consists on transferring the power �uctuations

of the full laser beam, which will be called transfer beam, to the phase observable of a

weak auxiliary beam, called sensing beam. The induced phase �uctuations in the sensing

beam are then detected via a readout scheme, that results in power �uctuations �P
d

that are

sensed by an in-loop photodetector and fed back to the transfer beam power. As a result

from this transfer, the detected power �uctuations in the sensing beam are ampli�ed with

respect to the transfer beam �uctuations �P0, i.e., �P
d
> �P0. Hence, this scheme provides a

higher signal in the in-loop detector than what would be achieved by directly detecting the

transfer beam power �uctuations, as in the optical AC coupling and the traditional scheme.

In addition to that, the full optical power of the transfer beam is preserved and available

11
For a non squeezed vacuum �eld, S

cc
= 1 s−1 ⋅ Hz−1. See Section 3.1.2 for the complete mathematical

description of this scheme.
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for use. Finally, the proposed scheme has an additional advantage of a sub-shot noise stabi-

lization performance in the out-of-loop beam which, in opposite to the traditional scheme

assisted by squeezing, provides a stability proportional to the (transfer) beam power.

1.7 Structure of this thesis

The concept of the proposed power sensing scheme is introduced in Chapter 2. This

chapter presents a theoretical analysis comparing di�erent con�gurations of transfer

schemes that can introduce a power dependence to the phase of the light �eld. In sequence,

schemes to perform the readout of the power dependent phase are discussed. Additionally,

the chapter presents possible transfer schemes that can introduce a power dependence to

the polarization state of the light �eld, which could be an alternative transfer observable.

The investigations indicate that the most promising con�guration to sense laser power �uc-

tuations consists of a transfer scheme via radiation pressure on a suspended mirror, and a

Michelson interferometer to readout the induced phase �uctuations in re�ection of this

mirror. The fundamental limits of this scheme are analyzed in Chapter 3. In the beginning

of this chapter, the two-photon formalism is introduced, which is then used to calculate the

quantum noise limit of the radiation pressure scheme. Furthermore, the thermal noise limit

and the total fundamental limit of the scheme are calculated for di�erent mirror parame-

ters present in the state of the art. The analysis shows that a relative power noise below

10
−9

Hz
−1/2

could be achieved at 10 Hz in the out-of-loop beam, and that a sub-shot noise

power stabilization is possible when exploiting the radiation pressure e�ect induced in a

micro-oscillator mirror.

Based on the results of the theoretical investigations performed in Chapters 2 and 3,

a proof-of-principle experiment was performed, and the details of its design are described

in Chapter 4. The results from this experiment are summarized in Chapter 5, which is

divided into three parts. The �rst part reports on the characterization of the noise sources

of the interferometer containing the micro-oscillator mirror, which represent the sensing

noise of the proposed stabilization scheme. In the second part, the use of the interferometer

as a sensor for laser power �uctuations is demonstrated, and its experimental limitations

are discussed. Finally, the �rst results of a power stabilization via radiation pressure are

shown for di�erent micro-oscillator mirrors, and for di�erent transfer beam mean powers.

A conclusion of this work and its future perspectives can be found lastly in Chapter 6.
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Chapter 2

Sensing laser power fluctuations via an
alternative observable of the light field

Gravitational wave detectors, as other high precision metrology experiments, require a

high laser power stability that is currently achieved using the traditional power stabilization

scheme. As discussed in Chapter 1, the traditional scheme is limited by the high amount of

power that needs to be detected by the in-loop photodetector in order to overcome the shot

noise of its detected power and technical sensing noise. Di�erent routes were adopted to

circumvent this limitation such as substituting the single diode for an array of photodiodes

[39], reducing shot noise by injection of squeezed vacuum [44], and sensing power �uctu-

ations in re�ection of an optical cavity (optical AC coupling) [40]. This chapter proposes

an active power stabilization scheme with an alternative method to sense power �uctua-

tions. In the proposed method, the power �uctuations �P0 of the full laser beam induces

�uctuations in another observable of the light �eld, such as the phase or the polarization.

By measuring the new observable, the power �uctuations �P0 can be inferred. This sensing

technique is similar to a nondemolition measurement [45] since the observable of interest,

in this case the laser amplitude, is nearly unperturbed during the measurement. One of the

advantages of this method is that the readout of the new observable can be chosen such

that the mean laser power is not attenuated during the sensing process, which preserves

the power in the out-of-loop beam. As it will be shown, this scheme has the potential of a

power stabilization below the shot noise (bright squeezing) of the full beam power, which

is not possible with the traditional and optical AC coupling schemes.

The general concept of the scheme is illustrated in Figure 2.1. In a transfer unit, the

power modulations
1 �P0 from the full laser beam, induces modulations �O� in an alternative

observableO of a light �eld, which can be the same �eld as the main beam (self modulation),

1
Without loss of generality, from now on this chapter will make reference to deterministic power modu-

lations instead of random power �uctuations. This is to avoid confusion between the power �uctuations to

be stabilized, from additional power noise sources in the scheme.
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or the �eld of an auxiliary beam (cross modulation). Typically, the new observable cannot

be detected directly. Hence, a readout unit converts the modulations in the new observable

(represented by the blue line) back to optical power modulations �P� , which is a function

of �P0. The power at the output of the readout unit is detected by a photodetector and fed

back to the power actuator, which stabilizes the free running power modulations �P
fr
. It

is important to note that, ideally, the transfer unit does not alter the power P0. The total

power in the main beam

power after the readout unit

information in the observable O

laser
power

actuator

noise

noise

transfer
unit

readout
unit

feedback 
controller

PD

P0 → Oτ out-of-loop
beam

Pfr P0 

Oτ (P0) + δOn  

P0 + δPn 

= Pτ (P0) + δPn 

Oτ → Pτ 

δOn  

Pd 
δPr,n 

= δP(δOn) + δPr,n 

+

Figure 2.1: Schematic of the concept of the proposed power stabilization scheme. A transfer unit

induces a power dependence in an alternative observableO of the light �eld. The information in the

observable, represented by the blue line, is converted back to power by a readout unit. The power at

the output of the readout unit, which depends on P0, is detected by a photodetector and fed back to a

power actuator, which stabilizes the free running power P
fr

. The �gure also shows noise coupling at

the transfer and readout units, that will ultimately couple as a power noise �P
n

at the photodetector

and will be imprinted in the out-of-loop beam.

sensing scheme, comprised by the transfer and readout units, can be characterized by the

following power transfer coe�cient:

� =
�P�
�P0

, (2.1)

which expresses the transfer function between power modulations from the full beam, to

power modulations at the photodetector. The �gure also shows noise coupling via the trans-

fer (�O
n
) and readout units (�P

r,n
), that cannot be distinguished from the induced modula-

tions �O� , and will ultimately couple as power noise �P
n

at the photodetector. As in any

active stabilization scheme, the power noise �P
n

will be imprinted in the out-of-loop beam

by the feedback control loop, and set a limit to the power stability that can be achieved with

this scheme.

Let us now compare the proposed scheme with the traditional and optical AC coupling

schemes. For this comparison, let us �rst consider that the main beam power P 0 and the
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detected power P
d

is the same for all schemes, and that �P
n

has only the contribution of

the shot noise of the detected beam, i.e., �P
n
= SN

il
. In the traditional scheme, the power

modulations �P0 are attenuated by the beamsplitter by a factor � = R ≪ 1, considering that

the main laser power is much larger than the detected power. For the optical AC coupling

scheme, � ≈ 1 for power modulations at frequencies higher than the cavity linewidth. In

the scheme proposed in this thesis however, the transfer and readout units can be chosen

such that � ≫ 1. As a result, a higher signal-to-noise ratio �P�∕SN
il

can be achieved in the

in-loop detector with the proposed scheme, in comparison with the traditional and optical

AC coupling schemes. However, a fair comparison between di�erent stabilization schemes

can only be made when all noise sources coupling to the in-loop and out-of-loop beams are

taken into account. This analysis will be made in Chapter 3 for the most promising scheme

for the transfer and readout units. The selection criteria for this scheme will be presented

in the next sections of this chapter, where di�erent schemes possibilities for the phase and

the polarization observables are analyzed.

2.1 Phase transfer schemes

The complex electric �eld Ẽ� in transmission of a phase transfer scheme, when consid-

ering a linearly-polarized and quasi-monochromatic plane wave propagating in vacuum,

can be written as:

Ẽ�(t) = Ẽ0(t) ei�� (t) , (2.2)

where��(t) is the power dependent part of the phase accumulated by the �eld in the transfer

scheme, and Ẽ0(t) is the complex electric �eld at the input of the transfer scheme. It was

assumed that the input amplitude and its modulations, as well as the polarization state of the

�eld, are not altered by the phase transfer scheme. The power independent phase acquired

by the beam through the transfer scheme was assumed to be constant, and therefore it was

omitted since it is not relevant for sensing power modulations, and can be corrected by a

compensating plate. It is important to keep in mind though, that �uctuations in this term

caused by noise sources coupling to the transfer scheme have to be taking into account in

the noise analysis of the scheme.

Assuming that the phase transfer is a linear function of the input power P0, which

should hold true for small power modulations, the induced phase can be written as:

��(t) = � ⋅ P0(t) , (2.3)

where � will be called phase transfer coe�cient and is given in units of rad ⋅W
−1

. Since this

work focuses on sensing power �uctuations of stable lasers in the continuous wave regime,

values for �P0 on the order of 10
−6

W or smaller are expected, and the linear relation of
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Equation 2.3 can always be justi�ed.

Let us now estimate the required value for � in order to detect a relative power mod-

ulation (RPM) of 10
−9

. This value depends on the minimum phase modulation ��
min

that

can be detected by the readout scheme, limited by technical or fundamental noise sources.

For this estimation it will be assumed that the readout scheme is sensitive enough to detect

phase changes of 10
−6

rad at 10 Hz, which was already demonstrated in the state of the art

[46]. In this case, the following condition needs to be satis�ed:

� ≥ 103 rad ⋅W−1

(

��
min

10−6 rad
⋅
10−9
RPM

⋅
1W
P 0

)

. (2.4)

The frequency of 10 Hz was chosen for this estimation because it is the frequency of the

most stringent requirement for power stability in Advanced LIGO (see Chapter 1), which is

the main motivation of this work. The reader should keep in mind that at higher frequencies

the technical noise sources in the readout schemes are usually smaller and the constraint on

the transfer coe�cient can be relaxed (lower values for ��
min

). In the next sections, phase

transfer coe�cients of di�erent schemes are calculated and compared to each other.

2.1.1 Optical Kerr e�ect

The optical Kerr e�ect is a third order nonlinear process in which an electromagnetic

wave propagating in a nonlinear medium induces an intensity dependence in the medium’s

refractive index. As a result, the wave traveling through the medium will acquire an inten-

sity dependent phase. The dependence of the refractive index on the intensity is introduced

by the electric �eld of the wave which changes the orientation of the molecules inside the

medium and induces an anisotropy in the medium’s polarization, i.e., in the dipole mo-

ment per unit volume. Let us consider a monochromatic and linearly-polarized plane wave

propagating through an isotropic medium with inversion symmetry (� (2) = 0). Then, the

medium’s complex polarization P̃ (t), up to the third order, is given by [47]:

P̃ (t) = �0
(

� (1)Ẽ0 (t) + � (3)Ẽ3
0 (t)

)

≃ �0
(

� (1) + 3
4
� (3)E2

0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�

Ẽ0 (t) ,
(2.5)

where �0 is the permittivity of free space. The constants � , � (1), and � (3) are the total,

�rst and third-order nonlinear optical susceptibilities, respectively, which represent the de-

gree of polarization of the medium in response to the applied electric �eld. Polarization at

frequencies 3!0, leading to third-harmonic generation, also occurs in the medium. They
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however, will not be taken into account in this thesis due to their small amplitude in com-

parison with the other contributions.

By de�nition, the total refractive index of the medium is given by:

n = (1 + �)1∕2 ≃ n0

(

1 +
3� (3)E2

0

8n20

)

, (2.6)

where n0 =
(

1 + � (1)
)1∕2

is the linear (low intensity) refractive index. This equation can be

re-written as a function of the intensity of the incident light I0 = cn0�0E2
0∕2, as:

n = n0 + n2I0 , (2.7)

where c is the vacuum speed of light. The coe�cient n2 is the nonlinear refractive index,

which expresses the strength of the optical nonlinearity and is given by:

n2 =
3� (3)

4n20�0c
. (2.8)

The total phase accumulated by the �eld after an interaction length L with the medium is

2�nL∕�0, which is a sum of a constant and intensity independent phase given by 2�n0L∕�0,
and an intensity dependent phase �� given by:

�� (t) =
2� n2LI0 (t)

�0
. (2.9)

This equation is valid for sampling times much smaller than the interaction time L∕c. The

phase transfer coe�cient of this scheme is then:

� =
2� n2L
�0

, (2.10)

where  = �w2
0 is the e�ective cross-section area of the beam, with w0 being the beam

radius. Note that since the calculation was performed assuming a plane wave, the beam

area is constant throughout the interaction length. It will be also assumed throughout this

thesis that the area  is not varying with time, and therefore modulations in the intensity

are caused only by modulations in the power.

Since the third order susceptibility � (3) is usually on the order of 10
−24

m
2

/V
2
, small

phase transfer coe�cients for this scheme are expected, as shown in Table 2.1. The crystal

KTiOPO4 (KTP) is a widely used material in nonlinear optics experiments, but it exhibits

a very low third order susceptibility. Polymers, like polydiacetylene (PTS) for example,

have much larger nonlinearities. They are, however, limited by the optical quality and the
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manufacturing process, which restricts the sample length to only 0.2 mm. With the phase

transfer coe�cient calculated for PTS, a power higher than 10
6

W would be needed to ful�ll

the constrain from Equation 2.4. Such a high power in the continuous wave regime, which

is of interest in this work, can trigger unwanted nonlinear e�ects and might also exceed

the material’s damage threshold. Several experiments in the literature compensate for the

small transfer coe�cient by using pulsed lasers, which have higher intensity, and also have

the additional advantage of a lower damage threshold in the nonlinear materials.

The nonlinear refractive index of several other common materials can be found in [48].

More exotic options such as quantum cascaded lasers (QCL), liquid crystals

(n2 = 10
−3

cm
2 ⋅W

−1
[49]), quantum dots, quantum wells or cold atoms (n2 = 0.1 cm

2 ⋅W
−1

[50]), can exhibit extraordinary high nonlinearities. However, they are not suited to the

purposes of this thesis due to complexity, size, or transparency for laser wavelengths im-

plemented in GWDs (1064 nm or 1550 nm).

Material n2
(

cm2 ⋅W−1
)

L (mm) �0 (nm) �
(

rad ⋅W−1
)

KTP [51] 2.4 × 10
−15

70 1064 7.9 × 10
−5

GaAs [52] 3 × 10
−13

1.2 1064 1.7 × 10
−4

PTS [53] 1 × 10
−11

0.2 1064 9.3 × 10
−4

InGaAs/InAlAs QCL [54] 8 × 10
−9

3 4770 2.5

Table 2.1: Phase transfer coe�cients � for the optical Kerr e�ect transfer scheme, calculated from

Equation 2.10. A beam radius of w0 = 20 µm was considered.

An option to increase the phase transfer coe�cient is to increase the interaction length

L (see Equation 2.10) and reduce the beam area , which can be done by exploiting the Kerr

e�ect in optical �bers for example. A quantum nondemolition measurement in the MHz

regime was demonstrated in [55], with a 114 m single-mode optical �ber cooled to 2 K. The

experiment, however, exhibited a low signal-to-noise ratio due to phase noise, scattered

light, and photon-phonon coupling. Another option would be to use �ber ampli�ers, which

are doped with rare earth elements, such as Erbium and Ytterbium, that can present high

nonlinearities (order of 10
−11

cm
2 ⋅W

−1
[56]) at the wavelength of the pump light (980 nm),

and also be produced in lengths on the order of 20 m. Experiments show, however, that

the nonlinear index of refraction n2 changes in the presence of the pump power with a

nonlinear behavior [57].

2.1.2 Cascaded Kerr e�ect

There is an interesting option to mimic the Kerr e�ect by exploiting the second order

susceptibility � (2) of a material, which is usually on the order of 10
−12

m ⋅ V
−1

and therefore
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much larger than � (3). The process is called cascaded Kerr e�ect and it can be understood

in two steps, as shown in Figure 2.2. In the �rst step, a fundamental wave with optical

frequency !0 is partially up-converted to a second harmonic wave with optical frequency

2!0 via sum-frequency generation. In the second step, the second harmonic wave is down-

converted via a di�erence-frequency generation between the second harmonic and the un-

converted fundamental wave. As a result, a reconverted fundamental wave is generated

which then interferes with the unconverted fundamental wave. As a consequence of dis-

Step 1: 
up-conversion

Step 2:
down-conversion

+

1 2

ϕω0 + ω0 → 2ω0 2ω0 - ω0 → ω0 reconverted

unconverted total fundamental

Figure 2.2: Illustration of the cascaded Kerr e�ect type I. In the �rst step, the fundamental wave (red

arrow) with optical frequency !0 is up-converted to the second harmonic wave (green arrow), with

frequency 2!0. In the second step, the second harmonic wave is down-converted to a fundamental

wave with a phase shift of �, that interferes with the unconverted fundamental wave.

persion, the second harmonic wave acquires a phase shift with respect to the fundamental

wave, and therefore the reconverted fundamental will have a phase shift of � with respect

to the unconverted wave. If the conversion process is phase matched, i.e.,Δk = 2k0−k2 = 0
2
, then the phase di�erence � is equal to �. This will lead to depletion of the fundamental

wave, as expected from energy conservation. In this case, the second harmonic power at

the output of the medium is maximized and the fundamental wave does not accumulate any

intensity dependent phase. If the process is not phase-matched, i.e., Δk ≠ 0, then the total

fundamental wave will su�er a phase shift. Because the up and the down-conversion steps

are intensity dependent, the phase shift acquired by the fundamental wave will also depend

on the intensity. The description of the cascaded e�ect in two steps is purely pedagogical,

since in reality power is continuously exchanged between the fundamental and second har-

monic waves throughout the interaction length. Hence, at the output of the medium, the

fundamental wave will accumulate a net and intensity dependent phase �� , mimicking the

optical Kerr e�ect.

2.1.2.1 Cascaded Kerr E�ect type I

Let us consider that the input polarization of the fundamental wave is aligned to the

ordinary axis of the nonlinear medium, and that the generated second harmonic wave has

a polarization aligned to the extraordinary axis, which is known as type I condition for

2k0 and k2 are the wave vectors of the fundamental and second harmonic waves.
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a positive uniaxial crystal [47]. The coupled equations for the complex electric �elds Ẽ0
and Ẽ2 of the fundamental and second harmonic waves can be obtained by substituting the

medium’s polarization P̃ into Maxwell’s equations. In the absence of loss, and considering

linearly-polarized and plane waves propagating along the z direction, the coupled equations

are [58]:

)Ẽ0
)z

=
−i!0 de�

n!0c
Ẽ∗
0 Ẽ2 e

−iΔkz ,

)Ẽ2
)z

=
−i!0 de�

n2!0c
Ẽ2
0 e

iΔkz ,

(2.11)

where d
e�
= � (2)∕2, and the frequency dependence of � (2) was neglected by assuming

that all optical wavelengths are far from the material resonances. Note that the steps in

the cascading process are both ruled by the same phase mismatch parameter Δk. These

equations can be re-written in terms of the amplitude Ã
j
=

√

�0nj
c∕2 Ẽ

j
, such that

|

|

|

Ã
j

|

|

|

2

expresses the �eld intensity in W ⋅m
−2

:

)Ã0
)&

= −i� Ã∗0Ã2e
−iΔkL& , (2.12)

)Ã2
)&

= −i� Ã20e
iΔkL& , (2.13)

where & = z∕L, and � = L!0de�

√

2∕(c3�0n2!0n2!0) is the common nonlinear coupling

coe�cient, with [�2] = m2 ⋅W−1
.

No-depletion regime

Let us assume that the conversion from the fundamental to the second harmonic �eld is

small such that
|

|

Ã0(&)|| remains constant during the cascaded process. Then, by integrating

Equation 2.13, the intensity of the second harmonic wave after propagating a length L is

obtained:

I2(L) = �2 I20 sinc
2
(ΔkL

2

)

. (2.14)

ForΔk ≠ 0, this equation expresses that the second harmonic intensity continuously grows

inside the medium up to the coherence length, de�ned as L
c
= �∕Δk, which means that

step 1 of the cascading process is dominating. After propagating a distance L
c
, the phase

di�erence of � between the waves forces the second harmonic wave to e�ectively down-

convert to the fundamental wave. The fundamental �eld will be fully restored with a net

phase shift of �� after propagating a distance of two coherence lengths.

Assuming
|

|

Ã0(&)|| constant, Equation 2.12 has a solution of Ã0(L) = Ã0(0)e−i�� (L)
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with [59]:

�� (t) =
�2I0 (t)
ΔkL

, (2.15)

valid for ΔkL ≫ �2. In analogy to n2 in Equation 2.9, an e�ective nonlinear index ne�

2 can

be obtained:

ne�

2 =
4�d2

e�
L

�0�0cn2!0n
2
!0

⋅
1

ΔkL
. (2.16)

It is important to note that ne�

2 is a non-local property of the material since it is induced by

the propagation of the waves and, unlike the Kerr e�ect, a cross phase modulation between

two non-interacting waves is not possible.

Table 2.2 shows values of ne�

2 and its corresponding transfer coe�cients � , for the most

common materials used for cascaded Kerr e�ect. For the �rst three rows, the values of

ne�

2 were taken from experimental observations reported in the literature. For the last two

rows, ne�

2 was calculated with the theoretical coe�cient d
e�

and for ΔkL = 2�. This phase

matching condition was chosen since it corresponds to a minimum of second harmonic

power at the output of the medium, which is desired for the power stabilization scheme

to avoid power loss in the fundamental beam. For the KTP crystal, an increase of 1 order

of magnitude in the nonlinear index ne�

2 was experimentally demonstrated in comparison

with the optical Kerr e�ect (displayed in the �rst row). In theory, an increase of up to 4

orders of magnitude is expected (displayed in the 4th row) when using a crystal with a

length of 70 mm. Second harmonic generation using a 30 W continuous-wave laser with

1064 nm and a 19 mm long periodically poled KTP crystal (d
e�
= 9 pm ⋅ V

−1
) was reported

in [60]. With these parameters, an RPM of 10
−9

would result in a phase change ��� of

6 × 10
−10

rad, which is challenging to detect. Additionally, with this high power the devia-

tion from the low intensity regime starts to be signi�cant and smaller phase changes should

be expected. Other common materials such as periodic poled lithium niobate (PPLN), or

beta barium borate (BBO) exhibit similar properties which also makes them unsuitable for

the purpose of this thesis. The table also shows the coe�cient obtained for the organic

material 4’-dimethylamino-N-methyl-4-stilbazolium (DAST), that can have a large nonlin-

earity of d
e�
= 290 pm ⋅ V

−1
at 1540 nm [61] and is commercially available in lengths of up

to 1 mm [62]. This material, however, presents strong absorption for the second harmonic

wavelength (below 1 µm), which reduces the conversion e�ciency of the cascaded process,

and for this reason the measured nonlinear coe�cient ne�

2 (displayed in the 3rd row) is

smaller than the theoretical value (displayed in the 5th row).

High intensity regime

In the high intensity regime, there is signi�cant conversion of the fundamental wave

power into the second harmonic wave and therefore
|

|

Ã0(&)|| cannot be treated as a constant
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Material L (mm) �0 (nm) ne�

2 (cm
2 ⋅W

−1
) �

(

rad ⋅W−1
)

KTP [59, 63] 1 1064 1.3 × 10
−14

6 × 10
−6

DAN [64] 0.77 1064 2.5 × 10
−13

9 × 10
−5

DAST [63] 1 1540 3 × 10
−11

0.01

d
e�
= 3 pm ⋅ V

−1
(KTP [48]) 70 1064 9 × 10

−13
0.03

d
e�
= 290 pm ⋅ V

−1
(DAST [61]) 1 1540 8 × 10

−11
0.03

Table 2.2: Phase transfer coe�cients � for the cascaded Kerr e�ect type I transfer scheme in the

low intensity regime, calculated from Equation 2.10. The values of ne�

2 displayed in the 4th and 5th

rows were calculated from Equation 2.16, considering ΔkL = 2�. A beam radius w0 of 20 µm was

considered.

inside the medium anymore. In this case, the coupled equations can be solved numerically

or analytically, in terms of the Jacobi elliptic functions. By writing the complex �elds as

Ã
j
(&) = a

j
(&)e−i�j

(&)
, the coupled equations can be written separately as a function of the

amplitude a
j
and phase �

j
:

)a0
)&

= � a0a2 sin(Φ − ΔkL&) ,

)a2
)&

= −� a20 sin(Φ − ΔkL&) ,

)�0
)&

= −� a2 cos(Φ − ΔkL&) ,

)�2
)&

= −�
a20
a2
cos(Φ − ΔkL&) ,

(2.17)

where Φ(&) = �2(&) − 2�0(&). The numerical solutions for these equations are plotted in

Figure 2.3. The left plot shows the phase ��(L) acquired by the fundamental wave at the

output of the medium as a function of the normalized input intensity a20 (0) �
2

(in units of

W ⋅m
−2 ⋅W

−1 ⋅m
2
) for di�erent phase matching conditions. For ΔkL = 2�, the highest

slope, and therefore highest phase transfer coe�cient � , is obtained at low normalized in-

tensities (smaller than 1.3), where the relationship between phase and normalized input

intensity is still linear. At higher intensities, the phase acquired by the fundamental wave

inside the medium acts to detune the phase matching condition, which reduces the e�-

ciency of the up and down-conversion steps. As a consequence, the phase �� accumulated

by the fundamental wave is also reduced. In this regime, the coherence length will depend

on the input intensity of the fundamental wave. The right plot in Figure 2.3 shows the
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fundamental normalized intensity at the output of the medium as a function of the input

intensity. The relation is linear for low input intensities or for a high phase mismatchΔkL.

Since the phase transfer coe�cient and the power in the fundamental beam at the output

of the medium are reduced, not much advantage is expected for this transfer scheme in the

high intensity regime.
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Figure 2.3: Numerical simulations for the cascaded Kerr e�ect type I. Left: phase acquired by the

fundamental wave at the output of the medium as a function of its normalized input intensity, for

three phase matching conditions. Right: normalized output intensity for the fundamental wave as

a function of its normalized input intensity.

2.1.2.2 Cascaded Kerr e�ect type II

Let us now consider the condition when the input polarization ê0 of the fundamen-

tal wave is neither aligned to the ordinary nor to the extraordinary axis of the nonlinear

medium, as shown in Figure 2.4. From the medium’s coordinate system, two fundamen-

tal waves, one with extraordinary ( ê0,e ) and other with ordinary ( ê0,o ) polarization, are

summed and up-converted to a second harmonic wave with ordinary polarization. This

condition is known as type II second harmonic generation [47]. Let us assume that the

input amplitudes in the ordinary and extraordinary polarization are not equal. In this case,

the wave with smaller amplitude, called weak wave, can be completely depleted, while the

wave with larger amplitude, called strong wave, will never su�er complete depletion. This

is required by energy conservation, since equal energies from the extraordinary and ordi-

nary waves are extracted in the up-conversion step. When the weak wave is completely

depleted, the direction of the process will be reversed to down-conversion and the second

harmonic and strong waves will restore the weak wave. This reversion forces the weak

wave to change its phase during the restoring process, even at a perfect phase matching

condition [65, 66]. By controlling the angle of the input polarization, the relative amplitude

between the fundamental waves is independently controlled, which is an additional degree
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Figure 2.4: Illustration of the cascaded Kerr e�ect type II. A fundamental wave propagates through

a nonlinear medium whose optic axis is misaligned to the fundamental input �eld polarization ê0.

From the medium’s coordinate system, the polarization can be decomposed into an extraordinary

polarization ê0,e, aligned with the optic axis, and an ordinary polarization ê0,o, perpendicular to the

optic axis. Each polarization component acquires a di�erent phase shift while propagating through

the medium.

of freedom for the cascaded process. If the input amplitudes are equal, i.e., input polariza-

tion forms an angle of 45° with the optic axis, then the cascaded process is similar to type I

and a phase shift is obtained at a phase mismatch condition.

Similarly as in the cascaded type I, the coupled equations for the complex �elds are:

)Ã0,e
)&

= −i� Ã∗0,oÃ2 e
−iΔkL& ,

)Ã0,o
)&

= −i� Ã∗0,eÃ2 e
−iΔkL& ,

)Ã2
)&

= −2i� Ã0,eÃ0,o eiΔkL& ,

(2.18)

with Δk = k2 − k0,e − k0,o. This leads to the following equations for the amplitude and

phase:

)a0,e
)&

= � a0,oa2 sin(Φ − ΔkL&) ,

)a0,o
)&

= � a0,ea2 sin(Φ − ΔkL&) ,

)a2
)&

= −2� a0,ea0,o sin(Φ − ΔkL&) ,

)�0,e
)&

= −�
a0,oa2
a0,e

cos(Φ − ΔkL&) ,

)�0,o
)&

= −�
a0,ea2
a0,o

cos(Φ − ΔkL&) ,

(2.19)
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)�2
)&

= −2�
a0,ea0,o
a2

cos(Φ − ΔkL&) ,

with Φ(&) = �2(&) − �0,e(&) − �0,o(&). The cascading steps for the type II are:

!0,e + !0,o = 2!0,e, 2!0,e − !0,o = !0,e, 2!0,e − !0,e = !0,o.

Figure 2.5 shows the numerical calculation of the phase ��,w and ��,s acquired by the

weak (here set to be at the ordinary axis) and strong waves at the output of the medium

for di�erent ratios r = a20,w(0)∕a
2
0,s(0) ≤ 1 between the weak and strong input powers.

The phase acquired by the weak wave as a function of the normalized input intensity has

a step-like behavior, with a period that increases with intensity. The steep slope of the

step happens at input intensities in which the regime of regeneration of the weak wave

power is initiated, as shown in Figure 2.6. At those locations, the output intensity of the

weak wave is at its minimum value, which is non-zero for ΔkL ≠ 0. This is an advantage

since only a small fraction of the power in the fundamental wave needs to be used for the

sensing process. The steep slope is maximized for small ratios r. For r values below 0.1

no signi�cant di�erence in the slope is observed, only in the location of the steps which

are shifted towards lower normalized input intensities. In addition to that, the power on

the weak wave at the locations of the steep slope is considerably reduced for r < 0.1.

Furthermore, when the input power ratio between the waves is equal, i.e., r = 1, both waves

acquires identical phase at the output of the medium, and the cascaded e�ect is similar to the

type I condition. The behavior of the phase ��,w as a function of di�erent phase matching
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Figure 2.5: Numerical simulations for the cascaded Kerr e�ect type II. The phase acquired by the

fundamental weak (left plot) and strong (right plot) waves at the output of the medium is plotted as

a function of the normalized input intensity of the total fundamental wave, for di�erent input ratios

r. In all curves the phase mismatch was set to ΔkL = 0.3 rad.

conditions is shown in Figure 2.7. The acquired phase in each step is always less than � and

is reduced with the growth of the mismatch, since the period of energy exchange between

the waves is also reduced. In the case of a perfect phase matching condition (ΔkL = 0),
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Figure 2.6: Numerical simulations for the cascaded Kerr e�ect type II. The normalized output in-

tensity of the weak wave (blue curve) is plotted as a function of the normalized input intensity of

the total fundamental wave. The red dashed curve shows, as a reference, the intensity dependent

phase acquired by the fundamental weak wave at the output of the medium. In all curves the phase

mismatch was set to ΔkL = 0.3 rad and the input power ratio was set to r = 0.1.

not shown in the plot, the weak wave is completely depleted in the up-conversion process

and it su�ers a discontinuous phase change of � when the process is reversed to down-

conversion.
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Figure 2.7: Numerical simulations for the cascaded Kerr e�ect type II. The phase acquired by the

fundamental weak wave at the output of the medium is plotted as a function of the normalized input

intensity, for di�erent phase matching conditions ΔkL. For all curves the input power ratio was set

to r = 0.1.
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For small normalized intensity modulations, the e�ective refractive index and the phase

transfer coe�cient at a certain input intensity a20(0) �
2

can be written as:

ne�

2 =
)��,w

)(a20(0)�2)
⋅

4�d2
e�
L

�0�0cn2!0n
2
!0

, (2.20)

� =
)��,w

)(a20(0)�2)
⋅

8�2d2
e�
L2

�20�0cn2!0n
2
!0

. (2.21)

Table 2.3 shows the phase transfer coe�cient � for the weak wave as a function of r,
ΔkL, type of nonlinear material, and input mean power P 0. The value of ne�

2 was calculated

using the literature values of d
e�

of the named materials. The highest transfer coe�cient

of 2.4 rad ⋅W
−1

is obtained with the KTP crystal. This value represents an improvement

by a factor of 80 when compared with the cascaded type I condition. The improvement is

achieved at the cost of having to operate the experiment at a �xed mean input power of

7.4 W. For these conditions, the power of the weak wave at the output of the medium is

1.1 mW. The next input power leading to a similar slope is around 70 W, and the output

power of the weak wave is approximately 1.1 mW (same as for an input power of 7.4 W).

ΔkL r )��,s
)(a21(0)�

2)
d

e�
(pm ⋅ V

−1
) L (mm) ne�

2 (cm
2 ⋅W

−1
) P 0 (W) � (rad ⋅W

−1
)

0.1 0.1 13.0 at 1.4 3 (KTP [48]) 70 7 × 10
−15

7.4 2.4

0.1 0.1 13.0 at 1.4 290 (DAST [61]) 1 7 × 10
−13

8.1 2.2

0.1 0.5 5.3 at 2.5 3 (KTP [48]) 70 3 × 10
−15

13.2 1

0.1 0.9 1.1 at 6.2 3 (KTP [48]) 70 6 × 10
−16

32.8 0.2

0.3 0.1 1.7 at 1.7 3 (KTP [48]) 70 9 × 10
−16

9.0 0.3

Table 2.3: Phase transfer coe�cients � for the weak wave in the cascading Kerr e�ect type II transfer

scheme, calculated using Equations 2.21 and 2.10. The values were calculated considering a beam

radius of w0 = 20 µm, �0 = 1064 nm for KTP, and �0 = 1540 nm for DAST.

In conclusion, even with a signi�cant improvement with respect to the optical Kerr

e�ect, the phase transfer schemes via cascaded Kerr e�ect resulted in phase transfer co-

e�cients on the order of 1 rad ⋅W
−1

or lower. In this case, to detect an RPM of 10
−9

at

frequencies around 10 Hz a power of at least 1 kW is needed. With such a high value in

the continuous wave regime, the power absorption in the material cannot be neglected. As

a consequence, the phase transfer is reduced, and the damage threshold of most materials
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will be exceeded for the chosen beam radius of 20 µm. Therefore, longer interaction lengths

and higher nonlinearities are required. As mentioned in Section 2.1.2.1, high nonlinearities

can be achieved with organic materials, such as DAST, which is phase matchable for type I

and type II conditions, and N-(4-nitrophenyl)-L-prolinol (NPP) [67, 68]. Those materials are

often used for terahertz generation and mode-locking. However, in addition to the limited

transparency range for the second harmonic frequency, organic materials are thermally

unstable and exhibit lower laser damage threshold in comparison with inorganic materials.

Another drawback observed experimentally is the walk-o� e�ect, which reduces the spatial

overlap between the fundamental and second harmonic beams as they propagate through

the medium, and limits the interaction length L. The combination of these e�ects compen-

sates for the advantage of an increased nonlinearity and therefore not much improvement

is obtained with organic materials. Another important fact to consider is that the analysis

was performed considering plane waves. In reality, lasers exhibit a Gaussian beam pro�le.

Since the phase transfer coe�cient is inversely proportional to the cross sectional area of

the beam, lower coe�cients are expected for beams with a Gaussian pro�le.

In conclusion, the analyzed phase transfer schemes based on the Kerr e�ect in nonlin-

ear materials are not adequate for a power stabilization in the 10
−9

stability range and an

alternative scheme is required.

2.1.3 Radiation Pressure

The last phase transfer scheme analyzed in this thesis exploits the radiation pressure

e�ect of light on a suspended mirror, as shown in Figure 2.8. A laser beam impinges on the

suspended mirror, and its power modulations �P0 induce a longitudinal displacement mod-

ulation �x in the mirror position via radiation pressure. The mirror displacement modulates

the phase of its re�ected beam, and therefore a power dependent phase ��� is obtained.

δx
↔ δ P0

δ P0 ,  δϕτ

suspended mirror

Figure 2.8: Illustration of the phase transfer scheme via radiation pressure on a suspended mirror.

The laser power modulations �P0 induces modulations �x in the mirror position via radiation pres-

sure. As a result, the phase of its re�ected light acquires a power dependent phase modulation ��� .

Let us assume that the suspended mirror responds to the radiation pressure force F
rp
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as a damped harmonic oscillator which has the following equation of motion:

mẍ(t) + mΩ20 (1 + i�) x(t) = Frp
(t) , (2.22)

where Ω0 is the mirror fundamental resonance frequency, and m is the fundamental ef-

fective mass of the mirror. The complex term i� represents the system dissipation, with

� being the phase angle in radians by which the response of the oscillator lags behind a

sinusoidal driving force, and is therefore called loss angle.

The radiation pressure force is obtained by multiplying the transferred momentum of

a single photon upon re�ection by the number of photons per second in the laser beam:

F
rp
(t) = 2 ⋅

ℏ!0
c

⋅
P0(t)
ℏ!0

=
2P0(t)
c

. (2.23)

Assuming a linear response to a sinusoidal external force, the equation of motion in the

frequency domain is obtained by applying the following Fourier transforms:

x(t) = ∫ ∞
−∞ x(Ω)e

iΩt
dΩ, and P (t) = ∫ ∞

−∞ P (Ω)e
iΩt

dΩ. Then, the mirror position as a function

of power is:

x(Ω) =
2P0(Ω)

mc
(

−Ω2 + Ω20 (1 + i�)
) , (2.24)

which has the following magnitude:

|x(Ω)| =
2P0(Ω)

mc
√

(

Ω20 − Ω2
)2 + Ω40�2

. (2.25)

The radiation pressure transfer function R, de�ned by:

R(Ω) =
x(Ω)
P0(Ω)

, (2.26)

is plotted in Figure 2.9 for di�erent masses and loss angles. The magnitude of the transfer

function is approximately constant in the low frequency regime:

|

|

R(Ω≪ Ω0)|| =
2

cmΩ20
, (2.27)

it reaches its maximum at the resonance frequency, and subsequently falls like 1∕Ω2 for

high frequencies:

|

|

R(Ω≫ Ω0)|| =
2

cmΩ2
. (2.28)

The phase of the transfer function is frequency independent and approximately 0° for low

frequencies and after resonance it su�ers a loss of 180°, which is expected since the oscil-

2.1 Phase transfer schemes 35



10 2 10 3

10 -6

10 -4

10 -2

10 0

M
ag

n
it

u
d

e 
( 

m
  

W
-1

 )
m = 40 ng,  = 10 -3

m = 200 ng,  = 10 -3

m = 200 ng,  = 10 -1

10 2 10 3

Frequency (Hz)

-200

-150

-100

-50

0

P
h

as
e 

(
°
) 

Figure 2.9: Bode plot of the magnitude and the phase of the radiation pressure transfer function R,

calculated from Equation 2.26, for a suspended mirror with di�erent masses m and loss angles �
(here treated as frequency independent). The longitudinal resonance frequency for all plots was set

to Ω0 = 2�⋅ 100 Hz.

lator displacement (magnitude of the transfer function) will now decrease with frequency

proportionally to 1∕Ω2.

The phase �� acquired by a re�ected beam from the suspended mirror is proportional

to twice the mirror displacement and given by �� = 4� |x| ∕�0. The phase transfer co-

e�cient � of the scheme is therefore frequency dependent and it has the highest value at

the resonance frequency. For frequencies below resonance, the coe�cient is approximately
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frequency independent and given by:

� = 8�
�0c mΩ20

. (2.29)

The coe�cient at frequencies higher than the resonance can be approximated by multiply-

ing Equation 2.29 with the factor (Ω0∕Ω)2.

Ref. m (ng) Ω0∕2� (Hz) �
(

rad ⋅W−1
)

[69] 10
9

10 0.02

[70] 400 274 66

[71] 100 10
4

0.2

[72] 40 134 × 10
3

3 × 10
−3

[73] 40 117 3.6 × 10
3

[74] 1.9 7.8 × 10
7

10
−7

Table 2.4: Phase transfer coe�cients � for the radiation pressure transfer scheme for di�erent mirror

massesm and longitudinal angular resonance frequenciesΩ0, calculated from Equation 2.29. A laser

with wavelength �0 of 1064 nm was considered.

Table 2.4 shows the phase transfer coe�cients for the radiation pressure transfer scheme,

calculated from Equation 2.29, for di�erent parameters found in the literature. The highest

coe�cient of 3.6 × 10
3

rad ⋅W
−1

can be obtained with a micro-oscillator mirror consisting

of a 25 µm radius mirror pad suspended by a thin cantilever. This value is 3 orders of

magnitude higher than the phase transfer coe�cients calculated for the Kerr and cascaded

Kerr transfer schemes. At a frequency Ω = 1 kHz, the coe�cient is reduced to a value of

50 rad ⋅W
−1

which is still higher than the coe�cients obtained with the previous trans-

fer schemes. For this reason, the radiation pressure is the most promising phase transfer

scheme for frequencies up to several kHz with current technologies.
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2.2 Phase readout schemes

2.2.1 Michelson interferometer

One possibility to measure the phase �� is via a Michelson interferometer (introduced

in Section 2.2.1), as shown in Figure 2.10. The scheme is illustrated for a self-modulation

readout con�guration, but it can similarly be implemented for a cross modulation readout.

The �eld transmitted by the beamsplitter acquires a round trip and power dependent phase

�� , which is measured at the readout port of the interferometer. The output signal of the

photodetector is the sensor signal for two control loops: the power stabilization loop, and

the length stabilization loop, which keeps the interferometer locked to a speci�c operational

point. An optical isolator, placed at the interferometer input, re�ects the back-re�ected

beam from the interferometer to the out-of-loop beam, which is stabilized and available for

further use.

PZT

east 
end mirror

PD

laser

readout port

phase 
transfer

 Pe →  ϕτ 

north
end mirror

P0 optical
isolator

power
actuator

out-of-loop
beam

Pd

-

power stabilization
loop

length stabilization
loop

Figure 2.10: Schematic of laser power stabilization via a phase transfer scheme and a Michelson

interferometer readout scheme. The light in the east arm of the interferometer acquires a power

dependent phase �� which, after interference with light from the north arm, determines the power

P
d

at the readout port of the interferometer. The photodetector is an in-loop sensor for the power

and the length stabilization control loops. An optical isolator re�ects the back-re�ected beam from

the interferometer to the out-of-loop beam.

Let us now calculate the power transfer coe�cients � for this scheme. The complex

electric �eld Ẽ
d

at the readout port of the interferometer as a function of the round trip

phase �
e

and �
n
, accumulated in the east and north arms, is given by:

Ẽ
d
(t) =

√

RT Ẽ0(t)
(

ei�n − ei�e
(t)) , (2.30)

where Ẽ0 is the complex �eld at the input of the interferometer and R (T ) is the re�ection

(transmission) power coe�cient of the beamsplitter. An asymmetric description for the
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beamsplitter was used, with the re�ectivity sign convention shown in Figure 2.10. Here it

was considered that the interferometer end mirrors are lossless and have 100 % re�ectivity.

This equation can be re-written as a function of the common phase �(t) =
(

�
n
+ �

e
(t)
)

∕2,

and the di�erential phase Δ�(t) =
(

�
n
− �

e
(t)
)

∕2, in the following way:

Ẽ
d
(t) =

√

RT Ẽ0(t) ei�(t)
(

eiΔ�(t) − e−iΔ�(t)
)

. (2.31)

Then, the power P
d

at the readout port is:

P
d
(t) = 4P0 (t) T (1 − T ) sin

2 (Δ� (t)) , (2.32)

where a lossless beamsplitter was considered, i.e., R+T = 1. Because P
d

is a function only

of the di�erential arm phase Δ�, an interferometer with equal macroscopic arm lengths

will ideally not couple technical phase noise from the laser source into power noise at its

output port, since the phase noise will be common in both interferometer arms. This is an

important advantage of performing the phase readout via a Michelson interferometer, since

the phase noise of lasers is considerably high at low frequencies (10
2

rad ⋅ Hz
−1/2

at 10 Hz

[5]).

Disregarding any noise sources in the interferometer, the di�erential arm phase can be

written as:

Δ� (t) = Δ�0 + ��� (t) , (2.33)

where Δ�0 is the constant phase di�erence between the interferometer arms, which in-

cludes the phase ��(P e
) induced by the mean laser power in the transfer scheme.

The upper plot of Figure 2.11, shows the power at the interferometer readout port nor-

malized by the input power P0 as a function of the di�erential arm phase Δ�, for di�er-

ent beamsplitter transmission coe�cients. The relation between phase ��� and power �P�
modulations is approximately linear for small phase modulations, with a slope that depends

on the operational point of the interferometer, i.e., on the constant phase di�erence Δ�0.
The interferometer is locked to a speci�c operational point by the length stabilization loop,

which uses a piezoelectric transducer (PZT) element to actuate in the position of one of the

end mirrors.

The highest slope is obtained by locking the interferometer to the mid-fringe, when

Δ�0 is an odd multiple of �∕4. Considering small phase modulations, the power P
d,mf

at

the interferometer readout port can be approximated to:

P
d,mf

(t) ≈ 4P0 (t) T (1 − T )
(1
2
+ ��� (t)

)

, (2.34)

which is a linear function of ��� . By substituting Equations 1.3 and 2.3 into Equation 2.34
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Figure 2.11: Power response of a Michelson interferometer. Upper plot: power P
d

at the readout

port of the interferometer, normalized by the input power P0, as a function of the di�erential arm

phase Δ�. Lower plot: derivative of the normalized power P
d
∕P0 with respect to the di�erential

arm phase.

the following power transfer coe�cient for this scheme is obtained:

� = 4T (1 − T )
(1
2
+ P 0 T ⋅ �

)

, (2.35)

with a mean detected power of P
d,mf

= 2T (1 − T )P 0. As expected from operating the

interferometer at the mid-fringe, the total power sensing scheme can be interpreted as a

sum of a traditional sensing, with a beamsplitter re�ectivity of 2T (1 − T ) (�rst term of

�), plus a gain provided by the phase transfer scheme (second term of �). As discussed in

Section 2.1.3, the coe�cient � can reach values of 10
3

rad ⋅W
−1

, and therefore P 0 T ⋅ � can

be much larger than 1∕2. In this case, � is maximized for T = 2∕3, which leads to:

� = 0.6P 0 ⋅ � , (2.36)

P
d,mf

= 0.4 ⋅ P 0 . (2.37)

Even though � ≫ 1, a fraction of 0.4 from the laser mean power needs to be detected, which

is not desired.

To minimize the mean power at the photodetector, the interferometer can be locked to

the dark fringe operational point, by setting Δ�0 to be a multiple of �. In this case, all the
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laser mean power will be re�ected to the out-of-loop beam, and ideally no power is wasted

during the sensing process. The dark fringe however, has the disadvantage of having a

small response in power. A method to overcome this issue is to perform the readout of the

derivative of the interferometer response, which is maximum at the dark fringe, as shown

in the bottom plot of Figure 2.11. The derivative signal can be obtained, for example, by

modulating the position of one of the interferometer’s end mirror with a sinusoidal wave

with amplitude �
m

and frequency Ω
m

, which is provided by a local oscillator. For small

amplitude modulations, the power at the readout port can be approximated to:

P
d

(

Δ� + �
m
sin

(

Ω
m
t
))

≈ P
d
(Δ�) +

)P
d
(Δ�)

)Δ�
⋅ �

m
sin

(

Ω
m
t
)

. (2.38)

The readout is performed from the demodulated signal, which is obtained by �rst multiply-

ing the photodetector signal by the local oscillator signal, and subsequently by applying a

low pass �lter, with a corner frequency smaller than Ω
m

. The resulting signal p
d

is propor-

tional to:

p
d
∝ 4T (1 − T )P

0
�

m
cosΔ� ⋅ sinΔ� , (2.39)

which is valid for frequencies Ω ≪ Ω
m

. The linear response at the dark-fringe can be

obtained by performing a Taylor expansion around Δ�0 = �:

p
d,df
≈ 4T (1 − T )P

0
�

m
�

LO
��� . (2.40)

Hence, the power transfer coe�cient of this scheme is:

� = �
m
4T 2(1 − T )P 0 ⋅ � , (2.41)

which is again maximized for T = 2∕3, and P
d,df
≈ 0.

Readout of the Kerr and cascaded Kerr transfer schemes

It is important to note that for the optical Kerr e�ect transfer scheme, the factor � in

Equations 2.35 and 2.41 needs to be multiplied by a factor of 2 since the beam propagates

through the medium 2 times in one arm round trip. This factor should also be included for

the cascaded Kerr e�ect type I transfer scheme, if the scheme is operated in the no-depletion

regime and with a phase matching condition of ΔkL = 2� (ideally no second harmonic

light comes out of the medium). If the scheme is operated in the high intensity regime, the

depletion of the fundamental �eld after the �rst propagation through the medium must be

taken into account in the calculation of � for the second pass in the medium. Additionally,

the power loss for the fundamental �eld in the interferometer arm also needs to be included

in the calculation of �. An example of calculations for the cascaded Kerr e�ect type I with
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a double pass con�guration and a dichroic mirror can be found in [75]. The readout for the

cascaded Kerr e�ect type II transfer scheme is not optimal with a Michelson interferome-

ter. This is because the power dependent phase of interest is induced in the weak wave,

which has a polarization misaligned with respect to the polarization of the reference wave

at the north arm. In addition to that, as it will be shown in Section 2.3, the output polar-

ization of the fundamental wave after the cascaded scheme will, in general, be elliptical.

For this scheme, an optical cavity, discussed in the following section, is a better readout

con�guration.

Readout of the radiation pressure transfer scheme

To realize the readout from the radiation pressure transfer scheme, the east end mirror

should be substituted by the suspended mirror. In this case, no additional factor has to be

taken into account, since � was already calculated in re�ection of the suspended mirror. The

readout of the radiation pressure scheme can alternatively be performed for a cross phase

modulation, as shown in Figure 2.12. In this con�guration, the power modulations �P
t

of

a strong beam, here called transfer beam, modulates the position of the suspended mirror,

which in turn modulates the phase in the �eld propagating through the interferometer east

arm. The beam in the interferometer, called the sensing beam, has a mean power P
s

much

smaller than the power of the transfer beam, and therefore its self phase modulation e�ect

will be, for now, neglected. Considering that the sensing beam has the same wavelength of

the transfer beam, the induced phase modulation in the interferometer’s east arm �eld is

��� = � ⋅ �Pt
. In this con�guration, the power transfer coe�cient from power modulations

of the transfer beam to power modulations at the readout port of the interferometer, locked

to the dark-fringe, is:

� = �
m
�

LO
4T (1 − T )P

s
⋅ � , (2.42)

which is maximum for T = 0.5, and smaller than the coe�cient from Equation 2.41 (self

modulation con�guration) since P
s
≪ P 0 = P

t
. A calculation of the fundamental limits

for this scheme can be found in Chapter 3.

Mach–Zehnder interferometer

The analysis carried out for the Michelson interferometer can be extended to other in-

terferometer con�gurations, such as a Mach–Zehnder interferometer. An advantage for the

Mach–Zehnder is that both interferometer output ports are free for usage, and no optical

isolator is needed to separate the out-of-loop beam. This con�guration however, might not

be ideal for the radiation pressure transfer scheme since a normal angle of incidence for the

suspended mirror is not possible. To my knowledge, the �rst proposal and experimental

demonstration of a nondemolition measurement in combination with a negative feedback
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Figure 2.12: Schematic of laser power stabilization scheme via radiation pressure, with a cross phase

modulation con�guration. The power modulations �P
t

of a strong transfer beam, modulates the

position of the suspended mirror, and consequently the phase in the �eld propagating in the east

interferometer arm. The power modulations �P� at the readout port of the interferometer are sensed

by the photodetector and fed back to a power actuator, which stabilizes the transfer beam power.

to reduce laser power �uctuations was reported in 1986 [76]. In this experiment, the power

modulations of a strong transfer beam, to be stabilized, modulated the refractive index of

a medium via the Kerr e�ect, as illustrated in Figure 2.13. A weak sensing beam, with an

optical frequency !′ ≠ !0, propagated through the Kerr medium and acquired a phase �� ,
modulated by the power of the strong beam (cross phase modulation). The phase �� of the

weak beam was then measured by a Mach–Zehnder interferometer and the output signal

was fed back to the transfer beam. As a result, a stabilization between 5 - 10 dB below the

relative shot noise of the strong laser was observed in the MHz regime. At lower frequen-

cies, the experiment was limited by technical noise sources. The advantage of measuring

the cross phase modulation induced in the sensing beam instead of the self phase modula-

tion of the strong beam, is that the refractive index n2 in this case is twice as large due to a

degeneracy factor in the calculation of the third order susceptibility � (3)(!′ = !′+!0−!0)
[47].

2.2.2 Optical cavity

Transfer scheme outside the cavity

Another possibility to readout the phase �� is to use an optical cavity, as shown in Fig-

ure 2.14. Here, the beam at the output of the transfer scheme is sent to a linear two-mirror

cavity (Fabry-Pérot cavity [77, 78]), which has its length controlled by a PZT actuator. The

light �eld will be resonant in the cavity when the cavity length is an integer number of �0∕2.
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Figure 2.13: Schematic of laser power stabilization via a optical Kerr transfer scheme and a

Mach–Zehnder interferometer readout scheme. The power modulations of a strong transfer beam,

modulates the index of refraction of a Kerr medium. The cross phase modulations induced in a weak

sensing beam are sensed with a Mach–Zehnder interferometer plus a homodyne detector and fed

back to a power actuator, which stabilizes the transfer beam power.

Hence, if the cavity length is �xed, variations in the phase of the incoming �eld can be de-

tected by measuring variations in the resonance condition. There are several techniques

to lock the cavity length to a speci�c operational point and to perform the phase readout.

The Pound-Drever-Hall technique [79, 80] for example, performs a null measurement in

re�ection of the optical cavity, similar to what was described for the dark fringe readout

in the Michelson interferometer. A modulator applies a periodic phase modulation in the

laser �eld at a �xed frequencyΩ
m

, here chosen to be high enough so that the induced phase

modulation sidebands are totally re�ected by the cavity, regardless on the cavity resonance

condition. A photodetector, placed in re�ection of the cavity, measures the optical beat be-

tween the re�ected carrier �eld, which depends on the resonance condition, and the �xed

modulation sidebands. On resonance, the beat signals are 180° degrees out of phase and

are canceled, while o� resonance they produce a power modulation at a frequency Ω
m

. A

demodulation technique, similar to what described for the Michelson interferometer dark-

fringe locking, is used to generate a signal p
PDH

, which is the error signal for the power

stabilization and for the length stabilization control loops.

Let us consider a high �nesse cavity which is locked near resonance. Then, for phase

modulations ��� at frequencies Ω much smaller than the cavity linewidth ��, the error

signal p
PDH

is proportional to [80]:

p
PDH

∝
4Ω

(

P
c
P

s

)1∕2

���
⋅ ��� , (2.43)

where Pc is the power in the carrier, and Ps is the power in each modulation sideband.

44 Chapter 2 Sensing laser power �uctuations via an alternative observable of the light �eld



PD

laser
phase 

transfer

P0 → ϕτ 

power
actuator

out-of-loop
beam

power stabilization
loop

phase
modulator PZT

length stabilization
loopPDH

pPDH pPDH

P0

optical

isolator

Ωm

Pd

Figure 2.14: Schematic of laser power stabilization via a phase transfer scheme and an optical cavity

readout scheme. The power dependent phase modulations ��� are measured in re�ection of an

optical cavity via the Pound-Drever-Hall (PHD) technique. The signal p
PDH

is used as an error

signal for the power and for the length stabilization control loops.

Here it was assumed that the modulation amplitude is small such that the approximation

P
c
+ 2P

s
≈ P 0 is valid. To derive this equation, the following relationship between modu-

lations �! in the optical frequency and in the phase was used:

�! = �� ⋅Ω . (2.44)

The power transfer coe�cients for this scheme are then proportional to:

� =
4Ω

(

P
c
P

s

)1∕2

���
⋅ � , (2.45)

and P
d
≈ 0 for an impedance matched cavity. The coe�cient � is frequency dependent, and

from the assumptions made to derive this equation, Ω∕�� ≪ 1. Hence, the power transfer

coe�cient in this con�guration will be smaller than for the Michelson interferometer.

Equation 2.43 was derived assuming that the time dependent phase of the laser �eld

at the input of the cavity has only the contribution from the phase modulations ��� . In

reality, the phase noise ��l from the laser source must also be taken into account, by doing

the substitution ��� → ��� + ��l , since there is no distinction from these terms by the

cavity. Hence, laser phase noise will couple at the power readout, which is a disadvantage

of using an optical cavity over a Michelson interferometer.

To perform the readout from the cascaded Kerr e�ect type II, a PBS has to be placed

after the transfer scheme in order to split the weak beam, that will be sent to the cavity, from

the strong beam, that will be used as an out-of-loop beam. Since the power on the weak

beam is much smaller than the input power P 0, the gain in the factor � obtained with this

transfer scheme will be compensated by the reduction in the readout term P
c
P

s
. This is an

important fact to be taken into account in the choice of the transfer and readout schemes,
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since the �gure of merit in the stabilization scheme is the power transfer coe�cient �.

Transfer scheme inside the cavity

A bene�t of using an optical cavity is to exploit the high intracavity power P
cav

, by plac-

ing the phase transfer scheme inside the cavity. In the steady state regime, the intracavity

beam can be described by a standing wave with a power dependent phase ��(t) = � ⋅Pcav
(t),

which is the same phase obtained as if a traveling wave with power P
cav

would propagate

only once through the transfer scheme. The intracavity U
cav

, the re�ected U
r

, and the

transmitted U
t

�elds, considering a lossless cavity, are given by [81]:

U
cav
(t) =

i
√

1 − R1

1 −
√

R1R2 e
2i
(

Δ�0+�|Ucav
(t)
|

2)
⋅ U0(t) ,

U
r
(t) =

√

R1 ⋅ U0(t) + i
√

1 − R1 ⋅ Ucav
(t) ,

U
t
(t) = i

√

1 − R2 ⋅ Ucav
(t) ,

(2.46)

where R1 and R2 are the power re�ectivity coe�cients for the input and end mirrors, re-

spectively, and Δ�0 is the static cavity detuning from resonance. For this calculation, a

symmetric description for the cavity mirrors were used. The �elds here were normalized

such that
|

|

|

Uj
|

|

|

2
has units of Watts. Hence, for � ≠ 0, the intracavity power is a nonlinear

function of the input power P0:

P
cav
(t) =

1 − R1
1 − R1R2 − 2

√

R1R2 cos
(

2Δ�0 + 2�Pcav
(t)
)
⋅ P0(t) . (2.47)

This equation was solved numerically for di�erent cavity detunings, and the result is shown

in the left plot of Figure 2.15. The blue curve was plotted for a cavity without the transfer

scheme, which is simulated by simply setting � = 0 into Equation 2.47. The red and the

orange curves were plotted for a nonlinear cavity, with a positive phase shift introduced by

the transfer scheme, and with a transfer coe�cient � for the yellow curve 3 times higher

than for the red curve. The curves show that, due to the positive additional constant phase

��(P cav
) induced by the mean intracavity power, the resonance condition is achieved at a

negative detuning compared to the cavity without the phase transfer scheme (� = 0). In

addition to that, higher slopes between power and phase can be achieved in a nonlinear

cavity, with values close to in�nity for a detuning corresponding to 0.75 of the maximum

intracavity power, in the so called critical state (yellow curve). As a consequence, the power

transfer coe�cient � is signi�cantly enhanced in this con�guration, which can also be seen

in the behavior of the re�ected power by the cavity shown by the blue curve in the right
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plot of Figure 2.15. However, the coupling of phase noise into the readout will be equally

enhanced in the critical state, and no advantage is gained by placing the transfer scheme

inside the cavity from this point of view.
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Figure 2.15: Numerical simulations for a nonlinear optical cavity. Left: intracavity power, normal-

ized to 1, as a function of the cavity detuning. The blue curve corresponds to a linear cavity (� = 0 in

Equation 2.47), while the red and orange curves correspond to a nonlinear cavity, with the transfer

coe�cient � for the yellow curve 3 times higher than for the red curve. Right: normalized powers

simulated for a nonlinear cavity in the critical state. The red curve displays the normalized intracav-

ity power, the dashed yellow curve the transmitted power, and the blue curve the re�ected power.

A passive power stabilization scheme using the cascaded Kerr e�ect type I transfer

scheme and an optical cavity was reported in [82, 83]. The experiment implemented a

6.3 mm long MgO:LiNbO3 crystal (d
e�
≈ 5.3 pm ⋅ V

−1
) with a transfer factor coe�cient �

of 4.5 × 10
−3

rad ⋅W
−1

. The crystal was placed inside the optical cavity, which was oper-

ated approximately in the critical state. The passive noise reduction of this scheme is a

consequence of the correlation between phase and amplitude �uctuations introduced by

the transfer scheme, which transforms an assumed circular quadrature noise distribution

of the laser into an ellipse (more details about this approach will be discussed in Section

3.5). In re�ection of the cavity, the semi-minor axis of this ellipse, which has a smaller

value than the noise in the amplitude quadrature of the laser, is rotated such that is aligned

to the laser carrier. As a result, a technical power noise reduction of 32 dB at frequencies

around 0.9 MHz was observed in re�ection of the cavity by a self-homodyne detector. At

lower frequencies, the measurement showed a non stationary noise that increased with

the cascaded Kerr e�ect, and was attributed to internal Brillouin scattering [83]. Addition-

ally, the authors also cite the possibility of thermally driven noise, since the intracavity

power reached values on the order of 100 W at a beam waist size of 30 µm. The experi-

ment predicted a maximum of 6 dB amplitude squeezing, which was not observed due to

high amount of classical phase noise of the laser. The con�guration of this experiment is
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not ideal for the purposes of this thesis, since the power noise reduction occurs only in

re�ection of the cavity, meaning that only 0.25 of the input power has its power stabilized.

2.3 Polarization transfer and readout schemes

This section presents transfer schemes in which the output polarization state of the

light is dependent on the input laser power, as illustrated in Figure 2.16. A wave, propa-

eτ

δP → δ e ̂ δ P → δ e 

a) b)
x

θ
θ

transfer unit transfer unit

^
x̂ ^ x̂ x̂ eτ

^

^

Figure 2.16: General concept of a polarization transfer unit: an input wave linearly polarized along

the x axis experiences a power dependent change in its polarization state after the transfer unit. As

a result, the output wave will have a linear (a) polarization state which is rotated by an angle �, or

an elliptical (b) polarization with a semi-major axis forming an angle � with the x axis.

gating in the z direction, and linearly polarized along the x-axis, is sent to a transfer unit

which introduces a power dependent change in the polarization of the output electric �eld

⃖⃖⃗E� in the following way:

⃖⃖⃗E� = E� cos
(

kz + ��
)

ê� = E�,x cos
(

kz + ��,x
)

x̂ + E�,y cos
(

kz + ��,y
)

ŷ , (2.48)

where E�,x (E�,y) is the power dependent x(y)-component of the amplitude at the output

of the transfer unit, and ��,x (��,y) the corresponding power dependent phase. The output

polarization will remain linear if the phase di�erence��,x−��,y is equal to zero or an integer

multiple of ±�. In this case, the polarization state ê� is rotated with respect to the input

polarization by an angle � = atan

(

E�,y∕E�,x
)

, as shown in Figure 2.16a. For other values of

the phase di�erence, the output polarization state will be elliptical and the angle � will be

de�ned as the angle between the semi-major axis of the ellipse and the input polarization,

as shown in Figure 2.16b, and given by:

tan 2� =
2E�,xE�,y cos

(

��,x − ��,y
)

E2
�,x − E2

�,y
. (2.49)

One option to induce a power dependence in the polarization state of the wave is via

the cascaded Kerr e�ect, introduced in Section 2.1.2. In this case, the transfer occurs via a

second order nonlinear and birefringent medium which has its optical axis rotated by an

angle � with respect to the input polarization x̂, as shown in Figure 2.17. The input polar-
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ization is decomposed into an ordinary and extraordinary component, with corresponding

amplitudes and phases that are a�ected di�erently inside the medium, as a function of the

input power. Hence, a power dependent change in the output polarization is introduced. As

a consequence, power modulations �P0 at the input light will induce modulations �� that

are converted to power modulations �P� in re�ection of a PBS. The modulations �P� are

sensed by the in-loop photodetector and fed back to the power actuator via the feedback

controller.

out-of-loop
beam

optic axis

(extraordinary axis) 

ordinary axis

α PBS

χ(2) 

laser

power
actuator

PD

P0

θ

Pd

x̂ x̂ eτ
^

Figure 2.17: Schematic of laser power stabilization via a polarization transfer scheme exploiting the

cascaded Kerr e�ect. A second order nonlinear medium, which has its optical axis rotated by an

angle � with respect to the input polarization, induces a power dependence in the polarization state

of the light. The polarization state is detected in re�ection of a PBS by a photodetector, whose output

signal is fed back to a power actuator.

If the medium is phase matched for the cascaded Kerr e�ect type I condition, the �eld

component with polarization aligned to the ordinary (or extraordinary) axis is kept at a

phase matching condition and acquires an intensity dependent phase shift. Additionally,

this �eld will also have its amplitude depleted as a function of intensity if the cascaded

e�ect occurs in the high intensity regime. The orthogonal polarization however, is kept

far from phase matching and it ideally propagates in the linear regime. As a result, at

the output of the medium the two polarizations will combine to a �eld with an intensity

dependent polarization state. If the medium is phase matched for the cascaded Kerr e�ect

type II condition, the �elds in the ordinary and extraordinary polarizations will be ruled by

the same phase matching condition but will acquire di�erent phases and/or su�er di�erent

depletion during propagation. The result is again an intensity dependent polarization at the

output of the medium. Here the polarization will be analyzed only for the type II condition

since, from the analysis of Section 2.1.2 and from [84] and [85], the e�ect with the type I

condition is known to be smaller.

The output fundamental �eld Ã� , projected to the xy coordinate system, can be obtained
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from the individual Jones matrices [86] of the scheme:

[

Ã�,x

Ã�,y

]

=

[

cos � − sin �
sin � cos �

][

�
e
(L)ei�e

(L) 0
0 �

o
(L)ei�o

(L)

][

cos � sin �
− sin � cos �

][

Ã0,x(0)
0

]

= Ã0,x(0)

[

�
e
(L)ei�e

(L) cos2 � + �
o
(L)ei�o

(L) sin2 �
cos � sin �

(

�
e
(L)ei�e

(L) − �
o
(L)ei�o

(L)
)

]

,

where �
o

and �
e

are the transmission coe�cients for the amplitude in the ordinary and

extraordinary polarizations, respectively. Let us assume that the PBS re�ects polarization

aligned to the y axis, and transmits polarization aligned to the x axis. Then, if the PBS forms

an angle � with respect to the x axis, the re�ected �eld Ãr by the beamsplitter will be:

Ãr =

[

0 0
0 1

][

cos � sin �
− sin � cos �

][

Ã�,x

Ã�,y

]

(2.50)

= −Ã�,x sin � + Ã�,y cos � . (2.51)

For the proposed power sensing scheme, the angle � needs to be chosen as a trade-o�

between small mean power re�ected by the beamsplitter and high power transfer coe�cient

� for the power modulations. Let us de�ne an additional coe�cient to quantify the ratio

between the mean main and detected powers, �
DC

= P
d
∕P 0.

Figure 2.18 shows the normalized output intensity in the x (left plot) and y (right plot)

polarizations as a function of the normalized input intensity for di�erent ratios r. The

relation used between the angle � and the ratio r between the ordinary (weak) and extraor-

dinary (strong) waves input power was:

� = arctan

(

√

r
)

. (2.52)

When r < 0.2, the output wave is kept predominantly in the x polarization. For r > 0.2,

the output wave is predominantly at the y polarization for low input normalized intensities,

and predominantly at the x polarization for high intensities. The behavior of the output

intensities depending on the phase mismatch parameterΔkL is shown in Figure 2.19. From

the curves it is possible to see that the optimum conditions to increase � and decrease �
DC

depends on the chosen value for the mean normalized input intensity.

Table 2.5 presents the power transfer coe�cients � and �
DC

, calculated for � = 0. It also

shows the output normalized intensity in the x and y polarization, as well as in the second

harmonic wave. The best compromise between a high � and a low �
DC

was obtained for an

operational point of a20(0) �
2 = 16, a perfect phase matching condition, and a power ratio of

0.1, in accordance with Figures 2.18 and 2.19. Considering a 70 mm long KTP crystal, with
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Figure 2.18: Numerical simulations for the polarization transfer scheme via cascaded Kerr e�ect

type II: normalized output intensity of the fundamental wave in the x (left plot) and y (right plot)

polarizations for di�erent input ratios r, and for a phase mismatch of ΔkL = 0.1 rad.
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Figure 2.19: Numerical simulations for the polarization transfer scheme via cascaded Kerr e�ect

type II: normalized output intensity of the fundamental wave in the x (left plot) and y (right plot)

polarizations for di�erent phase matching conditions ΔkL, and for a power ratio r = 0.1.

d
e�
= 3 pm ⋅ V

−1
, and a 1064 nm beam with radius of 20 µm, the power transfer coe�cient �

of 0.75 is obtained at an input power of 90 W, and results in 15 W of detected power in the

re�ected y polarization, which is not desired. Higher factors � can be obtained at higher

input intensities, at the cost of also increasing the coe�cient �
DC

, and therefore the detected

power, as shown in row number �ve of the table. The same situation would be true in the

case where � ≠ 0. The last row of the table also shows an alternative power sensing option

in which the power �uctuations of the input beam are inferred by measuring the power

�uctuations in the output second harmonic beam. This option has the best compromise

between the transfer coe�cients � and �
DC

. If again the same parameters for the KTP

crystal are used, then the coe�cients are obtained detecting 4.2 W of power in the second
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harmonic wave, which is still very high.

ΔkL (rad) r a20(0) �
2 � �

DC
a2�,x(L) �

2 a2�,y(L) �
2 a23(L) �

2

0 0.1 0.15 0.24 0.26 0.1 0.04 6 × 10
−3

0 0.5 0.15 0.65 0.8 0.01 0.12 0.02

0 0.1 16 0.75 0.17 11 2.8 2.2

1.5 0.1 20 0.62 0.25 14.5 5 0.5

1.5 0.2 22 1.10 0.36 12.2 8 1.8

0.1 0.2 9 0.70 (2!0) 0.09 (2!0) 8.1 0.1 0.8

Table 2.5: Power transfer coe�cients � and �
DC

calculated numerically for the cascaded Kerr e�ect

type II polarization transfer scheme for � = 0. A beam with radius ofw0 = 20 µm, and �0 = 1064 nm,

was considered.

Experimental demonstrations of intensity dependent polarization states were reported

for cascaded Kerr e�ect type II [85, 87] and type I [85]. The results presented in the liter-

ature agreed well with numerical simulations and the small observed discrepancies were

attributed to walk-o� e�ects and group velocity dispersion. These experiments were per-

formed with pulsed lasers, which exhibit higher peak powers and experience a higher power

damage threshold than continuous wave lasers. For the continuous wave regime, the dam-

age threshold of the materials are smaller and might not be su�cient to reach operational

points where � is su�ciently large. The same discussion as presented in the end of Section

2.1.2 applies to this scheme regarding how the power transfer coe�cients can be increased

and regarding the limitations of the nonlinear materials.

The calculations for an intensity dependent polarization state induced via the optical

Kerr e�ect are more complex than for the cascaded Kerr e�ect, due to the fourth-rank tensor

properties of the third order susceptibility. Detailed calculations considering an isotropic

medium were carried out in [47]. The calculations show that the polarization state of an

input light which is linearly or circularly polarized, is unchanged upon propagation in the

nonlinear isotropic medium. Only a wave with input elliptical polarization will su�er a

polarization rotation. The rotation angle will be proportional to the di�erence between the

intensities of the left- and right-hand circular components of the input wave and therefore

it is not an appropriate measurement to induce the total power �uctuations of the input

wave.

One limitation in the sensitivity that can be achieved via a polarization transfer scheme

is polarization noise. This coupling can be minimized by placing a polarization �lter be-
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fore the transfer scheme, for example. The polarization noise however cannot be reduced,

with classical methods, below the fundamental limit set by the uncertainty in the Stokes

parameters [86, 88] of the laser. After the transfer scheme, the polarization noise cannot be

�ltered independently from the induced polarization modulations, and it will be inevitably

converted into power noise in re�ection and transmission of the PBS, and set a limit to the

power stability that can be achieved in the out-of-loop beam.

It is interesting to note that schemes with an intensity dependent polarization state

can be used passively (without feedback) to generate polarization squeezing. For example,

Kerr e�ect in a 13.3 m polarization maintaining �ber was used to generate bright polariza-

tion squeezing of up to 5.1 dB [89]. The experiment was perfomed with a Cr
4+

:YAG laser

emitting 130-fs pulses at 1497 nm at a repetition rate of 163 MHz. The beam was coupled

into the two orthogonal polarization axes of the �ber. At the output of the �ber, the beams

interfered and, as a result, polarization squeezing was identi�ed by measuring the Stokes

parameters with a scheme employing a PBS. Other reports on polarization squeezing can

be found in the literature, such as squeezing at 1064 nm and in the continuous wave regime

[90], squeezing using a KTP crystal phase matched for type II condition [91], and squeezing

using photonic crystal �bers [92]. With the feedback scheme proposed in this section, ac-

tive squeezing in the polarization seems not to be possible, since the feedback control loop

acts only in the amplitude of the light.

2.4 Summary

This chapter analyzed an alternative scheme to sense laser power �uctuations. In this

scheme, the power �uctuations are transferred to another observable of the light �eld,

which are then detected by a readout scheme.

The following transfer schemes from power to phase were analyzed: optical Kerr ef-

fect, cascaded Kerr e�ect type I and type II, and radiation pressure. These schemes were

compared with each other using the phase transfer factor � as a �gure of merit, which

expresses the ratio between the induced phase and the power, in units of rad ⋅W
−1

. The

highest � , of 3.6 × 10
3

rad ⋅W
−1

, was obtained for the radiation pressure transfer scheme

with a micro-oscillator mirror with a mass of 40 ng and a longitudinal resonance frequency

of 117 Hz. This coe�cient is at least three orders of magnitude higher than the correspond-

ing coe�cient achieved with the Kerr and cascaded Kerr transfer schemes. In addition to

that, experiments with Kerr and cascaded Kerr e�ects reported in the literature revealed ad-

ditional noise originating from nonlinear behavior and from the required for high power,

like stimulated Brillouin scattering and thermal �uctuations. Hence, it was concluded that,

with current technologies, the signal to noise ratio using Kerr and cascaded Kerr e�ects

would not be su�cient for a proof-of-principle experiment at frequencies below the kHz
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regime, and that the radiation pressure scheme is the most promising option. An analysis

of a polarization transfer scheme based on the cascaded Kerr e�ect resulted also in a low

signal to noise ratio, due to the same mentioned reasons for the phase transfer scheme, and

therefore it is also not appropriate for the purposes of this thesis.

The most suitable readout scheme for the phase induced by radiation pressure, for a

proof-of-principle experiment, is a Michelson interferometer. The interferometer has the

advantage of not being sensitive to laser phase noise, which dispenses the need of a phase

stabilization scheme. In addition to that, due to the high transfer coe�cient with a micro-

oscillator, the experiment will not be limited by power availability which spare the need

of an intracavity power build-up. Finally, the interferometer is simpler to operate and to

align than a cavity which, with a micro-oscillator as an end mirror, can exhibit nonlinear

behaviors [73] which adds complexity to the experiment. The calculations revealed that a

power transfer coe�cient � of at least 10
3

can be achieved with close to zero mean power

at the photodetector in the interferometer readout port. This coe�cient is several orders

of magnitude higher than the coe�cient of the traditional (� ≪ 1) and optical AC coupling

(� ≈ 1) schemes.
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Chapter 3

Fundamental limits of power
stabilization via a radiation pressure
transfer scheme

In this chapter, the fundamental limits of a power stabilization via a radiation pressure

transfer scheme are analyzed. This scheme was chosen based on the results of Chapter 2,

which showed that a large transfer coe�cient from power to phase modulations can be

achieved using a micro-oscillator mirror with low mass and low longitudinal resonance

frequency. The induced modulations in the oscillator position, and therefore in the phase

of its re�ected light, are detected with a Michelson interferometer whose output signal is

fed back to a laser power actuator. The interferometer represents the in-loop sensor of

this stabilization scheme and therefore interferometer noise sources are imprinted on the

out-of-loop beam and set a lower limit to the �nal power stability. The goal of this chapter

is to determine this value for an interferometer fundamentally limited by quantum and

thermal noise. Requirements regarding technical noise sources are also discussed. Under

the assumption of realistic experimental parameters, the calculations show that generation

of a bright squeezed beam is possible.

3.1 �antum noise limit

3.1.1 Mathematical framework

Let us �rst introduce the mathematical framework used to calculate the quantum limit

of the proposed scheme. The framework is based on the two-photon formalism, developed

by Caves and Schumaker [93, 94]. A detailed explanation of this formalism can be found in

many references such as the review paper [95], which is the main reference adopted in this
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thesis, and also [96].

In the two-photon formalism, the electric �eld of a linearly-polarized and quasi-mono-

chromatic wave propagating in vacuum and in the positive direction of the x-axis is re-

written using the so called amplitude (c-subscript) and phase (s-subscript) quadratures as

basis vectors for the electric �eld:

E(t) =
(

0 + en
(t)
)

cos
(

!0t + �(t) + �0
)

≡
(


c
+ e

c
(t)
)

cos!0t +
(


s
+ e

s
(t)
)

sin!0t ,
(3.1)

where 0 =
√

8�P∕c is the amplitude of the wave in Gaussian-cgs units, �0 is the wave

phase, e
n

and � are the amplitude and phase �uctuations respectively, and  is the e�ective

cross-section area of the light beam.

The use of quadratures as basis vectors is very convenient since they are linearly trans-

formed by the optical devices of interest in this thesis, which is not true for the tradi-

tional amplitude-phase description, since it is nonlinear in phase. Another advantage is

that quadratures with di�erent frequencies propagate independently from each other. The

quadrature coe�cients can be derived using the angle sum theorem and assuming small

phase �uctuations �(t). This leads to the following time-independent terms:


c
= 0 cos�0 and 

s
= −0 sin�0, (3.2)

and time-dependent terms:

e
c
(t) = e

n
(t) cos�0 − 0 sin�0 ⋅ �(t) , (3.3)

e
s
(t) = −e

n
(t) sin�0 − 0 cos�0 ⋅ �(t) , (3.4)

where terms containing en (t) ⋅ �(t) were neglected. Without loss of generality, the cal-

culations in this thesis are done assuming that the laser carrier 0 lies completely in the

amplitude quadrature, i.e., �0 = 0. This assumption simpli�es the mathematics, since am-

plitude �uctuations e
n
(t) will only couple in the amplitude quadrature e

c
(t), while phase

�uctuations �(t) will only couple in the phase quadrature e
s
(t). In this case for example, an

ideal modulator that acts only on the amplitude of the light will modify only the amplitude

quadrature of its transmitted �eld.

From the quantum mechanics point of view, the electric �eld Heisenberg operator (in

Gaussian-cgs units) as a function of the quadratures can be written as:

Ê(t) =
√

4�ℏ!0
c

[(

A
c
+ â

c
(t)
)

cos!0t +
(

A
s
+ â

s
(t)
)

sin!0t
]

, (3.5)
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whereA
c

andA
s

represents the time-independent carrier amplitude and phase quadratures

respectively, and â
c
(t) and â

s
(t) represent the �eld �uctuations which can be from classical

or quantum nature. In the time domain, quadrature operators have units of s
−1/2

.

In the frequency domain, the quadratures can be written in terms of the creation â and

anihilation â† operators as:

â
c
(Ω) =

â
(

!0 + Ω
)

+ â†
(

!0 − Ω
)

√

2
and â

s
(Ω) =

â
(

!0 + Ω
)

− â†
(

!0 − Ω
)

i
√

2
. (3.6)

As expected, these operators satisfy the usual commutation relations for bosonic �elds in

the frequency domain:

[

â
c
(Ω) , â

s

(

Ω′
)]

= 2�i�
(

Ω + Ω′
)

and

[

â
c
(Ω) , â

c

(

Ω′
)]

=
[

â
s
(Ω) , â

s

(

Ω′
)]

= 0 , (3.7)

and in the time domain:

[

â
c
(t) , â

s

(

t′
)]

= i�
(

t − t′
)

and

[

â
c
(t) , â

c

(

t′
)]

=
[

â
s
(t) , â

s

(

t′
)]

= 0 . (3.8)

The quadratures have to satisfy the Schrödinger uncertainty relation which, in the time

domain and for t = t′, is given by:

Δâ2
c
Δâ2

s
−
|

|

|

|

|

⟨{

â
c
, â

s

}⟩

2

|

|

|

|

|

2

≥
|

|

|

|

|

⟨[

â
c
, â

s

]⟩

2i

|

|

|

|

|

2

= 1
4
, (3.9)

where Δâ2
c

and Δâ2
s

are the variances of the amplitude and phase quadratures respectively.

For a pure state,

⟨{

â
c
, â

s

}⟩

= 0 and the uncertainty relation is reduced to the known

Heisenberg equation:

Δâ2
c
Δâ2

s
≥ 1
4
. (3.10)

Therefore, the variances for a state with minimum uncertainty, called coherent state, are

Δâ2
c
= Δâ2

s
= 1/2 s

−1
.

Power spectral density

Since the calculations in this thesis are made assuming a linear regime, it is much sim-

pler to analyze the �uctuations/noise in the frequency domain. In this case the �gure of

merit is the power (or amplitude) spectral density, which expresses the noise or signal

strength at a certain Fourier frequency Ω. The power spectral density Sij is de�ned as

the Fourier transform of the correlation function Cij between two observables âi and âj .
The correlation function is given by the expectation value of the symmetrized product of
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the operators at di�erent times:

Cij (t) =
1
2
⟨{

âi
(

t′ + t
)

, âj
(

t′
)}⟩

,
[

Cij(t)
]

= s−1. (3.11)

By rewriting this equation in the Fourier domain, the relation for the power spectral density

is obtained:

�Sij (Ω) �
(

Ω + Ω′
)

= 1
2
⟨{

âi (Ω) , âj
(

Ω′
)}⟩

,
[

Sij
]

= s−1 ⋅ Hz−1. (3.12)

Here the integration was done only for positive frequencies and thereforeSij (Ω) represents

the single-sided power spectral density, which is the convention adopted in this thesis.

The Heisenberg uncertainty relation in the frequency domain is obtained by the Fourier

transform of Equation 3.9, which leads to:

H2 = S
cc
S

ss
− |

|

S
cs

|

|

2 ≥ 1 . (3.13)

The power and cross power spectral densities for a coherent state are frequency indepen-

dent and equal to:

S
cc
= S

ss
= 1 s−1 ⋅ Hz−1 and S

cs
= S

sc
= 0 . (3.14)

Laser power

For the calculation of the mirror displacement due to radiation pressure, it is important

to express the laser power as a function of the amplitude quadrature operator. The laser

power operator can be derived from the relationship of the mean energy stored in the elec-

tric �eld in a given volume V = cT (cylinder with cross-sectional area  and length cT )

per measurement time T :

P̂ (t) = lim
T→0

1
T ∫V

|

|

|

Ê(t)||
|

2

4�
dV , (3.15)

which was obtained from the Poynting vector equation in Gaussian-cgs units. Here the

time average in the electric �eld is an average over the optical period of the laser. Then,

using Equation 3.5 the following expression can be obtained:

P̂ (t) =
ℏ!0
2

(

A
c
+ â

c
(t)
)2 +

ℏ!0
2
â

s
(t)2

≃
ℏ!0A2c
2

+ ℏ!0Ac
â

c
(t),

(3.16)
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where the terms containing â2
c
(t) and â2

s
(t) were neglected. The mean laser power P and

the carrier amplitude A
c

are then:

P =
⟨

P̂ (t)
⟩

=
ℏ!0A2c
2

⇒ A
c
=

√

2P
ℏ!0

,
[

A
c

]

= Hz1∕2 . (3.17)

The amplitude spectral density of the laser power �uctuations �P (Ω) is given as a function

of the power spectral density S
cc

of the amplitude quadrature as:

�P (Ω) =
√

2ℏ!0P Scc
, [�P (Ω)] = W ⋅ Hz−1∕2 . (3.18)

The absolute shot noise SN of the laser is calculated considering a coherent state, which

simply leads to SN =
√

2ℏ!0P .

Finally, the amplitude spectral density of the relative power noise is given by:

RPN =
�P (Ω)
P

=

√

2ℏ!0 Scc

P
, [RPN] = Hz−1∕2 , (3.19)

and therefore the relative laser shot noise is RSN =
√

2ℏ!0∕P .

Mirror displacement due to radiation pressure

As seen in Section 2.1.3, the mirror displacement x(Ω) caused by radiation pressure is

given by:

x(Ω) =
2P (Ω)
c

⋅ �m, (3.20)

where �m is the mechanical susceptibility of the mirror which, in the frequency domain, is:

�m (Ω) =
1

−mΩ2 + mΩ20(1 + i�)
,

[

�m
]

= m ⋅ N−1 , (3.21)

|

|

�m (Ω)|| =
1

m
√

(

Ω20 − Ω2
)2 + Ω40�2

. (3.22)

By invoking Equation 3.16, the time (or frequency)-dependent position operator can be

obtained as a function of the amplitude quadrature �uctuations as:

x̂(Ω) =
2�m

√

2Pℏ!0
c

⋅ â
c
(Ω) ≡ ��m ⋅ âc

(Ω) , (3.23)
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where � =
√

8Pℏ!0∕c. Note that since â
c

is a hermitian operator, x̂ is immediately hermi-

tian for a viscous loss angle. However, for a structural loss angle, a substitution of sign(Ω)i�
needs to be made in the loss angle term, which then implies �∗m(Ω) = �m(−Ω), guaranteeing

that x̂ remains hermitian.

Field reflected from a moving mirror

Consider an incident �eld b̂ that impinges on a 100 % re�ective free moving mirror with

position x̂, as shown in Figure 3.1. By choosing the initial phase of the incident �eld �0 to

Figure 3.1: Scheme of an incident light �eld b̂ that is re�ected from a moving mirror with position x̂,

into the �eld ĉ. The convention adopted as the positive direction of x̂ is shown by the arrow below

the mirror.

be zero, the carrier will be located solely in the amplitude quadrature, with a magnitude

given by Equation 3.17. The re�ected �eld ĉ is a�ected with a phase shift of 2!0x̂(Ω)∕c
caused by the moving mirror and, according to Equations 3.3, 3.4 and 3.5 is given by:

ĉ
c
(Ω) = b̂

c
(Ω) ,

ĉ
s
(Ω) = b̂

s
(Ω) −

√

8P!0
ℏc2

⋅ x̂(Ω) = b̂
s
(Ω) − �

ℏ
⋅ x̂(Ω) .

(3.24)

Here it was assumed that the mirror displacement is much smaller than �0. This equation

shows that, for small displacement, the amplitude quadrature is unchanged upon re�ection.

The phase quadrature however, acquires an additional positive phase for a mirror moving

in the positive direction.

If the mirror is displaced due to radiation pressure from the incident �eld b̂, then, ac-

cording to Equation 3.23, the re�ected phase quadrature is given by:

ĉ
s
(Ω) = b̂

s
(Ω) −� ⋅ b̂c

(Ω) (3.25)

where
|

|

�
|

|

= �2 |
|

�m|| ∕ℏ expresses the magnitude of the transfer function from amplitude

quadrature of the incident �eld to phase quadrature of the re�ected �eld.
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Beamspli�er matrix

The �eld relations for a static and lossless beamsplitter with transmission and re�ection

amplitude coe�cients of

√

T and

√

R (see Figure 3.2), can be written as:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ̂
ĉ
â
r̂

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
√

R 0 0
√

T
0 −

√

R
√

T 0
0

√

T
√

R 0
√

T 0 0
√

R

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d̂
v̂
ŝ
b̂

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.26)

Figure 3.2: De�nition of the �elds used to derive the beamsplitter matrix. The convention for the

positive and negative signs acquired during re�ection is shown.

3.1.2 Traditional scheme

First, let us calculate the quantum limit of the traditional power stabilization scheme

introduced in Section 1.6.1 using the described two-photon formalism approach. The �eld

operators used in this calculation are represented in Figure 3.3. Using the beamsplitter

matrix of Equation 3.26, the amplitude and phase quadratures of the out-of-loop �eld ô are

obtained:

ô =
√

T ⋅ t̂ −
√

R ⋅ v̂ . (3.27)

The quadratures for the �eld t̂ transmitted by the amplitude modulator are:

t̂
c
= f̂

c
− ŝ

c
⋅ � , (3.28)

t̂
s
= f̂

s
, (3.29)

where � is the complex ampli�cation factor of the control loop. Here an ideal amplitude

modulator, as discussed in Section 3.1.1, was assumed. The �eld ŝ is a sum of the re�ected

�eld t̂ from the beamsplitter and the transmitted vacuum �eld v̂ coupling at the open port

of the beamsplitter:

ŝ =
√

T ⋅ v̂ +
√

R ⋅ t̂ . (3.30)
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Figure 3.3: Schematic of the traditional amplitude stabilization scheme. The free running laser �eld

f̂ is sent to an amplitude modulator, and the transmitted �eld t̂ is partially re�ected by a beamsplitter

and partially transmitted to the out-of-loop �eld ô. The vacuum �eld v̂ couples at the open port of

the beamsplitter and is partially imprinted on the t̂ �eld by the feedback control loop, and partially

re�ected to the ô �eld. The in-loop amplitude quadrature ŝ
c

is sensed and the resulting feedback

signal is ampli�ed by a controller with a complex gain �.

According to a classical feedback control theory, Equations 3.28 and 3.30 can be combined

in the steady state regime and therefore the �nal expression for t̂
c

is:

t̂
c
=
f̂

c
− �

√

T ⋅ v̂
c

1 + �
√

R
. (3.31)

The out-of-loop �eld quadratures as a function of the uncorrelated input �elds are then:

ô
c
=

√

T ⋅ f̂
c
−
(

� +
√

R
)

⋅ v̂
c

1 + �
√

R
, (3.32)

ô
s
=
√

T ⋅ f̂
s
−
√

R ⋅ v̂
s
. (3.33)

The free running amplitude quadrature f̂
c

is reduced by the open loop gain �
√

R, that

depends on the transfer function  =
√

R from amplitude modulations at the output of the

modulator to amplitude modulations at the photodetector
1
. The vacuum �eld is partially

suppressed by the loop gain and partially imprinted on the out-of-loop �eld.

It is an interesting fact that, while the out-of-loop �eld satis�es the expected bosonic

commutation relation:

[

ô
c
(Ω) , ô

s

(

Ω′
)]

= 2�i�
(

Ω + Ω′
)

⋅
T + �

√

R + R

1 + �
√

R
= 2�i�

(

Ω + Ω′
)

, (3.34)

1
The transfer function  is the amplitude analogous to the power � coe�cient introduced in Chapter 2.
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the in-loop �eld does not:

[

t̂
c
(Ω) , t̂

s

(

Ω′
)]

=
2�i� (Ω + Ω′)

1 + �
√

R
≠ 2�i�

(

Ω + Ω′
)

, (3.35)

which violates the uncertainty principle. Such violation comes from the assumption that

the modulator acts only on the amplitude quadrature of the laser, which is suppressed,

while the phase quadrature is unchanged. A solution for this problem was proposed in ref-

erence [97], and is called self-consistent formalism. There the modulator is described via

the squeezing operator, which introduces anti-squeezing in the phase quadrature, preserv-

ing the commutation relation for the in-loop �eld t̂. However, to preserve the relations for

the out-of-loop �eld, the modulator needs to act on quadratures (v̂
s

in this case) which are

never physically present in the modulator, violating the causality principle. In this thesis,

the violation for the in-loop �eld t̂ was chosen not to be taken into account since, to my

knowledge, it is not possible to measure t̂ without coupling additional noise in the mea-

surement device, which should force the preservation of the commutation relation.

In the limit when |�|
√

R ≫ 1 and subsequently when |�| →∞, the amplitude quadra-

ture and its corresponding power spectral density are:

ô
c
≃
−v̂

c

√

R
and S ô

cc
≃ 1
R
. (3.36)

The cross power spectral density S
cs

is always zero, and this is due to the fact that the

scheme does not introduce a correlation between the amplitude and phase quadratures.

However the uncertainty relation between the quadratures is higher than for a coherent

state, which is expected since noise is always imprinted in the amplitude quadrature in

comparison to a vacuum state (R < 1). According to Equation 3.18, the ASD of the out-of-

loop absolute power noise is:

�P
ool
=

√

2ℏ!0P0 (1 − R)
R

, (3.37)

where P 0 is the mean power at the output of the laser. The relative power noise is then:

RPN
ool
=

√

2ℏ!0
P0R(1 − R)

, (3.38)

which is the same result as obtained in Equation 1.10.

If one is interested in calculating the performance of the traditional scheme assisted by

squeezing, the power spectral density of the operator v̂
c

has to be substituted to its squeezed
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state value, which is smaller than 1 s
−1 ⋅ Hz

−1
(see Section 1.6.2).

3.1.3 Radiation pressure scheme

The schematic of the stabilization scheme via radiation pressure chosen to be analyzed

in this thesis is shown in Figure 3.4. This scheme implements two independent laser sources:

one providing a strong transfer beam to be stabilized (red trace), and other a weak sensing

beam (orange trace), that performs the readout of the position of the micro-oscillator mir-

ror
2
. A similar scheme was analyzed in reference [98], but for a freely suspended mirror

inside an optical cavity.

The scheme works as follows: the free running �eld f̂ to be stabilized from the transfer

beam is sent to an amplitude modulator, and the transmitted �eld t̂ impinges on a micro-

oscillator mirror and is fully re�ected to the out-of-loop �eld ô. The oscillator’s position

x̂ is sensed via a Michelson interferometer with a balanced homodyne readout [95] ideally

sensitive only to the phase quadrature of the output �eld ℎ̂, that represents the di�erential

length of the interferometer arms. The output signal is then ampli�ed by a complex gain

�, and the resulting feedback signal is sent to the amplitude modulator, which stabilizes f̂
c
.

The interferometer implements a weak sensing beam represented by the �eld ŝ. The �gure

also shows the vacuum �eld v̂ that couples at the dark port of the interferometer.

Figure 3.4: Schematic of the amplitude stabilization scheme via radiation pressure. The free running

laser �eld f̂ is sent to an amplitude modulator and the transmitted �eld t̂ impinges on a micro-

oscillator mirror and is fully re�ected to the out-of-loop �eld ô. The oscillator’s position is sensed

via a Michelson interferometer with a balanced homodyne readout. The feedback signal is ampli�ed

by a controller with a complex gain �. The convention adopted as the positive direction of x̂ is shown

by the arrow on top of the oscillator.

2
Here oscillator is referred to the combination of the mirror plus its suspension.
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First, let us introduce the following useful parameters, similarly de�ned in Equations

3.25 and 3.23:

′
� =

�′2�m
ℏ

, where �′ =

√

8P
s
ℏ!0
c

,

� =
�2�m
ℏ

, where � =

√

8P
t
ℏ!0
c

,

(3.39)

where P
s

and P
t

are the mean power of the sensing and transfer beams respectively (the

overline was omitted for simplicity). Then, using the beamsplitter matrix from Equation

3.26, and assuming that the interferometer is locked on the dark fringe and has equal arm

lengths, the relations for the �elds in the interferometer are obtained:

â =
√

R ŝ +
√

T v̂ ,

b̂ = −â,

ĉ =
√

T ŝ −
√

R v̂ ,

d̂ = −ĉ −

(

0
1

)
√

T�′

ℏ
x̂ ,

ĥ =
√

T b̂ −
√

R d̂ ,

(3.40)

where the operators are represented in the vector form: â =
(

â
c
â

s

)T
and optical losses

were neglected. The oscillator’s position is in�uenced by the two independent �elds ŝ and

v̂ in the interferometer, and by the stabilized �eld t̂:

x̂ = �m
(

−�′T ⋅ ŝ
c
+ �′

√

RT ⋅ v̂
c
+ � ⋅ t̂

c

)

. (3.41)

By implementing an interferometer with a balanced homodyne readout, the control loop

feedback signal is proportional to:

ℎ̂
s
sinΦ

LO
+ ℎ̂

c
cosΦ

LO
, (3.42)

where Φ
LO

is the homodyne angle between the local oscillator and the interferometer out-

put. In order to improve the signal-to-noise ratio, a readout only sensitive to the phase

quadrature was chosen, i.e. Φ
LO
= �∕2. Additionally, noise sources from the local oscil-

lator beam ideally do not couple at the readout. Accordingly to Equation 3.40, the phase

quadrature in the output of the interferometer is:

ℎ̂
s
= −v̂

s
−′

�T
√

TR ⋅ ŝ
c
+′

�TR ⋅ v̂c
+
√

TR′
�� ⋅ t̂c . (3.43)
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Assuming a 50:50 beamsplitter and de�ning � = ′
�∕4, this equation simpli�es to:

ℎ̂
s
= −v̂

s
−� ⋅

(

ŝ
c
− v̂

c

)

+
√

�� ⋅ t̂c . (3.44)

The �rst term represents the vacuum �uctuations v̂
s

in the phase quadrature that couples

via the dark port of the interferometer and are fully re�ected to the output �eld. They are

referred here as the interferometer readout noise. The second term represents the radiation

pressure noise caused by the amplitude quadratures ŝ
c

and v̂
c

of the sensing and vacuum

�elds. The third term contains information about the free running amplitude quadrature

f̂
c
, and therefore is a representation of the interested signal. The factor

√

�� = ���m∕ℏ
represents the transfer function  from amplitude modulations from the transfer beam to

amplitude modulations detected by the in-loop photodetector.

Similarly to the calculation for the traditional scheme, the amplitude quadrature trans-

mitted by the modulator is given by t̂
c
= f̂

c
− � ⋅ ℎ̂

s
which, in the steady state regime, can

be combined with Equation 3.44 to obtain:

t̂
c
=
f̂

c
+ �

(

� ⋅
(

ŝ
c
− v̂

c

)

+ v̂
s

)

1 + �
√

��

,

t̂
s
= f̂

s
,

(3.45)

where an ideal modulator acting only on the amplitude quadrature of the light was consid-

ered. For this calculation it was assumed that the negative feedback does not introduce a

new quantum noise source in the stabilized �eld t̂. This assumption is sustained by the fact

that, because the control loop performs a single quadrature measurement of the photon-

number operator, the commutation relation for the ampli�ed �eld is preserved without the

need of an additional noise operator [99].

The out-of-loop quadratures are obtained from Equations 3.24 and 3.41:

ô
c
= t̂

c
,

ô
s
= t̂

s
−
�
ℏ
⋅ x̂ = t̂

s
+
√

�� ⋅
(

ŝ
c
− v̂

c

)

−� ⋅ t̂c ,
(3.46)

which, according to Equation 3.45, are given as functions of the uncorrelated input �elds
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as:

ô
c
=
f̂

c
+ � ⋅ v̂

s
+ �� ⋅

(

ŝ
c
− v̂

c

)

1 + �
√

��

(3.47)

≈
v̂

s

√

��

+

√

�

�
⋅
(

ŝ
c
− v̂

c

)

, (3.48)

ô
s
= f̂

s
−

� ⋅ f̂c
+ �� ⋅ v̂s

−
√

�� ⋅
(

ŝ
c
− v̂

c

)

1 + �
√

��

(3.49)

≈ f̂
s
− v̂

s

√

�

�
. (3.50)

The approximation was done in the high gain regime when
|

|

|

�
√

��
|

|

|

≫ 1 and subse-

quently |�| → ∞. As expected, the free running modulations f̂
c

in the out-of-loop am-

plitude quadrature are reduced by increasing the open loop gain �
√

�� of the feedback

control loop. Additionally, the readout and radiation pressure noise introduced by the in-

terferometer (second and third terms in Equation 3.47) are imprinted on the out-of-loop

�eld and cannot be decreased below a certain value (Equation 3.48).

By comparing Equations 3.36 and 3.48 a remarkable di�erence between the traditional

and the radiation pressure schemes can be observed. In the traditional scheme, the sensor

noise imprinted on the out-of-loop beam is divided by  =
√

R which is always smaller

than 1 for a linear beam splitter. However, in the radiation pressure scheme, the interfer-

ometer readout noise is divided by  =
√

�� which, for frequencies below resonance,

can have an absolute value much larger than 1 for a high susceptibility oscillator. Addi-

tionally, the radiation pressure noise is multiplied by

√

�∕� , i.e, the ratio between the

sensing and transfer beam mean power, which can easily be set to smaller than 1. For these

reasons, it is possible to obtain bright squeezed light in the out-of-loop beam, i.e., a power

stability below the transfer beam shot noise, which is not possible in the traditional and

OAC-coupling schemes.

The single sided power spectral densities of the amplitude (S ô
cc

) and phase quadratures
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(S ô
ss

) of the out-of-loop beam are respectively:

S ô
cc
=
S f̂

cc
+ |�|2 + |

|

��
|

|

2 (S ŝ
cc
+ 1

)

|

|

|

1 + �
√

��
|

|

|

2
≈ 1

|

|

|

��
|

|

|

+
|

|

|

|

|

�

�

|

|

|

|

|

(

S ŝ
cc
+ 1

)

, (3.51)

S ô
ss
= S f̂

ss
+

|

|

|

�
|

|

|

2 (

S f̂
cc
+ |�|2

)

+ |

|

|

��
|

|

|

(

S ŝ
cc
+ 1

)

|

|

|

1 + �
√

��
|

|

|

2
≈ S f̂

ss
+
|

|

|

|

|

�

�

|

|

|

|

|

, (3.52)

where the approximations were done for the high gain regime.

3.1.3.1 Analysis for coherent beams

To understand the dynamics of this scheme, let us �rst assume that the sensing and

transfer beams are in a coherent state, i.e., S f̂ (ŝ)
cc

= 1 and S f̂ (ŝ)
ss

= 1. Figure 3.5 shows

the ASD of the amplitude (upper plot) and phase (lower plot) quadratures for di�erent

ampli�cation factors � (here treated as frequency independent). The oscillator chosen for

the analysis in this chapter is a micro-oscillator with a mass of m = 40 ng, fundamental

longitudinal resonance frequency Ω0 = 2� ⋅ 100Hz and a quality factor Q = 2 × 10
5
. More

details about this choice are given in Section 3.2. Additionally, the wavelengths of the

transfer and sensing beams were set to 1064 nm.

First let us analyze the amplitude quadrature. When the loop is open, |�| = 0 and

therefore S ô
cc
= S f̂

cc
= 1 for a coherent state. As anticipated, when the loop is closed an

interesting result is obtained: for low frequencies the amplitude quadrature is squeezed,

as it has an ASD smaller than for the vacuum state, whereas for high frequencies noise

is always imprinted. This can be better understood by analyzing the amplitude quadra-

ture in the high gain regime (Equation 3.48). In this case, f̂
c

is completely suppressed and

has no contribution to the spectral density. The interferometer readout noise v̂
s

is divided

by the oscillator’s susceptibility and by the transfer and sensing beam mean powers since

√

�� ∝ �m
√

P
t
P

s
. This means that below Ω0 the readout noise is suppressed by a con-

stant and large factor (
|

|

�m|| ≈ 6 × 10
4

m ⋅ N
−1

), while above Ω0 the suppression gets smaller

and is subsequently ampli�ed in a Ω2 fashion, following the decrease in the susceptibility

proportional to 1∕Ω2. This ampli�cation happens because, since the optomechanical re-

sponse of the oscillator at high frequencies gets smaller, the loop needs to apply a higher

amplitude modulation on the transfer beam to compensate the readout noise and keep the

error signal zero. In this regime it is desirable to use small or zero feedback ampli�cation �.
The power dependence on the readout noise suppression is due to the fact that by increas-

ing P
s

the output interferometer signal is increased (higher signal-to-shot-noise ratio), and

by increasing P
t

the modulation that needs to be applied in the transfer beam to compen-
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Figure 3.5: ASD of the out-of-loop amplitude (upper plot) and phase (lower plot) quadratures calcu-

lated from Equations 3.51 and 3.52 for di�erent ampli�cation factors � and for a mean transfer and

sensing beam powers of P
t
= 1 W and P

s
= 0.4 mW. The ASD of a coherent state is displayed by the

dashed black line as a reference.

sate the readout noise is reduced. The contribution from radiation pressure noise (from the

quadratures v̂
c

and ŝ
c
) does not depend on the mechanical susceptibility and therefore it is

frequency independent. This is to be expected since the susceptibility has an equal impact
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on the radiation pressure displacement caused by t̂
c
, ŝ

c
, and v̂

c
. It depends, however, on the

ratio between the sensing and transfer beam mean powers, which is smaller than 1.

The Heisenberg uncertainty principle anticipates that in the region where the am-

plitude quadrature is squeezed, the phase quadrature will su�er a penalty and be anti-

squeezed. This is exactly what is shown in the lower plot of Figure 3.5. When the loop

is open, the phase quadrature has contributions from f̂
s

(with S f̂
ss
= 1), plus the frequency

dependent terms � ⋅ f̂c
and

√

�� ⋅
(

ŝ
c
− v̂

c

)

, representing the radiation pressure dis-

placement caused by the transfer and sensing beams. When the loop is closed, the amplitude

quadrature f̂
c

is suppressed for low frequencies, which consequently leads to a reduction

in the phase quadrature ô
s
. However, unlike the amplitude, the phase quadrature will never

undergo squeezing since there is no mechanism in the setup to suppress f̂
s
. In the regime

where |�| → ∞, an additional constant noise is imprinted on the phase quadrature at high

frequencies. This is because the noise in the amplitude quadrature t̂
c

increases with Ω2,
while the susceptibility decreases with 1∕Ω2, resulting in a frequency independent contri-

bution.

Heisenberg uncertainty relation

The out-of-loop quadratures satisfy the usual bosonic commutation relation:

[

ô
c
(Ω) , ô

s

(

Ω′
)]

= 2�i�
(

Ω + Ω′
)

⎡

⎢

⎢

⎣

1
1 + �

√

��

+
�
√

�� + �2��
(

1 + �
√

��
)2

⎤

⎥

⎥

⎦

= 2�i�
(

Ω + Ω′
)

.

(3.53)

They also need to satisfy the uncertainty relation H given by Equation 3.10. The cross

correlation between the amplitude and phase quadratures is given by:

⟨{

ô
c
, ô

s

}⟩

2
= −

� ⋅
⟨

f̂ 2
c

⟩

(

1 + �
√

��
)2
−

��2 ⋅
⟨

v̂2
s

⟩

(

1 + �
√

��
)2
+

��
√

�� ⋅
⟨

ŝ2
c
+ v̂2

c

⟩

(

1 + �
√

��
)2

. (3.54)

Therefore the cross power spectral density, considering that the transfer and sensing beams

are in a coherent state, is then:

S ô
cs
=
−� −��2 + 2��

√

��
(

1 + �
√

��
)2

≠ 0 . (3.55)

As expected, the cross spectral density is non-zero, since the micro-oscillator introduces a

correlation between the amplitude and phase quadratures of the out-of-loop �eld.

Figure 3.6 shows the Heisenberg uncertainty relationH for di�erent conditions. In the
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absence of the sensing beam, S ô
cs
= � and Heisenberg’s uncertainty is then frequency in-

dependent and equal to 1, as expected from a pure coherent state (dashed black line). In the

presence of the sensing beam, but with the loop open (yellow curve), the oscillator moves

freely and radiation pressure noise from the interferometer introduces an uncertainty in

the out-of-loop phase quadrature that is shaped by the oscillator’s susceptibility:

H2 = 1 + 2 ||
|

��
|

|

|

. (3.56)

When the loop is closed, the position of the oscillator is suppressed at low frequencies,

reducing the uncertainty, while for high frequencies an additional uncertainty is introduced

in comparison with when the loop is open. The uncertainty principle is always satis�ed,

which can be easier seen in the regime where |�| →∞ (blue curve):

H2 = S ô
cc
S ô

ss
− |

|

|

S ô
cs

|

|

|

2
= 1

|

|

|

��
|

|

|

+ 2
|

|

|

|

|

�

�

|

|

|

|

|

+ 2 > 1 . (3.57)

The uncertainty will always be larger than 1 since noise above the vacuum level is always

imprinted in the out-of-loop phase and amplitude quadratures by the interferometer and

the control loop.
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Figure 3.6: Uncertainty relation H for di�erent ampli�cation factors � in the control loop. For all

curves P
t
= 1 W and P

s
= 0.4 mW. The relation H for a pure coherent state (sensing beam power

turned o�) is displayed by the dashed black line as a reference.
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3.1.3.2 Analysis for non-coherent beams

The assumption made that the transfer and sensing beams are in a coherent state was

useful to understand the scheme dynamics, but it is unrealistic since lasers always exhibits

technical noise. Therefore, in this section the out-of-loop performance is analyzed taking

into account technical power noise in both beams.

The power spectral density of the out-of-loop beam amplitude quadrature as a function

of the initial relative power noise in the sensing and transfer beams (RPN
s

and RPN
f
) can

be obtained, in the regime where
|

|

|

�
√

��
|

|

|

≫ 1, from Equations 3.51 and 3.19:

S ô
cc
= c4

16P
s
!20 ||�m||

2

(

RPN
2
f

2ℏ!0 |�|
2
+ 1
P

t

)

+
P

s

4P
t

(

RPN
2
s
P

s

2ℏ!0
+ 1

)

. (3.58)

In order to obtain squeezing in the out-of-loop amplitude quadrature, S ô
cc

needs to be

smaller than 1, and therefore the following conditions need to be satis�ed:

RPN
s
P

s
< 2

√

2ℏ!0Pt
, (3.59)

RPN
f
<
4!0 ||�m�||

√

2ℏ!0Ps

c2
. (3.60)

The �rst condition states that the absolute power noise of the sensing beam needs to be

smaller than 2 times the absolute shot noise of the transfer beam. This is to be expected

since, for light to be squeezed, the interferometer needs to have a sensitivity high enough

to detect the transfer beam shot noise. The second condition is related to the suppression

provided by the control loop and can be satis�ed in the high open loop gain regime.

The power spectral density of the out-of-loop beam relative power noise RPN
ool,q

is

then given by:

RPN
2
ool,q

= c4

16!20 ||�m||
2
⋅

RPN
2
f

P
s
P

t
|�|2

+
RPN

2
s
P 2

s

4P 2
t

+ c4ℏ
8!0 ||�m||

2
⋅
1

P
s
P 2

t

+
ℏ!0Ps

2P 2
t

. (3.61)

The stability is now limited by the suppression of transfer beam power noise by the control

loop (�rst term), by the technical radiation pressure noise from the sensing beam (second

term), and by the interferometer readout and radiation pressure quantum noises (third and

fourth terms). The transfer beam mean power has the same e�ect in all terms: by increasing

its value, the RPN
ool,q

is reduced. This happens for two reasons: �rst because the transfer

factor from power to oscillator motion is increased, which increases the open loop gain,

and second, because a smaller relative power modulation on the transfer beam needs to be

applied in order to compensate for the interferometer noise. Therefore it is interesting to
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have the highest transfer beam power as possible, which will ultimately be limited by the

damage threshold of the micro-oscillator and the power availability.

The optimal value for the sensing beam mean power depends if the interferometer

is quantum noise limited or if it is limited by technical radiation pressure noise. Let us

calculate the sensing beam power P
s,q

that minimizes the interferometer quantum noise

contribution. This can be done by a compromise between the quantum radiation pressure

noise and the readout noise contributions:

P
s,q
= c2

2!0 ||�m,0||
≈ 0.4mW

(

m
40 ng

⋅
Ω20

(100Hz)2

)

, (3.62)

where
|

|

�m,0|| is the susceptibility magnitude at low frequencies, which is approximately con-

stant. Then, the out-of-loop power stability will be limited by the interferometer quantum

noise if the following conditions are satis�ed:

RPN
s
<
2!0
c

√

ℏ |
|

�m,0|| = 3 × 10
−8Hz−1∕2

(

(40 ng)1∕2

m1∕2
⋅
2� ⋅ 100Hz

Ω0

)

, (3.63)

RPN
f

√

P
t

|�|
< 2

√

2ℏ!0 ||�m||
|

|

�m,0||
= 1 × 10−9W1∕2 ⋅ Hz−1∕2

√

|

|

�m||
|

|

�m,0||
. (3.64)

The ASD of the out-of-loop relative power noise, calculated from Equation 3.61, is plotted

in Figure 3.7 for two initial power noise values for the transfer and sensing beams. For

the frequency range displayed in the �gure, the high gain approximation is valid. The plot

shows that a sub-shot noise stabilization can be achieved even when considering a high

RPN
s
= 10

−6
Hz

−1/2
, that is easily achievable with a traditional pre-stabilization, and a re-

alistic ampli�er gain of |�| = 10
3
. The red curve is limited by the interferometer technical

radiation pressure noise. For this curve, P
s

was optimized to be as low as possible, bounded

by the next contribution coming from the term RPN
f
. The blue curve, however, is lim-

ited by the interferometer quantum noise and P
s

was adjusted according to Equation 3.62.

This limit can only be decreased further by increasing the mechanical susceptibility and

reducing the sensing beam power simultaneously. This is depicted in the green curve, in

which the longitudinal resonance of the oscillator was reduced to Ω0 = 2�⋅60 Hz, leading

to an increase in
|

|

�m,0|| by a factor of 2.8 (P
s

was reduced accordingly). This increase in

the power stability at low frequencies comes with a cost of decreasing the stabilization at

high frequencies. Therefore the resonance frequency needs to be chosen according to the

frequency range requirements of the experiment.
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Figure 3.7: ASD of the out-of-loop beam relative power noise for: RPN
s
= RPN

f
= 10−6Hz−1∕2 and

P
s
= 0.1mW (red curve), and RPN

s
= RPN

f
= 10

−8
Hz

−1/2
and P

s
= 0.4 mW (blue curve). The green

curve has the same parameters of the blue curve, except for the oscillator fundamental longitudinal

resonance of Ω0 = 2�⋅60 Hz and P
s
= 36 µW. For all curves P

t
= 1 W and |�| = 10

3
. As a reference,

the transfer beam relative shot noise is depicted in the dashed yellow curve.

3.2 Thermal noise limit

An important noise source in precision measurements is thermal noise, which sets a

fundamental limit in the degree to which the oscillator can stay at rest with the system in

equilibrium at a certain temperature T . The physical process that generates these random

�uctuations in the oscillator position originates from dissipations in the system.

The relation between the thermal �uctuations and the dissipation of energy in a system

is given by the �uctuation-dissipation theorem ([100], [101], [102]). The power spectral

density of a system’s �uctuating thermal motion x
tn

is given by [11]:

x2
tn
(Ω) =

4k
B
T

Ω2
Re

[

1
Z(Ω)

]

, (3.65)

whereZ is the mechanical impedance of the system and k
B

is the Boltzmann constant. The

impedance of a linear system can be calculated from the equation of motion that relates

the external force F
ext

necessary to cause the system to move with a sinusoidal velocity of

amplitude v, i.e., F
ext
= Zv. By substituting x = v∕iΩ into the equation of motion of a
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harmonic oscillator (derived in Section 2.1.3), the following impedance is calculated:

Z =
−mΩ2 + k [1 + i�]

iΩ
, (3.66)

where k = mΩ20 is the spring constant. Therefore, the power spectral density of the oscil-

lator position is:

x2
tn
(Ω) =

4kBTk�
Ω
[

(k − mΩ2)2 + k2�2
] . (3.67)

The frequency behavior of the loss angle � depends on the source of dissipation in the

system, which can be loosely divided into external and internal losses.

The most common external loss source is due to viscous damping, which is caused by

the surrounding gas molecules that hit the oscillator. This form of dissipation results in a

restoring force proportional to the oscillator’s velocity. The e�ect of viscous damping can

be reduced by operating the experiment under low pressures. The viscous loss angle �
v

in

this case can be obtained by the substitution ik�
v
x ≡ bẋ in the equation of motion of the

harmonic oscillator, which leads to:

�
v
(Ω) = Ω

Ω0Qv

, with Q
v
=
Ω0m
b

, (3.68)

where Q
v

is the viscous quality factor, and b is the damping parameter. Assuming that

the experiment is operated at a pressure p small enough so that the mean free path for

the residual gas molecules is large compared to the dimensions of the micro-oscillator, the

damping parameter b is approximately [11]:

b = pA
√

�
2�kBT

, (3.69)

which is proportional to the surface area A of the mirror and to the mass � of one gas

molecule. Here T is the gas temperature, which is related to the pressure by p = nkBT ,

with n the number density of molecules in the gas. If the residual gas is only composed by

nitrogen, a high quality factor of:

Q
v
= 5 × 107

(

Ω0
2� ⋅ 100Hz

⋅
m

40 ng
⋅
10−6mbar

p
⋅
� 352 µm2

A

)

, (3.70)

can be obtained, for a gas at room temperature. Table-top experiments however, can be

dominated by a monolayer of water that sticks strongly to the vacuum chamber walls and

randomly de-adheres over time, which can impart a random kick of momentum in the

micro-oscillator. In this case, inelastic scattering needs to be taken into account as the

molecules can stick for a short time to the mirror surface. Considering that the mirror is
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a cylinder with radius R, surface area A = �R2, and thickness l, the following damping

parameter can be calculated [103]:

b = pA

√

128�
�kBT

(

1 + l
2R

+ �
4

)

. (3.71)

For the chosen micro-oscillator in this work, a thickness l around 4.2 µm and a radius R of

35 µm will be considered. In this case, a quality factor of Q
v
= 2 × 10

6
is expected, which is

more than 1 order of magnitude lower than what calculated with Equation 3.70.

The typical behavior of thermal noise displacement caused by viscous damping is shown

by the red curve of Figure 3.8. The displacement is approximately constant for frequencies

below resonance:

x
tnv
(Ω≪ Ω0) ≈

√

4kBT
Q

v
mΩ30

, (3.72)

and it falls like 1∕Ω2 above resonance:

x
tnv
(Ω≫ Ω0) ≈

Ω20
Ω2

√

4kBT
Q

v
mΩ30

. (3.73)

For o�-resonance frequencies the displacement is reduced by increasing the quality factor.

At resonance, however, the displacement is directly proportional to the quality factor and

therefore it will be increased with a higher quality factor.

The most common form of internal loss is called structural damping, which is associated

with internal friction losses. For this damping, the loss angle has only a weak dependence

on frequency and is treated as a constant:

�
s
= 1
Q

s

, (3.74)

where Q
s

is the structural quality factor. The typical thermal noise displacement modeled

by structural damping is shown by the blue curve of Figure 3.8. Unlike the viscous regime,

the displacement is proportional to Ω−1∕2 for frequencies below resonance,

x
tns
(Ω≪ Ω0) ≈

√

4kBT
Q

s
mΩ20

⋅
1
Ω
, (3.75)

and proportional to Ω−5∕2 for frequencies above resonance,

x
tns
(Ω≫ Ω0) ≈

√

4kBTΩ20
mQ

s

⋅
1
Ω5

. (3.76)
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The total thermal noise displacement from the viscous and structural damping contribu-
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Figure 3.8: Comparison of the ASD of the thermal noise displacement caused by viscous and struc-

tural damping. The calculation was done assuming a structural and viscous quality factor of Q
s
=

2 × 10
5

and Q
v
= 5 × 10

7
, and an oscillator with m = 40 ng and Ω0 = 2�⋅100 Hz, operated at a tem-

perature of T = 4 K.

tions is calculated by substituting the total loss angle � = �
v
+ �

s
, into Equation 3.67.

Let us now calculate the minimum relative power noise RPN
ool,tn

achievable in the out-

of-loop beam limited by thermal noise. Its value is equal to the power modulation that

needs to be imprinted on the transfer beam to compensate the thermally driven motion of

the oscillator (imposing x
rp

!

= x
tn
), which leads to:

RPN
ool,tnv

= c
P

t

√

kBT b , (3.77)

RPN
ool,tns

=
cΩ0
P

t

√

kBTm
Q

s
Ω

. (3.78)

For the viscous regime, the stability is improved by lowering the area of the mirror. In the

structural regime, the stability is improved by lowering the spring constant of the mirror,

assuming that the structural quality factor is independent on it. A stability of 10
−9

Hz
−1/2

at
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10 Hz can be reached with the following values:

RPN
ool,tns

= 10−9Hz−1∕2 ⋅

(

Ω0
2� ⋅ 100Hz

⋅
2.5W
P

√

T
4 K

⋅
2 × 105
Q

s

⋅
m

40 ng

⋅
2� ⋅ 10 Hz

Ω

)

.

(3.79)

The structural thermal noise contribution to RPN
ool

scales with frequency in the oppo-

site way than quantum noise, as it is larger for low frequencies and smaller for high fre-

quencies. The parameters with most impact on improving the out-of-loop power stability

in this case are the transfer beam power and the mirror spring constant. The contribution

from viscous damping to the RPN
ool

will eventually predominate at high frequencies since

it is frequency independent. This is shown in Figure 3.9, where the relative power noise

is plotted separately for the structural and viscous contributions for two oscillators with

di�erent resonance frequencies. The dashed purple curve represents the contribution from

the total thermal noise.
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Figure 3.9: ASD of the relative power noise RPN
ool,tn

of the out-of-loop beam limited by thermal

noise in the micro-oscillator. The red, yellow, and purple curves were calculated for an oscillator

with a resonance frequency ofΩ0 = 2�⋅100 Hz, while the blue and green curves were calculated for

Ω0 = 2�⋅30 Hz. The dashed purple curve represents the total thermal noise contribution. All curves

were calculated with the following parameters: Q
s
= 2 × 10

5
, Q

v
= 5 × 10

7
, m = 40 ng, P

t
= 4 W,

and T = 4 K.
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3.3 Total fundamental limit

The total fundamental limit of the RPN
ool

is obtained as an uncorrelated sum of the

transfer scheme’s quantum noise (Equation 3.61) and thermal noise (Equation 3.78) contri-

butions.

Figure 3.10 shows the individual contributions of the interferometer noises to the out-

of-loop beam stability. By comparing the quantum and thermal noise contributions, it is

possible to observe that in general the RPN
ool

stability is limited by thermal noise at low

frequencies and by quantum noise at high frequencies. For this reason, only structural

thermal noise will have an impact on the total fundamental limit
3
. Since the interferometer

readout noise dominates the quantum limit at high frequencies, it is interesting to increase

the sensing beam power above the level de�ned by Equation 3.62. This power increase

will reduce the fundamental limit at high frequencies up to the point where the technical

radiation pressure noise from the sensing beam starts to dominate the thermal noise. The

optimal sensing beam power is now obtained by imposing that the separated contributions

from structural thermal noise, technical radiation pressure noise, and readout noise meet

at a certain frequency. Thermal noise and technical radiation pressure noise curves meet

at the following frequency:

Ω
tn,rp

=
4c2Ω20kBTm

Q
s
RPN

2
s
P 2

s

, (3.80)

while thermal noise and readout noise curves meet at:

Ω
tn,r
=

(

8Ω20kBT!0Ps

Q
s
c2ℏm

)1∕5

. (3.81)

Then, the optimal sensing beam power is obtained in the condition when Ω
tn,r

= Ω
tn,rp

.

This leads to:

P
s
=

(

27c12Ω80
(

kBT
)4m6ℏ

Q4
s

RPN
10
s
!0

)1∕11

= 37mW
(

10−8Hz−1∕2
RPN

s

)10∕11

, (3.82)

which is the power used in Figure 3.10. As expected, the individual noise projections meet

at 1.7 kHz. Quantum radiation pressure noise and the suppressed free running transfer

beam power noise are a factor of 3 below the total noise and therefore do not limit the

total stability. A higher sensing beam power can also be implemented in order to reduce

the relative power noise at high frequencies, at the cost of increasing the noise at low

frequencies.

3
Here it was assumed that the viscous thermal noise at low frequencies is negligible in comparison with

the structural thermal noise.
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Figure 3.10: ASD of the following contributions of interferometer noise projected to the out-of-loop

relative power noise: structural thermal noise (red), interferometer readout noise (blue), technical

radiation pressure noise (yellow), and quantum radiation pressure noise (green). The transfer beam

free running power noise suppressed by the open loop gain is displayed by the purple curve. The

following parameters were used: Q
s
= 2 × 10

5
, T = 4 K, P

t
= 4 W, P

s
= 37 mW, |�| = 10

3
and

RPN
s
= RPN

f
= 10

−8
Hz

−1/2
.

The total fundamental limit for di�erent oscillators is shown in Figure 3.11. The red

curve was plotted with the parameters for the micro-oscillator chosen for this chapter, and

the blue curve for the same type of oscillator but with a lower resonance frequency of

Ω0 = 2�⋅60 Hz. These parameters were chosen for an optimal stabilization aimed at fre-

quencies higher than 10 Hz, which is the target in gravitational wave detectors. As a result, a

power stability smaller than 6 × 10
−10

Hz
−1/2

can be achieved for frequencies between 10 Hz

and 6 kHz. In addition to that, bright squeezed generation is possible to a level of 11 dB for

the micro-oscillator analyzed in this chapter. For frequencies where the power stability is

limited by structural thermal noise, the squeezing level can be calculated with the following

equation:

RSN
ool

RPN
ool

= 1
cΩ0

√

2ℏ!0Pt
Q

s
Ω

kBTm
∝
√

P
t
. (3.83)

The fact that the amount of bright squeezing is proportional to the transfer beam power is

an additional advantage of this scheme over the traditional scheme assisted by squeezing,

in which the amount of squeezing is inversely proportional to the out-of-loop power (see

Equation 1.13) and therefore it disfavors the generation of a high power squeezed beam.
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Figure 3.11: ASD of the RPN
ool

limited by the total interferometer noise for the following param-

eters: red curve: m = 40 ng, Ω0 = 2�⋅100 Hz, P
t
= 4 W and P

s
= 37 mW, blue curve: m = 40 ng,

Ω0 = 2�⋅60 Hz, P
t
= 4 W and P

s
= 26 mW, and green curve: m = 5 mg, Ω0 = 2�⋅6 Hz, P

t
= 10 kW,

and P
s
= 2 W. For all curves RPN

f
= RPN

s
= 10

−8
Hz

−1/2
, |�| = 10

3
, T = 4 K, and Q

s
= 2 × 10

5
. For

reference, the relative shot noise of a beam with 4 W is shown by the dashed yellow curve and the

relative shot noise of a beam with 50 mW (traditional stabilization scheme stability) is shown by the

dashed purple curve.

Micro-oscillators with similar individual parameters have been reported in references

[70] (mass around 40 ng) and [104] (resonance frequencies around 150 Hz and quality fac-

tors of Q = 2 × 10
5

at 10 K). Although a single device with the used parameters does not

yet exist, the �eld of micro and nanofabrication have made advances that lead to unprece-

dented performances and such a device might be available in the near-future. An open and

important question is the power damage threshold of the oscillators, which is a critical pa-

rameter for the stabilization level. For this reason, an additional curve was plotted (green

curve) for a 5 mg suspended mirror with resonance frequency ofΩ0 = 2�⋅6 Hz and a trans-

fer beam power of 200 W. Similar parameters have been reported in the state of the art [69,

105]. Since the relative shot noise of such a high power beam is very low (4 × 10
−11

Hz
−1/2

),

a stabilization below the relative shot noise is not possible with these parameters.

It is worth to note that for an alternative interferometer con�guration in which the

micro-oscillator is the end mirror for both interferometer arms ([106], mirror in the mid-

dle con�guration), technical radiation pressure noise would not contribute to RPN
ool

. In

3.3 Total fundamental limit 81



this case, P
s

can be further increased, which would reduce the RPN
ool

at high frequencies

without compromising the stability performance at low frequencies.
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Figure 3.12: ASD of the requirement for the technical displacement noise of the interferometer. The

absolute incident power noise of the transfer beam was calculated using the RPN
ool

obtained with

the parameters of Figure 3.11, and its corresponding mean powers.

Let us now analyze the interferometer sensitivity required to achieve the calculated

RPN
ool

. This calculation is important because in reality there are several technical noise

sources in the interferometer such as vibrations, scattering, and electronic noise that needs

to be below the noise sources accounted in this chapter. The requirement is calculated by

imposing that the interferometer technical displacement noise is smaller than the radiation

pressure displacement caused by the absolute power noise RPN
ool
⋅P

t
. Figure 3.12 shows the

expected displacement for the analyzed oscillators, calculated with the parameters of Figure

3.11. Compact and table top interferometers can, with careful design, reach sensitivities

down to 10
−14

m ⋅ Hz
−1/2

up to kHz regime [46, 107, 108]. Sensitivities in the femtometer

level are more challenging and therefore the use of high susceptibility resonators (red and

blue curves) is favored with respect to the low susceptibility and high power con�guration

(green curve). Another aspect to consider is that experiments requiring a power stability

below 10
−9

Hz
−1/2

will most likely count on technologies and environments that are needed

to suppress such technical noises. This is the case for gravitational wave detectors, which

have suspended optical benches (vibration isolation), cryogenic temperatures (reduction of

thermal noise), and low noise electronics.
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3.4 Frequency noise imprinted in the out-of-loop beam

The residual motion of the micro-oscillator when the power stabilization loop is turned

on will imprint a phase/frequency noise on the out-of-loop beam. It is important to quan-

tify this noise since the laser source in gravitational wave detectors is also required to be

highly stable in frequency. The total imprinted frequency noise is calculated as an uncor-

related sum of the quantum and thermal noise contributions. The quantum noise in the

phase quadrature of the out-of-loop beam when the power stabilization loop is turned on

is given by Equation 3.52. The ASD of the laser phase noise �� can be then calculated by

the following equation
4
:

�� =

√

ℏ!0Sss

2P
t

. (3.84)

Therefore, by using the relation �! = �� ⋅ Ω, the additional frequency noise imprinted in

the out-of-loop beam by the control loop can be obtained. The result is shown by the blue

curve in Figure 3.13, where the typical free running frequency noise of an non-planar ring

oscillator (NPRO) laser (red curve) was used to calculate S f̂
ss

. The residual thermal noise
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Figure 3.13: ASD of the frequency noise imprinted on the out-of-loop beam by the micro-oscillator’s

residual motion due to contributions from quantum noise (blue curve), and thermal noise (green

curve). The typical free running frequency noise of an NPRO laser is shown by the red curve.

displacement x
0,tn

of the micro-oscillator will be equal to the thermal noise displacement

4
This relation can be calculated from Equations 3.1 and 3.5
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x
tn

when the loop is open, multiplied by the noise reduction factor of the control loop:

x
0,tn
=

x
tn

|

|

|

1 + �
√

��
|

|

|

. (3.85)

This is because the power stabilization loop will apply a power modulation on the beam

transmitted by the power modulator in order to suppress the thermal noise �uctuations in

the oscillator’s position and keep the error signal zero. The frequency noise imprinted on

the out-of-loop beam by this residual thermal noise motion is displayed by the green curve

in Figure 3.13. The plots show that the imprinted noise by the oscillator is several orders

of magnitude below the free running noise of the NPRO at low frequencies, and one order

of magnitude at high frequencies. Hence, the imprinted frequency noise should not be an

obstacle to reach the requirements of the laser source, if the laser frequency stabilization

in the gravitational wave detector is performed in stages located after the proposed power

stabilization scheme.

The fact that the motion of the micro-oscillator is stabilized by the power stabilization

control loop is an additional advantage of using a radiation pressure phase transfer scheme,

since the contributions from nonlinear e�ects caused by a large mirror motion should be

negligible even for high laser powers. This is not the case for nonlinear materials, where

e�ects like stimulated Brillouin scattering and thermal �uctuations have been reported for

high laser powers, which is required in order to compensate for the low transfer phase

coe�cient.

3.5 Comments on ponderomotive squeezing

It is important to note that the generation of amplitude squeezing via the negative

feedback in the proposed scheme does not violate Weisman and Milburn condition [109]

which states that "feedback mediated by homodyne detection can only produce nonclassical

light, if the system dynamics can do so without feedback", since optomechanical systems

are known to produce ponderomotive squeezing on their own [69].

Let us now calculate the natural ponderomotive squeezing factor in re�ection of the

micro-oscillator. In the absence of the sensing beam, the out-of-loop amplitude and phase

quadratures are given by:

ô
c
= f̂

c
, (3.86)

ô
s
= f̂

s
−� ⋅ f̂c

, (3.87)

which are not squeezed. However, squeezing happens in an intermediary quadrature ô
z
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given by:

ô
z
= ô

c
⋅ cos �

z
+ ô

s
⋅ sin �

z

= (cos �
z
−� sin �z

) ⋅ f̂
c
+ sin �

z
⋅ f̂

s
.

(3.88)

This quadrature has the following power spectral density:

S ô
zz
=
(

cos2 �
z
+ 2Re

(

�
)

cos �
z
sin �

z
+ |

|

|

�
|

|

|

2
sin2 �

z

)

⋅ S f̂
cc
+ sin2 �

z
⋅ S f̂

ss
, (3.89)

with minimum and maximum values of:

S ô
zz
=
S f̂

cc

2

⎛

⎜

⎜

⎜

⎝

1 + |

|

|

�
|

|

|

2
+
S f̂

ss

S f̂
cc

±

√

√

√

√

√

(

1 + |

|

|

�
|

|

|

2
+
S f̂

ss

S f̂
cc

)2

− 4 ⋅
S f̂

ss

S f̂
cc

⎞

⎟

⎟

⎟

⎠

. (3.90)

For a transfer beam initially in a coherent state, the squeezed quadrature will have the

following power spectral density:

S ô
zz
=

(
√

1 +
(

|

|

|

�
|

|

|

∕2
)2
− |

|

|

�
|

|

|

∕2

)2

≈ 1
|

|

|

�
|

|

|

2
for

|

|

|

�
|

|

|

≫ 1 , (3.91)

with �
z
= arctan

(

−2∕ ||
|

�
|

|

|

)

∕2. Hence, as expected from the Weisman and Milburn condi-

tion, the amplitude squeezing factor achieved via the feedback control loop cannot surpass

the squeezing factor in the intermediary quadrature ô
z
, generated by the natural pondero-

motive squeezing of the micro-oscillator (for a coherent state!). However, to obtain squeez-

ing in the amplitude quadrature without the feedback, the quadrature ô
z

needs to be rotated

such as to be aligned to the laser carrier. A frequency dependent rotation could be achieved,

for example, by using an optical cavity [110]. In this case, the cavity will also introduce its

own quantum noise and the squeezing factor will in general be smaller than the value cal-

culated in Equation 3.91.

An important di�erence between the ponderomotive squeezing over the squeezing gen-

erated via the negative feedback in the proposed scheme arises when considering realistic

laser power and phase noise in the transfer beam. By substituting a value of a free running

relative power noise of 10
−6

Hz
−1/2

, and a mean power of 4 W in Equation 3.19, a value of

S
cc
= 10

7
is obtained. Similarly, by substituting a typical free running phase noise of an

NPRO of 10
−2

rad ⋅ Hz
−1/2

at 1 kHz in Equation 3.84, a value of S
ss
= 4 × 10

15
is obtained,

which is much larger than S
cc

. In this case,

S ô
zz
≈ S f̂

cc
, (3.92)
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meaning that the ponderomotive squeezing cannot surpass the free running power �uctu-

ations of the laser. Hence, when considering classical laser noise, a higher squeezing factor

will be obtained in the out-of-loop beam by implementing the feedback scheme proposed

in this chapter than what would be obtained from the natural ponderomotive squeezing of

the micro-oscillator.

3.6 Summary

This chapter presented the fundamental limits of a power stabilization via a radiation

pressure transfer scheme. The in-loop power sensor of this scheme consisted of a Michelson

interferometer with a micro-oscillator mirror in one of its arms, whose position is modu-

lated according to the power modulations of a strong transfer beam. The interferometer

readout was chosen such as is only sensitive to the phase quadrature out its output �eld

via a balanced homodyne detection. Noise sources coupling at the interferometer read-

out represent the sensing noise of this scheme and will limit the maximum power stability

achievable in the out-of-loop beam. This maximum stability was calculated by considering

an interferometer fundamentally limited by quantum noise and by thermal noise of a micro-

oscillator mirror with parameters reported in the state of art. The calculations showed that

this is a realistic approach when considering a relative power noise of 10
−8

Hz
−1/2

in the in-

terferometer beam, and that the interferometer has a displacement sensitivity higher than

10
−14

m ⋅ Hz
−1/2

at frequencies below 500 Hz, of 10
−15

m ⋅ Hz
−1/2

at frequencies around 1 kHz,

and of 2 × 10
−16

m ⋅ Hz
−1/2

at frequencies higher than 2 kHz.

The analysis showed a remarkable di�erence in the out-of-loop stability performance

in comparison to the traditional and OAC-coupling schemes since a sub-shot noise power

stabilization can be achieved. This is a consequence from performing the power sens-

ing via a non-demolition measurement. Under realistic experimental parameters, a strong

bright squeezed beam with power of 4 W and up to 11 dB of squeezing might be achievable

in the near future. Furthermore, a higher squeezing factor can be achieved by increas-

ing the transfer beam power, since it was demonstrated that this factor is proportional

to P 1∕2
t

. This is a considerable advantage over the traditional scheme assisted by squeez-

ing in which the squeezing factor is reduced by increasing the out-of-loop beam power,

and would require 30 dB of amplitude squeezed vacuum injected in the open port of the

beamsplitter (for 50 mW in the in-loop detector). The calculations also showed that an

RPN
ool
< 6 × 10

−10
Hz

−1/2
can be achieved for frequencies between 10 Hz and 6 kHz. Such

value could only be achieved in the traditional scheme by detecting 1 W in the in-loop de-

tector. The out-of-loop power noise and the requirements in the interferometer sensitivity

can be reduced by increasing the micro-oscillator susceptibility and the mean power in the

transfer beam. In conclusion, the results of this chapter showed that the proposed scheme
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has a strong potential towards achieving a high power stability that could ful�ll the re-

quirements of future gravitational wave detectors. In addition to that, the implementation

of this scheme can also be bene�cial for high precision metrology experiments, especially

optomechanical experiments.
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Chapter 4

Power stabilization via radiation
pressure - Experimental setup

This chapter describes the design of a proof-of-principle experiment of laser power

stabilization via a radiation pressure response on a movable mirror. This scheme was chosen

based on the theoretical investigations performed in Chapters 2 and 3. The investigations

showed that a high signal-to-noise ratio can be achieved in the in-loop sensor and, as a

result, a power stability below the shot noise of the out-of-loop beam should be possible.

The main goals of this experiment are to investigate the transfer from power �uctuations

to mirror motion, to analyze technical noise sources and limitations in the readout of the

mirror position, and to demonstrate a power stabilization by means of this novel sensing

scheme. The chapter starts with a description of the chosen oscillator, and in sequence the

details of the experimental setup are presented.

4.1 Choice of the movable mirror

Two of the most important parameters when choosing the oscillator mirror is its mass

and its fundamental longitudinal resonance frequency, since they determine the magnitude

of the oscillator displacement at low frequencies. Oscillators with low mass and low reso-

nance frequency are desirable since they increase the radiation pressure transfer coe�cient

� and decrease the requirements on readout technical noises, as discussed in Sections 2.1.3

and 3.3. In addition to that, it is also important that the mirror has a high re�ectivity (to

maximize the momentum transfer), low absorption (for a high laser damage threshold), and

low mechanical dissipation (for low thermal noise, see Chapter 3). For those reasons, the

oscillator chosen for this proof-of principle experiment is a micro-oscillator consisting of a

circular mirror pad suspended by a cantilever structure, as shown in Figure 4.1.a.
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Figure 4.1: Illustration of the micro-oscillator design: a) mechanical model of the oscillator com-

prised of a circular mirror pad suspended by a cantilever structure, b) cross sectional schematic of

the epitaxial multilayer consisting of a GaAs structural support layer, a InGaP etch stop layer (for

fabrication purposes), a GaAs layer, and 23 alternating layers of Al0.92Ga0.08As and GaAs (Bragg

mirror). The green layer in the mechanical model (a) corresponds solely to the 221.7 nm thick GaAs

substrate and the blue layer represents the Bragg mirror containing all the layers displayed on the

cross sectional schematic. Illustration adapted from [70].

The mirror pads of a collection of micro-oscillators available for this experiment are

made of 23 alternating layers of GaAs (high refraction index) and Al0.92Ga0.08As (low re-

fraction index), forming a distributed Bragg re�ector (Figure 4.1.b), with a total thickness

of 4.2 µm. De�ned by the number of layers, the mirror pad has a transmission of around

250 ppm for a wavelength of 1064 nm. The number of layers was chosen as a compromise

between high re�ectivity and low mirror mass. The mirror pads are solely suspended by a

221.7 nm thick �lm of GaAs and therefore the optical and mechanical properties of the oscil-

lator are decoupled. This design, together with a reduced number of Bragg layers
1
, allowed

the micro-oscillators to have low masses down to 40 ng. The Bragg layers are deposited on

top of the GaAs substrate via molecular beam epitaxy and the oscillator structure is de�ned

using a double etch stop technique. Detailed informations on the fabrication process can

be found in [70, 73].

A wafer containing several micro-oscillators was mounted on an 1 inch copper chip as

shown in Figure 4.2.a
2
. The chip contained more than 100 micro-oscillators with di�erent

geometries following the design of Figure 4.2.b. The radius of the mirror pads varied from

25 µm to 100 µm, which resulted in a mass ranging from 40 ng to 200 ng. The length and

width of the cantilevers varied from 19 µm to 285 µm and 4 µm to 30 µm, respectively. The

spring constant of the oscillator decreases by decreasing the width of the cantilever, and by

increasing the cantilever length. The chip used contained micro-oscillators with longitudi-

nal resonances ranging from 117 Hz to approximately 1 kHz. Additionally, the oscillators

1
Previous generations of micro-oscillators had a Bragg mirror with 36 layers and a transmission of 10 ppm

[70].

2
The picture was taken from a chip containing another generation of micro-oscillators, used in an earlier

stage of this experiment, and therefore with a di�erent layout than what displayed in Figure 4.2.b.
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were expected to have a mechanical quality factor for the longitudinal resonance on the

order of 10
4

at room temperature.

Figure 4.3 shows a picture of three micro-oscillators present in the chip. The mirror

pads with radius smaller than 25 µm were imperfectly etched and therefore the Bragg struc-

ture can be clearly seen in the picture. The oscillators were designed by the group of Thomas

Corbitt in Louisiana State University (LSU, USA) in collaboration with the MIT, and were

fabricated by the company Crystalline Mirror Solutions (CMS, USA).

Figure 4.2: a) photograph of an 1 inch diameter copper mount containing the micro-oscillator wafer,

and b) model of the array of micro-oscillators with di�erent geometries for the wafer used in this

thesis (layout taken from reference [73]).
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Figure 4.3: Photograph of three micro-oscillators taken with an electronic microscope. The length

and width of the cantilevers, the mirror pad diameter∅, and the mass m and longitudinal resonance

frequency f0 of the oscillators are annotated.
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4.2 Experimental setup

The experimental setup follows the general scheme presented in Section 3.1.3 and is

shown in detail in Figure 4.4. The setup was divided in two parts: a laser preparation area

and an in-vacuum breadboard containing the Michelson interferometer, which was the core

part of the experiment. The details of the setup are presented in the following subsections.

sensing beam stabilization
control loop

PS PD

δx

AOM
1st order

90:10 BS

Tp = 50%

MI PD

PZT

OOL PD

CCD

NPRO
optical
isolator

vacuum chamber

PM PD

power stabilization
control loop 

MI locking
control loop

10:90 BS

10:90 BS

sensing beam path

transfer beam path

50 mm
50 mm

50 mm
50:50 BS CCD

polarizing beamspli�er

half-wave plate focusing lensfiber + fiber coupler

beam dump

CCD

quarter-wave plate

Figure 4.4: Schematic of the power stabilization via radiation pressure experimental setup. An NPRO

laser was split into the transfer beam (red trace) and sensing beam (orange trace) by a 90:10 beam-

splitter. Both beams are guided by optical �bers to the vacuum chamber, where a breadboard con-

taining the Michelson interferometer is located. The MI PD was the in-loop sensor for two control

loops: the Michelson interferometer (MI) loop, which used the PZT as an actuator, and the power

stabilization loop, which used the AOM as an actuator.
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4.2.1 Laser preparation

The �rst component in the laser preparation area is the laser source: a continuous-wave

and single-frequency solid-state Nd:YAG nonplanar ring oscillator (NPRO). This laser op-

erated at a wavelength of 1064 nm with a �ber-coupled output and it delivered a maximum

output power of 1 W. An optical isolator was placed after the NPRO to prevent back re-

�ected light into the laser, which could disturb the stable operation of the laser. After the

isolator, a beamsplitter re�ected approximately 90% of the light to the transfer beam path

(red trace) and transmitted the remaining light to the sensing beam path (orange trace).

The transfer beam was sent to an acousto-optic modulator (AOM) which was the power

actuator in the power stabilization via radiation pressure control loop. The AOM consists

of a crystal attached to a piezoelectric transducer (PZT), as shown in Figure 4.5. When a

high voltage sinusoidal signal with a radio frequency fRF is applied to the PZT, a traveling

acoustic wave propagates from the PZT to an absorber, creating areas of compression and

rarefaction inside the crystal which have di�erent refractive indexes. These areas act like a

di�raction grating for the incoming light, and therefore the amplitude of the output light in

a certain di�raction order can be controlled by adjusting the amplitude of the sound wave.

As the light is scattered by a moving grating, the di�racted beam of order n will acquire

an optical frequency shift of !0 → !0 ± n ⋅ 2�fRF
. This frequency shift has a great utility

in this setup, since it prevents scattered light from the transfer beam from coupling to the

interferometer displacement noise. This was the main reason an AOM was chosen as the

power actuator in this experiment. The transmitted �rst order beam was used with 84.5%

of di�raction e�ciency, and the AOM driver had a radio frequency of 80 MHz.

Figure 4.5: Working principle schematics of an AOM: an input beam with an optical frequency !0
is di�racted by a moving di�raction grating which is generated by a sound wave inside of the AOM

crystal.

The AOM crystal used in this setup was lead molybdate (PbMoO4) from the company

ISOMET. The crystal is birefringent and if the input light polarization is not aligned to one
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of the crystal axis, the output light su�ers a polarization rotation that can �uctuate due

to temperature changes in the crystal, for example. This e�ect was observed as a power

drift after a polarizing beamsplitter (PBS), over periods of one minute time scales and with

large amplitude (around 10% of the total power). This posed a problem for the setup since

the variations of the laser mean power changed the mean displacement of the oscillator and

altered the contrast of the interferometer and the alignment of the oscillator with respect to

the transfer and sensing beams. To minimize this issue, a PBS was placed before the AOM

as a polarization �lter and its output polarization was aligned with the crystal horizontal

axis. Nevertheless, for a future setup, a crystal with smaller birefringence such as quartz

would be a wiser choice.

The transfer and sensing beams were guided into the vacuum chamber via two single-

mode and polarization maintaining type PANDA optical �bers, model 980 from the com-

pany Schäfter und Kirchho�. Both �bers have FC-APC connectors on their ends. Mode

matching lenses and alignment mirrors were placed in both paths for the light coupling

into the �ber. In addition to that, PBSs on rotation mounts were placed before the �bers

such that the incoming polarization is aligned with the �ber slow axis. The PBSs, together

with half-wave plates, were used as power attenuation stages. The choice of �bers as a

guiding medium for the light was made in order to avoid e�ects caused by beam jitter be-

tween the breadboard and the optical table and also to allow full mobility of the breadboard

during early stages of the experiment. With this con�guration, no misalignment in the os-

cillators or in the interferometer was observed when moving the breadboard outside and

inside the chamber.

The laser preparation area also included a traditional power stabilization scheme for

the sensing beam which will be discussed in Section 4.2.5.

4.2.2 In-vacuum breadboard

The core part of the experiment containing the Michelson interferometer sat on top of

an aluminum breadboard with dimensions of 27 × 27 × 1.2 cm
3

placed inside the vacuum

chamber, as shown in Figure 4.6.

A collimated sensing beam of approximately 1 mm radius exited the �ber collimator

(bottom of the picture) and was directed towards a 50:50 plate beamsplitter. The transmit-

ted light was detected by the power monitor photodetector (PM PD), which measured the

power noise at the input of the interferometer, while the re�ected light was directed to a

50 mm focusing lens and then to the interferometer.

The interferometer was comprised of a 50:50 cubic beamsplitter (BS), a 0.5 inch high

re�ective mirror, and the micro-oscillator. The 0.5 inch mirror was glued to a PZT element

which was used to scan the interferometer arm length, and also as an actuator to lock
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the interferometer at a speci�c operational point. A cubic beamsplitter was chosen since

a plate beamsplitter would cause signi�cantly di�erent astigmatisms in the output beams

due to the high divergence of the incoming beam (necessary to get a target beam waist

on the micro-oscillator of 15 µm). This was because the directly re�ected beam passed

through the substrate only once while the transmitted beam passed through three times

before exiting the interferometer. A di�erence in the astigmatism limits the interferometer

contrast, which for a plate beamsplitter was below 50%.

Figure 4.6: Picture of the breadboard placed inside the vacuum chamber. The sensing beam path

through the interferometer is marked by the orange arrows while the transfer beam path is marked

by the red arrows.

4.2 Experimental setup 95



At the output of the interferometer, a beamsplitter transmitted 90% of the light to the

Michelson interferometer photodetector (MI PD) and re�ected the remaining light to a

charge-coupled device (CCD) camera, placed outside the chamber, that monitored the in-

terference pattern during the interferometer alignment. The transfer beam exited its �ber

collimator (top of the picture) also with approximately 1 mm beam radius, passed through

a 50 mm focusing lens and was directed to the micro-oscillator. The re�ected beam went

again through a 50 mm lens, which was placed to minimize the beam divergence, and in se-

quence was directed to a beamsplitter that re�ected approximately 10% of the light towards

the out-of-loop photodetector (OOL PD), and transmitted the remaining light to outside the

vacuum chamber into a beam dump.

The schematics of the experimental setup also shows two CCD cameras, placed outside

the vacuum chamber, that are positioned to capture the sensing and transfer beam light in

transmission of the micro-oscillators (for alignment purposes).

A small PBS was placed at the output of both �ber collimators in order to �lter polar-

ization �uctuations induced by birefringences in the �ber. This was crucial for the sensing

beam path to guarantee the coherence between the PM PD and the MI PD that would be

otherwise reduced due to the polarization dependence of the beamsplitters.

XYZ 
translation

stage

mirror
mount

a) b) c)

Figure 4.7: Pictures of breadboard components: a) motorized mirror mount attached to the XYZ

motorized translation stage, b) vacuum photodiode mount, and c) VIB100 breadboard isolation foot,

displayed upside-down (picture taken from [111]).

The mirror mounts used in the breadboard are all from the company Radiant Dyes

and have 4 springs for lower settling drifts. To allow control of the �ve crucial degrees of

freedom of the micro-oscillators from outside the vacuum chamber, the 1 inch copper chip

was mounted on a motorized mirror mount (pitch and yaw adjustment) attached to a XYZ
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translation stage (with a step size of less than 30 nm) from the company Newport, shown

in Figure 4.7.a.
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Figure 4.8: ASD of the electronic noise of: Stanford Research Systems SR785 spectrum analyzer

terminated with a 50Ω resistor (red curve), out-of-loop photodetector (blue curve), power moni-

tor photodetector (green curve) and Michelson interferometer photodetector (orange curve). The

electronic noise of the photodetectors was measured by blocking the light at the photodiodes (dark

noise).

All photodiodes were rigidly placed on top of the breadboard (mount shown in Fig-

ure 4.7.b), in order to reduce beam jitter between the breadboard and the photodiodes. In

addition to that, the photodiodes were placed as close as possible to the micro-oscillator

chip to reduce the beam jitter at the oscillator’s resonance frequencies. Due to the vac-

uum incompatibility, the photodetector electronics (transimpedance ampli�er) were placed

outside the vacuum chamber. This con�guration is more prone to pick-up noise since the

long cables are susceptible to electro-magnetic interference and therefore the cable lengths

were kept shorter than 1 m. The long cables also add additional capacitance that needs to

be compensated, for stability purposes, by the feedback capacitance of the transimpedance

ampli�er [112]. This compensation reduces the bandwidth of the photodetector, which for

this experiment was around 1 MHz. All photodiodes were from JENOPTIK Polymer Sys-

temsmade and are made of InGaAs. Both the PM PD and MI PD had an active diameter

of 1 mm, while the OOL PD had a bigger diameter of 3 mm to avoid possible clipping ef-

fects since it was placed further away from the oscillator. Figure 4.8 shows the electronic

noise of the photodetectors measured by blocking the light at the photodiodes (dark noise).
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For comparison, the electronic noise of the Stanford Research Systems spectrum analyzer

(used in most measurements displayed in this thesis) when terminated with a 50Ω resistor

is shown. Apart from the peaks at 10 kHz and 50 kHz, the PDs dark noise in the measured

bandwidth are on the same level as expected if the photodiodes were directly connected to

the transimpedance ampli�er.

4.2.3 Vacuum system

The vacuum system was comprised of a vacuum chamber, a gate valve, a turbo pump,

a magnetic valve, and a scroll pump, as shown in the picture displayed in Figure 4.9. The

chamber had dimensions of 40 × 40 × 20 cm
3
, was made of stainless steel and contained a

top lid, from where the breadboard was inserted, and 4 �anges. The �anges were used to

connect two optical viewports for light exit, one electronics and �ber feed-through, and a

gate valve.

A picture of the in-house made feed-through is shown in Figure 4.10.a. It contains two

sub-D connectors used for the electronics of the PDs, the translation stage and the PZT,

and two �ber ports made of a polytetra�uorethylen (PTFE) ferrule (Figure 4.10.b) enclosed

by a nut connector. Because of the FC-APC connectors, the bare �bers were �rst cut in half,

passed through the port and then spliced back together. After the splicing, the nut connec-

tor was tightened until the PTFE, which is a high deformable material, was hermetically

compressed around the �ber, ensuring the air sealing of the connection. Apart from a small

piece close to the �ber connection, the bare �bers were surrounded by aluminum tubes for

protection, and a strain relief mount was placed between the tubes and �ber collimators

(see Figure 4.6).

The scroll pump provided a back pressure of 10
−3

mbar for the turbo pump, which could

ultimately reach pressures of 10
−7

mbar. Since both pumps introduce signi�cant amount of

vibrations, all the measurements were done with the pumps turned o�, and the low pressure

inside of the chamber was maintained by closing the gate valve at the input of the chamber.

An automatic magnetic valve connected to a pressure sensor was placed between the scroll

and turbo pump to protect the system and the optics in case of a scroll pump failure or

power outage, which would have caused dust particles from the scroll pump to �ow into

the chamber.

4.2.4 Vibration isolation

Vibrations such as seismic motion or acoustic noise can couple into the experimental

setup by di�erent paths and introduce undesired displacement noise in the interferome-

ter. At the laser preparation area, vibrations can, for example, cause beam jitter at the
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Figure 4.9: Picture of the vacuum system comprised by the vacuum chamber, gate valve, turbo pump,

magnetic valve and scroll pump. The picture also shows the optical table suspended by one of the

pneumatic feet.

input of the �bers which, due to �uctuations in the light coupling, are converted to power

�uctuations at the �ber outputs. At the breadboard, vibrations can couple directly to the

interferometer by changing the di�erential arm length, or indirectly via interference with

scattered light for example (details are discussed in Section 5.1.4).

To suppress the in�uence of vibrational noise, the experimental setup comprised of the

laser preparation and the vacuum chamber was mounted on top of an optical table sus-

pended by four pneumatic feet (see Figure 4.9). The feet provided vertical and horizontal

isolation for frequencies above 4 Hz. To reduce the coupling at the interferometer even fur-

ther, the breadboard was mounted on top of three compact isolation feet from the company

Newport model VIB100, shown in Figure 4.7.c. The feet provided isolation above 11 Hz

for vertical and above 8.5 Hz for horizontal motion. The values of these frequencies were
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sub-D connector

a)

fiber
feedthroughbare fiber

b)

bare fiber
PTFE ferrule

Figure 4.10: Vacuum feed-through: a) picture of the vacuum �ange containing two sub-D connectors

for the PDs, translation stage and PZT electronics, and two �ber feed-through, b) illustration of the

PTFE ferrule surrounding the bare �ber.

taken from the manufacturer data sheet and they can change slightly as a function of the

total breadboard load and its distribution. Each isolation stage ideally works as a damped
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Figure 4.11: Transmissibility of the VIB 100 isolation foot. The calculation was done assuming a

vertical and horizontal resonant frequency of 7.8 Hz and 5.8 Hz respectively, and vertical and hori-

zontal damping ratios of 0.02 and 0.05 respectively (taken from the VIB 100 data sheet).

harmonic oscillator, meaning that below resonance the spring is e�ectively rigid so ground

motion is completely transmitted to table/breadboard motion, while for higher frequencies
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the motion transfer is proportional to 1∕f 2. At resonance, the motion is ampli�ed by a

magnitude that depends on the quality factor of the system, similar to the description in

Section 2.1.3. A calculation of the transmissibility, which is the ratio between the transmit-

ted and the input motion [113], of the VIB 100 isolation foot is shown in Figure 4.11 for

the parameters given by the manufacturer. The transmissibility from ground to breadboard

motion will be the product of the transmissibility of each isolation stage.
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Figure 4.12: E�ect of the vibration isolation stages: ASD of vertical displacement measured by a

geophone at the vacuum chamber �oor with pneumatic suspension turned o� (red) and on (blue),

and on the top of the breadboard with suspension turned on (green). The black dashed line shows

a model for a typical displacement noise of a quiet site.

To analyze the behavior of the isolation stages, the vertical displacement was measured

by a geophone under three con�gurations: on the vacuum chamber �oor when the optical

table suspension was turned o� (red) and on (blue), and on top of the breadboard with

the suspension turned on (green). As shown by the red and blue curves, the pneumatic

feet provided isolation above 10 Hz, with a maximum displacement reduction of two orders

of magnitude at 25 Hz. In all measurements the vacuum chamber lid was placed at its

top, but it could not be fully closed because of the geophone cables. Comparing the green

curve with the blue curve, it is possible to see that the displacement noise on top of the

breadboard is further reduced above 20 Hz by the VIB 100 feet. For frequencies higher than

100 Hz the residual noise is lower than the intrinsic noise of the geophone and therefore

the measured displacement at the breadboard represents only an upper limit for vertical

motion. The black dashed line shows a typical displacement noise model of a quiet site,
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which is 10
−9

m ⋅ Hz
−1/2

and frequency independent at low frequencies, and it falls like 1∕f 2

at high frequencies [11]. The excess noise measured in the laboratory is expected since it

was located in a densely populated area.

4.2.5 Michelson interferometer control loop

This section describes the control loop used to lock the Michelson interferometer for

displacement readout purposes. As explained in Section 2.2.1, the interferometer response

is a nonlinear function of di�erential arm displacement or phase. For this reason, the cali-

bration factor relating the interferometer output power to di�erential displacement depends

on the operational point of the interferometer, i.e., on the constant di�erence between its

arm lengths. Since this constant length has to be controlled on a nm scale, a feedback con-

trol loop is necessary to assure that the interferometer stays locked at the same operational

point during the measurements.

The dark-fringe is the optimum operational point in order to avoid coupling of power

noise from the sensing beam to the oscillator’s position readout. A dark-fringe lock similar

to what was described in Section 2.2.1 was performed on the setup. The actuator for the

di�erential arm length was a 17 mm long PZT with a travel range of 15 µm. The PZT was

glued to the 0.5 inch end mirror of the interferometer south arm (see Figure 4.2). With this

con�guration, modulations in the mirror position with frequencies above 150 kHz did not

result in a su�ciently large error signal for the dark lock. This posed a problem since the

modulation frequency was very close to the bandwidth in which the measurements were

performed (100 kHz), and power noise at this frequency can still couple in the interferome-

ter sensitivity. For this reason, the mid-fringe lock presented a higher signal to noise ratio

and was the operational point used for all the measurements shown in this thesis. To re-

duce power noise coupling from the sensing beam via the mid-fringe, a traditional power

stabilization control loop was used, shown in Figure 4.2. The in-loop photodetector PS PD

was placed outside the vacuum chamber, before the �ber coupling, and the power actuator

used was a fast amplitude modulator port directly at the NPRO laser. The open loop unity

gain frequency was kept at 1.5 MHz.

A diagram of the mid-fringe control loop is shown in Figure 4.13, where each major

component is depicted by a block with a speci�c complex transfer function represented by

the italic capital letter. The control loop works as follows: the sum of the displacement

caused by the transfer beam radiation pressure (x
rp

) and by disturbances (x
d
) is sensed by

the interferometer (H1) and the MI PD (H2), that have a combined transfer function of

H = H1 ⋅H2. The sensor signal V
s

is subtracted from the mid-fringe reference voltage V
r

and the resulting error signal V
e

is ampli�ed by a controller with transfer function C
MI

. The

control signal V
c

is sent to a high voltage (HV) ampli�er (A1), and �nally the actuator signal
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Figure 4.13: Block diagram of the Michelson interferometer mid-fringe control loop. The radiation

pressure displacement x
rp

and the external disturbances x
d

are sensed by the interferometer (H1)

and the MI PD (H2). The sensor signal V
s

is compared to the mid-fringe reference voltage V
r
, and

the error signal V
e

is sent to the controller (C
MI

). The control signal V
c

is sent to the high voltage

ampli�er (A1) and the actuator signal (V
a
) is sent to the PZT (A2) that keeps the interferometer

locked at the mid-fringe.

V
a

is sent to the PZT (A2) that, combined with the high voltage ampli�er, has a transfer

function A
MI
= A1 ⋅ A2. The PZT converts the received voltage into mirror displacement,

keeping the interferometer locked at the mid-fringe.

The transfer functions of the individual blocks and the open-loop transfer function

G
MI
= H ⋅ C

MI
⋅ A

MI
are shown in Figure 4.14. The controller (green curve) consisted of

an adjustable proportional stage and an integrator stage with a gain of 40 dB at 1 Hz for a

unity gain frequency (UGF) of 130 Hz. The HV ampli�er (blue curve) was essentially a low

pass �lter with a gain of 25 dB and a corner frequency of 850 Hz, chosen to avoid electronic

noise coupling into displacement at frequencies above the open-loop UGF. The PZT transfer

function, not shown in the plot, is expected to be �at up to 700 Hz, and it had a magnitude

of A2 = 12.43 µm ⋅ kV−1. The magnitude was determined by measuring the necessary

voltage to scan the PZT mirror over a full interferometer fringe, which corresponds to a

mirror displacement of �∕2. The MI PD transfer function (not shown in the �gure), is

�at up to the MHz regime and it had a magnitude of H2 = 1.28V ⋅mW−1
. According to

Equation 2.34, the sensor transfer function is expected to be frequency independent and

with a magnitude given by:

H = 2�
�
(V

max
− V

min
) , (4.1)

where V
max

and V
min

are the maximum and minimum output voltage measured by the MI

PD on a full interferometer cycle. This transfer function depends on the sensing beam

mean power and also on the interferometer contrast, and therefore it was measured for
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each individual con�guration. The reference mid-fringe voltage V
r
corresponds to the value

(V
max

− V
min
)∕2 and it was adjusted in the controller.
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Figure 4.14: Bode plot of the measured transfer functions of the Michelson interferometer mid-fringe

lock control loop. The dashed black curve is a �t to the measured open loop transfer function.

The open-loop transfer function (red curve) was measured from the error to the sen-

sor signal by injecting a swept sine in the error signal with the loop closed (to assure the

interferometer was kept in the mid-fringe during the measurement). The open-loop UGF

was set to 410 Hz in order to provide su�cient gain at the micro-oscillators fundamental

longitudinal resonance frequency (below 230 Hz) and keep the interferometer locked at the
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mid-fringe.

The details of how the micro-oscillator displacement was obtained from the control

loop output signals will be discussed in Section 5.1.1, which also presents a full analysis of

electronic noise coupling into the displacement readout.

4.3 Interferometer and micro-oscillator alignment pro-
cedure

This section describes the procedure to align the interferometer and the micro-oscillators.

To avoid exposure of the oscillators to dust and also for simplicity, a half inch mirror was

used in the translation stage during the interferometer alignment. An adapter was used to

guarantee that the mirror re�ective surface is roughly at the same plane as the re�ective

surfaces of the oscillators mirror pads. The procedure for the interferometer alignment was:

1. First the 50 mm lens was positioned in the center of the incoming sensing beam, in

order to avoid distortions and shifts in the beam when moving the lens longitudinally,

as needed in a later step. Then, the cube beamsplitter was positioned such as the

re�ected beam is 90° with respect to the incoming beam.

2. In the second step the PZT and translation stage mirror mounts were placed 2 cm

away from the re�ective surface of the beamsplitter, and the pitch and yaw of the

mounts were adjusted so that the re�ected beams overlap with the incoming beam.

This adjustment is important to ensure that during scanning, the PZT mirror just

translates the beam longitudinally, without introducing horizontal or vertical shifts.

3. The �ne alignment of the yaw and pitch of the translation stage was made by scanning

the PZT mirror and maximizing the interferometer contrast. Since this is a confocal

interferometer, it is crucial that the macroscopic length of the two arms are equal oth-

erwise the beams will interfere with di�erent beam sizes and a perfect overlap will

not be possible. To match the arm length, the translation stage was moved longitudi-

nally until there were no more concentric rings in the CCD camera (only transition

between dark and bright spots) and the contrast was maximized. The �nal contrast

was then 99.4%.

4. Finally, the longitudinal position of the 50 mm lens was adjusted such as the beam

waist is located at the plane of the cantilevers. The waist was measured using a beam

pro�ler consisting of a razor blade mounted on an adapter placed in the translation

stage. The measured horizontal and vertical waist were 15.85 µm and 15.90 µm, as-

suming a step size of 30 nm of the translation stage.
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After aligning the interferometer, the sensing and transfer beams were aligned to each

other such that they overlap at the micro-oscillator plane (guaranteeing that they will hit

the same spot on the micro-oscillator). The procedure for this alignment, shown in Figure

4.15, was:

1. First, an aperture with a radius of 100 µm was placed in the translation stage and was

adjusted to be centered to the sensing beam.

2. Then, the transfer beam was aligned to the center of the aperture with an horizon-

tal angle of incidence around 10°. This was the minimum angle that gave clearance

for the transmitted sensing beam (which is later used for alignment) and this con-

�guration was also chosen as an easier way to separate the incoming and re�ected

beams.

3. After this pre-alignment, the chip containing the micro-oscillators was placed and

the sensing and transfer beams were pre-aligned to a speci�c oscillator. This align-

ment was done by observing the shadows in the transmitted light from the micro-

oscillators in the CCD cameras. The micro-oscillators were identi�ed by translating

the chip horizontally and vertically, and counting the shadows following the layout

shown in Figure 4.2b.

⤸⤺

10∘

CCD

CCD↔
aperture

1. 2. 

aperture
⤸⤺3. 

↔

Figure 4.15: Illustration of the procedure for the pre-alignment of the transfer and sensing beams at

the micro-oscillator plane.

To understand how the transfer and sensing beam were �ne adjusted to the center of

the micro-oscillator’s mirror pad it is important to consider a realistic model that includes

higher mechanical modes expected in the oscillators. Figure 4.16 shows the �rst three me-

chanical modes expected for the oscillators: a) longitudinal mode - the mirror pad and the

cantilever are displaced longitudinally and in phase with each other, b) yaw mode - mir-

ror pad and cantilever rotate horizontally with respect to the undisturbed position, and c)

pitch mode - mirror pad rotates vertically with respect to the cantilever. From the oscil-

lator’s symmetry, the e�ective mass of the yaw mode is expected to be higher than the

pitch mode, and therefore the resonance frequency of the yaw mode is lower than the pitch

mode. The complete oscillator motion can be mathematically represented by a continuous

series of coupled harmonic oscillators which are coupled with each other by joint spring
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constants. Then, the longitudinal motion x of a certain point on the mirror surface, e.g. the

one hit by the laser beam, can be described as the motion of a single system formed by in-

dependent damped harmonic oscillators each having its own e�ective mass m
m

, resonance

frequency Ω
m

, and loss angle �
m

[114]:

x (Ω)
F

ext
(Ω)

=
∑

m

1
−m

m
Ω2 + m

m
Ω2

m

(

1 + i�
m

) . (4.2)

longitudinal yaw pitch side-to-side

Figure 4.16: Schematic of the four �rst mechanical modes expected for the micro-oscillators (illus-

tration taken from reference [73]).

If the transfer beam is centered to the mirror pad, then the radiation pressure driving

should ideally not excite the yaw and pitch modes of the oscillator. By using this reasoning,

the transfer beam was centered to the mirror pad by reducing the yaw and pitch resonances

in a radiation pressure transfer function measurement. This measurement was performed

by applying a swept sine function to the AOM and measuring the oscillator displacement

with the interferometer. For this measurement, the sensing beam was intentionally o�-

centered from the mirror pad, to maximize the interferometer sensitivity to the pitch and

yaw motion. Finally, the sensing beam was aligned to the center of the mirror pad by mini-

mizing the yaw and pitch peaks in the thermal noise displacement, since the interferometer

should not be sensitive to the high order resonances in this situation (assuming only neg-

ligible e�ects in the interferometer readout caused by the small rotations of the re�ected

beam). During this step, the transfer beam was kept at the same power as the previous

step, in order to keep the oscillator at the same mean, static position. Since the steering

mirrors for the sensing and transfer beams were not motorized, this alignment was made

in air and it was assumed that misalignments between the sensing and transfer beam when

evacuating the chamber were small enough for the purposes of this experiment. In fact,

the contrast of the interferometer remained the same at di�erent pressures on the chamber,

which is an indicator for small or no misalignment of the beams under vacuum. However,

in a future generation of the setup it would be better to implement one motorized mirror

mount to guarantee a precise alignment also in high vacuum. This is specially important

when increasing the power in the transfer beam, as it will be discussed later.

After these steps, the beams are aligned to each other at the mirror pad plane. Other
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Figure 4.17: Micro-oscillator alignment: ASD of the interferometer displacement noise measured

with the micro-oscillator LA7 at 10
−2

mbar before (red) and after (blue) optimizing the oscillator

alignment, and at 10
−4

mbar after optimizing alignment (orange). The following peaks are marked

in the blue curve: longitudinal fundamental resonance (177 Hz), second (354 Hz) and third (531 Hz)

longitudinal harmonics; yaw resonance (1298 Hz), beat between yaw and longitudinal (1121 Hz and

1475 Hz); pitch resonance (3328 Hz) and beat between pitch and longitudinal (3151 Hz and 3505 Hz).

oscillators were aligned to the sensing and transfer beams by translating the chip mount

and reducing the yaw and pitch peaks in the thermal noise displacement measurement, as

shown in Figure 4.17. The pitch and yaw resonances in the interferometer displacement

noise (red curve) completely vanished when the oscillator was centered to the transfer

and sensing beams (blue curve). Both curves were taken at a pressure of 10
−2

mbar. The

�gure also shows harmonic peaks of the individual modes, and also peaks representing a

beat between di�erent modes. Small drifts in the oscillator alignment were observed when

the pressure on the chamber was changed, or after a long period of time. For this reason,

the oscillator was realigned
3

such as the peak and yaw fundamental resonances would not

couple at the thermal noise displacement measurement. At pressures lower than 10
−4

mbar,

the realignment turned out to be a slow process due to the long settle time of the micro-

oscillator, which was excited by the translation stage step motion. In addition to that, the

alignment was also very sensitive, and one step of the translation stage was not always

3
The chip had to be translated, on average, around 6 µm in vertical and horizontal directions in the re-

alignment procedure.
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su�ciently precise to make the peaks vanish. For such pressures, small alignment drifts

were observed, which brought the pitch and yaw peaks back to higher values. Due to these

reasons, some of the measurements in this thesis will still shown pitch and yaw resonances.
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Chapter 5

Power stabilization via radiation
pressure - Experimental results

This chapter presents the results from the power stabilization experiment, whose setup

was described in Chapter 4. The experiment was divided into three parts: sensing noise,

power sensing, and power stabilization. In the sensing noise part, the sources of displace-

ment noise in the Michelson interferometer readout were analyzed. In order to avoid the

high thermal noise from the micro-oscillators, the technical noise sources were investigated

and reduced in a con�guration were the micro-oscillator chip was substituted by a rigidly

�xed 0.5 inch mirror. Afterwards, the interferometer displacement noise was measured and

analyzed for di�erent micro-oscillators. In the second part, the interferometer containing

the micro-oscillator was used as a sensor for the free running power noise of the transfer

beam. A measurement of the optomechanical response of the micro-oscillator was also per-

formed. Finally, the transfer beam power stabilization control loop was enabled, and the

power stability performance of the out-of-loop beam was measured for di�erent transfer

beam powers.

5.1 Sensing noise: interferometer sensitivity with a fixed
mirror

As discussed in the previous chapters, the Michelson interferometer containing the

micro-oscillator forms the in-loop sensor for the power stabilization scheme via radiation

pressure. Hence, noise sources coupling to the interferometer readout will be imprinted on

the out-of-loop beam by the stabilization control loop, and will set a limit to the maximum

power stability that can be achieved with this scheme. For this reason, it is crucial to min-

imize the interferometer technical noise down to the stabilization requirements of the ex-

periment. In this thesis, the requirements were set by the expected structural thermal noise
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from the micro-oscillators at room temperature. This thermal noise contribution could be

reduced by operating the experiment with cryogenic temperatures. However, due to the

increase in complexity and also the non-availability of a cryostat, this proof-of-principle

experiment was operated at room temperature.

To allow a clear identi�cation of technical noise sources, the micro-oscillator chip was

substituted by a 0.5 inch mirror which was rigidly �xed in the translation stage. This con�g-

uration was necessary to avoid the high thermal noise contribution of the micro-oscillators,

especially from viscous damping at atmospheric pressure (necessary at this point to facili-

tate changes in the setup), which would mask the contribution from technical noise sources.

Another reason for this con�guration was to identify noise sources that need be lowered

in a future generation of this experiment, when thermal noise is reduced.

In the next sections, possible technical noise sources and their coupling paths are dis-

cussed. Finally, the best interferometer sensitivity is compared with the expected thermal

noise of di�erent micro-oscillators.

5.1.1 Electronic noise

Electronic noise from the MI control loop can couple into the displacement readout via

di�erent paths, as shown by the block diagram in Figure 5.1. The displayed noise sources

are: sensor noise N
s

(dark noise of the MI PD), reference noise N
r
, controller noise N

c
,

and actuator noise N
a

(HV ampli�er noise). They originate from the intrinsic noise of

the individual electronic components such as operational ampli�ers, resistors, and capaci-

tors. These noise sources are summed, ampli�ed, or even reduced according to the transfer

function of each stage inside the electronics block. For this reason, they will be treated as a

single noise source that couples at the input of each block, although the reader should keep

in mind that, experimentally, the noise is usually measured at the output of the electronics.

The readout of the total interferometer displacement x
rp
+ x

d
can be performed by

projecting di�erent output signals from the control loop to displacement. To decide which

signal is more appropriate for the projection, the coupling of electronic noise must be taken

into account. When the loop is closed and working in a steady state regime, the controlled

output displacement x0 can be calculated from the block diagram as [115]:

x0 =
x

d
+ x

rp
+ [(−N

s
⋅H2 +Nr

+N
c
) ⋅ C

MI
+N

a
] ⋅ A

MI

1 + G
MI

, (5.1)

where G
MI
= H ⋅ C

MI
⋅ A

MI
is the open-loop transfer function.

The relation between the sensor signal V
s

and the total displacement can be obtained
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Figure 5.1: Block diagram of the Michelson interferometer control loop depicting the coupling paths

of the following electronic noise sources: sensor noiseN
s

(dark noise of MI PD), reference noiseN
r
,

controller noiseN
c
, and actuator noiseN

a
(HV ampli�er noise). More information about the control

loop can be found in Section 4.2.5.

by substituting Equation 5.1 into the expression V
s
= x0 ⋅H +N

s
⋅H2, which leads to:

V
s
=
(x

rp
+ x

d
) ⋅H

1 + G
MI

+
N

s
⋅H2

1 + G
MI

+
G

MI

1 + G
MI

[

N
r
+N

c
+
N

a

C
MI

]

. (5.2)

Hence, the projection of the sensor signal to displacement xV
s

(in meters) is:

xV
s

=
V

s
⋅ (1 + G

MI
)

H
(5.3)

= x
rp
+ x

d
+
N

s

H1
+ C

MI
⋅ A

MI

(

N
r
+N

c

)

+N
a
⋅ A

MI
. (5.4)

Similarly, the relation for the actuator signal is obtained by substituting Equation 5.1 into

the expression x0 = xrp
+ x

d
+ V

a
⋅ A2. This leads to:

V
a
= −

(x
rp
+ x

d
) ⋅ G

MI

A2 ⋅ (1 + GMI
)
+

A1
1 + G

MI

[

(−N
s
⋅H2 +Nr

+N
c
) ⋅ C

MI
+N

a

]

. (5.5)

The projection of the actuator signal to displacement xV
a

(in meters) is then:

xV
a

=
V

a
⋅ A2 ⋅ (1 + GMI

)
G

MI

= −x
rp
− x

d
−
N

s

H1
+
N

r
+N

c

H
+

N
a

H ⋅ C
MI

.

(5.6)
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As expected, Equations 5.4 and 5.6 show that electronic noise couples in di�erent ways

when performing the displacement readout via the sensor and actuator signals. For fre-

quencies below the UGF, where G
MI
≫ 1, electronic noise dominates the sensor signal,

while it is suppressed in the actuator signal. For high frequencies, where G
MI
≪ 1, the

opposite situation occurs. Therefore, it is common that the interferometer displacement

is obtained as a combination between the projected actuator signal for frequencies below

UGF, and the projected sensor signal for frequencies above UGF.
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Figure 5.2: Comparison between the interferometer displacement noise obtained from the projection

of the sensor signal xV
s

(red) and of the actuator signal xV
a

(blue). The MI open loop unity gain

frequency was set to 200 Hz.

Previous investigations on the setup showed that the interferometer sensitivity was

electronic noise limited for frequencies above 1 kHz. To mitigate this noise, the following

changes were made in the electronics: implementation of operational ampli�ers with lower

noise, reduction of the proportional gain in the controller, increase in the sensing beam

power, avoidance of high resistance resistors, and implementation of a low pass �lter in the

HV ampli�er. Figure 5.2 shows a comparison between the projected displacement noise

xV
s

and xV
a

, after the mentioned modi�cations. The curves meet for frequencies below the

UGF of 200 Hz, whereas for higher frequencies the displacement obtained from the actuator

signal still shows excessive noise. This behavior means that electronic noise below UGF

does not limit the interferometer sensitivity. Therefore, all displacement curves shown in

114 Chapter 5 Power stabilization via radiation pressure - Experimental results



this thesis were plotted only with the projection of the sensor signal (absolute value of

Equation 5.3). Additionally, the sensor signal was used as the error signal for the power

stabilization via radiation pressure, which is discussed in Section 5.4.1.
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Figure 5.3: Interferometer displacement noise measured with the 0.5 inch mirror (red), and projec-

tions of electronic noise to displacement: controller noise (blue), actuator noise (green), reference

noise (yellow), and sensor noise (purple). The projections were performed using Equation 5.4.

To understand how the remaining electronic noise could still limit the interferometer

sensitivity, a measurement of the displacement noise was compared with projections of the

sensor, reference, controller, and actuator noise, according to Equation 5.4. The results are

shown in Figure 5.3. The HV ampli�er electronic noise was measured directly at the output

of the electronics, instead of the usual monitor port which divided the output signal by a

factor of 100. Except for frequencies below 2 Hz, where the projections of the controller

and reference noise are high, electronic noise does not pose an impediment to optimize the

interferometer sensitivity by a factor of 2. If further improvement is necessary, then the

following noise reductions should be made: controller and reference noise for frequencies

below 200 Hz (the UGF), actuator noise from 200 Hz to 4 kHz, and controller and sensor

noise above 4 kHz. These reductions can be made by either exchanging the electronic com-

ponents to lower noise counterparts, or alternatively, by changing the coupling strength of

electronic noise. A straightforward way to reduce sensor noise coupling is to increase the

power in the interferometer, which increases the magnitude of the transfer function H1. If
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the open-loop UGF is adjusted to be the same, then the magnitude of C
MI
⋅ A

MI
should be

proportionally smaller, which will lower the contributions from reference, controller, and

actuator noise. In this case, reducingA
MI

overC
MI

might be preferred since the contribution

from actuator noise depends only on the magnitude of A
MI

.

5.1.2 Laser frequency noise

Laser frequency noise couples into displacement noise via an inequality between the

macroscopic arm lengths of the interferometer. In this situation, the laser frequency noise

�� at the interferometer input experiences di�erent delays in the interferometer arms and

it does not cancel at the readout port. The induced displacement noise x
f
is proportional to

the arm length di�erence ΔL, and to the laser frequency noise [11]:

x
f
= 2ΔL ⋅

�� ⋅ �0
c

. (5.7)

Since this experiment employs a confocal interferometer, ΔL should in principle not be

much higher than the beam Rayleigh range of 0.75 mm (calculated for a waist of 16 µm),

otherwise a contrast of 99.4 % would not be possible. The frequency noise projection esti-

mated for this experiment is shown in Figure 5.4. The projection was calculated with the

typical frequency noise of an NPRO laser of 104∕f Hz ⋅ Hz
−1/2

[5], and withΔL = 0.75 mm.

The plot shows that the frequency noise contribution is more than 2 orders of magnitude be-

low the interferometer displacement noise, and therefore it was not a limiting noise source

for this experiment.

5.1.3 Sensing beam power noise

Since the interferometer is locked to the mid-fringe, power noise from the sensing beam

will couple directly at the interferometer readout. This coupling would not be an issue if

the free running power noise of the sensing and transfer beam at the �ber outputs were

coherent with each other. In that case, a power actuator could be used before the splitting of

the beams to simultaneously stabilize the power of the transfer and sensing beam using the

stabilization via radiation pressure control loop. In this experiment, however, the coherence

between the power noise in the beams was lost at the output of the �bers. This could have

been caused, for example, by beam jitter at the �ber input or by polarization changes in the

�ber.

The projection of power noise to displacement noise x
p,mf

via the mid-fringe readout
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Figure 5.4: ASD of the interferometer displacement noise (red), and sensing beam power noise cou-

pling via mid-fringe readout (blue) and laser frequency noise (green) projection to interferometer

displacement noise. The sensing beam power noise was measured by the MIPD with one of the

interferometer’s arm blocked.

can be obtained from the interferometer transfer function H1:

H1 =
2�(P

max
− P

min
)

�
,

x
p,mf

=
RPN

s
⋅ (P

max
− P

min
)

2H1
=

RPN
s
⋅ �

4�
,

(5.8)

which only depends on the sensing beam relative power noise RPN
s
. In order to lower this

contribution, a traditional power stabilization was realized, as discussed in Section 4.2.5.

The open loop UGF achieved with this scheme was approximately 1 MHz and, due to satu-

ration problems in the controller electronics, it could not be further increased. The residual

sensing beam power noise was not signi�cantly improved in comparison to the con�gu-

ration when the NPRO noise eater was turned on. Figure 5.4 compares the interferometer

displacement noise and the noise projection x
p,mf

when the NPRO noise eater was turned

on. It is clear that power noise limits the interferometer sensitivity for frequencies above

100 Hz. Hence, improvements on the power noise coupling via the mid-fringe should be a

priority in a future generation of this experiment.
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Figure 5.5: Comparison between the expected structural thermal noise displacement at room tem-

perature for a micro-oscillator with mass of 40 ng, longitudinal resonance frequency of 117 Hz, and

quality factor of 10
4

(red curve), and the radiation pressure noise projection from the measured sens-

ing beam power noise, considering a mean power at the input of the interferometer of 20 mW (blue

curve).

Another coupling path of sensing beam power noise, which is present with the micro-

oscillator mirror, is via radiation pressure noise. The induced displacement noise x
p,rp

in

this case depends on the mechanical susceptibility of the oscillator, and on the absolute

sensing beam power noise:

x
p,rp

=
P

s
⋅ RPN

s

mc
√

(

Ω20 − Ω2
)2 + Ω40�2

, (5.9)

where it was considered that half of the sensing beam power hits the micro-oscillator. In

order to reduce this coupling, it is important to keep the sensing beam mean power on

the lowest level necessary to overcome electronic noise. Figure 5.5 compares the expected

structural thermal noise for a micro-oscillator with mass of 40 ng and fundamental res-

onance frequency of 117 Hz, with the radiation pressure noise projection considering a

sensing beam power at the input of the interferometer of 20 mW. For oscillators with a

lower mechanical susceptibility, the di�erence between the thermal noise and the radia-

tion pressure noise contributions will be even larger. This, together with the fact that the
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sensing beam power at the input of the interferometer was usually lower than 20 mW, leads

to the conclusion that radiation pressure noise will not limit substantially the sensitivity of

this experiment.

5.1.4 Vibrational noise

Vibrations are a main contributor to interferometer displacement noise x
d
, especially

at frequencies below 100 Hz. They encompass a set of noises with di�erent origins such as

seismic motion caused by ocean waves or human activities, and acoustics induced by air

conditioning, ventilators and structural vibrations.

As described in Section 4.2.4, the interferometer was mounted on top of two passive

isolation stages which considerably reduced the vibrational motion on top of the bread-

board. To investigate how residual vibrations a�ect the interferometer sensitivity, a co-

herence measurement between optical table vertical motion, performed with a geophone,

and interferometer displacement noise was taken. The result is shown in Figure 5.6. For

this measurement, the interferometer was placed inside the chamber with a pressure of

10
−2

mbar. The geophone, however, was placed outside the vacuum chamber and on top

of the optical table, since there was no feed-through in the chamber for the geophone ca-

ble. A signi�cant coherence for frequencies below 1 kHz can be observed. This means that

residual vertical (and possible horizontal) vibrational noise still couples to the interferom-

eter displacement noise. Hereafter, the possible paths for this coupling are discussed and

investigated.
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Figure 5.6: Left: coherence measurement between vertical motion of the optical table and interfer-

ometer displacement noise. The measurement was performed with a geophone placed on top of the

optical table, outside the vacuum chamber, and with the interferometer inside the chamber under a

pressure of 10
−2

mbar. Right: ASD of the interferometer displacement noise, taken simultaneously

with the coherence measurement.
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E�ect of the optical table pneumatic isolation stage

As shown in Figure 5.7, the use of two isolation stages was important for the setup since

by turning the optical table pneumatic stage on, the interferometer displacement noise is

reduced between 10 Hz and 100 Hz. This result qualitatively agrees with the measurements

showed in Figure 4.12, where a reduction of vertical motion of approximately one order

of magnitude was observed at 30 Hz by turning the table suspension on. This fact points

out that the interferometer sensitivity could still be limited by vibrational noise coupling

via the optical table for frequencies below 100 Hz. Hence, an isolation stage with a lower

resonance frequency, which can provide a higher noise suppression below 100 Hz, would

be bene�cial for a future con�guration of the setup. The additional noise at frequencies

above 1 kHz observed in this measurement was not well understood.
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Figure 5.7: E�ect of the optical table pneumatic suspension on the ASD of interferometer displace-

ment noise. In both measurements the breadboard was placed inside the vacuum chamber with

atmospheric pressure.

Direct coupling at the mirror mounts

In long baseline interferometers such as LIGO, the di�erential arm length is directly

a�ected by seismic noise, since the driving motion is di�erent at the end mirror loca-

tions. Here, an opposite scenario takes place since the interferometer is compact (2 cm

arm length), and sits on top of a rigid breadboard. This means that, ideally, horizontal and

vertical residual motion of the breadboard should not couple in the di�erential mode of the
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interferometer for frequencies below the resonances of the optical mounts, which should

be in the kHz regime or above. However, in reality the breadboard and the mounts are

not fully rigid and since the PZT mirror and the translation stage mount are considerably

di�erent, there is a possibility that this direct coupling spoils the sensitivity of the inter-

ferometer. For this reason, the springs of the PZT mirror mount were elongated to their

maximum tension, which shifted the mount resonance to a higher frequency. No changes

were observed in the interferometer sensitivity after this procedure, which �ts to the ex-

pectation that the mount resonance is above the kHz regime, where the sensitivity is not

limited by vibrations.

Coupling via power noise

Another coupling path for vibrations is via power noise at the input and output of

the interferometer. Vibrations in the laser preparation area, for example, cause beam jit-

ter at the input of the optical �bers that is converted to power noise at the input of the

interferometer. Because the breadboard is connected to the vacuum chamber �oor by the

protective aluminum tubes surrounding the bare �bers, vibrations in the vacuum chamber

can induce polarization �uctuations via changes in the tension of the �ber. Since a PBS was

placed directly at the �ber output, this polarization �uctuation can induce power noise at

the interferometer input. Lastly, vibrations can also induce beam jitter at the MI PD and

cause an apparent power noise via the non-homogeneity in the photodiode response. To

test these possibilities, the the power noise of the sensing beam inside and outside the vac-

uum chamber was measured with the table suspension turned on and o�. No signi�cant

changes were observed in these measurements. Hence, the additional displacement noise

observed in Figure 5.7 when the table suspension was turned o� seems not to be coupling

via power noise.

Sca�ered light

Light scattered from the nominal sensing or transfer beam paths is an indirect coupling

of vibrational noise. Scattering can happen due to imperfections in the optics, dust particles,

or, in the case of the micro-oscillators, bad etching and a large beam compared to the mirror

pad size. Because light is scattered by one or more surfaces moving with an amplitude

comparable or larger than the light’s wavelength, it will acquire a di�erential and frequency

dependent phase with respect to the nominal sensing beam, which will lead to displacement

noise after interference with the sensing beam. If 1 nW of scattered light interferes with

10 mW of the nominal sensing beam at the MI PD for example, then an RPN of 10
−4

is

expected, which is enough to limit the sensitivity of the interferometer.

As stated in Section 4.2.1, the optical frequency of the transfer beam was shifted by
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80 MHz with respect to the sensing beam frequency, in order to reduce the coupling from

scattered light from the transfer beam to displacement noise. Indeed, no changes were ob-

served in the interferometer sensitivity by turning the transfer beam on and o�. However,

a big candidate for scattering in the sensing beam path is the back re�ected light from the

interferometer mid-fringe lock. To investigate this coupling, the input and back re�ected

beams were intentionally misaligned from each other, but no changes were observed in

the displacement noise. Scattering at the MI PD was investigated by surrounding the pho-

todiode with a long tube to block potential side beams and also by covering the vacuum

chamber viewports with black foil. No di�erence was observed in such a con�guration. In

a second second step, the interferometer was locked with a photodiode placed outside the

chamber and again, the sensitivity did not change.

Acoustic noise

Acoustic noise is highly suppressed by the vacuum chamber enclosure. This can be seen

in Figure 5.8, which compares the displacement noise when the breadboard was placed in-

side and outside the chamber. It was observed that the air �ow boxes directly at the optical

table and also in other locations of the room still had an e�ect in the sensitivity for fre-

quencies between 100 Hz and 1 kHz, when the breadboard was inside the chamber. For this

reason, all measurements in this thesis were done with the �ow boxes turned o�. This fact,

together with the result of Figure 5.7, is an indication that the observed coherence between

vertical motion and displacement noise (see Figure 5.6) from 100 Hz to 1 kHz is likely caused

by residual acoustic vibrations, coupling directly at the chamber. For frequencies above

1 Hz, the setup was not limited by air inside the vacuum chamber, which could cause noise

via direct acoustic coupling or via temperature changes, that alter the air refractive index

and consequently the light traveled path. This was veri�ed by an additional measurement

with a pressure of 10
−2

mbar in the chamber.

Beam pointing

Beam jitter with small amplitudes at the input of the interferometer will ideally not

change the interferometer contrast, but it will be transferred to jitter at the output beam

of the interferometer. To investigate the importance of this e�ect, the beam spot size and

location at the MI PD were changed, and no di�erence in the sensitivity was observed.

During modi�cations on the setup, the initially plate beamsplitter was substituted by a

cube one, with a di�erent holding mount. Since no di�erence in the displacement noise

was observed during this process, it was concluded that beam pointing introduced by the

beamsplitter mount was also not an issue.
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Figure 5.8: ASD of the interferometer displacement noise measured with the breadboard outside

(red) and inside (blue) the vacuum chamber with atmospheric pressure. The air �ow boxes were

turned o� in both measurements.

Internal resonances of the VIB100

A common feature in the displacement noise curves shown in this thesis is a broad

peak around 7 Hz. This peak was related to the vertical and horizontal resonances of the

VIB isolation feet, as con�rmed by the plots shown in Section 4.2.4. The coupling path of

this noise was not fully understood, and long-term observations showed variations of the

peak height that were independent of the setup con�guration. This variation is illustrated

in Figure 5.9, which shows a broad change in the displacement noise curve, with a di�er-

ence of one order of magnitude in the 7 Hz peak, when measured on two consecutive days

without any changes in the setup in the meanwhile. Such signi�cant change indicates that

the driving of this noise is not long term stable and is likely related to changes in the vibra-

tions of the laboratory building. In addition to that, changes in the weight distribution on

the breadboard and on the feet con�guration were made in an attempt to understand the

coupling and reduce the peak, but no signi�cant changes were observed.
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Figure 5.9: Observation of the 7 Hz peak: ASD of the interferometer displacement noise taken on

21/03 afternoon (red), and on 22/03 morning (blue) with no changes in the setup in between. The

breadboard was placed inside the vacuum chamber with atmospheric pressure.

5.1.5 Conclusion

The best interferometer sensitivity achieved with the 0.5 inch mirror was plotted against

the expected structural thermal noise of two micro-oscillators in the higher (red curve) and

the lower (purple curve) limit of the mechanical susceptibility of interest in this experiment,

as shown in Figure 5.10. The �gure also shows the projection of the total electronic noise

and the sensing beam power noise coupling via the mid-fringe readout. The interferome-

ter will be thermal noise limited in the frequency range between 15 Hz and a few kHz. To

reach the thermal noise limit at frequencies below 15 Hz, further vibration isolation would

be required, possibly with a lower corner frequency in order to avoid the high peak at 7 Hz.

Due to the steep decrease in the thermal noise displacement after the longitudinal reso-

nance frequency, the interferometer sensitivity would have to be improved by at least two

orders of magnitude in order to reach a thermal noise limited performance at frequencies

up to 100 kHz, which was beyond the goal of this proof-of-principle experiment. Hence,

other advancements in the setup were prioritized. However, in a future generation of this

experiment the following changes should be possibly implemented: a dark fringe lock to

avoid the direct power noise coupling at the interferometer output, further reduction of

electronic noise in the MI control loop, and higher vibration isolation.
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Figure 5.10: Final interferometer sensitivity achieved with the 0.5 inch mirror (blue curve) compared

with the expected structural thermal noise displacement for two micro-oscillators, calculated at

room temperature and with a quality factor of 10
4

(red and purple curves). A projection of the

total electronic noise (green curve), and the sensing beam power noise coupling via the mid-fringe

readout (yellow curve) is shown as a reference.

5.2 Sensing noise: interferometer sensitivity with micro-
oscillators

After optimizing the interferometer sensitivity with the 0.5 inch mirror, the chip con-

taining the micro-oscillators was placed in the translation stage and the interferometer

displacement noise was measured with di�erent oscillators.

5.2.1 Displacement noise with micro-oscillator LA7

The �rst measurements were performed with the micro-oscillator LA7
1
, which was

designed to have a fundamental resonance frequency between 150 and 200 Hz, and a mass

between 100 and 200 ng. This oscillator had a mirror pad with a radius of 50 µm, and a

cantilever with length of 200 µm and width of 10 µm.

1
The micro-oscillators are named according to their position in the chip, following the schematics pre-

sented in Figure 4.2b. In this case, L stands for the left block, A stands for the �rst row, and 7 stands for the

7th oscillator from left to right in the schematics.
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From the measurements performed with the 0.5 inch mirror, it is expected that the

oscillator’s thermal noise will dominate the interferometer displacement noise at the mid-

frequency regime of this experiment. As discussed in Section 3.2, the contribution of vis-

cous damping to thermal noise displacement is reduced by decreasing the pressure inside

the vacuum chamber. This e�ect can be observed in Figure 5.11, which shows the inter-

ferometer displacement noise at di�erent pressures (solid line curves). A �t of the total

thermal noise displacement of the micro-oscillator for each pressure is displayed by the

dashed curves. The �t was calculated by substituting the total loss angle � = �
v
+ �

s
from

the viscous and structural damping contributions into Equation 3.67. The values for the vis-

cous quality factor Q
v

were adjusted for each pressure, while the structural quality factor

Q
s

was assumed to be the same for all pressures. As a result, a value of Q
s
= 1.7 × 10

4
was

obtained, which is within the expected range for this generation of micro-oscillators at a

room temperature [73]. The measurements show that the contribution of structural damp-

ing is signi�cant at pressures below 6 × 10
−3

mbar. The maximum viscous quality factor

of Q
v
= 10

5
was achieved at a pressure of 6 × 10

−5
mbar. This value is two times smaller

than what is predicted from Equation 3.71, where a viscous damping model taking into

account the thickness of the mirror pad and inelastic collisions with water molecules was

considered. This model seems to be more appropriate to describe the conditions in this ex-

periment than the model proposed in Equation 3.69, which considers only elastic collisions

with residual nitrogen and predicts a factor of Q
v
= 5 × 10

6
. The purple curve shows the

expected thermal noise displacement calculated solely with a contribution from structural

damping. By comparing it with the blue dashed curve, it is possible to conclude that the

residual viscous damping still has a non negligible contribution to thermal noise. At the

fundamental resonance frequency, the contribution to the total loss angle is 14.5 %, while at

higher frequencies this contribution is increased since�
v
= Ω∕(Ω0Qv

). To reach the regime

displayed by the purple curve, a viscous quality factor of at least Q
v
= 10

7
is needed. In

the future this could be achieved by heating the vacuum chamber in order to reduce the

number of water molecules. Furthermore, it was observed that the displacement noise at

6 × 10
−5

mbar was not considerably improved in comparison with a pressure of 10
−4

mbar

(not shown in the plot), which was preferred since the pressure increase over a typical set

of measurements was less signi�cant at this value.

The longitudinal (177 Hz), yaw (1296 Hz), and pitch (3328 Hz) fundamental resonance

frequencies for this oscillator were determined from the peaks displayed in the plot. In

addition to that, all theoretical curves were plotted considering a mass of 150 ng, which was

obtained from the radiation pressure transfer function of this micro-oscillator (described in

Section 5.3).

An interesting feature in the displacement noise which was observed with all micro-

oscillators is related to the 7 Hz broad peak, which is at the resonance frequency of the VIB
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Figure 5.11: ASD of the interferometer displacement noise measured with the micro-oscillator LA7

for di�erent pressures in the vacuum chamber (solid lines). A thermal noise �t for each measurement

is displayed by the corresponding dashed lines. The purple curve shows the expected structural

thermal noise displacement at room temperature for a Q
s
= 1.7 × 10

4
. For comparison, the gray

curve shows the interferometer displacement noise measured with the 0.5 inch mirror. The thermal

noise curves were plotted with the parameters from Table 5.1. For all measurements the transfer

beam was turned on, with a mean power of 46 mW.

100 isolation feet. The height of the peak is approximately one order of magnitude higher in

atmospheric pressure than in vacuum, were the height remained the same for all pressures

and was equal to the measurement with the 0.5 inch mirror. This additional noise in air is

most likely caused by the relative motion between the breadboard and the micro-oscillator’s

mirror pad, whose motion is now damped by the air. This relative motion causes a distance

change between the mirror pad and the interferometer beamsplitter (which is expected to

move rigidly with the breadboard) and will couple as displacement noise. This e�ect seems

to be in phase with the coupling path of the noise at 7 Hz measured in vacuum (which was

not fully understood), resulting in an additional displacement noise in air.

It is important to note that, in order to preserve the micro-oscillator’s alignment, the

transfer beam was kept on during the measurements with a mean power of 46 mW. The

radiation pressure displacement caused by the transfer beam power noise in this case is
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non negligible. This is the reason why the thermal noise �ts displayed by the dashed blue

and green curves are slightly below the measured displacement noise at frequencies be-

tween 20 Hz and 2 kHz. To account for this e�ect, the corresponding quality factors for

these curves were obtained by �tting the displacement noise with an uncorrelated sum

of the radiation pressure and the thermal noise displacements. Furthermore, the transfer

beam power noise was the source of the observed excess displacement noise at frequencies

below 5 Hz. Above 2 kHz the displacement noise was limited by technical noise sources,

as indicated by the gray curve showing the displacement noise measured with the 0.5 inch

mirror. In conclusion, the displacement noise was dominated by thermal noise for frequen-

cies ranging from 20 Hz until several kHz.

5.2.2 Displacement noise with micro-oscillator LC6

One of the most promising oscillators available in this experiment is the LC6, since it

has the highest transfer coe�cient � (de�ned in Equation 2.3). This oscillator was designed

to have a mass of 40 ng and a resonance frequency smaller than 117 Hz, which is very close

to the parameters used to calculate the fundamental limits of this scheme in Chapter 3. To

achieve such values, the cantilever was designed to have a length of 285 µm, which is the

longest in this chip, and a width of 6 µm. In addition to that, the mirror pad was designed to

have a radius of 25 µm, but, due to etching problems during the manufacturing process, the

size of the coating layers was not homogeneous and it was smaller than its design value (see

Figure 4.3). Hence, it is expected that the oscillator will have a smaller mass than its design

value, which will consequently shift the longitudinal resonance frequency to a higher value.

Due to its small size, this oscillator was �rst aligned to the sensing and transfer beams

with atmospheric pressure in the chamber. A �ne alignment was performed by tilting the

sensing and transfer beams individually to the oscillator, to make sure both beams are well

centered to the mirror pad, as described in Section 4.3. The pitch and the yaw resonance

peaks were reduced until there were not visible in the displacement noise, and the interfer-

ometer achieved a maximum contrast of 93 %. It is worth to note that the support layer of

the mirror pad was facing the sensing beam, which most probably prevented scattering or

beam deformations arising from inhomogeneities in the upper coating layers to potentially

reduce the contrast.

Figure 5.12 shows the interferometer displacement noise measured with the LC6 oscil-

lator at atmospheric pressure and at 10
−2

mbar. The longitudinal resonance frequency of

this oscillator was identi�ed to be at 219 Hz. The maximum thermal noise displacement in

air occurred at a slightly lower frequency, due to the high viscous damping contribution.

The �gure also shows the fundamental yaw (3920 Hz), pitch (5888 Hz), and side-to-side

(16 610 Hz) resonance peaks. The dashed curves shows a �t of the total thermal noise dis-
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placement, calculated with the same structural quality factor obtained from the LA7 oscilla-

tor (Q
s
= 1.7 × 10

4
), and considering a mass of 25 ng. These values would lead to a transfer

coe�cient of � = 1.6 × 10
3

rad ⋅W
−1

for frequencies below the longitudinal resonance.
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Figure 5.12: ASD of the interferometer displacement noise measured with the micro-oscillator LC6

for di�erent pressures (solid lines) in the vacuum chamber. A thermal noise �t for each measurement

is displayed by the corresponding dashed lines. The thermal noise estimations were made with the

parameters of Table 5.1. The transfer beam was turned o� during the measurements.

The experiment with the LC6 oscillator was much more challenging than with other

oscillators. The �rst challenge was to achieve a stable and long lasting lock of the inter-

ferometer to the mid-fringe. The amplitude of the oscillator’s motion at the longitudinal

resonance frequency caused a particularly large oscillation in the error signal of the inter-

ferometer control loop. These oscillations increased, in a timescale of minutes, to values

that were large enough to bring the interferometer out of the linear range around the mid-

fringe operational point. A similar behavior was observed with the LA7 oscillator, but

only at pressures below 10
−4

mbar, and with a smaller amplitude in the error signal. In

that case, a reduction in the open loop gain of the interferometer provided a better sta-

bility. A possible explanation for this e�ect is that the PZT mirror motion, which follows

the oscillator displacement, end up exciting the oscillator’s motion at its longitudinal res-

onance frequency, resulting in a positive feedback situation that brings the interferometer

out of lock. The e�ect with the LC6 oscillator, however, could not be improved by reduc-

ing, neither by increasing, the interferometer control loop gain. In a future experiment with

similar oscillators, a notch �lter centered at the longitudinal resonance frequency should
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be implemented in the MI control loop as an attempt to improve the locking conditions
2
.

The di�culty on locking the interferometer prevented improvement to the alignment of

the oscillator in vacuum. In addition to that, it was not possible to lock the interferometer

with pressures lower than 10
−2

mbar due to the higher displacement of the oscillator at the

longitudinal resonance frequency.

Another challenge with this oscillator was related to the increase in the transfer beam

power, which was realized in vacuum. By increasing the transfer beam power up to 1 mW,

a longitudinal static displacement of 1.4 × 10
−7
µm is expected for this oscillator. Since this

displacement is not purely longitudinal, the mirror pad needs to be readjusted in order to

restore the interferometer contrast (details described in Section 5.4.2). During this realign-

ment, the micro-oscillator broke. It was observed in the CCD cameras that the beams were,

for a short time, completely misaligned to the mirror pad during the step motions of the

translation stage, which excites the oscillator motion. Hence, the damage was most prob-

ably caused by the mechanical stress in the oscillator, induced by radiation pressure from

the sensing and transfer beams during the step motion. An alternative procedure for a fu-

ture experiment with a similar oscillator, would be to increase the transfer beam power and

restore the mirror pad alignment with atmospheric pressure in the chamber to reduce the

oscillator motion.

Because of the damage, no other measurements were made with this oscillator.

5.2.3 Displacement noise with micro-oscillator LC5

The last micro-oscillator implemented in this experiment was the LC5, which had a

mirror pad radius of 60 µm, and a cantilever with length of 200 µm and width of 12 µm

(see Figure 4.3). The interferometer displacement noise measured with this oscillator is

shown in Figure 5.13, together with the previous measurements with the oscillators LA7,

LC6, and with the 0.5 inch mirror. The green curve shows that the LC5 oscillator had a

fundamental longitudinal resonance frequency of 151 Hz. A large displacement noise can

be observed at 150 Hz, which is an harmonic of the utility frequency of 50 Hz, and is very

close to oscillator’s longitudinal resonance frequency. This displacement was caused by

the power noise of the transfer beam, which had a mean power of approximately 50 mW in

this measurement. A thermal noise �t, similar to what described in Section 5.2.1, resulted

in a structural quality factor of Q
s
= 6 × 10

3
, and a viscous quality factor of Q

v
= 10

5
at

10
−4

mbar for this oscillator.

2
A notch �lter was not implemented in this setup due to the damage in this oscillator after turning the

transfer beam on.
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Figure 5.13: ASD of the interferometer displacement noise measured with the 0.5 inch mirror, and

with the micro-oscillators LA7, LC6, and LC5. The pressure in the chamber was approximately

10
−4

mbar for the LA7 and LC5 oscillators, 10
−2

mbar for the LC6 oscillator, and atmospheric pressure

for the 0.5 inch mirror. The transfer beam was turned on, with a power of approximately 50 mW, in

the measurements with the LA7 and LC5 oscillators.

5.3 Power sensing

After the sensing noise characterization, the interferometer was used as an in-loop sen-

sor for power �uctuations/modulations of the transfer beam. First, the radiation pressure

transfer function R, from transfer beam power modulations to micro-oscillator displace-

ment, was measured. The results are shown in Figure 5.14 for the LA7 and LC5 oscillators

(full curves). The dashed curves display the corresponding transfer function �t, calculated

with Equation 2.26. The e�ective mass of the longitudinal mechanical mode was obtained

from the �t, which resulted in a mass of 150 ng for the LA7, and a mass of 190 ng for the

LC5 oscillator. The parameters for the oscillators used in this thesis are summarized in Ta-

ble 5.1. The radiation pressure transfer function was also measured for di�erent pressures

inside the chamber and, as expected, no signi�cant di�erences were observed apart from

the total loss angle.

In a second step, a comparison between measurements of the free running power �uc-

tuations of the transfer beam sensed by the interferometer (in-loop measurement) and by

the OOL PD was made for the LA7 oscillator. The projection RPN
il

from the interferome-
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Figure 5.14: Bode plot of the radiation pressure transfer function R, measured with the micro-

oscillators LA7 and LC5. The dashed curves are a �t of the transfer function, calculated according

to Equation 2.26, and considering the parameters displayed from Table 5.1. The measurements were

performed with pressures around 10
−4

mbar in the vacuum chamber, and with 46 mW of power in

the transfer beam.

ter displacement readout x to transfer beam relative power noise was calculated with the

following equation:

RPN
il
=
|

|

|

|

|

x
R ⋅ P

t

|

|

|

|

|

=
|

|

|

|

|

V
s

(

1 + G
MI

)

HR ⋅ P
t

|

|

|

|

|

. (5.10)

The mean power on the transfer beam was initially set to 46 mW, which should be far be-
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Pad (µm) Length (µm ) Width (µm) m (ng) f0 (Hz) �
(

rad ⋅W−1
)

LA7 50 200 10 150 177 424

LC6 < 25 285 6 ∼ 25 219 1660

LC5 60 200 12 190 151 460

Table 5.1: Parameters for the micro-oscillators LA7, LC6, and LC5: mirror pad radius, cantilever

length and width, e�ective mass m of the longitudinal mechanical mode, fundamental longitudinal

resonance frequency f0, and transfer coe�cient � .

low the damage threshold of this oscillator. Apart from frequencies below 5 Hz, the absolute

power �uctuations of the transfer beam for 46 mW are too small to drive the oscillator’s mo-

tion above the interferometer displacement noise. This resulted in a discrepancy between

the in and out-of-loop power noise measurements, as shown by the red and blue curves in

Figure 5.15. Hence, to demonstrate a power sensing and power stabilization at low pow-

ers, a broadband white noise was imprinted on the transfer beam. As shown by the green

and yellow curves, the imprinted noise was high enough such that the in and out-of-loop

power noise measurements overlap for frequencies between 10 Hz and 5 kHz. At higher

frequencies, the in-loop measurement is still dominated by sensing noise, which is approx-

imately �at in this frequency regime, and therefore the in-loop projection follows a shape

of approximately f 2, as expected from the radiation pressure transfer function in Equation

5.10. An in-loop power measurement without imprinting white noise should be possible at

frequencies up to the kHz regime for a transfer beam power higher than 200 mW.

Figure 5.16 shows the interferometer displacement, measured with the LA7 oscillator,

when no noise is applied to the transfer beam (green curve), and when a white noise with

amplitude of 10
−6

W ⋅ Hz
−1/2

and 5 × 10
−7

W ⋅ Hz
−1/2

is imprinted on the transfer beam (blue

and red curves). As expected, the green curve follows the thermal noise �t of the oscillator

(dashed green curve), while the blue and the red curves follow the radiation pressure dis-

placement driven by the transfer beam (dashed blue and red curves). In addition to that, the

increase in the radiation pressure displacement was linear with the applied white noise.

In conclusion, the measurements demonstrated that the interferometer can be used as

a power sensor for the transfer beam for frequencies up to 6 kHz, in agreement with what

expected from the sensing noise characterization.

5.4 Power stabilization via radiation pressure

After demonstrating the feasibility and the limitations of using the interferometer as a

power sensor for the transfer beam, the power stabilization via radiation pressure control

loop was enabled. This section presents the out-of-loop beam power noise performance
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Figure 5.15: ASD of the out-of-loop (OOL) and in-loop (IL) measurements of the free running relative

power noise of the transfer beam before (red and blue curves), and after (green and orange curves)

imprinting a broadband white noise in the transfer beam. The measurements were performed with

the LA7 micro-oscillator and with a pressure of 10
−4

mbar in the vacuum chamber. The transfer

beam power was 46 mW.

from this proof-of-principle experiment for the micro-oscillators LA7 and LC5.

5.4.1 Stabilization control loop

A block diagram of the power stabilization control loop is shown in Figure 5.17. The

absolute free running power �uctuations of the transfer beam �P
fr

are detected by the in-

loop sensor, formed by the Michelson interferometer and the micro-oscillator, which has

a complex transfer function S = R ⋅ H1 ⋅ H2. The sensor signal V
s

at the output of the

MI control loop is ampli�ed by a controller with a complex transfer function C
RP

, and the

resulting control signal V
c

is sent to the AOM, which has a complex transfer function A
RP

.

The residual power �uctuations in the stabilized out-of-loop beam are represented by �P
ool

.

This experiment had the aim to suppress power �uctuations at frequencies above 1 Hz. If

reference tracking is needed, to avoid power drifts for example, then a reference signal

should be subtracted from the sensor signal in a similar fashion as in the MI control loop.

The controller consisted on four stages: a calibration stage, a di�erentiator stage, an

integrator stage, and a proportional gain stage. Figure 5.18 presents a measurement of the
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Figure 5.16: ASD of the interferometer displacement with (blue and red curves) and without (green

curve) white noise imprinted on the transfer beam. The dashed green curve represents the ther-

mal noise displacement of the oscillator, and the dashed red and blue curves represent the expected

radiation pressure displacement driven by a frequency independent transfer beam power noise cor-

responding to the applied white noise. The measurements were performed with the LA7 micro-

oscillator and with a pressure of 10
−4

mbar in the vacuum chamber. The transfer beam power was

46 mW in all measurements.

transfer function of the individual stages, as well as the total controller transfer function

and its �t (black dashed curve). The calibration stage (red curve) had the purpose of provid-

ing gain at low frequencies in order to compensate for the suppression in the sensor signal

by the MI control loop gain. Its transfer function had an approximate shape of 1 + G
MI
∕f

for frequencies between 1 Hz and 410 Hz. This stage also contains a high pass �lter with a

corner frequency of 3 Hz to suppress possible DC o�sets, that could alter the transfer beam

mean power. An additional frequency dependent gain at low frequencies was provided

by the integrator (blue curve), which had a lower corner frequency of approximately 8 Hz.

The di�erentiator had the purpose of compensating the 180° phase loss after the oscillator’s

longitudinal fundamental resonance frequency, and it added a maximum positive phase of

approximately 100° at 2 kHz. At higher frequencies, a low pass �lter stage with a corner

frequency of 25 kHz was added to the di�erentiator to suppress high-frequency resonances
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Figure 5.17: Block diagram of the power stabilization via radiation pressure control loop. The ab-

solute free running power �uctuations �P
fr

of the transfer beam are sensed by the interferometer

containing the micro-oscillator, which has a total complex transfer function S . The sensor signal V
s

is ampli�ed by a controller with transfer function C
RP

, and the resulting control signal V
c

is sent to

the AOM (power actuator), which has a transfer function A
RP

. The residual power �uctuations in

the stabilized out-of-loop beam are represented by �P
ool

.

of the operational ampli�ers used in this stage, and also to reduce contributions caused by

ground loops at

≈ 200 kHz, which would cause instabilities in the control loop. The AOM had a �at transfer

function up to the MHz regime.

Figure 5.19 shows the open loop transfer function G
RP

measurement performed with

the micro-oscillator LA7. The dashed black curve represents the �t of the transfer function,

calculated with the following equation:

G
RP
=
S C

RP
A

RP

(

1 + G
MI

) . (5.11)

At high frequencies the magnitude deviated from the �t since the injected excitation at the

AOM was not su�cient to overcome the interferometer displacement noise. The maximum

UGF achieved with this con�guration was around 7 kHz with a phase margin of 65°. The

measurement shows that, in principle, the UGF could be increased to values up to 20 kHz

with a phase margin of 30°. However, such a value was not possible to achieve in practice

due to peaks at frequencies around 200 kHz which would have an amplitude larger than

0 dB and a phase loss close to 180° in the transfer function measurement. The origin of

these peaks was not well understood, but measurements showed that a reduction on the

peaks was possible by changing the electronic supply connections in the experiment, which

is evidence for a cause connected to ground loops. The additional phase loss between the
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Figure 5.18: Bode plot of the measured transfer functions of the individual stages of the controller,

and of the total controller transfer function (yellow curve) and its �t (dashed black curve).

measurement and the �t curve at frequencies above 5 kHz is due to phase delays introduced

by the AOM, and by the operational ampli�ers used in the controller.

The horizontal alignment of the micro-oscillator was not optimal in this measurement,

which explains the coupling from the yaw motion of the oscillator to the transfer function.

The fact that the corresponding magnitude from this resonance crosses 0 dB is not an issue

for the stability of the control loop since it has a corresponding positive phase. For reso-

nances with a high amplitude, however, nonlinear e�ects can take place in the control loop
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Figure 5.19: Bode plot of the power stabilization open-loop transfer function measurement (red

curve), and its �t (dashed black curve). The measurement was performed with the LA7 micro-

oscillator, and with a pressure of 2 × 10
−4

mbar in the vacuum chamber.

and bring it to an unstable regime. Therefore, before turning the power stabilization control

loop on, the oscillator was aligned to reduce the coupling at the yaw and pitch resonance

frequencies to as small as possible.
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5.4.2 Power stabilization with micro-oscillator LA7

In a �rst step, the stabilization was performed at di�erent pressures in the vacuum

chamber and with a �xed transfer beam power of 46 mW. The results are shown in Fig-

ure 5.20, where the RPN measured by the OOL PD is plotted when the power stabilization

control loop is turned o�, and turned on with di�erent pressures in the chamber. The cor-

responding dashed curves represent the expected power noise performance, calculated as

an uncorrelated sum of the micro-oscillator’s thermal noise displacement projected to the

out-of-loop beam, and the expected free running noise reduction (of a frequency indepen-

dent RPN = 2.8 × 10
−5

Hz
−1/2

) by the open loop gain G
RP

. The plot shows that the power

stability was increased by lowering the pressure, which is expected from the reduction of

the viscous thermal noise contribution to the sensing noise. At frequencies between 15 Hz

and 850 Hz, the free running noise was suppressed by a frequency independent factor of

approximately 1.8 at a pressure of 10
−1

mbar, which agrees with the viscous thermal noise

limit. At a pressure of 2 × 10
−4

mbar, the relative power noise followed a 1∕f slope from

15 Hz until 300 Hz, where the lowest value of 1.3 × 10
−6

Hz
−1/2

was achieved, in agreement

with a structural thermal noise limitation. At frequencies higher than 340 Hz, the perfor-

mance was limited by the control loop gain. The peak around 7 Hz was imprinted on the

out-of-loop beam with approximately the same height for all pressures. A curious feature

observed in the free running power noise measured with the OOL with all oscillators, also

when no white noise was applied to the transfer beam, was a resonance behavior at the

longitudinal resonance frequency. It is suspected that this e�ect was caused by the inter-

ference between an apparent power noise due to beam jitter at the photodiode and the free

running power noise in the transfer beam.

A comparison between the out-of-loop relative power noise measured by the in-loop

and out-of-loop sensors is presented in Figure 5.21. The dashed orange curve depicts the

micro-oscillator total thermal noise contribution, calculated from the �t presented in Sec-

tion 5.2.1, projected to the out-of-loop beam. The projection overlaps with the out-of-loop

power noise measurement for frequencies between 15 and 300 Hz, and below 4 Hz, con�rm-

ing that the power stability is thermal noise limited in this frequency regime. The dashed

green curve depicts the expected free running power noise reduction by the control loop,

considering an initial frequency independent relative power noise of 2.8 × 10
−5

Hz
−1/2

. This

curve agrees with the performance of the in-loop detector from 10 Hz to 5 kHz, where a

minimum value of 1.4 × 10
−11

Hz
−1/2

was achieved at the oscillator’s longitudinal resonance

frequency. The additional noise in the in-loop measurement at low frequencies with respect

to the noise reduction curve was because the free running RPN
ool

at those frequencies was

higher than the one used in the calculation. At high frequencies, the projected interferom-

eter displacement noise is higher than the free running RPN
ool

, and therefore the in-loop

measurement does not agree with the noise reduction curve. The overlap between the noise
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Figure 5.20: ASD of the relative power noise measured by the OOL PD when the power stabilization

control loop is turned o� (red curve), and when the loop is turned on with di�erent pressures in the

vacuum chamber (orange, blue, and green curves). The dashed curves represent the expected power

noise performance and were calculated as an uncorrelated sum of the micro-oscillator’s thermal

noise, and the expected free running noise reduction by the control loop. The measurements were

made with a transfer beam power of 46 mW and with an imprinted broadband white noise. The

power stabilization open loop UGF was 7 kHz for all measurements.

reduction curve and the out-of-loop measurement above 450 Hz con�rms that the out-of-

loop stability is limited by the open loop gain in this frequency regime. Furthermore, the

thermal noise projection indicates that increasing the open loop UGF could result in a rela-

tive power stability of 7 × 10
−7

Hz
−1/2

at the kHz regime for a transfer beam power of 46 mW.

In sequence, the out-of-loop power stability was measured for di�erent transfer beam

mean powers. The power was gradually increased over steps around 10 mW, and in each

step the micro-oscillator’s degrees of freedom had to be readjusted in order to compensate

for the misalignment caused by the transfer beam. As shown in Figure 5.22, an increase in

the transfer beam power induces a static longitudinal displacement plus a pitch rotation in

the oscillator (step 2). This rotation was enough to change the interferometer contrast
3
, and

also the position of the mirror pad center with respect to the sensing and transfer beams. To

restore the interferometer contrast, the oscillator chip was rotated in the pitch direction, as

illustrated in step 3. After this rotation, however, the mirror pad is longitudinally displaced

3
A power change of 13.8 mW changed the contrast from 97% to 93%, for example.
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Figure 5.21: ASD of the transfer beam relative power noise obtained from the out-of-loop (OOL)

and in-loop (IL) measurements when the power stabilization control loop is turned o� (red and blue

curves), and on (orange and green full curves). The dashed orange curve shows the micro-oscillator

total thermal noise displacement projected to the out-of-loop beam, and the dashed green curve

shows the expected control loop power noise reduction. The measurements were performed with a

transfer beam power of 46 mW, with a pressure of 2 × 10
−4

mbar in the vacuum chamber, and with

an open loop UGF of 7 kHz.

from its initial position and it is no longer centered to the transfer beam. Hence, the chip

needed to be horizontally and vertically displaced in order to restore the initial alignment.

Steps 3 and 4 had to be repeated over a few times to �nd the optimum position, since

the mirror pad also has a small rotation (not shown in the �gure) in step 3 caused by the

misalignment with respect to the transfer beam.

1) 2) 3) 4)

⤾

→→

Figure 5.22: Illustration of the procedure for the micro-oscillator realignment after increasing the

transfer beam power.

The out-of-loop power stability performance for a transfer beam power of 46 mW and

119 mW are shown in Figure 5.23. The dashed curves were calculated as an uncorrelated
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sum of the micro-oscillator’s thermal noise and the expected free running noise reduction

by the control loop. The reduction in the relative power noise after an increase in the

transfer beam power can be observed at frequencies below 500 Hz. A minimum relative

power noise of 6.8 × 10
−7

Hz
−1/2

at a frequency of 200 Hz was achieved for a transfer beam

power of 119 mW. It is worth to note that the UGF for the measurement at 119 mW was

8 kHz, which was slightly higher than for the measurement at 46 mW (7 kHz). This is the

reason why the power noise at high frequencies is not the same for the di�erent powers,

which should be the case if the UGF was equal in both measurements, since the performance

is limited by the open loop gain. The purple curve represents the minimum out-of-loop

relative power noise that could, in principle, be achieved for a transfer beam power of

119 mW, if the performance was solely limited by the structural thermal noise of the micro-

oscillator.

10 0 10 1 10 2 10 3 10 4 10 5

Frequency (Hz)

10 -7

10 -6

10 -5

10 -4

10 -3

R
el

at
iv

e 
p

o
w

er
 n

o
is

e 
( 

H
z-1

/
2  )

PStab off

PStab on - P
t
 = 46 mW

PStab on - P
t
 =  119 mW

Strucutral thermal noise

Figure 5.23: ASD of the relative power noise measured by the out-of-loop sensor when the power

stabilization control loop is turned o� (red) and when the loop is on for di�erent transfer beam

powers. For all measurements a broadband white noise was imprinted at the transfer beam. The

measurements were performed with a pressure of 10
−4

mbar at the vacuum chamber, and with an

open loop UGF of 7 kHz for a mean power of 46 mW, and of 8 kHz for a mean power of 119 mW. The

purple curve represents the structural thermal noise projection for this micro-oscillator, considering

a transfer beam power of 119 mW.

Higher stability levels could be achieved by further increasing the transfer beam mean

power. However, the micro-oscillator broke at a value of approximately 150 mW. The
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breaking mechanism was not entirely understood.

5.4.3 Power stabilization with micro-oscillator LC5

The last power stabilization experiment was realized with the LC5 oscillator. In this part

of the experiment, the controller of the power stabilization loop was modi�ed such that a

higher open loop UGF could be achieved. The modi�cation consisted on implementing a

second di�erentiator stage to increase the phase margin at the kHz regime. In addition to

that, a low pass �lter was implemented at the output of the controller to suppress the addi-

tional gain at frequencies around 200 kHz, mentioned in Section 5.4.1. With these changes,

a maximum UGF of 21 kHz was achieved with a phase margin of 25°.
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Figure 5.24: ASD of the relative power noise measured by the out-of-loop sensor when the power

stabilization control loop is turned o� (red) and when the loop is on for di�erent transfer beam

powers. The dashed curves were calculated as an uncorrelated sum of the micro-oscillator’s thermal

noise and the expected free running noise reduction by the control loop. A broadband white noise

was imprinted at the transfer beam in all measurements. The measurements were performed with

a pressure of 10
−4

mbar at the vacuum chamber, and with a UGF ≈ 9.4 kHz for a mean power of

48 mW, a UGF ≈ 15.5 kHz for a mean power of 92 mW, and a UGF ≈ 21 kHz for a mean power of

141 mW.

Figure 5.24 shows the relative power noise of the out-of-loop beam when the power

stabilization control loop is turned o�, and when the loop is turned on for di�erent transfer

beam powers. In all measurements, a broadband white noise was imprinted to the transfer
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beam. The noise was injected before the low pass �lter implemented at the output of the

controller, which explains the frequency dependence shape at high frequencies in the free

running power noise curve. Apart from the 7 Hz peak, the power stability at frequencies

below 500 Hz was thermal noise limited, and the RPN was linearly reduced by increasing

the transfer beam power. This reduction in the relative power noise is expected since the

absolute power modulation applied by the control loop to the transfer beam, in order to

compensate the micro-oscillator’s thermal noise motion and to suppress the sensing noise

in the error signal, is independent on the transfer beam mean power. This would not be

case if the sensing noise was limited by noise sources that depends on the transfer beam

mean power, such as scattering for example. For frequencies above 500 Hz, the stability

was limited by the control loop gain. All measurements were performed by keeping the

same electronic gain in the controller, and by increasing the transfer beam power via an

attenuation stage located after the AOM (see Figure 4.4). In this manner, the transfer func-

tion from power modulation imprinted by the AOM to absolute power modulation after

the attenuation stage increased proportionally with power. As a result, the magnitude of

the open loop transfer function was also increased with power, which lead to a higher sup-

pression of the free running power noise at frequencies above 500 Hz. An excess noise

can be observed at frequencies between 10 Hz and 100 Hz, especially in the green curve, in

which the transfer beam power was higher. The peaks present on this noise occurred at

frequencies which are close to the harmonics of the 7 Hz peak, and were most likely caused

by scattering from the transfer beam in the OOL PD, or by beam jitter at the photodiode.

This explanation is supported by the fact that this noise was not present in the measured

interferometer displacement noise, but it could be observed in the transfer beam free run-

ning power noise (without imprinting white noise) measured by the OOL PD (see Figure

5.15). It is also interesting to note that the resonance behavior at the longitudinal resonance

frequency in the free running noise measurement was particularly high for this oscillator,

and that its corresponding 5 �rst harmonic peaks at 302 Hz, 453 Hz, 604 Hz, 755 Hz, and

906 Hz are also present. These peaks are not present in the measurements when the power

stabilization loop is turned on because the micro-oscillator’s longitudinal motion is reduced

by the control loop gain.

The UGF of 21 kHz was close to the control loop instability point and could not be fur-

ther increased. Hence, the stabilization for higher powers was performed by adjusting the

electronic gain in the controller such that the open loop UGF was kept approximately at

15.5 kHz, as shown in Figure 5.25. The curves now overlap in the region where the stability

performance is limited by the control loop gain. At the maximum transfer beam power of

267 mW, a relative power noise of 3.7 × 10
−7

Hz
−1/2

was achieved at 250 Hz, corresponding

to a free running noise reduction by a factor of 73. A signi�cant di�erence on the stabi-

lization measurement made with 267 mW can be observed: the 7 Hz peak contribution was
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Figure 5.25: ASD of the relative power noise measured by the out-of-loop sensor when the power

stabilization control loop is turned o� (red) and when the loop is on for di�erent transfer beam

powers. A broadband white noise was imprinted at the transfer beam in all measurements. The

measurements were performed with a pressure of 10
−4

mbar at the vacuum chamber and with a

UGF of ≈ 15.5 kHz.

two orders of magnitude smaller than with previous measurements. In addition to that,

the excess noise at frequencies between 10 Hz and 100 Hz was not present at this measure-

ment. The peak height was also reduced in the interferometer displacement readout. Since

no modi�cations were made in the setup between the measurements, the cause for this dif-

ference is most likely related to environmental changes in the vibrations at the laboratory

building, similar to the one observed in Figure 5.9. It is worth noting that the alignment of

the oscillator was not optimized in vacuum for the power of 267 mW, which can be seen

by the coupling of the peaks corresponding to the pitch and yaw motion at the stabilized

power noise measurement. This choice was made because at each step motion in the trans-

lation stage the micro-oscillator was ringing for a long time, which made the alignment a

slow process, and also to avoid damage in the oscillator, since a large amount of scattered

light was observed in the CCD cameras.

For transfer beam powers higher than 200 mW, the free running absolute power �uc-

tuations of the NPRO are large enough to be sensed by the interferometer for frequencies

up to 1.3 kHz, such that no white noise needs to be applied in the transfer beam. This can

be seen by the right plot of Figure 5.26, which shows a comparison of the interferometer
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Figure 5.26: Left: ASD of the relative power noise measured by the out-of-loop sensor when the

power stabilization control loop is turned o� (red) and when the loop is on, for a transfer beam

power of 267 mW and without imprinting white noise. The open loop UGF was 10 kHz. Right: ASD

of the interferometer displacement noise measured with a transfer beam power of 267 mW (green

curve), and free running power noise of the transfer beam projected to micro-oscillator displacement

(red curve). The measurements were performed with a pressure of 10
−4

mbar at the vacuum chamber.

displacement noise (green curve) and the free running power noise of the transfer beam

projected to displacement in the micro-oscillator (red curve). The left plot shows the per-

formance of the power stabilization without white noise applied in the transfer beam. The

stability is now solely limited by sensing noise, since the loop gain was enough to sup-

press the transfer beam free running power �uctuations. Thermal noise now limits the

sensitivity until 1 kHz, and a power stability of 2.5 × 10
−7

Hz
−1/2

was achieved at 730 Hz. At

higher frequencies, the sensing noise is above the free running noise of the transfer beam

and is imprinted on the out-of-loop beam following the frequency dependence of the radi-

ation pressure transfer function. To reduce the imprinted noise by the control loop at high

frequencies, a UGF of 10 kHz was set for this measurement.

The realignment procedure when increasing the power in the LC5 oscillator was per-

formed with atmospheric pressure in the chamber, in order to reduce the risk of damage

due to the large displacement of the oscillator induced by the translation stage step mo-

tion in vacuum. After each set of realignment steps, the beams were manually centered

at the mirror pad in order to achieve a more precise alignment. With this procedure, the

LC5 oscillator was so far not damaged, and could stand a power of at least 285 mW, which

was higher than for the LA7 and LC6 oscillators. The power was not increased further in

this experiment because the range in the pitch degree of freedom in the motorized mirror

mount reached its limit, and it was not possible to continue with the realignment of the

mirror pad. The static displacement of the oscillator at this power was calculated to be
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11 µm, which represents a bending angle of 3.2° with respect to its relaxed position
4
. For

this reason, the damage threshold of this oscillator was not measured.

5.5 Future work

In this proof-of-principle experiment, an RPN
ool

of 2.5 × 10
−7

Hz
−1/2

was achieved at

730 Hz with the LC5 micro-oscillator. The stability performance at frequencies below 1 kHz

was consistent with the expected thermal noise limit measured at room temperature. In

summary, the results agreed with what was expected from the design of this experiment and

from the sensing noise characterization. In future work however, a higher power stability

in the out-of-loop beam is desired. Let us now discuss the possible steps to achieve this

goal.

The straightforward path to achieve higher power stability with the current setup, at

frequencies where the experiment was limited by structural thermal noise, is to further in-

crease the transfer beam power. The power damage threshold for this generation of micro-

oscillators has not yet been determined. However, measurements made with similar oscil-

lators by our collaborators at the Louisiana State University set a lower limit for the damage

threshold of 500 mW. This power would represent an improvement for the relative power

noise by a factor of ≈ 2 with respect to the current result achieved with the LC5 oscillator.

Another path would be to implement an oscillator with a mechanical susceptibility close

to the LC6 oscillator, which would improve the stability level by another factor of ≈ 2. In

this case, the alignment with high transfer beam power should be performed with atmo-

spheric pressure at the vacuum chamber. The open question with both paths, that should

be investigated in the future, is the damage threshold and also its breaking mechanism,

which might depend on the oscillator’s design. To achieve an RPN
ool

close to 10
−8

Hz
−1/2

at

700 Hz, for example, a transfer beam power of 4 W is needed. Previous measurements of the

damage threshold of a coating formed by 35 alternating layers of GaAs and Al0.92Ga0.08As,

transferred to a few cm thick silica substrate, resulted in a lower damage threshold limit

of 64 MW ⋅ cm
−2

[116]. This would mean that powers on the order of kW could be used

with the oscillators. However, an important factor to take into account is that the thick

silica substrate supporting the coating helps with the transfer of the absorbed heat away

from the mirror, whereas the free-standing mirror coating in the micro-oscillators is prone

to more heating due to the weak thermal link between the mirror pad and the chip, which

can vary depending on the design of the oscillator. Hence, an optimal design of micro-

oscillators for a power stabilization experiment should be a compromise between a high

mechanical susceptibility and a high power damage threshold, and should be investigated

in future experiments.

4
The angular range speci�ed for this mount by the manufacturer is ±4°.
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At higher frequencies, the experiment was limited by a combination of the contribu-

tions from viscous thermal noise, sensing beam power noise, and electronic noise. By im-

proving these noise sources, a relative power noise below 10
−7

Hz
−1/2

can be achieved at the

kHz regime with a power of 250 mW and the LC5 oscillator.

To achieve higher power stabilities, however, changes in the setup design might be

required. An option that should be investigated, for example, is to use a self modulation

scheme con�guration. The implemented scheme based on a cross phase modulation was

preferred for a proof-of-principle experiment over a self-modulation scheme
5

in order to

have a clear distinction and independent characterization between the transfer and readout

schemes. This was an important con�guration to test the transfer concept discussed in this

thesis. However, a self-modulation scheme could have advantages in a future experiment.

One of the advantages is that the interferometer would operate with a beam power higher

than 250 mW, which would increase the interferometer transfer function magnitude by

at least one order of magnitude. As a consequence, the contribution from the MI control

loop electronic noise to the sensing noise would be equally reduced. Another advantage

is that technical power noise would not limit the interferometer sensitivity, neither by the

mid-fringe readout, nor by radiation pressure noise, since the power at the input of the

interferometer will be stabilized by the radiation pressure control loop. However, with this

con�guration, a dark-fringe readout should be implemented in order to preserve the full

transfer beam power to the out-of-loop beam. In addition to that, only one beam would

need to be aligned to the micro-oscillator, which would simplify the alignment procedure.

Another con�guration that should be investigated is to perform the phase readout with a

cavity. As discussed in this thesis, the in-loop signal for a cavity is in principle considerably

increased with respect to an interferometer. In this case, a calculation to determine the

stability requirements for the laser phase noise should also be performed.

Finally, to achieve lower power noise values, a cryostat that could reach a temperature

close to 10 K should be implemented. An additional bene�t of using cryogenic temperatures

is that the structural quality factor of the micro-oscillator could potentially be increased by

one order of magnitude [104]. Hence, a power noise reduction by a factor of 17 might be

achieved by operating the micro-oscillator at 10 K.

5
In a self-modulation scheme, the transfer beam would be implemented in the interferometer and be

responsible for both the phase transfer and the phase readout (see discussions in Section 2.2.1, and Figure

2.10).
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Chapter 6

Summary

This thesis investigated the pertinent question of whether active power stabilization

schemes for high power lasers could bene�t from the transfer of the power noise to a dif-

ferent observable that could be measured with less sensing noise and/or with less e�ort

than by a direct detection of power noise. An analysis of di�erent transfer scheme possi-

bilities revealed that, with current technologies, most schemes are unsuitable to detect a

relative power noise on the order of 10
−9

Hz
−1/2

. One scheme, however, stood out for its

potential in achieving a relative power noise stability below 10
−9

Hz
−1/2

and a generation of

a strong bright squeezed beam: a phase transfer scheme via radiation pressure.

In the radiation pressure scheme, the power �uctuations of a strong laser beam are

transferred to motion of a movable mirror. The mirror motion is determined by a Michel-

son interferometer employing a weak laser beam, which forms the in-loop sensor for the

power stabilization control loop. Theoretical investigations showed that a phase transfer

coe�cient of 3.6 × 10
3

rad ⋅W
−1

can be achieved with a micro-oscillator mirror with a mass

of 40 ng and a longitudinal resonance frequency of 117 Hz. This coe�cient is at least three

orders of magnitude higher than what can be achieved with transfer schemes via the Kerr

and cascaded Kerr e�ects employing nonlinear materials.

An in-depth noise analysis of the radiation pressure scheme was made. The calcula-

tions were performed considering that the interferometer containing the micro-oscillator is

fundamentally limited by quantum and thermal noise. For a transfer beam with a power of

4 W, a relative power noise below 6 × 10
−10

Hz
−1/2

can be achieved for frequencies between

10 Hz and 6 kHz. This value can be further reduced by increasing the transfer beam power

and/or by increasing the mechanical susceptibility of the movable mirror. Furthermore,

the calculations show a remarkable result: a power stabilization below the shot noise limit

can be achieved in the out-of-loop beam, with a squeezing factor of 11 dB, which can be in-

creased with a higher laser power. This is a considerable advantage of the proposed scheme

with respect to the traditional scheme assisted by squeezing, in which the squeezing factor
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is reduced with the out-of-loop beam power and would require 30 dB of amplitude squeezed

vacuum in order to achieve the same power stability.

A proof-of-principle experiment with a design based on the theoretical investigations

was realized with micro-oscillator mirrors with masses ranging from 25 to 190 ng, and lon-

gitudinal resonance frequencies from 151 to 219 Hz. The technical noise sources coupling

at the interferometer readout were analyzed and reduced such that the interferometer was

fundamentally limited by the thermal noise of the micro-oscillators at room temperature for

frequencies up to a few kHz. A power stabilization was demonstrated for di�erent transfer

beam powers, and a relative power noise of 3.7 × 10
−7

Hz
−1/2

was achieved at 250 Hz for a

transfer beam power of 267 mW and for a micro-oscillator with mass of 190 ng and longitu-

dinal resonance frequency of 151 Hz. The out-of-loop power stability agreed well with the

projection of the micro-oscillator’s thermal noise to the out-of-loop beam at frequencies

below a few kHz, and with the control loop’s free running noise reduction at high frequen-

cies. In addition to that, the expected improvement in the power stability with the transfer

beam power was demonstrated. The maximum transfer beam power was set by a range

limitation in the pitch degree of freedom of the micro-oscillator mount, which was not suf-

�cient to compensate for the large longitudinal displacement induced by the mean laser

power. Other experiments with similar mirrors have set a lower limit of 500 mW for their

power damage threshold. Hence, an experimental investigation should be done in order to

determine the damage threshold and also the breaking mechanism of these devices.

The successful implementation of the radiation pressure transfer scheme for laser power

stabilization shown in this thesis paves a way for achieving a higher power stability in fu-

ture experiments. An important step towards this goal is to design a movable mirror which

is optimized for the purposes of a power stabilization of high laser power. The power tol-

erance of the mirror is a crucial aspect to be considered, since the power stability increases

linearly with the transfer beam power. Another relevant parameter, but with a smaller

impact, is the mechanical susceptibility of the mirror, which contributes to the power sta-

bility proportionally to the square root of its magnitude. Because the power tolerance can

depend on the mirror design, a trade o� between a high power damage threshold and high

mechanical susceptibility is necessary. The investigations for a micro-oscillator consisting

of a mirror pad and a cantilever should include, for example, an analysis of how the can-

tilever length and width, and the mirror pad radius can alter the damage threshold and

the susceptibility. Other designs, such as a cat-�ap type for example, or designs which the

motion of the oscillator is constrained to the longitudinal direction, should also be investi-

gated.

Finally, another improvement in a future setup is to reduce the thermal noise contribu-

tion to the interferometer readout. For the micro-oscillators used in this setup, structural

quality factors of 1.7 × 10
4

and 6 × 10
3

were measured at room temperature. This value
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might be signi�cantly increased with alternative materials and in a setup implementing

cryogenics temperatures close to 10 K. Since thermal noise is a limiting factor in many

high-precision optical experiments, the search for novel optical materials with higher qual-

ity factors is very active, and movable mirrors with high mechanical susceptibility might

exhibit even higher quality factors in the future.

In summary, the results from the investigations performed in this thesis are a promising

step towards a scheme that can achieve a relative power noise below 10
−9

Hz
−1/2

at low

frequencies and ful�ll the requirements of future gravitational wave detectors. In addition

to that, the scheme is a promising source for the generation of a bright squeezed beam, and

can also be of interest for other high precision metrology experiments and optomechanical

experiments.
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