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Abstract
We study the problem to simultaneously decide on the structures and the sched-
ules for an entire portfolio of flexible projects. The projects are flexible as alterna-
tive technologies and procedures can be used to achieve the respective project task. 
The choice between different technologies and procedures affects the activities to 
be implemented and thus the precedence relations, i.e., the structure of the project. 
The different projects have given due dates with specific delay payments and com-
pete for scarce resources. In this situation, project structure decisions and schedul-
ing decisions are highly intertwined and have to be made simultaneously in order to 
achieve the assumed objective of minimizing the delay payments for the entire pro-
ject portfolio. The problem is formally stated and solved via novel and problem-spe-
cific genetic algorithms. The performance of the new algorithms is evaluated with 
respect to speed and accuracy in a systematic and comprehensive numerical study.

Keywords  Multi-project scheduling · Flexible projects · Genetic algorithms · 
RCPSP · RCMPSP

JEL Classification   C61 · M11

1  Introduction

In this paper, we study the problem to structure and schedule multiple projects. The 
different projects have to be considered simultaneously as they compete for scarce 
resources such as human workers or technical equipment with exogenously limited 
capacities. We assume that for each of the projects, a due date is given and that an 
agreed-upon penalty payment per time unit of delay has to be paid if the due date 
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should not be met. However, as opposed to previous works on multi-project schedul-
ing, we consider the case of flexible projects.

In a flexible project as introduced in Kellenbrink and Helber (2015), there is 
some room for decision-making with respect to the structure of the project. The set 
of activities is not assumed to be exogenously given as alternative activities or entire 
sets of activities can serve the same purpose. In such a situation, the project struc-
ture decision determines the activities that are actually implemented. Deciding about 
the structure of the project also affects precedence relations between activities that 
have to be respected by any project schedule. Flexible project scheduling problems 
arise when different technologies and procedures can be used to achieve a certain 
objective. The choice between those different technologies, for example using either 
human labor or, to some degree, automated equipment, can require or eliminate the 
need to perform some activities.

Note that the problem of structuring and scheduling a flexible project is sub-
stantially more general and flexible than the multi-mode project scheduling prob-
lem (MRCPSP), cf., e.g., Talbot (1982) or the review in Wȩglarz et al. (2011). In 
the MRCPSP a set of modes with different durations and capacity consumptions is 
given for each activity. One out of those modes has to be selected, while both the set 
of implemented activities and the set of precedence relations are not affected by this 
mode-selection.

When multiple flexible projects have to be scheduled simultaneously, the project 
structure decision for one such project can, via the common resource constraints, 
affect the schedules and penalty payments of other projects. Thus, it can be numeri-
cally challenging to make optimal decisions on project structures and schedules for a 
portfolio of projects.

Since genetic algorithms have frequently been proposed to determine high-
quality solutions for project scheduling problems quickly, we have also developed 
genetic algorithms to make the two intertwined decisions on the project structures 
and schedules. This requires new and problem-specific representations and decoding 
procedures like those presented in this paper.

The remainder of this paper is structured as follows: In Sect.  2, we formally 
describe the problem via a discrete-time mixed-integer programming model. Sec-
tion  3 describes how individual solutions of the problem can be represented and 
decoded into workable schedules such that the genetic algorithm developed in 
Sect. 4 can operate efficiently. The performance of the genetic algorithms is studied 
in Sect. 5 in a large-scale numerical study before conclusions and suggestions for 
further research are given in Sect. 6.

2 � The resource‑constrained multi‑project scheduling problem 
with flexible project structures

2.1 � Problem setting

It is quite common that a decision-making authority of an organization is confronted 
with the task to schedule multiple flexible projects that are executed at least partially 
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in parallel on shared resources. Examples can be found in the construction indus-
try where a firm can possess different types of equipment that can, at least to some 
extent, perform the same tasks. Assume that for a certain work at a certain construc-
tion site, both a lift and a crane could be used to transport construction material ver-
tically to where it is needed. Both types of equipment require specific transportation, 
installation, and operation resources and procedures. Those activities become part 
of the respective project schedule, induce precedence relations, and lead to specific 
capacity requirements.

The turn-around processes of aircraft between landing and starting at commercial 
airports are another example of a portfolio of flexible projects. At many airports, an 
aircraft can be served either at a terminal gate or at an apron parking position. In the 
latter case, passenger buses are often used to transport passengers between the ter-
minal and the aircraft. The choice between those two procedures affects the structure 
of the network of activities describing the turn-around process. Delays in processing 
the aircraft can lead to monetary fines. When congested airports face delays of arriv-
ing aircraft, they require the capability to quickly schedule multiple turn-around pro-
cesses involving different resources such as service teams, passenger buses, aircraft 
tractors etc.

A further example stems from maintenance activities at wind turbines. After 
some time of usage, the blades of these turbines typically exhibit damages due to 
material fatigue, bird collisions etc. These damages are repaired during maintenance 
operations. The firms that perform those maintenance operations can use movable 
platforms that are installed at the respective wind turbine such that repair crews can 
access and repair the damaged part of the turbine blade. As an alternative, a worker 
can be let down on a rope from the wind turbine’s gondola and perform certain tasks 
while hanging at this rope. The owner of the wind turbines is typically interested in 
a short down time of the turbine during maintenance. However, the firm that is send-
ing repair crews to the different wind turbines may have a limited number of plat-
forms so that the maintenance processes have to be coordinated. The maintenance 
process for each wind turbine can be interpreted as a flexible project and the service 
provider has to decide on the structures and schedules for an entire portfolio of those 
projects.

In a problem setting with multiple (flexible) projects competing for the same set 
of renewable resources such as personnel, machinery, or vehicles, it may be inevi-
table to occasionally violate some project due dates. It is not uncommon that some 
kind of penalty payment per time unit of delay has been agreed upon. As these pen-
alties can be project-specific, they reflect the relative importance of the different 
projects’ due dates. Note that this includes the case of a cost-weighted makespan 
minimization for a portfolio of projects, i.e., due dates of zero for all projects.

2.2 � Literature review

The deterministic resource-constrained project scheduling problem (RCPSP) is a 
well-discussed topic. For the basic principles and approaches we refer to Demeule-
meester and Herroelen (2002). Extensive literature reviews are given by Habibi et al. 
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(2018), Hartmann and Briskorn (2010), Kolisch and Padman (2001), Brucker et al. 
(1999), Herroelen et al. (1998) as well as Özdamar and Ulusoy (1995).

To the best of our knowledge, only Hauder et al. (2019) analyze the combination 
of project portfolios and flexible projects which we treat in this paper. In their work, 
the production of a steel lot is interpreted as a project with alternative routes. Each 
route contains a sequence of different activities that have to be implemented if the 
route is chosen. For each steel lot exactly one route has to be selected. Thereby, the 
duration of an activity may be affected. Since several different steel lots are planned 
simultaneously, a flexible multi-project scheduling problem with activity selection 
and time flexibility results.

The problem setting described in this paper combines the two areas of schedul-
ing (single) flexible projects on the one hand and scheduling project portfolios on 
the other hand. Therefore, in the broad field of the project scheduling literature, our 
review focuses on those two aspects: Firstly the definition of flexibility for single 
projects and secondly the evaluation of schedules for entire portfolios of projects.

The consideration of projects with flexible project structures has attracted 
increasing attention in recent years. Tiwari et  al. (2009) examine an extension of 
the multi-mode resource-constrained project scheduling problem (MRCPSP) with 
single rework activities that become necessary if a specific mode is chosen for one 
activity. Other publications focus on the implementation of alternative branches in 
the project network. Belhe and Kusiak (1995) consider “design activity networks”, 
Čapek et al. (2012) operate with alternative process plans. Kuster et al. (2009) and 
Kuster et al. (2010) address disruption management problems with alternative pro-
cess implementation paths.

Tao and Dong (2017) present alternative activity chains that are substitutable. In 
this problem setting, logical depencencies between two alternative subgraphs are 
only possible if there is a precedence relation between them. Tao and Dong (2018) 
extend this approach by adding different execution modes for the activities. Tao et al. 
(2018) consider projects with hierarchical alternatives and stochastic activity dura-
tions. In this problem, a project contains choices on alternative methods, where each 
method can consist of different activities. One method can trigger another choice 
about further sub-methods.

Servranckx and Vanhoucke (2019a) consider flexible work packages modeled as 
alternative subgraphs. These alternatives can depend on each other. For example, 
one alternative work package can be nested in another alternative work package. Fur-
thermore, the optional subgraphs can be linked by precedence relations. Servranckx 
and Vanhoucke (2019b) extend this problem by taking into account the uncertainty 
of activity duration as well as resource efficiency and resource breakdowns.

Birjandi and Mousavi (2019) as well as Birjandi et  al. (2019) deal with the 
resource-constrained project scheduling problem with multiple routes, taking into 
account uncertain durations and uncertain non-renewable resources. A project con-
tains so-called flexible sections with alternative routes. Each route can contain dif-
ferent activities and precedence relations. Logical dependencies between flexible 
sections are not considered.

Cajzek and Klanšek (2019) assume alternative production processes with differ-
ent project structures. There is always exactly one decision concerning the project 
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structure, i.e., after selecting one process, no further structure decisions are trig-
gered. However, there are different execution modes for the activities of a process 
alternative.

To our best knowledge, there is no other work except Kellenbrink and Helber 
(2015) that considers logical and precedence relations separately. In that modeling 
approach, there can be a logical dependency between two activities that are not 
directly linked to each other by a precedence constraint. The relationship between 
profit and quality outcome of such a flexible project has been studied in Kellenbrink 
and Helber (2016).

According to Lova et al. (2000), 84% of companies dealing with project sched-
uling have a portfolio of different projects that need to be planned simultane-
ously. When solving such resource-constrained multi-project scheduling problems 
(RCMPSP), special aspects such as project-specific due dates may occur. As shown 
below, delay-related objectives can hence be used to evaluate schedules for portfo-
lios of projects. Comprehensive overviews of literature in the field of the RCMPSP 
are included in the surveys from Hartmann and Briskorn (2010) and Özdamar and 
Ulusoy (1995).

Gonçalves et al. (2008) consider release and due dates. They present a new per-
formance measure minimizing the weighted sum of tardiness, earliness and flow 
time of all projects.

Browning and Yassine (2016) focus on portfolios of product development pro-
jects which are cyclical. The authors compare the performance of different priority 
rules for two different objectives, the minimization of the average across the rela-
tive delays of all projects and the minimization of the overall relative delay of the 
portfolio.

Kurtulus (1985) discusses different priority rules for scheduling multiple projects 
with unequal delay penalties. The performance is evaluated by the total delay penal-
ties of all projects. In addition, he presents different functions to define delay penal-
ties for the problem instances.

Chiu and Tsai (2002) deal with the RCMPSP with discounted cash flows. The 
objective of this problem is to maximize the net present value of the project port-
folio. The net present value includes the net cash flow for each activity, the project 
final receipt, delay penalties as well as early completion bonuses.

Our idea to jointly consider a portfolio of flexible projects of the type introduced 
in Kellenbrink and Helber (2015) has originally been presented in Hoffmann et al. 
(2017) and Hoffmann and Kellenbrink (2018). The contribution of this current paper 
is to present and evaluate the model formulation and novel algorithms to simultane-
ously schedule entire portfolios of flexible projects.

2.3 � Notation, minimal example and explicit problem statement

In order to formally describe the problem setting of the resource-constrained multi-
project scheduling problem with flexible project structures (RCMPSP-PS), we now 
use the two-project example in Fig. 1 to introduce our notion of a flexible project 
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formally. The required notation is summed up in Table 1, see also Kellenbrink and 
Helber (2015).

According to the legend in Fig.  1, the square nodes of the graph depict the 
activities j ∈ Jl of each project l ∈ L with their duration dlj and their resource 

Table 1   Notation

Indices and index sets
l ∈ L Projects
j ∈ Jl Activities of project l
i ∈ Plj Activities i that are immediate predecessors of activity j of project l
j ∈ Vl Mandatory activities of project l
r ∈ R Renewable resources r = 1,… ,R

t, � ∈ T Periods t, � = 1,… ,T

e ∈ El Choices e = 1,… ,El in project l
a(l, e) Triggering activity of choice e from project l
j ∈ Wle Activities j included in the decision set of choice e of project l
i ∈ Blj Activities i caused by activity j of project l
Parameters
dlj Duration of activity j of project l
kljr Resource demand of activity j of project l on resource r
Kr Capacity of resource r
EFTlj Earliest finish time of activity j of project l
LFTlj Latest finish time of activity j of project l
�l Due date of project l
cl Tardiness cost for each delayed period of project l
Variables
xljt ∈ {0, 1} 1, if activity j of project l is finished at the end of period t, 0 else
vl ≥ 0 Tardiness of project l

Fig. 1   Example of two different projects
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requirement kljr for renewable resources r ∈ R . Without loss of generality and 
in order to ease the exposition of this example, we include in the name of each 
activity the name of the project to which the activity belongs. So in the left part 
of Fig.  1 related to project X, the (dummy) start activity is denoted as “X-0” 
(which is not to be read as “X minus 0”). In this example, we consider only one 
single resource. So activity X-1 has a duration of three time units and during its 
execution two units of the single renewable resource are required. The activities 
0 and Jl + 1 denote dummy-activities with a duration of 0 periods and without 
any resource consumption. An arrow between activities represents an end-to-start 
precedence relation in project l between an activity j and its immediate predeces-
sor i ∈ Plj.

Consider the network of project X in the upper left part of Fig.  1. The ovals 
represent the so-called decision sets Wle for structure choice e ∈ El of project l. 
Such a decision set Wle indicates which activities are included in the decision set 
of choice e ∈ El of project  l. For example, in structure decision e = 1 of project X 
with decision set WX,1 = {X-3, X-4} , either activity X-3 or X-4 has to be selected 
to be part of the project. The further information a(X, 1) = X-0 indicates that this 
first decision of project X is triggered by this project’s activity X-0. This particu-
lar activity X-0 happens to be a mandatory activity, i.e., X-0 ∈ VX . Being manda-
tory, it has to be implemented. For this reason, the structure decision e = 1 to either 
execute activity X-3 or activity X-4 is always triggered, i.e., it can be interpreted 
as a mandatory decision. Note that any mandatory activity could be used to trig-
ger a mandatory structure decision, in the case of project X any activity in the set 
VX = {X-0, X-1, X-2, X-8, X-9} . However, we always trigger mandatory decisions 
via the mandatory (dummy) start activity. If in this first decision activity X-4 should 
be selected, then the caused activity X-5 ∈ BX-4 is included in the project network, 
together with the precedence relations leading to or originating from activity X-5.

The second structure decision e = 2 concerns the choice of one activity out 
of the set WX,2 = {X-6, X-7} , i.e., between activities X-6 and X-7. Note that the 
second structure decision is a conditional decision. This choice is triggered by 
activity X-3 as we have a(X, 2) = X-3 . If in the first structure decision between 
activity X-3 and activity X-4 the triggering activity X-3 should not be selected, 
then neither activity X-6 nor activity X-7 is implemented.

Fig. 2   Optimal project structures
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According to Fig. 1, for project X we have the due date �X = 7 and the tardi-
ness cost per time unit cX = 7 . The respective values for project Y are �Y = 8 and 
cY = 3 . In this example, we assume a given constant capacity Kr of the single 
renewable resource of five capacity units. The project structures in Fig.  2 and 
the corresponding schedule in Fig. 3 lead to the minimal total delay cost of three 
monetary units, as the completion of project Y at the end of period 9 exceeds the 
due date �Y = 8 by one time unit.

In this example, only one renewable resource with a time-constant capacity 
is considered to facilitate the description of the problem. In the general case, we 
consider a set of different renewable resources that are required for implementing 
activities.

Using those ideas we can now state the problem as follows:

•	 For an entire portfolio of projects, we have to schedule the respective activities.
•	 All projects have specific due dates and tardiness cost rates. The objective is to 

find a schedule which minimizes the overall tardiness cost of the entire portfolio 
of projects.

•	 The activities of the projects have a given duration and may require renewable 
resources of limited capacity. In order to be feasible, a project schedule has to 
respect the capacity constraints of the resources.

•	 Activities are either mandatory or optional. Mandatory activities have to be 
included in a schedule. Optional activities, however, are subject to one out of 
possibly multiple project structure decisions for the respective project.

•	 In a project structure decision, one out of a set of optional candidate activities 
has to be selected. Each project structure decision is triggered by a specific activ-
ity. If the triggering activity itself is mandatory, e.g., the dummy start activity, 
the triggered decision is also mandatory. Likewise, if the triggering activity itself 
is optional, the project structure decision itself is also conditional or optional.

•	 If an activity is selected in a decision, one or more further activities may be 
caused.

•	 The predefined precedence relations have to be respected if the activities between 
which they are established are included in the schedule, whether those activities 
have an optional or a mandatory character.

Fig. 3   Optimal schedule
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2.4 � Model formulation

To formally define the resource-constrained multi-project scheduling problem with 
flexible project structures (RCMPSP-PS), we use the notation already introduced in 
the example and summarized in Table 1. The main decision variable is the binary 
variable xljt which assumes a value of 1 if activity j of project l is completed at the 
end of period t and 0 otherwise. The derived variable vl ≥ 0 reflects the tardiness 
of project l. Note that the calculation of earliest finish times EFTlj and latest finish 
times LFTlj for flexible projects differs from the calculation of time windows for 
projects with a fixed project structure. We only consider mandatory activities for 
our flexible projects and refer to Kellenbrink and Helber (2015) for details of the 
calculation.

Given this notation, the problem can be defined via the following objective func-
tion and constraints:

subject to

(1)min
∑
l∈L

vl ⋅ cl

(2)
LFTlj∑

t=EFTlj

xljt = 1 l ∈ L; j ∈ Vl

(3)
∑
j∈Wle

LFTlj∑
t=EFTlj

xljt =

LFTl,a(l,e)∑
t=EFTl,a(l,e)

xl,a(l,e),t l ∈ L; e ∈ El

(4)
LFTli∑

t=EFTli

xlit =

LFTlj∑
t=EFTlj

xljt l ∈ L; e ∈ El; j ∈ Wle; i ∈ Blj

(5)

LFTli�
t=EFTli

t ⋅ xlit ≤

LFTlj�
t=EFTlj

(t − dlj) ⋅ xljt + �T� ⋅
⎛⎜⎜⎝
1 −

LFTlj�
t=EFTlj

xljt

⎞⎟⎟⎠
l ∈ L; j ∈ Jl; i ∈ Plj

(6)
∑
l∈L

∑
j∈Jl

kljr

t+dlj−1∑
�=t

xlj� ≤ Kr r ∈ R; t ∈ T

(7)v
l
≥

LFTl,Jl+1∑
t=EFTl,Jl+1

t ⋅ x
l,Jl+1,t

− �
l

l ∈ L
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In the objective function (1), the total tardiness cost over the entire project portfo-
lio is minimized. Equations (2) ensure that each mandatory activity of each project 
is terminated exactly once. Equations (3) serve to trigger choices between activities. 
It is possible that a choice e of a project l is not triggered if the triggering activity 
j = a(l, e) itself is an optional activity that is not chosen to be implemented. The 
right-hand side of Eq. (3) assumes a value of 1 if and only if choice e of project 
l is triggered. In this case, exactly one activity j ∈ Wle out of the set of alterna-
tive activities of this choice e is scheduled. The caused activities i ∈ Blj are imple-
mented if and only if the triggering activity j of project l is chosen to be executed 
through Eq. (4). The precedence relations between those activities that are actually 
implemented are enforced via Constraints (5). The capacity restrictions for renew-
able resources are modeled via Constraints (6). Constraints (7) serve, together with 
the optimization direction of the objective function, to determine the project-specific 
delay vl . According to Constraints (8) and (9), the tardiness cannot be negative and 
the discrete-time scheduling variables xljt are binary.

2.5 � Economic benefit of simultaneous coordination of project portfolios

An organization confronted with the need to find project structures and schedules 
for an entire portfolio of flexible projects can use different coordination approaches. 
One option is to make all decisions simultaneously as suggested in this paper, 
thereby fully considering all their interdependencies. However, other coordination 
mechanisms such as decomposition into (or hierarchization between) different sub-
problems of the original planning problem, see Küpper (1997, p. 101), are also pop-
ular in practice and seem to suggest themselves. In order to show the benefit of our 
simultaneous approach compared to other coordination mechanisms in a clear and 
systematic manner, we now refer in an aggregated form to 864 different portfolio 
planning instances consisting of two projects each. Those instances are described in 
detail in Sect. 5.1 as they are also used to evaluate the numerical performance of our 
algorithms to be presented in the second half of this paper. For each of these project 
instances, we were able to solve the model presented in Sect. 2.4 to proven optimal-
ity using the Gurobi solver.

One very simple coordination approach is to split the capacity of each resource 
and to give all projects an equal capacity quota. Within this capacity quota, each 
project can then be scheduled separately again using the model from Sect. 2.4, but 
now solved for each single project. However, both in reality and in our test bed one 
can see situations in which a project needs for at least one resource-intensive activity 
temporarily more that an equal share of the capacities. Therefore, the capacity quota 
approach found feasible solutions for only 452 out of the 864 problem instances. 
Figure  4(a) presents a scatter plot of the numerical results for those feasible 

(8)v
l
≥ 0 l ∈ L

(9)xljt ∈ {0, 1} l ∈ L; j ∈ Jl; t ∈ T
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instances. Each dot shows horizontally the total delay cost in monetary units (MU) 
of the optimal (simultaneous) solution and vertically the total delay cost of the plans 
achieved via capacity quotas. Each point above the 45° line indicates that operating 
with quotas is more costly than the simultaneous solution. The figure shows clearly 
that, even when the fixed capacity quota approach led to feasible schedules, the total 
delay costs were often substantially higher than those resulting from the simultane-
ous optimization.

Operating with fixed quotas imposes a lot of inflexibility and potentially leads to 
an inefficient usage of the scarce resources. An alternative coordination mechanism 
between the projects in a given portfolio is to schedule the projects sequentially. The 
project considered firstly is allowed to use the whole capacity of all resources. The 
actually required resources based on the resulting schedule are then “booked” and 

(a)

(b) (c)

Fig. 4   Comparison of simultaneous optimization with other coordination approaches
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no longer available for those projects that are treated later in this sequential approach 
so that the next project to be scheduled can only use the (complete) remaining 
resources and so on. Figure 4(b) shows the results when the projects within a port-
folio are considered in a random sequence. Now all instances can be solved. As the 
dots in Fig. 4(b) tend to be lower than in Fig. 4(a), this mechanism leads to slightly 
better solutions as resource capacities can be used more efficiently. However, it is 
shown clearly that our simultaneous approach still uses them much better.

A more advanced approach is to operate with a hierarchy or priority between the 
projects in a given portfolio. To study this coordination approach, we sorted in each 
of the 864 problem instances the projects l by decreasing cost rates cl for project 
delays, interpreting high cost rates for project delays as indicators of a high project 
priority. The project with the highest cost rate was then scheduled first, again hav-
ing access to all resource capacities which were then partially booked based on the 
resulting schedule. Then the project with the second-highest priority was treated in 
the same way, having access to the remaining capacities. Compared to Fig. 4(a) and 
(b), the results in Fig.  4(c) indicate a smaller cost disadvantage of this sequential 
approach with project priorities. However, as for the two other coordination mecha-
nisms, we again see the clear superiority of our simultaneous approach. It can there-
fore be truly beneficial to solve the entire problem simultaneously as suggested by 
our model in Sect. 2.4 and not to decompose it by establishing fixed capacity quotas 
or by scheduling the projects within a portfolio sequentially.

2.6 � Computational complexity and algorithmic approach

If only a single project is considered in which all activities are mandatory (so 
that the choice set is empty) and the due date of this project is set to 0, then the 
RCMPSP-PS is reduced to the standard resource-constrained project scheduling 
problem (RCPSP). According to Kolisch (1996), the RCPSP is an NP-hard opti-
mization problem as it constitutes a generalization of the static job shop scheduling 
problem which has been shown to be NP-hard in Blazewicz et al. (1983). Since the 
RCMPSP-PS contains the RCPSP as a special case, the RCMPSP-PS is therefore 
also NP-hard. We would therefore be surprised to discover an exact algorithm for 
the RCMPSP-PS with a computational effort that is a polynomial function of the 
problem size (in terms of activities, periods etc.). Given the NP-hardness of many 
well-established variants of the RCPSP, many researchers have resorted to heuristic 
approaches. Out of these, genetic algorithms have often been shown to be extremely 
powerful so that even relatively large problem instances could be solved with a high 
solution quality and with a negligible computation time, cf., e.g., Hartmann and 
Kolisch (2000).

For this reason, we also propose to use a tailored genetic algorithm to solve 
the problem presented above. A genetic algorithm is a search algorithm that oper-
ates with a population of solutions to the underlying problem. This population is 
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modified in an iterative way, resembling the evolution of living species. New and 
hopefully better solutions are created by combining elements of one particular solu-
tion with other elements of a second solution, just as living creatures inherit traits 
from both mother and father, creating new and potentially better adapted creatures.

In order for such a genetic algorithm to operate successfully, a suitable represen-
tation of solutions to the problem is required. A direct representation in terms of the 
variables xljt and vl as introduced in this section is not suitable. A genetic algorithm 
uses operators to construct new feasible solutions by exchanging and combining ele-
ments of promising old solutions. When it is applied to a direct representation in 
terms of the variables xljt , it will almost inevitably fail to create new feasible solu-
tions. In order to overcome this problem, established solution representations typi-
cally decide on the sequence or priority in which different activities are treated in a 
so-called schedule generation scheme (SGS) which then, finally, leads to a workable 
schedule.

In the context of our RCMPSP-PS, a solution representation must not only con-
sider a sequence or set of priorities in which a schedule is constructed. In addition, 
it has to take care of the project structure decisions for the different projects as well.

In order to describe the algorithm to solve the RCMPSP-PS, in Sect. 3 we explain 
the representation of individual solutions and their decoding into a corresponding 
schedule, before we illustrate in Sect. 4 the operators of the genetic algorithm that 
modify the above-mentioned populations of encoded problem solutions. Please note 
that the representation is not necessarily limited to an application in a genetic algo-
rithm. It could be used in other algorithmic approaches as well, e.g., a simulated 
annealing algorithm.

3 � Representing a solution as a basis for schedule generation

3.1 � Elements of a solution representation and interaction with a decoding 
procedure

As mentioned above, many powerful heuristic scheduling algorithms operate with a 
compact and problem-specific solution representation in combination with a suitable 
decoding procedure. As this decoding procedure derives a schedule from the repre-
sentation, it is called a schedule generation scheme (SGS).

In a serial schedule generation scheme (SSGS), an activity is eligible for sched-
uling as soon as all predecessors are scheduled. For the eligible activity with the 
highest priority, the earliest feasible time with respect to capacity and precedence 
constraints is selected as starting time for this activity. In this approach it is possible 
that an activity which is considered late in the scheduling process may be located 
early in the final schedule due to the remaining capacity.

By contrast, in a parallel schedule generation scheme (PSGS), a schedule is 
built during a single pass along the time axis. An activity is eligible at the currently 
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considered point in time if all predecessors are finished and if the remaining capac-
ity is sufficient for the whole duration of this activity. The eligible activity with the 
highest priority is selected and scheduled. If no schedulable activity exists, the time-
based procedure moves on to the next point in time when an activity finishes and/or 
free resources become available.

Both the SSGS and the PSGS are well-established methods in the project sched-
uling literature. The details for both procedures are given, e.g., in Hartmann and 
Kolisch (2000).

In a standard single-project RCPSP, the input to the SSGS or the PSGS will often 
be either an activity list (cf., e.g., Hartmann 1998) or a random key vector (cf., e.g., 
Bean 1994). In an activity list, the prioritization of the activities refers to the activ-
ity’s position in the list, i.e., the earlier the activity is included in the list, the higher 
its priority. The random keys provide continuous priority values between 0 and 1 for 
each activity, i.e., the higher the activity’s random key, the higher its priority.

Scheduling an entire portfolio of flexible projects subject to individual due dates 
requires a richer solution representation than a standard RCPSP. In particular, a solu-
tion has to address the following aspects of the underlying problem:

•	 Project structures
•	 Priorities of activities
•	 Priorities of projects
•	 Selection of the schedule generation scheme

The first two of these four aspects have already been addressed and documented in 
great detail in Kellenbrink and Helber (2015) and Kellenbrink (2014) for an activity-
list based approach inspired by Hartmann (1998) in the single project case. As an addi-
tional approach we present a solution representation for those components based on 
random key vectors following the ideas in Bean (1994).

3.2 � Representing a project structure

Inspired by the effectiveness of the random key representation for scheduling projects, 
cf., e.g., Gonçalves et al. (2008), we developed a random key based representation for 
the decision on the project structure. For each activity j ∈ Wle of a project l that is part 
of a decision e, exactly one element �lj with a continuous value between 0 and 1 indi-
cates the priority value of that activity. When the representation is decoded, the activity 
j∗ ∈ Wle with the highest priority value �lj∗ is chosen for each triggered decision e ∈ El . 
Note that only optional activities which are included in a decision set require priority 
values.

As an example, we consider the two projects introduced in Fig. 1 and the following 
vector � = (�lj) of structure decision priorities:
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We now use Algorithm  1 to decode this vector of random keys into project 
structure decisions for our portfolio consisting of two projects. In this process, 
the project structure is determined separately for each project l (Line 1). First of 
all, the mandatory activities are activated (Line 2). In project X, these are activi-
ties X-1, X-2, and X-8. In the next step, the choices are considered successively 
(Line 3) and it is checked whether the choice is triggered (Line 4). The first deci-
sion of project X is triggered by mandatory activity X-0 and thereby one of the 
optional activities j ∈ WX,1 = {X-3, X-4} has to be implemented. The activity j∗ 
with the highest priority value has to be implemented (Line 5), in this case activ-
ity X-4 with 𝜖X-4 = 0.8 > 0.6 = 𝜖X-3 . All activities caused by activity j∗ are imple-
mented too (Line 6), so that activity X-5 ∈ BX-4 is activated. The for-loop (Line 3) 
now considers the next choice of project X. As the second (and last) decision of 
project X is not triggered, no further activities are implemented. The next project 
is considered in the same manner (Line 1). The resulting project structures of 
both projects X and Y for the given priority values are those shown in Fig. 2. As 
we further develop our example to explain the algorithm, we proceed with this 
project structure.

3.3 � Representing activitiy priorities

Priorities of activities can be presented using activity lists as in Hartmann (1998) for 
the RCPSP and in Kellenbrink and Helber (2015) for the RCPSP-PS or, again, via 
random keys as in Gonçalves et al. (2008), for the RCMPSP. One possible approach 
to transfer those ideas to the RCMPSP-PS is to combine all projects into a super-
project consisting of all non-dummy activities as in the following activity list. 

� =

(
− − �X-3 �X-4 − �X-6 �X-7 −

− − − �Y-4 �Y-5 �Y-6 − −

)

=

(
− − 0.6 0.8 − 0.4 0.1 −

− − − 0.7 0.2 0.6 − −

)
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In this list, the activities not implemented in the project structures depicted in 
Fig. 2 are ignored. If this list is decoded using the standard SSGS as in Hartmann 
(1998), the schedule shown in Fig. 3 will result. It is also possible to operate with 
an activity list �single for single projects combined with a separate approach to estab-
lish priorities between those projects. Such activity lists for individual projects could 
look as follows: 

In order to decode activity list �single into a schedule, additional information is 
needed to decide which project should be scheduled in which step, see Sect. 3.4.

As an alternative to using an activity list, we introduce a vector � = (�l,j) of ran-
dom keys which could look as follows in our example: 

Activity X-2 with a priority value of 0.7 is hence preferred to activity Y-3 with 
a value of only 0.1 and could be given priority when decoding the solution via the 
SSGS or the PSGS.

Please note that we define random keys for all non-dummy activities even though 
the random keys of those activities that are not implemented in the specific project 
structure (ignored in the example) are not used when decoding the priority vector � .  
However, as the priority values of the project structures and of the activities are 
determined independently within our representation, it is not possible to determine 
in advance which random keys are necessary so that they are always part of the solu-
tion representation.

3.4 � Representing project priorities

In a multi-project situation, it is promising to consider the specific characteristics of 
the different projects, e.g., concerning the due date or tardiness costs, cf. Hoffmann 
et  al. (2017). In our approach, if we decide to consider specific project priorities, 
which is necessary when we operate with project-specific activity lists �single and 
possible when we use the project-specific random keys � , we select the next activity 
to be scheduled out of the current set of eligible activities in two steps. Firstly, the 
project l∗ with the highest project priority is chosen. In this step, all projects with at 
least one currently eligible activity are considered. Secondly, the eligible activity 
j∗ ∈ J

impl

l∗
 with the highest priority of all eligible activities in project l∗ is scheduled. 

To this end, we operate with a matrix � of continuous random keys between 0 and 
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1. Each element of the matrix is multiplied by the corresponding project-dependent 
delay costs cl . Thereby, we create priority values for the project-specific scheduling 
steps fl . Consider the following example of priority values: 

We assume that for the introduced example two activities of project X (X-2 and 
X-5) and one activity of project Y (Y-3) have already been scheduled. In addi-
tion, we suppose that both projects are eligible as they possess an eligible activ-
ity. Therefore, in the next step it is intended to either schedule a third activity of 
project X ( fX = 3 ) or a second activity of project Y ( fY = 2 ). As the priority for 
the second scheduling step of project Y is higher than the third step of project X 
( 𝜇Y ,2 ⋅ cY = 2.7 > 2.1 = 𝜇X,3 ⋅ cX ), project l∗ = Y  is chosen to be scheduled next.

The decision which activity out of the eligible activities in project Y is selected 
is then made based on either the activity list �single or the priorities � introduced in 
Sect. 3.3. The complete scheduling procedure is explained in Sect. 3.5.

With this approach, only as many random keys are necessary for each project as 
activities are implemented for the selected project structure. However, as this num-
ber varies with different project structures, always Jl random keys are defined for 
each project l. The remaining values for a specific project structure (ignored in our 
exemplary project structure) are omitted in the procedure. Please note that only the 
random keys � but not the multiplied priority values � ⋅ c are used in the solution 
representation.

3.5 � Flexible serial‑parallel schedule generation scheme

As mentioned above, both activity lists and random key priorities can be decoded 
into a schedule using the SSGS or the PSGS. Extensive studies in literature show 
that for the classic RCPSP the results are often better for the SSGS, our first decod-
ing variant. However, for some instances the PSGS provides benefits. Therefore, fol-
lowing Hartmann (2002), we study as a second approach a so-called self-adapting 
solution representation with an endogenous decision between the SSGS and PSGS 
to create the schedule. To refine this idea and gain further flexibility, we developed 
as a third alternative a flexible approach in which both SGS can be applied step-
wise. Here the optimization decides endogenously which of them to use in each step 
of building the schedule. Each candidate solution contains the explicit information 
which SGS is used in the next step z to further construct the schedule. To this end 
we use a vector � = (�z) with potential entries “S” and “P” referring to the SSGS and 
the PSGS, respectively, as shown below for our previously established example:
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It indicates that the first scheduling step is done using the SSGS, the second 
and third using the PSGS, and so on. As many elements as non-dummy activities 
( 
∑

l∈L Jl ) are defined. For the project structure in Fig. 2, five activities will not be 
scheduled so that the last five entries of � are ignored.

The procedure of the flexible serial-parallel SGS is shown in Algorithm 2 for 
the exemplary combination with project selection priorities and activity priori-
ties. Note that it can operate both with activity lists and with random keys repre-
senting activity priorities.
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As an example, we assume that the project structure in Fig. 2 has already been 
selected so that the sets of activities to be implemented Jimpl

l
, l ∈ L have already 

been determined. We assume furthermore the following combination of schedule 
selection parameters � , project selection priorities � ⋅ c , and activity priorities �:

The resulting schedule is shown in Fig. 5. Project X has a delay of two peri-
ods so that the objective function equals Z =

∑
l∈L vl ⋅ cl = 2 ⋅ 7 + 0 ⋅ 3 = 14 . A 

detailed step-by-step explanation of this procedure is provided in Appendix A.

3.6 � Improvement step

Once a schedule has been generated, an improvement step can be applied, cf. 
Li and Willis (1992). The basic idea is to first move activities forward in time 
without extending the project’s makespan MSl and then to move them backwards 
again. Thereby, it may be possible to exploit slack times in a way that leads to a 
reduced project makespan. For the case of multiple projects combined with due 
dates, our approach distinguishes between delayed and non-delayed projects. The 
method is presented in Algorithm 3.

In the first step, all delayed projects l are considered (Line 1). For those pro-
jects with positive delay vl = MSl − 𝛿l > 0 , a reduction of the makespan would 
lead to an improvement of the objective function. The implemented activities 
are considered in a descending order of end times ETlj , so that the activity with 
the largest end time is considered first (Line 2). Each currently considered activ-
ity j is then postponed (i.e., right-shifted on the time axis) as much as possible 
without a further violation of the current project’s due date ( ETlj ≤ MSl , Line 3). 
During this, the resource constraints as well as the precedence constraints are 

Fig. 5   Schedule resulting from the exemplary representation
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regarded. As the activities are considered in descending order of their end times, 
it is always assured that all implemented successors of a currently considered 
activity have already been right-shifted as far as possible. This ensures that the 
precedence constraints are always respected. Afterwards, all implemented activ-
ities are considered again, but now sorted by ascending start times STlj (Line 
4). Each activity is moved backwards in time as much as possible considering 
the resource capacities and precedence restrictions (Line 5). This may lead to a 
reduction of the makespan so that the delay has to be updated (Line 6).

In a second step, all non-delayed projects are considered (Line 7). It is worth 
noting that projects accelerated in the first step so that they meet their due date 
may now be considered again. For these non-delayed projects, only the forward-
improvement is applied. The corresponding activities are, beginning with the lat-
est ending activity (Line 8), postponed as much as possible without violating the 
project’s due date �l (Line 9). This approach is an attempt to actually make use of 
the time budget �l for non-delayed projects, thereby potentially releasing capaci-
ties especially in earlier periods that can then be used to reduce the makespan of 
currently delayed projects. Therefore, if there have been any changes in the overall 
schedule up to this step (Line 10), the forward-backward-improvement for delayed 
projects is applied again in the third step (Line 11).

4 � Genetic algorithms for solving the RCMPSP‑PS

4.1 � Different combinations of solution representation elements and decoding 
procedures

In the previous section, we addressed multiple elements of designing a compact 
solution representation for the RCMPSP-PS and a suitable decoding scheme. These 
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different aspects can be combined in numerous ways to create an entire family of 
closely related algorithms, each characterized by a specific combination of those 
previously presented components shown in Table 2.

However, not all combinations of the components are possible as, e.g., always 
information on the project priorities is needed if the activity list for single projects 
�single is used. One particular variant of a solution representation and decoding 
approach could, e.g., use decision priorities � (Sect.  3.2), project-specific activity 
lists �single (Sect. 3.3) to model activity priorities in an approach that does explicitly 
consider project priorities � ⋅ c (Sect. 3.4), and the flexible serial-parallel schedule 
generation scheme (Sect. 3.5), and try to improve each generated schedule via the 
forward-backward improvement step (Sect. 3.6).

The combination of the elements describes how a single solution is represented 
and decoded into an actual schedule for which an objective function value can be 
computed. In the next sections we explain how our genetic algorithm generates the 
initial population of encoded solutions and how this population is changed from 
iteration to iteration.

4.2 � General procedure

Genetic algorithms were firstly introduced by Holland (1975) and have been suc-
cessfully applied to many combinatorial optimization problems, including the clas-
sical RCPSP and its extensions, cf., e.g., Hartmann and Kolisch (2000).

Each solution of the underlying problem is interpreted as one individual and 
therefore described, e.g., by representation components � , � , � and � as introduced 
in Sect. 3. Each single element of such a component is named a gene. The objective 
function value of a solution gives this individual’s fitness. As a population-based 
heuristic, a genetic algorithm considers multiple solutions simultaneously. These 
are recombined to create potentially new individuals of a further generation using a 
crossover operator. Minor mutations of the newly created solutions should contrib-
ute to the investigation of the whole solution space. Afterwards, the expanded set of 
individuals is reduced down to its original size based on the individuals’ fitness in 
a selection process to form the population for the next generation. In this way, the 
individuals should adapt to the requirement of the problem in order to create bet-
ter solutions. The different components of the genetic algorithm are described in 
Sects. 4.3–4.6.

Table 2   Components describing a solution representation and decoding variant

Component Characteristic

Project Structures Random Keys �
Priorities of Activities Activity List �super , Activity List �single , Random Keys �
Priorities of Projects No consideration, Random Keys � ⋅ c

SGS SSGS, Self-Adapting SGS, Flexible Serial-Parallel SGS �
Improvement Step No, yes
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4.3 � Generating the initial population

The POP individuals of the initial population are generated randomly. As we use 
random keys for the prioritization of the project structure ( � ) and, if applicable, the 
projects ( � ), their individual genes can be generated independently from each other. 
For each gene, a uniformly distributed value between 0 and 1 is randomly deter-
mined. If random keys are also used to prioritize activities, the same procedure is 
applied to the � values. If otherwise an activity list �super or �single is used, it is initial-
ized in a randomized order, cf. Kellenbrink and Helber (2015).

If we operate with the self-adapting SGS or the flexible serial-parallel SGS � , 
we randomly determine whether the SSGS or the PSGS should be applied for the 
whole schedule or for each potentially possible scheduling step, respectively. After-
wards, the fitness of each individual of this initial population is determined using the 
respective SGS and, if applicable, the improvement step in Algorithm 3.

4.4 � Crossover

Within the crossover, a pair of randomly chosen individuals IM (mother) and IF 
(father) are combined to create two new individuals ID (daughter) and IS (son). Each 
individual of the current generation is thereby used exactly once as a mother or as 
a father. A so-called parameterized uniform crossover (cf., e.g., Spears and de Jong 
1991) is used to decide for each gene from which of the two parents the child’s gene 
is taken. With an exogenously given probability q a daughter’s gene is inherited 
from the mother. Otherwise the gene of the father will be passed to the daughter.

The precise implementation of the crossover operator varies slightly on the cho-
sen combination of solution representation and decoding scheme as outlined in 
Sect. 4.1. In Algorithm 4 we show how to create a new daughter ID for the case in 
which we operate with random key priorities � for the activities, consider project 
priorities � , and use the flexible serial-parallel SGS � . This turned out to be the most 
promising combination as will be seen in our numerical results. The creation of a 
son individual IS is equivalent with exchanged roles of the individuals IM and IF . 
Accordingly, POP new individuals are created in each generation.

The majority of the daughter’s genes are determined project-wise (Line 1). The 
procedure starts with the crossover for the decision priorities � . For each deci-
sion e ∈ El of a project l (Line 2) and for each activity in the decision set j ∈ Wle 
(Line 3) a continuous random value cross between 0 and 1 is determined (Line 4). If 
the determined value is less than or equal to the probability q� , the daughter’s prior-
ity value �D

lj
 is inherited from the mother IM . Otherwise, the corresponding priority 

value of the father IF is selected (Line 5).
In the next step, the activity priorities �D are determined for each non-dummy 

activity j = 1,… , Jl (Line 6). If the random number cross (Line 7) is less than or 
equal to the probability q� , the activity priority of the daughter �D

l,j
 is taken from the 

mother IM and otherwise from the father IF (Line 8).
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For the daughter’s prioritization of projects �D , for each possible scheduling step 
fl (Line 9) a random number cross between 0 and 1 is determined again (Line 10). 
Depending on this either the random key �M

l,fl
 of the mother or the random key �F

l,fl
 of 

the father is selected (Line 11).
The information on the flexible serial-parallel SGS �D is determined indepen-

dently from the projects. For each possible scheduling step z (Line 12) a continuous 
random number cross between 0 and 1 is determined (Line 13) and the information 
about the selected SGS �D

z
 is taken from the mother IM if cross is less than or equal 

to q� and from the father otherwise (Line 14).
The crossover for other combinations of solution representations can essentially 

be created by omitting elements of Algorithm 4. The crossover of the self-adapting 
SGS resembles those of the flexible serial-parallel SGS with a single element. The 
parameterized uniform crossover operator applied to activity lists operates in a simi-
lar gene-by-gene manner while ensuring that each generated individual contains all 
the activities, cf. Hartmann (1998).

4.5 � Mutation

The mutation should extend the search to further parts of the solution space. For 
each newly created individual, each gene is mutated with the (small) probability p.  
In case of a mutation of a gene belonging to the random key based components 
( �,�,� ), a new continuous number between 0 and 1 is chosen randomly.

When using the SSGS in combination with activity lists, after mutating the ran-
dom keys representing the project structure, a final repair step as in Kellenbrink and 
Helber (2015) ensures that precedence constraints between implemented activities 
are respected. The repair step is not necessary for the PSGS as an activity is only 
eligible when the precedence restrictions are fulfilled.
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With probability p� a gene in the activity list is mutated. In this case we try to 
exchange the position of the associated activity i with the position of the next imple-
mented activity j. However, if activity j is a successor of activity i, the gene will not 
be mutated in order to avoid creating invalid activity lists.

In case of a mutation of a gene selecting the SGS for the self-adapting SGS or 
for the flexible serial-parallel SGS, the SSGS is selected if the PSGS was previously 
included and vice versa.

4.6 � Selection

After adding the newly generated individuals, the population size has temporarily 
been doubled to 2 ⋅ POP . To reduce it again to a population size of POP individuals, 
we use the so-called elite selection or ranking method, cf. e.g. Hartmann (1998). In 
this step, the worst POP individuals which have the highest delay cost are deleted 
from the population. The remaining individuals then form the next generation from 
which new individuals are created again.

5 � Numerical study

5.1 � Test design

Our numerical study addresses two distinct questions. One asks from a managerial 
point of view for the economic benefit of being able to coordinate entire portfolios 
of flexible projects via simultaneous optimization, see Sect. 2.5. The other question 
is related to the speed and accuracy of our proposed algorithmic approach, to be 
studied below. To answer both questions, we systematically created test instances 
with different parameter combinations. As a basis, the instance generator for single 
flexible projects from Kellenbrink and Helber (2015) was used, which in turn gener-
alizes the instance generator ProGen by Kolisch et al. (1995). Our generator creates 
for each instance a portfolio of projects and for each project a due date and a tardi-
ness cost. A project’s tardiness cost per time unit is randomly chosen between 1 and 
10.

To set the due dates �l of the projects l ∈ L , two contradictory aspects must be 
balanced. If due dates are too tight, possibly approaching 0, our problem turns 
into a weighted makespan minimization problem. If the due dates are too loose, 
schedules without any delay can be found easily and the practical difficulty and 
relevance of the problem essentially disappears. In order to strike the delicate bal-
ance between those two aspects, we first determine for each project l the length 
of the shortest possible critical path CPl under the assumption of infinite capac-
ity by solving the mathematical model described in Sect. 2.4 without the capac-
ity restrictions and minimizing the end times of all implemented activities. This 
critical path length CPl is multiplied by a varying due date factor D to define the 
due date �l = D ⋅ CPl.
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The resource capacities Kr are calculated based on those unrestricted sched-
ules. The minimal capacity Kmin

r
 is determined by the maximum resource con-

sumption of a single activity which is implemented in any of the corresponding 
project structures. The maximal resource capacity Kmax

r
 is equivalent to the maxi-

mum capacity that is needed to execute the unrestricted schedules of all projects 
simultaneously. The actual capacities Kr are then calculated using Eq. (10) with 
different values for the resource strength RSr , cf. Kolisch et al. (1995).

Two problem classes named P2J15 (2 projects with 15 non-dummy jobs each) 
and P4J30 (4 projects with 30 non-dummy jobs each) were created, see Table 3. 
The number of decisions |El| per project is denoted as NE

l
 and the number of activ-

ities that cause other activities as NC
l

 , cf. Kellenbrink and Helber (2015).
Other parameters were varied in the same manner for all problem classes, see 

Table 4. The first two lines refer to the flexibility of the project structure, namely 
to the number of optional activities per decision NW

l
 and the number of activi-

ties that may be caused by one optional activity NB
l
 . The number of renewable 

resources |R| as well as the resource factor RFr and the resource strength RSr 
define the resource demand and supply. The network complexity NC provides 
information on the relative number of precedence relations whereas the due date 
factor D is used to compute due dates �l = D ⋅ CPl as described above. For further 
details on these key metrics see Kolisch et al. (1995) as well as Kellenbrink and 
Helber (2015). All different parameter combinations in Tables 3 and 4 result in 
864 instances per problem class.

For the computation of the earliest and latest finish times, an upper bound for 
the planning horizon is needed. However, the sum of the durations of all activities 
of all projects overestimates the number of periods, especially for large instances 
with much possibility for parallelization and with a high flexibility. Therefore, a 

(10)Kr = Kmin
r

+ round(RSr ⋅ (K
max
r

− Kmin
r

)) ∀r ∈ R

Table 3   Parameters for the 
different classes of test instances

Problem class |L| J
l N

E

l
N

C

l

P2J15 2 15 {1; 2} {1; 2}

P4J30 4 30 {2; 4} {2; 4}

Table 4   Parameters for each 
class of test instances

Parameter # Values

NW
l

2 2 3

NB
l

2 1 2
|R| 1 2
RFr 2 0.5 1
RSr 3 0.25 0.5 0.75
NC 3 1.5 1.8 2.1
D 3 1.0 1.1 1.2
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project-specific schedule is determined heuristically using different basic priority 
rules. It reflects an upper bound of the minimal makespan of one project. The sum 
of these feasible makespans of all projects is then used as an upper bound for the 
time horizon. Within a preprocessing procedure, infeasible project structures, i.e., 
structures in which at least one activity exceeds the capacity of at least one renew-
able resource, are excluded.

To generate reference values with Gurobi 8.1.0, we implemented the mathemati-
cal model in GAMS 26.1.0 and used a 2.00 GHz Backton Xeon machine with 20 
GB of RAM and 4 threads in a cluster node at Leibniz University Hannover, cf. 
www.luis.uni-hanno​ver.de/scien​tific​_compu​ting. Since it was not possible to solve 
all instances to a proven optimal solution, we limited the computation time to 3600 
s per instance.

We implemented the genetic algorithm in C++ and executed it on the 
same machine but now with only 5 GB of RAM and on a single thread. 
POP = 80 individuals were created in each generation. With a probability 
q� = q� = q� = q� = q� = 0.6 , the mother’s gene is used in the crossover to gener-
ate a daughter individual. The mutation probabilities equal p� = 0.08 for the project 
structures � and p� = p� = p� = p� = 0.1 for remaining components.

5.2 � Results

For problem class P2J15 with 2 projects and 15 non-dummy activities each, Gurobi 
was able to solve all 864 instances to proven optimality. 26 instances have an opti-
mal objective function value of zero, i.e., all projects of the respective instance are 
schedulable without any delay. Those instances were ignored in the following when 
calculating the mean deviation to the optimal solution. Gurobi needed an average 
of 45.22 s to solve the instances to optimality. While only 11.11% of the instances 
needed more than 60 s to be solved to optimality with Gurobi, the maximum compu-
tation time to proven optimality was 2363.64 s, i.e., even those small problems can 
be hard to solve.

Table 5 shows results of the 24 different genetic algorithm variants for a compu-
tation time of 1, 60 and 300 s per instance. The percentage of instances for which an 
optimal solution was found by the respective representation and the mean deviation 
from the optimal solution are given. The best solution per column is highlighted 
dark green and the worst solution per column dark red.

The representations using random keys � to prioritize the activities clearly 
dominate the activity lists � . The same holds true for the improvement step. 
Using project priorities � ⋅ c tends to lead to better results. The flexible serial-
parallel SGS dominates the other SGS for the promising alternatives with ran-
dom keys � and improvement step. Overall, the best results with a computa-
tional time of 1 s are achieved by the variant with project prioritization � ⋅ c , a 
prioritization of activities by random keys � and with the flexible serial-parallel 
SGS with subsequent improvement step. With this representation, 92.82% of the 
instances are already solved to optimality with an average deviation of 0.59% 
after 1 s of computation time.

http://www.luis.uni-hannover.de/scientific_computing
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For the larger instances in problem class P4J30 with 4 projects and 30 non-
dummy activities each, Gurobi was given a time limit of 3600 s per instance. The 
average actual calculation time per instance was 1373.23 s with an average gap to 
the lower bound of the linear programming relaxation of 34.15%. The fraction of 
proven optimal instances was 63.19%. 41 instances were solved with an objective 
function value of zero and, as before, ignored when calculating mean deviations.

Compared to the results of all 24 variants of the genetic algorithm with com-
putation times of 1 s per instance, Gurobi (also) finds the best known solution for 
79.28% of the instances. For the remaining instances, the genetic algorithms found 
better solutions. The average deviation from the Gurobi upper bounds to the best 
known upper bounds including the genetic algorithms was 5.9% for the cases with 
positive objective function values.

Table 6 compares the genetic algorithms for 1, 60, and 600 s of computation time 
to the respective upper bound Gurobi solutions and best known upper bounds over 
all 25 solution approaches, i.e., the 24 variants of the genetic algorithm for the given 
computation time and Gurobi.

With a computation time of 1 s, the results differ from that of the small P2J15 
instances. For this short computation time, again random keys � and the improve-
ment step, but now using the self-adapting SGS without project prioritization 
lead to the best results. This alternative finds for 65.28% of the instances a solu-
tion that is at least as good as those found by Gurobi, however with a mean devia-
tion of the Gurobi upper bounds of 7.99%. For 52.08% of the instances, the solu-
tion found equals the best known solution for this computation time of the genetic 
algorithm (and up to 3600 s for Gurobi), but the average deviation from the best 
known solution amounts to 12.43%.

With a longer computation time of 60 s per instance for the genetic algorithms, 
the alternative with project prioritization � ⋅ c using the flexible serial-parallel SGS 

Table 5   Results for the problem class with 2 projects and 15 activities each
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dominates again. The average deviation from Gurobi is only 0.03% so that the per-
formance of both approaches is nearly the same but with a much shorter time limit 
for the genetic algorithm. For longer computation times of 600 s per instance, the 
genetic algorithm outperforms Gurobi on average.

Figure  6 clarifies an important relationship between objective function values and 
relative deviations for the bottom line algorithm variant from Table 6 and 600 s of com-
putation time. For each instance, the relative deviation of the genetic algorithm solu-
tion from the Gurobi solution is given together with the total delay cost found with the 
genetic algorithm. There are some instances that can be solved with only very minor 
delays of the projects and hence only small objective function values. For those projects, 
the genetic algorithm sometimes finds solutions that are only slightly more expensive 
in absolute terms, but twice or three times as expensive in relative terms. When penalty 
payments become larger due to longer delays, however, the algorithm performs well.

Overall, we conclude that the described genetic algorithms are a useful approach 
to schedule multiple flexible projects. In particular, our results show that random 
keys � as proposed by Gonçalves et al. (2008) beat activity lists � for activity prior-
itization even in the context of entire portfolios of flexible projects.

In addition, project priorities � ⋅ c as introduced in this paper lead to good results 
which is also promising for other multi-project settings. The newly introduced flex-
ible serial-parallel SGS is useful as well. For this reason, it could be an attractive 
idea to test the flexible serial-parallel SGS for other types of resource-constrained 
project scheduling problems.

6 � Conclusion

In this paper, we analyzed and formally modeled the problem to find both structures 
and schedules for entire portfolios of projects. We considered projects with flexible 
structures due to alternative procedures or technologies. For each of the projects, 

Fig. 6   Objective function values and percentage deviations
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we assumed given project-specific due dates and agreed-upon penalty payments for 
each time unit of project delay. Tight capacity constraints can lead to situations in 
which some degree of delay and hence some penalty payments are inevitable. In 
this situation, it is both difficult and important to coordinate the different projects 
in a way which uses project flexibility options in an economically efficient way. The 
substantial cost benefit of the proposed simultaneous optimization approach can be 
seen clearly from the comparison with other approaches as such capacity quotas for 
or sequential scheduling of different projects within a portfolio.

In order to solve such projects and in line with the existing literature, we devel-
oped different solution representations which we then used with genetic algorithms. 
By combining different algorithmic options, we created an entire family of 24 dif-
ferent but related algorithms. These algorithms were tested in a large-scale numeri-
cal study. The performance of those algorithms turned out to differ substantially. 
We found that it is beneficial to explicitly consider project priorities in the solution 
representation. Our experiments confirm that random keys should be used instead 
of activity lists to prioritize activities. Furthermore, it is beneficial to operate with 
a flexible schedule generation scheme with frequent endogenous decisions between 
serial and parallel schedule generation. Finally, we saw that an improvement step 
tends to actually improve the solution quality.

For relatively small problem instances Gurobi could be used to determine proven 
optimal solutions. Our best algorithm showed only a negligible deviation from these 
optimal solutions. For larger instances, Gurobi could not always provide proven 
optimal solutions and was outperformed by our algorithms with respect to both 
solution quality and computation time. While our algorithms have been designed 
to solve multi-project scheduling problems with due dates, they can also be used 
to solve weighted makespan minimization problems as those arise if due dates are 
zero for all projects. Given the modeling power of flexible projects and the speed 
and accuracy of our tailored algorithms, a wide variety of such problems can now be 
solved for non-trivial problem sizes, as indicated by our results.

Artigues (2017) has shown that different formulations of the RCPSP can lead to 
better results when using standard solvers. Further research could therefore discuss 
the influence of the formulation of the RCMPSP-PS on the computation time of 
standard solvers.

Furthermore, future research could address project portfolio scheduling prob-
lems under uncertainty. If there is flexibility with respect to the problem structure, 
it might be beneficial to make a first-stage decision about the project structures sub-
ject to some activity duration uncertainty and then determine the schedule as actual 
activity durations are unveiled.
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Appendix 1: Detailed description of the flexible serial‑parallel 
schedule generation

This appendix explains in detail how the schedule shown in Fig. 5 is created using 
Algorithm 2 for the example data given in Sect. 3.5.

At first, the values for � , z and fl are initialized (Lines 1–3). Since not all activi-
ties are scheduled yet (Line 4), we consider all projects l and all unscheduled but 
implemented activities j ∈ J

impl

l
 successively to determine which activities are eli-

gible (Lines 5–6). In the first scheduling step z = 1 the SSGS is applied ( �1 = S ,  
Line 7). In this case, an activity is eligible if all predecessors are already sched-
uled (Line 8–9). In our example these are activities X-1, X-2, Y-1, Y-2 and Y-3. 
As there are eligible jobs, the procedure is continued for the given period � 
(Line 14). Since project X has the highest priority value of both eligible projects 
( 𝜇X,1 = 1.4 > 0.9 = 𝜇Y ,1 ), it is selected ( l∗ = X , Line 15). Activity j∗ = X-2 has the 
highest priority out of all eligible jobs of project X and is chosen (Line 16). Since 
we use the SSGS in this step (Line 17), the starting period is defined as the earliest 
period in which all predecessors are finished and in which there is enough remain-
ing capacity to schedule activity X-2 (Line 18). Due to the fact that no activity is 
scheduled yet, this is the case in period t = 1 , so that activity X-2 is determined to 
start at the beginning of this period ( STX-2 = 1 , Line 19). Therewith, the first sched-
uling step is completed and z as well as fX are increased by one (Lines 22–23). The 
remaining capacity in period 1 is reduced to 3 units as activity X-2 consumes 2 units 
for a duration of one period (Line 24).

Not all implemented activities are scheduled yet and the procedure continues 
(Line 4). Again, it is checked which unscheduled but implemented activities are eli-
gible. Due to the fact that the PSGS is used in the second planning step ( �2 = P , 
Line 10), the completion of the predecessors and the resource availability in the cur-
rent period � = 1 is checked (Lines 11–13). The activities X-1, Y-1, Y-2 and Y-3 are 
eligible. Project X is chosen ( 𝜇X,2 = 1.4 > 0.9 = 𝜇Y ,1 ). For this project, only activity 
X-1 is eligible and thus is scheduled. It starts in the current period � ( STX-1 = 1 , 
Lines 20–21). The counters z and f ∗

l
 are adjusted and the remaining capacity is 

reduced to 1 unit in period 1 and to 3 units in periods 2 and 3 as activity X-1 con-
sumes two units of capacity for three periods.

The algorithm proceeds with the PSGS in the next scheduling step ( �3 = P ). In the 
current period � there is only enough capacity to schedule activity Y-1 ( STY-1 = 1).

In the fourth planning step, the SSGS is applied ( �4 = S ). There is no capacity left 
in period � = 1 . However, for the SSGS the available capacity and the completion of 
the predecessors are not checked when determining the schedulable activities. Thus, 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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activities X-4, X-5, Y-2, Y-3 and Y-4 are eligible as all their predecessors are sched-
uled. Due to the priority values for the projects and the activities, activity Y-2 is 
planned to start in the earliest period in which all predecessors are finished and in 
which there is enough capacity left ( STY-2 = 2).

In the fifth scheduling step again the PSGS is used ( �5 = P ). As this scheme 
focuses on the current period � = 1 , in which no capacity is left, no activities are eli-
gible (Line 25). Thus, the period � is increased to the earliest period in which at least 
one activity ends and in which there is capacity left on at least one resource r (Line 
26). In our example, this is the second period as the already scheduled activities con-
sume the whole capacity before. For this reason, the eligibility is checked for � = 2.

The procedure continues until all activities are scheduled.
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