
Computational Mechanics (2020) 66:827–849
https://doi.org/10.1007/s00466-020-01876-4

ORIG INAL PAPER

A Bayesian estimation method for variational phase-field fracture
problems

Amirreza Khodadadian1,3 · Nima Noii3 ·Maryam Parvizi1 ·Mostafa Abbaszadeh2 · Thomas Wick3 ·
Clemens Heitzinger1,4

Received: 16 October 2019 / Accepted: 17 June 2020 / Published online: 14 July 2020
© The Author(s) 2020

Abstract
In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is
described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncer-
tainties arising in the solidmaterial parameters and the critical energy release rate. A reference value (obtained on a sufficiently
refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time-
and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem
on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated
and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.

Keywords Bayesian estimation · Inverse problem · Phase-field propagation · Brittle fracture · Multi-field problem

1 Introduction

This work is devoted to parameter identifications in frac-
ture failure problems. To formulate fracture phenomena, a
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phase-field formulation for quasi-brittle fracture is used. The
variational phase-field formulation is a thermodynamically
consistent framework to compute the fracture failure process.
This formulation emanates from the regularized version of
the sharp crack surface function, which was first modeled
in a variational framework in [1]. Regularized fracture phe-
nomena are described with an additional auxiliary smooth
indicator function [2], which is denoted as crack phase-field
(here indicated by d). Alongwith amechanical field (denoted
by u), a minimization problem for the multi-field problem
(u, d) can be formulated. The main feature of such a varia-
tional formulation is to approximate the discontinuities in u
across the lower-dimensional crack topology with the phase-
field function d.

The resulting, regularized formulation leads to a diffu-
sive transition zone between two phases in the solid, which
corresponds to the fractured phase (i.e., d = 0) and intact
phase (i.e., d = 1), respectively. The transition zone is deter-
mined by the phase-field regularization parameter �, also
well-known as the length-scale parameter. The parameter �

is related to the element size h and specifically h ≤ � (e.g.,
� = 2h). Therefore, sufficiently small length-scales are com-
putationally demanding. To date, the focus in such cases was
on local mesh adaptivity and parallel computing in order to
reduce the computational cost significantly; see for instance
[3–11]. Another recent approach is a global-local technique
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in which parts of the domain are solved with a simplified
approach [12,13] that also aims to reduce the computational
cost.

Generally, material parameters fluctuate randomly in
space. In fact, the mechanical material parameters are spa-
tially variable and, therefore, the uncertainty related to
spatially varying properties can be represented by random
fields. For instance, the material stiffness property has spa-
tial variability. In fact, there are several sources of uncertainty
including the class of extensometer or strain gauge reso-
lution, uncertainty in the dimensional measurements, the
classification and resolution of the load cell, misalignment
of the specimen or strain measurement device, temperature
effects, operator-dependent factors, data fitting routines and
analysis methods, etc [14]. Therefore, in order to provide
a reliable model, the uncertainty effect must be taken into
account.

The main goal in this work is to identify such uncertain
parameters for phase-field fracture problems. The underlying
framework of parameter estimation using Bayesian infer-
ence is described in the following. Bayesian inference is a
probabilistic method used to estimate the unknown param-
eters according to the prior knowledge. The observations
(experimental or synthetic measurements) can be used to
update the prior data and provide the posterior estimation.
The distribution provides useful information about the pos-
sible range of parameters and their variations and mean.
Markov chainMonte Carlo (MCMC) [15] is a common com-
putational approach for extracting information of the inverse
problem (posterior distribution). Metropolis-Hastings (MH)
algorithm [16] is the most popular MCMC method to gen-
erate a Markov chain employing a proposal distribution for
new steps. In practice, a reliable estimation of influential
parameters is not possible or needs significant efforts. In
[17,18], the authors used the Metropolis-Hastings algorithm
to estimate the unknown parameters in field-effect sensors.
It enables authors to estimate probe-target density of the tar-
get molecules which can not be experimentally estimated.
We refer interested readers to [19,20] for more applications
of Bayesian estimation. In the same line, other optimization
approaches can be used to determine intrinsic material prop-
erties of the specimen from experimental load-displacement
curves, see e.g., [21].

As previously mentioned, we consider fractures in elastic
solids in this work. The principal material parameters are
the shear modulus μ and the effective bulk modulus, K =
λ+ 2μ

3 (here λ denotes Lamé’s first parameter) and Griffith’s
critical energy release rateGc. Using Bayesian inversion, the
objective is to determine the unknown elasticity parameters.

For a homogeneousmaterial, the stability requires positive-
definiteness of the elasticity tensor. For an externally uncon-
strained homogeneous solid, the conditions of structural
stability needs that the fourth-order stiffness tensor is

positive-definite. The condition for an isotropic, linear elastic
medium gives rise to the shear modulus μ and the effective
bulk modulus, K be strictly positive [22]. Regarding λ, the
bound λ > − 2μ

3 may relate it to the shear modulus. Also, for
the isotropic materials (as used in this paper) Poisson’s ratio
ν satisfies the condition−1 < ν < 1

2 [23]. These two elastic-
ity parameters (λ and ν) are not well-suited for the estimation
due to their bounds and dependency. Therefore, for the elas-
ticity parameterization, we chose the eigenvalues, i.e., K and
μ, and strive to estimate the joint probability, being updated
jointly using MCMC.

Griffith’s theory describes that crack propagation occurs if
a certain reduction of the potential energy due to the change
of surface energy associated with incremental crack exten-
sion reaches to its critical value [24]. Here, Griffith’s critical
energy rate Gc measures the amount of energy dissipated
in a localized fracture state [25], thus has units of energy-
per-unit-area. In case Gc is unknown, one possibility is to
employ the Bayesian setting for its identification. Physically
speaking, there is a direct relation between Gc and material
stiffness, which means that in stiffer materials more energy
is needed for the crack initiation. Computationally speak-
ing, this value is independent of the elasticity parameters.
Finally, since we should deal with three positive values (μ,
K ) and Gc, in order to remove the positivity constraints, we
transfer these parameters and estimate the transfered values
μ∗ = log(μ), K ∗ = log(K ), and G∗

c = log(Gc).
In our Bayesian framework, a reference value (obtained

on a sufficiently refined mesh which termed here to the
virtual observation) as the replacement of measurement will
be chosen. Then, the posterior density of the elasticity param-
eters (joint probability) and the critical energy release rate is
obtained. The computational costs can be high, specifically
when an appropriate estimation is required inside multi-
physics frameworks, see e.g. [3,26–28]. Using Bayesian
inversion, we strive to solve such problems with a coarser
mesh and fit the parameters. The obtained load-displacement
curve (as an important characteristic output) is matched with
the reference value. In spite of using coarser meshes and
therefore significantly lower computational costs (in terms of
CPU timings), the accuracy of the solution is reliable (crack
initiation and material fracture time estimated precisely).

The paper is organized as follows: In Sect. 2, we describe
the variational isotropic phase-field formulation for the brittle
fracture that is a thermodynamically consistent framework to
compute the fracture failure process. In Sect. 3, the Bayesian
inference is explained. We describe how the MH algorithm
will be used to estimate the unknown parameters in phase-
field fracture. Alsowe point out the critical points in the load-
displacement curve, which must be estimated precisely with
the Bayesian approach. In Sect. 4, the Bayesian framework
is adopted to estimate unknown parameters in the phase-
field fracture approach. In Sect. 5, three specific numerical
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Fig. 1 aGeometric setup: the intact region indicated by�R and C is the
crack phase-field surface. The entire domain is denoted by�. The crack
phase-field is approximated in the domain �F . The fracture boundary
is ∂�F and the outer boundary of the domain is ∂�. �F is represented

by means of d such that the transition area is 0 < d < 1 with thickness
2�. b Regularized crack phase-field profile for a different length scale.
A smaller value for the length scale lets the crack phase-field profile
converge to a delta distribution

examples with different parameters and geometry will be
given. We will use two proposal distributions (uniform and
normal distribution) to sample the candidates and estimate
the unknown parameters with different mesh sizes. Finally,
in 6 we will draw paper conclusions and explain our future
planes for employing Bayesian inversion in heterogeneous
materials.

2 Variational isotropic phase-field brittle
fracture

2.1 The primary fields for the variational phase-field
formulation

We consider a smooth, open and bounded domain � ⊂
R

δ (here δ = 2). In this computational domain, a lower
dimensional fracture can be indicated by C ⊂ R

δ−1. In
the following, Dirichlet boundaries conditions indicated as
∂�D := ∂�, and Neumann boundaries conditions are given
on ∂N� := �N ∪ ∂C, where �N is the outer boundary of �

and ∂C is the crack boundary. The geometric setup including
notations is illustrated in Fig. 1a. The surface fracture C is
estimated in �F ⊂ � ⊂ R

δ . A region without any fracture
(i.e., an intact region) is indicated by �R := �\�F ⊂ � ⊂
R

δ such that �R ∪ �F = � and �R ∩ �F = ∅.
Thevariational phase-field formulation is a thermodynam-

ically consistent framework to compute the fracture process.
Due to the presence of the crack surface, we formulate the
fracture problem as a two-field problem including the dis-
placement field u(x) : � → R

δ and the crack phase-field
d(x) : � → [0, 1]. The crack phase-field functiond(x) inter-
polates between d = 1,which indicates undamagedmaterial,
and d = 0, which indicates a fully broken material phase.

For stating the variational formulations, the spaces

V := {H1(�)δ : u = ū on ∂�D}, (1)

W := H1(�), (2)

Win := {d ∈ H1(�)δ−1 : 0 ≤ d ≤ dold} (3)

are used. Herein, Win denotes a closed, non-empty and
convex set which is a subset of the linear function space
W = H1(�) (see e.g., [29]).

2.2 Variational formulation for the isotropic
mechanical contribution

In the following, a variational setting for quasi-brittle fracture
in bulk materials with small deformations is formulated. To
formulate the bulk free energy stored in the material, we
define the first and second invariants as

I1(ε) = tr(ε), I2(ε) = tr(ε2), (4)

with the second-order infinitesimal small strain tensor defined
as

ε = ∇su = sym[∇u]. (5)

The isotropic scalar valued free-energy function reads

˜	 (I1(ε), I2(ε)) :=
(

K

2

)

I 21 (ε) − μ

(

I 21 (ε)

3

−I2(ε)) with K > 0 and

μ > 0,

(6)

where K = λ + 2
3μ is the bulk modulus. A stress-

free condition for the bulk energy-density function requires
˜	 (I1(0), I2(0)) = 0. Hence, the bulk free-energy functional
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including the stored internal energy and the imposed external
energy is

Ebulk(u) =
∫

�C

˜	(ε)dx −
∫

∂N�C

τ · u ds (7)

where τ is the imposed traction traction vector on ∂N�C

:= �N ∪ C and the body-force is neglected.
Following [1], we define the total energetic functional

which includes the stored bulk-energy functional and fracture
dissipation as

E(u, C) = Ebulk(u) + GcHδ−1(C), (8)

where Gc is the so called the Griffith’s critical elastic-energy
release rate. Also, Hδ−1 refers to the (δ − 1)-dimensional
Hausdorff measure (see e.g. [2]). Following [2], Hδ−1 is
regularized (i.e. approximated) by the crack phase-field d(x)

(see e.g. [2]).Doing so, a second-order variational phase-field
formulation is employed; see Sect. 2.3. Additional to that,
a second-order stress degradation state function (intacted-
fractured transition formulation) is used as a monotonically
decreasing function which is lower semi-continuous order;
see Sect. 2.5.

2.3 Crack phase-field formulation in a regularized
setting

Let us represent a regularized (i.e., approximated) crack sur-
face for the sharp-crack topology (which is a Kronecker
delta function) thorough the exponential function d(x) =
1− exp−|x|/l , which satisfies d(x) = 0 at x = 0 as a Dirich-
let boundary condition and d(x) = 1 as x → ±∞. This is
explicitly shown in Fig. 1b for different length scales. Here,
x is a position variable in the Cartesian coordinate system,
meaning u and d have a certain value at each position within
the geometry. The first observation through the explicit for-
mulation is that, the crack phase-field d constituting a smooth
transition zone dependent on the regularization parameter �.
In engineering or physics, � is often a so-called characteristic
length-scale parameter. This may be justified since this zone
weakens the material and is a physical transition zone from
the unbroken material to a fully damaged state. In practice,
choices such as � = 2h or � = 4h are often employed. Fol-
lowing [30,31], a regularized crack surface energy functional
for the second term in Eq. 8 reads

GcHδ−1(C) := Gc

∫

�

γ�(d,∇d) dx with γ�(d,∇d)

:= �

2�
(1 − d)2 + �

2
∇d · ∇d (9)

based on the crack surface density function γ�(d,∇d) per
unit volume of the solid. This equation is the so-called AT-2
model because of the quadratic term in PDE.

We set sharp crack surfaces as Dirichlet boundary con-
ditions in C ⊂ �. Hence, the crack phase-field d(x, t) is
obtained from theminimization of the regularized crack den-
sity function as

d(x) = argmin
d(x)∈Win with d(x)=0 ∀x∈C

∫

�

γl(d,∇d) dx. (10)

Figure 2 gives the numerical solution that arises from the
minimization Eq. 10 and demonstrates the effect of different
regularized length scales on the numerical solution. Clearly,
a smaller length scale leads to a narrower transition zone (see
Fig. 2c). That is also in agreement with the crack phase-field
profile shown in Fig. 1b.

2.4 Strain-energy decomposition for the bulk
free-energy

Fracture mechanics is the process which results in the com-
pression free state. As a result, a fracture process behaves
differently in the positive phase and in negative phase, see
e.g. [32]. In the following, an additive split for the strain
energy density function to distinguish the positive and neg-
ative phases is used. Instead of dealing with a full linearized
strain tensor ε(u), the additive decomposition

ε(u) = ε+(u) + ε−(u) with ε±(u) :=
δ

∑

i=1

〈εi 〉±Ni ⊗ Ni

of the strain tensor based on its eigenvalues is used [5,31].
Herein, 〈x〉± := x±|x |

2 refers to the a Macaulay brackets
for x ∈ R

±. Furthermore, ε+ and ε− refer to the positive
and negative parts of the strain, respectively. The {εi } are the
principal strains (i.e., the eigenvalues of the ε(u)) and the
{Ni } are the principal strain directions (i.e., the eigenvectors
of the ε(u)). To determine the positive and negative parts
of total strain ε, a positive-negative fourth-order projection
tensor is

P
±
ε := ∂ε±

∂ε
=

∂

(

∑δ

i=1
〈εi 〉±Ni ⊗ Ni

)

∂ε
, (11)

such that the fourth-order projection tensor P
±
ε projects the

total linearized strain ε onto its positive-negative counter-
parts, i.e., ε± = P

±
ε : ε. Hence an additive formulation of

the strain-energy density function consisting of the positive
and the negative parts reads
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Fig. 2 Effect of different length
scales on the crack phase-field
resolution as calculated by the
minimization problem in Eq. 10
such that �a > �b > �c

	
(

I1(ε), I2(ε)
) := ˜	+(

I+
1 (ε), I+

2 (ε)
)

︸ ︷︷ ︸

tension term

+ ˜	−(

I−
1 (ε), I−

2 (ε)
)

︸ ︷︷ ︸

compression term

. (12)

Here, the scalar valued principal invariants in the positive
and negative modes are

I±
1 (ε) := 〈I1(ε)〉±, I±

2 (ε) := I2(ε
±). (13)

Here, the first positive/negative invariant I1(ε) is strictly
related to the tension/compressionmode, respectively, mean-
ing that if tr(ε) > 0 requires that we are in tension mode
otherwise we are in compression state. The second invariant
I2(ε) is mainly due to the positive and negative eigenvalue of
the strain tensor, where its positive value requires that we are
either in shear or in tension mode otherwise it is in compres-
sion. Thus, we distinguished between tension/compression
and also a isochoric mode of our constitutive model, and
only the positive part of the energy is degraded.

2.5 Energy functional for the isotropic crack
topology

Due to the physical response of the fracture process, it is
assumed that the degradation of the bulk material due to the
crack propagation depends only on the tensile and isochoric
counterpart of the stored bulk energy density function. Thus,
there is no degradation of the bulk material in negative mode,
see [31]. Hence, the degradation function denoted as g(d+)

acts only on the positive part of bulk energy given in Eq. 12,
i.e.,

g(d+) := d2+, g : [0, 1] → [0, 1]. (14)

This function results in degradation of the solid during the
evolving crack phase-field parameter d. Due to the transi-
tion between the intact region and the fractured phase, the
degradation function has flowing properties, i.e.,

g(0) = 0, g(1) = 1, g(d) > 0 for d > 0,

g′(0) = 0, g′(1) > 0. (15)

Following [31], the small residual scalar 0 < κ � 1 is
introduced to prevent numerical instabilities. It is imposed
on the degradation function, which now reads

g(d+) := (1 − κ)d2+ + κ, g : [0, 1] → [0, 1). (16)

The stored bulk density function is denoted as wbulk .
Together with the fracture density function w f rac, it gives
the the total density function

w(ε, d,∇d) = wbulk(ε, d) + wfrac(d,∇d), (17)

with

wbulk(ε, d) = g(d+)˜	+(

I+
1 (ε), I+

2 (ε)
)

+˜	−(

I−
1 (ε), I−

2 (ε)
)

,

wfrac(d,∇d) = Gcγl(d,∇d). (18)

Formulation 2.1 (Energy functional for isotropic crack topol-
ogy) We assume that K and μ are given as well as initial
conditions u0 = u(x, 0) and d0 = d(x, 0). For the load-
ing increments n ∈ {1, 2, . . . , N }, find u := un ∈ V and
d := dn ∈ Win such that the functional

E(u, d) = Ebulk(u, d+, χ) + Efrac(d) + Eext(u)

=
∫

�

g(d+) ˜	+(I+
1 , I+

2 ) + ˜	−(I−
1 , I−

2 ) dx
︸ ︷︷ ︸

bulk term

+ Gc

∫

�

γl(d,∇d)dx
︸ ︷︷ ︸

fracture term

−
∫

∂N�

τ̄ · u ds
︸ ︷︷ ︸

external load

,

is minimized.

Herein, to make sure that phase-field quantity d lies in
the interval [0, 1], we define d+ to map negative values of d
to positive values. In Formulation 2.1, the stationary points
of the energy functional are determined by the first-order
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necessary conditions, namely the Euler–Lagrange equations,
which can be found by differentiation with respect to u and
d.

Formulation 2.2 (Euler–Lagrange equations) Let K > 0,
μ > 0 be given as well as the initial conditions u0 =
u(x, 0) and d0 = d(x, 0). For the loading increments
n ∈ {1, 2, . . . , N }, find u := un ∈ V and d := dn ∈ Win

such that

Eu(u, d; δu) =
∫

�

g(d+)σ̃
iso,+

(u) : ε(δu)dx

+
∫

�

σ̃
iso,−

(u) : ε(δu)dx

−
∫

∂N�

τ̄ · δu ds = 0 ∀δu ∈ V ,

Ed(u, d; δd − d) = (1 − κ)

∫

�

2d+ ˜D.(δd − d)dx

+ Gc

∫

�

(

1

�
(d − 1) · (δd − d) + �∇d · ∇(δd − d)

)

dx ≥ 0 ∀δd ∈ W ∩ L∞.

(19)

Herein, Eu and Ed are the first directional derivatives of
the energy functional E given in Formulation 2.1with respect
to the two fields, i.e., u and d, respectively. Also, ˜D is a
crack driving state function which depends on a state array
of strain- or stress like quantities and δu ∈ {H1(�)2 : δu =
0 on ∂�D} is the deformation test function and δd ∈ H1(�)

is the phase-field test function.
Furthermore, the second-order constitutive stress tensor

with respect to Eq. 18 reads

σ (ε, d) := ∂wbulk(ε, d)

∂ε
= g(d+)

∂˜	+

∂ε

+∂˜	−

∂ε
= g(d+) σ̃

+ + σ̃
−
, (20)

with

σ̃
±
(ε) := K I±

1 (ε) − 2μ
(1

3
I±
1 (ε)I

−2ε±
)

with K > 0 and μ > 0. (21)

2.6 Crack driving forces for brittle failure

Following [33,34], we determine the crack driving state func-
tion to couple between two PDEs. Hence, crack driving state
function acts as a right hand side for the phase-field equation.
To formulate the crack driving state function, we consider the
crack irreversibility condition, which is the inequality con-
straint ḋ ≤ 0 imposed on our variational formulation. The
first variation of the total pseudo-energy density with respect
to the crack phase-field given in (17) reads

−δdw(ε, d,∇d) = (κ − 1)2d+
[

˜	+]

−Gcδdγ�(d,∇d) ≥ 0. (22)

Herein, the functional derivative of γl(d,∇d)with respect to
d is
∫

�

δdγ�(d,∇d)dx =
∫

�

1

�
[(d − 1) − �2�d]dx. (23)

Maximization the inequality given in Eq. 22 with respect to
the time history s ∈ [0, tn] reads

(κ − 1)2d+ max
s∈[0,tn ]

[

˜	+] = Gcδdγ�(d,∇d). (24)

We multiply Eq. 24 by l
Gc

. Then Eq. 24 can be restated as

(κ − 1)2d+H = �δdγl if

H := max
s∈[0,tn ]

˜D with ˜D := �˜	+

Gc
. (25)

Here,H := H(ε, t) denotes a positive crack driving force
that is used as a history field from initial time up to the current
time. Note that the crack driving state function ˜D is affected
by the length-scale parameter � and hence depends on the
regularization parameter.

Formulation 2.3 (Final Euler–Lagrange equations) Let us
assume that K > 0, μ > 0 are given as well as the initial
condition u0 = u(x, 0) and d0 = d(x, 0). For the load-
ing increments n ∈ {1, 2, . . . , N }, find u := un ∈ V and
d := dn ∈ W such that

Eu(u, d+; δu) =
∫

�

g(d+)σ̃
+
ε (u) : ε(δu) dx

+
∫

�

σ̃
−
ε (u) : ε(δu) dx

−
∫

∂N�

τ̄ · δu ds = 0 ∀δu ∈ V ,

Ed(u, d; δd) = (1 − κ)

∫

�

2d+Hδd dx

+
∫

�

(

(d − 1)δd + �2∇d · ∇δd
)

dx = 0 ∀δd ∈ W .

(27)

Themulti-field problemgiven inFormulation (2.3) depend-
ing on u and d implies alternately fixing u and d, which is
a so called alternate minimization scheme, and then solving
the corresponding equations until convergence. The alter-
nate minimization scheme applied to the Formulation (2.3)
is summarized in Algorithm 1.

2.7 The influence of the � on the stress-strain curve

In this part, the influence of the κ on the stress-strain curve is
taken into account. Following [26], the homogeneous solu-
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Fig. 3 The influence of the κ on the stress-strain curve; left plot represent κ = κ(�) and right plot presents κ as a numerical parameter which is
sufficiently small

Input: • loading data (ūn, t̄n) on ∂�D ⊂ ∂�,
• solution (un−1, dn−1) from time step n − 1.

Initialization of alternate minimization scheme (k = 1): • set
FLAG:=true

while FLAG do
1. given uk , solve Ed (uk , d; δd) = 0 for d, set d := dk ,
2. given dk−1, solve Eu(u, dk−1; δu) = 0 for u, set
u := uk ,
3. define alternate minimization residual for the obtained
pair (uk , dk)

ReskStag := |Ed (uk , dk; δd)| + |Eu(uk , dk; δu)| (26)

∀ δu ∈ V δd ∈ W ,

4. if ReskStag ≤ TOLStag then

• set (uk , dk) := (un, dn)
• FLAG:=false

else
k + 1 → k

end if
end

Algorithm 1: Alternate minimization scheme for Formu-
lation (2.3) at a fixed loading step n.

tion at the quasi-static stationery state of the phase-field
partial differential equation in the loading case takes the fol-
lowing form

dhomo = 1

1 + 2(1 − κ)˜D
∈ [0, 1], (28)

which results from the free Laplacian operator �(•) = 0
assumption in Eq. 24 without any source terms (zero left-
hand sides). Here, the crack driving state function ˜D is given
in Eq. 25. Because, we are in the elastic limit, prior to
the onset of fracture, then no split is considered. We now
aim to relate a stress state σ with the isotopic phase-field
formulation. To do so, a non-monotonous function in the
one-dimensional setting for the degrading stresses takes the

following form by

σ = g(d )̃σ =
(

(1 − κ)
(

1 + 2(1 − κ)˜D
)2 + κ

)

Eε. (29)

To see the influence of the κ in Eq. 29, the concrete material
is considered. Following, [35] for a concrete material which
has a brittle response, a typical values formaterial parameters
reads,

E = 29GPa, σc = 4.5MPa and Gc = 70N/m. (30)

We set � = 0.0105 m. Thus, we can do a plot for the stress-
strain curve through Eq. 29 by considering the material set
given above. Figure 3 shows the effect of stress state for
different strain loading. The black curve represents the stress-
strain curvewhile κ = 0. Evidently, it can be grasped through
Fig. 3 with κ = 0 the σc is exactly σc = 4.5MPa as it is
required for the concrete material, see [35]. If we consider
κ �= 0 as a function of characteristic length-scale, see Fig. 3
left, we can observe a good agreement with κ = 0 up to
the peak point while after some strain value it becomes dif-
ferent as κ changes. Unfortunately, we can not observe any
converged response if we consider κ as a function of �. In
contrast, if we chose κ sufficiently small, see Fig. 3 right, as
much as κ reduced, in here less than κ ≤ 10−4, we observed
a very identical response with κ = 0, thus it behaves as
numerical parameters rather than material parameters.

3 Stochastic model for Bayesian inversion

In this section, we explain how we use Bayesian inversion
to identify parameters. Then, we introduce a computation-
ally effective numerical technique to estimate the unknown
parameters.
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In the phase-field model, the uncertainties arise from the
elasticity parameters including the shear modulus μ and the
bulk modulus K as well as Griffith’s critical elastic energy
release rate (material stiffness parameter) Gc, which are
assumed to be random fields. Specifically, we represent the
parameters uncertainty (spatial variability) by a spatially-
varying log-normal random field.

TheKarhunen-Loéve expansion (KLE) expansionmethod
is used to reduce the dimensionality of the random field.
The field � representing the elasticity parameters and the
energy release rate canbe characterizedby its expectation and
covariance using the expansion. Considering the probability
density function P, the covariance function is

Cov�(x, y) =
∫

�
(�(x, ω) − �(x)) (�( y, ω) − �( y)) dP(ω),

(31)

which leads to the KL-expansion

�(x, ω) = �̄(x) +
∞
∑

n=1

√

ψnkn(x)ξn(ω). (32)

Here the first term is the mean value, kn are the orthogonal
eigenfunctions, ψn are the corresponding eigenvalues of the
eigenvalue problem [36]

∫

D
Cov�(x, y)kn( y) d y = ψnkn(x), (33)

and the {ξn(ω)} are mutually uncorrelated random variables
satisfying

E[ξn] = 0, E[ξnξm] = δnm, (34)

where E indicates the expectation of the random variables.
The infinite series can be truncated to a finite series expan-

sion (i.e., an NKL-term truncation) by [36]

�(x, ω) = �̄(x) +
NKL
∑

n=1

√

ψnkn(x)ξn(ω). (35)

For the Gaussian random field, we employ an exponential
covariance kernel as

Cov�(x, y) = σ 2 exp

(

−‖x − y‖
ζ

)

, (36)

where ζ is the correlation length as well as σ is the standard
deviation.

For a random field, we describe the parameters using a
KL-expansion. Considering the Gaussian field ξ(x), a log-
normal random field can be generated by the transformation

ξ̃ (x) = exp(ξ(x)). For instance, for the parameter K , the
truncated KL-expansion can be written as

ξ̃K (x, ω) = exp

(

¯ξK (x, ω) +
N

∑

n=1

√

ψnkn(x)ξn(ω)

)

. (37)

3.1 Bayesian inference

We consider Formulation 2.3 as the forward model y =
G(� (x)), where G : L2(�) → L2(�). The forward model
explains the response of the model to different influential
parameters � (here μ, K , and Gc). We can write the statis-
tical model in the form [37]

M = G(�) + ε, (38)

where M indicates a vector of observations (e.g., measure-
ments). The error term ε arises from uncertainties such as
measurement error due experimental situations. More pre-
cisely, it is due to the modeling and the measurements and is
assumed to have aGaussian distribution of the formN (0, H)

with known covariance matrix H . The error is independent
and identically distributed and is independent from the real-
izations. Here, for sake of simplicity, we assume H = σ 2 I
(for a positive constant σ 2).

For a realization θ of the random field � corresponding
to a realization m of the observations M, the posterior dis-
tribution is given by

π(θ |m) = π(m|θ)π0(θ)

π(m)
= π(m|θ)π0(θ)

∫

Wm
π(m|θ)π0(θ) dθ

, (39)

where π0(θ) is the prior density (prior knowledge) andWm is
the space of parameters m (the denominator is a normaliza-
tion constant) [38]. The likelihood function can be defined
as [37]

π(m|θ) := 1

(2πσ 2)n̄/2 exp

(

−
n̄

∑

n=1

(mn − G(θ))2

2σ 2

)

. (40)

As an essential characteristic of the phase-field model,
the load-displacement curve (i.e., the global measurement)
in addition to the crack pattern (i.e., the local measurement)
are appropriate quantities to show the crack propagation as
a function of time. Figure 4 indicates the load-displacement
curve during the failure process. Three major points are the
following.

1© First stable position. This point corresponds to the
stationary limit such that we are completely in elastic region
(d(x, 0) = 1 ∀x ∈ �\C).

2© First peak point. Prior to this point crack nucleation
has occurred and now we have crack initiation. Hence, this
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Fig. 4 The schematic of load-deflection response for the failure process
including primary path (prior to the crack initiation, i.e., between point
1 and 2) and secondary path (during crack propagation, i.e., between
point 2 and 3)

peak point corresponds to the critical load quantity such that
the new crack surface appears (i.e., there exist some elements
which have some support with d = 0).

3© Failure point. At this point, failure of the structure has
occurred and so increasing the load applied to the material
will not change the crack surface anymore.

The interval between point 1 and point 2 in Fig. 4 typically
refers to the primary path where we are almost in the elastic
region. The secondary path (sometimes referred to as the soft-
ening damage path) starts with crack initiation occurring at
point 2. The whole process recapitulates the load-deflection
curve in the failure process.

The main aim of solving the inverse problem followed
here is to determine the random field � to satisfy (38). We
strive to find a posterior distribution of suitable values of the
parameters μ, K , and Gc in order to match the simulated
values (arising from (27)) with the observations. The distri-
bution provides all useful statistical information about the
parameter.

Remark 3.1 Note that the principal parameters h, κ , and �

are mathematically linked in Formulation 2.3. Here, we use
� = 2h and κ is sufficiently small which is compatible with
Sect. 2.7. In Sect. 5, the values of κ in the computations will
be specified. Further, a sufficiently small h is chosen to obtain
the reference solution.

The crack pattern is a time-dependent process (more
precisely in a quasi-static regime, the cracking process is
load-dependent), i.e., after initiation it is propagated through
time. In order to approximate the parameters precisely, we
estimate the likelihood during all time steps. Therefore, the
posterior distribution maximizes the likelihood function for
all time steps, and therefore we have an exacter curve for all
crack nucleation and propagation times.

MCMC is a suitable technique to calculate the posterior
distribution. When the parameters are not strongly corre-

lated, the MH algorithm [39] is an efficient computational
technique among MCMC methods. We propose a new can-
didate (so-called θ , i.e., a value of (μ, K ,Gc)) according
to a proposal distribution (for instance uniform or normal
distributions) and calculate its acceptance/rejection probabil-
ity. The ratio indicates how likely the new proposal is with
regard to the current sample. In other words, by using the
likelihood function (40), the ratio determines whether the
proposed value is accepted or rejected with respect to the
observation (here the solution of Formulation 2.3 with a very
fine mesh). As mentioned, fast convergence means that the
parameters are fully correlated. A summary of the MH algo-
rithm is given below.

Initialization: set prior data θ0 and number of samples N .
for i = 1 : N do

1. Propose a new candidate based on the proposal
distribution θ∗ ∼ K(θ∗| θ i−1).
2. Compute the acceptance/rejection probability

υ(θ∗| θ i−1) = min

(

1,
π(θ∗|m)

π(θ i−1|m)

K(θ i−1| θ∗)
K(θ∗| θ i−1))

)

.

3. Generate a random number V ∼ U (0, 1).
4. if V < υ then

accept the proposed candidate θ∗ and set θ i := θ∗
else
reject the proposed candidate θ∗ and set θ i := θ i−1

end if
end
Algorithm 2: The Metropolis-Hastings algorithm.

4 Bayesian inversion for phase-field fracture

In this key section, we combine the phase-field algorithm
from Sect. 2 with the Bayesian framework presented in
Sect. 3.

First, we define two sampling strategies as follows:

• One-dimensional Bayesian inversion. We first use N
samples (according to the proposal distribution) and
extract the posterior distribution of the first set e.g., (μ∗,
K ∗) where other parameter is according to the mean
value. Then obtained information is used to estimate the
posterior distribution of next unknown (i.e.,G∗

c ). In order
to employ the estimated values, the exponential of the
estimatedparameters is used in theAT-2model (seeAlgo-
rithm 2).

• Multi-dimensional Bayesian inversion. A three-dimen-
sional candidate (μ∗, K ∗,G∗

c) is proposed and the algo-
rithm computes its acceptance/rejection probability.

To make the procedures more clarified we explain the
multi-dimensional approach in Algorithm 3. Clearly, for the
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Fig. 5 Schematic of SENT
(Example 1) (left) and its
corresponding mesh with
h = 1/80 (right)

Fig. 6 The load-displacement curve for different values of μ (top left), K (top right) and Gc (bottom) in the SENT example (Example 1)

one-dimensional setting; for each parameter (e.g., θ∗ =
(μ∗, K ∗)), it can be reproduced separately. We will study
both techniques in the first example and the more efficient
method will be used for other simulations.

Here, nmax is the sufficiently large value that is set by the
user. Also, tolload is a sufficiently small value to guaran-
tee that the crack phase-field model reached to the material
failure time. Note, in part (iv) for the while-loop step, the
criteria ‖F̄n‖ < tolload in the secondary path (i.e., during
crack propagation state) guarantees that reaction force under
imposed Dirichlet boundary surface is almost zero. Hence,
no more force exists to produce a fractured state. We now

term this as a complete failure point. But, in some cases,
e.g., shear test as reported in [31], by increasing the mono-
tonic displacement load, F̄n is not reached to zero. For this
type of problem, if n < nmax holds, then phase-field step
(i.e., while-loop step) in Algorithm 3 will terminate.

The physical aim of using Bayesian inversion in phase-
field fracture is adjusting the effective parameters to fit the
solution with the reference values (see Remark 3.1). With
(future) experiments (experimental load-displacement until
the failure point), these can be used as reliable reference
values.
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Fig. 7 Left: the joint probability density of the elasticity parameters.
Right: the prior (green line), and the normalized probability density
function (pdf) of Gc for the SENT example. Here we compare the dis-

tributions obtained by the one-dimensional Bayesian inversion (first
row) and the three-dimensional Bayesian inversion (second row)

Table 1 The mean values of the
posterior distributions obtained
by one-dimensional and
three-dimensional Bayesian
inversion in addition to their
acceptance ratios for the SENT
(Example 1)

One-dimensional Three-dimensional

Mean (kN/mm2) Ratio (%) Mean (kN/mm2) Ratio (%)

μ 84.2 27 85.1 28

K 176.1 27 175.3 28

Gc 0.00272 29.1 0.00268 28.6

The units are in kN/mm2

5 Numerical examples

In this section, we consider three numerical test problems
to determine the unknown parameters using given Bayesian
inference. Specifically, we propose:

• Example 1 the single edge notch tension (SENT) test;
• Example 2 double edge notch tension (DENT) test;
• Example 3 tension test with two voids.

The observations can be computed by very fine meshes (here
the reference values) as an appropriate replacement of the
measurements (see Remark 3.1). Regarding the observa-
tional noise, σ 2 = 1 × 10−3 is assumed. The main aim here
is to estimate the effective parameters (μ, K , and Gc) in

order to match the load-displacement curve with the refer-
ence value. To characterize the random fields, we can use the
KL-expansion with NKL = 100 and the correlation length
ζ = 2 as well.

In all examples, the phase-field parameters set by κ =
10−8, and regularized length scale � = 2h (respecting the
condition h < l). The stopping criterion for the iterative
Newton method scheme, i.e. the relative residual norm that
is

Residual := ‖R(xk+1)‖ ≤ TolN-R‖R(xk)‖, (42)

is chosen to TolN-R = 10−8. Here, R indicates a dis-
cretized setting of weak forms described in Formulation
(2.3). Regarding alternate minimization scheme we set
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for i = 1 : N do
1. Propose the i-th candidate θ∗ = (μ∗, K ∗,G∗

c )

according to the proposal distribution (unform or normal).
2. • set FLAG=true

• set n = 0
while FLAG do

(i) solve the Formulation (2.3) by Algorithm 1
considering TOLStag and

the proposed candidate θ∗.
(ii) approximate (un, dn)
(iii) estimate the crack pattern at the loading

stage n by

F̄n =
∫

∂�D

n · σ · n dx (41)

(iv)

if
{

∃ d = 0 in �\C
}

&

{

‖F̄n‖ < TOLLoad

}

or

n < nmax then
• set FLAG=false

else
• set n = n + 1

end if
end
3. Calculate the likelihood function (40) for F̄ (during all
n-steps, until n̄) with respect to θ∗ where mn
indicates the reference value at the n-th loading step.

4. Compute the acceptance/rejection probability
ν(θ∗| θ i−1).
5. Use Algorithm 2 to determine θ i (i.e., θ∗ is
accepted/rejected).

end
Algorithm 3: The multi-dimensional Bayesian inversion
for phase-field fracture.

TOLStag = 10−4 for all numerical examples and TOLLoad =
10−3 is chosen to guarantee that we solve the model only
until the material failure time. In the examples, the random
fields modeled as a log-normal random field. For the numer-
ical simulations, all variables are discretized by first-order
quadrilateral finite elements.

5.1 Example 1: The single edge notch tension (SENT)
test

This example considers the single edge notch tension. The
specimen is fixed at the bottom.We have traction-free condi-
tions on both sides. A non-homogeneous Dirichlet condition
is applied at the top. The domain includes a predefined sin-
gle notch (as an initial crack state imposed on the domain)
from the left edge to the body center, as shown in Fig. 5a.
We set A = 0.5 mm hence � = (0, 1)2mm2, hence the
predefined notch is in the y = A plane and is restricted
to 0 ≤ |C| ≤ A. This numerical example is computed by
imposing a monotonic displacement ū = 1×10−4 at the top
surface of the specimen in a vertical direction. The finite ele-

Fig. 8 The load-displacement curve for the one-dimensional (black)
and three-dimensional (red) posterior distributions in addition to the
ones for the prior distribution (green) and the reference value (blue) for
the SENT example (Example 1) with h = 1/160

Fig. 9 The autocorrelation function for one- and multidimensional
Bayesian inference in the SENT example

ment discretization corresponding to h = 1/80 is indicated
in Fig. 5b.

For the shear modulus, we assume the variation range
(60 kN/mm2, 100 kN/mm2). Regarding the the bulk mod-
ulus K , the parameter varies between 140 kN/mm2 and
200 kN/mm2. Finally, we consider the interval between
2.1 × 10−3 kN/mm2 and 3.3 × 10−3 kN/mm2 for Gc. Fur-
thermore, we assume that in this example, the variables are
spatially constant random variables (they are not random
fields).

We solved the PDE model (Formulation 2.3) with μ =
80 kN/mm2, K = 170 kN/mm2, and Gc = 2.7 ×
10−3 kN/mm2 [31] and the displacement during the time
(as the reference solution) with h = 1/320 was obtained.
The main goal is to obtain the suitable values of μ, K , and
Gc such that the simulations match the reference value.

For this example, we use a uniformly distributed prior
distribution and the uniform proposal distribution
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Fig. 10 The effect of the mesh size on the crack propagation in the SENT example (Example 1). The mesh sizes are (from the left) h = 1/20,
h = 1/40, h = 1/80, h = 1/160, and h = 1/320 (the reference). The effective parameters are chosen according to the prior values

Fig. 11 The load-displacement curve in the SENT example (Example
1) for different mesh sizes, where the parameters are chosen according
to the prior

K(θ → θ∗) := 1

θ2 − θ1
χ [θ1, θ2](θ), (43)

where χ indicates the characteristic function of the interval
[θ1, θ2] (where θ denotes a set of parameters).

First, we describe the effect of each parameter on the dis-
placement. As the elasticity constants (i.e.,μ and K ) become
larger, the material response becomes stiffer; crack initiation

takes longer to occur. Additionally, a larger crack release
energy rate (as an indicator for thematerial resistance against
the crack driving force) delays crack nucleation and hence
crack dislocation. All these facts are illustrated in Fig. 6.

The joint probability density of the elasticity parame-
ters and the marginal probability of the posterior are shown
in Figure 7 including one- and three-dimensional Bayesian
inversions. The mean values of the distributions are μ =
84.2 kN/mm2 and μ = 85.1 kN/mm2 are obtained for the
shear modulus. Here an acceptance rate of 27% is obtained.
Regarding the material stiffness parameter Gc, the accep-
tance rates are near 29%. The values are summarized in
Table 1.

To verify the parameters obtained by the Bayesian
approach, we solved the forward model using the mean
values of the posterior distributions. Figure 8 shows the
load-displacement diagram according to prior and posterior
distributions. As expected, during the nucleation and prop-
agation process, using Bayesian inversion results in better
agreement (compared to the prior). Furthermore, a better
estimation is achieved by simultaneous multi-dimensional
Bayesian inversion. From now onward, this approach will be
used for Bayesian inference.
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Fig. 12 The load-displacement curves for the reference, prior, and posterior values (left panel) for h = 1/20 in the SENT example (Example 1).
The joint and marginal posterior distributions of the effective parameters are shown in the right panel

Fig. 13 The load-displacement curves for the reference, prior, and posterior values (left panel) for h = 1/40 in the SENT example (Example 1).
The joint and the marginal posterior distributions of the effective parameters are shown in the right panel

Table 2 The mean of thel
posterior distributions of μ, K ,
and Gc in the SENT example
(Example 1) for h = 1/20,
h = 1/40, and h = 1/80. All
units are in kN/mm2

μ Rate (%) K Rate (%) Gc Rate (%)

h = 1/20 83,9 21 190.4 21 0.00221 23

h = 1/40 92.4 20 197.2 20 0.00271 26

h = 1/80 88.1 27 178.4 27 0.00266 28.1

Table 3 The elapsed CPU time
for the estimation of the
load-displacement diagram
(with the reference values) until
the failure point in SENT

Mesh size h = 1/20 h = 1/40 h = 1/80 h = 1/160 h = 1/320

CPU time [s] 10 23 1428 4810 15854
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Fig. 14 The load-displacement curves for the reference, prior, and posterior values (left panel) for h = 1/80 in the SENT example (Example 1).
The joint and the marginal posterior distributions of the effective parameters are shown in the right panel

5.1.1 The convergence of MCMC

Acustomarymethod to assess the convergence of theMCMC
is the calculation of its autocorrelation. The lag-τ autocorre-
lation function (ACF) R : N → [−1, 1] is defined as

R(τ ) :=
∑N−τ

n=1 (θn − θ̄ )(θn+τ − θ̄ )
∑N

n=1

(

θn − θ̄
)2 = cov(θn, θn+τ )

var(θn)
,

where θn is the n-th element of the Markov chain and θ̄ indi-
cates themean value. For theMarkov chains, R(τ ) is positive
and strictly decreasing. Also, a rapid decay in the ACF indi-
cates the samples are not fully correlated and mixing well.
Figure 9 shows the convergence of the MCMC where the
elasticity parameters and the crirical elastic energy. Also, we
estimated the convergence observed in themulti-dimensional
approach. As expected, the multi-dimensional approach con-
verges slower than the one-dimensional one.

As noted above, the phase-field solution depends on h
and �. A detailed computational analysis was for instance
performed in [5,6]. In general, for smaller h (and also smaller
�) the crack path is better resolved, but leads to amuch higher
computational cost.

Figure 10 illustrates the crack pattern using different mesh
sizes varying between h = 1/20 and h = 1/320. For these
mesh sizes, we show the load-displacement diagram in Fig.
11 and the corresponding CPU time in Table 3.

Here we strive to solve the problem using a coarse mesh
and employMCMC to find parameters that make the solution
more precise compared with the reference value. Figure 12
shows the obtained displacement with both prior and poste-
rior distribution for h = 1/20. The efficiency of the Bayesian
estimation is pointed out here since the peak point and the
failure point are estimated precisely. The posterior distribu-

tions are shown in the right panel as well. The estimation can
also be performed for finer meshes: Figs. 13 and 14 illustrate
the load-displacement curves for h = 1/40 and h = 1/80,
respectively. In both cases, in addition to the precise esti-
mation of the crack-initiation point and the material-failure
point, the curve is closer to the reference value. Again, the
posterior distributions are shown on the right panels. Finally,
the mean values of the posterior distributions in addition to
their acceptance rates are indicated in Table 2.

5.2 Example 2: Double edge notch tension (DENT)
test

This numerical example is a fracture process that occurs
through the coalescence and merging of two cracks in the
domain. We consider the tension test with a double notch
located on the left and right edge. The specimen is fixed on
the bottom.We have traction-free conditions on both sides. A
non-homogeneous Dirichlet condition is applied to the top-
edge. The domain has a predefined two-notch located in the
left and right edge in the body as shown in Fig. 15a. We set
A := 20mm and B := 10mm hence � = (20, 10)2 mm2.
For the double-edge-notches, let H1 := 5.5mm and H2 :=
3.5mm with the predefined crack length of l0 := 5mm (Fig.
15a). This numerical example is computed by imposing a
monotonic displacement ū = 1 × 10−4 at the top surface
of the specimen in a vertical direction. The finite element
discretization that uses h = 1/80 is indicated in Fig. 15b.

According to the truncated KL-expansion, for the bulk
modulus K , Eq. 37 gives the mean value of K̄ = 23.58
and the standard deviation of σK = 0.28. Therefore, the
parameter varies between 10 kN/mm2 and 14 kN/mm2. For
the shear modulus, the expectation of μ̄ = 22.8 and the
standard deviation of σμ = 0.23 leads to the variation
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Fig. 15 Schematic diagram for
the DENT example (left) and its
corresponding mesh with
h = 1/80 (right)

Fig. 16 The load-displacement curve for different values of μ (top left), K (top right) and Gc (bottom) for the DENT example

range (6 kN/mm2, 10 kN/mm2). Similarly, by using a KL-
expansion for Gc, we obtained the variation range between
8×10−5 kN/mm2 and 12×10−5 kN/mm2. Figure 16 illus-
trates the effect of their different values including shear and
bulk modulus and Gc on the curve.

We assumed the uniformproposal distribution, namely the
normal distribution

K(θ → θ∗) := 1√
2πσ 2

exp

(

− (θ − θ∗)2

2σ 2

)

. (44)

As we aforementioned, the random field can be represented
using the KL-expansion. In this example (32) is employed to
parameterize the elasticity and energy rate parameters. The
random perturbations are imposed on the ξ coefficients in the

KL expansion. According to the proposal, the mean of the
KL-expansion is updated.

Here we plan to study the effect of the number of samples
N on the posterior distribution. Figure 17 shows the joint
distributions of (K , μ), and the marginal distribution of Gc

using N = 3 000, N = 12 000, and N = 50 000. The calcu-
lations are done with h = 1/80, and h = 1/320 is used as the
reference. As shown, with a larger number of samples, the
distribution is close to a normal distribution. Table 4 points
out the mean values in addition to the acceptance rate of all
influential parameters.

As the next step, we use different mesh sizes for the
Bayesian inversion using 15000 samples. Figure 18 shows
the crack pattern using different mesh sizes changing from
h = 1/10 to h = 1/320. Finer meshes lead to a smoother
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Fig. 17 Left: the joint probability density of the elasticity parameters. Right: the prior (green line) and the posterior (histogram) of Gc for the
DENT example (Example 2). For the posterior distribution, we used 3 000 samples (the first row), 15 000 samples (the second row), and 50 000
samples (the third row)

Table 4 The mean value and the
acceptance rate of the posterior
distributions of μ, K , and Gc
with Nsamples = 3 000,
Nsamples = 12 000, and
Nsamples = 50 000 in the DENT
example (Example 2)

Nsamples=3000 Nsamples=15000 Nsamples=50000

Mean (kN/mm2) Rate (%) Mean (kN/mm2) Rate (%) Mean (kN/mm2) Rate (%)

μ 8.26 31.0 8.23 31.5 8.35 36.2

K 17.4 31.0 17.42 31.5 17.12 36.2

Gc 9.02 × 10−5 15.2 9.1 × 10−5 15.8 9.68 × 10−5 16.7

All units are in kN/mm2

123



844 Computational Mechanics (2020) 66:827–849

Fig. 18 The effect of the mesh size on the crack propagation in the DENT example (Example 2). The mesh sizes are (from the left) h = 1/10,
h = 1/20, h = 1/40, h = 1/80, h = 1/160, and h = 1/320 (the reference)

and more reliable pattern. Figure 19 depicts the load-
displacement diagram using the prior values. With coarse
meshes, the curve is significantly different from the refer-
ence including crack initiation. Using Bayesian inversion
(see Fig. 17) enables us to predict the crack propagation and
initiation more precisely. As the figure shows, even for the
coarsest mesh (compare h = 1/10 to h = 1/320) the peak
and fracture points are estimated precisely. For finer meshes
(e.g., h = 1/80) the diagram is adjusted tangibly compared to
the reference value. Finally, a summary of the mean values
(of posterior distributions) and their respective acceptance
rate is given in Table 5.

The significant advantage of the developed Bayesian
inversion is a significant computational cost reduction. As
shown, for SENT and DENT, by using Bayesian inference
for coarser meshes, the estimated load-displacement curve

is very close to the reference values. We should note that
the needed CPU time for h = 1/320 is approximately 4.5
hours; however the solution with h = 1/80 is obtained in
less than 10minutes. This fact pronounces the computational
efficiency provided by Bayesian inversion, i.e., obtaining a
relatively precise solution in spite of using much coarser
meshes.

5.3 Example 3: Tension test with two voids

Here we consider the tension test where two voids are
located in the domain as a more complicated example. The
voids are used to weaken the material and to lead to crack
nucleation/initiation without an initial singularity (i.e., a pre-
existing crack). The specimen is fixed on the bottom.Wehave
traction-free conditions on both sides. A non-homogeneous
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Fig. 19 The load-displacement curve of DENT (Example 2) with different mesh sizes. Here the parameters are chosen according to the prior (left)
and posterior (right) distributions

Table 5 The mean of the
posterior distributions of μ, K ,
and Gc for different mesh sizes
in the DENT example

μ Rate (%) K Rate (%) Gc Rate (%)

h = 1/20 8.90 33.3 18.08 33.3 8.15 × 10−5 13

h = 1/40 8.15 37.5 17.61 37.5 8.23 × 10−5 15.2

h = 1/80 8.35 38 17.4 38 9.10 × 10−5 26.4

The units are in kN/mm2

Fig. 20 Schematic of SENT
with voids (Example 3) (left)
and its corresponding meshes
with h = 1/40 (right)

Dirichlet condition is applied to the top. Domain includes a
predefined two voids in the body, as depicted in Fig. 20a.
We set A = 0.5mm hence � = (0, 1)2 mm2. The radius of
left void is r1 := 0.247 with the center c1 := (0.21, 0.197).
The radius of the right void is r2 := 0.0806 with the center
c2 := (0.7, 0.197). This numerical example is computed by
imposing a monotonic displacement ū := 1 × 10−4 at the
top surface of the specimen in vertical direction. The finite-
element discretization corresponding h = 1/40 is shown in
Fig. 20b.

Due to the resemblance to the first example (SENT) we
use the same range of parameters and the variables are again
spatially constant random variables. The load-displacement
curves obtained from different values of μ, K , and Gc are
illustrated in Fig. 21.

This numerical example includes two voids results in
multi-stage crackpropagation.Hence, in the load-displacement
curve, two peak points exist to demonstrate multi-stage crack
propagation, see Fig. 21.

Figure 22 shows the proposal distribution where a uni-
form prior distribution is used for Bayesian inversion with
10000 samples. Here we use h = 1/160 as the reference
solution and h = 1/80 is employed to estimate the param-
eters. In summary, the mean values are μ = 63KN/mm2,
K = 162KN/mm2, and Gc = 0.003KN/mm2, and the
acceptance rates are 28% (the elasticity parameters) and 21%
(the critical energy rate).

We solve the forward model with the mean values of
the estimated parameters. As Fig. 23 shows, the difference
between the prior distribution and the reference solution is
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Fig. 21 The load-displacement curve for different values of μ (top left), K (top right) and Gc (bottom) for the SENT voids example (Example 3)

Fig. 22 Left: the joint
probability density of the
elasticity parameters. Right: the
prior (green line), and the
posterior (histogram)
distribution of Gc for SENT
with voids (Example 3)

significantly large. By using Bayesian inversion, we could
compensate this difference; crack initiation and material
failure points are estimated precisely. Although multidimen-
sional Bayesian inversion increases the computational costs
(CPU time), the estimated solution is closer to the reference
value.

Finally, we show the crack patterns obtained by differ-
ent meshes varying from h = 1/10 to h = 1/160. We use
Bayesian inference to estimate the unknown parameters with
the three-dimensional approach for h = 1/20 and h = 1/40.
As Fig. 25 illustrates, although the solution based on the pos-
terior distribution is more precise (i.e., a better estimation of
crack initiation and the fracture point) compared to the one
based on the prior distribution, there is still a difference com-
pared to the reference value. These results conform to Fig. 24,
since the estimated crack pattern is considerably larger than
the reality.

Fig. 23 The load-displacement diagram of SENT with voids (Exam-
ple 3). The parameters are the mean values (μ = 80 kN/mm2, K =
170 kN/mm2, and Gc = 2.7 × 10−3 kN/mm2) obtained by the three-
dimensional Bayesian inference
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Fig. 24 The effect of the mesh size on the crack propagation. The mesh sizes are (from the left) h = 1/10, h = 1/20, h = 1/40, h = 1/80, and
h = 1/160 (the reference)

Fig. 25 The load-displacement curve for different mesh sizes for the tension test with voids. The effective parameters are chosen according to the
prior (left) and posterior (right) distributions

6 Conclusions and future works

In this work, we proposed a Bayesian approach to esti-
mate material parameters for propagating fractures in elastic
solids. For the fracture model, we adopted a phase-field
approach. For the parameter estimation, we employed a
Bayesian framework. We studied three phase-field fracture

settings, and in each one, bulk and shear modulus as well as
the critical elastic energy release rate were estimated with
respect to a reference solution.

The developed Bayesian framework enabled us to pro-
vide useful knowledge about unknown parameters. By using
Bayesian inversion, we could estimate the load-displacement
curve precisely even with coarse meshes. For instance, in
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the first example (SENT), the diagram for h = 1/320 and
h = 1/80 are essentially same, although a noticeable CPU
time reduction is achieved. Interestingly, using even coarser
meshes, the crack initiations and material fracture times can
be estimated very well in all examples.

As one future application, the Bayesian approach will be
used in multiscale problems to study crack propagation in
heterogeneous materials, e.g., in composites. Due to their
complexities, Bayesian inference will be employed to esti-
mate material properties when the fiber-reinforced structures
have a random distribution.
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