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ABSTRACT

We report on optical investigations of MOVPE-grown InGaAs/GaAs quantum dots emitting at the telecom O-band that were integrated onto
uniaxial piezoelectric actuators. This promising technique, which does not degrade the emission brightness of the quantum emitters, enables
us to tune the quantum dot emission wavelengths and their fine-structure splitting. By spectrally analyzing the emitted light with respect to
its polarization, we are able to demonstrate the cancelation of the fine structure splitting within the experimental resolution limit. This work
represents an important step towards the high-yield generation of entangled photon pairs at telecommunication wavelength, together with
the capability to precisely tune the emission to target wavelengths.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5110865

Self-assembled semiconductor quantum dots (QDs) are the
most promising candidates as sources of on-demand polariza-
tion entangled photon pairs, which are highly desired for next
generation quantum information and telecommunication applica-
tions, e.g. quantum relays and repeaters.l’3 Furthermore, this tech-
nology allows for straightforward on-chip integration* ° enabling
rapid transfer from proof-of-concept devices to the applied sys-
tem level. State-of-the-art technology for QDs is nowadays set by
GaAs-based structures’ " which naturally emit in the NIR wave-
length range."’ In order to transmit single photon-encoded infor-
mation over long distances and with limited pulse distortion, flying
Qbits are expected to emit in the so-called telecommunication O-
and C-bands (~1310 nm and ~1550 nm, respectively).11 InP-based
structures reach emission wavelengths in the telecom range, hence

benefitting from low loss fiber communication,'' but suffering from
a lack of effective distributed Bragg reflectors (DBRs). For this rea-
son, efforts have been made in order to extend the GaAs-based
technology up to the telecom regime, in order to transfer the lead-
ing technology from NIR to a spectral range suitable for both fiber
communication and integration with silicon photonics. For GaAs-
based devices, single-photon emission in the telecom bands has been
widely investigated, '’ as well as the resonant excitation scheme'”
and the creation of entangled photon pairs.”'® The strongest lim-
itation in using a QD as source for entangled photons is given by
the low symmetry (Cyy or even C;) of as-grown QDs, caused by
the anisotropy of strain, composition and shape, which leads to the
exciton emission split into two bright excitonic sates. These two
states are orthogonally polarized in the linear basis, and their energy
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difference is generally referred to as the fine-structure splitting
(FSS)'”*° A finite FSS results in an additional phase term in
the two-photon polarization state created by the biexciton-exciton
radiative cascade. For time-integrated measurements, this effect
has to be compensated.”’ To create the entangled states |¥*)
= 1/+/2(|HxxHx) + |Vxx Vx)), with H and V being the horizontal
and vertical polarizations, it is preferable that the FSS is smaller than
the radiative lifetime limited linewidth of ~ 1 peV.”

Investigation on as grown samples show that it is possible to
find QDs with FSS below the resolution limit, these individual QDs,
however, are very sparsely distributed”””* In the past few years, sev-
eral post-growth tuning approaches were developed, such as uniaxial
strain induced by piezoelectric materials,””>*° electric field induced
quantum confined Stark effect,’””””* magnetic field induced
Zeeman shifts”””" or laser annealing techniques,”’”” to be able to
individually engineer the FSS in semiconductor QDs emitting at
A <1 um. These techniques ultimately lead to a high yield of QDs
capable of emitting polarization-entangled photon pairs effectively.
Post-growth tuning of the FSS in the telecommunication range has
also been demonstrated,”” the full active cancellation of the FSS,
however, was not achieved in spectral ranges beyond A = 1 pm, yet.

Another advantage of such post-growth tuning techniques is
the simultaneous tuning of the FSS and the emission energy, which
can be decoupled by adding more than one tuning knob. Such a flex-
ibility in emission energy is beneficial in order to increase the yield
of applicable QDs, if a distinct resonance is required, e.g. in remote
QD indistinguishability experiments’* or for implementing hybrid
quantum systems.’%’_'

Here, by means of uniaxial strain tuning, we demonstrate the
elimination of the FSS for telecom-wavelength QDs. The investi-
gated QDs emit at the telecom O-band (1260 - 1360 nm) for which
the chromatic dispersion in standard silica optical fibers is minimal
and the absorption undergoes a local minimum. The sample was fab-
ricated by metal-organic vapor-phase epitaxy (MOVPE) in a com-
mercial AIX 200 laminar flow reactor at a pressure of 100 mbar on a
(100) GaAs substrate. Sample fabrication via MOVPE further assists
the perspective of a good industrial scalability; in addition to that, the
capability of growing on GaAs instead of InP substrates provides the
opportunity to increase the source complexity by straight forward
integration of binary Bragg mirror systems, which further support
the possibility to fabricate high-quality photonic cavity devices as
micropillar cavities.”® As precursors we used TMGa, TMIn, TMAI,
and AsH;. After the removal of the oxide at 710°C, we deposited
50 nm of GaAs to ensure a high-quality epitaxial growth surface.
This buffer is followed by an Aly75Gag2sAs sacrificial layer with
a thickness of 100 nm that allows the removal of the substrate in
a post-growth processing step. The QDs are embedded in a GaAs
membrane with an overall thickness of 460 nm. After the deposition
of the first GaAs layer, the temperature is lowered from 710°C to
530°C and InGaAs with a nominally equal concentration of Ga and
In in the gas phase is introduced for the formation of the QDs. The
QDs are then capped by a strain reducing layer of Ing16Gao.gsAs to
achieve the desired red shift to the telecom O-band. Subsequently,
the membrane is completed after the deposition of a GaAs top layer,
which eliminates the non-radiative decay channels caused by sur-
face effects. The complete layer stack is shown in Figure la. Further
details of the QD growth can be found in Ref. 12, and information
about its structure and morphology in Ref. 37. Figure 1b displays
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FIG. 1. (a) Epitaxial layer structure of the grown sample. (b) Overview spectrum of
the sample before transferring onto the piezo membrane. Inserting a zoom into the
QD region where several isolated single QD lines are observed inside the telecom
0O-band.

a broad-range spectrum of the as-grown sample before the inte-
gration onto the piezoelectric substrate. At short wavelengths the
wetting layer (WL) emission is observed, while sharp emission lines
originating from the QDs are found in the telecom O-band. The
micro-photoluminescence (p-PL) spectroscopy together with a low
spatial QD density is sufficient to isolate the emission of single QDs.
A QD density as low as 4x10° cm™ was determined on the as grown
sample by pPL mapping. Based on previous work™ we carefully
checked that the spectral lines mainly originate from excitonic tran-
sitions, in particular at the low excitation power used in all of our
experiments. Because of this low excitation power, recombination
lines from the biexciton were not observed with significant inten-
sity. In addition, transitions involving carriers from higher shells
would typically undergo larger FSSs™ and were therefore not prese-
lected for this study. Due to the corresponding asymmetry the QDs
tends to align along the [110] crystal axes as observed for similar QD
architectures.”

To achieve the desirable tunability of the emission energy and
FSS the as grown sample (Fig. 1) was further processed, first via
vertical wet chemical etching, to define lateral sheet structures of
120 x 160 pm’ to be transferred. As a second step the sacrificial
layer was removed to create self-standing nanomembranes, which
were then integrated onto a PMN-PT ([Pb(Mgi/3Nb3)O03]0.72-
[PbTiO3]o.28) piezoelectric actuator with a combination of thermo-
compression bonding and a flip-chip transfer method."” The QDs
are elongated along the GaAs [110] crystal direction and the stress
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is applied in the same direction. Similar structures have previ-
ously been used to achieve independent energy and FSS tuning”' by
employing uniaxial or biaxial stress. Here we used uniaxial stress as
this has a stronger impact on the FSS. The final device structure is
shown in Figure 2a.

For the optical characterization, the samples were mounted in
a helium flow-cryostat operating at 4K and were optically excited
above the GaAs band gap using a Helium-Neon continuous-wave
laser. A confocal microscopy setup equipped with a near infrared
objective (numerical aperture of 0.6) was used to collect the emis-
sion from single QDs. The QD light was analyzed by a standard
0.5 m spectrometer equipped with a nitrogen cooled InGaAs-CCD
array suitable for telecom wavelengths. By inserting a half-wave plate
(HWP) and a linear polarizer after the collection lens, polarization-
resolved measurements were enabled to estimate the FSS.” The
brightness of typical QD emission lines on the final device structure
appears comparable to that before the nanomembrane processing
in Figure 1b, which is a clear indication that the QD signal was not
influenced by the fabrication steps. To tune the QD emission, vari-
able uniaxial tensile/compressive strain fields can be applied to the
QD-containing nanomembranes by changing the voltage Vp across
the 300-um-thick PMN-PT substrate over a range of -200 V < Vp
< 1100 V. Note that a tuning voltage Vp in the range of only a few
volts can be realized by thin PMN-PT films in an on-chip integrated
platform.”*

Figure 2b shows a typical tuning result, where the piezo-voltage
Vp is varied from -200 V to 600 V and the QD emission lines
shift by about 2 nm, which corresponds to a precise energy tun-
ing rate of 2.5 pm/V. The results of two exemplary polarization
resolved photoluminescence measurements are shown in Fig. 2 (c),
(d), from which the FSS and phase can be determined. Figure 2d
shows a measurement close to the resolution limit of the setup given
by a clear resolution of a FSS of ~ 2 peV. It is worth mention-
ing that the average FSS values for our sample (FSS distribution
between 2 to 35 peV and average value of 10+6 peV) are smaller

than those of typical telecom-wavelength QDs reported in Ref. 43
(see Fig. 2e).

A representative Spectrum of QD1 and QD2 at zero piezo volt-
age is shown in Figure 3. In order to demonstrate the capability of
strain tuning to eliminate the FSS, we investigated the neutral exci-
ton (X) emission lines of the two different QDs. Due to the appar-
ent inhomogeneous broadening of the emission lines and because
an influence of neighboring transitions can be witnessed, a double-
Gaussian fitting function was applied to precisely determine the peak
positions and minimize resulting FSS error bars. The polarization
dependent measurements reveal the expected sinusodial behavior,
after applying a polynomial drift correction, which was fitted by a
simple cosine function, as exemplary displayed in Fig. 2 (c), (d).
The amplitude of this cosine determines the FSS of the observed
exciton for a given piezo voltage. Under the application of uniax-
ial strain fields, the emission properties are affected in two ways.
Firstly, we observe a linear tuning of the emission wavelengths as
a function of the applied voltage Vp (Figs. 4 (a) and (d)). The emis-
sion of the two QDs are shifted by 0.6 nm and 0.75 nm within the

QD1

QD2

J[—Ve=0 |X

Intensity (arb. u.)

Intensity (arb. u.)

1280 1285 1290
Wavelength (nm)

1260 1265 1270
Wavelength (nm)

FIG. 3. pPL-spectra of QD1 and QD2 at Vp = 0. The Exciton (X) line is used for
the following measurements on FSS and Phase.
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FIG. 4. (a) & (d) Emission wavelength tuning over the applied voltage for QD1 and
QD2 respectively. (b) & (e) FSS tuning under uniaxial strain employed to the QDs
embedded in a nanomembrane structure (QD1 and QD2 respectively). The dotted
line represents the resolution limit of 2 peV. (c) & (f) Voltage-dependent phase of
one FSS component. The phase undergoes a characteristic jump of 90° when
canceling the FSS (QD1 and QD2 respectively).

applied piezo voltage ranges of 200 V and 300 V, respectively. Sec-
ondly, as shown in Figs. 4 (b) and (e), the FSS values change from
the initially low values to zero, i.e. below the resolution limit of the
experimental setup. Besides the systematic error of monitoring the
shift of envelope of two energy-split transitions and the fitting error,
this resolution is limited by a drift of the spectral line caused by
an unavoidable QD displacement and imperfect polarization optics.
Despite the aforementioned drift correction by subtracting a suitable
polynomial function in the data analysis, a contribution in the order
of 1-2 peV stays present. This influences our final resolution limit
and also the minimally extractable FSS from the data, which is indi-
cated in Fig. 4(b) and (e) by a dotted line. As a result, even for full
FSS elimination, 2 peV forms the lower limit in the data analysis in
addition to the error bars. This means in essence, that a data point at
2 peV resembles in reality a FSS located between 0 and 2 peV. Similar
to our previous observations, the elimination of the FSS is accompa-
nied with a distinct phase shift of 90°,”*>** which represents the
final evidence for a tuning to zero FSS. The experimental data of the
corresponding phase measurement on the two QDs are included in
Figs. 4 (c) and (e), respectively.

The uniaxial strain tuning of the FSS has been investigated
in several theoretical'”'* and experimental®” studies. It originates
from the coherent coupling of the two bright excitonic states. The
experimental data for the FSS and the phase presented in Fig. 4(b)-
(f) is compared to the theoretical model developed by M. Gong
etal."” This calculation is based on the general relation of asymmetry
and polarization angle and computes the FSS in QDs strain-tuned
by means of piezoelectric supports. Under the condition of uniaxial

scitation.org/journal/adv

stress, the QD’s FSS with applied piezo voltage Vp is computed via

FSS(Vp) = \/4(BVb + &) + (aVp +20)? (1)

where a and f3 are related to the elastic compliance constants and the
valence band deformation potentials.”” For stress operating along
the [110] and [110] crystal directions 8 = 0."" The parameters x
and & account for the QD structural asymmetry and corresponding
modulation of the exciton dipole moments.”

According to the same model, the polarization angle 8 over Vp
can be obtained from:

~28 - aVp + FSS(Vp)
Z(ﬂVP + K)
28— aVp £ \/4(BVp + )* + (aVp +20)?
Z(ﬁVP + K)

tan(6.)

)

In addition to the change of the FSS we observe an abrupt
change of 90° for the polarization angle in the spectrum while the
FSS reaches its minimum, which is evidence of its elimination. Both
QDs, as presented in Figure 4, show good agreement in their tun-
ing behavior and clearly prove the reduction of the FSS below the
present resolution limit. The parameters a, § and « fitted to the
experimentally obtained FSS data for both QDs according to eq. 1
with 8 =0 (red curves in Figs 4 (b) and (e)) can be found in Table 1.
Plots of eq. 2 using the parameters given in Table I are provided in
Figs. 4 (c) and (f), and there are excellent agreements between the
measured phase shift and the predicted values.

From the aforementioned fit functions we can extract mini-
mal accomplished FSS-values of 0.75 peV and 1.01 peV (with an
uncertainty of +/- 0.2 peV) for QD 1 and 2, respectively. Due to
the uniaxial strain tuning, the reduction of the FSS is limited to the
alignment accuracy towards the QDs asymmetry axes, which is then
again preferentially aligned along the crystal axes. Despite that, the
achieved minimal FSS values are on the order of the lifetime-limited
linewidth, thus enabling, in principle, high-efficiency generation of
polarization-entangled photon pairs. The fitted parameters § and «
were compared to theoretically derived values that have been calcu-
lated by Gong et al."” for more conventional QDs.'” The investigated
MOVPE-grown telecom QDs are comparable to pyramid or elon-
gated shaped InGaAs-based quantum dot systems. In conclusion, we
have demonstrated the capability to tune the QD emission energy
and reduce the FSS for dots emitting at telecom wavelengths. These
properties are of great interest for the realization of long distance
quantum networks. On one hand, the possibility to deterministically
control the source emission energy renders the efficient interfer-
ence of several independent emitters possible. On the other hand,
the reduction of the FSS is needed for the generation of polarization

TABLE |. Fitted parameters of eq. 1 for QD 1 and 2.
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entangled photons, which are the basis for various entanglement dis-
tribution schemes. We have demonstrated that the intrinsically small
FSS can be fully eliminated in MOVPE-grown QDs, for which the
emission wavelength has been shifted to the telecom O-band.

As an outlook, the already demonstrated capability of incorpo-
rating a second, independent, tuning knob, e.g. via uniaxial strain
in combination with Stark tuning,” would open the possibility of
realizing a source of entangled photons at telecom wavelengths in
which the energy tunability can be achieved independently, i.e. with-
out varying the reduced FSS. In addition, as the suppression of FSS
in semiconductor QDs via strain tuning was recently demonstrated
for an on-chip platform,” a similar architecture for telecom wave-
lengths would be of great interest to implement a quantum repeater
network.
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