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ABSTRACT: 

 

Large-scale mapping of the Brazilian Savanna (Cerrado) vegetation using remote sensing images is still a challenge due to the high 

spatial variability and spectral similarity of the different characteristic vegetation types (physiognomies). In this paper, we report on 

semantic segmentation of the three major groups of physiognomies in the Cerrado biome (Grasslands, Savannas and Forests) using a 

fully convolutional neural network approach. The study area, which covers a Brazilian conservation unit, was divided into three 

regions to enable testing the approach in regions that were not used in the training phase. A WorldView-2 image was used in cross 

validation experiments, in which the average overall accuracy achieved with the pixel-wise classifications was 87.0%. The F-1 score 

values obtained with the approach for the classes Grassland, Savanna and Forest were of 0.81, 0.90 and 0.88, respectively. Visual 

assessment of the semantic segmentation outcomes was also performed and confirmed the quality of the results. It was observed that 

the confusion among classes occurs mainly in transition areas, where there are adjacent physiognomies if a scale of increasing 

density is considered, which agrees with previous studies on natural vegetation mapping for the Cerrado biome. 
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1. INTRODUCTION 

 

The Brazilian Savanna, also known as Cerrado, is the second 

largest Brazilian biome, covering an area of approximately two 

million km², which amounts to 24% of the Brazilian territory. 

The water resources of this biome feed the three largest 

watersheds in South America: the Amazon, Prata and São 

Francisco watersheds. Additionally, the Cerrado biome is 

considered one of the 35 global hotspots for biodiversity 

conservation (Mittermeier et al., 2011), with a flora containing 

more than 12,000 species, of which 40% are endemic.  

 

Despite its ecological importance, only 8.6% of the Cerrado 

natural vegetation belongs to Conservation Units, i.e., specific 

regions established to protect biodiversity, water bodies and 

other environmental resources (MMA, 2010). Approximately 

47% of the natural vegetation has already been converted to 

other land use classes, especially pasture (29%) and annual 

agriculture (9%) (MMA, 2015). Moreover, in the last years, 

deforestation rates in the Cerrado have been higher than what 

was observed in the Amazon biome (INPE, 2019). Therefore, 

accurate mapping of Cerrado vegetation is essential for 

assessing biodiversity, improving Carbon stock estimation 

within the biome and guiding conservation policies. 

 

Large-scale mapping of the Cerrado vegetation using Remote 

Sensing (RS) images is still a challenge, due to the high spatial 

variability and spectral similarity among its vegetation types 

(physiognomies). According to the classification system 

proposed by Ribeiro and Walter (2008), there are 25 

physiognomies, which vary in structure, density, biomass and 

carbon storage. They can be grouped into three major groups of 

physiognomies, namely: Grasslands, Savannas and Forests.  

 

A large variety of techniques have been employed in vegetation 

mapping. In recent years, Deep Learning methods based on 

Convolutional Neural Networks (CNNs) have thrived in the RS 

field (e.g. Zhu et al., 2017). CNNs are able to perform end-to-

end classification, learning from an input dataset features with 

increasing complexity with the number of layers of the network 

(LeCun et al., 2015).  The results achieved with such methods 

outperform those obtained with traditional Machine Learning 

algorithms, such as Random Forest and Support Vector 

Machine (Kussul et al., 2017; Guirado et al., 2017).  

 

In this paper, we used the U-net CNN architecture (Ronneberger 

et al., 2015) to perform semantic segmentation (also known as 

pixel-wise classification) of a high spatial resolution satellite 

image covering a conservation unit in the Brazilian Cerrado, 

into the three major groups of physiognomies (Grasslands, 

Savannas and Forests) according to the Ribeiro and Walter 

(2008) classification system. We conducted various 

experiments, training and testing the network in different 

regions. 

 

To the best of our knowledge, this is the first paper applying 

Deep Learning techniques for the semantic segmentation of 

natural vegetation in the Brazilian Savanna. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-505-2020 | © Authors 2020. CC BY 4.0 License.

 
505



 

1.1 Related work 

 

A few projects have been devoted to mapping the Cerrado 

physiognomies. The TerraClass Cerrado project employs 

Landsat images and traditional methods, such as region growing 

image segmentation followed by visual interpretation, to map 

land use and land cover in the entire Cerrado biome. Due to the 

difficulties in class differentiation, natural vegetation was 

grouped into two classes only: Forest and Non-Forest, the later 

including Savanna and Grassland. Despite the project’s overall 

accuracy of 80.2%, the accuracies for Forest and Non-Forest 

classes were only between 60% and 65% (MMA, 2015). 

 

Mapping based mainly on visual interpretation requires a lot of 

time and can be subjective. The MapBiomas project performs 

an annual automatic pixel-wise classification of the Cerrado 

biome using a Random Forest approach and Landsat images. 

The project runs since 2015, but it produces maps from 1984 

onwards. Since the methodology of MapBiomas is constantly 

being improved, changes in the method generate new 

collections and the maps of all years are updated. Performing an 

analysis using data from one collection does not guarantee that 

the results will be the same when using data from a different 

collection (MapBiomas, 2020).  

 

An important aspect related to the Cerrado physiognomies is 

their seasonality. In order to represent the seasonality in the 

classification, Borges and Sano (2014) and Abade et al. (2015) 

used time series of vegetation indices derived from MODIS 

images, and performed the physiognomy classification with 

Support Vector Machine and Multilayer Perceptron (Abade et 

al., 2015), and Spectral Angle Mapper (Borges and Sano, 2014). 

While the revisit time of MODIS is high, the spatial resolution 

of only 250 meters results in a mixture of physiognomies within 

single pixels, thus making proper detailing of classes 

impossible. Also, if Landsat-like images (around 30 meters of 

spatial resolution) are employed to perform Cerrado vegetation 

mapping, some mixture of classes is bound to be contained in 

the result, regardless of the algorithm used – see the works of 

Jacon et al. (2017) and Girolamo Neto (2018).  

 

Nogueira et al. (2016) was the only work that employed a Deep 

Learning-based method applied to Cerrado vegetation. They 

considered the same three classes that are of interest for this 

work, however, they performed what is called classification in 

computer vision, i.e., patches of Landsat images were entirely 

designated as Forest, Savanna or Grassland. Semantic 

segmentation, i.e., the assignment of a separate class per pixel, 

was not performed and a considerable mixture of classes in a 

single patch could be observed. 

 

Even though no additional applications for Cerrado vegetation 

mapping can be found, Deep Learning techniques have been 

increasingly applied in the RS field (Zhu et al., 2017). For 

example, Yang et al. (2018) used different CNN architectures to 

not only identify land cover, but also to predict land use classes 

in digital orthophotos from Germany. Meanwhile, La Rosa et al. 

(2019) used a time series of radar images for pixel-wise crop 

recognition through Fully Convolutional Networks (FCN) 

(Long et al., 2015) in tropical regions. 

 

Recently, some advances related to vegetation mapping and 

Deep Learning have been achieved. One example is Sothe et al. 

(2019), that integrated LiDAR (Light Detection and Ranging) 

and optical data to classify a subtropical forest area and their 

results presented best accuracies when CNNs were applied. The 

U-net (Ronneberger et al., 2015), a type of CNN widely used 

for semantic segmentation, has also been applied for other 

vegetation mapping applications, such as forest damage 

identification (Hamdi et al. 2019) and identification of farmland 

and woodlands (Zhang et al. 2018).   

 

2. MATERIALS AND METHODS 

 

2.1 Study area  

 

The study area (Figure 1) is the Brasília National Park (BNP) in 

the Federal District, Brazil, with approximately 300 km² of 

preserved Cerrado vegetation. The BNP is an important 

protected area of the Cerrado biome, because it contains several 

endangered species (e.g., Jaguar – Panthera onca and Anteater - 

Myrmecophaga tridactyla) and a dam that is responsible for 

25% of the Federal District’s water supply. 

 

 
Figure 1. Brasília National Park and its location in the Brazilian 

Savanna (Cerrado). 

 

In Table 1, the three major groups of physiognomies are 

described and examples of their patterns, extracted from a 

WorldView-2 image, are presented. The only Forest 

physiognomy found in this area is the Gallery Forest (Mata de 

Galeria). The Savanna physiognomies in BNP are Wooded 

Savanna (Cerrado Denso), Typical Savanna (Cerrado Típico) 

and Shrub Savanna (Cerrado Ralo). Shrub Grassland (Campo 

Sujo), Open Grassland (Campo Limpo) and Rocky Grassland 
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(Campo Rupestre) are the Grassland physiognomies present in 

BNP.   

 

Class Example Description 

Grassland 

 

Herbaceous 

vegetation with 

or without shrubs 

Savanna 

 

Trees scattered 

over shrubs and 

herbaceous 

layers, mostly no 

continuous 

canopies 

Forest 

 

Arboreal species 

forming 

continuous or 

discontinuous 

canopies 

Table 1. Description of the classes and examples of their 

patterns observed in WorldView-2 image, R(5)G(3)B(2) 

composition. 

 

2.2 Remote Sensing data 

 

A WorldView-2 image (tile ID 103001003373A600) acquired 

in July 22, 2014 with a spatial resolution of 2 meters was used 

in this study. The image has 8 spectral bands: Coastal (400-

450nm), Blue (450-510nm), Green (510-580nm), Yellow (585-

625nm), Red (630-690nm), Red-Edge (705-745nm), Near 

Infrared 1 (NIR-1, 770-895nm) and Near Infrared 2 (NIR2, 860- 

1040nm). 

 

The image was converted from Digital Numbers (DNs) to 

surface reflectance using the Fast Line-of-sight Atmospheric 

Analysis of Hypercubes (FLAASH) algorithm (Perkins et al., 

2005). Additionally, a mask was created to exclude built-up 

areas, water bodies, bare soil and burned areas from the 

analysis.  

 

Reference data was adapted from the "Prevention, Control and 

Monitoring of Irregular Burnings and Forest Fires in the 

Cerrado" project (De Brito et al., 2017). In the scope of that 

project, the entire Cerrado biome was classified in the same 

three classes considered in this work. However, that was done in 

a 30-meter spatial resolution from Landsat data acquired in 

2000. Therefore, manually editing and adaptation of the 

reference data was necessary, both to make it suitable for the 

WorldView-2 spatial resolution and to correct changes that had 

occurred between 2000 and 2014. The adaptation was based on 

visual interpretation performed by a human interpreter with 

experience in mapping Cerrado vegetation. 

 

2.3 Network architecture 

  

In this work, a variant of the well-known U-net architecture 

(Ronneberger et. al. 2015), proposed by Kumar (2018), was 

used for the pixel-wise classification. Consisting of 

convolutional layers only, the network belongs to the group of 

fully convolutional neural networks (FCNNs, Long et al., 

2015). Compared to more traditional CNNs like LeNet (LeCun 

et al., 1990) and AlexNet (Krizhevsky et al., 2012) that predict a 

single class for each image patch, FCNNs are tailored to the 

task of pixel-wise classification. In particular, they take an 

image patch with an arbitrary number of channels as input and 

predict a label-map usually of the same spatial size as the input. 

Ronneberger et. al. (2015) propose to split the network into a 

multi-layer encoder that successively reduces the spatial 

resolution and increases the number of filters per kernel and a 

multi-layer decoder that successively up-scales the features to 

the original spatial resolution. They further use skip-connections 

between encoder and decoder layers of the same spatial 

resolution in order to preserve low-level details, required for the 

precise prediction of object boundaries. 

 

The architecture used in this work mainly follows the design-

choices by Ronneberger et. al. (2015), however, it was modified 

as follows. While the original version uses unpadded 

convolutions, a zero-padding was used to preserve the spatial 

size along the network. As a further modification, the up-

sampling is based on transposed convolutions with a stride of 

two along both spatial dimensions, instead of the originally used 

up-sampling operation based on interpolation of features. 

Further network parameters, like the number of layers and 

filters per layer are depicted in Figure 2. 

 

 
Figure 2. Modified U-net architecture (adapted from Kumar, 

2018). 

 

While the last layer of a network for pixel-wise classification of 

image data is usually modelled by the Softmax function, here 

the Sigmoid function is used. Using such an output layer is 

preferred here, since it presented higher accuracies in 

preliminary tests. This allows the model to predict independent 

probabilities per class and per pixel. The final class predictions 

are obtained by choosing the respective classes with the highest 
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probabilities. The Network is implemented in Keras (Chollet et 

al., 2015) with TensorFlow as backend (Abadi et al., 2015).  

 

2.4 Training, validation and testing 

Both WorldView-2 image and reference data were divided into 

three regions A, B and C (Figure 1), and were cropped in non-

overlapping and adjacent tiles of 160x160 pixel to be used as 

samples. The selected regions, which were used in the cross-

validation procedure explained below, contain roughly similar 

distributions of the classes of interest. The samples that 

contained any “no data” value (i.e., pixels originally covering 

built-up areas, water bodies, bare soil and burned areas) were 

excluded from further processing.  

 

In each cross-validation experiment, training and validation 

samples were extracted from two (training) regions (e.g., A and 

B), and test samples from the other (test) region (e.g., C). From 

the total of samples from the training regions, 70% were 

randomly selected to train the network, and 30% for validation. 

Table 2 shows the numbers of samples used in each experiment. 

For the training and validation sets, those numbers include 

samples generated by data augmentation. Six data augmentation 

techniques were employed: horizontal and vertical flips, 

transposition and three rotations: by 90, 180 and 270 degrees. 

 

During training, the early stopping criterion (called patience in 

the Keras library) was set to 50, i.e., if after 50 epochs the 

validation accuracy did not increase, training was stopped. After 

training, the three networks that resulted from each experiment 

were tested using the corresponding test regions (see Table 2). 

The obtained pixel-wise classifications were then compared 

with the reference data, and a confusion matrix was generated. 

Based on the confusion matrix, the following evaluation metrics 

were computed: Overall Accuracy (OA), Precision (P), Recall 

(R) and F-1 score (F1). 

 

The OA corresponds to the percentage of pixels with the 

respective labels assigned correctly, considering all classified 

image. P is the proportion (0 to 1) of pixels that was predicted 

for a class, and actually belongs to that class; it is the 

complement of the commission error. R is the proportion (0 to 

1) of pixels of a particular class that was successfully identified; 

it is the complement of the omission error. F1 is the harmonic 

mean of P and R for each class. 

 
 Training Validation Test 

Experiment 

#1 

Regions A + 

B: 70% (5439 

samples) 

Region A + B: 

30% (2331 

samples) 

Region C (645 

samples) 

Experiment 
#2 

Regions B + 
C: 70% (6951 

samples) 

Regions B + 
C: 30% (2982 

samples) 

Region A (336 
samples) 

Experiment 
#3  

Regions A + 
C: 70% (4802 

samples)  

Region A + C: 
30% (2065 

samples) 

Region B (774 
samples) 

Table 2. Regions and number of samples used in training, 

validation and test in each cross-validation experiment. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Accuracy assessment 

 

The training, validation and test accuracies of each cross-

validation experiment, and the number of epochs needed for the 

stabilization of the networks’ training are presented in Table 3. 

In training, all accuracies were higher than 90.5% and the 

difference between training and validation accuracies was not 

higher than 2.7%. The average OA, considering the semantic 

segmentation obtained in all test experiments, was 87.0%.  

 

In the first experiment, the U-net trained with regions A and B 

was tested in region C. This was the case where the network had 

most difficulty to generalize the physiognomy class samples. 

Even though we are dealing with three classes for now, 

Savannas and Grasslands could be divided into several types of 

physiognomies in the BNP, according to the classification 

system proposed by Ribeiro and Walter (2008). The Shrub 

Savanna, which consists of a less dense type of Savanna (tree 

cover ranging from 5% to 20% and tree height from 2 to 3 

meters), appears more often in region C, whereas the network 

trained in regions A and B was trained with more samples from 

Wooded Savanna (tree cover ranging from 20% to 50% and tree 

height average of 3 to 6 meters). Consequently, the network 

trained in regions A and B could not always identify Shrub 

Savanna, and classified some as Grassland. 

 

CV 

exp. 
Train 

accuracy (%) 
Validation 

accuracy (%) 
Epoch 

Test 

Accuracy (%) 

1 91.3 88.6 47 83.8 

2 90.6 89.0 34 89.6 

3 92.1 89.4 77 88.7 

Table 3. Epochs and accuracies for each Cross Validation (CV) 

experiment. 

 

Comparing the predicted semantic segmentation label images 

with the reference data on a pixel basis, we generated the 

confusion matrix presented in Table 4. The network had the best 

performance in the semantic segmentation of Savannas, 

achieving an F1 of 0.90. The confusion between the classes 

occurs mainly in the transition areas, where there are adjacent 

physiognomies if a scale of increasing density is considered, 

e.g., Wooded Savanna is the densest Savanna physiognomy and 

was responsible for most of the areas in which Savanna was 

classified as Forest. This type of error was also reported by 

Jacon et al. (2017) and Girolamo Neto (2018). 

 

In terms of carbon stock estimation, the worst case of 

misclassification would be between Grassland (lowest carbon 

stock) and Forest (highest carbon stock). This case was minimal 

in the predicted image: only 0.3% of the Grasslands were 

classified as Forest and only 0.7% of the Forests were classified 

as Grasslands. These errors occurred mainly in transition areas, 

in the edges of the Gallery Forests, where often some regions of 

Humid Open Grassland physiognomy exist, which have wet soil 

with very dark green vegetation. These two aspects decrease the 

reflectance and make this type of Grassland more similar to 

Forest areas, especially because of the shadows among the trees.  

 

Besides the confusion in some transition areas, the Forest class 

had a high F1 of 0.88. The worst performance occurred in the 

classification of Grasslands. 17.7% of the Grasslands were 

classified as Savanna and 9.6% of the Savannas were classified 

as Grassland. Although the two percentages seem far from each 

other, the absolute numbers are not so far (2.3 million and 2.8 

million pixels, respectively). Savanna occupies a much larger 

area than Grassland (29.3 million pixels and 13.3 million pixels, 

respectively) in BNP. Additionally, the confusion between 

adjacent classes of Grassland and Savanna, considering the 

classification system of Ribeiro and Walter (2008), is the most 

common error when classifying the Brazilian Savanna (Abade 

et al. 2015; Jacon et al. 2017). For this reason, some authors 

prefer to group Grasslands and Savannas into only one class 

(MMA, 2015). Also using high spatial resolution images, Silva 

and Sano (2016) achieved recall of 0.76 for Savannas and 
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precisions of 0.83 and 0.53 for Forests and Grasslands using a 

semi-automatic methodology with Euclidean distances. This 

shows the better performance when using the Deep Learning 

approach. 

 
  Predict 

  G S F Total P 

R
e
fe

r
e
n

c
e 

G 10,913,712 2,356,272 40,299 13,310,283 0.82 

S 2,829,064 26,179,248 345,507 29,353,819 0.89 

F 27,124 442,188 3,234,853 3,704,165 0.87 

Total 13,769,900 28,977,708 3,620,659 46,368,267  

R  0.79 0.90 0.89   

F1 0.81 0.90 0.88   

Table 4. Confusion matrix, Precision (P), Recall (R) and F1-

score (F1) for Grassland (G), Savanna (S) and Forest (F). 

 

3.2 Cerrado physiognomy mapping  

In order to analyse spatially the pixel-wise classification, the 

predicted label image (considering all three experiments) and 

the reference are presented in Figure 3. As the predicted label 

image was generated by joining all classified patches, in some 

regions of the image it is still possible to notice the transition 

between the patches. This can be seen in the northeastern region 

of the predicted image in Figure 3. 

 

 
Figure 3. a) Reference and b) Predicted image. 

 

The networks were capable of performing an adequate 

delineation of Forests (F1 = 0.88). Savannas and Grasslands 

were classified also coherently, but for these two classes some 

areas show that our method still needs improvements. In the 

north of the central lake, in region C, Grassland was 

overestimated due to the presence of large areas of Shrub 

Savanna, as mentioned in the previous section.   

 

In Figure 4, two patches were chosen as examples to illustrate 

closer the obtained classification. The pattern of the spatialized 

errors corroborates the rates of misclassifications observed in 

Table 4. The correct delineation of the three studied classes can 

be confirmed, and it is possible to observe the errors associated 

with the transition areas. The errors between Forest and 

Grassland (F x G) can barely be noticed. The largest 

misclassified areas, in grey (Figure 4), represent transition areas 

between Grassland and Savanna (G x S). Even in field 

campaigns, identifying where Grassland turns into Savanna is 

not an easy task, and this fuzzy aspect is represented in the 

classification. 

 

 
Figure 4. Examples of predicted patches, their references and 

the corresponding appearance in the WorldView-2 image in 

R(5)G(3)B(2) composition. FxG refers to confusion between 

Forest and Grassland; GxS, between Grassland and Savanna; 

and FxS, between Forest and Savanna. 

 

The other misclassification areas are related to minor aspects of 

the BNP. There are small regions mainly populated with only 

one species. This aspect changes the pattern of the physiognomy 

and can generate some misclassification. Besides that, some 
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physiognomies, such as Open Grassland with Murundus, occur 

in very small portions of the image. This physiognomy has a 

very peculiar pattern, different from usual Open Grassland and 

Shrub Grassland. Perhaps, in small regions, delineating and 

excluding these minor areas from the automatic classification 

can be an option. 

 

4. CONCLUSIONS 

Using a modified U-net architecture, we were able to perform a 

semantic segmentation of the Brasília National Park (BNP) in 

three major groups of physiognomies: Grasslands, Savannas 

and Forests. Each of these three classes can be subdivided into 

several types of physiognomies and, for this reason, one class 

can be associated to different patterns of vegetation. Despite this 

variation, the networks trained and tested in different regions of 

the BNP achieved accuracies close to or higher than 85%. The 

misclassifications are mainly related to transition areas, where 

differentiating the edges between classes is a difficult task.  

 

As a future work, we intend to implement a methodology for the 

more detailed level of the classification system of Ribeiro and 

Walter (2008), i.e., hierarchically classify types of Grassland, 

Savanna and Forest based on the result of the first level of the 3-

classes delimitation. Additionally, we plan to test different Deep 

Learning architectures and to integrate the method with 

Geographic Object-Based Image Analysis (GEOBIA) methods 

to further improve the accuracy rates of the semantic 

segmentation. 
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