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ABSTRACT: 
 
Fully convolutional neural networks (FCN) are successfully used for the automated pixel-wise classification of aerial images and 
possibly additional data. However, they require many labelled training samples to perform well. One approach addressing this issue is 
semi-supervised domain adaptation (SSDA). Here, labelled training samples from a source domain and unlabelled samples from a 
target domain are used jointly to obtain a target domain classifier, without requiring any labelled samples from the target domain. In 
this paper, a two-step approach for SSDA is proposed. The first step corresponds to a supervised training on the source domain, making 
use of strong data augmentation to increase the initial performance on the target domain. Secondly, the model is adapted by entropy 
minimization using a novel weighting strategy. The approach is evaluated on the basis of five domains, corresponding to five cities. 
Several training variants and adaptation scenarios are tested, indicating that proper data augmentation can already improve the initial 
target domain performance significantly resulting in an average overall accuracy of 77.5%. The weighted entropy minimization 
improves the overall accuracy on the target domains in 19 out of 20 scenarios on average by 1.8%. In all experiments a novel FCN 
architecture is used that yields results comparable to those of the best-performing models on the ISPRS labelling challenge while 
having an order of magnitude fewer parameters than commonly used FCNs. 
 
 

1. INTRODUCTION 

The automated pixel-wise classification of multispectral aerial 
orthophotos (MSI) and possibly additional data like digital sur-
face models (DSM) is a highly relevant task e.g. for the automa-
ted generation or updating of maps. One way to address this task 
is based on machine learning techniques, where labelled training 
samples are used to train a classification model. Currently, the 
best performance in a wide range of applications is achieved by 
deep neural networks, in particular by variants of fully convolu-
tional neural networks (FCN) (Long et al., 2015a). FCNs are 
highly scalable classification models that can learn very complex 
mappings between input and output, if enough training data, re-
presentative for the classification task, is available. If this requi-
rement is not fulfilled, the trained model is very likely to overfit 
to the training data and, thus, to perform badly on unseen data. 
However, creating more training data usually implies manual 
labelling, a costly and time-consuming task that should be 
avoided if possible. To that end, much research is carried out to 
prevent overfitting without the requirement of additional data by 
either regularizing the model properly or by artificially increasing 
the variety of the training data, e.g. by data augmentation 
(Shorten and Khoshgoftaar, 2019).  
 
Another strategy, referred to as transfer learning (TL) (Pan & 
Yang, 2010), is to transfer knowledge from a source domain, in 
which training samples are abundant, to a target domain, where 
only a limited amount or no training data are available. Domain 
Adaptation (DA) is a specific setting of TL, where the domains 
are assumed to differ only by the joint distribution of the features 
and the class labels. Regarding the task of aerial image classifi-
cation (AIC), this corresponds e.g. to a situation where labelled 
images from one city (source domain) should be used to classify 
images of another city (target domain) taken with the same sensor 
type and considering the same class structure. However, the 

objects in the target domain may have a different appearance, 
thus, a classifier that was trained only on the source domain 
possibly performs badly on the target domain.  
 
In the present work the setting of DA is addressed where only 
unlabelled samples from the target domain are used to adapt a 
classifier from the source to the target domain. According to Tuia 
et al. (2016) this setting is referred to as semi-supervised DA. This 
setting is particularly interesting, since unlabelled samples from 
the target domain are always available because they are to be 
classified in the first place. However, SSDA is known to be very 
challenging and can even result in a negative transfer, denoting a 
decreased performance on the target domain after adaptation 
compared to training on the source domain only. Analogously, an 
improvement is called positive transfer. SSDA is highly relevant 
when it comes to the classification of aerial images because on 
the one hand there is only a very limited amount of freely availa-
ble data with annotations (Zhu et al., 2017) and on the other hand 
the appearance of both natural and man-made objects in aerial 
images has a huge variability, making it difficult for a model to 
perform well across different domains. These factors can lead to 
huge domain-gaps in AIC. Although this is certainly a huge chal-
lenge, recent advantages in methods for SSDA in related domains 
like street scene segmentation indicate that these methods can 
compensate existing domain-gaps in AIC and, thus, increase the 
applicability of neural networks. However, there is hardly any 
work addressing SSDA for AIC with deep neural networks and 
no work was found that considers imbalanced class distributions. 
 
In this paper, a two-step strategy for SSDA for the pixel-wise 
classification of aerial images is proposed. First, a model is 
trained in a supervised way on the source domain, referred to as 
source training. In the second step, the model is adapted to a 
target domain by applying implicit instance transfer. Following 
Vu et al. (2019) this is realized by minimizing the mean entropy 
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of the pixel-wise target domain class predictions. However, the 
direct entropy minimization is assumed to perform badly in cases 
where the classes are highly unbalanced, as often in AIC. To that 
end, a novel weighting technique is introduced. To increase the 
stability of the adaptation, pixels that are close to a predicted ob-
ject boundary are not considered in the instance transfer.  
 
In order to evaluate the proposed method, FCNs are trained on 
five different (source) domains and adapted to the respective four 
other (target) domains, resulting in 20 adaptation scenarios. By 
varying the amount of data augmentation during source domain 
training, the respective influence on the initial target domain per-
formance but also on the adaptability are investigated. In parti-
cular, it is assumed that strong data augmentation during source 
training increases the initial performance on the target domain. 
The method is compared to the regularized, direct entropy mini-
mization, as proposed in (Vu et al., 2019), to validate the benefit 
of the proposed variant. A novel FCN architecture is used that 
has much fewer parameters than common FCNs without a consi-
derable loss of performance. The architecture is mainly based on 
the combination of partial padding (Liu et al., 2018) and dilated 
convolutions (Fisher and Vladlen, 2016), assembled in residual 
layers (Szegedy et al., 2017). The performance of the architec-
ture, it is evaluated on the Vaihingen benchmark. 
 
The scientific contributions of this paper are as follows: 
 

 A two-step approach for SSDA based on entropy minimization 
is proposed and applied to the task of aerial image classification 
with neural networks. A pixel-wise weighting strategy based 
on the statistics of semi-labels and predicted object boundaries 
is proposed that improves both the success rate and the perfor-
mance of the adaptation.  
 

 As an additional, minor contribution, an architecture for a fully 
convolutional neural network is proposed. By combining resi-
dual layers with partial padding and dilated convolutions the 
network achieves a performance close to the state of the art 
while requiring much fewer parameters. 

 

 Lastly, the influence of data augmentation on the initial domain 
gap and on a succeeding domain adaptation is investigated. It 
is shown that by using proper data augmentation the domain-
gap can be reduced significantly. 

 
 

2. RELATED WORK 

In this section, the state of the art in SSDA in computer vision 
and photogrammetry is discussed, focussing on the task of pixel-
wise classification using FCNs. According to Tuia et al. (2016) 
SSDA can be either based on representation transfer or on 
instance transfer. In the following, the two approaches are 
discussed in further detail.  
 
Representation transfer tries to find mappings from the feature 
spaces of both domains to a common representation space such 
that a shared classifier can be applied. In remote sensing, this is 
often done by finding a mapping that minimizes a statistical dis-
tance between the domains, e.g. the maximum-mean discrepancy 
(MMD) (Matasci et al., 2015). This approach was transferred to 
neural networks for the task of assigning a single class label to an 
image in (Long et al., 2015b). Ganin et al. (2015) introduced the 
concept of domain adversarial training and showed that this 
approach is superior to minimizing the MMD. The concept of 
domain adversarial training was also frequently used for the 
pixel-wise classification with FCNs, e.g. in (Huang et al., 2018), 
(Hoffmann et al., 2018) and (Zhang et al., 2018) for the semantic 

segmentation of street scenes. While Zhang et al. (2018) apply 
the domain discriminator to the final layer of the classification 
network, Huang et al. (2018) propose to perform the represen-
tation transfer in multiple layers of the network. Hoffmann et al. 
(2018) apply the representation transfer to one intermediate layer 
of the network. Although all above mentioned approaches yield 
stable improvements, they are tailored to street scene classifica-
tion. In (Wittich and Rottensteiner, 2019) the concept of domain 
adversarial training was applied to the task of aerial image 
classification. The authors achieve a stable positive transfer of 
around 1-5% in overall accuracy, evaluated on three domains 
with three classes. They show that domain adversarial training is 
highly susceptible to large differences in the marginal class 
distribution of source and target domain. As the performance of 
this method highly depends on the network architecture and the 
adaptation setup seems to be difficult to tune, in this work the 
alternative concept of instance transfer is explored.  
 
An alternative way of representation transfer is related to the 
input space of the model. Several approaches for street scene 
classification (Hoffmann et al., 2018), (Zhang et al., 2018) use 
image-to-image translation techniques in order to create versions 
of target domain images that keep their semantic information but 
look like being drawn from the source domain. To classify a 
target sample, it is processed by the image-to-image translation 
network before being fed to the source domain classifier. Al-
though this approach improves the results in street scene segmen-
tation, preliminary experiments on using it for AIC have not 
shown a significant improvement. A related approach was 
successfully applied by Tasar et al. (2019) and Benjdira et al. 
(2019) to AIC. Both papers propose to learn an image-to-image 
translation network from source to target domain. The domain-
gap is reduced by fine-tuning a network initially trained on 
labelled source domain samples with translated source domain 
images while keeping the original label maps. Despite the success 
of these methods, they are not proven to outperform classical 
augmentation techniques like random modification of brightness 
and contrast. In this paper augmentation techniques based on 
strong radiometric and geometric modifications are used and 
compared to a weak geometrical augmentation to investigate how 
much this affects the initial domain-gap.  
 
Instance transfer aims at adapting the classifier from the source 
to the target domain by using semi-labelled samples, i.e. target 
samples receiving their class labels from the current state of the 
classifier, e.g. (Bruzzone et al., 2008). Approaches based on ins-
tance transfer represent the second largest research branch of 
SSDA for the task of pixel-wise classification. Addressing the 
task of street scene segmentation, Zou et al. (2018) propose a 
class-balanced self-training, where they jointly train a network 
on labelled source domain data and target domain samples with 
semi-labels. For each class, they select the semi-labelled samples 
with the respectively highest confidence. Such a class-balancing 
is shown to be necessary, when dealing with imbalanced class-
distributions. Based on the source domain samples, they further 
compute a spatial prior for each class, that is used to regularize 
the model. Although this approach yields results comparable to 
representation matching, using a spatial prior seems not reaso-
nable when classifying aerial images, because objects can be 
located anywhere in the images. Class-balancing is also realized 
in the present work, however in a different way, because no 
explicit sample selection is used. An alternative approach based 
on semi-labelled samples is presented in (Iqbal and Ali, 2019). 
The authors propose to use spatially independent samples with a 
high confidence-score from the semi-labelled images acquired by 
aggregating predictions at multiple scales. Since their sampling 
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strategy relies on the assumption that the relative class-distri-
butions in each image are similar in source and target domains 
this approach is probably not applicable to remote sensing appli-
cations, where large regions may contain only a single class. An 
approach for implicit instance transfer is presented in (Vu et al., 
2019). Here, the entropy of the class predictions for each pixel is 
minimized which corresponds to increasing the probability of the 
most probable class. Thus, it is conceptually like the supervised 
training on semi-labelled samples. Besides the direct entropy 
minimization, the authors propose an adversarial approach that 
aligns the entropy distribution of source and target domain 
samples using a discriminator network. In both cases the model 
is regularized w.r.t. the predicted target domain class distribution, 
assuming it is close to the class distribution of the source domain. 
Again, limited to street scene segmentation, they show that the 
second approach slightly outperforms the direct entropy minimi-
zation, while both methods achieve results comparable to those 
based on representation transfer. The method in the present paper 
is also based on entropy minimization, but only the direct version 
is explored and extended by a pixel-wise weighting strategy. 
Further, while Vu et al. (2019) and Zou et al. (2018) jointly train 
on labelled source domain data and unlabelled target domain 
data, in this work the source training and the domain adaptation 
are done in two individual steps. This is assumed to be more 
practical when adapting a model from one source to several target 
domains, because source training must be carried out only once. 
Further, any pre-trained model could be adapted to a new domain 
without requiring any source domain samples for the actual adap-
tation. Both, Vu et al. (2019) and Zou et al. (2018) rely on prior 
assumptions regarding the class distribution of the target domain. 
While Vu et al. (2019) consider a distribution prior, assuming that 
class distributions of the source and target domains are similar, 
Zou et al. (2018) go one step further and use a spatial prior for 
each class based on the distribution of source domain samples. 
Both assumptions are not generally valid in remote sensing sce-
narios, due to the previously mentioned reasons. Consequently, 
the proposed method does not rely on any assumptions regarding 
the target domain class distribution. The method can be seen as a 
combination of entropy minimization to realize instance transfer 
and class-balancing to address imbalanced class distributions. 
However, the balancing is realized here by weighting each pixels’ 
loss depending on its semi-label. Further, predicted object boun-
daries are excluded during the adaptation in order to improve the 
adaptation stability, which is not done in any of the mentioned 
publications. 
 
 

3. METHODOLOGY 

In this section, the proposed strategy for the supervised source 
training and the unsupervised adaptation of a FCN is presented. 
To that end, a formal description of DA according to Tuia et al. 
(2016) is given. In DA, a source domain DS and a target domain 
DT are considered, both associated with remotely sensed imagery. 
The domains are further associated with the joint distributions 
PS X,C  and PT X,C  of the image features X and the class labels 
C. In this paper, the setting of a homogeneous DA (Wang & 
Deng, 2018) is addressed, where the class structures C and the 
feature space X are assumed to be identical for both domains. The 
basic assumption of DA is that the joint distributions PS X,C  and 
PT X,C  are different, but related. The difference may be due to 
the marginal distributions of the features, i.e. PS X   PT X , or 
the posteriors, i.e. PS C|X   PT C|X . In both cases, the diffe-
rences must not be too large. In the semi-supervised setting, a 
training data set TS of labelled training samples is available in the 
source domain, each consisting of a tuple xiS, ciS  with xiS ∈ X 
and ciS ∈ C (in the addressed application, xiS, ciS  corresponds to 

a labelled image patch, hence ciS is a matrix with one class label 
per pixel in xiS). The information available in DT is restricted to 
the set UT of unlabelled samples xiT ∈ X. The task of SSDA is to 
use labelled data TS and the unlabelled data UT to learn a classifier 
that predicts the unknown labels ciT in the target domain. 
 
In the proposed method this task is tackled by a two-step strategy.  
Firstly, a FCN is trained in a supervised way on labelled source 
domain training data TS, resulting in the model MS. The model is 
trained by minimizing the deviations between predicted labels 
and the reference ciS, measured by a differentiable loss function  
ℒ MS, xiS, ciS  as described in section 3.2. In the second step the 
model is adapted to a target domain DT based on the unlabelled 
data UT, resulting in the final target domain classifier MT. The 
corresponding strategy is described in section 3.3. 
 
3.1 Network Architecture 

The FCN used in this work is designed to have a large receptive 
field while being able to propagate low level details through the 
network to preserve precise object boundaries. Preliminary expe-
riments using different FCN architectures have shown that these 
two properties mainly affect the performance in AIC. They are 
commonly achieved by using encoder-decoder networks with 
skip-connections such as U-Net (Ronneberger et al., 2015). 
However, this architecture uses strong spatial down-sampling 
and deep feature maps, which leads to a large number of learnable 
parameters. For instance, the conventional U-Net has ~30M 
parameters. Ronneberger et al. (2015) state, that convolutions 
with zero-padding should be avoided because they produce 
artefacts wherever the receptive field exceeds the boundaries of 
the input image. This is even more important when a larger 
receptive field is used. Nevertheless, zero-padding is frequently 
used in AIC applications, possibly resulting in larger training 
times, boundary artefacts or even a suboptimal performance.  
 
The proposed architecture combines several techniques to enable 
a large receptive field, yet preserving low-level information 
without any of the listed drawbacks. This is mainly achieved by 
combining partial convolution based padding (Liu et al., 2018) 
with dilated convolutions (Fisher and Vladlen, 2016). While 
dilated convolutions can effectively increase the receptive field 
without heavily increasing the number of parameters, partial 
convolutions reweight the parameters of each learned convo-
lutional filter in areas where padding is necessary, i.e. at the 
border of the input. The two concepts are combined in residual 
blocks. In each residual block, the input is convolved with four 
dilated convolutional layers with dilation rates of 1, 2, 3 and 4, 
respectively, using partial convolution based padding. The results 
are concatenated, merged by another convolutional layer and 
added to the input of the block. Using multiple filters with diffe-
rent dilation rates is inspired by the inception ResNet (Szegedy 
et al., 2017), where it was shown to improve the performance.  
 
The architecture takes input patches of size 256⨯256 px contai-
ning both MSI and the rasterized height data. Firstly, a down-
sampling layer is applied that performs a strided convolution 
(Springenberg et al., 2015) with a step with of 4 along both spatial 
dimensions. Next, 8 residual blocks are concatenated, followed 
by an up-sampling layer that uses a strided transposed convo-
lution (Noh et al., 2015) again with a step width of 4 to scale the 
feature space back up to the size of the input. Down-sampling 
and up-sampling layer also use partial convolution based 
padding. The last layer predicts the class probabilities for each 
pixel using the softmax function. As activation function leaky 
rectified linear units (leaky ReLU) with a slope of 0.1 are used. 
All residual blocks as well as the up-sampling layer include a 
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dropout layer (Srivastava et al., 2014) to regularize the parame-
ters and prevent overfitting to the training data. The architecture 
is presented in figure 1. All architecture-related parameters were 
found empirically in preliminary experiments. 
 

 
 

Figure 1: Proposed FCN architecture 
 

In a typical scenario with nch  4 input channels and ncls  5 
classes, the model has about 3.5M parameters, one order of mag-
nitude less than frequently used networks for image classification 
like U-Net. However, the dilated convolutions in each residual 
block result in a very large receptive field, in this configuration a 
theoretical window of over 512⨯512 px. Since the size of the 
receptive field is more than two times the input size, all predic-
tions are affected by all input pixels. For instance, the prediction 
of the class label for the pixel in the lower-left corner is affected 
by the values of the pixel in the upper-right corner.  
 
3.2 Supervised training  

The supervised training of the model is based on minimizing ℒ 
based on mini-batch gradient-descent. Instead of the commonly 
used cross-entropy loss ℒce, the multi-class focal loss ℒfcl is used 
here, because it is less affected by an unbalanced class distribu-
tion, often the case in aerial scenes. The focal loss was proposed 
by Lin et al. (2015) for binary image classification and adapted 
to the multi-class case in (Yang et al., 2019). Supervised training 
is carried out for a fixed number of iterations using the Adam 
optimizer (Kingma and Ba, 2015) and a constant learning rate. 
The batch size is not fixed but increased during training, which 
speeds up the training time without decreasing the classifiers per-
formance. The tuning strategy and choice of all training-related 
hyper-parameters is further described in section 5.2.  
 
During training, data augmentation is used to increase the variety 
of training samples and, thus, to improve the model generaliza-
tion capability (Shorten and Khoshgoftaar, 2019). In AIC often 
only weak data augmentation is used, e.g. by random cropping of 
patches, followed by a random rotation in steps of 90° and a 
horizontal or vertical flip with a respective probability of 50% 
(Tasar et al., 2019). Sang and Minh (2018) perform only random 
flipping and Nogueira et al. (2019) do not use data augmentation 
at all. Yang et al. (2019) perform a slightly stronger geometrical 
augmentation, by rotating the patches in steps of 90°.  In this pa-
per a stronger data augmentation is applied, assuming that it will 
increase the model performance on the target domain. In each 
iteration a random affine transformation is applied in combina-
tion with radiometric augmentation, where each channel of the 

input patch is modified by a random linear transformation. This 
corresponds to a modification of brightness and contrast of each 
channel independently. Although the transformation of height 
data cannot be considered as radiometric augmentation, it is 
treated equivalently here assuming that a random transformation 
of the height data can compensate for differences in object 
heights or the ground level in DS and DT. 
 
3.3 DA using entropy minimization 

In this work, the actual DA step is carried out after source training 
as presented in section 3.2. The proposed approach realizes the 
concept of instance transfer in order to adapt the initial model MS 
to a target domain DT in an unsupervised way. The idea of in-
stance transfer is to use semi-labelled samples from DT, obtained 
by applying MS to UT to retrain the classifier on samples with high 
confidence, i.e. measured by the entropy of the prediction. In this 
work, the instance transfer is not realized by supervised training 
using semi-labelled samples, but instead, following (Vu et al., 
2019), by directly minimizing the entropy E of predicted class 
distributions of target domain samples. Conceptually, this mini-
mization is directly related to supervised training on semi-
labelled samples, because minimizing the entropy corresponds to 
a maximization of the confidence of the currently most probable 
class. However, instead of explicitly choosing semi-labels with 
high confidence, this is done implicitly in entropy minimization. 
Samples with high confidence, thus a low entropy, result in larger 
gradients compared to samples with a high entropy and, thus, 
contribute more to the stochastic gradient descent. The entropy 
loss ℒ  is derived as follows. Let ncls be the number of classes, 
the entropy Ei,x,y of the predicted class distribution pi,x,y for the 
pixel at position x, y  in image i is defined as  
 

𝐸 , ,  log 𝑛 ⋅ 𝑝 , , , ⋅ log 𝑝 , , , , 1  

 

ℒ  for a mini-batch with 𝑏  patches of size ℎ 𝑤 becomes 
 

ℒ
1

𝑏 ⋅ ℎ ⋅ 𝑤
⋅ 𝐸 , ,  . 2  

 

Minimizing eq. 2 to perform the adaptation is assumed to be not 
reasonable when dealing with unbalanced class distributions, 
because the model would tend to increase the probability of the 
most frequent classes, thus, getting biased towards them. To 
counteract this behaviour a pixel-wise weighting strategy is pro-
posed as follows. In each iteration of the adaptation phase the 
current model M is used to predict the semi-label map  
�̂� 𝑎𝑟𝑔𝑚𝑎𝑥 𝑀 𝐱  for each image xi in the mini-batch. The 
weighting function Π 𝑐  for each class 𝑐 corresponds to the  
ℓ1-normalized, inverse class ratio, thus 
 

Π 𝑐
𝑜

∑ 𝑜
 , 3  

 

where oc is the number of pixels with semi-label c in all samples 
of the current mini-batch. As a second extension, pixel entropies 
that are closer to a predicted object boundary than 𝜈 pixels are 
not considered in the entropy minimization. This is motivated by 
the observation that classification models predict object bounda-
ries usually with lower confidence, which leads to a high entropy 
of the corresponding pixels. Forcing a model to predict boundary 
regions with high confidence is assumed to be harmful during the 
adaptation. Formally, a binary boundary region indicator ϕ is 
introduced. Let 𝐵 be the set of all pixels in the current mini-batch 
that have different semi-labels than any of its four adjacent 
pixels, the boundary region indicator becomes ϕi,x,y  0 if any 
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pixel i’, x’, y’  ∈ B  fulfils 𝑥 𝑥 𝑦 𝑦′ ² 𝜈 and  
ϕi,x,y  1 otherwise. According to the predicted semi-label, the 
class weights and the boundary indicators, the weight for pixel  
i, x, y  becomes 𝛾 , ,  Π �̂� , , ⋅ ϕ , , . This leads to the 

proposed weighted entropy loss  
 

ℒ∗ 1
Γ

⋅ 𝛾 , , ⋅ 𝐸 , , , 4  

 

where Γ denotes the sum of all weighting factors over the current 
mini-batch used to normalize the magnitude of the overall loss. 
During adaptation, ℒ∗  is minimized using data samples from 
the training and test sets of the target domain. The adaptation is 
carried out for a fixed number of epochs using Adam optimizer 
for stochastic gradient descent. The selection of all hyper-
parameters of the adaptation phase is described in section 4.2.  
 
 

4. EXPERIMENTS 

4.1 Datasets  

For the evaluation of the proposed strategy datasets from 5 
different German cities are used. Data from a sixth city was used 
for tuning purposes only. Firstly, the datasets Potsdam P  and 
Vaihingen V  are used, provided by the ISPRS labelling chal-
lenge (Wegner et al., 2017). Secondly, datasets for Schleswig S , 
Hameln H , Buxtehude B  and Nienburg N  are used. In the 
following, each city is treated as a separate domain. The datasets 
were pre-processed to have a common ground sampling distance 
of 20 cm, which required a spatial down-sampling of the data for 
V and P. Furthermore, all reference data were mapped to a com-
mon class structure, containing the five classes Sealed ground, 
Building, Natural ground, Vegetation and Vehicle. To this end, 
the class Clutter of the datasets P, V, S and H was manually re-
labelled to one of the remaining classes. The classes Water and 
Soil, originally present in the reference for S and H, were mapped 
to Natural ground. The reference for B and N, provided by (Vogt 
et al., 2018), was revised to match the shared class structure. For 
all datasets the channels near infrared (NIR), red and green are 
available, thus these channels are used to compose the MSI. 
Normalized digital surface models (nDSM) are used as height 
maps the. While for P and V the original split into training and 
testing patches was kept, the remaining datasets were randomly 
image-wise split into disjoint sets for training and testing with a 
ratio of approximately 2:1, such that the class distribution of each 
subset roughly corresponds to the overall class distribution of the 
dataset. The dataset N was only used for tuning the hyper-para-
meters of the method. To obtain unbiased results, this dataset is 
not used for the evaluation of the method. Table 1 shows the size 
of training- and test set and the class distribution of each domain.  
 

Domain   P V B S H (N) 
Train. set [px] 54M 12.5M 66.7M 17M 25M 66.7M 
Test set [px] 31.5M 14.4M 33.3M 9M 12M 33.3M 

C
la

ss
 d

is
tr

i-
bu

ti
on

 
%

 Seal. Gr. 31.1 28.2 22.1 14.1 18.8 22.3 
Building 25.7 26.0 19.7 14.7 19.1 18.4 
Nat. Gr.  25.9 21.6 36.9 38.9 36.2 42.1 
Vegetat. 15.5 22.9 20.3 31.5 24.5 16.6 
Vehicle 1.8 1.3 1.0 0.8 1.3 0.7 

 

Table 1: Dataset overview. 
 

In a pre-processing step the colour channels of all domains were 
normalized individually to zero-mean and unit-standard devi-
ation based on the statistics of each domain. The new value v’j,b,d 
of band b of pixel j in domain d after normalization thus is 
computed as v’j,b,d  vi,b,d – μb,d /σb,d , where μb,d is the mean 

and σb,d the standard deviation of all pixels of band b in domain 
d. The nDSMs were normalized according to h’i,b,d  hi,b,d /uh 
with a fixed value of uh  5 m to bring them to a value range 
close to the normalized MSI channels. For the evaluation of the 
proposed network architecture on the ISPRS labelling challenge, 
the original version of the Vaihingen dataset with a GSD of 8 cm 
was used, considering the original classes including Clutter. The 
channel-wise normalization was carried out as described above. 
The nDSM for V was provided by Gerke (2015).  
 
4.2 Test setup and evaluation protocol 

The evaluation is split into three parts. In the first experiment, the 
proposed network architecture is evaluated on the Vaihingen 
benchmark. The other two experiments correspond to the two 
phases of the proposed strategy for SSDA, i.e. source training and 
DA. To investigate the influence of data augmentation, two vari-
ants Ω ∈ Ω–, Ω ] are used during source training. Variant Ω– 
refers to a weak amount of augmentation. Samples, drawn from 
a random position, are randomly rotated by n  90° with  
n ∈ 0, 1, 2, 3  before being flipped horizontally or vertically with 
a respective probability of 50%. This variant is considered as 
frequently used augmentation strategy in AIC (see section 3.2). 
The second variant Ω  is the proposed, strong data augmentation 
strategy. Here, a random affine transformation is applied to ob-
tain image patches using bilinear interpolation for input data and 
nearest neighbour interpolation for the label maps. The rotation 
is drawn from the uniform distribution 𝒰 0°, 360° , shear accor-
ding to the normal distribution 𝒩 0, 0.3  and the scales for both 
spatial dimensions from 𝒩 1, 0.3 . Additionally, each channel 
of the patch (including the height map) is linearly transformed 
with random bias rb and scale rc. Formally, the j-th channel of the 
sample xi is transformed as x’i,j  rc,j  xi,j  rb,j .  The corres-
ponding random variables are drawn from rc,j ~𝒩 1, 0.3  and  
rb,j ~𝒩 0, 0.3 . The resulting classifiers for each source domain 
DS and augmentation scenario are denoted as MS,Ω. The proposed 
network architecture and all training related hyper-parameters 
were tuned in advance on domain N, such that the average overall 
accuracy on the test set of N based on both augmentation variants 
is maximised. In the tuning process, the following hyper-para-
meters were obtained. Training is done for 100K iterations using 
the Adam optimizer with a fixed learning rate of 10-4 and hyper-
parameters β1  0.9 and β2  0.999. The batch-size is initialised 
with 2 and increased by 1 every 6K iterations up to a maximum 
size of 16. The hyper-parameters related to the adaptation were 
obtained by maximising the average improvement of adapting the 
models from N to H. DA is done for 200 iterations by minimizing 
ℒ∗  for mini-batches of target domain samples, obtained without 
data augmentation. The batch-size is set to 24, and the boundary 
margin to 𝜈 2 px. The Adam optimizer is used with a learning 
rate of 10-6 and hyper-parameters β1  0.0 and β2  0.99.  
 
All evaluations are done on the test set of the respective target 
domain. A sliding window evaluation is performed, i.e. the input 
image is split into overlapping patches (with an overlap of 50% 
in both spatial dimensions), each of the patches is processed and 
the resulting probability distributions for pixels in overlapping 
areas are averaged. Following Kaiser et al. (2017), the quality 
metrics Overall Accuracy (OA) and the Mean F1-score (MF1) are 
used to assess the resulting label predictions. While the first one, 
being the ratio of correct predictions to the total number of 
predictions, can be biased for imbalanced class distributions, the 
MF1 averages the prediction quality, i.e. the harmonic mean of 
precision and recall, of each class equally and, thus, is not biased 
towards classes with higher frequency.  
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4.3 Evaluation of the FCN architecture 

In this section, the proposed network architecture is evaluated on 
the original Vaihingen dataset from the ISPRS labelling chal-
lenge. The model is trained using the protocol described in sec-
tion 4.2 using augmentation scenario Ω . To validate the effect 
of using the focal loss, a second model is trained using the stan-
dard cross-entropy loss ℒce. Two inference protocols (IP) are eva-
luated. The first (IP1) is the sliding window inference presented 
in section 4.2. The second protocol (IP2) additionally evaluates 
vertically and horizontally flipped versions of each image and 
averages the predictions of corresponding pixels, resulting in a 
higher redundancy per pixel. Table 2 shows the achieved quality 
measures, corresponding to those listed on the benchmark 
website (Wegner et al., 2017). 
 

Loss IP Overall 
Acc. %  

F1-score %  

Imp. sur. Build. Low veg. Tree Car 

ℒfcl 1 90.5 92.2 95.7 83.8 89.5 83.2 
2 90.7 92.2 95.6 84.6 89.9 82.8 

ℒce 1 90.6 92.3 95.6 84.1 89.7 79.2 
2 90.8 92.6 95.7 84.5 89.9 80.1 

 

Table 2. Achieved quality metrics for the Vaihingen benchmark.  
 

Having followed the protocol of the ISPRS labelling challenge, 
i.e. evaluating the model on the reference with eroded class boun-
daries, the above results can be compared to those, achieved by 
other methods. Currently, the benchmark website lists the best 
OA as 91.6%. Thus, the achieved results are slightly worse 
(~1%). Regarding the loss function, for both IPs the OA is 0.2% 
higher when minimizing ℒce, but The F1-scores are less balanced. 
The F1-score of the underrepresented class Car is around 3% 
higher, when minimizing ℒfcl instead. Thus, it is reasonable to use 
ℒfcl when dealing with unbalanced class distributions. 
 
4.4 Evaluation of models before DA 

In this experiment, models are trained in a supervised way using 
the labelled source domain training data of DS ∈ P, V, B, S, H , 
and augmentation variant Ω ∈ Ω–, Ω . The resulting models are 
evaluated on the test set of all domains. Evaluating the models on 
the target domains without any adaptation technique is consi-
dered as baseline when assessing the effectiveness of DA in the 
further experiments. By training with two different augmentation 
variants, the initial statement, that strong data augmentation can 
partially alleviate the domain-gap, is validated. Table 3 shows the 
resulting OA and MF1. Results printed in bold font correspond to 
intra-domain (ID) settings, thus DS  DT. The settings, where  
DS  DT are referred to as cross-domain (CD) settings. 
 
In nearly all cases, the quality metrics increase when changing 
the augmentation strategy from Ω– to Ω . However, in the ID 
settings a stronger augmentation yields only a minor improve-
ment of ~1% on average for both metrics, while the averaged 
OA for CD settings is increased by 8.4% and the average MF1 by 
10.5%. The worst overall results are obtained, when adapting 
from S, which may be due to the smallest amount of training 
samples in this domain. The best initial CD performance is 
obtained for S, when training on B, the domain with most avai-
lable training samples. This is the only scenario, where training 
with weak augmentation outperforms the strong augmentation at 
least in OA. However, both variants outperform the supervised 
training on S with weak augmentation. After source training with 
Ω  the average MF1 in the CD settings is 74.7%. Compared to the 
average MF1 in the ID settings with 83.6% a gap of around 10% 
remains. Interestingly, this roughly corresponds to the remaining 
gap when training on very noisy labels (Kaiser et al., 2017). 
 

DT P V B S H
DS Ω OA MF1 OA MF1 OA MF1 OA MF1 OA MF1

P – 86.8 85.6 73.6 62.3 72.3 61.0 64.0 53.2 75.4 62.6
87.8 86.6 80.0 74.9 73.8 69.7 69.0 64.4 76.6 70.0

V – 70.2 63.2 86.2 81.4 75.1 63.2 69.4 57.5 75.1 66.6
76.6 72.5 86.9 81.8 80.6 74.9 73.8 68.8 74.4 67.2

B – 66.0 63.0 72.0 66.9 86.6 83.8 85.6 79.2 73.0 65.5
73.7 69.9 83.5 78.8 87.6 84.3 84.8 80.5 80.5 74.6

S – 37.9 32.9 65.0 56.4 47.8 40.8 84.1 77.5 71.3 63.2
64.3 57.5 79.3 71.2 76.9 72.2 88.2 81.2 71.5 71.4

H – 64.5 58.6 76.4 69.6 69.6 77.9 77.9 68.7 88.8 83.8
76.0 72.8 81.0 74.8 81.4 77.6 83.4 78.5 88.9 83.9

 

Table 3: Quality metrics in %  of non-adapted models, trained 
on DS and evaluated on the test set of DT. 

 
 
4.5 Evaluation of DA 

The models obtained by source training with Ω ∈ Ω–, Ω  are 
now adapted to the other domains using the proposed DA stra-
tegy. Table 4 shows the achieved improvements of OA and MF1 
compared to the initial evaluation in table 3. Negative transfers 
are printed in bold font. Because H was used as target domain to 
tune the hyper-parameters of the adaptation method which is why 
the respective results should be taken with caution. 
 

DT P V B S H
DS Ω OA MF1 OA MF1 OA MF1 OA MF1 OA MF1

P – - - 0.1 0.2 0.0 0.0 3.5 5.0 0.2 0.3 
- - 1.6 1.4 4.1 4.6 2.5 4.3 1.2 4.2 

V – 2.8 5.5 - - 0.6 5.1 0.8 0.8 1.4 0.8 
1.0 1.5 - - 0.1 1.7 2.7 3.3 3.6 5.1 

B – 2.5 5.1 5.9 6.5 - - 1.3 0.9 6.8 9.9 
3.3 3.9 0.6 0.3 - - 0.8 0.9 4.5 6.3 

S – 10.1 11.1 6.5 6.4 3.4 4.6 - - 0.2 0.7 
3.8 5.2 1.3 1.7 0.8 1.9 - - 1.3 3.8 

H – 8.0 10.4 0.6 0.1 0.5 -18.0 2.7 5.3 - - 
1.0 0.6 0.9 0.7 -0.5 0.2 0.3 0.1 - - 

 

Table 4: Improvements in % , achieved by adapting MS,Ω to DT. 
 

Adapting the models initially trained using strong augmentation 
leads to a positive transfer in 19 out of 20 cases with an average 
improvement of 1.8% in overall accuracy and 2.6% in MF1. 
Although this is much smaller than the influence of data augmen-
tation, in some cases a considerably large improvement of ~5% 
in MF1 was achieved. After adaptation, the average CD metrics 
are 79.3% in OA and 74.7% in MF1. Although adapting the 
models trained using weak data augmentation yields slightly 
higher improvements, the average CD metrics are still much 
lower with 72.0% in OA and 64.7% in MF1. Interestingly, the 
adaptation from H to B leads to a negative transfer regardless of 
the augmentation strategy in source training, while adapting from 
B to H yields relative high improvements. It can be deduced that 
the performance of the adaptation is not symmetrical w.r.t.  DS 
and DT. Figure 2 shows exemplary results, after adapting the 
models, trained with strong augmentation. The largest variations 
after adaptation can be observed in the class Vegetation, probably 
due to seasonal variations that highly affect the appearance of 
trees. This is clearly visible in the exemplary patch for H, 
captured in autumn, showing several trees without leaves. The 
images for the domains V, B, S  were captured in summer, thus, 
do not contain any trees without leaves. Even after adaptation, 
the models barely detect any of the trees in H, while they are 
detected when coming from DS  P, the only other domain 
captured in autumn.  
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DT P V B S H
 

nDSM 

 

MSI 

 

REF 

 

DS  P 
 

DS  V 
 

DS  B 
 

DS  S 
 

DS  H 

  Sld. Gnd.   Building   Nat. Gnd.   Vegetation   Vehicles 
 

Figure 2: Exemplary test set samples and predictions. First three 
rows show nDSM, MSI and reference for a 256⨯500 region of 
each domain. Remaining rows show predictions after adaptation 

where DS  DT and before adaptation where DS  DT. 
 
4.6 Ablation study and comparison  

In the last experiment, the influence of the proposed loss 
weighting strategy is investigated. To that end, the source models 
trained with Ω , are adapted by minimizing ℒent, thus, the mean 
entropy without any weighting. Additionally, the direct entropy 
minimization strategy, as proposed in (Vu et al., 2019) is evalua-
ted for comparison. Vu et al. (2019) propose a one-step approach, 
where the mixed loss ℒvu  ℒce  λent * ℒent  ℒcp is minimized. 
Here, ℒcp is an additional loss that penalizes the deviation of 
source domain class distribution from target domain class distri-
butions of each prediction; see (Vu et al., 2019) for further de-
tails. The relaxation parameter ℒcp is set to μ  0.5 and the entro-
py weight to λent  0.001 as proposed by the authors. Although 
Vu et al. (2019) do not consider any online data augmentation, it 
is used here to have a fair comparison. Further, the training was 
started after the proposed source training. Training without 
online augmentation and training from scratch was carried out in 
additional experiments, not presented for lack of space. Both 
variants resulted in significantly worse results. Table 5 shows the 
resulting metrics, again as differences to the results obtained 
without adaptation. Negative transfers are printed in bold font.  
 

 DT P V B S H
DS ℒ OA MF1 OA MF1 OA MF1 OA MF1 OA MF1

 

P ℒent - - 1.0 -0.5 2.5 0.5 2.3 0.4 -3.3 -5.6
ℒvu - - 0.4 0.9 -2.9 -2.7 -7.6 -5.7 -4.6 -2.7

 

V ℒent -0.2 -3.2 - - 0.4 -1.2 1.6 0.3 0.2 -1.6
ℒvu -4.4 -2.0 - - -0.2 0.7 -8.5 -6.3 -5.1 -4.7

 

B ℒent -1.5 -4.2 0.5 -0.9 - - 1.4 0.5 -2.1 -3.5
ℒvu 0.9 2.9 -0.8 -0.6 - - -2.6 -2.2 3.4 3.7 

 

S ℒent 3.9 0.1 0.4 -2.0 0.7 -1.6 - - 1.2 -1.0
ℒvu -8.4 -6.8 -6.2 -5.0 1.5 -0.9 - - -2.5 -10.5

 

H  ℒent -0.1 -2.5 1.1 -1.4 0.3 -2.9 1.6 -0.3 - - 
ℒvu -5.4 -4.1 -0.8 0.9 0.0 -0.1 -1.6 -1.6 - - 

 

Table 5: Improvements in [%], achieved by adapting  
MS,Ω  to DT using alternative loss functions. 

 

The adaptation without the proposed class-balancing achieves a 
slight average improvement in OA of 0.1%, while the MF1 
decreases on average by 1.5%. A positive transfer w.r.t. both 
metrics could only be achieved in 5 out of 20 scenarios. The 
approach according to Vu et al. (2019) was even less stable with 

only 3 cases of positive transfer. The results indicate, that both 
variants perform worse than the proposed method in AIC scena-
rios with highly imbalanced classes. Adapting with the proposed 
strategy without excluding boundary regions and jointly training 
on labelled source domain samples was also carried out in non-
listed experiments, both leading to a slightly worse performance. 

 
 

5. CONCLUSION 

In this paper, an approach for SSDA based on weighted entropy 
minimization was proposed and evaluated for several adaptation 
scenarios. The experiments indicate that a strong data augmenta-
tion can already alleviate the domain-gap significantly. In parti-
cular, the average MF1 in in cross-domain settings was increased 
from 61.6% to 72.1%. By applying the proposed adaptation stra-
tegy, this metric was further increased to 74.7%. The adaptation 
approach is considered to yield mostly stable improvements, 
since only one out of 20 adaptation scenarios resulted in a nega-
tive transfer, regardless of the augmentation strategy during 
source training. In contrast, adaptation without the proposed 
weighting strategy resulted mainly in negative transfer, indica-
ting that the proposed weighting strategy is necessary when 
dealing with imbalanced domains. The proposed FCN architec-
ture performs comparable to the state of the art while having one 
order of magnitude fewer parameters than common architectures 
like U-Net. Despite the stability of the proposed method, the ave-
rage cross-domain metrics after adaptation are still ~9% lower 
than the intra-domain metrics and seasonal effects were not fully 
compensated as shown in the visual evaluation. The results of this 
work also support the general assumption that training on larger 
datasets result in better generalizing models. 
 
Future research should analyse whether the proposed method can 
be combined with other DA methods, e.g. based on image-to-
image-translation (Tasar et al., 2019) or domain adversarial 
training (Wittich and Rottensteiner, 2019). Due to the obviously 
large impact of proper data augmentation during source training, 
it further seems reasonable to seek for more sophisticated aug-
mentation scenarios that generate a wider range of meaningful 
augmentations or to deduce the augmentation parameters from 
statistical differences between the source- and target domain.  
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