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Abstract
Inhibition of immune checkpoint receptor Programmed Death-1 (PD-1) via monoclonal antibodies is an established anticancer 
immunotherapeutic approach. This treatment has been largely successful; however, its high cost demands equally effective, 
more affordable alternatives. To date, the development of drugs targeting downstream players in the PD-1-dependent signaling 
pathway has been hampered by our poor understanding of the molecular details of the intermolecular interactions involved 
in the pathway. Activation of PD-1 leads to phosphorylation of two signaling motifs located in its cytoplasmic domain, the 
immune tyrosine inhibitory motif (ITIM) and immune tyrosine switch motif (ITSM), which recruit and activate protein 
tyrosine phosphatase SHP2. This interaction is mediated by the two Src homology 2 (SH2) domains of SHP2, termed N-SH2 
and C-SH2, which recognize phosphotyrosines pY223 and pY248 of ITIM and ITSM, respectively. SHP2 then propagates 
the inhibitory signal, ultimately leading to suppression of T cell functionality. In order to facilitate mechanistic structural 
studies of this signaling pathway, we report the resonance assignments of the complexes formed by the signaling motifs of 
PD-1 and the SH2 domains of SHP2.
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Biological context

The recent success of anticancer therapies that target 
immune checkpoint receptor PD-1 has sparked consider-
able interest in the molecular details behind its signaling 
function. PD-1 is a 288-amino-acid receptor of the CD28 
family, mostly expressed on the surface of T lymphocytes, 
whose main function is to maintain immune tolerance and 
prevent overactive T cell responses (Boussiotis 2016). 
However, PD-1 functionalities are also exploited by certain 
cancer types to evade immune surveillance; for this reason, 
monoclonal antibodies that block the interaction between 
this receptor and its activation ligand PD-L1 have proven 
successful in the treatment of tumors such as metastatic 

melanoma, non-small cell lung cancer and renal cell car-
cinoma (Page et al. 2014; Topalian et al. 2015). Despite 
their efficacy, the very high cost of immunotherapies poses 
a severe burden on public healthcare systems and calls for 
novel, equally effective, but more affordable drugs (Prasad 
et al. 2017).

Targeting the PD-1-dependent signaling pathway has 
been made problematic by our limited knowledge of the 
molecular events following PD-1 activation; only recently 
have ground-breaking studies elucidated important mecha-
nistic aspects of the PD-1-dependent signaling events. Acti-
vation of PD-1 leads to phosphorylation of two key tyrosine 
residues in its cytoplasmic domain by Src family kinases 
(Sharpe and Pauken 2018; Hui et al. 2017). These two tyros-
ines, Y223 and Y248, are embedded into two immune-tyros-
ine signaling motifs, which are unique among the members 
of the CD28 family, namely the immune-tyrosine inhibitory 
motif (ITIM) and immune-tyrosine switch motif (ITSM), 
respectively (Riley 2009). The two phosphotyrosines recruit 
and activate Src homology 2 (SH2) domain-containing phos-
phatase 2 (SHP2), which propagates the signal from PD-1 by 
dephosphorylating key tyrosines on CD28 (Hui et al. 2017).
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SHP2 is a 70-kDa protein of the PTP (protein tyrosine 
phosphatase) superfamily, which consists of three folded 
domains (two SH2 domains arranged in tandem, termed 
N-SH2 and C-SH2, and a catalytic PTP domain) followed 
by a disordered C-terminal tail with putative regulatory 
functions (Neel et  al. 2003). In its basal state, SHP2 
activity is very low, due to an auto-inhibitory interac-
tion between the N-SH2 and the PTP, which occludes the 
catalytic site and prevents substrate processing (Hof et al. 
1998). Engagement of the N-SH2 or both the N-SH2 and 
the C-SH2 by monovalent or divalent phosphopeptides, 
respectively, leads to the transition to an open conforma-
tion, in which the N-SH2 is displaced and the catalytic 
site becomes accessible (Barford and Neel 1998). Muta-
tions that disrupt the interaction between the N-SH2 and 
the PTP also favor the open conformation and have been 
associated with several diseases (Keilhack et al. 2005).

SH2 domains are protein modules of around 100 
amino acids, with a conserved fold consisting of a cen-
tral three-stranded antiparallel β sheet flanked by two α 
helices, whose function is to recognize phosphotyrosine-
containing peptides (Waksman et al. 2004). In this work, 
the nomenclature for SH2–phosphopeptide complexes fol-
lows the convention introduced by Eck and coworkers (Eck 
et al. 1993): the SH2 helices are named αA and αB, the 
β strands are βA–βG and the loops are defined based on 
the structural elements that they connect; phosphopeptide 
residues are numbered according to their position relative 
to the phosphotyrosine (pY–2, pY–1, pY+1, pY+2…).

The structural and biochemical details of the activa-
tion of SHP2 by PD-1 derived phosphopeptides have been 
reported recently (Hui et al. 2017; Peled et al. 2018; Mar-
asco et al. 2020). Interestingly, a peptide containing both 
ITIM and ITSM linked together is required for maximal 
stimulation of phosphatase activity. This bidentate pep-
tide binds the N-SH2 and C-SH2 domains of one SHP2 
molecule with ITIM and ITSM, respectively, to form a 1:1 
doubly bound heterodimeric complex. This dual binding 
event requires a large rearrangement of the orientation of 
the SH2 domains in SHP2 in order to satisfy the spatial 
restraints imposed by the linker between ITIM and ITSM. 
Therefore, formation of the 1:1 doubly bound complex is 
associated with overcoming a high conformational energy 
barrier, which slows down the association of the second 
SH2 domain with the second pY motif of the same peptide 
both in vitro and in vivo (Marasco et al. 2020; Oh et al. 
2012). Consequently, the stoichiometry and oligomeric 
state of the complexes present in a mixture of SHP2 and 
bidentate peptide is heterogeneous, particularly in regimes 
of high protein concentrations or receptor clustering, with 
variable amounts of higher-order oligomeric protein–pep-
tide complexes (wherein the SH2 domains of a single 
protein molecule engage pY motifs of different peptide 

molecules) in addition to the 1:1 doubly-bound heterodi-
mer (Marasco et al. 2020; Oh et al. 2012).

Here, we report the backbone resonance assignments 
for the unbound, ITIM-bound and ITSM-bound states of 
the N-SH2 and C-SH2 domains. In addition, we report the 
assignment of the protein side-chains and bound peptide 
resonances of the N-SH2–ITIM complex; the correspond-
ing resonance assignment for the C-SH2–ITSM complex 
has been published previously (Marasco et al. 2020). These 
results have aided the assignment of the backbone reso-
nances of tSH2 (a construct containing both N-SH2 and 
C-SH2 domains) in complex with the bidentate peptide 
ITIM-[dPEG4]2-ITSM, which contains both ITIM and ITSM 
joined by a polyethyleneglycol-based linker. The assignment 
of the resonances of the tSH2 and their shifts upon titration 
with the bidentate peptide revealed the presence of a het-
erogeneous mixture of 1:1 heterodimers and higher-order 
protein–peptide oligomers at variable stoichiometric ratios 
(Marasco et al. 2020).

Methods and experiments

Protein expression and purification

The DNA sequences of human N-SH2  (SHP21−105), C-SH2 
 (SHP2106−220) and tSH2  (SHP21−220) were cloned into the 
pETM22 expression vector, which allows for expression 
of the target proteins as fusion constructs with a cleavable 
 His6-thioredoxin tag. The vectors were transformed into 
Tuner (DE3) competent cells (Merck). For recombinant 
protein expression, freshly transformed cells were grown at 
37 °C to an optical density (OD) of 0.6–0.8. Afterwards, the 
culture was quickly chilled and 0.1 mM of isopropyl β-d-1-
thiogalactopyranoside (IPTG) was added to induce protein 
expression, which was continued for 20 h at 20 °C. Prepara-
tion of U-13C,15N samples (N-SH2, C-SH2 and tSH2) was 
achieved by growing the bacteria in minimal medium con-
taining 15NH4Cl (1 g/l, Cambridge Isotope Laboratories) 
and 13C-D-glucose (4 g/l, Cambridge Isotope Laboratories) 
as the sole nitrogen and carbon sources, respectively. Due 
to its larger size and tendency to form oligomers, tSH2 in 
complex with the bidentate ITIM-[dPEG4]2-ITSM peptide 
required sparse deuteration, which was achieved by grow-
ing the cells in deuterated minimal medium with protonated 
carbon source.

After protein expression, the cultures were harvested, pel-
leted and stored at − 20 °C until further use. Cells were lysed 
by sonication in wash buffer (1 M NaCl, 50 mM Tris–HCl, 
5% glycerol, 10 mM imidazole, 5 mM β-mercaptoethanol, 
pH 7.6) supplemented with one tablet of EDTA-free cOm-
plete™ protease inhibitors (Roche), 100 µg of lysozyme 
(Roth) and 50 µg of DNAse (NEB). The lysate was clarified 
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by centrifugation at 18000×g for 1 h and the filtered super-
natant was loaded on a HisTrap HP column (GE Healthcare), 
previously equilibrated with wash buffer. After loading, the 
column was washed extensively (10 column volumes, CV) 
with wash buffer, before elution of the bound protein with 5 
CV of elution buffer (1 M NaCl, 50 mM Tris–HCl, 5% glyc-
erol, 500 mM imidazole, 5 mM β-mercaptoethanol, pH 7.6). 
The fractions containing the protein were pooled and 3C 
protease (1:100 protease:protein ratio) was added to cleave 
the  His6-thioredoxin tag. Excess imidazole was removed by 
dialyzing the eluate against 2 l of wash buffer at 4 °C over-
night. Purification continued the following day with a second 
round of affinity chromatography (HisTrap) to separate the 
 His6-thioredoxin tag from the target protein. The fractions 
containing the protein of interest were concentrated to a final 
volume of 1−2 ml and loaded on a HiLoad 16/600 Superdex 
75 pg column (GE Healthcare), previously equilibrated with 
NMR buffer (100 mM MES, 150 mM NaCl, 3 mM TCEP, 
0.05%  NaN3, pH 6.8). The fractions containing pure protein 
were pooled, the protein concentrated to the desired con-
centration and either used directly for experiments or flash-
frozen with liquid nitrogen for long-term storage at − 80 °C. 
Sample purity was confirmed by SDS-PAGE.

PD-1 immune tyrosine motifs were purchased as syn-
thetic phosphopeptides (ITIM: Ac-FSVDpYGELDFQ-
NH2; ITSM: Ac-EQTEpYATIVFP-NH2) from Caslo ApS 
(Lyngby, Denmark). The bidentate peptide ITIM-[dPEG4]2-
ITSM was made by connecting ITIM and ITSM with two 
discrete poly-(ethylene glycol)-4 units, in order to match 
the length of the linker that separates ITIM and ITSM in 
wild-type PD-1, and was purchased from the same com-
pany (Sequence: Ac-FSVDpYGELDFQ-[dPEG4]-[dPEG4]- 
EQTEpYATIVFP-NH2).

NMR spectroscopy

NMR assignment spectra were recorded at a temperature 
of 298 K on Bruker Avance III HD 600 MHz and 850 MHz 
spectrometers running Topspin 3.2 software and equipped 
with  N2-cooled and He-cooled inverse HCN triple-resonance 
cryogenic probeheads, respectively. Protein concentrations 
ranged from 500 µM to 800 µM; for peptide-containing sam-
ples, peptides were added in two-fold excess unless specified 
otherwise below. For tSH2 in complex with ITIM-[dPEG4]2-
ITSM, the peptide was in 1.5-fold excess with respect to the 
protein.

Backbone resonances of N-SH2, C-SH2 and their ITIM- 
and ITSM-bound forms, and those of unbound tSH2, were 
assigned using the standard suite of triple-resonance experi-
ments (2D 15N-HSQC, 3D HNCO, 3D HNCACB and 3D 
HN(CO)CACB) (Kay et al. 1994; Muhandiram and Kay 
1994; Yamazaki et al. 1994) and the sidechain resonances 
of N-SH2–ITIM were assigned from 3D HC(C)H-TOCSY 

(Kay et al. 1993), 3D H(CCCO)NH-TOCSY (Logan et al. 
1992), 3D NOESY-15N-HSQC (Marion et al. 1989), 2D 
HBCB(CGCD)HD, 2D HBCB(CGCDCE)HE (Yamazaki 
et al. 1993) and 2D constant-time 13C-HSQC spectra (Vuis-
ter and Bax 1992). Assignments of proton resonances of 
ITIM in complex with N-SH2 were obtained from 2D 
13C,15N-filtered NOESY and 2D 13C,15N-filtered TOCSY 
spectra (Zwahlen et  al. 1997) recorded on a sample in 
which the protein was in excess with respect to the peptide; 
deuterated PIPES instead of unlabeled MES was used as a 
buffer in order to minimize the t1-noise from buffer peaks. 
For tSH2 in complex with ITIM-[dPEG4]2-ITSM, backbone 
resonance assignment was achieved by TROSY-based triple-
resonance experiments (2D TROSY-HSQC, 3D TROSY-
HNCO, 3D TROSY-HNCACB and 3D TROSY-HN(CO)
CACB) (Pervushin et al. 1997; Salzmann et al. 1998) and by 
chemical-shift comparison with previously assigned N-SH2 
and C-SH2 complexes. All the spectra were processed with 
Topspin 3.2 (Bruker) or NMRpipe (Delaglio et al. 1995). 
Peak picking and resonance assignment were done with Ccp-
Nmr Analysis (Vranken et al. 2005).

Assignments and data deposition

The features of the 15N HSQC spectra of N-SH2 and C-SH2 
confirmed that these two domains adopt a stable fold in 
solution (Fig. 1). Excluding prolines and the N-terminal 
residues generated by 3C protease cleavage (whose signals 
were missing in the spectra, probably due to rapid solvent 
exchange), the backbone assignments of N-SH2 and C-SH2 
were 93% and 96.4% complete, respectively. For N-SH2, 
the missing signals belonged to the segment R32–G39 (BC 
loop), which is part of the phosphotyrosine binding region. 
This segment is known to be poorly structured in SH2 
domains in the absence of bound phosphopeptides (Booker 
et al. 1992). Similarly, the amide peaks of Q140 and S141 
of C-SH2 were missing. Furthermore, the amide peaks of 
residues H85 and G86 of N-SH2, which join the BG loop to 
αB, were also missing.

As expected, addition of PD-1-derived phosphopep-
tides led to the structuring of the pY-binding region: the 
assignments of N-SH2–ITIM and N-SH2–ITSM were 
complete except for G86 and N92, while the assignment of 
C-SH2–ITSM was 100% complete. On the other hand, in the 
C-SH2–ITIM complex several amide peaks were missing 
(G115, G154, N161, V181, G182 and L206) (Figs. 2 and 
3). In general, the chemical shifts perturbations induced by 
ITIM and ITSM on the SH2 domains of SHP2 are different.

The 15N HSQC spectrum of unbound tSH2 closely 
resembles the overlay of the spectra of unbound N-SH2 
and C-SH2, which made the assignment relatively simple 
by comparison of the chemical shifts. The assignments 
could be transferred from the isolated SH2 domains to 
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Fig. 1  2D 1H,15N HSQC spectra of N-SH2 (a) and C-SH2 (b) with the corresponding assignments. The spectra were collected on a 600 MHz 
Bruker Avance III spectrometer
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Fig. 2  2D 1H,15N HSQC spectra of N-SH2–ITIM (a) and C-SH2–ITIM (b) with the corresponding assignments. The spectra were collected on 
a 600 MHz Bruker Avance III spectrometer
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Fig. 4  2D 1H,15N HSQC spectrum of tSH2 (a) and 2D 1H,15N 
TROSY HSQC spectrum of tSH2–ITIM-[dPEG4]2-ITSM (b) with 
the corresponding assignments. In the latter, the resonances belong-

ing to the state in which N-SH2 is bound to ITIM are marked with an 
asterisk. The spectra were collected on a 850 MHz Bruker Avance III 
spectrometer
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the tSH2 construct, except for the BC loop of N–SH2 
(S34–N37) and the Y81–H85 segment (Fig.  4a). The 
bound state of tSH2 was measured in the presence of a 
1.5-fold excess of biphosphorylated ITIM-[dPEG4]2-ITSM 

and a tSH2 concentration of 500 µM; the 15N TROSY 
spectrum at this stoichiometric ratio and protein con-
centration reveals the presence of two distinct peaks for 
several amide groups (Fig. 4b). By comparison of this 

Fig. 5  Excerpt of the 13C,15N-
filtered TOCSY spectrum of 
N-SH2–ITIM, which shows 
the assignment of the amide 
region of ITIM. H* indicates 
the N-terminal amide hydro-
gen. The spectra were collected 
on a 600 MHz Bruker Avance 
III spectrometer
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spectrum with those of N-SH2–ITIM, N-SH2–ITSM, 
C-SH2–ITIM and C-SH2–ITSM, it was possible to estab-
lish that the two resonances represent two different states 
of tSH2, one in which N-SH2 is bound to ITIM and one 
in which N-SH2 is bound to ITSM. The C-SH2 appears 
to be bound only to ITSM. This indicates that binding of 
ITIM-[dPEG4]2-ITSM to tSH2 results in a heterogeneous 
mixture of complexes of different architecture. Contrary 
to the bound states of isolated N-SH2, the peaks of the BC 
loop were still missing in this complex. In addition, the 
segment A105–T108, corresponding to the linker between 
N-SH2 and C-SH2, did not yield any observable amide 
peaks, presumably due to either an unfavorable confor-
mational exchange regime or rapid proton-exchange with 
the solvent. Due to its physiological importance (ITIM is 
the specific binder of N-SH2 and is directly responsible 
for maximum activation of SHP2), the assignment of the 
resonances of the N-SH2-ITIM complex also included pro-
tein side-chains and peptide proton resonances (Fig. 5).

The 1H, 13C, 15N backbone (1HN, 15N, 13Cα, 13Cβ, 
13CO) resonance assignments of N-SH2, C-SH2, tSH2, 
C-SH2–ITIM and N-SH2–ITSM have been deposited at 
the BioMagResBank (https ://www.bmrb.wisc.edu) under 
accession codes 28069, 28070, 28071, 28072 and 28073, 
respectively. The backbone and sidechain resonances of 
N-SH2–ITIM are available under accession code 28074, 
while those of C-SH2–ITSM have been published as part 
of previous work (BMRB code 34384) (Marasco et al. 
2020). Due to the heterogeneous population of bound 
states, the backbone chemical shifts of the tSH2–ITIM-
[dPEG4]2-ITSM have been deposited as two separate 
groups: those corresponding to the state in which N-SH2 
is bound to ITIM (BMRB code 28075) and those corre-
sponding to the state in which N-SH2 is bound to ITSM 
(BMRB 28076).
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