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Abstract
In this paper we propose to use Lie sphere geometry as a new tool to 
systematically construct time-symmetric initial data for a wide variety 
of generalised black-hole configurations in lattice cosmology. These 
configurations are iteratively constructed analytically and may have any 
degree of geometric irregularity. We show that for negligible amounts of 
dust these solutions are similar to the swiss-cheese models at the moment 
of maximal expansion. As Lie sphere geometry has so far not received much 
attention in cosmology, we will devote a large part of this paper to explain its 
geometric background in a language familiar to general relativists.

Keywords: inhomogeneous cosmology, black holes, Lie sphere geometry

(Some figures may appear in colour only in the online journal)

1.  Introduction

In their seminal paper [37] of 1957, Richard Lindquist and John Wheeler introduced the idea to 
approximate the global dynamics of homogeneous and isotropic cosmological models by lattice-
like configurations of vacuum Schwarzschild geometries. Approximate homogeneity and isotropy 
was translated into the requirement that this lattice should be a regular one, such that each lattice 
site is equally distant to its nearest neighbours. Hence, approximating a round 3-sphere, which 
for the moment we think of as embedded into Euclidean R4, this implies that the lattice sites are 
given by the vertices of inscribed 4-dimensional regular convex polytopes (platonic solids), of 
which there are six in four dimensions, corresponding to N = 5, 8, 16, 24, 120 and 600 vertices.

In order to avoid confusion, the method of lattice cosmology has to be clearly distinguished 
from the related but different so-called ‘swiss-cheese’ models, which we shall briefly describe 
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and which also play some role in this paper. The swiss-cheese models are constructed from 
the homogeneous and isotropic models in standard dust-matter cosmology by introducing 
local inhomogeneities as follows: replace the spherically-symmetric and locally homogene-
ous geometry in a neighbourhood of a vertex (the method works for any point, but in order to 
compare it with lattice cosmology we stick to the vertices) by the spherically-symmetric and 
locally inhomogeneous vacuum Schwarzschild geometry with appropriate matching condi-
tions at the boundary to the dust-filled complement. The matching conditions require the met-
ric to be continuously differentiable across the boundary and essentially impose the condition 
that the mass of the black-hole equals that of the removed dust (they must be strictly equal 
in terms of the Misner–Sharp mass; compare [12]). This works for any sizes of balls centred 
around each vertex, as long as the collection of balls have no pairwise intersections. Outside 
the balls the dust is still present and the local geometry is still that of the round 3-sphere (in 
case of positive curvature, to which we restrict attention here). As already stated, inside the 
balls the geometry is strictly spherically symmetric, even though the distribution of black-
holes around them on neighbouring vertices is only approximately so. This is because the 
remaining dust just enforces this symmetry by construction. It should be intuitively obvious 
why these are referred to as ‘swiss-cheese’ models.

In contrast, in lattice cosmology, all the dust is replaced by a finite number of black-holes, 
none of which will now give rise to a strictly spherically symmetric geometry in its neighbour-
hood. Approximate spherical symmetry will be improved by increasing the number of black-
holes, i.e. the number of vertices, but never attained exactly. There is now no matter present 
whatsoever and all gravitating masses are concentrated in black-holes. Hence the evolution 
equations are pure vacuum.

Now, the central ideas behind lattice cosmology is that as regards certain aspects of the 
overall gravitational dynamics, we may replace all matter by an appropriate but fictitious 
distributions of black holes. The hope connected with this strategy is to gain reliable analytical 
insight into various aspects of global gravitational dynamics in cosmology, like, e.g. the back-
reaction and fitting problems [14]. This hope rests on the fact that now we are dealing with 
the vacuum Einstein equations and its associated initial-value problem, the analytic treatment 
of which, albeit still complicated, is considerably simpler than that of the coupled Einstein-
matter equations for realistic models of matter. Moreover, the particular non-linear form of 
Einstein’s vacuum equations can lead to a characteristic enhancements of backreaction from 
multiscale configurations that one would like to study in isolation and unaffected by possible 
stress–energy artefacts of matter; compare [11, 33] for very lucid discussions of this point.

In fact, for special classes of initial data the matter-free constraint equations  assume a 
linear form, so as to allow for the possibility to simply add solutions. This linearity will be 
essential to the method used here. We refer to [5] for a recent comprehensive review of the 
expectations and achievements connected with lattice cosmology. More specifically, we refer 
to [10, 15] for general introductions and lucid discussion of the backreaction problem, once 
more to [11, 33] for very illuminating discussions concerning the impact of general relativity’s 
non-linearity for backreaction, to [17] and again to [33] for the question of how to quantify 
backreaction, to [38] for an extensive study of redshifts and integrated Sachs–Wolfe effects, 
and [6] for a general discussion of light-propagation in lattice cosmology.

In this paper we shall concentrate on the problem of how to analytically construct suit-
able multi black-hole initial data, leaving the all-important problem of their evolution aside 
for the time being. The familiar situation in the Cauchy problem of general relativity is that 
careful analytical work is invested in the construction of initial data in order to map the envis-
aged physical situation in an explicit, well controlled, and interpretable fashion, but that the 
evolution of these data has to be left to the computer [3]. In the present context of lattice 
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cosmology, first steps in numerical evolution were taken in [4] considering data for a regular 
lattice of eight black-holes.

Moreover, also for regular lattices, it has been argued in [16] that the resulting local discrete 
rotation and reflection symmetries suffice to render the Einstein evolution equations ordinary 
(rather than partial) differential equations for points in the one-dimensional fixed-point set of 
these symmetries, thus effectively decoupling the evolution of the geometry at these points 
from that of their spatial neighbours. If this were true, long term predictions for the geometry 
of these lower-dimensional structures could indeed be made, as claimed in [16]. However, 
this claim has subsequently been scrutinised numerically and analytically on the basis of 
Einstein’s evolution equations in [34] and found to be in error on both accounts. The error was 
shown to be due to the actual existence of a term containing second spatial derivatives of the 
metric which is nevertheless compatible with the local discrete symmetries (and hence had 
been erroneously excluded a priori in [16]).

In [37] and its follow-up papers, the requirement of regularity of the lattice formed by the 
sites of the black-holes was explicitly imposed. A first relaxation from strict regularity was 
considered in [18] in relation to structure formation and backreaction. Their generalisation 
still started from one of the six regular lattices, but then allowed to ‘explode’ each black-
hole into a cluster of other black-holes in a special way that maintains overall statistical 
homogeneity and isotropy. Our method presented in this paper can be seen as a significant 
generalisation of theirs, resting on a novel application of Lie sphere geometry, that so far 
does not seem to have enjoyed any application to cosmological model-building whatsoever. 
The method itself, the foundations of which we shall explain in the next section, is certainly 
very powerful, though the extent to which it may profitably applied in cosmology remains 
to be seen. As an illustrative example, we include a comparison between special black-hole 
configurations that we called ‘unifoamy’ in lattice- and swiss-cheese cosmology. This paper 
is based in parts on [22].

2.  Lie sphere geometry and Apollonian packings

In this section we wish to acquaint the reader with the geometric ideas behind Lie sphere 
geometry and its power to study and construct configurations of (round) spheres isometrically 
embedded in Riemannian manifolds of constant-curvature. As the name suggests, the geomet-
ric ideas were first introduced by Sophus Lie (1842–1899), in fact in his doctoral thesis [36]. 
Our presentation will follow modern terminology and notation. As already stressed, this geo-
metric method has—quite surprisingly and to the best of our knowledge—not been employed 
in the general-relativistic initial-value problem and hardly ever in astrophysics and cosmol-
ogy. The only two notable exceptions we are aware of concern the statistics of craters on plan-
etary bodies [24] and the statistics of cosmological voids [25]3. In our paper we will use it to 
systematically construct initial data for Einstein’s field equations applied to lattice cosmology.

Let us now explain in some more detail those aspects of Lie sphere geometry that are 
of interest to us and which we reformulate and amend according to our needs. A standard 
mathematical textbook on Lie sphere geometry is by Cecil [13], which contains much—but 
not all—of what we say in its first chapters. The central object in Lie sphere geometry is the 
configuration space of spheres which, as we will see discuss in detail, turns out to be an old 
friend of all relativists.

3 We thank Marcus Werner for pointing out these references.
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2.1.  DeSitter space as configuration space for spherical caps, or oriented hyperspheres, 
within spheres

Throughout we often consider the real vector space Rn+1 together with its Euclidean canoni-
cal inner product. Elements in Rn+1 are denoted by bold-faced letters, like X and P , and their 
inner product X · P  is defined as usual. The inner product defines a norm ‖X‖ :=

√
X · X . The 

n-sphere of unit-norm vectors in Rn+1 is

Sn =
{

X ∈ Rn+1 : ‖X‖ = 1
}

.� (1)

The geodesic distance Λ
(
X, P

)
∈ [0,π] between the two points X and P  on Sn is given by

Λ
(
X, P

)
:= arccos

(
X · P

)
.� (2)

A spherical α-cap on Sn, with α ∈ (0,π), centered at P ⊂ Sn is the set of all points X ∈ Sn 
whose geodesic distance from P  is less or equal to α. Hence these points satisfy

X · P � cosα.� (3)

It should be read as an equation  describing the intersection between the half-space 
{X ∈ Rn+1 : X · P � cosα} with Sn. See figure 1 for an illustration of the cases n = 1, 2.

Now, the central idea of Lie sphere geometry is to regard Sn not as subset of Rn+1 endowed 
with the Euclidean inner product, but rather as subset of (n + 2)-dimensional Minkowski 
space R1,n+1, i.e. the vector space Rn+2 endowed with a non-degenerate symmetric bilinear 
form of signature (1, n + 1), the so-called Minkowski metric or Minkowski inner product, 
which in the ‘mostly-plus-convention’ that we shall use here is given by

〈ξ1, ξ2〉 := −ξ0
1ξ

0
2 +

n+1∑
a=1

ξa
1ξ

a
2 .� (4)

Hence spacelike vectors have positive and timelike vectors have negative Minkowski square.
The embedding of Sn ⊂ Rn+1 into R1,n+1 is then given by regarding Rn+1 as affine space-

like hyperplane of constant time (first coordinate in R1,n+1) equal to 1. Then

Rn+1 ⊃ Sn � X �−→ ξ := (1, X) ∈ R1,n+1.� (5)

Obviously 〈ξ, ξ〉 = 0, so that Sn ⊂ R1,n+1 is the intersection of the constant-time hyperplane 
with the future light-cone with vertex at the origin. This intersection is also called the Möbius 
sphere.

Like above, a spherical cap on the Möbius sphere can be obtained by intersecting the latter 
with a half space. But now the half space is such that its boundary hyperplane, which is time-
like, contains the origin of R1,n+1. Hence we can rewrite equation (3) as

〈ξ,ω〉 � 0,� (6)

where (recall csc(x) = 1/ sin(x))

ω =
(
cot(α), P csc(α)

)
� (7)

is a normalized spacelike vector, i.e. 〈ω,ω〉 = 1, which is Minkowski-perpendicular to the 
boundary hyperplane of the half-space and oriented such that it points into the interior of 
the half-space. It is sometimes referred to as Lie (sphere) vector. It establishes a bijection 
between the set of spherical caps of non-zero radius in Sn—equivalently the set of oriented 
(n − 1) spheres (hyperspheres) of non-zero radius in Sn—and the set of unit spacelike vectors 
in R1,n+1. The latter is just the one-sheeted timelike unit hyperboloid in (n + 2)-dimensional 
Minkowski space, known to relativists as (n + 1)-dimensional de Sitter space of unit radius, 
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which we denote by dSn+1. It thus assumes the role of the configuration space of spherical 
caps—or oriented hyperspheres—in Sn. Remarkably, this configuration space is itself endowed 
with a natural Lorentzian geometry that it inherits from being imbedded into Minkowski space 
and that is well known to relativists. Indeed, if we restrict the (1, n + 1) Minkowski metric

η = −dω0 ⊗ dω0 +

n+1∑
a=1

dωa ⊗ dωa� (8)

to the tangent bundle of the embedded timelike hyperboloid in the parametrisation (7), where 
P  is normalised, so that P · dP = 0, we immediately get

gdS(n+1)
= csc2(α)

(
−dα⊗ dα+ gSn

)
.� (9)

Here gSn
 denotes the standard round metric of the unit n-sphere Sn given by restricting ∑n+1

i=1 dPi ⊗ dPi =: dP⊗̇dP  to the n-sphere ‖P‖ = 1. Replacing α ∈ (0,π) by t ∈ (−∞,∞) 
according to the reparametrisation

t = t(α) :=
{
−arccosh

(
csc(α)

)
for 0 < α � π/2

+arccosh
(
csc(α)

)
for π/2 � α < π

� (10)

leads to the well known form of the deSitter metric used for n  =  3 in standard relativistic 
cosmology:

gdS(n+1)
= −dt ⊗ dt + cosh2(t) gSn

.� (11)

Note that the function on the right-hand side of (10) maps the interval (0,π) strictly increasing 
and differentiably onto (−∞,∞). Indeed, the derivative of t(α) is just t′(α) = csc(α) for all 
0 < α < π.

In this fashion the set of spherical caps in Sn is not only put into bijective correspond-
ence with points in dSn+1, but is also endowed with the structure of a maximally symmetric 

P

αcos α

Figure 1.  Spherical cap in n  =  1 dimensions with centre P  and radius α. The n  =  2 
case is obtained by rotating the figure about the vertical symmetry axis.
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Lorentzian manifold with metric gdS(n+1)
, the geometry of which turns out to be very useful 

indeed, with many and sometimes surprising applications. For example, in n  =  2 and n  =  3 
dimensions, the volume form induced by this metric has been used for statistical discussions 
of distributions of planetary craters in [24] and cosmic voids in [25], respectively. In fig-
ure 2 we illustrate once more the geometric objects underlying this bijective correspondence 
between spherical caps of—or oriented hyperspheres in—the Möbius sphere Sn and deSitter 
space dS(n+1) in the case n  =  1.

As regards the Lorentzian signature of gdS(n+1)
, note that changing the location of the spheri-

cal cap’s centre while keeping the radius fixed corresponds to a spacelike motion in configu-
ration space, while a change in radius with fixed centre corresponds to a timelike motion. 
Increasing cap radii correspond to increasing α and hence increasing t according to (10). The 
set of caps carries a natural partial-order relation given by inclusion. It is geometrically obvious 
that a cap with centre P  and geodesic radius α is properly included in another one parametrised 
by P′ and α′, if and only if the geodesic distance between the centres is less than, or equal to, 
the difference α′ − α of their geodesic radii. As the geodesic distance between P  and P′ is 
measured by gSn

 in (9), the latter condition of proper containment is seen to be equivalent to the 
condition that the corresponding points ω and ω′ on dS(n+1) are timelike or lightlike separated 
with ω′ to the future of ω in the time orientation given by increasing t. This shows that the 

set-theoretic partial-order relation of spherical caps given by containment just corresponds to 

the partial-order relation on 
(
dS(n+1), gdS(n+1))

 given by causality. More precisely, ω′ lies to the 
causal future of ω if the cap corresponding to ω is properly contained in the cap corresponding 
to ω′. This causal separation is timelike if the smaller cap is properly contained in the interior of 
the larger one, and lightlike if the boundary spheres of the caps just touch at one point. (We will 
come back to this order relation in more detail when we discuss the images of caps of Sn under 
stereographic projection in Rn, where they become balls.) It is intriguing that, in this way, Lie 
sphere geometry provides a natural link between causal- and cap- or ‘sphere-orders’. In fact, 
this relation is inherent in the discussion of sphere orders in [8]4, the motivation of which came 
from causal orders, however without relating it to Lie sphere geometry.

2.2.  Balls and oriented hyperspheres in flat Euclidean space

The foregoing construction also applies to balls, or oriented hyperspheres, in flat Euclidean 
space Rn if suitably generalised. To see this we regard Sn as one-point compactification of Rn. 
The point added to Rn is called ‘infinity’ and denoted by ∞. The set Rn ∪ {∞} is topologised 
in such a way that complements of compact sets in Rn become open neighbourhoods of ∞, 
which makes Rn ∪ {∞} homeomorphic to Sn. A homeomorphism is given by inverse stereo-
graphic projection centred at, say, the ‘south pole’ (0, . . . , 0,−1); compare (B.2):

Rn � x �→ X =

(
2x

1 + x2 ,
1 − x2

1 + x2

)
∈ Sn ⊂ Rn+1.� (12)

An important property of stereographic projections is that balls in Rn are mapped to spherical 
caps in Sn5. Consequently we can use Lie sphere geometry to also describe the configura-
tions of balls, or oriented hyperspheres, in Rn. As before, the n-sphere can be embedded into 

4 We thank Fay Dowker for pointing out this reference.
5 Images of balls in Rn under (12) are spherical caps not containing ∞. Spherical caps containing ∞ in their interior 
or on their boundary are images under (12) of closures of complements of balls and images of half-spaces, respec-
tively. This will be further discussed below.
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R(1,n+1) (to become the Möbius sphere) via ξ = (1, X), where X is a unit vector in Euclidean 
Rn+1, which is now to be expressed through x according to (12). A ball in Rn with centre p 
and radius r  >  0 is defined as the set of all points x satisfying

(x − p)2 � r2.� (13)

A short calculation shows that this is equivalent to

〈ξ,ω〉 � 0,� (14)

where

ω =

(
1 + p2 − r2

2r
,

p
r

,
1 − p2 + r2

2r

)
∈ R(1,n+1)� (15)

Figure 2.  Illustration of the bijection between spherical caps or oriented hyperspheres 
in the Möbius sphere Sn and points on dS(n+1), here for n  =  1. The picture shows 
various geometric objects embedded into (1 + 2)-dimensional Minkowski space: the 
2-dimensional (2D) light-cone is depicted in yellow, the 2D hyperboloid of unit spacelike 
vectors, i.e. 2D deSitter space, in green. The Moebius sphere is the intersection of the 
light-cone with an affine hyperplane (not shown in the diagram) of constant unit time, 
here depicted by the light-blue circle. Finally, the oriented timelike hyperplane through 
the origin is in dark-blue and its (oriented) normal by the black arrow, denoted by ω in 
the text, whose tip defines a point on the green hyperboloid. This point uniquely defines 
a spherical cap of—or oriented hypersphere in—the Moebius sphere. Note that the 
closure of the complement of the spherical cap is also a spherical cap bounded by the 
same but oppositely oriented hypersphere, and both are represented by −ω.
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is a spacelike unit vector in (n + 2)-dimensional Minkowski space R(1,n+1).
Note that the closure of the complement of the ball described by (13) is described by 

the reversed inequality, (x − p) 2 � r2, hence by 〈ξ,ω〉 � 0 instead of (14). Consequently,  
the complement of a ball represented by ω is represented by −ω, just as before. We can use 
the same representation (15) if we associate a negative radius r  <  0 to these sets. Hence, a 
Lie vector ω can represent either a ball (with positive and negative radius) using (15) or a 
spherical cap via (7).

However, not all points on de Sitter space can be parametrised by (15); we are missing 
those which are parametrised by

ω = (−d, n, d) ,� (16)

where n2 = 1. If we consider the scalar product 〈ξ,ω〉 � 0, we obtain

n · x � d.� (17)

This is a half-space in Rn with a boundary plane with outward-pointing normal n and distance 
d from the origin. It can be shown that these half-spaces correspond to caps containing the 
south pole on their boundary. Hence, half-spaces can be interpreted as balls just touching 
infinity with their boundary. Altogether, there is a bijective correspondence between spherical 
caps on Sn on one side, and balls, their complements, and half-spaces in Rn on the other. We 
will use this fact to visualise caps on the 3-sphere as the corresponding objects in R3. The 2D 
case is shown in figure 3.

2.3.  Intersecting caps, or oriented hyperspheres, and descartes configurations

From (15) we can easily calculate the Minkowskian inner product between two vectors ω1 
and ω2 in R(1,n+1) representing balls with parameters (p1, r1) and (p2, r2), respectively. The 
result is

〈ω1,ω2〉 =
r2

1 + r2
2 − ‖p1 − p2‖2

2r1r2
= ±1 +

(r1 ∓ r2)
2 − ‖p1 − p2‖2

2r1r2
.� (18)

Here the second equality holds either with both upper or both lower signs in the terms on the 
right-hand side. It immediately shows that 〈ω1,ω2〉 ∈ [−1, 1] iff

|r1 − r2| � ‖p1 − p2‖ � |r1 + r2|,� (19)

with 〈ω1,ω2〉 = −1 for ‖p1 − p2‖ = |r1 + r2| and 〈ω1,ω2〉 = 1 for ‖p1 − p2‖ = |r1 − r2|. 
It is geometrically clear that if ‖p1 − p2‖ > |r1 + r2|, i.e. if 〈ω1,ω2〉 < −1, the balls repre-
sented by ω1 and ω2 are disjoint; and that they just touch at a single boundary point, with 
oppositely pointing normals, if ‖p1 − p2‖ = |r1 + r2|, i.e. if 〈ω1,ω2〉 = −1. Moreover, if 
‖p1 − p2‖ < |r1 − r2|, i.e. if 〈ω1,ω2〉 > 1, then either the ball represented by ω1 is entirely 
contained in the interior of that represented by ω2 (case r1 < r2) or vice versa (case r2 < r1). 
For ‖p1 − p2‖ = |r1 − r2|, i.e. 〈ω1,ω2〉 = 1, one ball is contained in the other with their bound-
aries touching at a single point with parallely pointing normals.

This shows that (19) is just the necessary and sufficient condition for the oriented bound-
ary spheres of the balls to intersect. The angle between the normals at an intersection point is 
clearly independent of the intersection point and referred to as the intersection angle of the 
spheres. Applying the law of cosines to the triangle with vertices p1, p2, and an intersection 
point of the spheres with radii r1 and r2 centered at p1 and p2, respectively, immediately gives

‖p1 − p2‖2 = r2
1 + r2

2 − 2r1r2 cos(γ12),� (20)

M Fennen and D Giulini﻿Class. Quantum Grav. 37 (2020) 065007
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where γ12 is the angle of the triangle at the intersection vertex, which is just the intersection 
angle of the spheres. Using (20) in the first equality of (18) leads to the simple formula

〈ω1,ω2〉 = cos(γ12).� (21)

In particular, 〈ω1,ω2〉 = 0 means that the spheres intersect orthogonally, whereas 〈ω1,ω2〉 = 1 
and 〈ω1,ω2〉 = −1 means that the spheres just touch tangentially with one containing the 
other in the first, and disjoint interiors in the second case.

On the n-sphere it is possible to find sets of (at most) n  +  2 pairwise tangent caps. Such a 
set {ωa : a = 1, . . . , n + 2} is called a Descartes set, in view of Descartes’ circle theorem for 
four circles in flat two-dimensional space R2, giving a relation between the radii. The gener-
alisation to higher dimensions was given by Soddy [39] and Gosset [27] in form of poems! 
There are several formulae which also include the centres and extensions to other constant-
curvature spaces [35]. Lie sphere geometry provides an elegant and powerful unification of 
all these results.

Indeed, the caps of a Descartes set have to satisfy

〈ωa,ωb〉 = 2δab − 1� (22)

because 〈ωa,ωa〉 = 1 for all Lie vectors and 〈ωa,ωb〉 = −1 if a �= b as condition for touching 
at one point. Writing the Descartes set as a square (n + 2)× (n + 2) matrix W  whose rows 
are the components of the vectors ωa, that is, W� = (ω1, . . . ,ωn+2), we obtain the equivalent 
to (22):

WηWT = G,� (23)

where η = diag(−1, 1, . . . , 1) is the Minkowski metric and Gab = 2δab − 1. Simply inverting 
(23) leads to (matrices with components (2δab − 1) are non-singular in dimensions higher 
than two):

WTG−1W = η,� (24)

which is known as the unified generalised Descartes theorem containing formulae for centres 
as well as radii [35]. We shall be no more explicit at this point. But we think that the simple 

Figure 3.  A Lie vector describes either a spherical cap or a ball/half-space.
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half-page argument leading to (24), comprising the most general statement on the general 
Descartes’ theorem, impressively demonstrates the ability of Lie sphere geometry.

Using the inverse of G , we can define a set of dual caps (compare [40]) τ a via

τ a := κ

n+2∑
b=1

(G−1)ab ωb,� (25)

where κ2 = 2n
n−1

 is needed for normalisation such that 〈τ a, τ a〉 = 1. The components of the 
inverse matrix G−1 are given by (G−1)ab = 1

2

(
δab − 1

n

)
. The dual caps satisfy

〈τ a, τ b〉 =
n δab − 1

n − 1
� 1,� (26)

〈τ a,ωb〉 = κ δab,� (27)

showing that the cap τ a is orthogonal to all caps ωb, b �= a. Furthermore, the dual caps overlap 
in more than two dimensions, as the first equation shows.

2.4.  Apollonian groups and the generation of Apollonian packings

The dual set just introduced can now be used to construct new spheres tangent to a given 
Descartes set. For this we define the mapping Iτ a acting on the set of all Descartes sets via

ω′
b = Iτ aωb = ωb − 2 〈ωb, τ a〉 τ a.� (28)

In Minkowski space R(1,n+1) it corresponds to a reflection in the timelike hyperplane with 
unit normal τ a. Hence we have ω′

b = Iτ aωb = ωb if b �= a, since 〈ωb, τ a〉 = 0, since ωb 
lies in the hyperplane of reflection, which is clearly pointwise fixed. It can be easily verified 
that the set {Iτ aωa,ωb : b �= a} forms a new Descartes set. Being reflections, the maps Iτ a 
clearly preserve the Minkowski inner product, i.e. they are Lorentz transformations, so that 
〈Iτ aωb, Iτ aωc〉 = 〈ωb,ωc〉. It can be shown that these maps also act on Sn and Rn by consid-
ering their points as spheres of radius zero. The hyperplane reflection Iτ a then becomes an 
inversion on the sphere that is the boundary of the ball represented by τ a. Let us recall that in 
Rn the map that inverts at a sphere with centre p and radius r is simply given by

x �→ x′ := p +
r2

‖x − p‖2 (x − p) .� (29)

In passing we make the cautionary remark that whereas inversions map balls and spheres to 
balls and spheres, their centres will not be images of each other. For us a truly remarkable 
property will be important: namely that this correspondence of maps relates the non-linear 
inversion (29) to the linear hyperplane reflection (28). This will simplify calculations consid-
erably and once more exemplifies the power of Lie sphere geometry, which gives a unified 
description for the flat and spherical case, which includes points and caps, as well as balls and 
half-spaces; see figure 4.

The mapping (28) {ωa} �→ {ω′
a = Iτ bωa} can also be written as follows

ω′
a =

∑
c

(Ab)ac ωc = ωa, a �= b,� (30)

ω′
b =

∑
c

(Ab)ac ωc = −ωb +
2

n − 1

∑
c�=b

ωc,� (31)
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where Ab are the so-called Apollonian matrices. For example, in two and three dimensions, 
A1 takes the form

A1 =




−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1


 , A1 =




−1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.� (32)

The group A = 〈A1, . . . , A5〉 generated by the Apollonian matrices is called Apollonian group 
and was studied in [28–30]. It is a sub-group of the automorphism group of G−1, that is, 
AtG−1A = G−1, A ∈ A. Equation  (24) shows that the Apollonian group is conjugate to a 
sub-group of the Lorentz group. The inversions I  act from the left on Wt, whereas elements A 
of the Apollonian group act from the left on W .

For n  =  2 and n  =  3, an orbit of the Apollonian group gives an ‘almost-covering’ of the 
n-sphere with non-overlapping spherical caps. This ceases to be true in higher dimensions 
because the Apollonian groups consists of integer matrices only in two and three dimensions. 
The residual sets of points not contained in any cap form fractals of Hausdorff dimension 
1.3057 (n  =  2) [28] and 2.4739 (n  =  3) [7, 30]. Since the Lorentz group acts transitively on 
the set of all Descartes sets, one might say that there is only one Descartes set, and conse-
quently only one Apollonian packing, up to Lorentz transformations.

The advantage in using the inversions Iτ b rather than the Apollonian matrices Ab is that 
the former can act on single caps whereas the latter can only act on Descartes sets W . For this 
reason they are more useful for numerical calculations of Apollonian packings. Note that the 

Figure 4.  First iteration of a 2D Apollonian packing: initial set in black, dual set in red 
and reflected set in blue.
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representation of the inversion matrices Iτ a depends on the chosen Descartes set, whereas the 
Apollonian matrices are defined independently of any such choice.

In order to construct an Apollonian packing in two/three dimensions, we start with an ini-
tial Descartes set of four/five pairwise tangent caps on the 2-sphere/3-sphere. For this set we 
calculate the dual caps and determine the inversion matrices I . We can iteratively generate the 
Apollonian packing if we apply the inversions with respect to the initial dual set to all caps 
generated in the previous step, where the zeroth iteration is the initial set. This way we fill up 
the whole 2-sphere. However, in three dimensions, we generate several caps multiple times 
due to the overlapping of the dual caps. For our purposes and for numerical efficiency, we have 
to remove the duplicates. This we achieve by dividing the dual caps into target regions in such 
a way that each point is associated to only one target region. Therefore, we construct further 
caps whose boundaries cross the intersection points of the dual caps. New caps are accepted 
only if their centre lies within the target region of the inversion. This can easily be tested using 
the scalar product with the dividing caps. Remarkably, it is possible to calculate the exact posi-
tions and sizes of the caps without numerical errors since the coordinates take integer values. 
The stereographic projection of the Apollonian packing based on the regular pentatope (the 
four-dimensional analogue of the tetrahedron) is shown in figure 5.

In order to obtain more uniform packings without very big caps, as we, e.g. want to have 
for Friedmann-like configurations, it is possible to modify this procedure. To achieve this, we 
take the complement of a big cap and four new caps inside the former interior of the big cap, 
such that we obtain a new Descartes set. Now we repeat the procedure described above and 
generate another Apollonian packing in the former interior. In a final step, the complement of 
the original cap is removed. This is shown in figure 6. This procedure can be applied to all caps 
which are too big. Since all Apollonian packings are related by a Lorentz transformation, it is 
possible to construct a transformation which can be applied to the original packing and maps 
all caps except for one, which becomes the exterior, into the interior of a big cap.

3.  Swiss-cheese models

We already mentioned in the introduction the so called swiss-cheese models for inhomo-
geneous cosmologies, the construction of which goes back to a seminal paper by Einstein 
and Straus [20]. Their construction is based on Friedmann dust universes in which spherical 
regions of dust are removed and replaced by exterior Schwarzschild geometries. Hence, the 
global behaviour of such a space-time is still given by the Friedmann equations but locally 
there are regions which are static and not influenced by the cosmic expansion. As we will use 
these models for comparison, we want to start by recalling how they are constructed. We use 
units in which G  =  c  =  1, so that lenghts, times, and masses share the same unit. We will also 
restrict attention to spherical (positively curved) dust universes.

A spherical dust universe is described by the Friedmann–Lemaître–Robertson–Walker 
metric

g = −dt2 + a2(t)
(
dχ2 + sin2 χ dΩ2) .

� (33)
The spatial part is a round 3-sphere with a time-dependent radius a(t), called scale factor. The 
latter is determined by the first Friedmann equation, here for Λ = 0,

ȧ2

a2 =
8πC
3a3 − 1

a2 ,� (34)
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Figure 5.  Pentatope-based Apollonian packing with 1424 790 spheres.

Figure 6.  Construction of more uniform packings: a big circle (red) is replaced by a 
smaller Apollonian packing.
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where C is constant. Moreover, space is filled with spatially homogeneous dust, that is, an 
ideal fluid with vanishing pressure, p ≡ 0, and density given by

ρ(t) =
C

a3(t)
.� (35)

Since the volume of the 3-sphere V(t) = 2π2a3(t) is finite, it is possible to define a total mass 
via M = ρ(t)V(t) = 2π2ρ(t)a3(t) = 2π2C  which is constant due to (35). The first Friedmann 
equation (34) can be solved and the well-known solution in parametric form is given by

a(η) =
4πC

3
(1 − cos η),� (36)

t(η) =
4πC

3
(η − sin η),� (37)

where η ∈ (0, 2π). Hence, the scale factor follows a cycloid. The universe starts with a big 
bang and expands to a maximal size a0 = a(η = π) = 8πC

3 . Then it recollapses and finally 
ends in a big crunch. It follows that the total mass is given by

Mtot =
3π
4

a0.� (38)

We cut out the interior of a sphere centred at the north pole in the dust universe with areal 
radius R = a(t)χ0, where χ0 = const. Note that the amount of dust within that sphere is 
independent of t. We now replace the interior geometry, which had been of constant positive 
curvature, by that of an exterior Schwarzschild space-time describing a black-hole with mass 
m. The latter is given by

g = −
(

1 − 2m
r

)
dT2 +

(
1 − 2m

r

)−1

dr2 + r2 dΩ2.� (39)

In these coordinates, the areal radius is just R  =  r. In order for this replacement to result in 
a regular solution to Einstein’s equations, we have to satisfy the Israel junction conditions 
[31]. For spherically symmetric space-times, these conditions have been shown in [12] to be 
equivalent to the equality of some physically intuitive quantities on both sides of the matching 
spheres along which the two spac-times are glued together. According to [12] it is, in our case, 
sufficient to check the equality of together:

	 (i)	�the areal radius R,
	(ii)	�the Misner–Sharp mass M.

Note that the areal radius R is a function defined on any spherically symmetric space-time, 
the value of which at a given point p  is defined to be R( p) :=

√
A( p)/4π , where A( p) is 

the 2D volume of the SO(3) orbit containing p 6. We note the following general expression 
of the Misner–Sharp mass in terms of the areal radius, the latter considered as a smooth 
function on space-time (assigning to each space-time point the 2D area of the SO(3) orbit 
passing through it)

M =
R
2
(
1 − g−1 (dR, dR)

)
.� (40)

6 We recall the definition of spherical symmetry: a space-time is called spherically symmetric if it allows for an ef-
fective SO(3) action by isometries whose generic orbits are spacelike 2-spheres.
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Equality of areal radii just means equality of the surface areas of the respective SO(3) orbits 
that are to be identified. Equality of the Misner–Sharp masses then means that the norms of 
the differentials dR on these orbits to be pairwise identical same. Now, from (33) and (39) 
one immediately reads off that for the FLRW and Schwarzschild geometry the areal radii are 
respectively given by

RFLRW = a(t) sinχ,� (41)

RSchw = r.� (42)

Using this and the expression (40) for the Misner–Sharp mass, one immediately deduces that 
for FLRW and Schwarzschild the latter is respectively given by

MFLRW =
1
2

a(t)
(
ȧ2(t) + 1

)
sin3 χ =

a0

2
sin3 χ,� (43)

MSchw = m,� (44)

where in the second equality of the first equation for MFLRW we have used (34) and that the 
constant C is related to the maximal scale factor a0 through a0 = 8πC/3, as already seen above.

Equality of (43) and (44) tells us that if a spherical cap of normalised geodesic radius χ 
(in units of a(t)) is removed from the FLRW universe and replaced by a Schwarzschild black-
hole, the mass of the latter is given by

m =
1
2

a0 sin
3 χ.� (45)

Equality of (41) and (42) then tells us that the areal radius of the vacuole without dust, in 
which the metric is just (39), is

r = a(t) sinχ.� (46)

It is time dependent because its boundary is clearly co-moving with the dust. The geometry 
inside this co-moving vacuole is strictly static

This procedure can be repeated for arbitrarily many black-holes, as long as as the 
Schwarzschild regions do not overlap. If we imagine the dust universe as cheese and the 
Schwarzschild regions as holes therein, the intuitive image of a ‘swiss-cheese’ becomes obvi-
ous. We can now construct general swiss-cheese models by generating Apollonian packings 
as described above. Every spherical cap of size χ is then turned into a Schwarzschild cell with 
a black-hole at the centre, whose (Misner–Sharp) mass equals that of the removed dust and 
which is hence determined by (45). Continuing in this fashion by filling in more and mode non 
overlapping spherical caps with static vacuum Schwarzschild geometries leaves us with as lit-
tle dust matter as we please, and yet the time evolution outside the vacuoles is still exactly as 
in FLRW. We expect that a proper vacuum solution to Einstein’s equations should be similar 
to a corresponding swiss-cheese model, which will serve us as a reference model.

4.  Exact vacuum initial data

We wish to compare the swiss-cheese model with an exact vacuum solution with black-holes 
of the same masses at the same positions. And, as outlined in the introduction, the philoso-
phy behind that is to eventually replace inhomogeneous matter distributions by inhomoge-
neous distributions of black-holes, in which case the time evolution is given by Einstein’s 
vacuum equations. The hope connected with that procedure is to eventually achieve significant 
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simplifications in the analytical and numerical treatments, even though exact analytic time 
evolutions to the initial data representing many black-holes are not known. For the moment 
we are content with the fact that it is possible to analytically construct exact initial-data on a 
spacelike hypersurface of constant time representing general multi black-hole configurations.

In the 3  +  1-formulation of general relativity, we consider time-evolving tensors on a three-
dimensional (3D) manifold instead of tensors on space-time. This corresponds to a foliation of 
space-time by spacelike hypersurfaces and tensor fields restricted to these. The fundamental 
fields in this theory are the spatial metric h and the extrinsic curvature K, both of which are 
symmetric, purely covariant (all indices down) second-rank tensors. For a general overview 
of this formalism and the classic references refer to [26], and to [3] for a comprehensive book 
and its use in numerical relativity.

In general relativity, initial data cannot be chosen freely but they have to satisfy the 
Hamiltonian and the momentum constraint, which in vacuum (Tµν = 0) and vanishing cos-
mological constant read

Rh + K2 − Ka
bKb

a = 0,� (47)

∇bKb
a −∇aK = 0.� (48)

Here Rh and ∇ are the Ricci scalar and Levi-Civita covariant derivative with respect to the 
spatial metric h, respectively, and K = habKab is the trace of K with respect to h. As initial 
hypersurface, we take a time-symmetric hypersurface characterised by the vanishing of the 
extrinsic curvature, K ≡ 0. This corresponds to a state in which the black-holes are momen-
tarily at rest. Such a solution should correspond to a dust universe at the moment of maximal 
expansion, when the scale factor becomes a0. For time-symmetric initial data, the momentum 
constraint (48) is satisfied identically and the Hamiltonian constraint (47) reduces to the con-
dition of scalar-flatness for the metric h. To satisfy the latter, we make the conformal ansatz

h = Ψ4 h̃� (49)

and read the condition for scalar-flatness as condition for Ψ, whereas the conformal metric 
h̃ remains freely specifiable. As will be discussed in more detail below (compare (56)), this 
leads to an elliptic differential equation for Ψ, usually referred to as Lichnerowicz equation, 
which in our case reads:

∆̃Ψ− 1
8
R̃Ψ = 0.� (50)

Here ∆̃ = h̃ab ∇̃a∇̃b is the Laplacian with respect to the conformal metric h̃. In view of the 
cosmological solution (33), the conformal metric is chosen to be that of a round unit 3-sphere7

h̃ = hS3 = dχ2 + sin2 χ dΩ2,� (51)

where (χ, θ,ϕ) are 3D polar angles and dΩ2 := dθ2 + sin2(θ) dϕ2 is the metric of the round 
unit 2-sphere S2

1. The Ricci scalar of (51) is given by R̃ = 6 so that the Lichnerowicz equa-
tion (50) simply becomes

∆̃Ψ− 3
4
Ψ = 0.� (52)

Remarkably, this differential equation is linear so that the set of solutions is a linear space and 
the superposition principle applies. Note also that solutions cannot be globally regular on S3 

7 Here and in the sequel S3 always refers to the unit 3-sphere.
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and must diverge somewhere. (Proof: multiply (52) with Ψ and integrate over S3. Assuming 
regularity, the integral on the left is shown to be strictly negative after integration by parts 
without boundary terms, unless Ψ ≡ 0; a contradiction!) The non-regular points will be 
removed without introducing any (geodesic- and Cauchy-) incompleteness in the manifold 
S3 − {non regular points} with Riemannian metric h. This is because the diverging Ψ will 
send the non-regular points to an infinite distance with respect to the metric h = Ψ4h̃. After 
point excision, the remaining neighbourhood of each point is an asymptotically flat end of the 
initial-data 3-maifold and represents a black hole.

4.1. Time symmetric multi black-hole solutions to Lichnerowicz equation

Linearity allows to give solutions to (52) for an arbitrary number of black-holes. They are 
easily written down if we think of the unit S3 embedded in Euclidean R4. If we write X for 
the point of the 3-sphere (which one may think of as being parametrised by, say, the polar 
angles (χ,ϑ,ϕ) or, alternatively, Euler angles (ψ,ϑ,ϕ), if one prefers to think in terms of 
coordinates, though we will not make use of such coordinatisations) and ‖ · ‖ for the standard 
(Euclidean) norm of R4, the solution for a number N of black-holes is then given by

Ψ(X) =

N∑
i=1

µi

‖X − Pi‖
.� (53)

The solution property for each of the N terms is proven in detail in (A.1), as a special case of 
a more general theorem that works in all dimensions. Figure 7 provides an illustration of the 
graph for the function (53).

The point Pi ∈ S3 corresponds to the ‘position’ of the ith black-hole and the parameters µi 
are related to the masses by the expressions

mi = 2
N∑

j=1
j�=i

µjµi

‖Pj − Pi‖
(1 � i � N),� (54)

which we will derive below. The N points Pi where the solution diverges are removed from 
the manifold without introducing any incompletenesses. In fact, for X → Pi the metric is 
asymptotically flat and we will refer to this region as an ‘end’8. Topologically the manifold is 
the N-fold punctured S3. This solution is also discussed in [17] and [5] in slightly different but 
equivalent presentations. Our presentation (53) makes use of the simple embedding geometry 
of R4, which leads to simpler expressions and is much better adapted to later applications of Lie 
sphere geometry. But for completeness and comparison we note that the R4-distance ‖X − Y‖ 
and the intrinsic geodesic distance (compare (2)) Λ = Λ(X, Y) := arccos(X · Y) between two 
points X and Y  on S3 are simply related by ‖X − Y‖ =

√
2(1 − cos(Λ)) = 2 sin(Λ/2). This 

is the way the solution was recently presented and discussed in [5, 18], with generalisation to 
non-vanishing cosmological constant in [19].

4.2.  Isometry to Brill–Lindquist data

It is instructive to note that the solution just found is just the same (i.e. isometric to) as the 
good old Brill–Lindquist initial data sets [9] for (N − 1) black-holes in an asymptotically flat 
3-manifold the topology of which is that of a (N − 1)-fold punctured R3. In fact, there are N 

8 The notion of ‘end’ for a topological space was introduced by Freudenthal [23]. Roughly speaking, an end is a 
connected component in the complement of arbitrarily large compact sets.
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isometries of our solution to such Brill–Lindquist sets, given by the stereographic projections 
π : S3 − {P} → R3, where the pole P  of the projection is chosen to be any of our black-hole 
positions Pi, followed by a constant rescaling x �→ x′ := (µ2

i /2) x.
Before writing out the details of this isometry, let us point out that its existence is obvious 

from the conformal properties of the Laplacian and the conformal flatness of the metric hS3 of 
the unit 3-sphere, expressed in formula (B.9) of appendix B. Quite generally, the following is 
true (see, e.g. [26] for proofs and further details): let (M, g) be a (Semi-) Riemannian manifold 
of dimension n  >  2 and consider on C∞(M,R) the g-dependent linear differential operator 
(sometimes called the ‘conformal Laplacian’)

Dg := ∆g −
n − 2

4(n − 1)
Rg,� (55)

where ∆g and Rg denote the Laplacian and Ricci scalar with respect to g, respectively. Let MΩ 
denote the linear operator in C∞(M,R) that multiplies each element with Ω ∈ C∞(M,R+). 
Then the following relation holds:

D
Ω

4
n−2 g

= M
Ω

− n+2
n−2

◦ Dg ◦ MΩ.� (56)

In n  =  3 dimensions we have Dg = ∆g − (1/8)Rg. Equation (56) and conformal flatness9 of 
the unit-sphere metric, i.e. hS3 = Ω4hR3, immediately imply that if Ψ is in the kernel of DhS3, 
i.e. solves (52),then Ω ·Ψ is in the kernel of DhRn = ∆hRn and hence harmonic. The latter are 

9 Here and in the sequel R3 denotes flat Euclidean 3-space endowed with with its natural coordinates xa in which the 
flat metric is hR3 =

∑3
a=1 dxa ⊗ dxa = dx⊗̇dx.

Figure 7.  Plot of the function Ψ given in (53) over the 3-sphere, here represented 
as 2-sphere. It diverges at the N poles Pi which are deleted from the manifold. 
Neighbourhoods of the deleted points where Ψ is large then correspond to asymptotically 
flat ends, of which there are N, and which are geodesically complete.
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the solutions to the Lichnerowicz equation in the conformally flat Brill–Lindquist case, the 
former are our solutions in the conformally spherical cosmological case. Hence we see that 
they are just related by multiplication with (a constant multiple of) Ω. This we will now show 
more explicitly.

We are interested in the explicit form of this isomorphism, for that will provide analytic 
expressions relating the parameters µi with the familiar expressions for the ADM-masses 
of the black-holes. For the reader’s convenience we have collected the relevant facts and 
formulae concerning stereographic projections and its metric properties in appendix B in an 
essentially coordinate independent form. Given these formulae, the explicit proof of isometric 
equivalence is easy. We write (49) with h̃ = hS3, replace hS3 according to (B.9) with the flat 
metric hR3 and replace Ψ with the right-hand side of (53); this gives:

h =

(
N∑

i=1

µi

‖X − Pi‖

)4
‖X − P‖4

4
hR3 .� (57)

Now we choose any of the black-hole ‘positions’ Pi as center P  for the stereographic projec-
tion, say P = PN . Then

h =

(
1 +

N−1∑
i=1

µi

µN

‖X − PN‖
‖X − Pi‖

)4
µ4

N

4
dx⊗̇dx.� (58)

Setting P = PN  and Y = Pi in equation (B.6) of appendix B shows that

‖X − PN‖
‖X − Pi‖

=
2

‖Pi − PN‖
· 1
‖x − pi‖

,� (59)

where x and pi are the images of X and Pi under the stereographic projection. Hence (58) can 
be rewritten into

h =

(
1 +

N−1∑
i=1

λi

‖x′ − p′i‖

)4

dx′⊗̇dx′,� (60)

where x′ := (µ2
N/2) x, p′

i := (µ2
N/2) pi, and

λi :=
µiµN

‖Pi − PN‖
.� (61)

Equation (61) are precisely the Brill–Lindquist data for (N − 1) black-holes at positions 
p′

i = (µN/2)π(Pi). The manifold is Σ := R3 − {p′1, · · · , p′N−1} with coordinates x′ with 
respect to which the initial metric is the canonical flat metric dx′ · dx′. The Riemannian mani-
fold (Σ, h) is complete with N asymptotically flat ends, one for ‖x′‖ → ∞ (spacelike infinity) 
and (N − 1) ‘internal’ ones, one for each x′ → p′i, where i = 1, · · · , (N − 1).

4.3.  ADM masses

Quite generally, an ADM mass can be associated to any asymptotically flat end of a 3-manifold 
in a purely geometric fashion [1]; for applications compare also [26]). The invariant geometric 
character of this association allows to compute the ADM mass in suitable coordinates. A con-
venient way to do this is to asymptotically put the metric towards the flat end into the form of 
the spatial part of the exterior Schwarzschild metric in so-called isotropic coordinated (which 
also manifestly display conformal flatness). Then the metric takes the form
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hSchw =
(

1 +
m
2r

)4
(dr ⊗ dr + r2 hS2),� (62)

where m is the ADM-mass in geometric units (i.e. m  =  GM/c2, where M is the mass in SI-units) 
and hS2 denotes the standard round metric on the unit 2-sphere.

In our case, there is one such ADM mass for each of the N ends of (Σ, h). That at spa-
tial infinity we call mN, for on S3 it corresponds to the black-hole at PN . Here, in the Brill–
Lindquist picture, it corresponds to the total mass/energy of space-time, that is composed of 
all the contributions of all (N − 1) black-holes, diminished by the (negative) binding energy 
(compare the discussions in [9] and [26]). Direct comparison of (60) for ‖x′‖ → ∞ with (62) 
immediately gives

mN = 2
N−1∑
i=1

λi = 2
N−1∑
i=1

µiµN

‖Pi − PN‖
.� (63)

The other masses can also be directly computed within the same stereographic projection, as 
we will show next. However, we can, in fact, immediately tell the result without any further 
calculation. This is true because we could have chosen any of the points Pj  as centre for the 
stereographic projection, which would have resulted in the corresponding formula to (63), 
with j , rather than N, being the distinguished index. This indeed just leads to (54).

Despite this latter argument is elegant and certainly correct, we still wish to show how one 
arrives at the same result within the same stereographic projection centred at PN . The reason 
is that this calculation is instructive insofar as it shows how a well known expression for 
black-hole masses in the conformally flat Brill–Lindquist approach are rendered much more 
symmetric in the conformally spherical cosmological approach discussed here. The direct 
calculation proceeds as follows: for any 1 � i � (N − 1) choose ‘inverted’ spherical polar 
coordinates (ρi, θ,ϕ) based at p′

i , where ρi := λ2
i /‖x′ − p′i‖. The limit x′ → pi  then corre-

sponds to ρi → ∞. In these coordinates the metric then assumes the form (62) with r = ρi and

m = mi := 2λi

(
1 +

∑
j�=i

λj/‖p′
j − p′

i‖
)

(1 � i � (N − 1)).� (64)

This formula for the mass of a single hole in the metric (60) is well known from [9]. Now, 
replacing all λi according to (61), setting ‖p′

j − p′
i‖ = µ2

N/2‖pj − pi‖ and replacing ‖pj − pi‖ 
by means of (B.6) with x = pi , y = pj, and P = PN  then gives indeed (54). Note that the 
(N − 1) expressions (64) for the individual holes all look the same, but clearly different from 
the expression given by the first equality in (63) for the overall energy of all (N − 1) holes taken 
together, whereas in the conformally spherical cosmological picture the (N − 1) + 1 = N 
expressions (54) are again symmetric.

4.4.  Geometry and topology

Finally we wish to mention a few more aspects in connection with the geometry and topol-
ogy of the initial-data surface Σ := R3 − {p′1, · · · , p′N−1} in the Brill–Lindquist picture. Its 
geometry is conformally flat, h = Ψ4hR3, where Ψ satisfies Laplace’s equation ∆R3Ψ = 0, 
which is what Lichnerowicz’s equation reduces to in this case. The solution given in (60), i.e.

Ψ(x′) = 1 +

N−1∑
i=1

λi

‖x′ − p′i‖
,� (65)
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is essentially a sum of (N − 1) monopoles without contributions from higher multipoles. One 
might wonder why higher multipoles were excluded. The answer is that any such higher mul-
tipole would render the metric h incomplete (Ψ acquires zeros). Without higher multipoles, 
each monopole renders the manifold asymptotically flat in a neighbourhood of its location 
p′

i  and introduces one end to which an ADM mass can be associated. Also associated to each 
end is an outermost (as seen from the end) minimal surface which, since we consider time-
symmetric initial data, is an apparent horizon. In that sense the initial data set contains (N − 1) 
black-holes. Note also that Σ is connected and simply connected, but with non-trivial second 
homology group given by

H2(Σ,Z) = ZN−1,� (66)

which in this case (i.e. due to simple connectedness) is also isomorphic to the second homo-
topy group π2(Σ). Each of the (N − 1) factors Z in (66) is generated by one of the apparent 
horizons. There may be additional minimal surfaces corresponding to other elements of (66), 
like the sums of generators, which enclose the corresponding set of black-holes if their posi-
tions are chosen sufficiently close together (the individual holes may then be said to have 
merges into a composite black-hole). In the extreme case, where all the (N − 1) holes are suf-
ficiently close, there will be an Nth minimal surfaces enclosing all of them and corresponding 
to the sum all all generators in (66). This is the situation we have in mind if we speak of N 
black-holes on the 3-sphere. But note that in our original conformally spherical picture, add-
ing just a single pole results in flat space without any black-hole and adding two poles merely 
results in the outer Schwarzschild geometry representing a single hole. For N  >  2 poles the 
data result in at least N  −  1 black-holes, and possibly N if the data are suitably chosen.

Finally we remark that the solution corresponding to the swiss-cheese model is obtained 
if we take the centres of the spherical caps for Pi and the mass parameters are obtained by 
solving the coupled system (54) of quadratically equations for µi, which can be done only 
numerically.

5.  Unifoamy configurations

We have two solutions with Schwarzschild(-like) black-holes of the same masses at the same 
positions: the swiss-cheese model at the moment of maximal expansion and the initial data. 
Which Friedmann dust universe approximates such a solution best? In the former case, we 
simply take the dust universe of the model. In the latter case, we expect a similar value if most 
of the dust in the corresponding swiss-cheese model is removed. Clearly, not every configura-
tion of black-holes resembles a Friedmann dust universe. Therefore, the black-holes should be 
distributed somehow evenly on the 3-sphere. However, there is no general notion on a uniform 
distribution of points on the 3-sphere and the definition of uniformity depends on the problem. 
Our approach is as follows: the mean inverse distance between two points in a uniform density 
distribution, ρ = const, is given by

〈
1

‖Pi − Pj‖

〉
=

1
2π2

∫ π

0
dχ

∫ π

0
dϑ

∫ 2π

0
dϕ sin2 χ sinϑ

1√
2(1 − cosχ)

=
8

3π
,

� (67)
using a coordinate system such that one point is located at the north pole. For a discrete con-
figuration of equal black-holes, we simply demand the discrete analogue, namely
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〈
1

‖Pi − Pj‖

〉
=

1
N

∑
j�=i

1
‖Pi − Pj‖

=
8

3π� (68)

for all points Pi. In the general case, we weight the inverse distances with the mass parameters, 
yielding

〈
1

‖Pi − Pj‖

〉
=

1∑
k �=i µk

∑
j�=i

µj

‖Pi − Pj‖
=

8
3π

.� (69)

If we multiply this equation with 2µi, we obtain after a rearrangement

mi =
∑
j�=i

2µiµj

‖Pi − Pj‖
=

16
3π

∑
j�=i

µiµj.� (70)

Hence, our condition for Friedmann-like configurations constrains the mass of each black-
hole which is now essentially determined by its mass parameter irrespectively of the posi-
tions of all other black-holes on the 3-sphere in this case. This condition also guarantees 
that the black-holes are not too close to each other. We call configurations satisfying (70) 
unifoamy since it seems that the corresponding swiss-cheese model consists of evenly distrib-
uted Schwarzschild cells or, illustratively, a uniform foam of Schwarzschild bubbles. This is 
illustrated in figure 8. In passing we note that unifoamy configurations can be related to cen-
tral configurations; compare [2] for the general notion and [21] for applications to Newtonian 
cosmology. Central configurations come into play if, for a fixed set of parameters µi, we ask 
for the set of positions Pi on S3 for which the sum of masses mi according to (70), i.e. the func-
tion 

∑
i

∑
j�=i 2µiµj/‖Pi − Pj‖, takes its minimal value. Adding the N constraints P2

i − 1 = 0 
with N Lagrange multipliers λi and carrying out the variation with respect to each position 
Pi and each multiplier λi results in equations which for λi = Cµi turn into the equations for 
central configurations [22].

In order to be similar to a spherical Friedmann dust universe, we have to fit two parameters: 
the size a0 and the total mass M. We set the total mass of the black-holes to M =

∑
i mi. Since 

the size and the total mass of a spherical dust universe are related by (38), it appears to be 
natural to take this as the definition of the fitted size. Hence, we obtain for the size

A0 =
4

3π
M =

4
3π

∑
i

mi =
64

9π2

∑
i

∑
j�=i

µiµj.� (71)

For this reason, the total mass automatically fits to the dust universe and we only have to argue 
that our choice A0 for the size also fits. This means that, comparing the spatial metric of a dust 
universe with the one of the black-hole initial data, the deviation of Ψ2 from the fitted size A0 
should be small in the far-field region of the black-holes. Clearly, the deviation is large in the 
vicinity of the black-holes. We are not expecting that the space resembles a dust universe close 
to a black-hole in correspondence with our Universe in which local dynamics in the regime of 
galaxies strongly differ from the behaviour of the Universe on cosmic scales.

For a large number of black-holes, our result is approximately the same as that obtained by 
Korzyński by an ad-hoc averaging procedure [32]. He averaged the conformal factor Ψ over 
the 3-sphere with respect to the round metric, yielding

〈Ψ〉 = 1
2π2

∫

S3
Ψ dV =

64
9π2

∑
i,j

µiµj ≈ A0.� (72)
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Korzyński could give upper bounds for the deviation of the conformal factor from its average. 
The main parameters are the distance to the closest black-hole with respect to the round metric 
and the so-called modified spherical cap discrepancy E which is a quite abstract object and 
difficult to compute for a particular configuration. However, for particular configurations it is 
possible to estimate the cap discrepancy as follows. If we divide the 3-sphere in non-overlap-
ping regions Vi such that the whole 3-sphere is covered and each region contains a black-hole 
whose mass parameter is proportional to the volume of the region, µi = κ volVi, the spherical 
cap discrepancy is bounded from above by the largest diameter of all regions, that is,

E � max
i=1,...,N

diamVi,� (73)

where diamVi = supX,Y∈Vi
Λ(X, Y). If we consider a configuration which is generated by an 

Apollonian packing, it should be possible to slightly deform the spherical caps such that the 
estimate is still approximately valid and given by the largest size χ0 of all spherical caps,

E � 2χ0.� (74)

The mass of the black-holes is related to the size of the spherical cap by (45). If we substitute 
the size a0 by the total mass according to (38), now simply writing M instead of Mtot, and solve 
for the size χ, we obtain

χ = arcsin

[(
3π
2M

mi

)1/3
]

.� (75)

Figure 8.  Two-dimensional illustration of the Lindquist-Wheeler model of a unifoamy 
configuration (the central black-holes are not plotted). The cells are distributed quite 
evenly on the sphere, they are not too big and do not overlap too much. Since this pictures 
gives the impression of a uniform foam on a sphere, we called such configurations 
‘unifoamy’.
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Hence, a good estimate for the spherical cap discrepancy should be given by

E � 2κ arcsin

[(
3π
2M

maxmi

)1/3
]

.� (76)

Therefore, we expect for configurations of black-holes with similar masses, that the deviation 
of the conformal factor from its average decreases in most regions because the cap discrep-
ancy decreases with an increasing number of black-holes in this case. Since 〈Ψ〉2 ≈ A0, the 
same should hold for our fit A0. Hence, the space is almost round as it should be for a spherical 
dust universe. In particular, the minimum of the conformal factor Ψmin, which is taken in the 
far field of the black-holes, should be close to averaged value and therefore Ψ2

min ≈ A0.

6.  Comparison and discussion

Finally, we want to compare the different fits for the size to initial data configurations with 
the corresponding reference model. By this we mean the swiss-cheese model with black-holes 
located at the same positions and endowed with the same masses. For a good approximation, 
we expect that the fitted size is close to the size of the reference model, that is, the radius a0 of 
the dust universe in the swiss-cheese model.

We consider the configurations with black-holes on the centres Pi of the spheres in the 
Apollonian packings as presented above. The masses mi of the black-holes are given by the 
opening angles αi of the spherical caps via (45). The mass parameters µi for the initial data 
can only be obtained numerically by solving the system of quadratic equation (54). This takes 
by far most of the computational effort, so that we have to limit the number of black-holes to 
about 105.

First, we consider the configurations obtained from the pentatope-based Apollonian pack-
ings shown in figure 5. We calculate the different possibilities for the fitted radius:

	 (i)	�our suggestion A0 from (71) for unifoamy configurations,
	(ii)	�Korzyński’s averaged value 〈Ψ〉2,
	(iii)	�43πM  obtained from the total mass,
	(iv)	�the squared minimum of the conformal Ψ2

min.

The results for the first eight iterations of the pentatope-based Apollonian configurations are 
shown in figure 9. All values are given in units of the size a0 of the swiss-cheese dust universe. 
Hence, the best fit should approach the value 1. However, we observe that the values differ 
from each other substantially and none really approaches the dust universe size; although the 
unifoamy size (6) and the squared minimum (6) seem to approach this value, they actually 
miss it. Furthermore, our suggestion (6) differs strongly from the averaged value (6) but it is 
closer to the squared minimum. Note that Korzyński’s first theorem would give almost the 
same (large) upper bounds for the deviation from the minimum because the spherical cap 
discrepancy should not really differ for the different iterations because we keep the biggest 
caps. For unifoamy configurations, our suggestion should be close to the size (6) derived from 
the total mass, but this is not the case. Actually, if we check the unifoamy conditions (70) for 
all masses, we notice that they are violated by the biggest masses. Besides the spherical cap 
discrepancy, this indicates that very big masses are not possible for Friedmann-like configura-
tions. This is consistent with our expectation that the masses in Friedmann-like configurations 
should be distributed somehow uniformly. In the considered configurations, the five biggest 
masses contained about half of the total mass.
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In order to achieve a more uniform configuration, we substitute the biggest spheres by 
smaller ones, using the method described at the end of section 2. We recall that this means, 
first of all, to pick a Descartes set within each largest sphere, which we again choose to be 
that of a regular pentatope, i.e. spheres of equal size. (We recall that any other choice would 
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Figure 9.  Comparison between the different fits for the initial data with a swiss-cheese 
universe with size a0. In both cases, the configuration is given by the Apollonian 
packing discussed above such that the black-holes are located at the same positions 
with the same masses.
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Figure 10.  Modified Apollonian configurations such that the biggest masses are 
replaced by smaller black-holes. All five configurations contain about 12 000 black-
holes.
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be related to this one by a Lorentz transformation.) Based on that choice, we can now con-
tinue the Apollonian packing to the inside of each largest sphere, so as to reduce the largest 
sphere-size to that of the largest ones inside those that formerly had been the largest ones. This 
step can be iterated, in our case by always sticking to the equal-size (i.e. pentatope-based) 
Descartes set, until the size of the maximal spheres falls below a given upper bound. In fig-
ure 10 we have plotted the deviation from the size of the swiss-cheese dust universe for five 
configurations obtained from the pentatope-based Apollonian configurations with different 
maximal sizes for the spherical caps, as just described.

In order to reduce the computational effort (which is entirely due to the quadratic equation (54) 
for the µi) we have also removed the smallest caps so that we h ave about 105 masses in all 
five cases. This time, the configurations are approximately unifoamy and therefore the different 
results are in good agreement with each other. However, we also observe that the deviation from 
the swiss-cheese value is often quite large. But if we check how much of the dust universe in the 
swiss-cheese model is removed, we observe that the fit becomes better the less dust is remaining, 
which clearly fits expectation. In fact, the deviation appears to be proportional to the amount of 
remaining dust or, equivalently, the volume to the part of the 3-sphere that is uncovered by spheri-
cal caps. We conclude that the unifoamity of a configuration is not sufficient to guarantee a good 
fit, we also need an effective covering of the 3-sphere in the sense just explained.

The number of black-holes in our computations is mainly limited by numerical reasons in 
calculating the mass parameters. We mention that the mass parameters can be estimated by

µi ≈ mi

√
3π

16M
� (77)

for unifoamy configurations, so that this step may be skipped leading to small deviations 
between the masses of the swiss-model and the initial data. Furthermore, it is also possible to 
use the masses mi instead of the mass parameters µi in order to check if a given configuration 
is unifoamy. This is true because it can be shown that

µi

µ
≈ mi

M
.� (78)

This ends our first small excursion into applications of Lie sphere geometry to lattice cos-
mology. We hope to have convinced the reader that this is not only a beautiful but also very 
powerful method for the systematic construction of black-hole configurations of almost arbi-
trary degrees of symmetry. We regard this paper only as a first step in this direction, the pri-
mary purpose of which is to introduce the method and explain its geometric foundations. We 
are convinced that a proper geometric understanding is essential in order to bring this method 
to its full power. Further work will be devoted to more concrete applications.
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Appendix A.  Solution of Lichnerowicz equation on S3

In this appendix we give a simple and general argument that implies that (53) solves (52). This 
fact is a special case of the following general

Theorem. Let ∆Sn denote the Laplacian on the unit n-sphere which we think of as being 
embedded into (n + 1)—dimensional Euclidean space: Sn := {x ∈ Rn+1 : ‖x‖ = 1}. 
Let E denote an arbitrary element of Sn, locally parametrised by some n coordinates, like 
generalised polar angles, and P ∈ Sn a fixed point. We define the strictly positive function 
D : Sn − {P} → R, D(E) := ‖E − P‖ which associates with each E ∈ Sn − {P} its distance 
to P  along the straight in Rn+1. In other words: D(E) denotes the geodesic distance of E from 
P  as measured in the embedding Rn+1, not the intrinsic geodesic distance in Sn (which is obvi-
ously always strictly larger). Then the theorem states that D−(n−2) is an eigenfunction of the 
Laplacian on Sn − P with eigenvalue n(n − 2)/4:

∆Sn D−(n−2) =
n(n − 2)

4
· D−(n−2).� (A.1)

In particular, for n  =  3 we get ∆S3 D−1 = 3
4 · D−1, which is just the statement that (53) solves 

(52).

Proof.  Consider the function D̃ : Rn+1 → R, D̃(rE) := ‖rE − P‖, where rE denotes a gen-
eral point in Rn+1 − {0} whose norm is just r  >  0. The function D̃ = just extends D, i.e. 
D̃
∣∣
Sn = D. Now, the Laplacian on Rn+1 can be written as follows:

∆Rn+1 = ∂2
r +

n
r
∂r + r−2 ∆Sn .� (A.2)

This formula allows us to calculate the Laplacian of any real-valued function F on (an open 
subset of) Sn by means of the Laplacian of any extension F̃  of it to Rn+1 (which is much easier 
to compute) and further simple r-differentiations. The formula we are using is:

∆Sn F =
(
∆Rn+1 − ∂2

r − n
r
∂r

) ∣∣∣
r=1

F̃.� (A.3)

In our case we have D̃(rE) = (r2 − 2rf + 1)1/2, where f := E · P  is a real valued function 
on Sn, independent of r. Simple calculations now show that

D̃1 = D =
√

2(1 − f ), D̃′
1 =

1
2

D, D̃′′
1 = −1

4
D +

1
D

,� (A.4)

where a prime denotes differentiation with respect to r and the subscript 1 indicates the restric-
tion of the respective function (after differentiation) to Sn, i.e. r  =  1.

Now we take F̃ = D̃−k. The Laplacian of that in Rn+1 is very easy to calculate, e.g. by 
using spherical polar coordinates based at P , in which case, using ρ  as radial coordinate, we 
have D̃(E) = ρ and ∆Rn+1 = ∂2

ρ + (n/ρ)∂ρ, so that

∆Rn+1

∣∣∣
r=1

D̃−k = k(k + 1 − n)D−k−2.� (A.5)

Furthermore, using (A.4) a short computation shows

(
∂2

r + (n/r)∂r
)∣∣∣

r=1
D̃−k = −k D−k−2 +

k
4
(
k − 2n + 2

)
D−k.� (A.6)
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Hence (A.3) applied to F  =  D−k gives

∆Sn D−k = k(k + 2 − n)D−k−2 +
k
4
(
2n − k − 2

)
D−k.� (A.7)

If we choose k  =  n  −  2 the first term vanishes and D−k = D2−n becomes an (unbounded) 
eigenfunction of ∆Sn on Sn − {P} with eigenvalue n(n − 2)/4, as stated in (A.1).� □ 

Appendix B.  Stereographic projection and its metric properties

In this appendix we recall some properties of the stereographic projection from the unit 
n-sphere in R(n+1) (or any Euclidean vector space of that dimension) onto its equatorial plane 
and the relation between the Euclidean distances of source- and image points.

We consider R(n+1) with the usual Euclidean inner product and norm. As before, 
the latter will be denoted by ‖ · ‖. Again we consider the embedded unit n-sphere 
Sn := {X ∈ R(n+1) : ‖X‖ = 1}. Points in R(n+1) which lie on Sn are denoted by capital bold-
faced letters, like X, Y, etc. Their inner product, according to the Euclidean structure in R(n+1), 
will be denoted by a dot, like X · Y; hence, e.g. X2 := X · X = ‖X‖2.

We select a point P ∈ S3, called the ‘pole’, which will serve us as centre of the stereo-
graphic projection. Further, we let P⊥ := {X ∈ R(n+1) : X · P = 0} � Rn be the ‘equatorial 
plane’ (a linear subspace), elements of which we denote by lower case bold-faced letters, like 
x, y. The subspace P⊥ inherits a Euclidean structure and norm from R(n+1), which we con-
tinue to denote by a dot and ‖ · ‖, respectively.

The given data define a diffeomorphism π : Sn − {P} → P⊥. It is called the stereo-
graphic projection from the pole onto the equatorial plane and is given by assigning to any 
X ∈ Sn − {P} the unique intersection point of the line through X and P  with P⊥. The para-
metric form (parameter λ ∈ R)of the line is given by L(λ) = S + λ(X − P) and its intersec-
tion with P⊥ by L(λ∗), where λ∗ follows from L(λ∗) · P = 0. This gives

x := π(X) =
X − P (P · X)

1 − P · X
.� (B.1)

Its inverse is given by

X = π−1(x) = x
2

x2 + 1
+ P

x2 − 1
x2 + 1

.� (B.2)

Equations (B.1) and (B.2) define the stereographic diffeomorphism between the once-punc-
tured n-sphere and the equatorial n-plane.

Next we wish to relate the Euclidean distances between source- and image points. We start 
by noting that

‖X − P‖2 = 2(1 − X · P) =
4

1 + x2 ,
� (B.3)

where we used X2 = P2 = 1 and (B.2) with x · P = 0 in the 2nd step. Similarly, for 
X := π−1(x) and Y := π−1(y), equation (B.2) yields

X · Y =
4 x · y + (x2 − 1)(y2 − 1)

(x2 + 1)(y2 + 1)
,� (B.4)
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and hence

4 ‖X − Y‖2 = 8(1 − X · Y) =
16(x − y)2

(1 + x2)(1 + y2)

= ‖x − y‖2 ‖X − P‖2 ‖Y − P‖2,
�

(B.5)

using (B.3) for X and Y  in the last step. This leads to the final relation

‖x − y‖ =
2 ‖X − Y‖

‖X − P‖ ‖Y − P‖� (B.6)

that holds independently of the dimensions n and that we used in (59).
The Riemannian metric of Sn is that induced by the embedding Sn ↪→ R(n+1). In stereo-

graphic coordinates x ∈ P⊥ this metric follows from pulling back the Riemannian metric on 
Sn via the inverse stereographic projection π−1. This is easily computed from (B.2) by first 
calculating the differential of X(x),

dX =
2

1 + x2 dx +
4 (P − x)
(x2 + 1)2 (x · dx),� (B.7)

and then ‘squaring’ it, dX⊗̇dX := δabdXa ⊗ dXb, which immediately gives, taking into 
account x · P = 0 and dx · P = 0,

dX⊗̇dX ==

(
2

1 + x2

)2

dx⊗̇dx.� (B.8)

Comparison with (B.3) shows that the flat metric hRn := dx · dx on P⊥ ∼= Rn can be written in 
terms of the constant positive-curvature metric on the unit n-sphere, hSn := (π−1)∗(dX · dX), 
as follows:

hRn =
4

‖X − P‖4 hSn .� (B.9)

This is the equation we used in (57).
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