
Sequence analysis

GABAC: an arithmetic coding solution for genomic data

Jan Voges 1,*,†, Tom Paridaens 2,*,†, Fabian Müntefering1, Liudmila S. Mainzer3,4,

Brian Bliss3, Mingyu Yang5, Idoia Ochoa5, Jan Fostier 2, Jörn Ostermann1 and

Mikel Hernaez 4,*

1Institut für Informationsverarbeitung (TNT), Leibniz University Hannover, 30167 Hannover, Germany, 2IDLab, Ghent University—imec,

9050 Ghent, Belgium, 3National Center for Supercomputing Applications, 4Carl R. Woese Institute for Genomic Biology and 5Electrical

and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: John Hancock

Received on June 13, 2019; revised on November 10, 2019; editorial decision on December 5, 2019; accepted on December 9, 2019

Abstract

Motivation: In an effort to provide a response to the ever-expanding generation of genomic data, the International
Organization for Standardization (ISO) is designing a new solution for the representation, compression and manage-
ment of genomic sequencing data: the Moving Picture Experts Group (MPEG)-G standard. This paper discusses the
first implementation of an MPEG-G compliant entropy codec: GABAC. GABAC combines proven coding technolo-
gies, such as context-adaptive binary arithmetic coding, binarization schemes and transformations, into a straight-
forward solution for the compression of sequencing data.

Results: We demonstrate that GABAC outperforms well-established (entropy) codecs in a significant set of cases
and thus can serve as an extension for existing genomic compression solutions, such as CRAM.

Availability and implementation: The GABAC library is written in Cþþ. We also provide a command line application
which exercises all features provided by the library. GABAC can be downloaded from https://github.com/mitogen/
gabac.

Contact: voges@tnt.uni-hannover.de or tom.paridaens@ugent.be or mhernaez@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Moving Picture Experts Group (MPEG or ISO/IEC JTC1/SC29/
WG11) is designing a new solution for the representation, compres-
sion and management of genomic sequencing data: the MPEG-G
standard. The standard in itself consists of a set of decoding
specifications and does not provide, per se, actual encoding
implementations.

This paper discusses the first implementation of an MPEG-G
compliant entropy codec: GABAC. GABAC combines proven
coding technologies, such as context-adaptive binary arithmetic
coding (CABAC) (Marpe et al., 2003), binarization schemes and
transformations, into a straightforward solution for the com-
pression of sequencing data. Although GABAC has been
designed following the MPEG-G specifications, in what follows
we will show that integrating GABAC into other genomic com-
pression solutions, such as CRAM (Bonfield, 2014; Fritz et al.,
2011) or DeeZ (Hach et al., 2014) can lead to significant
improvements.

2 Materials and methods

The first step of typical state-of-the-art genomic data compressors
such as CRAM, DeeZ or implementations of the MPEG-G standard
is to represent genomic information by splitting the data into a set of
homogeneous descriptor streams, each containing one specific type
of data (e.g. mapping positions, quality scores, mismatch informa-
tion, etc.). Each stream is more likely to contain stationary data,
enabling a more effective data compression, as redundancies are
more probable and value distributions are more predictable.

Given an input stream, the compression process implemented by
GABAC (and specified in the MPEG-G standard) consists of a five-
stage pipeline: input parsing, (optional) 3-step transformation, sym-
bol binarization, context selection and CABAC. In the input parsing
step, the descriptor stream is parsed into a stream of symbols. These
symbols are then processed by the 3-step transformation stage that
converts the symbol stream into one or more transformed sub-
streams. In the first transformation step, the input symbols are proc-
essed using one of the following three transformations (or no

VC The Author(s) 2019. Published by Oxford University Press. 2275

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(7), 2020, 2275–2277

doi: 10.1093/bioinformatics/btz922

Advance Access Publication Date: 12 December 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/7/2275/5674036 by guest on 30 April 2021

http://orcid.org/0000-0002-6080-660X
http://orcid.org/0000-0002-1671-3748
http://orcid.org/0000-0002-9994-8269
http://orcid.org/0000-0003-0443-2305
https://github.com/mitogen/gabac
https://github.com/mitogen/gabac
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz922#supplementary-data
https://academic.oup.com/


transformation, i.e. pass-through): (i) run-length coding, where a
repeated symbol is replaced by the symbol itself and its run-length;
(ii) match coding, an LZ77-style transformation and (iii) equality
coding, where a symbol is replaced by a flag indicating equality with
its predecessor and a correction symbol, if required. In the second
transformation step, for each sub-stream separately, a look-up table
transformation can be applied. Finally, in the third transformation
step, one can choose to apply differential coding. For each trans-
formed sub-stream, a binarization algorithm (used for conversion of
each symbol into a bit string) is picked together with a context selec-
tion algorithm. In the last step, each bit of the binarization is com-
bined with a context and both are processed using CABAC. For
more detailed explanations on the GABAC working principles, we
refer the reader to the Supplementary Data.

3 Results and discussion

To analyze the performance of the GABAC encoder, we modified
the compression tools CRAM and DeeZ to output their internal
data representations, such as mapping positions and read pairing in-
formation, to separate descriptor stream files. We encode every de-
scriptor stream with the (entropy) codecs used in CRAM (i.e. bzip2,
gzip, rANS order-0, rANS order-1 or xz), plus GABAC. This way
we can compare the performance of GABAC to the currently used
(entropy) codecs.

As input to our modified versions of CRAM and DeeZ, we used
chromosome 11 from items 01 and 02 of the MPEG-G Genomic
Information Database (https://mpeg-g.org), whose corresponding
BAM files occupy 6.9 and 4.2 GiB, respectively. This resulted in a
test set of 129 descriptor streams. To further emulate block-wise
compression (i.e. random access capabilities), all streams were lim-
ited to 200 MiB, which resulted in a test set size of 8.9 GiB. This ap-
proach allows for the analysis of a more extensive test set in a
random access environment, while preserving a reliable representa-
tion of the coding performance for each of the compared codecs.
More information on the experimental details are provided as
Supplementary Data.

Figure 1 shows, for each codec, the ranking distribution for the
different streams along the compression axis (left) and the compres-
sion speed axis (right). Speed ranks were computed excluding
the times used for the search for the best GABAC configuration.

Note that the rANS-0 and -1 executables were produced without
compiler optimizations. The dotted red lines denote the mean rank
for each codec, averaged over both test items. To provide a proxy
for the spread between the ranks, we computed the average com-
pression ratios (i.e. compressed size divided by uncompressed size)
and speeds for the set of codecs that rank first (22% and 49 MiB/s,
respectively) and the set of codecs that rank last (34% and 2 MiB/s,
respectively). As it can be observed in Fig. 1, GABAC obtains the
best compression ratios on average. GABAC is also faster than gzip
and xz provided that its optimal configuration [i.e. the optimal com-
bination of transformation(s), binarization(s) etc.] is known (see
Supplementary Data).

To further analyze to which extent existing solutions can benefit
from the incorporation of GABAC, Table 1 shows the compressed
sizes for different codec sets (where for each stream the codec with
the highest compression ratio is selected): the set of codecs used in
CRAM, the set of codecs used in CRAM plus GABAC and the set of
codecs used in CRAM plus GABAC with gzip and rANS order-0
removed. This table shows that adding GABAC to the set of CRAM
codecs further improves compression effectiveness. Removing gzip
does not affect the compression [Fig. 1 (left) shows that gzip is never
ranked first] and removing rANS order-0 has only a minor effect
(<0.005%).

Hence, we can conclude that adding GABAC as entropy codec to
both CRAM and DeeZ is beneficial both in terms of compression
ratio and speed. Additionally, it has been shown that the (entropy)
codec set can be limited to bzip2, rANS order-1, GABAC and xz,
with no performance degradation. Finally, we can conclude that it
would be valuable for implementations of the MPEG-G standard to
be able to employ other (entropy) codecs in addition to GABAC.

4 Conclusion

GABAC, the first implementation of an entropy codec as specified in
the MPEG-G standard, already outperforms well-established (en-
tropy) codecs, improving in several cases both the compression ratio
and the compression speed. In addition, the proposed implementa-
tion forms a valid extension to the set of (entropy) codecs used in
CRAM. We hope that it will serve as a baseline for future implemen-
tations, within and outside of MPEG-G, as the performance of new
implementations is expected to improve over time.

Fig. 1. Rank of compression performance (L) and speed (R). Dots were jittered for clarity. The x-axes show the test set ID (01 and 02) from which the descriptor stream files

were generated. The y-axes denote the actual ranks. Each dot depicts the ranking a codec achieved on one specific descriptor stream file. The red lines denote the mean ranks,

averaged over both test items. (Color version of this figure is available at Bioinformatics online.)

Table 1. Compressed sizes (in bytes) for different codec sets applied to the CRAM and DeeZ descriptor streams

Uncompressed streams size CRAM CRAMþGABAC CRAMþGABAC�gzip�rANS-0

CRAM streams 01 2 196 327 888 412 453 039 409 337 321 409 337 321

02 1 991 360 268 406 796 124 404 059 221 404 080 825

DeeZ streams 01 2 838 530 295 538 155 557 535 118 397 535 118 397

02 2 555 531 164 566 444 432 564 839 381 564 864 140

Note: Best results in bold.

2276 J.Voges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/7/2275/5674036 by guest on 30 April 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz922#supplementary-data
https://mpeg-g.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz922#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz922#supplementary-data


Funding

This work has been partially supported by grants 2018-182798 and 2018-

182799 from the Chan Zuckerberg Initiative DAF, a donor advised fund of

the Silicon Valley Community Foundation, a Strategic Research Initiative

from UIUC and the Mayo Clinic Center for Individualized Medicine, and the

Todd and Karen Wanek Program for Hypoplastic Left Heart Syndrome. This

work was a part of the Mayo Clinic and Illinois Strategic Alliance for

Technology-Based Healthcare.

Conflict of Interest: none declared.

References

Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics, 30,

2818–2819.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA sequenc-

ing data using reference-based compression. Genome Res., 21, 734–740.

Hach,F. et al. (2014) DeeZ: reference-based compression by local assembly.

Nat. Methods, 11, 1082–1084.

Marpe,D. et al. (2003) Context-based adaptive binary arithmetic coding in the

H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video

Technol., 13, 620–636.

GABAC 2277

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/7/2275/5674036 by guest on 30 April 2021


	btz922-TF1

